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Abstract 

 

Various machine learning-based methods and techniques are developed for forecasting 

day-ahead electricity prices and spikes in deregulated electricity markets. The wholesale 

electricity market in the Province of Ontario, Canada, which is one of the most volatile 

electricity markets in the world, is utilized as the case market to test and apply the methods 

developed. Factors affecting electricity prices and spikes are identified by using literature review, 

correlation tests, and data mining techniques. Forecasted prices can be utilized by market 

participants in deregulated electricity markets, including generators, consumers, and market 

operators.  

A novel methodology is developed to forecast day-ahead electricity prices and spikes. 

Prices are predicted by a neural network called the base model first and the forecasted prices are 

classified into the normal and spike prices using a threshold calculated from the previous year’s 

prices. The base model is trained using information from similar days and similar price days for 

a selected number of training days. The spike prices are re-forecasted by another neural network. 

Three spike forecasting neural networks are created to test the impact of input features. The 

overall forecasting is obtained by combining the results from the base model and a spike 

forecaster. Extensive numerical experiments are carried out using data from the Ontario 

electricity market, showing significant improvements in the forecasting accuracy in terms of 

various error measures.  
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The performance of the methodology developed is further enhanced by improving the 

base model and one of the spike forecasters. The base model is improved by using multi-set 

canonical correlation analysis (MCCA), a popular technique used in data fusion, to select the 

optimal numbers of training days, similar days, and similar price days and by numerical 

experiments to determine the optimal number of neurons in the hidden layer. The spike 

forecaster is enhanced by having additional inputs including the predicted supply cushion, 

mined from information publicly available from the Ontario electricity market’s day-ahead 

System Status Report. The enhanced models are employed to conduct numerical experiments 

using data from the Ontario electricity market, which demonstrate significant improvements 

for forecasting accuracy.   
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CHAPTER  1 

Introduction 

 

1.1 Electricity Markets 

Electricity may be considered as a special type of commodity whose generation and 

consumption occur simultaneously. The generation can be controlled, but electricity cannot be 

easily stored (Kaminski, 2012). Therefore, the demand generated by the consumer market 

determines the level of electricity generation. Average world energy consumption  is projected to 

increase by 48% from 2012 to 2040 with about 50% consumption in the industrial sector, which 

is a growth of 1.4% per year (EIA, 2016). Traditionally, generation and distribution of electricity 

were vertically integrated into state-owned or state-controlled utilities with supply overcapacity 

in many countries and regions.  

 Major economies of the world have restructured electricity generation and distribution 

from vertically integrated operations to deregulated markets. Market competition increases the 

affordability and dependability of the services, and consumers of electricity can choose among a 

set of energy providers. Hourly, half-hourly, five-minute interval electricity prices are 

determined during a day, considering various economic and operational factors by operators in a 

deregulated market. Therefore, price uncertainty is a major challenge faced by operators in these 

competitive markets.  

The competitive electricity markets around the world may be categorized as single-

settlement electricity markets or two-settlement electricity markets depending upon the design 

and organizational implementation of generation and transmission systems (Veit et al., 2006). 

Electricity prices in a single-settlement market, also known as real-time market, are settled on 

hourly, half-hourly, or five-minute bases depending on the demand and available supply. On the 

other hand, electricity prices for demand and supply, in a two or multi-settlement electricity 

market, depend on the day-ahead and real-time operation of the market. In a two-settlement 

market, day-ahead electricity demand and available supply are used to determine electricity 

prices and the difference between the proposed and actual demand and supply is covered using a 
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real-time market. Trading of electricity in these competitive markets is carried out through spot 

markets, forward markets, or bilateral contracts. The spot market may have to buy energy or drop 

the generation facilities, according to the demand of the market in real time. These types of 

markets are more volatile and may lead to high prices during high demand periods. Incentives 

and special offers are given to promote the market participation. On the other hand, a multi-

settlement market allows users and generators to clear the market prices on day-ahead basis and 

can increase or decrease their offers or bids at a later stage. These adjustments are carried out  in  

spot markets. The prices are more stable in multi-settlement markets, but incentives and 

opportunities for the participants are limited. Large electricity consumers try to minimize their 

electricity cost using various load management strategies to shift peak demand and generate 

electricity using on-site distributed generation facilities. Therefore, in order to optimize the 

operation of market participants, it is important to forecast the future electricity market prices.  

The Ontario power grid has significant direct and indirect interconnections with New York, 

the Midwest, New England and the Pennsylvania-New Jersey-Maryland (PJM) markets and is 

also connected to the power grids of Quebec and Manitoba. The Ontario electricity market, 

which is selected for this research, is a single settlement market and works only as a real-time 

market, while other neighboring North American electricity markets work as both day-ahead and 

real-time markets. This makes that the Ontario electricity market is more volatile (Zareipour et 

al., 2007b). In Ontario, only one generating company (Ontario Power Generation (OPG)), 

irrespective of the deregulation, has more than 70% of the generating capacity of the electricity 

market. To participate in the market as a wholesaler or retailer, participants have to meet certain 

terms and conditions.  

Large volumes of data have been collected by electricity markets. In smart grids massive 

data are collected from various sources like: data from behavioural activities of consumers; 

demand data generated by the market; pricing and bidding data; forced outage; control and 

management data for power generation, transmission and distribution; grid operating and 

instruction data; time-of-use data and weather data. Valuable information can be extracted from 

the collected data using various simulation and analytical techniques (Bastian et al., 1999; 

Shahidehpour et al., 2002). A competitive electricity market has massive data available for 

public to obtain historical information and to study. Datasets are available for past years and may 

include raw information for historical values of demand, prices, available supply, operating 
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reserves and climate variables such as temperature and humidity. This information is available 

on the hourly, half-hourly or five-minute basis in most of the electricity markets. These data sets 

can be analyzed using various machine learning techniques, including data mining, clustering, 

classification, artificial intelligence, and regression techniques to obtain useful knowledge and to 

develop new strategies for the electricity market.   

 

1.2 Importance of Electricity Price Forecasting 

Forecasting of electricity prices is important for all market participants. In particular, all 

industry stakeholders can use information to analyze cash flow, capital budgeting, rule-making 

and resource planning. In short term forecasting, over an hour to a few days, information is 

important for participants to optimize their bidding and offering strategies along with decisions 

when to shift to on-site generation facilities to maximize profits. Medium term and long term 

forecasting information is used for bilateral contracting, budgeting, maintenance scheduling, and 

resources planning. Price forecasting methods can be divided into two major categories: 

simulation based methods and analysis based methods. Simulation based methods can provide a 

more detailed review of the prices, but require insight details of physical processes of the market, 

such as demand bids, supply offers and market constraints (Amjady, 2012). Practically, market 

participants cannot use simulation based methods without analyzing these details. Analysis based 

methods, however, are more flexible, require less data detail and are adaptable to the conditions 

of market participants. These methods use historical data to forecast future prices.  

Electricity prices are affected by various controllable and uncontrollable factors. Some of 

these factors can be identified as: supply from different resources into the market, demand from 

consumers, market uncertainty, weather conditions such as  temperature and humidity, and 

generators switching  from low operating cost to high operating cost ones (Aggarwal et al., 

2009). Various other factors are also responsible for price variations in a deregulated electricity 

market, such as: season of the year and time of day, industrial activities, price hikes in oil/gas, 

sudden breakdown of low cost operating generators, and uncertainty about the load (Mount and 

Oh, 2004). Sometime, suppliers deliberately increase prices by withholding the capacity to shift 

the supply-demand curve for economical gains (Guan et al., 2001; Duan et al., 2005). 
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1.3 Objectives of the Research 

The overall objective of this research is to develop machine learning-based methodologies 

to forecast day-ahead (twenty-four hour ahead) electricity prices and spikes in deregulated 

electricity markets. The wholesale electricity market in the Province of Ontario, Canada, one of 

the most volatile electricity markets in the world, will be utilized as the case market to test and 

apply the methods and techniques developed in this thesis. Factors affecting electricity prices and 

spikes will be investigated by carrying out detailed reviews of the literature and analyzing data 

from the Ontario electricity market. Various machine learning methods and techniques will be 

used to forecast day-ahead prices and spikes. Performance of the methods and techniques 

developed in this thesis will be assessed by using various forecasting error measures and 

compared to results reported in the literature.      

 

1.4 Organization of the Thesis 

This thesis is organized into seven Chapters, as shown in Figure 1.1. A detailed literature 

review on electricity price and spike forecasting is reported in Chapter 2. A review of the Ontario 

electricity market, including analyses of prices and demand as well as price volatilities, is 

presented in Chapter 3. A novel methodology to forecast electricity prices and spikes is 

developed, tested, and applied in Chapter 4. The base model developed in Chapter 4 is enhanced 

by utilizing a popular technique used in data fusion in Chapter 5. The spike forecasting method 

presented in Chapter 4 is improved by mining the information from the System Status Report 

publicly available from the Ontario electricity market in Chapter 6. The  contributions of this 

thesis and future research directions are presented in Chapter 7.  
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Figure 1.1. Organization of the Dissertation  
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CHAPTER  2 

Literature Review 

 

2.1 Introduction 

Research on electricity price forecasting has gained momentum in recent years and is 

considered to be an important as well as challenging task (Mandal et al., 2006; Zareipour et al., 

2007a). Various participants, including generators, consumers and independent system operators 

(ISOs), engage in daily activities of these markets. Consumers in deregulated markets have the 

choice of purchasing electricity from different suppliers. Price forecasting information can be 

used in short-term and medium-term planning for setting offers and for negotiating bilateral 

contracts (Mandal et al., 2006; Zareipour et al., 2007a; Abedinia et al., 2017). Long-term 

generation expansion planning is also influenced by price forecasting. Overestimation of load 

forecasting may require unnecessarily reserve supply and an increase in generation operating 

costs, which ultimately increase the overall electricity prices (Pai and Hong, 2005; Wang et al., 

2012). Therefore, in a deregulated electricity market, accurate price forecasting is important for 

generators to submit offers to the market in terms of the amount of energy to be generated and 

the selling price. Consumers, on the other hand, submit buying bids to the market to satisfy the 

load and it is possible for consumers to decide to shift peak loads either by shifting work 

schedules or shifting to the on-site generation facilities (Weron, 2014). Meanwhile, independent 

system operators  can use price forecasting information to implement  various load management 

programs to shift the load and reduce the prices during peak hours.  

 

2.2 Price Forecasting Techniques 

Several approaches have been reported in the literature in the context of electricity price 

forecasting. Wang and Ramsay (1997) use neural network methods to predict the System 

Marginal Prices of England and Wales on a day-ahead basis. Martini et al. (2001) present a 

decision support simulation for a power trading (DESPOT), a simulation method, which is used 
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for the short-term wholesale electricity market of Italy to determine hourly prices, profits and 

bidding. The simulation model, as discussed in Chapter 1, can work satisfactory if market 

structure details are available. Hence, the simulation model by Martini et al. provides a detailed 

market operating structure and generation system representation of the Italian electricity market. 

Various analysis based approaches are reported in the literature: time series models using 

autoregressive integrated moving average (ARIMA) methods (Cuaresma et al., 2004; Conejo et 

al., 2005a; Conejo et al., 2005b; Khan et al., 2011; Zhang et al., 2012) and auto-regression 

methods (Ni and Luh, 2001); input/output hidden Markov models (Gonzalez et al., 2005; Bessec 

et al., 2016); transfer function (TF) models (Nogales et al., 2002; Conejo et al., 2005a; Nogales 

and Conejo, 2006); wavelet models and generalized autoregressive conditional heteroskedasticity 

(GARCH) models (Garcia et al., 2005; Aggarwal et al., 2009; Zhang et al., 2012); and neural 

network techniques (Wang and Ramsay, 1997; Zhang et al., 2003; Guo and Luh, 2004; 

Rodriguez and Anders, 2004; Conejo et al., 2005a; Hong and Lee, 2005; Zhang and Luh, 2005; 

Catalao et al., 2007; Mandal et al., 2007; Zareipour et al., 2007b;  Vahidnasab et al., 2008; 

Aggarwal et al., 2009; Coelho and Santos, 2011; Amjady, 2012; Filho et al., 2014; Panapakidis 

and Dagoumas, 2016. 

Ni and Luh (2001) present an auto-regression model combining with a classification 

approach to predict the probability density function (PDF) of market clearing prices (MCP) for 

the New England electricity market. Many factors such as demand, historical prices, market 

import-export, fuel prices and weather information have impact on MCP, as argued in their 

study. Conejo et al. (2005a) present the prediction of the electricity prices of the PJM electricity 

market using three time series based strategies: the autoregressive integrated moving average 

(ARIMA) model, the dynamic regression model and the transfer function model. Further, they 

propose two other techniques of neural network and wavelet transformation for day-ahead price 

prediction. In the time series techniques, they consider similar days from the same week and 

select these similar days by comparing the selection error with the market clearing prices. Conejo 

et al. (2005b) propose a technique to forecast day-ahead prices for the electricity market of 

mainland Spain. They use a wavelet transformer as a pre-processor to improve the predicting 

behaviour of the ARIMA technique. Garcia et al. (2005) use the general autoregressive 

conditional heteroscedastic (GARCH) methodology for price forecasting of the mainland Spain 
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and California deregulated electricity markets. They compare the ARIMA model with the 

GARCH technique and observe that GARCH yields better results. 

 Zhao et al. (2006) discuss the importance of feature pre-processing techniques and 

evaluate the empirical performance in time series forecasting. They opine that the selected 

features should be mutually independent and show good dependency with the class. They use 15 

combinations with different search strategies and evaluation criteria and demonstrate that a 

genetic algorithm search with a wrapper model for feature selection gives the minimum value of 

mean absolute percentage error (MAPE). The data set employed in the study is from the national 

electricity market (NEM) in Australia. Further, they demonstrate that these models can combine 

with the support vector machine (SVM) for forecasting the electricity prices. 

Zareipour et al. (2006) present a regression approach for forecasting the hourly Ontario 

energy prices (HOEP). They use multivariate adaptive regression splines (MARS) over a three-

week period in 2004 in two different scenarios. In the first scenario, lagged values of HOEP are 

used to develop an adaptive nonlinear autoregressive model. In the second scenario, current and 

lagged 2 hour ahead pre-dispatch prices (PDP) and pre-dispatch demand (PDD) are also 

considered along with the first scenario using adaptive non-linear dynamic regression modeling. 

Swief et al. (2009) develop a SVM based model to forecast the load and prices separately by 

utilizing the k-nearest neighbour technique to pre-process the data set, which comes from the 

PJM electricity market. They also study the impact of price spikes on the selection of features. 

Zareipour et al. (2011) propose a different approach for forecasting short-term electricity 

prices from the Ontario and Alberta markets. They use two different methods based on the SVM 

technique to classify the prices below and above a threshold value. This method may be useful 

where numerical values of prices are not required. In their work, they use a kernel-based feature 

vector selection (KFVS) technique for feature selection. In the first case, they use different 

SVMs for the classification of prices at each hour during the day. In second method they also 

consider the autocorrelation of the prices and use the SVM in the same manner to classify the 

prices a day ahead. Huang et al. (2012) also discuss electricity price forecasting as a 

classification problem to classify forecasted prices above and below the threshold level. They use 

different classification methods such as decision trees, multilayer perceptrons (MLP), Bayes and 

k-nearest neighbour (kNN) with different feature selection techniques including: relief, 

correlation feature selection (CFS) and mutual interference (MI). They observe that for 
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classification of future prices, CFS and Bayes methods are better than other methods. In their 

work, they use a filter method to select the different features and argue that a filter method is 

faster as compared to the wrapper as the latter gives more accuracy on the cost of computational 

complexity. The data sets are taken from the New York, Ontario and Alberta electricity markets. 

Catalão et al. (2007) develop a three-layered Levenberg-Marquardt algorithm trained feed 

forward neural network for forecasting next week electricity prices of mainland Spain and 

California. Their study presents a comparison of MAPEs by neural network, ARIMA and naïve 

based approaches. It has been demonstrated that results from the neural network approach are 

better than ones by the other two techniques for the dataset from the year of 2000. Guo and Luh 

(2004) propose a committee machine approach consisting of multiple neural networks and use 

the probabilities of individual neural networks to choose the weighting coefficients for the 

combined neural network. Data sets of New England electricity market from May 1, 2001 to 

April 30, 2002 and May 1, 2002 to October 31, 2002 are selected for training and testing of the 

model. Mandal et al. (2007) present a neural network model based on the similar days method to 

predict 24 hour ahead PJM electricity prices. They  argue that the similar days method makes the 

learning easy for the neural network and hence simplifies the model. In their study, they forecast 

electricity prices using two methods: one based on the average prices of similar days and the 

other based on a neural network having prices of similar days as part of inputs. A comparison of 

the two methods demonstrates that the neural network approach outperforms the similar day's 

method. 

Singhal and Swarup (2011) use a three-layer back propagation neural network to forecast 

day-ahead market clearing prices (MCPs). They  train a neural network with the data for 6 

months and forecast hourly prices for a day with normal trend, a day with small spikes and a day 

with large spikes. The training features selected are the time of use, historical prices and load 

demand data and the mean square error (MSE) and root mean square error (RMSE) are 

calculated as error measures. Vahidinasab et al. (2008) demonstrate day-ahead price forecasting 

in the PJM electricity market using a neural network method. They argue that the Levenberg-

Marquardt learning algorithm converges 10 to 100 times faster as compared to the 

backpropagation learning algorithm. 

Panapakidis and Dagoumas (2016) proposes a neural network model along with clustering 

algorithm, using no pre-processed data, to forecast day-ahead prices of PJM and Spain electricity 
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markets. They argue that neural network based models are more flexible and robust forecasting 

tools and are useful for market participants.   

It can be concluded from the above-cited studies that historical prices and demand are two 

important features for forecasting electricity prices. Moreover, neural network techniques have 

the ability to handle non-linear relationships accurately in many applications and may be 

considered as universal approximation models with the capability of high accuracy for large 

classes of functions (Zhang and Qi, 2005). Hence, in recent years, neural network techniques are 

used in many forecasting problems. Furthermore, neural networks do not require prior 

information on model structures and are trained using input and output information. Because of 

neural networks' better ability to handle non-linear relationships in many applications (Zhang 

and Qi, 2005), neural network models have recently often been utilized to forecast electricity 

price. Thus, in this thesis neural network techniques along with the data mining techniques at the 

pre-processing stage are used to forecast day-ahead electricity prices and spikes. Although, there 

are studies using neural network techniques, the literature on price forecasting is limited as 

compared to the load forecasting techniques. The reported error is much below in the case of 

load forecasting problems, less than 3%, as compared to price forecasting problems.   

 

2.3 Spike Forecasting Techniques 

The problem of price spikes has been reported in almost all the electricity markets of the 

world. Single settlement or real-time electricity markets are more volatile and lead to more 

complications for price forecasting (Veit et al., 2006; Weron, 2014). The main reason for the 

price spike is supply shortage. The severity of the occurrence of spikes may differ depending on 

the structure and operation of a market. Price spikes occur if the electricity prices show very 

sharp changes with the variation of demand. Any hockey stick-shaped supply curve may lead to 

sharp changes in the market clearing prices if the demand and supply curves intersect in the 

blade area. The idea of price spikes can be demonstrated using Figure 2.1 in which the 

illustration of high price spikes and low or negative price spikes is shown for the electricity 

market of Ontario. The mean price value μ is calculated over a previous given period of time and 

then the threshold values above the mean and below the mean are computed by using the formula 

of μ ± 2δ, where δ denotes the standard deviation of prices. The prices that lie above the upper 
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threshold level are known as high price spikes and those that lie below the lower threshold level 

are known as low or negative price spikes.  

 

Figure 2.1 Illustration of Spikes in the Prices of the Ontario Electricity Market 

Several methods are reported in the literature in the context of spike forecasting for 

different electricity markets of the world: neural network-based methods (Wu et al., 2006; 

Amjady and Keynia, 2010; Amjady and Keynia, 2011;); support vector machine (SVM) methods 

(Wu et al., 2006; Zhao et al., 2007a); data mining techniques (Lu et al., 2005; Zhao et al., 

2007b); autoregressive conditional hazard (ACH) models and dynamic logit models (Christensen 

et al., 2012; Eichler et al., 2013); and wavelet transform methods along with feature selection 

techniques (Amjady and Keynia, 2010). Most of these spike forecasting studies explored the 

National Electricity Market (NEM) of Australia, Queensland electricity markets of Australia, and 

PJM electricity markets. 

 Lu et al. (2005) report a three-step framework for predicting the price spikes of 

Queensland market, Australia. In the first step, they used normal regional reference price (RRP) 

to determine price spike occurrences and then the forecasted normal prices are compared with 

the threshold value to determine the likelihood of spike having occurred at time t. In the next 

step, a Naïve Bayesian classifier is used to determine the range of the spikes. In the final step, the 

values of spikes are calculated using the k-nearest neighbor approach. Zhao et al. (2007a) use a 
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data set of Australia NEM  to demonstrate the price spike prediction using two different 

techniques. In the first technique, SVM is used to predict the spikes and the price spikes are 

determined from the given test set. In the second technique an advanced price spike probability 

classifier is used in which the probability for each input vector for a spike is determined and 

compared with the threshold value. If it is larger than the threshold, a spike is considered to have 

occurred. A spike is determined even for non-spike predicted values with a probability higher 

than the threshold value. This is due to the fact that spike prediction cannot be considered as a 

balance classification problem.  

 Huisman (2008) presents the results for the Dutch electricity market for the effect of 

weather conditions such as temperature on the occurrence of spikes. Three regime-switching 

models are used for day-ahead electricity prices. The first model is used as a benchmark without 

considering any features. In the second model, the influence of temperature is considered on 

price levels and the third model is an extension to the second model, in which the influence of 

temperature on transition probabilities between the regimes is considered. Weng et al. (2009) 

extend the work reported by Lu et al. (2005) by using the cloud model technique. In their 

research, they combine the spike prediction technique with a concept-tree approach, based on the 

cloud model for price spike forecasting with data reduction.  

 In a work presented by Amjady and Keynia (2010), a new approach in which frequency 

domain along with the time domain is used for feature selection is discussed. These features are 

selected using wavelet and time domain variables. For forecasting, a probabilistic neural network 

technique is developed and is fed by the selected inputs to predict price spike occurrence. The 

data sets from the Queensland market, Australia, and PJM electricity market are used in their 

evaluation. Amjady and Keynia (2011) propose the extension of their previous approach by 

using a new feature selection technique based on information theoretic criteria, which selects the 

most informative features for electricity price spike forecasting. They also propose a 

probabilistic neural network and hybrid neuro-evolutionary system (HNES) to predict the 

occurrence and value of electricity price spikes simultaneously. The data set from the PJM 

deregulated electricity market is used in their work. In another approach by Christensen et al. 

(2012), time series of price spikes as a realization of a discrete-time point process is considered 

and an autoregressive conditional hazard (ACH) model is used for the modeling of this process. 

One-step ahead forecasting is presented for price spikes in NEM of Australia. Amjady (2012) 
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presents a probabilistic neural network technique to predict the occurrence of day-ahead spikes 

using seasonal, daily, and hourly information along with the existence of spike for the PJM 

electricity market. Only a classifier method to predict the forecasted value as a spike or normal 

price is presented. In another approach presented by Clements et al. (2013), Australian electricity 

market data have been explored using a kernel-based nearest-neighbour regression model to 

forecast the spike prices. Demand data and weather data like temperature variables are used to 

design an algorithm and they discuss that occurrence of spikes is a non-linear process. Manner et 

al. (2016) also demonstrate spike forecasting for the Australian electricity market. Their study 

extends the work presented by Eichler et al. (2014) in which probabilities of spikes occurrence 

are forecasted, using dynamic multivariate discrete models.  

Zhao et al. (2007a) discuss that spikes occur over a short period up to several hours and 

these hours cannot be longer that a day. It is concluded from the above studies that in recent 

years, attempts have been made to predict price spikes and different models have been developed 

depending upon the availability of supply and system demand. However, no satisfactory model 

has been developed that is capable of predicting the subsequent price spikes as most of these 

models consider the occurrence of price spikes as a non-memorable event (Christensen et al., 

2012), especially for the highly volatile electricity markets. To the best of the author’s 

knowledge, no work has been reported in the literature on the Ontario wholesale electricity 

market for spike forecasting.  

 

2.4 Electricity Market Selection 

As discussed in Section 1.1, the Ontario electricity market is a single settlement market and 

one of the most volatile markets (Zareipour et al., 2007b). The Hourly Ontario Energy Price 

(HOEP) is uniformly applicable to wholesale consumers in Ontario. Simulation based HOEPs 

are calculated by the Independent Electricity System Operator (IESO) and are published as Pre-

Dispatch Prices (PDPs) (Zareipour et al., 2007a). These prices are updated every hour up to 1-

hour ahead PDPs and deviate significantly from the real-time prices (Zareipour et al., 2007a). 

Studies cited above from the literature also reported less work on forecasting prices for the 

Ontario electricity market as compared to the PJM and Australian markets. In particular, no work 
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has been reported for price spike forecasting for the Ontario electricity market. Therefore, the 

Ontario electricity market is selected for study in this thesis.    

From the above cited studies in the literature, various factors may be considered 

responsible for a change in electricity prices. These factors include demand, supply, weather 

conditions such as temperature and humidity, season, time of day, industrial activities, price 

hikes in oil/gas, outage of low cost operating generators (Mount and Oh, 2004; Aggarwal et al, 

2009). Moreover,  sometimes suppliers withhold their capacity to shift the supply-demand curve 

to cause spikes (Guan et al., 2001; Duan et al., 2005). 

The demand generated by the consumer market is considered as the most important factor 

and determines the level of electricity generation. The influence of demand on electricity prices 

from the year of 2011 in the Ontario electricity market is illustrated in Figure 2.2. It is observed 

that the occurrence of spikes increases when the demand is high. Relationships between demand 

and prices are discussed in a study presented by Zhao et al. (2007a). The chances of spikes 

increase with the rise in demand and prices become more unstable as demonstrated in Figure 2.2. 

The probability of spike occurrence increases significantly when the demand is greater than 

16,000 MW. 

 

Figure 2.2. Graphical Representation of Relationships between Demand and Prices for the Year 

of 2011 in the Ontario Electricity Market 
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 In Figure 2.3, relationships between temperature and electricity prices are shown. The 

prices are lower at moderate temperature and increase at very low or very high temperatures. 

Therefore, on-peak timing are shifted in winter or summer and accordingly the chances of spike 

occurrence.  

 

Figure 2.3. Graphical View of Relationships between Temperature and Electricity Prices  

Variations in the electricity prices over 24 hours of a day for all 365 days of the year of 

2011 are shown in Figure 2.4. The occurrences of spikes also depend upon the time-of-use of 

electricity, hence most of the spikes occur during the peak load hours. Although, spikes have 

been recorded over the non-peak hours, but, the probability of their occurrences is very low.  
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Figure 2.4. Ontario Electricity Prices versus Time-of-use in 2011 

The detailed operations and structure of the Ontario electricity market along with the 

conditions to participate in the market are described in Chapter 3. Chapter 3 also includes a 

discussion on the history of Ontario electricity market. 

 

2.5 Summary 

In this Chapter, a detailed literature review on price forecasting techniques and spike 

forecasting techniques for different electricity markets is reported. From the studies reviewed, it 

is concluded that price forecasting accuracies vary significantly across the electricity markets 

depending upon the market volatility and operating structure. Market demand and historical 

prices are considered as the important variables along with weather conditions such as 

temperature and humidity and season of the year for forecasting prices. The forecasting horizons 

in the above cited studies vary from one-hour ahead to several-hours ahead depending upon the 

availability of information on candidate variables before real-time. Although, price forecasting 

techniques reported above show improvements in the price forecasting accuracy, a significant 

improvement is required, as compared to load forecasting, to be achieved in price forecasting 

problems. Moreover, most of the studies reported normal price forecasting problems with much 

less literature on spike forecasting. Many studies are also carried out for multi-settlement 
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electricity markets operations. However, single-settlement  electricity markets are more volatile. 

The Ontario electricity market is a single-settlement market. Moreover, no research work in the 

literature has been reported for  the Ontario electricity market, one of the most volatile markets 

in the world, for spike forecasting. Hence, after reviewing the literature, to address these gaps, a 

novel methodology is proposed in this research based on neural networks to forecast day-ahead 

electricity prices and spikes in the wholesale Ontario electricity market. To further improve the 

proposed method, various machine learning techniques are used and the impact of different input 

features is studied.    
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CHAPTER  3 

Overview of the Ontario Electricity Market 

 

3.1 Introduction 

A detailed review of the Ontario electricity market is described in this Chapter. First, a 

brief history of the Ontario electric power industry is presented. Second, the operation and 

participants of the current Ontario electricity market are discussed. Third, prices, demand, and 

volatilities of the Ontario market are analyzed. 

 

3.2 History of the Ontario Electric Power Industry 

In 1903, a project was started at Niagara Falls and three syndicates were awarded 

franchises to generate power in Ontario. In 1905, the Ontario Power Commission was formed to 

organize the project. This commission was later renamed as the Hydro-Electric Power 

Commission of Ontario (HEPCO) in 1906 and eventually as Ontario Hydro (Ontario Royal 

Commission on Electric Power Planning, 1980; Winfield et al., 2006). Ontario Hydro and some 

small municipal utilities were responsible for generation, transmission and distribution of the 

electricity to the customers before deregulation. The provincial government was responsible for 

the prices of electricity. In 1925, the Hydro Electric Commission (HEC) of Ontario built the 

world's largest hydroelectric plant at that time. To further meet the enhanced demand resulting 

from the economic boom in 1950's, thermal electricity generation plants were built by HEC 

(Ontario Royal Commission on Electric Power Planning, 1980; Winfield et al., 2006). Twenty 

nuclear power units were also installed across the province during the period from 1960 to 1990. 

In 1998, Ontario Hydro was divided into five companies and these five companies were 

launched on April 1, 1999 by the Ontario Electricity Act. These five companies have different 

responsibilities for the smooth operation of the electricity market. The names of these five 

companies as given in Figure 3.1 are (IESO, 2017a): 

 Ontario Power Generation (OPG), focusing on the generation of electricity,  
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 Hydro One, focusing on the transmission and distribution of electricity,  

 Independent Market Operator (IMO), later known as Independent Electricity System 

Operator (IESO) by the Electricity Act in 2004, focusing on the electricity system dispatch, 

 Electrical Safety Authority (ESA), responsible for electric industry standards and safety 

and,  

 Ontario Electricity Financial Corporation (OEFC), managing the financial services of 

Ontario Hydro. 

 

OPG

Ontario Hydro

Hydro One IESO ESA OEFC
 

Figure  3.1 Reorganization of Ontario Hydro by the 1998 Ontario Electricity Act 

Moreover, the 1998 Ontario Electricity Act created the operation of an open wholesale 

market and retail choice at the consumer level offered by retailers such as the Canada Energy 

Wholesalers Limited. It also ensures access to the power transmission grid for new competitors 

in the generation of electricity. 

Electricity was provided at low cost by the Adam Beck generating station at Queenston 

Heights on the Niagara River in the first half of the 20th century. With the increase in demand, 

coal and nuclear generation facilities were added and the Power Corporation Act was enacted 

that required HEPCO later known as Ontario Hydro to provide power without making any profits 

(Dewess, 2005). According to the Demand and Supply Plan (DSP) report published by Ontario 

Hydro in 1989, demand would exceed the available supply in 1990 and this gap would increase 

to 9,700 MW in 2005 (Ontario Hydro, 1989). It was further estimated that in 2014 the gap 

between demand and available supply will be more than 21,300 MW. In order to overcome this 

increasing gap, new generation facilities must be set up. However, due to the recession and 

economic restructuring, electricity demand decreased in 1993 and no new generation facility was 

added (Ontario Hydro, 1997). 
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In 1995, the Ontario market was converted into a competitive market by a committee 

formed by the government, but this market became operational in May 2002. The wholesale and 

retail prices were capped by the 2002 Electricity Pricing, Conservation, and Supply (EPCS) Act 

and remained fixed until May 2006. 

The Canadian Nuclear Safety Commission, previously known as the Atomic Energy 

Control Board (AECB) of Canada, submitted a report in 1996 proposing to close seven nuclear 

units for rehabilitation with the demand to be fulfilled by thermal generation (Ontario Hydro, 

1997). Public health concerns came up with the increase in the consumption of coal (OPHA, 

2002) and consequently, the government decided to phase out coal by 2007 (Winfield et al., 

2004). By the end of 2010 approximately 3,130 MW capacity of coal generation had been 

suspended. In 2012, the contribution of coal was recorded as less than three percent of the total 

electricity production in the province. The remaining 3,293 MW capacity of coal-fired generators 

in the province were eliminated by the end of 2014. At the end of 2003, the Electricity 

Conservation and Supply Task Force (ECSTF) was formed by the Ontario government to 

investigate the reason for the blackout in August 2003 and to submit recommendations for the 

electricity supply in the future. In addition, Ontario Power Authority has handled power system 

planning issues since 2003. 

Presently, Ontario is facing three major electricity challenges and its generation capacity 

needs to be replaced by 80% during the next 20 years (Chief Energy Conservation Officer, 

2006). The major problems in the Ontario electricity sector are: 

 Coal was one of the major sources of power generation until 2007 and has been phased out. 

 Many nuclear plants are leading towards shutdown in 2009 to 2025 due to aging. 

 The peak-demand is increasing. 

 

3.3 Current Ontario Electricity Market 

3.3.1 General Information 

In the current Ontario electricity market, transmission and distribution systems have 

remained regulated and the Ontario Energy Board determines the transmission and distribution 

tariffs. Hydro One is the major transmission company and has been privatized recently by the 
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Government of Ontario. Irrespective of the deregulation in the generation system, OPG holds an 

overwhelming share of generation capacity - approximately 70% of the total 36,564 MW 

installed generation capacity across the province. As shown in Figure 3.2 the total installed 

generation capacity is (IESO, 2017b): 

 12,978 MW (36%) of nuclear power, 

 10,277 MW (28%) of gas and oil, 

 8,451 MW (23%) of hydro,  

 3,983 MW (11%) of wind,  

 495 MW (1%) of biofuel, and 

 380 MW (1%) of solar.  

 

Figure 3.2  Installed Electricity Generation Capacities of Different Resources in Ontario in 2017 

The Ontario electricity market is interconnected with five neighbouring markets: Quebec, 

Manitoba, Minnesota, Michigan and NewYork. Import and export of electricity from these 

markets are part of regular operations of the Ontario electricity market to provide operational and 

planning flexibility. 

Imports or exports are considered similar to supply or demand, but are organized one-hour 

before the pre-dispatch run of Dispatch Scheduling Optimizer (DSO), an algorithm used by the 

IESO to determine prices and schedules. To prevent the reliability risks, Net Interchange 
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successive hours is limited to 700 MW. Total import and export for the year of 2016 is 8.0 TWh 

and 21.9 TWh, respectively (IESO, 2017c).  

The additional supply of  energy that can be called on a short notice to fulfil unexpected 

demand hike in a real time market is known as Operating Reserve (OR). The Ontario electricity 

market has three classes of operating reserves and a dispatchable participant has to supply an 

equal or greater amount of energy into the real time market to offer operating reserve: 

 10- minute synchronized (spinning) reserve, 

 10-minute non-synchronized (non-spinning) reserve, and 

 30-minute (non- synchronized) reserve. 

These suppliers may offer on any or all the three types of operating reserve depending upon 

their capabilities to supply energy in 10 minutes or 30 minutes. These suppliers are paid with the 

last offer accepted in the market i.e. market clearing price (MCP). If a supplier is selected for the 

operating reserve, but energy is not required, they will be paid on a stand-by basis for the amount 

of energy called for operating reserves. If the operating reserve energy is used to settle the 

difference between demand and supply, participants are paid for the generation.  

Ontario IESO publishes historical data from May 2002 onwards. The data consist of hourly 

demand and electricity prices. These data are publicly assessable at www.ieso.ca and used as 

data sets for study in this thesis. 

IESO also publishes System Status Reports (SRS) containing forecasting details of 

demand, supply, imports, operating reserves, capacity excess and shortfall. These reports are 

published 24 hours in advance and can be updated upon change in forecasts. Some variables 

from SRS are also used in Chapter 6 of this thesis. 

3.3.2 Market Clearing Prices 

In competitive markets, the prices of products depend on the supply and demand. In these 

markets as shown in Figure 3.3, with a decrease in price, demand for quantity increases and with 

an increase in price, quantity produced tends to increase. When production of the demanded 

quantity has enough incentive, prices will be stable. 
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Figure 3.3 Market Clearing Prices with respect to Demand and Supply 

In the case of the electricity market, some generators have high running costs as compared 

to others and hence, electricity prices should cover this cost in order to operate these generators. 

On the other hand, for high electricity prices consumers tend to decrease their demand. 

The wholesale prices of electricity in Ontario, also called the Market Clearing Prices 

(MCPs), are determined by running the dispatch algorithm (Anders and Rodriguez, 2005). Every 

day, IESO issues estimated demand needed throughout the following day, up to a month ahead, 

including 1,400 MW of energy reserve for emergencies. 

Generators and importers give their offers for the prices and the quantity of electricity to be 

supplied to the IESO. Large consumers can also change their consumption patterns according to 

the price variations during the day. The IESO then matches supply and demand by running the 

algorithm in unconstrained and constrained mode. In the unconstrained mode, physical 

limitations of the electricity market system in Ontario are not considered. In the case of the 

constrained algorithm, these limitations are taken into consideration. The unconstrained mode 

gives the market clearing prices and constrained mode produces the dispatch instructions. IESO 

first accepts the lowest priced offers and then accepts the higher priced offers until the market 

demand is met (Anders and Rodriguez, 2005). All the suppliers are paid with the same price 

based on the last offer accepted. This price is known as MCP and is used for dispatchable 

participants. HOEP, which is an average of the MCP for each hour, is used to pay or charge non-
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dispatchable participants (Anders and Rodriguez, 2005). There are also participants that do not 

have physical facilities to produce or consume electricity. These participants act as wholesalers 

that buy energy from the wholesale market and sell energy and services to other Ontario market 

participants. These participants can be defined as importers or exporters depending on whether 

they bring energy into Ontario from neighbouring markets or send energy out of Ontario to these 

directly interconnected electricity markets. 

Loads with consumption of 250,000 kWh/year or more are charged based on wholesale 

prices; otherwise retail electricity prices are applied. These retail prices are calculated based on 

the regulated price plan (RPP) mandated by the Electricity Act of 2004. These retail prices are 

further divided for consumers with smart meters as time-of-use prices. These consumers have to 

pay 18.0ȼ/kWh for on-peak, 13.2ȼ/kWh for mid-peak and 8.7ȼ/kWh for off-peak, prices 

implemented by local distribution companies. Small consumers who do not have interval meters 

have to pay tiered prices set by the Ontario Energy Board every six months. These prices are 

10.3ȼ/kWh for below the 750 kWh threshold and 12.1ȼ/kWh above the threshold. There are also 

some small consumers who have retail contracts with different retailers and have to pay 

according to the contract terms. 

3.3.3 Demand Response Programs 

Demand response can be defined as a set of time-dependent activities that reduce or shift 

electricity usage by end-use consumers from their normal consumption patterns. These activities 

are utilized to improve electric grid reliability, manage electricity costs, and provide systems that 

encourage load shifting or shedding during times when the electric grid is near its capacity or 

electric prices are high (US Department of Energy, 2006). Demand response can also be defined 

as incentive payment programs for end users, so they are encouraged to lower their power 

consumption during peak load hours. 

The Ontario Power Authority (OPA) has started Demand Response (DR) programs as 

DR1, DR2 and DR3 to reduce the peak demand requirements (Environmental Commissioner of 

Ontario, 2010). DR1 was launched in June 2006 and was designed for voluntary load shedding 

during the few hundred peak hours in a year. Participation in DR1 depends on the volition of the 

participating consumers. It was merged into DR3, which was launched in August 2008. The DR3 

program is designed to reduce load during the few hundred peak hours of consumption during a 



25 

 

year. Participants must reduce electricity consumption when called on by the OPA through the 

Independent Electricity System Operator (IESO). The DR2 program was launched in July 2009 

and is a mandatory load-shifting program similar to DR3. Participants have to shift their load 

from peak hour to non-peak hours over a day. 

Consumers can respond to the electricity market by taking various actions. Firstly, 

consumers can reduce their overall consumption of electricity by cutting the peak hour loads. In 

the second scenario, consumers can shift their load from peak hours to non-peak hours, hence 

consuming the same amount of electric energy but reducing the peak demand. In the third case, 

consumers can run on-site generators during the critical load hours to fulfill their electricity need 

thus reducing their demand requirements (Albadi and El-Saadany, 2008). 

3.3.4 Price Forecasting Horizon 

Electricity price forecasting can be categorized into short term, medium term and long term 

forecasting. Short term involves price forecasting for few minutes to few days ahead and is used 

for day to day electricity market operation, medium term forecasting is from a few days to few 

months ahead and is used for risk management. Electricity market planning involves long term 

forecasting, which is a future prediction of prices over the quarters or years (Weron, 2014). The 

majority of studies in the literature (Catalão et al. 2007; Aggarwal et al. 2009; Bessec et al. 

2016) focus on short term forecasting for its importance in daily market operations. Electricity 

markets have different short term forecasting horizons depending upon the availability of the 

input variables. In the Ontario wholesale electricity market dispatchable loads and generators 

submit offers or bids for the amount of energy to generate or consume. These offers are accepted, 

only if submitted at least 2 hours before the actual transmission, so as to recalculate MCP and 

add or drop generation facilities. To make the price forecasting information useful for these 

generators and loads it must be available 3 hours before the actual transmission of energy 

(Zareipour et al. 2007a; IESO rules at www.ieso.ca). On the other hand, information about input 

variables available after 24 hours is likely to change and will largely deviate from the actual 

values. Some important factors like operating reserves are calculated only 24 hours ahead the 

actual time. This information is important in the price forecasting problem and helps to improve 

the forecasting accuracy. Considering the importance of these parameters, in this thesis day-
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ahead (24 hour-ahead) prices are forecasted in the wholesale electricity market of Ontario, 

Canada. 

 

3.4 Participants of the Current Ontario Electricity Market 

3.4.1 Main Sectors 

The electricity market of Ontario can be divided into three main sectors (Natural Resources 

Canada, 2006) 

 Residential Sector: In this sector about 33% of the total Ontario electricity consumption is 

utilized for heating, cooling and lighting of residential buildings and for the operation of 

household appliances. A slight decline of electricity consumption is noticed in this sector 

with the implementation of the smart grid. 

 Commercial Sector: This is the sector with the highest electricity consumption, and the 

consumption in this sector is growing. About 39% of the total Ontario electricity is 

consumed in this sector mainly for the heating, cooling and lighting of commercial space 

and offices. 

 Industrial Sector: About 28% of the total Ontario electricity consumption is used for 

manufacturing, mining, forestry and construction activities. The consumption in this sector 

remains almost stable. 

In Ontario, total electricity demand can be categorized into two parts: base load and peak 

load. The base load demand is approximately 13,000 MW and is considered as constant demand. 

This demand can be fulfilled by nuclear and hydroelectric power generation. These generation 

facilities operate at low cost and their output cannot be changed rapidly. At this time, it is 

expected that the total demand will not exceed 27,000 MW. The demand above the base load 

demand of 13,000 MW is considered to be the peak demand. Peak demand is not constant and 

varies over the time during a day, a season, and a year. Peak demand is fulfilled by oil or natural 

gas fired plants and from some of the hydroelectric plants with storage capacity. These plants 

have higher operating costs and can adjust their output according to rapid changes in demand due 

to the environment and other factors. Renewable sources of energy are also replacing coal and 

other fossil fuels to fulfill the electricity demand in the province. 
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Electricity demand in Ontario increased annually at the rate of 0.5% from 1993-2004 

(Pollution Probe, 2006) and is increasing up to 0.9% annually 2006-2025, which is almost 

double the earlier demand increases. Many factors are responsible for the growth of electricity 

demand, including: 

 Population growth, 

 Economic growth, 

 Climate variability, 

 Industrial activity, 

 Electricity prices and, 

 Lack of conservation and demand management activities. 

3.4.2 Participation in the Ontario Electricity Market 

The wholesale electricity market and high voltage transmission grid of Ontario are 

administrated and directed by the IESO. The workings of the Ontario market can be explained 

with the help of Figure 3.4, which shows the participation of the generators and consumers in the 

electricity market. In the Ontario electricity market, there are two groups of participants: 

dispatchable and non-dispatchable, as described by Anders and Rodriguez (2005). 
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Fig. 3.4  Participation in the Ontario Electricity Market 

Dispatchable participants bid into the market and generation or consumption of a specified 

level can be achieved by delivering dispatch commands for every 5 minutes by these 

participants. Most of the generation facilities are dispatchable in the Ontario electricity market, 

heavy loads having a capacity of 1 MW or more are also considered as dispatchable loads. IESO 

sends dispatch instructions to dispatchable generators for each 5 minute period of the day and 

generators submit hourly offers of quantity to be generated and the price demanded. On the 

demand side, dispatchable loads submit bids to the IESO for purchasing their required amount of 

energy as the bidding price for each hour and IESO sends dispatch instructions for each 5 minute 

period of the day. Loads and generators have to follow standard dispatch instructions set by 

IESO to register as dispatchable loads or generators. 

Non-dispatchable market participants receive payment or are charged hourly for the 

production or consumption of electricity power in real time. The majority of the loads are non-

dispatchable in the Ontario electricity market also, generators having generation capacity of less 



29 

 

than 10 MW or those used for self-scheduling units are considered as non-dispatchable 

generators. Non-dispatchable generators submit only the estimate of energy that they can 

produce to IESO (Zareipour et al., 2007a). On the other hand, non-dispatchable loads do not 

submit any bids to IESO and consume energy at the hourly wholesale price.  

 

3.5 Prices and Demand of the Ontario Electricity Market 

3.5.1  Electricity Prices  

The monthly average HOEP values for the period of January 1, 2011 to December 31, 2013 

are shown in Figure 3.5. The average HOEP values are recorded to be decreased in 2012 and 

again rise in 2013. In general, the average prices are shown to be higher during summer months.  

 

Figure 3.5 Monthly Average HOEP from January 1, 2011 to December 31, 2013 

The maximum HOEP value of each month from January 1, 2011 to December 31, 2013 is 

displayed in Figure 3.6. The maximum HOEP values vary abruptly each month over every year. 

The recorded HOEP values for these years are higher during peak winter and summer months 

every year. The maximum recorded value is $583.71 for May 2013.  
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Figure  3.6  Monthly Maximum HOEP from January 1, 2011 to December 31, 2013 

3.5.2 Market Demand 

The highest recorded amounts of demand from 2011 to 2013 are in the month of July and 

the highest recorded amount each year was 25,450 MW, 24,636 MW and 24,927 MW, 

respectively. The maximum and average demand of each month during the period from January 

1, 2011 to December 31, 2013 are shown in Figure 3.7. By examining Figures 3.5, 3.6 and 3.7, it 

can be observed that demand directly drives the electricity prices in the Ontario market.  
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Figure 3.7 Monthly Mean and Maximum Demand from January 1, 2011 to December 31, 2013 

 

3.6 Volatility Analysis 

A basic graph showing the influence of demand on electricity prices for the year of 2011 in 

the Ontario electricity market is illustrated in Figure 3.8. It can be observed that the occurrence 

of spikes increases when the demand is high. Relationships between demand and prices are 

discussed in a study by Zhao et al. (2007a). Figure 3.8 shows that the probability of spike 

occurrence increases significantly when the demand is greater than 17,000 MW. Unfortunately, 

spikes are also reported at a lower demand around 15,000 MW. Therefore, the occurrence of 

spikes cannot be exactly determined from demand data.  
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Figure 3.8 Ontario Electricity Prices versus Demand in 2011 

Variations in the electricity prices over 24 hours of a day for all the 365 days of the year of 

2011 were shown in Figure 2.4 and  are displayed again in Figure 3.9 for convenience. The 

occurrences of spikes also depend upon the time-of-use of electricity, hence most of the spikes 

occur during the peak load hours. Although, spikes have been recorded over the non-peak hours, 

but, the probability of their occurrences is very low.  

 

 

Figure 3.9 Ontario Electricity Prices versus Time-of-use in 2011 
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The number of spike hours in the Ontario electricity market is increasing. Data from 2009 

to 2014 for the Ontario electricity market are given in Figure 3.10 by a bar graph. This shows 

that the number of spike hours and the number of days for which spikes occur increase from 40 

hours and 26 days for the year of 2009 to 890 hours and 142 days for the year of 2014. The 

number of spikes over each hour for all the 24 hours are illustrated in Table 3.1 for the years of 

from 2009 to 2014. Table 3.1 illustrates that the probability of occurrence of spikes is high 

during the peak load hours.  

 

 

Figure 3.10  Numbers of Spike Hours and Spike Days from 2009 to 2014 

Electricity demand is highly correlated with the prices, as shown in Figure 3.8. Therefore, 

new generation facilities may be needed to fulfill the demand during these spike hours. These 

generation facilities are called on by IESO in short notice and their operating cost is very high. In 

a year, these facilities are operated only for a few hours over a few days, but have a significant 

impact on the electricity prices. 
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Table 3.1. Number of Spikes over 24 Hours in 2009 to 2014  

Year Hr 1 Hr 2 Hr 3 Hr 4 Hr 5 Hr 6 Hr 7 Hr 8 Hr 9 Hr 10 Hr 11 Hr 12 

2009 1 0 0 0 0 1 2 5 5 4 7 3 

2010 1 0 0 0 0 0 0 0 1 6 10 12 

2011 1 1 0 0 1 1 1 4 3 3 9 7 

2012 2 0 0 0 0 0 1 5 1 3 7 8 

2013 3 0 0 1 0 2 6 12 9 12 15 11 

2014 29 23 21 20 23 33 45 49 46 42 44 37 

Year Hr 13 Hr 14 Hr 15 Hr 16 Hr 17 Hr 18 Hr 19 Hr 20 Hr 21 Hr 22 Hr 23 Hr 24 

2009 2 1 0 1 1 2 3 2 0 0 0 0 

2010 15 10 11 10 8 11 15 10 9 0 2 2 

2011 5 8 7 8 14 11 13 9 5 2 5 0 

2012 10 8 8 9 11 9 22 15 3 1 0 2 

2013 7 5 6 9 12 26 33 25 17 11 8 2 

2014 30 26 25 30 44 50 59 54 56 47 32 25 

 

Worldwide the Ontario electricity market is considered as one of the most volatile 

electricity markets (Zareipour et al., 2007b) and is interconnected with the neighbouring 

electricity markets of New York, New England, Midwest, and Pennsylvania-New Jersey-

Maryland (PJM) (Hong  et al., 2002; Mandal et al., 2009). Zareipour et al. (2007b) presents a 

hourly price volatility analysis for the Ontario electricity market and neighbouring markets of 

New England, New York and PJM for the year of 2004. They argued that the Ontario electricity 

market is the most volatile among these neighbouring electricity markets. In relation to the 

aforementioned work, the present study shows the hourly price volatility analysis for the Ontario, 

New England, PJM, and Queensland Australia electricity markets. The price volatility of these 

markets is calculated and compared for the year of 2011 as illustrated in Figure 3.11. The hourly 

historical volatility for hour i, where i= 1, 2, …, 24, for the selected week k, where k denotes the 

weeks in 2011, is calculated over N time period using Zareipour et al. (2007b), as follows: 
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Figure 3.11 Historical Volatilities of Each Hour for the Year of 2011 
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where 𝑟𝑑
𝑖  represents the logarithmic return for hour i of the selected d day and �̅�𝑑

𝑖  is the 

logarithmic return average for hour i over N time frames. 

Hourly historical volatilities are calculated for all 24 hours of the day, for all 7 days of the 

week and for all 52 weeks in 2011. The average volatility indices of 52 weeks for each hour are 

defined as the hourly volatilities over a year and are shown in Figure 3.11. It can be observed 

that the hourly price volatility in the Ontario electricity market is the highest and the Queensland 

electricity market has the lowest hourly price volatility. 
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3.7 Summary 

The Ontario electricity market is discussed in this Chapter. How the Ontario market came 

into existence and how the current Ontario electricity market operates are described. The main 

participants of the market are identified. Recent demand, prices, and price volatilities are 

analyzed.  
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CHAPTER  4 

Day-ahead Price Forecasting 

 

4.1 Introduction 

In this Chapter, a novel methodology is presented to forecast day-ahead electricity spikes 

and prices using neural networks. Day-ahead electricity prices are forecasted by the first neural 

network trained using a data set consisting of similar price days. Next, spike prices are identified 

from the forecasted prices using a spike classifier, and these spikes are re-forecasted by using 

neural networks trained over historical spike hours. Finally, a data re-constructor is used to 

achieve the overall day-ahead electricity spike and price forecasting. Numerical experiments are 

conducted and significant improvements are achieved in terms of forecasting accuracy, using 

data from the wholesale electricity market of Ontario, Canada, one of the most volatile electricity 

markets in the world, as discussed in Chapter 3. This Chapter is based on three publications by 

Sandhu et al. (2014, 2016a, 2016b).  

 

4.2 A Neural Network based Methodology for Forecasting Day-ahead Electricity Prices 

and Spikes 

To forecast day-ahead electricity prices and spikes for the Ontario electricity market, a 

neural network based methodology integrating data mining techniques is proposed in this thesis, 

as shown in Figure 4.1:  

 Pre-processing: Based on the literature review in Chapter 2, discussion about the Ontraio 

electricity market, various correlation tests, candidate variables showing high correlation 

with the electricity prices are selected. Publicly available data from the wholesale 

electricity market of Ontario, Canada, are collected and pre-processed. The collected data 

sets may have some missing and negative values, which are replaced by the average values 

over those particular days. Price data from 2014 and after also have values of zero. Those 

values are replaced in the similar manner with the average values. The data collected from 
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the IESO website (ieso.ca) include historical and forecasted demand, prices, and reserve 

margins from May 2002 onwards. The weather data gathered from the Government of 

Canada website (climate.weather.gc.ca) include temperature, humidity,  and dew point 

temperature for the location of Toronto Lester B. Pearson International Airport. 

 Mining: Using data mining techniques, training data sets are selected as a highly correlated 

number of days from the price data, and then corresponding to each hour in each similar 

day, a number of similar price days are selected. The values of other candidate variables 

are selected relative to these similar price days and data sets are prepared for the training of 

neural networks.   

 Neural Networks: First, a neural network-based model is developed and day-ahead 

electricity prices are initially forecasted. This neural network is trained with the similar 

price days, from the same year, starting from the day before the forecasting day, and from 

the previous year. Second, the forecasted prices that are greater than or equal to the spike 

threshold, which is calculated using the previous year's prices, are classified as spike prices 

using a spike detector and are separated from the normal prices. Third, these spike prices 

are re-forecasted using a new neural network-based model. To test the impact of input 

features, various neural network-based methods are developed for spike forecasting.  

 Post-processing: The re-forecasted spike prices are combined with the normal forecasted 

prices in a data re-constructor to achieve the overall day-ahead price and spike forecasting. 

The forecasting accuracy is evaluated by using various error measures and comparisons 

with existing studies are performed. 
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Figure 4.1. Outline of a Neural Network based Methodology for Forecasting Day-ahead 

Electricity Prices and Spikes  

Data mining techniques are used in this methodology to select the similar price days. In 

general, data mining may be defined as the process of discovering useful patterns in data. In the 

data mining process, different algorithms are used for the extraction of useful information and 

patterns from the raw datasets. With the advancement of technology, large amounts of data have 

been collected from different sources by various organizations. Data become useful after 



40 

 

analyzing the dependencies and finding correlations. Therefore, the patterns discovered using 

various models should be useful, understandable but unknown (Witten et al., 2011). Implicit 

knowledge within these databases for knowledge discovery have been adopted by different 

research fields (Figueiredo et al., 2005). The information gained through data mining may be 

used in business decisions and to identify niches in the market. Currently, data mining techniques 

are used in various fields, including marketing, customer relationship management, engineering, 

medicine, crime analysis, expert prediction, web mining, and mobile computing (Witten et al., 

2011).  

 

4.3 Initial Electricity Price Forecasting 

As discussed in Section 4.2 and illustrated in Figure 4.1, to forecast day-ahead hourly 

electricity prices, a neural network-based method integrating a data mining technique is proposed 

in this thesis. The details on how to initially forecast day-ahead hourly electricity prices are 

developed in this section.  

4.2.1 Data Mining Process for Selecting Training Data Sets 

The set of training data for a feed-forward neural network consists of the same type of days 

selected from the past as shown in Figure 4.2. For example, to forecast prices of a day in 2012, 

the training data set contains d2012,− days from the same year selected in reverse direction starting 

from the day before the forecasting day along with d2011,− days and d2011,+ from the previous year 

as days before and after the forecasting day. In order to determine how many days to select, a 

correlation test for the historical prices is carried out for the years of 2011 and 2012 with 

combinations of 30, 45, and 60 days. A window of 45 days shows high correlation and is 

selected in this work. 
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Forecasting day

Day before forecasting day

Time

45 training days from the same year90 training days from the previous year

Selected 135 training days

TDY,− TDY,− 
TDY-1,+TDY-1,+

TDY-1,− TDY-1,− 

Forecasting day 

(Previous Year)

Figure 4.2. Selection of the Total Number of Training Days 

In total, 135 days (45 days from the same year and 90 days from the previous year) are 

selected as training days and denoted by di = d1, d2, …, d135, where di is numbered in the reverse 

direction, starting from the day before the forecasting day. For example, 45 days are selected 

corresponding to January 6, 2012 from the same year, and 90 days are selected from the previous 

year, as d1 = January 5, 2012, the day before the forecasting day, up to d45 = November 22, 2011, 

and d46 = February 19, 2011, …, d90 = January 6, 2011, d91 = January 5, 2011, …, up to d135 = 

November 22, 2010, 45 days after January 6, 2011, including January 6, 2011 and 45 days before 

January 6, 2011.  

As shown in Figure 4.3, in a similar manner corresponding to each training day, N S  days 

from the same year are selected starting from the day before the training day and from the 

previous year N P,−days before and N P,+ days after the training day are chosen. Therefore, 

corresponding to each training day, N = N S +N P,+ +N P,− days are selected, where N = 90, and 

are denoted by N1, N2,…, N90, starting in the reverse direction from the day before the training 

day. For example, for the training day d135 = November 22, 2010, to select 90 days, N S = 30 

days from the same year are selected as N1 = November 21, 2010, the day before the selected 

training day, up to N30 = October 23, 2010. The remaining 60 days, N P,+ and N P,−, are selected 

from the previous year as 30 days after and including November 22, 2009, where N31 = 

December 21, 2009, …, N60 = November 22, 2009, and 30 days before November 22, 2009, 

where, N61 = November 21, 2009, …, and N90 = October 23, 2009. Similarly, for each of 135 

training days, a set of N days is selected corresponding to the forecasting day of January 6, 2012. 
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Training day (d135)

Day before training day

Time

30 similar days from the same year60 similar days from the previous year

90 similar days corresponding to each training day

Training day 

(Previous Year)

SD 
Y,− 

SD 
Y,− 

SD 
Y,− 

 

Figure 4.3 Selection of the Number of Similar Days Corresponding to Each Training Day 

To summarize the selection of the total number of training days and the total number of 

similar days corresponding to each training day, Figures 4.2 and 4.3 are combined into Figure 

4.4. In Figure 4.4, a total of 135 training days as 45 days from the same year, starting in the 

reverse direction from the day before the forecasting day, and 90 days from the previous year as 

45 days before and 45 days after and including the forecasting day is selected. Furthermore, 

corresponding to each selected training day, 90 similar days as 30 days from the same year 

starting from the day before the training day and 60 days from the previous year as 30 days 

before and 30 days after and including the particular training day are selected as shown in Figure 

4.4. 
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Forecasting day

Day before forecasting day

Time

45 training days from the same year90 training days from the previous year

Selected 135 training days

Forecasting day 

(Previous Year)

d
2011 ,+ 

Days d
2012, − 

Days d
2011 , - 

Days 

Training day (d135)

Day before training day

Time

Training day 

(Previous Year)

N 
S
 Days N 

P, +
 Days N 

P, -
 Days 

d2011, - = d2011, + = d2012, − = 45 and  N P, -  = N P, + = N S = 30

 Figure 4.4 Selection of the Total Number of Training Days and the Number of Similar Days 

Corresponding to Each Training Day 

In the next step, Euclidean distance is calculated for each hour of these selected N days 

with respect to the corresponding training day (Mandal et al., 2007). The difference in price of 

these selected N days at hour t, t = 1, 2, …, 24, with respect to the corresponding training day is 

𝑃𝑡
𝑛 − 𝑃𝑡

𝑛−𝑗
, j = 1, 2, …, 90, where 𝑃𝑡

𝑛 denotes the price at hour t on day n. Therefore, the 

differences for all 90 days are: 

𝛥𝑃𝑡
𝑗
= [𝑃𝑡

𝑛 − 𝑃𝑡
𝑛−1, 𝑃𝑡

𝑛 − 𝑃𝑡
𝑛−2, … , 𝑃𝑡

𝑛 − 𝑃𝑡
𝑛−90]          (4.1) 

Similarly, at hour t−1, the differences in price are: 

𝛥𝑃𝑡−1
𝑗

= [𝑃𝑡−1
𝑛 − 𝑃𝑡−1

𝑛−1, 𝑃𝑡−1
𝑛 − 𝑃𝑡−1

𝑛−2, … , 𝑃𝑡−1
𝑛 − 𝑃𝑡−1

𝑛−90]                 (4.2) 

Accordingly, Euclidean distance for price is given as: 

‖𝐸𝑃,𝑡
𝑗

‖ =  √(𝑃𝑡
𝑛 − 𝑃𝑡

𝑛−𝑗
)2 + (𝑃𝑡−1

𝑛 − 𝑃𝑡−1
𝑛−𝑗

)2     

for j = 1, 2, …, 90.                                (4.3) 

The difference in price of the selected training day and N1 day at hour t is 𝑃𝑡
𝑛 − 𝑃𝑡

𝑛−1 , as 

given in Eq. (4.1). Similarly, the difference in price of the selected training day and N2  day at 
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hour t is represented by 𝑃𝑡
𝑛 − 𝑃𝑡

𝑛−2. The difference between the selected training day and N days 

are calculated for all N = 90 days. This process is continued for each hour of the day, for all 135 

training days. In a similar manner, the differences in price at hour t−1 are calculated as shown in 

Eq. (4.2). 

In the following step, to facilitate neural network training, the number of data points is 

further reduced and five days—with the smallest Euclidean distances in terms of price 

corresponding to the selected training day for each hour—are selected. Thus, corresponding to 

each selected training day for each hour of the day, a set of five days is selected. To prepare the 

complete training data set, the same process is repeated for all the selected 135 training days, and 

135 × 24 × 5 data points are created.  

4.2.2 Training Process of the  Neural Network 

Neural networks are data-driven, nonlinear networks that can adapt their synaptic weights 

during the learning process and have the ability to analyze unknown situations (Ramos and 

Martinez, 2013). The prices over the forecasting day may be predicted as 𝑃𝑡
𝑆𝐷, the average of 

five selected similar price days at hour t, but the mean absolute percentage error (MAPE) is 

large. Therefore, day-ahead hourly electricity prices are forecasted using a feed-forward neural 

network, as shown in Figure 4.5, to improve the forecasting accuracy, where 𝐷𝑡
𝑛 denotes the 

demand at hour t on day n  and 𝑃𝑡+1
𝑛̅̅ ̅̅ ̅ represents the forecasted price at hour t+1 on day n. 
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Figure. 4.5. Trained Neural Network to Forecast Electricity Prices 

The mean square error (MSE) is minimized by training the neural network and is given by 

the following equation: 

MSE =
1

135×24
∑ ∑ (𝑃𝑡

𝑛̅̅̅̅24
𝑡=1 − 𝑃𝑡

𝑛)135
𝑛=1

2
,        (4.4) 

where  𝑃𝑡
𝑛̅̅̅̅  denotes the predicted price at hour t on day n and 𝑃𝑡

𝑛 is the actual price at hour t on 

day n. The neural network is trained by adjusting weights and biases to minimize the difference 

between the predicted output and the target value and to reduce the error to a significance level 

of 10-8. Neural network terminates the training if the total number of iterations reaches 2,000 or 

error reaches the predefined level. Back-propagation (BP) with the Levenberg-Marquardt 

optimization algorithm is used to train the neural network as it converges very fast. Levenberg-

Marquardt may require more memory space than a gradient-descent based training method, but 

the study in discussion has reduced the training data set in the data mining step and the results of 

Levenberg-Marquardt are better with the same number of iterations. A tangential sigmoid 

function is used to normalize the inputs for the hidden layer and the outputs are renormalized to 

obtain numerical values. Various values of the learning rate and momentum of the back-

propagation algorithm are tested randomly. The learning rate and momentum of the back-

propagation algorithm are selected as 0.01 and 0.1, respectively, to accelerate the learning 

process. 

𝑃𝑡+1
𝑛̅̅ ̅̅ ̅ 

𝐷𝑡
𝑛  

 

𝑃𝑡+1
𝑆𝐷  

𝑃𝑡
𝑛 

 .  .  .  
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The neural network is trained over all the selected 135 days for 24 hours of each day with a 

training data set consisting of 𝑃𝑡+1
𝑆𝐷 , 𝑃𝑡

𝑛, and 𝐷𝑡
𝑛 as the average of five similar days at hour t + 1, 

price and demand on hour t of the selected training day. The number of hidden layer neurons is 

selected by using the equation of 2v + 1, where v is the number of inputs applied to the neural 

network. In the output layer one neuron is selected because only one output is forecasted 

sequentially. 

Future electricity prices are forecasted over the next 24 hours with price 𝑃𝑡 at time t, the 

demand 𝐷𝑡 at time t, and the average of five similar price days 𝑃𝑡+1
𝑆𝐷

 corresponding to the 

forecasting day as the inputs to the trained neural network. Similar prices days corresponding to 

the forecasting day at hour t+1 are given by equation: 

𝑃𝑡+1
𝑆𝐷 = (∑𝑃𝑡−23

𝑆𝐷 + 𝑃𝑡−47
𝑆𝐷 + 𝑃𝑡−71

𝑆𝐷 + 𝑃𝑡−95
𝑆𝐷 + 𝑃𝑡−119

𝑆𝐷 )/5      (4.5) 

The timeline shown in Figure 4.6 represents how the forecasting day and previous day 

hours are selected. The present and future hours of the forecasting day are denoted as t and t +1, 

t +2, …, t +24 respectively. The past hours of the day before the forecasting day are given as t 

−1, t −2, …, t −23. 

9/9/2017 - 9/16/2017
9/9/2017 - 9/16/2017

Forecasting Day

Time

t - 23 t - 2 t - 1 t t + 1 t + 2 t + 3 t + 24

Day Before the Forecasting Day

 

Figure. 4.6. Selection of Hours on Timeline for the Forecasting and Past Days. 

In a similar fashion, to predict the price at t +2 hour of the forecasting day, 𝑃𝑡+1
𝑛 , 𝐷𝑡+1

𝑛 , and 

𝑃𝑡+2
𝑆𝐷

 as the forecasted price at t +1 hour, forcasted demand available from the IESO website and 

the average of five similar price days, at hour t +2, corresponding to the forecasting day, 

respectively, are used as the input data set. 𝑃𝑡+2
𝑆𝐷  is given by: 

𝑃𝑡+2
𝑆𝐷 = (∑𝑃𝑡−22

𝑆𝐷 + 𝑃𝑡−46
𝑆𝐷 + 𝑃𝑡−70

𝑆𝐷 + 𝑃𝑡−94
𝑆𝐷 + 𝑃𝑡−118

𝑆𝐷 )/5    (4.6) 
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For all 24 hours of the forecasting day, the same process is carried out and prices over a 

day on an hourly basis are predicted. The input data set is different for each forecasting day; 

therefore, the whole process has to be repeated for different forecasting days. The forecasting 

accuracy is measured in terms of MAPE, RMSE (root mean square error) and MAE (mean 

absolute error), as defined by: 

MAPE = 
1

ℎ
∑

|𝑃𝑖
𝐴−𝑃𝑖

𝑓
|

�̅�𝑖
𝐴

ℎ
𝑖=1          (4.7) 

RMSE = √ 
1

ℎ
∑ (𝑃𝑖

𝐴 − 𝑃𝑖
𝑓
)2ℎ

𝑖=1         (4.8) 

MAE = 
1

ℎ
∑ |𝑃𝑖

𝐴 − 𝑃𝑖
𝑓
|ℎ

𝑖=1         (4.9) 

where the total number of hours are h, for which MAPE, RMSE and MAE are calculated. In this 

thesis, h = 24, as these errors are calculated over a day. The actual and forecasted hourly prices 

are represented by 𝑃𝑖
𝐴 and 𝑃𝑖

𝑓
, respectively, for i = 1, 2,…, 24, and �̅�𝑖

𝐴 represents the average of 

the actual prices over 24 hours. 

4.2.3 Initial Price Forecasting Results 

The day-ahead electricity prices for weekdays and weekends in 2012 are forecasted over 

the selected 30 days from all of the seasons. The day of January 3, 2012, with the MAPE value 

of 26.05% is shown in Figure 4.7. A feed-forward neural network using a data mining technique 

is trained with the training set over 135 days to obtain these results. Actual electricity prices are 

shown by solid lines and the dotted line represents the forecasted electricity prices over a day.  
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Figure 4.7. Forecasting Results for January 3, 2012 (Tuesday) 

In a similar manner, forecasting results for June 20, 2012, a weekday, and October 7, 2012, 

a weekend day, are illustrated in Figures 4.8 and 4.9 respectively. The MAPE value for June 20, 

2012 is 14.79% and for October 7, 2012 is 6.34%, as displayed in Figure 4.8 and Figure 4.9. It is 

observed that forecasted prices largely deviates from the actual prices on abrupt changes.  

 

Figure 4.8. Forecasting Results for June 20, 2012 (Wednesday) 
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Similarly, day-ahead electricity price forecasting is attained for another 27 selected days 

from all the seasons of the year of 2012. The forecasted hourly prices for six representative days 

are given in Table 4.1. The forecasting performance as measured in terms of MAPE, RMSE, and 

MAE for all of the 30 selected days is shown in Table 4.2. As can be seen from Table 4.1, the 

forecasted values follow the actual price values closely for medium and low electricity prices. 

Significant improvements in terms of forecasting accuracy as measured by MAPE are achieved 

for the low to medium price range (Sandhu et al., 2014). However, with the increase in 

electricity prices, especially spike prices, the forecasted values deviate from the actual values 

noticeably. This method is unable to catch abrupt changes in prices. Therefore, a different 

approach is developed in the next section to forecast these spike prices.  

 

Figure 4.9. Forecasting Results for October 7, 2012 (Sunday) 

 

4.4 Day-ahead Spike Forecasting 

The Ontario electricity market is more volatile than its neighbouring markets due to its 

single-settlement operation (Zareipour et al., 2007b). Historical and real-time Hourly Ontario 

Energy Prices (HOEP) are published by Independent Electricity System Operator (IESO) on its 

website. An examination of these historical prices shows that spike prices are much higher than 
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the average normal prices. For example, on May 11, 2011, at 1600 hours the electricity price was 

$558.24/MWh, which is 15.4 times higher than the average electricity price of $36.25/MWh in 

2010. The occurrences of these abnormal high prices in an electricity market are considered as 

price spikes. In this thesis, price spikes are separated from normal electricity prices using a spike 

detecting classifier. A threshold level is calculated using the previous year's prices and the price 

values of the year under study above or equal to this threshold level are considered as spikes. 

These spike prices are re-forecasted to improve the overall forecasting accuracy. The threshold 

level for 2012 is calculated using the price data from the previous year of 2011, and similarly, 

the threshold level for 2011 is calculated using price data from 2010. Formally, let μ be the mean 

of the selected data set of historical HOEP, and δ be the standard deviation of the selected data 

set. The threshold level of the sample set can be calculated as (Lu et al., 2005): 

PTH = μ + 2δ          (4.10) 

where PTH  is the threshold value of the selected data set. Any HOEP value greater than or equal 

to PTH (HOEP ≥ PTH) is considered to be a spike. To detect the spikes in 2012, the mean and 

standard deviation of prices over all the hours in 2011 are calculated and the threshold level is 

determined using Eq. (4.10). 

Many of the studies on forecasting price spikes (Lu et al., 2005; Wu et al., 2006; Zhao et 

al., 2007a; Zhao et al., 2007b; Amjady et al., 2010; Amjady and Keynia, 2011; Christensen et 

al., 2012; Eichler et al., 2013) argue that occurrences of these spikes are random, but the 

probability of their occurrences is higher if the available supply is less than demand or if the 

reserve margin is very low. Occurrences of electricity price spikes are affected by many factors. 

Important short-term factors include weather conditions (temperature, humidity, and dew point 

temperature), breakdown of low-cost generation facilities, low reserve margins, limitations of 

transmission lines, and generation capacity constraints (Lu et al., 2005; Zhao et al., 2007a; 

Amjady and Keynia, 2011; Christensen et al., 2012). Long-term factors—such as increases in 

natural gas and oil prices, inflation rates, shutting down of generators due to aging, and economic 

growth—may increase the overall electricity prices (Lu et al., 2005; Amjady and Keynia, 2011; 

Christensen et al., 2012). However, electricity price spikes over a day are mainly affected by 

short-term factors (Zhao et al., 2007a). 

Spikes may occur for several hours, but normally not for more than a day (Zhao et al., 

2007a; Amjady et al., 2010). The occurrence of spikes depends upon the system demand and 
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available supply. During peak hours, normally day time, demand increases and higher cost 

operating generators become operative. These generators greatly influence the prices and hence 

spikes occur (Christensen et al., 2012). The threshold value could be different for different 

seasons and for different electricity markets. Spike hours are increasing every year in the Ontario 

electricity market. Hence, new generation facilities are required during these spike hours to meet 

the demand. As these spikes occur only for a few hours over a year, new facilities will operate 

only for a few hours over a few days in a year, but will greatly influence electricity prices. In this 

Chapter, the data set is selected with historical prices, demand, temperature, dew point 

temperature, and relative humidity as important features for forecasting price spikes. The data 

sets of historical prices and demand are available for public access on the IESO website (ieso.ca) 

and the data sets of temperature, dew point temperature, and relative humidity are taken from the 

Government of Canada website (climate.weather.gc.ca) for the location of Toronto Lester B. 

Pearson International Airport. 

4.4.1 Framework of the Proposed Hybrid Method for Electricity Price and Spike Forecasting 

The day-ahead forecasted electricity prices as discussed in Section 4.3 can be classified as 

spike and normal prices. As defined in Eq. (4.10), the forecasted prices that are greater than or 

equal to the spike threshold are considered as spike prices. The neural network presented in 

Section 4.3 is not able to forecast spike prices well. Therefore, a new approach is developed in 

this section to forecast the spike prices. Whenever a spike is detected by the classifier, the model 

is switched from the neural network presented in Section 4.3, called Network 1 (Net 1), to 

another neural network. The new neural network is trained over spike hours from the day before 

the forecasting day to the previous two years. To examine the impact of different input features, 

experiments are conducted with the following three new neural networks: 

 Network 2 (Net 2): The selected input features for each detected spike hour are demand 

and five spike prices occurring at the same hour as the detected spike hour identified from 

the day before the forecasting day up to the previous two years. 

 Network 3 (Net 3): The selected input features are similar to Net 2 with the replacement of 

five spike prices by ten spike prices. 

 Network 4 (Net 4): The selected input features are historical demand, temperature, dew 

point temperature, and humidity for the detected spike hour. 
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The proposed hybrid method for electricity price and spike forecasting is shown in Figure 

4.10. First, Net 1 as presented in Section 4.3 is utilized to forecast day-ahead prices. Second, a 

spike occurrence predictor is used to separate the spikes and normal prices. Third, the detected 

spike prices are re-forecasted using one of Net 2, Net 3, and Net 4 in order to improve the 

accuracy of forecasting. Finally, a data re-constructor is used to combine the results of re-

forecasted spike prices and the normal prices forecasted by Net 1 to achieve overall day-ahead 

price forecasting. Essentially, in the new hybrid method, Net 1 is used to forecast day-ahead 

prices unless a spike is predicted by the classifier. On occurrence of spikes, Net 1 is replaced by 

Net 2, Net 3, or Net 4 and the spikes are re-forecasted. 

 

Figure 4.10. Hybrid Neural Network-based Model to Forecast Day-ahead Prices 

4.4.2  Training Data Sets of Networks 2, 3, and 4 

Different input features are selected for the training of Net 2, Net 3 and Net 4. To train Net 

2 and Net 3, historical demand and spikes are selected as input features, whereas historical 

demand, temperature, dew point temperature, and humidity are the selected input features for the 

training of Net 4. As an example, Net 2 is shown in Figure 4.11. For each detected hour in a 
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forecasting day, Net 2 is trained over all the spike hours occurring from the day before the 

forecasting day up to the previous two years. For a particular spike hour, the training data set is 

composed of demand and five spike prices, denoted by 𝑃𝑖
𝑃𝑒𝑎𝑘 , i = 1, 2, …, m, and m = 5, 

occurring at the particular spike hour from the day before up to the previous two years counted 

from the forecasting day. For example, to forecast the spike price at 1400 hours on January 3, 

2012, all spike hours over all the days for 24 hours a day from January 2, 2012, the day before 

the forecasting day, up to January 6, 2010 are used to train Net 2. A spike hour occurring from 

January 5, 2010 to January 1, 2010 is not used as a training data point since it does not have five 

input spike prices. A spike hour occurring from January 6, 2010 up to the day before the 

forecasting day may not have corresponding five spike prices. In this case, the five maximum 

prices at the same hour are used as the input spike prices. To forecast the spike price at 1400 

hours on January 3, 2012, demand forecasted by the IESO at this hour along with the first five 

spike prices occurring at 1400 hours, counted backward from January 2, 2012 to January 6, 

2010, are applied as the inputs to the trained Net 2, and the spike price at 1400 hours on January 

3, 2012 is re-forecasted. 
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Figure 4.11. Neural Network, Net 2, to Forecast Day-ahead Spikes 

The training data set for Net 3 is selected in a similar manner as for Net 2 with the 

replacement of five spikes by ten spikes, denoted by 𝑃𝑖
𝑃𝑒𝑎𝑘 , i = 1, 2, …, m, and m = 10. To avoid 

not having a sufficient number of input spike prices, a spike hour occurring from January 10, 

2010 to January 1, 2010 is not used as a training data point. In Net 4, historical demand, 

temperature, dew point temperature, and humidity over all the spike hours from the day before 

the forecasting day up to the previous two years are selected for training. The trained Net 4 is 

used to re-forecast a detected spike price on the forecasting day when fed with these input 

features corresponding to the forecasting spike hour.  The training of Net 2, Net 3 and Net 4 is 

carried out by utilizing the Levenberg-Marquardt optimization algorithm. 
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4.5 Combined Forecasting Results 

 The wholesale electricity market of Ontario, Canada, is used to test the forecasting 

methods developed in this Chapter. Day-ahead prices and spikes are forecasted for the selected 

days in 2012 and the data for training are obtained from ieso.ca and climate.weather.gc.ca for 

2010 to 2012 (available to the public). 30 days are selected over all the seasons in 2012 for day-

ahead forecasting and the results are reported in Tables 4.1 and 4.2. The detailed results for six 

representative days are shown in Table 4.1 while Table 4.2 displays the forecasting performance 

for all of the 30 days. Each day has 24 data points (hours) and Net 1 is used to forecast day-

ahead prices for these selected days over all the hours as displayed in Table 4.1 for six 

representative days under the column entitled “Net 1”. The forecasted prices greater than or 

equal to the 2012 threshold of $71.26 are classified as spikes and are re-forecasted as shown in 

Net 2, 3, and 4 columns. These re-forecasted spike prices follow the actual prices better. Overall 

day-ahead electricity price and spike forecasting is achieved by combining the results of Net 2, 3, 

or 4 with Net 1. 

 Most of the spikes occur during the peak hours of the day as illustrated in Table 4.1. 

There is no spike in any season in the morning before 11:00 hours and in the evening after 22:00 

hours. On July 6, 2012, the maximum number of spikes—a total of 11—occurred, followed by 

July 17, 2012 and August 4, 2012, with 10 and nine spikes respectively. Numerical experiments 

show that Net 2, 3, and 4 are able to reduce the forecasting error significantly. Day-ahead hourly 

forecasting for January 3, 2012 is shown in Figure 4.12. It is observed that the overall MAPE 

decreases from 26.05% to 20.24%. As shown in Figure 4.12, the results during spike hours as re-

forecasted by the proposed hybrid method follow the actual prices much more closely. 
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Figure 4.12. Illustration of Day-ahead Spike and Price Forecasting for January 3, 2012 

The forecasted results for June 28, 2012 are displayed in Figure 4.13. On June 28, 2012, 

only three spikes hours are classified from the forecasted results of Net 1 and MAPE reduces 

from 6.87% to 5.16%. 

 

Figure 4.13. Illustration of Day-ahead Spike and Price Forecasting for June 28, 2012 
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Similarly, the results for July 6, 2012, July 17, 2012 and August 4, 2012, as the days with 

the highest number of spike hours, are presented in Figure 4.14, Figure 4.15, and Figure 4.16, 

respectively. The MAPE for July 6, 2012 is reduced from 15.63% to 11.24%, with a combination 

of Net 4 and Net 1. An improvement of 28.08% is recorded over Net 1 for July 6, 2012. July 17, 

2012 shows an MAPE improvement of 47.21%, as display in Figure 4.15, and August 4, 2012, in 

Figure 4.16, shows a 28.42% improvement over Net 1 with the combination of Net 1 and Net 4. 

 

Figure 4.14. Illustration of Day-ahead Spike and Price Forecasting for July 6, 2012 

Figure 4.15. Illustration of Day-ahead Spike and Price Forecasting for July 17, 2012 
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Figure 4.16. Illustration of Day-ahead Spike and Price Forecasting for August 4, 2012 
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Table 4.1. Forecasting Day-ahead Electricity Prices and Spikes using Neural Networks 

H
o

u
r January 3, 2012 June 20, 2012 June 28, 2012 

Actual Net 1 Net 2 Net 3 Net 4 Actual Net 1 Net 2 Net 3 Net 4 Actual Net 1 Net 2 Net 3 Net 4 

1 28.34 30.25 
 

  20.28 22.89    14.17 14.41    

2 27.69 30.14 
 

  21.64 23.28    16.64 15.89    

3 25.31 28.79 
 

  18.59 20.16    12.47 13.34    

4 25.22 28.65 
 

  19.5 20.48    12.65 13.43    

5 25.88 28.72 
 

  16.4 18.24    13.06 12.78    

6 26.66 28.97 
 

  20.34 19.63    4.38 4.00    

7 31.16 33.59 
 

  27.24 24.87    15.80 15.68    

8 34.77 36.87 
 

  31.15 28.55    21.06 20.00    

9 35.89 37.29 
 

  47.59 41.98    22.71 21.90    

10 33.82 36.37 
 

  56.88 52.86    28.24 25.2    

11 32.96 36.16 
 

  38.29 45.19    31.31 31.9    

12 29.05 33.29 
 

  50.51 49.55    29.16 31.73    

13 31.62 34.57 
 

  88.81 76.49 81.76 80.37 82.59 31.50 31.42    

14 31.48 34.46 
 

  66.28 70.70    30.70 31.04    

15 47.13 38.97 
 

  108.24 88.92 95.89 101.68 99.28 38.82 37.44    

16 44.83 37.86 
 

  44.68 68.49    93.76 78.79 81.78 82.36 84.12 

17 58.15 45.78 
 

  95.06 81.59 84.00 83.92 86.87 100.10 91.36 94.26 96.25 96.82 

18 115.2 79.46 79.00 81.30 92.76 95.79 86.79 88.56 89.46 91.36 71.86 76.77 76.58 73.65 73.23 

19 91.28 76.89 82.98 84.26 86.79 97.89 89.26 92.32 94.16 93.08 45.37 42.19    

20 135.30 94.79 109.5 112.89 119.40 62.70 79.83 77.47 75.18 72.89 44.38 46.21    

21 124.70 93.23 114.21 116.37 115.40 46.38 58.22    47.15 45.60    

22 41.33 78.49 88.22 88.59 82.37 28.95 38.76    56.56 53.58    

23 32.09 70.12    26.06 32.11    31.39 36.06    

24 29.16 62.79    24.13 27.14    21.70 20.42    
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Table 4.1. Forecasting Day-ahead Electricity Prices and Spikes using Neural Networks (cont.) 

H
o

u
r July 6, 2012 July 17, 2012 July 18, 2012 

Actual Net 1 Net 2 Net 3 Net 4 Actual Net 1 Net 2 Net 3 Net 4 Actual Net 1 Net 2 Net 3 Net 4 

1 21.13 23.59 
 

  28.44 26.33    32.93 30.36    

2 20.92 22.89 
 

  25.88 24.26    27.42 28.13    

3 19.87 22.09 
 

  24.99 24.11    26.32 27.04    

4 17.43 19.38 
 

  23.79 24.06    25.67 26.11    

5 16.55 19.24 
 

  23.94 24.08    25.94 26.15    

6 18.93 20.63 
 

  24.18 24.12    25.47 25.83    

7 24.39 21.94 
 

  25.33 24.49    26.03 25.94    

8 25.16 23.88 
 

  28.32 26.79    27.46 26.97    

9 30.47 27.49 
 

  32.39 29.86    27.34 26.94    

10 59.01 42.68 
 

  65.05 48.22    31.90 31.18    

11 107.06 75.21 85.24 85.39 87.27 87.79 67.59    35.54 34.22    

12 77.16 79.96 83.16 81.12 80.76 120.40 79.46 88.54 91.58 90.27 41.12 39.25    

13 119.04 97.26 104.59 109.65 112.76 138.30 86.33 108.72 112.79 115.50 71.91 66.43    

14 96.24 89.57 103.76 102.39 101.25 103.30 75.22 102.39 101.22 99.56 32.05 34.21    

15 96.33 90.29 100.35 98.90 99.87 105.10 76.43 103.00 101.31 101.70 43.46 41.83    

16 94.72 89.64 99.28 98.05 98.59 144.30 89.76 121.36 124.68 129.40 89.15 73.58 73.29 76.89 74.82 

17 93.17 89.88 100.54 99.21 97.92 147.70 95.78 131.28 131.87 135.80 97.32 79.85 82.69 83.76 85.24 

18 64.23 80.29 84.65 79.36 75.29 149.20 103.70 133.33 136.59 139.50 30.31 32.59    

19 43.37 69.58    148.20 103.50 135.29 138.64 140.80 29.20 31.08    

20 88.85 82.59 84.62 84.98 86.24 96.49 90.78 124.67 119.65 112.70 31.66 31.88    

21 86.84 82.05 84.37 85.33 85.46 69.71 78.65 92.64 85.69 82.49 30.82 31.09    

22 53.90 78.91 71.21 65.28 62.34 39.28 68.46    25.26 27.16    

23 53.17 62.15    41.45 68.78    22.88 23.54    

24 22.36 32.65    35.51 54.12    20.74 21.82    
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Table 4.2. Comparison of Neural Networks based Methods in terms of MAPE, RMSE and MAE 

Day 
Net 1 Net 1 + Net 2 Net 1 + Net 3 Net 1 + Net 4 

MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE 

Jan 3, 2012 26.05 18.76 12.36 23.27 17.45 11.04 22.50 17.03 10.68 20.24 15.14 9.60 

Jan 4, 2012 8.35 3.64 2.71 8.35 3.64 2.71 8.35 3.64 2.71 8.35 3.64 2.71 

Jan 5, 2012 11.87 3.23 3.05 11.87 3.23 3.05 11.87 3.23 3.05 11.87 3.23 3.05 

Jan 6, 2012 13.44 3.50 3.21 13.44 3.50 3.21 13.44 3.50 3.21 13.44 3.50 3.21 

Jan 7, 2012 10.19 2.54 2.25 10.19 2.54 2.25 10.19 2.54 2.25 10.19 2.54 2.25 

Jan 8, 2012 15.81 4.15 3.87 15.81 4.15 3.87 15.81 4.15 3.87 15.81 4.15 3.87 

Mar 2, 2012 13.46 2.73 2.66 13.46 2.73 2.66 13.46 2.73 2.66 13.46 2.73 2.66 

Mar 3, 2012 26.90 8.90 6.90 26.90 8.90 6.90 26.90 8.90 6.90 26.90 8.90 6.90 

Mar 4, 2012 42.16 64.89 27.09 37.61 52.29 21.46 29.45 40.29 17.06 27.37 37.83 15.94 

Mar 5, 2012 15.51 3.64 3.55 15.51 3.64 3.55 15.51 3.64 3.55 15.51 3.64 3.55 

Mar 6, 2012 12.20 2.45 2.44 12.20 2.45 2.44 12.20 2.45 2.44 12.20 2.45 2.44 

Jun 20, 2012 14.79 9.46 7.11 12.90 8.22 6.20 12.09 7.75 5.81 11.58 7.43 5.56 

Jun 28, 2012 6.87 4.06 2.40 6.14 3.36 2.14 5.48 3.02 1.91 5.16 2.71 1.80 

Jul 6, 2012 15.63 12.49 8.80 14.19 10.8 8.00 12.33 9.63 6.94 11.24 8.91 6.33 

Jul 16, 2012 16.26 8.00 6.35 14.40 6.64 5.62 14.83 6.84 5.79 14.15 6.59 5.52 

Jul 17, 2012 27.94 27.76 20.13 17.69 17.18 12.74 16.14 15.59 11.63 14.75 14.5 10.63 

Jul 18, 2012 6.89 5.05 2.52 6.60 4.70 2.41 6.07 4.08 2.22 6.13 1.73 1.30 

Jul 19, 2012 9.14 2.46 2.20 9.14 2.46 2.20 9.14 2.46 2.20 9.14 2.46 2.20 

Jul 20, 2012 21.27 7.30 5.93 21.27 7.30 5.93 21.27 7.30 5.93 21.27 7.30 5.93 

Jul 21, 2012 8.24 2.97 2.18 8.24 2.97 2.18 8.24 2.97 2.18 8.24 2.97 2.18 

Jul 22, 2012 21.77 8.55 6.80 21.77 8.55 6.80 21.77 8.55 6.80 21.77 8.55 6.80 

Aug 4, 2012 24.10 21.56 14.73 21.04 19.31 12.86 20.07 18.58 12.26 17.25 16.81 10.54 

Aug 24, 2012 11.21 8.00 3.76 9.62 6.67 3.23 8.78 6.12 2.94 7.97 5.67 2.67 

Oct 1, 2012 21.96 9.49 5.91 21.96 9.49 5.91 21.96 9.49 5.91 21.96 9.49 5.91 

Oct 2, 2012 11.33 4.40 2.90 11.33 4.40 2.90 11.33 4.40 2.90 11.33 4.40 2.90 

Oct 3, 2012 15.18 5.70 3.92 15.18 5.70 3.92 15.18 5.70 3.92 15.18 5.70 3.92 

Oct 4, 2012 34.37 11.85 6.15 34.37 11.85 6.15 34.37 11.85 6.15 34.37 11.85 6.15 

Oct 5, 2012 12.58 3.32 2.70 12.58 3.32 2.70 12.58 3.32 2.70 12.58 3.32 2.70 

Oct 6, 2012 12.61 3.07 2.68 12.61 3.07 2.68 12.61 3.07 2.68 12.61 3.07 2.68 

Oct 7, 2012 6.34 1.75 1.50 6.34 1.75 1.50 6.34 1.75 1.50 6.34 1.75 1.50 

Average 

(Spike Days) 
19.19 18.00 10.52 16.35 14.66 8.57 14.77 12.89 7.72 13.58 11.73 6.99 

Average 

(All Days) 
16.48 9.19 5.96 15.53 8.08 5.31 15.01 7.49 5.03 14.61 7.10 4.78 

Improvement over Net 1  (%) 5.76 12.08 10.91 8.92 18.50 15.60 11.35 22.74 19.80 
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4.6 Method Effectiveness 

To provide a comparison of different spike re-forecasting methods, MAPEs, RMSEs and 

MAEs for all of the 30 selected days are shown in Table 4.2. Net 1 performs well during the 

normal price range. At price spikes, the prices forecasted by Net 1 deviate from the actual prices 

significantly. For spike price re-forecasting, Net 3 using the ten past spike prices and demand 

performs better than Net 2 utilizing the five past spike prices and demand. Comparing the 

combination of Net 1 and Net 2 with Net 1, the overall average MAPE is reduced from 16.48% 

to 15.53%, a reduction of 5.76%; comparing Net 1 and Net 3 with Net 1, the reduction is 8.92%. 

To further increase the forecasting accuracy, weather data are also considered for the training of 

Net 4. The training data set for Net 4 consists of demand, temperature, dew point temperature, 

and humidity corresponding to spike hours from the same year and from the previous two years. 

The proposed method with Net 4 significantly reduces the MAPE for these selected days in 

2012, as shown in Table 4.2. The overall average MAPE value for the 30 selected days in 2012 

is reduced from 16.48% to 14.61%, a reduction of 11.35%. The proposed hybrid neural network-

based method, combining results from two neural networks, improves the overall forecasting 

accuracy. A combination of Net 1 with Net 2, Net 3 or Net 4 also reduces the forecasting error in 

terms of RMSE and MAE. Combining the results of Net 1 and Net 4 improves RMSE from 

9.19%  to 7.10%  and MAE from 5.96%  to 4.78%, a reduction of 22.74% and 19.80%, 

respectively, as shown in Table 4.2. 

A comparison with other methods is shown in Table 4.3 to illustrate the effectiveness of the  

proposed method. The MAPE values for day-ahead spike forecasting of the PJM electricity 

market in the year of 2008 calculated using the principal component analysis (PCA), numerical 

sensitivity analysis (NSA), correlation analysis (CA), modified relief (MR), mutual information 

(MI),  two stage correlation analysis (CA-CA), two stage mutual information (MI-MI), modified 

relief-mutual information (MR-MI), and mutual information-interaction gain (MI-IG) methods 

(Amjady and Keynia, 2011) are compared with the proposed method in Table 4.3. The proposed 

method outperforms all these techniques. 
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Table 4.3.  Comparison of Spike Days MAPE to Illustrate the Effectiveness of the Method 

Methodology MAPE (Spike Days) 

Principal Component Analysis 31.1 

Numerical Sensitivity Analysis 30.2 

Correlation Analysis 32.4 

Modified Relief 26.4 

Mutual Information 25.6 

Two Stage Correlation Analysis  24.2 

Two Stage Mutual Information 20.2 

Modified Relief-Mutual Information 19.2 

Mutual Information-Interaction Gain 16.1 

Net 1 + Net 3 in this Chapter 14.8 

Net 1 + Net 4 in this Chapter 13.6 

 

 

4.7 Summary 

 A novel methodology based on neural networks is developed in this Chapter to forecast 

the day-ahead electricity spikes and prices. A base neural network (Net 1) is trained and used to 

forecast electricity prices. The forecasted prices are classified into normal and spike prices based 
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on a threshold defined by the previous year's prices. Another neural network (Net 2, Net 3, or 

Net 4) is trained and utilized to re-forecast the spike prices. Three spike forecasting neural 

networks are developed to examine the impact of input features. The method presented in this 

Chapter is used to forecast electricity prices and spikes in the Ontario wholesale electricity 

market. Because of its single-settlement operation, the wholesale electricity market of Ontario, 

Canada, is one of the most volatile electricity markets in the world. The numerical results 

demonstrate significant improvements in the forecasting accuracy as measured by MAPE, RMSE 

and MAE. In particular, the average MAPE, RMSE and MAE of numerical experiments 

covering 30 days from different seasons are reduced from 16.48%, 9.19%, and 5.96% achieved 

by Net 1, to 15.53%, 8.08%, and 5.31% by a combination of Net 1 and Net 2, 15.01%, 7.49%, 

and 5.03% by Net 1 and Net 3, and 14.61%, 7.10%, and 4.78% by Net 1 and Net 4, respectively. 

The main contribution of the proposed methodology is the ability to forecast day-ahead normal 

and spike prices by using simple neural network models trained with inputs selected with data 

mining techniques. The proposed methodology can be utilized by market participants in 

forecasting day-ahead electricity prices. 
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CHAPTER  5 

Day-ahead Electricity Price Forecasting Utilizing Multi-set Canonical 

Correlation Analysis and Neural Networks 

 

5.1 Introduction 

 In Chapter 4, a new methodology to forecast day-ahead electricity prices and spikes is 

developed. Simple correlation tests are employed to select the numbers of training days, similar 

days corresponding to each training day, and similar price days to build training data sets for the 

base neural network (Net 1) that is used to forecast day-ahead electricity prices. These initial 

results are further improved by detecting the spikes and re-forecasting the spike prices utilizing 

other neural networks, called Net 2, Net 3 and Net 4, trained over spike hours using various input 

features from the previous two years. Overall day-ahead forecasting is achieved by re-

constructing the spike prices with normal prices. As shown in Figure 5.1, the base model is 

enhanced in Chapter 5 while the spike forecasting method is further improved in Chapter 6.  
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Figure 5.1. Base Electricity Price and Spike Forecasting Model and its Enhancements 

In Chapter 5, to improve the performance of Net 1, a systematic technique used to achieve 

data fusion, called multi-set canonical correlation analysis (MCCA), is introduced and utilized to 

select the optimal numbers of training days, similar days corresponding to each training day, and 

similar price days for each forecasting day. To further develop the selected model, experiments 

are conducted with different numbers of hidden neurons in the hidden layer of the neural 
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network. The error measures of mean absolute percentage error (MAPE), forecast mean square 

error (FMSE), mean absolute error (MAE), and mean absolute percentage deviation (MAPD) are 

used to evaluate the performance of forecasting models. In Chapter 6, further enhancement of the 

spike forecasting method is presented by using another neural network called Net 5 to re-forecast 

spike prices by selecting candidate variables from the System Status Reports (SSR). These re-

forecasted spike prices are re-constructed along with normal prices from the enhanced base 

model to achieve overall day-ahead forecasting.  

  

5.2 Initial Electricity Price Forecasting Approach 

In Chapter 4, a neural network, Net 1, is used to forecast day-ahead electricity prices 

initially. More specifically, as shown in Figure 5.2, day-ahead electricity prices are forecasted 

using a three layer feed forward neural network trained over the price and demand data. In this 

case, the demand at t - 1 hour, price at t -1 hour and average price of five similar price days, at t  

hour, where t = 1, 2, 3, …, 24, are used as the neural network inputs to forecast the electricity 

price at t  hour in a forecasting day. Similarly, price at t+1 hour of the selected forecasting day is 

predicted with  𝑃𝑡
𝑛̅̅̅̅  as the forecasted price at t  hour, demand 𝐷𝑡

𝑛 at  t hour and the average price 

of five similar price days 𝑃𝑡+1
𝑆𝐷  at  t+ 1 hour as the input features.  
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Figure 5.2. Electricity Price Forecasting Using Net 1 

 

The selected training data are TDY,− days prior to the day before the forecasting day in the 

same year and TDY-1,− days before and TDY-1,+  days after the forecasting day in the previous 

year. Using simple correlation tests, it is determined that the set of TDY,−=TDY-1,+=TDY-1,− = 45  

days are highly correlated  (Sandhu et al., 2014, 2016a, 2016b). To train the neural network a 

total of TD = 135, where TD = TDY,−+TDY-1,++TDY-1,−, training days are selected and are 

denoted by d1, d2, …, d135,  where di  is numbered backwards, starting from the day before the 

forecasting day. For example, to select the training days corresponding to March 5, 2012, the 

selected days are d1 = March 4, 2012, the day before the forecasting day, up to d45 = January 20, 

2012, for a total of 45 days from the same year. The remaining 90 days are selected as 45 days 

after March 5, 2011 including March 5, 2011, and 45 days before March 5, 2011. Therefore, d46 

= April 18, 2011, …, d90 = March 5, 2011, d91 = March 4, 2011, …, and d135 = January 19, 2011. 

In the next step, to simplify the training process of the neural network, similar price days 

are calculated by first selecting SD Y,− similar days from the day before the training day in the 

same year and SD Y-1,− similar days before and SD Y-1,+ similar days after the training day from the 

previous year. Corresponding to each training day, SD = 90 similar days are selected, where SD 

= SD Y,− + SD Y-1,−+ SD Y-1,+ and  SD Y,− = SD Y-1,−= SD Y-1,+ = 30 days. For these selected similar days 

Euclidean distance is calculated with respect to the corresponding training day at each hour 

(Sandhu et al., 2014, 2016a, 2016b). In the following step, similar price days are determined 

𝑃𝑡−1
𝑛  

𝐷𝑡−1
𝑛  

 

𝑃𝑡
𝑆𝐷 

 

𝑃𝑡
𝑛̅̅̅̅  
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using the smallest Euclidean distances, as calculated in Chapter 4, in respect of the price 

corresponding to the selected training day for each hour. Neural network training is carried out 

over all the selected 135 training days for 24 hours in each day.  

The initial forecasting results for 30 selected days in 2012 for the Ontario electricity market 

based on analysis of simple correlation tests of the data are reported in Chapter 4. A comparison 

with five other studies, two published in journal papers (Rodriguez and Anders, 2004; Mandal et 

al., 2013) and three appeared in conference papers (Shrivastava et al., 2011; Mandal et al., 2012; 

Azmira et al., 2013), for the Ontario electricity market is shown in Table 5.1.  Forecasting 

accuracy, as defined in Eq. (5.1), is calculated in terms of MAPE. 

MAPE = 
1

ℎ
∑

|𝑃𝑖
𝐴−𝑃𝑖

𝑓
|

�̅�𝑖
𝐴

ℎ
𝑖=1         (5.1) 

where 𝑃𝑖
𝐴,  𝑃𝑖

𝑓
, and �̅�𝑖

𝐴 represent actual, forecasted and average of the actual prices,  

respectively, for i = 1, 2,…, 24, and over h = 24 hours. In Shrivastava et al. (2011), all of the 

seven days are selected from one week in the winter season in 2010. Eight days, with two days 

from each season and these two days are further chosen as one weekend and one weekday, are 

selected in 2010 in Mandal et al. (2012) and Mandal et al. (2013). In Chapter 4 and Sandhu et al. 

(2016a), 30 days, of which 11 are spike days in actual prices, from all of the seasons in 2012 and 

a mix of weekdays and weekends are chosen.  

Table 5.1. Comparisons with Other Forecasting Studies 

Authors 
Numbers of Cases 

Studied 
MAPE over a Day 

Rodriguez and 

Anders  (2004) 

Neurons selected: 4, 

8 and 12 

23.3% 

(best value) 

Shrivastava et al. 

(2011) 

Cases: 3 

Days: 7 from the 

year of 2010 

Case 2: 10.10% 

(average value) 

Mandal et al. 

(2012) 

Days: 8 from the 

year of 2010 

7.81% 

(average value) 

Mandal et al. 

(2013) 

Days: 8 from the 

year of 2010 

6.98%  

(average value) 

Azmira et al. 

(2013) 

Cases: 6 

Hidden Neurons:  2 

18.74% 

(best value) 

Chapter 4 
Days: 30 from the 

year of 2012 

15.01% 

(average value) 
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In this Chapter, the model developed in Chapter 4 is enhanced using a popular  technique 

used in data fusion, called multi-set canonical correlation analysis (MCCA). The correlations 

between the numbers of selected training days, similar days and similar price days are calculated 

using MCCA and the optimal training data sets are selected. Further, numbers of hidden neurons 

in the hidden layer are examined to avoid under fitting or over fitting of the neural networks. 

Significant improvements are achieved over the base neural network (Net 1) presented in 

Chapter 4, in terms of various forecasting error measures.   

 

5.3 Multi-set Canonical Correlation Analysis (MCCA) 

5.3.1 Introduction to MCCA 

 The method developed in this chapter is applied to forecast day ahead prices for the 

Ontario wholesale electricity market, which is one of the most volatile electricity markets in the 

world, as discussed in Chapter 3 (Zareipour et al., 2007b). The forecasting process is carried out 

in two steps. First, an MCCA algorithm is utilized to select the optimal numbers of training days, 

similar days, and similar price days. Second, a feed forward neural network is used to forecast 

the day-ahead electricity prices. The neural network is trained with the training days highly 

correlated in a window, as determined by the MCCA algorithm in the first step. To improve the 

forecasting accuracy for the problem on hand, selections of input features are analyzed in this 

Chapter based on the following considerations: 

 How to select the optimal number of training days,  

 How to choose the optimal number of similar days corresponding to each training day, 

 How to select the best number of similar price days, and 

 How to choose the optimal number of hidden neurons. 

To address the first three issues, MCCA is used at the data mining stage for selecting 

training data sets. The fourth issue is tackled by numerical experiments. In general, MCCA is 

used for features fusion in the field of pattern recognition and cross-set correlation to find similar 

images as reported in the literature (Yuan et al., 2011; Zhao et al., 2011). To the best of the 

author’s knowledge, no work is reported on the use of the MCCA method in the electricity price 
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forecasting problem. This is the first time that the MCCA method is used to select the optimal 

data sets to train neural networks for forecasting day-ahead electricity prices.  

 MCCA is an extension to canonical correlation analysis (CCA) for multiple data sets and 

used in the field of artificial intelligence, educational research, management science, and medical 

sciences to analyze multidimensional relations between multiple independent and multiple 

dependent variables (Correa et al., 2010; Yuan et al., 2011; Zhao et al., 2011). 

 Canonical correlation technique expresses the linear correlation between two high-

dimensional datasets X and Y using their auto-covariances and cross-covariances (Nielsen, 2002). 

Several linear combinations between two sets of variables are calculated. These combinations are 

known as canonical variables and correlation in these canonical variables is known as canonical 

correlation. 

 To examine the canonical relationship between a set of two variables X1, X2, … , Xp and 

Y1, Y2, … , Yp with sample mean zero for all the variables, two linear combinations are formed as 

follows 

P1 = a11X1 + a12X2 + … + a1mXm                 (5.2) 

Q1 = b11Y1 + b12Y2 + … + b1nYn      (5.3) 

for corr(P1, Q1) = R1 to be the maximum. In the next step another set of canonical variables is 

identified as 

P2 = a21X1 + a22X2 + … + a2mXm      (5.4) 

Q2 = b21Y1 + b22Y2 + … + b2nYn      (5.5) 

for corr(P2, Q2) = R2 to be the maximum with corr(P1, P2) = 0 and corr(Q1, Q2) = 0. In the 

similar manner remaining canonical variables are identified. The total number of canonical 

variables ≤ min (m, n), where m and n are the number of variables in X and Y. 

Two-set canonical correlation analysis can be extended to multi-set canonical correlation 

analysis, if real random variables are given in n sets  X1, X2, …, Xn , with dimensions m1, m2, …, 

mn , the objective of MCCA is to search for directions U = (U1, U2, …, Un) , where 

U1 = 𝑎1
𝑇 𝑋1 , var(U1) = 𝑎1

𝑇𝛴11𝑎1       (5.6) 

U2 = 𝑎2
𝑇 𝑋2 , var(U2) = 𝑎2

𝑇𝛴22𝑎2      (5.7) 

Un = 𝑎𝑛
𝑇 𝑋𝑛 , var(Un) = 𝑎𝑛

𝑇𝛴𝑛𝑛𝑎𝑛      (5.8) 

. 

. 

. 
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with dispersion matrix: 

Σ = 

[
 
 
 
 
 
𝑎1

𝑇𝛴11𝑎1   𝑎1
𝑇𝛴12𝑎2   .  .  .  𝑎1

𝑇𝛴1𝑛𝑎𝑛   

𝑎2
𝑇𝛴21𝑎1   𝑎2

𝑇𝛴22𝑎2   .  .  .  𝑎2
𝑇𝛴2𝑛𝑎𝑛   

.

.

.
𝑎𝑛

𝑇𝛴𝑛1𝑎1   𝑎2
𝑇𝛴𝑛2𝑎2   .  .  .  𝑎𝑛

𝑇𝛴𝑛𝑛𝑎𝑛   ]
 
 
 
 
 

                     (5.9) 

where var(Ui) denotes the variance of Ui, Σij = cov(Xi, Xj) and 𝑎𝑖
𝑇𝛴𝑖𝑗𝑎𝑗 = cov(Ui, Uj). The 

dispersion matrix is symmetric 𝛴𝑖𝑗 = 𝛴𝑖𝑗
𝑇 . MCCA is formulated as a generalized eigenvalue 

problem. The objective of MCCA is to find optimal vectors a1, a2, …, an to maximize the 

correlation. 

5.3.2 Selection of Input Features Using MCCA 

MCCA is used to find the correlation of different sets of days corresponding to the 

forecasting day. Experiments have been conducted with various selections of the number of 

training days, number of similar days corresponding to each training day, and number of similar 

price days.  

The process of using MCCA to select the optimal numbers of training days, similar days, 

and similar price days is shown in Figure 5.3. Corresponding to a selected forecasting day, 30, 

35, 40, 45, 50, 55 and 60 training days are selected from the same and the previous years, 

starting from the day before the forecasting day. In the next step, 30, 31, …, 65 similar days are 

selected from the same and the previous years corresponding to each training day. Then, to select 

similar price days, the minimum Euclidian distance is calculated and 3, 5, 10 and 15 days are 

examined. Correlation tests are executed using MCCA with different groupings of training days, 

similar days and similar price days and the group with the maximum correlation is selected. This 

process is repeated for each selected forecasting day and a new set of these days is selected as the 

input to the neural network. 

 



73 

 

 

Figure 5.3. Process of Using MCCA to Select the Number of Training Days, Number of Similar 

Days, and Number of Similar Price Days. 

In the case of the Ontario electricity market for the year of 2012, correlation tests are 

carried out for 30, 35, 40, 45, 50, 55 and 60 training days with the combinations of 30, 31, 32,…, 

65 similar days and combinations of 3, 5, 10 and 15 similar price days using MCCA, from the 

same and the previous year, corresponding to each forecasting day. The MCCA algorithm selects 

TDY,− = TDY-1,+ = TDY-1,− = 55, a total of 165 days as the set of highly correlated training days, as 

shown in Figure 5.4(a). Moreover, MCCA chooses SD Y,− = SD Y-1,− = SD Y-1,+ = 50 days as the 

set of highly correlated similar days, for a total of SD = 150 days, where SD = SD Y,− + SD Y-1,−+ 

SD Y-1,+, corresponding to each training day, and are denoted by SD1, SD2,…, SD150, where SDj is 

numbered backwards, starting from the day before the training day, as shown in 5.4(b). For 

example, to select the set of similar days corresponding to d165 = November 12, 2010, the 

selected days are SD1 = November 11, 2010, the day before the selected training day, up to SD50 

= September 23, 2010, for a total of 50 days from the same year. The remaining 100 days are 

selected as 50 days before November 12, 2009, and 50 days after November 12, 2009 including 
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November 12, 2009. Therefore, SD51 = December 31, 2009, …, SD100 = November 12, 2009, 

SD101 = November 11, 2009, …, and SD150 = September 23, 2009. 

Forecasting day

Day before forecasting day

Time

55 training days from the same year110 training days from the previous year

Selected 165 training days

TD
Y,− 

TD
Y-1,+

TD
Y-1,−

 

Forecasting day 

(Previous Year)

Training day (d165)

Day before training day

Time

50 similar days from the same year100 similar days from the previous year

150 similar days corresponding to each training day

Training day 

(Previous Year)

SD 
Y,− 

SD 
Y,− 

SD 
Y,− 

 

Figure 5.4. (a) Selection of the Total Number of Training Days; (b) Selection of the Total 

Number of Similar Days Corresponding to Each Training Day 

In the succeeding step, the price and demand values are different at each hour and all of the 

150 similar day data points are required as an input vector to the neural network. Hence, in order 

to further reduce the number of data points, similar price days are selected by MCCA in groups 

of 3, 5, 10 and 15. A set of 5 similar price days reveals the maximum correlation and is selected 

by MCCA as the set of similar price days corresponding to each hour for a given training day. 

This process is continued for all the selected 165 training days and the training data set is 

prepared, which consists of 165×24×5 data points. Three representative tables showing the 

   (a) 

(b) 
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effectiveness of MCCA with the selected number of similar days and selected number of similar 

price days corresponding to a set of selected training days are presented in Table 5.2, Table 5.3 

and Table 5.4 with 45 training days, 55 training days and 60 training days, respectively. A highly 

correlated matrix, as shown in Table 5.3, is formed by MCCA with 55×50×5 days, where 55 are 

the number of selected training days, 50 are the number of similar days corresponding to each 

training day, and 5 are the number of similar price days. The value in each cell of Tables 5.2, 5.3, 

and 5.4 denotes the percentage correlation. If these selected numbers of days are decreased or  

increased, correlation decreases.  
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Table 5.2. Correlation between Different Similar Price Days with Selected Similar Days 

Corresponding to 45 Training Days 

Selected 

Similar Days 

Similar Price Days 

3 Days 5 Days 10 Days 15 Days 

30 73.46 77.54 81.13 79.38 

31 77.50 75.95 79.35 75.17 

32 73.61 82.52 83.27 80.03 

33 76.59 80.16 80.36 80.93 

34 73.13 78.84 78.40 77.60 

35 73.72 80.11 84.79 80.19 

36 72.55 79.36 80.19 78.12 

37 75.46 80.18 81.98 75.08 

38 76.10 79.35 84.19 75.40 

39 75.28 80.77 81.23 76.85 

40 74.55 79.18 84.63 79.24 

41 75.87 82.95 81.55 79.78 

42 75.89 76.75 84.15 79.53 

43 76.07 75.85 84.34 76.23 

44 75.81 75.88 81.98 77.74 

45 77.67 75.51 78.18 74.63 

46 73.25 78.24 80.98 74.78 

47 76.26 78.59 81.82 74.95 

48 73.42 77.93 80.43 78.75 

49 72.72 81.11 79.77 77.47 

50 75.64 80.02 85.40 75.33 

51 74.70 81.18 81.87 77.47 

52 74.75 82.46 85.99 75.03 

53 75.97 82.78 81.52 74.38 

54 76.62 76.54 84.92 79.95 

55 74.10 76.11 81.57 77.92 

56 75.97 80.57 85.28 80.51 

57 74.50 75.75 84.80 78.88 

58 77.05 79.20 81.40 78.08 

59 77.00 79.24 79.94 79.71 

60 73.54 81.89 85.11 80.15 

61 75.68 78.88 86.54 80.92 

62 75.49 78.15 80.95 74.00 

63 75.24 80.37 84.04 80.06 

64 77.22 80.93 81.95 78.29 

65 73.59 79.16 85.50 80.93 
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Table 5.3. Correlation between Different Similar Price Days with Selected Similar Days 

Corresponding to 55 Training Days 

Selected 

Similar Days 

Similar Price Days 

3 Days 5 Days 10 Days 15 Days 

30 83.14 90.20 86.93 82.95 

31 84.52 89.94 86.45 84.32 

32 85.28 87.21 85.46 84.09 

33 84.89 87.29 87.35 82.38 

34 83.27 87.35 85.30 82.39 

35 83.24 90.19 85.88 82.28 

36 85.33 90.77 85.71 82.02 

37 85.72 89.73 86.59 83.27 

38 84.60 87.53 85.27 83.97 

39 83.33 89.89 86.22 84.17 

40 85.48 87.44 85.31 83.59 

41 84.01 87.47 85.34 82.33 

42 83.88 89.56 87.35 83.90 

43 85.24 88.32 85.87 82.38 

44 83.03 89.62 86.81 82.40 

45 83.15 90.00 87.89 82.30 

46 85.00 89.33 86.30 82.43 

47 84.81 89.96 87.08 82.50 

48 84.58 87.94 87.27 82.59 

49 85.19 89.94 86.30 82.95 

50 85.12 90.88 86.97 82.95 

51 85.34 90.47 85.33 82.65 

52 83.86 87.34 87.80 82.75 

53 85.08 88.47 85.56 84.68 

54 84.67 88.48 85.80 84.11 

55 84.19 89.74 87.39 83.67 

56 83.18 89.39 86.46 82.55 

57 85.34 90.16 87.31 82.64 

58 84.01 88.47 86.19 82.23 

59 84.82 87.82 85.82 84.74 

60 85.22 87.35 85.11 84.12 

61 83.31 90.09 87.02 83.67 

62 83.38 87.82 86.29 82.94 

63 84.65 88.55 86.36 82.50 

64 84.46 89.21 86.83 83.87 

65 85.67 87.92 85.18 84.96 
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Table 5.4. Correlation between Different Similar Price Days with Selected Similar Days  

Corresponding to 60 Training Days 

Selected 

Similar Days 

Similar Price Days 

3 Days 5 Days 10 Days 15 Days 

30 76.51 80.83 83.73 79.26 

31 76.77 79.96 80.65 78.55 

32 77.19 82.06 83.68 80.18 

33 76.22 82.04 83.18 79.11 

34 78.05 81.96 82.31 80.52 

35 77.21 81.97 81.76 80.20 

36 78.95 79.42 81.03 79.71 

37 77.21 81.73 83.01 78.53 

38 77.86 80.85 80.91 80.87 

39 76.46 79.85 80.26 78.80 

40 77.14 79.39 83.07 80.77 

41 76.48 82.29 82.68 78.67 

42 78.27 79.70 82.86 79.12 

43 78.61 79.65 82.57 78.26 

44 77.05 81.66 81.68 79.92 

45 78.06 82.58 81.56 78.54 

46 76.88 81.07 83.26 78.14 

47 77.59 81.81 81.27 80.17 

48 78.50 79.61 83.26 79.04 

49 77.79 82.81 83.16 79.98 

50 77.01 81.16 83.41 79.15 

51 76.90 81.72 82.02 79.88 

52 77.36 79.15 82.54 78.06 

53 77.27 82.24 83.80 80.73 

54 77.08 81.99 81.78 80.40 

55 77.67 79.48 80.24 80.24 

56 78.23 81.10 83.47 80.44 

57 77.27 80.30 82.52 79.15 

58 77.29 81.19 81.42 79.85 

59 76.37 80.60 83.99 79.73 

60 76.07 80.66 80.90 79.59 

61 76.87 79.72 82.61 78.83 

62 76.95 80.02 82.42 78.75 

63 77.96 79.08 81.55 79.35 

64 78.87 82.69 80.57 78.68 

65 78.81 81.61 80.10 80.41 
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A mesh graph representing the data in Table 5.3 is given in Figure 5.5 and demonstrates 

that a selection of 55 training days with 50 similar days and 5 similar price days has the highest 

peak corresponding to the percentage correlation in the mesh. 

 

Figure 5.5. Correlation between Different Similar Price Days and Similar Days Given 55 

Training Days Using MCCA 

Given each of 30, 35, 40, 45, 50, 55 and 60 training days, the maximum correlation and 

corresponding numbers of similar days and similar price days as determined using MCCA are 

given in Table 5.5. It is observed that the correlation increases with an increase in the number of 

training days until the maximum correlation is reached with 55 training days. A further increase 

in the number of training days decreases the correlation. Table 5.5 shows that the selection of 55 

training days with 50 similar days and 5 similar price days represents 90.88% correlation, which 

is the highest correlated data set. The enhanced base neural network model trained over this 

highly correlated data set outperforms that of Net 1, which is discussed in Chapter 4.  
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Table 5.5. Maximum Percentage Correlation and Corresponding Numbers of Similar Days and 

Similar Price Days for a Given Number of Training Days Using MCCA 

Number of Training 

Days 

Maximum 

correlation 

Number of  

Similar Days 

Number of  

Similar Price Days 

30 70.98 39 10 

35 74.89 37 5 

40 77.81 55 5 

45 86.54 61 10 

50 88.00 59 10 

55 90.88 50 5 

60 83.99 59 10 

 

5.4 Results of Electricity Price Forecasting Utilizing MCCA  

The price forecasting based on the training data sets built by utilizing information from 

MCCA is demonstrated for a set of 30 different days from all the seasons in the year of 2012. 

Further, these days are selected from weekdays and weekends as shown in Table 5.6. In Table 

5.6, spike days are highlighted. To check the effectiveness of the enhanced base model, MAPE 

over each day is calculated with different numbers of hidden neurons -  3, 7, 10, 12 and 15 

neurons. The minimum MAPE is observed with 12 neurons in most days, whereas, in a few days 

including January 4, 2012 (Wednesday), January 7, 2012 (Saturday), March 2, 2012 (Friday), 

March 6, 2012 (Tuesday), July 19, 2012 (Thursday), and October 7, 2012 (Sunday) the minimum 

MAPE is achieved with 10 hidden neurons. 

It is observed that a neural network with 12 hidden neurons, trained over a data set selected 

by using MCCA, is capable of forecasting electricity prices with 93.34% accuracy for non-spike 

days and an overall forecasting accuracy of 90.77%. Although, there are better results in a few 

days with 10 hidden neurons, the neural network with 12 hidden neurons is selected overall.  
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Table 5.6. MAPEs for Different Days in the Year of 2012 with 3, 7, 10, 12 and 15 Hidden Neurons 

Days 
MAPEs with Different Number of Hidden Neurons 

3 Neurons 7 Neurons 10 Neurons 12 Neurons 15 Neurons 

January 3, 2012  (Tuesday) 32.66 26.21 22.11 20.26 23.06 

 January 4, 2012  (Wednesday) 15.89 8.12 5.98 6.24 7.65 

January 5, 2012  (Thursday) 17.92 10.67 8.58 6.78 8.14 

January 6, 2012  (Friday) 31.40 10.60 6.65 3.46 7.82 

January 7, 2012  (Saturday) 19.87 10.02 6.34 7.16 7.98 

January 8, 2012  (Sunday) 25.87 13.18 8.76 6.56 9.78 

March 2, 2012 (Friday) 18.70 11.42 3.20 4.92 12.64 

March 3, 2012 (Saturday) 34.26 23.29 13.64 8.24 14.16 

March 4, 2012 (Sunday) 46.78 41.96 31.48 29.94 31.88 

March 5, 2012 (Monday) 25.06 15.89 12.43 7.68  11.49 

March 6, 2012 (Tuesday) 18.69 11.78 6.98 7.24  8.45 

June 20, 2012 (Wednesday) 19.75 13.89 13.63 12.74 14.06 

June 28, 2012 (Thursday) 27.84 9.56 8.74 3.87 5.97 

July 6, 2012  (Friday) 21.56 16.49 15.02 13.16 14.68 

July 16, 2012 (Monday) 19.60 17.61 15.63 14.78 16.10 

July 17, 2012 (Tuesday) 41.24 29.91 25.62 24.12 26.73 

July 18, 2012 (Wednesday) 32.84 18.63 14.74 6.89 8.92 

July 19, 2012 (Thursday) 16.92 8.46 5.49 6.28 7.32 

July 20, 2012 (Friday) 28.78 18.67 14.21 6.49 10.26 

July 21, 2012 (Saturday) 17.21 11.65 8.92 7.38 8.10 

July 22, 2012 (Sunday) 25.83 19.07 13.94 7.72 10.38 

August 4, 2012 (Saturday) 50.10 33.21 28.56 21.92 22.53 

August 24, 2012 (Friday) 34.7 9.44 7.79 4.00 8.12 

October 1, 2012 (Monday) 27.95 15.52 8.23 6.47 9.92 

October 2, 2012  (Tueday) 21.25 10.45 7.63 5.21 6.34 

October 3, 2012 (Wednesday) 22.35 14.21 11.66 8.16 9.25 

October 4, 2012 (Thursday) 26.72 15.12 8.20 4.02 6.96 

October 5, 2012 (Friday) 23.12 11.24 9.08 6.38 8.76 

October 6, 2012 (Saturday) 22.67 11.84 9.11 5.19 6.78 

October 7, 2012 (Sunday) 13.14 6.12 3.19 3.59 3.89 

Average (Overall) 26.02 15.81 11.85 9.23 11.60 

Average (Spike Days) 34.16 22.14 18.63 15.21 17.33 

Average (Non-Spike Days) 22.53 13.09 8.95 6.66 9.15 
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The selection of different numbers of neurons in the hidden layer of a neural network plays 

a vital role and incorrect selection may cause under fitting or over fitting of neural networks, 

resulting in higher forecasting errors. Figure 5.6 shows  a  comparison of MAPEs with various 

numbers of hidden neurons for the four representative days of winter and summer seasons from 

the year of 2012, including January 3, 2012 (Tuesday), March 3, 2012 (Saturday), July 17, 2012 

(Tuesday) and July 22, 2012 (Sunday). Further, these days are selected as weekdays and 

weekends to demonstrate variations in MAPEs for spike and normal days. It is observed from 

Figure 5.6 that MAPE values are higher, for all representative days, if 3 neurons are selected in 

the hidden layer. MAPEs decrease with an increase in the number of neurons in the hidden layer 

and the minimum MAPE values are achieved for 12 neurons. A further increase in the number of 

neurons may result in an over fitting of the neural network, hence, an increase in MAPEs is 

observed for 15 neurons. 

 

Figure 5.6. Comparison of MAPEs with Different Numbers of Hidden Neurons for Four 

Representative Days 
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Forecasting results for the next 24 hours are graphically represented for some selected days 

in Figures 5.7 to 5.11. The day of January 3, 2012 is shown in Figure 5.7 and the results are 

obtained using the feed forward neural network along with an MCCA algorithm. The neural 

network is trained with the training set over 165 days selected with MCCA and the results are 

given for 10, 12 and 15 neurons in the hidden layer. The minimum MAPE of 20.26% is noted for 

12 neurons in the hidden layer, which is an improvement of 22.23% from Net 1, presented in 

Sandhu et al. (2016a). 

 

Figure 5.7. Price Forecasting for January 3, 2012 (Tuesday) with Different Numbers of Hidden 

Neurons 
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Figure 5.8. Price Forecasting for March 2, 2012 (Friday) with Different Numbers of Hidden 

Neurons 

 

Figure 5.9. Price Forecasting for June 28, 2012 (Thursday) with Different Numbers of Hidden 

Neurons 
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Figure 5.10. Price Forecasting for July 6, 2012 (Friday) with Different Numbers of Hidden 

Neurons 

 

Figure 5.11. Price Forecasting for October 6, 2012 (Saturday) with Different Numbers of Hidden 

Neurons 

Day-ahead price forecasting for the day of March 2, 2012 is shown in Figure 5.8 with a 

minimum MAPE of 3.2%, when a number of 10 neurons is selected in the hidden layer. The 

MAPE is reduced from 13.46% obtained with Net 1, in Chapter 4, with a reduction of 72.66%. 
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The forecasting of prices for the day of June 28, 2012 is illustrated with different numbers 

of hidden neurons along the actual prices in Figure 5.9. A minimum MAPE of 3.87% is obtained 

with 12 hidden neurons and is improved from 6.87%, given by Net 1 in Chapter 4. Similarly, 

July 6, 2012 (Friday) and October 6, 2012 (Saturday) from the summer and fall seasons in the 

year of 2012 are selected and electricity prices are forecasted over the 24 hours as shown in 

Figures 5.10 and 5.11, respectively. The MAPE values of 13.16% and 5.19% are reported with 

12 neurons in the hidden layer, with a reduction of 15.80% and 58.84%, respectively, from Net 1 

in Chapter 4, presented in Sandhu et al. (2016a). In a similar manner, 30 days in total are 

selected for all the  seasons of 2012. These days are chosen as weekdays and weekends as shown 

in Table 5.6.  

Performance of the forecasting is also measured using various other criteria, as shown in 

Table 5.7, including mean absolute error (MAE), forecast mean square error (FMSE), and mean 

absolute percentage deviation (MAPD). Error variance σ2 is also calculated in order to further 

test the robustness (Mandal et al., 2013). These measures are defined as follows: 

MAE       =       |
1

ℎ
∑ (𝑃𝑖

𝐴 − 𝑃𝑖
𝑓
)ℎ

𝑖=1 |               (5.11) 

FMSE    =      √
1

ℎ
∑ (𝑃𝑖

𝐴 − 𝑃𝑖
𝑓
)ℎ

𝑖=1

2
               (5.12) 

MAPD   =      
∑   |𝑃𝑖

𝐴−𝑃𝑖
𝑓
|ℎ

𝑖=1

∑  (𝑃𝑖
𝐴)ℎ

𝑖=1

                (5.13) 

σ2     =  
1

ℎ
  (∑

|𝑃𝑖
𝐴−𝑃𝑖

𝑓
|

�̅�𝑖
𝐴 − 

𝑀𝐴𝑃𝐸

100

ℎ
𝑖=1  )

2

                              (5.14) 

where, 𝑃𝑖
𝐴 and 𝑃𝑖

𝑓
 represent the actual and forecasted hourly prices, respectively, for i = 1, 2,…, 

24, and �̅�𝑖
𝐴 denotes the average of the actual prices over 24 hours. h indicates the total number of 

hours for which the forecasted error is calculated. Therefore the value of h is taken as 24.  

 

 

 



87 

 

Table 5.7  Various Forecasting Error Measures with 12 Hidden Neurons 

Selected Days Forecasting Error Measures 

MAE FMSE MAPD σ2 

January 3, 2012  (Tuesday) 9.64 15.06 0.20 0.90 

 January 4, 2012  (Wednesday) 2.02 2.72 0.06 0.09 

January 5, 2012  (Thursday) 1.74 1.88 0.07 0.10 

January 6, 2012  (Friday) 0.83 0.99 0.03 0.03 

January 7, 2012  (Saturday) 1.58 1.99 0.07 0.11 

January 8, 2012  (Sunday) 1.61 1.73 0.07 0.09 

March 2, 2012 (Friday) 0.97 1.16 0.05 0.05 

March 3, 2012 (Saturday) 2.12 3.79 0.08 0.15 

March 4, 2012 (Sunday) 16.16 37.44 0.30 1.98 

March 5, 2012 (Monday) 1.76 1.79 0.08 0.13 

March 6, 2012 (Tuesday) 1.45 1.46 0.07 0.12 

June 20, 2012 (Wednesday) 6.12 8.83 0.13 0.36 

June 28, 2012 (Thursday) 1.35 3.04 0.04 0.03 

July 6, 2012  (Friday) 7.41 11.35 0.13 0.38 

July 16, 2012 (Monday) 5.77 10.14 0.15 0.48 

July 17, 2012 (Tuesday) 17.38 26.81 0.24 1.28 

July 18, 2012 (Wednesday) 2.52 5.05 0.07 0.10 

July 19, 2012 (Thursday) 1.50 1.60 0.06 0.09 

July 20, 2012 (Friday) 1.81 3.19 0.06 0.09 

July 21, 2012 (Saturday) 1.96 2.91 0.07 0.12 

July 22, 2012 (Sunday) 2.47 3.75 0.08 0.13 

August 4, 2012 (Saturday) 13.39 21.79 0.22 1.06 

August 24, 2012 (Friday) 1.34 2.66 0.04 0.04 

October 1, 2012 (Monday) 1.82 3.12 0.06 0.09 

October 2, 2012  (Tueday) 1.34 2.58 0.05 0.06 

October 3, 2012 (Wednesday) 2.11 3.77 0.08 0.15 

October 4, 2012 (Thursday) 0.81 1.26 0.04 0.04 

October 5, 2012 (Friday) 1.37 1.88 0.06 0.09 

October 6, 2012 (Saturday) 1.10 1.29 0.05 0.06 

October 7, 2012 (Sunday) 0.85 0.99 0.04 0.03 

Average (Overall) 3.74 6.20 0.09 0.28 

Average (Spike Days) 8.37 14.67 0.15 0.68 

Average (Non-Spike Days) 1.76 2.57 0.07 0.11 

 

Table 5.7 illustrates MAE, FMSE, MAPD, and error variance σ2. Further, these forecasting 

error measures are calculated with 3, 7, 10, 12 and 15 hidden neurons and the best results are 

observed with 12 hidden neurons for various days from different seasons over the year of 2012. 
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In this Chapter, HOEP values are forecasted for a day-ahead with significant improvement in 

forecasting performance. 

A comparison of various forecasting performance measures with other studies is given in 

Table 5.8 for the Ontario electricity market. The average errors over the 24 hours are revealed 

with 12 hidden neurons, considering the best combination of the number of neurons as 

represented in Table 5.6. Compared to the other studies on the Ontario electricity market a 

significant improvement in mean absolute percentage error is recorded in the present study. 

Table 5.8.  Comparison of Error Measures with other Forecasting Studies 

Authors Method MAPE FMSE MAE MAPD σ2 

Rodriguez 

and Anders  

(2004) 

Neural network and 

fuzzy logic 

23.3 

(best value) 
NC* NC* NC* NC* 

Shrivastava 

et al. (2011) 
SVM 

10.10 (average 

value, Case 2) 
NC* 24.2 NC* NC* 

Mandal et al. 

(2012) 

Fuzzy ARTMAP (FA) 

and firefly (FF) 

7.81 

(average value) 
NC* NC* NC* NC* 

Mandal et al. 

(2013) 

Fuzzy ARTMAP (FA) 

and firefly (FF) 

6.98 

(average value) 
3.31 2.46 NC* 0.004 

Azmira et al. 

(2013) 
Neural network 

18.74 

(best value) 
NC* NC* NC* NC* 

This  Chapter  
Neural network with 

MCCA, 12 neurons in 

the hidden layer 

6.66  

(average value of 

21 non-spike days) 

2.57 1.76 0.07 0.11 

* Not Calculated 

A comparison of MAPEs, calculated with Network 1, for the selected eight days in the year 

of 2012 as reported in Sandhu et al. (2016b) is given in Table 5.9. For example, in the present 

study, the MAPE improvements of 19.39% for the eight days and 63.70% for the case of August 

24, 2012, a spike price day, are shown with respect to the initial results.  
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Table 5.9. Comparison of MAPEs for the Selected Eight Days as Reported in Sandhu et al. (2016b) 

Days 
MAPEs 

 
Sandhu et al. (2016b) This Chapter 

Network 1 Using 12 Neurons 

January 3, 2012 (Tuesday) 26 20.26 

June 20, 2012(Wednesday) 14.8 12.74 

June 28, 2012 (Thursday) 6.87 3.87 

July 6, 2012 (Friday) 15.6 13.16 

July 17, 2012 (Tuesday) 27.9 24.12 

July 18, 2012 (Wednesday) 6.9 6.89 

August 4, 2012 (Saturday) 24.1 21.92 

August 24, 2012 (Friday) 11.02 4.00 

Average 16.65 13.37 

 

Similarly, a comparison of the MCCA method presented in this Chapter with the study 

presented in Sandhu et al. (2016a) and discussed in Chapter 4, where the same days are selected 

in the year of 2012 is given in Table 5.10. A comparison with Net 1 from Chapter 4 shows that 

the overall average MAPE is reduced from 16.48% to 9.23%, as obtained with 12 neurons and 

using the MCCA method. An improvement of 38.51% and 36.82% is also achieved  compared to 

the results of Net 1 combined with Net 3 and Net 1 combined with Net 4, respectively, as given 

in Table 5.10. 
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Table 5.10. Comparison of MAPEs for Selected 30 Days in the Year of 2012 as Reported in Chapter 4  

Days of Year 2012 
Net 1 Net 1 + Net 2 Net 1 + Net 3 Net 1 + Net 4 MCCA 

     January 3, 2012  (Tuesday) 26.05 23.27 22.50 20.24 20.26 

 January 4, 2012  (Wednesday) 8.35 8.35 8.35 8.35 6.24 

January 5, 2012  (Thursday) 11.87 11.87 11.87 11.87 6.78 

January 6, 2012  (Friday) 13.44 13.44 13.44 13.44 3.46 

January 7, 2012  (Saturday) 10.19 10.19 10.19 10.19 7.16 

January 8, 2012  (Sunday) 15.81 15.81 15.81 15.81 6.56 

March 2, 2012 (Friday) 13.46 13.46 13.46 13.46 4.92 

March 3, 2012 (Saturday) 26.90 26.90 26.90 26.90 8.24 

March 4, 2012 (Sunday) 42.16 37.61 29.45 27.37 29.94 

March 5, 2012 (Monday) 15.51 15.51 15.51 15.51 7.68  

March 6, 2012 (Tuesday) 12.20 12.20 12.20 12.20 7.24  

June 20, 2012 (Wednesday) 14.79 12.90 12.09 11.58 12.74 

June 28, 2012 (Thursday) 6.87 6.14 5.48 5.16 3.87 

July 6, 2012  (Friday) 15.63 14.19 12.33 11.24 13.16 

July 16, 2012 (Monday) 16.26 14.40 14.83 14.15 14.78 

July 17, 2012 (Tuesday) 27.94 17.69 16.14 14.75 24.12 

July 18, 2012 (Wednesday) 6.89 6.60 6.07 6.13 6.89 

July 19, 2012 (Thursday) 9.14 9.14 9.14 9.14 6.28 

July 20, 2012 (Friday) 21.27 21.27 21.27 21.27 6.49 

July 21, 2012 (Saturday) 8.24 8.24 8.24 8.24 7.38 

July 22, 2012 (Sunday) 21.77 21.77 21.77 21.77 7.72 

August 4, 2012 (Saturday) 24.10 21.04 20.07 17.25 21.92 

August 24, 2012 (Friday) 11.21 9.62 8.78 7.97 4.00 

October 1, 2012 (Monday) 21.96 21.96 21.96 21.96 6.47 

October 2, 2012  (Tueday) 11.33 11.33 11.33 11.33 5.21 

October 3, 2012 (Wednesday) 15.18 15.18 15.18 15.18 8.16 

October 4, 2012 (Thursday) 34.37 34.37 34.37 34.37 4.02 

October 5, 2012 (Friday) 12.58 12.58 12.58 12.58 6.38 

October 6, 2012 (Saturday) 12.61 12.61 12.61 12.61 5.19 

October 7, 2012 (Sunday) 6.34 6.34 6.34 6.34 3.59 

Average (Overall) 16.48 15.53 15.01 14.61 9.23 
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5.5 Combined Forecasting Results of Electricity Prices and Spikes  

Observing the results from Table 5.10, the neural network trained with the data sets 

selected using the MCCA method outperforms the neural network trained using simple 

correlation tests. There is a scope for further improvement in the forecasting performance, if the 

neural network combined with MCCA method is used as the base model to forecast the 

electricity prices initially and the spike prices  are re-forecasted using Net 3 as shown in Figure 

5.1. Table 5.11 shows the MAPEs for the base model enhanced by MCCA and a combination of 

the enhanced base model with Net 3, where a data re-constructor is used to combine the 

forecasted normal prices using the enhanced base model with the re-forecasted spike prices using 

Net 3. As shown in Table 5.11, the average MAPE is reduced from 9.23% to 7.92%, a reduction 

of 14.19%. 
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Table 5.11 Combined Forecasting Results 

by the Combination of Enhanced Base Model and Net 3 

Days 
MAPEs with 12 Neurons 

MCCA MCCA + Net 3 

January 3, 2012  (Tuesday) 20.26 17.61 

 January 4, 2012  (Wednesday) 6.24 6.24 

January 5, 2012  (Thursday) 6.78 6.78 

January 6, 2012  (Friday) 3.46 3.46 

January 7, 2012  (Saturday) 7.16 7.16 

January 8, 2012  (Sunday) 6.56 6.56 

March 2, 2012 (Friday) 4.92 4.92 

March 3, 2012 (Saturday) 8.24 8.24 

March 4, 2012 (Sunday) 29.94 28.72 

March 5, 2012 (Monday) 7.68 7.68 

March 6, 2012 (Tuesday) 7.24 7.24 

June 20, 2012 (Wednesday) 12.74 10.70 

June 28, 2012 (Thursday) 3.87 3.30 

July 6, 2012  (Friday) 13.16 6.35 

July 16, 2012 (Monday) 14.78 14.78 

July 17, 2012 (Tuesday) 24.12 11.12 

July 18, 2012 (Wednesday) 6.89 6.07 

July 19, 2012 (Thursday) 6.28 6.28 

July 20, 2012 (Friday) 6.49 6.49 

July 21, 2012 (Saturday) 7.38 7.38 

July 22, 2012 (Sunday) 7.72 7.72 

August 4, 2012 (Saturday) 21.92 9.82 

August 24, 2012 (Friday) 4.00 4.00 

October 1, 2012 (Monday) 6.47 6.47 

October 2, 2012  (Tueday) 5.21 5.21 

October 3, 2012 (Wednesday) 8.16 8.16 

October 4, 2012 (Thursday) 4.02 4.02 

October 5, 2012 (Friday) 6.38 6.38 

October 6, 2012 (Saturday) 5.19 5.19 

October 7, 2012 (Sunday) 3.59 3.59 

Average (Overall) 9.23 7.92 

Average (Spike Days) 15.21 10.85 

Average (Non-Spike Days) 6.66 6.66 

Improvement over MCCA (Overall) (%) 

  

14.19 

Improvemrnt over MCCA (Spike Days) (%) 28.66 
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Illustrations of price forecasting results by both the enhanced base model and the 

combination of the enhanced base model with Net 3 which is trained over the spike prices as 

discussed in Chapter 4 are shown in Figures 5.12 to 5.14. The results for the day of January 3, 

2012 is given in Figure 5.12, with the MAPE is reduced from 20.26% to 17.61%. The results for 

June 28, 2012 and July 6, 2012 are presented in Figures 5.13 and 5.14, respectively. The MAPEs 

are reduced from 3.87% and 13.16% to 3.30% and 6.35%, with a reduction of 14.73% and 

51.75%, respectively. The results are calculated for all the selected 30 days in the year of 2012 

and are shown in Table 5.11. 

 

Figure 5.12. Comparison of Price Forecasting for January 3 , 2012 (Tuesday) Using the 

Enhanced Base Model and the Combination of the Enhanced Base Model with Net 3 
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Figure 5.13. Comparison of Price Forecasting for June 28, 2012 (Thursday) Using the Enhanced 

Base Model and the Combination of the Enhanced Base Model and Net 3 

 

Figure 5.14. Comparison of Price Forecasting for July 6, 2012 (Friday) Using the Enhanced Base 

Model and the Combination of the Enhanced Base Model and Net 3 

Various other forecasting error measures as discussed in Section 5.4 are also calculated for 

the combination of enhanced base model and Net 3. The results are displayed in Table 5.12 and 

show an overall improvement over the enhanced base model. The combination of enhanced base 
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model with Net 3 also outperforms the enhanced base model, in terms of forecasting error 

measures, for the spike days. 

Table 5.12 Various Forecasting Error Measures 

Using the Combination of the Enhanced Base Model and Net 3 

Selected Days Forecasting Error Measures 

MAE FMSE MAPD σ2 

January 3, 2012  (Tuesday) 8.36 13.38 0.18 0.68 

 January 4, 2012  (Wednesday) 2.02 2.72 0.06 0.09 

January 5, 2012  (Thursday) 1.74 1.88 0.07 0.10 

January 6, 2012  (Friday) 0.83 0.99 0.03 0.03 

January 7, 2012  (Saturday) 1.58 1.99 0.07 0.11 

January 8, 2012  (Sunday) 1.61 1.73 0.07 0.09 

March 2, 2012 (Friday) 0.97 1.16 0.05 0.05 

March 3, 2012 (Saturday) 2.12 3.79 0.08 0.15 

March 4, 2012 (Sunday) 15.50 37.63 0.29 1.82 

March 5, 2012 (Monday) 1.76 1.79 0.08 0.13 

March 6, 2012 (Tuesday) 1.45 1.46 0.07 0.12 

June 20, 2012 (Wednesday) 5.14 7.67 0.11 0.25 

June 28, 2012 (Thursday) 1.15 2.57 0.03 0.02 

July 6, 2012  (Friday) 3.57 5.95 0.06 0.09 

July 16, 2012 (Monday) 5.77 10.14 0.15 0.48 

July 17, 2012 (Tuesday) 8.01 12.21 0.11 0.27 

July 18, 2012 (Wednesday) 2.22 4.08 0.06 0.08 

July 19, 2012 (Thursday) 1.50 1.60 0.06 0.09 

July 20, 2012 (Friday) 1.81 3.19 0.06 0.09 

July 21, 2012 (Saturday) 1.96 2.91 0.07 0.12 

July 22, 2012 (Sunday) 2.47 3.75 0.08 0.13 

August 4, 2012 (Saturday) 6.00 8.21 0.10 0.21 

August 24, 2012 (Friday) 1.34 2.89 0.04 0.04 

October 1, 2012 (Monday) 1.82 3.12 0.06 0.09 

October 2, 2012  (Tueday) 1.34 2.58 0.05 0.06 

October 3, 2012 (Wednesday) 2.11 3.77 0.08 0.15 

October 4, 2012 (Thursday) 0.81 1.26 0.04 0.04 

October 5, 2012 (Friday) 1.37 1.88 0.06 0.09 

October 6, 2012 (Saturday) 1.10 1.29 0.05 0.06 

October 7, 2012 (Sunday) 0.85 0.99 0.04 0.03 

Average (Overall) 2.94 4.95 0.08 0.19 

Average (Spike Days) 5.70 10.51 0.11 0.38 

Improvement on Enhanced Base Method (Overall) (%) 21.32 20.12 12.59 31.43 

Improvement on Enhanced Base Method (Spike Days) (%) 31.91 28.36 27.41 43.46 
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To illustrate the effectiveness of the proposed method, a comparison of MAPE and MAE 

values for the day-ahead spike forecasting of the South Australian electricity market in the year 

of 2009 as reported by Wang et al. (2014) is shown in Table 5.13. Wang et al. (2014) uses 

ARIMA (A), back propagation neural network (B), and Kalman filtering (K) methods as well as 

traditional (T) and weighted (C) combinations of these methods. In terms of MAPE and MAE 

measures, the proposed method in this Chapter outperforms all these techniques. 

Table 5.13 Comparison of MAPE and MAE Values to Illustrate the 

Effectiveness of the Proposed Method 

Methodology MAPE MAE 

ARIMA 20.05 7.93 

BP 25.32 7.81 

Kalman 21.01 6.04 

A-B (using T) 25.19 7.72 

A-B (using C) 24.10 7.15 

B-K (using T) 21.12 6.30 

B-K (using C) 20.19 6.18 

A-K (using T) 21.12 6.32 

A-K (using C) 20.80 6.13 

A-B-K (using T) 21.12 6.32 

A-B-K (using C) 20.79 6.12 

Enhanced Base Model + Net 3 

in this Chapter (Spike Days) 
10.85 5.70 

5.6 Summary 

In this Chapter, a popular technique used in data fusion, multi-set canonical correlation 

analysis (MCCA), is introduced for the first time into the electricity price forecasting problem. 

MCCA is used to select the training data sets for a neural network by determining the optimal 

numbers of training days, similar days, and similar price days. The neural network is further 

explored with different numbers of neurons in the hidden layer. The experiments show that the 

network with 12 neurons in the hidden layer outperforms the network with 3, 7, 10, or 15 
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neurons. The wholesale electricity market of Ontario, Canada, is used to test the enhanced base 

model for forecasting the prices initially and the combination of the enhanced base model and 

Net 3 for forecasting the prices and spikes. Significant improvements are achieved over the 

existing studies with various forecasting performance measures. The results with the 

combination of the enhanced base model with Net 3 represent a significant reduction in the 

average MAPE from 15.21% to 10.85% for spike days and 9.23% to 7.92% overall. 

Furthermore, the combination of the enhanced base model with Net 3 reduces the average MAPE 

over the enhanced base model by 28.66% and 14.19% for spike days and for all the selected 30 

days, respectively.   
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CHAPTER 6 

Day-ahead Electricity Spike Price Forecasting Using Supply Cushion 

 

6.1 Introduction 

A base model and three spike forecasters are presented in Chapter 4 to predict normal 

electricity prices and spikes. The base model is enhanced using multi-set canonical correlation 

analysis (MCCA) in Chapter 5. The Ontario electricity market is used to test the models 

developed. In this Chapter, an improved price spike forecasting model is developed by mining 

data from the Ontario electricity market. In particular, relevant data from the Ontario electricity 

market are investigated and candidate variables are identified. Data available from the System 

Status Report (SSR) are mined in this Chapter to examine the behavior of the hourly Ontario 

energy prices (HOEPs).  The neural network called Net 3 discussed in Chapter 4 is enhanced 

with the addition of a set of selected candidate inputs, including supply cushion, to forecast the 

spike prices. Various forecasting accuracy measures are calculated to evaluate the performance 

of the enhanced model. 

The main objective of this Chapter is to mine relevant Ontario electricity market data and 

use the neural network based forecasting methods developed in the previous Chapters to forecast 

the 24-hour ahead electricity prices and spikes. First, the neural network trained by the data sets 

built by using the MCCA, as described in Chapter 5, is used as the enhanced base model in 

Chapter 6 and day-ahead electricity prices are forecasted. Second, a classifier is employed to 

determine spikes in the forecasted prices. Third, the spike forecasting model called Net 3 in 

Chapter 4 is re-designed with the addition of a set of inputs, now called Net 5, and is used to re-

forecast the spike prices. Finally, forecasted prices and re-forecasted spikes are combined 

together using a data re-constructor to obtain day-ahead forecasted electricity prices.  
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6.2 Analysis of Explanatory Variables from the System Status Report  

The System Status Report (SSR) published by IESO provides forecasting information on 

the Ontario electricity demand and supply, operating reserves, energy imports, capacity excess or 

shortfall, and minimum operating reserve requirements. It also furnishes information on the 

planned transmission and generation outages. A SSR is released at least 24 hours in advance 

corresponding to each day and is updated in case of changes in the system status or forecasts. 

The SSRs are published at ieso.ca and are used in this Chapter to identify a set of explanatory 

candidate variables for electricity price spike forecasting. 

The hourly Ontario energy prices (HOEPs) are uniform all over the province of Ontario, 

Canada. The wholesale customers are billed for HOEPs and forecasting for HOEPs is 

challenging for market participants as well as for IESO (MSP, 2014). A simulation-based 

forecasting known as pre-dispatch prices (PDPs) is published by IESO and is updated hourly 

until real-time (Zareipour et al., 2007a). One-hour-ahead PDP is sent by IESO to the Ontario 

market participants as the final price before real-time. These one-hour-ahead PDPs, published in 

the historical market data, significantly deviate from the actual prices. A calculation of MAPE 

shows an error of 20.59% between PDPs and actual prices over the period of January 1, 2009 to 

December 31, 2011.   

As discussed in Chapter 3 and reported in various other studies (Zhao et al., 2011; 

Motamedi et al., 2012). Demand is considered as one of the main factors involved in determining 

the electricity prices. Day-ahead SSRs publish the forecasted day-ahead total Ontario demand, 

which consists of the demand by the Ontraio consumers plus exports and losses. As shown in 

Figure 6.1, the day-ahead total Ontario demand and HOEP show a direct correlation. The 

calculated linear correlation coefficient between the HOEP and the total Ontario demand in 

SSRs, available before real-time, is 0.64. Therefore, HOEPs can be considered having a good 

dependency on demand. MAPE as defined in Eq. (6.1) is calculated to check the deviation 

between real time historical demand and forecasted historical demand: 

 𝑀𝐴𝑃𝐸 = 
100

𝑁 ×24
∑

|𝐷𝑒𝑚𝑎𝑛𝑑𝑓,𝑡− 𝐷𝑒𝑚𝑎𝑛𝑑𝑎,𝑡|

𝐷𝑒𝑚𝑎𝑛𝑑𝑎,𝑡

𝑁 ×24
𝑡=1          (6.1) 
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where 𝐷𝑒𝑚𝑎𝑛𝑑𝑓,𝑡 and 𝐷𝑒𝑚𝑎𝑛𝑑𝑎,𝑡 are the forecasted and actual values of demand at hour t, 

respectively, and N is the number of days in the studied year (N = 365 for 2011). Day-ahead SSR 

demand, compared with the actual demand and total Ontario demand (demand plus exports and 

losses), has the MAPEs of 3.2% and 5.4% for the year of 2011. Thus, in place of historical real 

time demand, the day-ahead SSR forecasted demand is included as an explanatory candidate 

variable for the neural network for spike forecasting in this Chapter. It should be pointed out that, 

in Chapters 4 and 5, historical demand data are used whenever they are available at the time of 

forecasting. When historical demand data are not available at the time of forecasting, day-ahead 

SSR forecasted demand is utilized.  

 

Figure 6.1.  Relationships between the Day-ahead Total Ontario Demand and HOEP for the Year 

of 2011 

Operating reserve can be defined either a standby power source or a demand reduction that 

can be called on with a short notice to cover up any unexpected mismatch between generation 

and consumption. IESO uses the operating reserve market to meet the unexpected demand 

requirements in the real-time energy market. The operating reserve can be classified into three 

classes that can be offered by dispatchable generators and dispatchable loads:  

 10-minute synchronized (spinning) reserve,  
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 30-minute (non-synchronized) reserve. 

Dispatchable generators or loads can make offers in the operating reserve market, if energy 

provided is within the time frame specified by the class of operating reserve (either 10 minutes or 

30 minutes) and participants are able to sustain supplying operating reserve energy for up to an 

hour with equal or greater amounts of energy supplied to the real-time market. Dispatchable 

participants may offer into one or all three classes of operating reserve. If the offer made by a 

participant in the operating reserve market is selected, but not activated, a stand-by payment will 

be issued for every selected megawatt. Operating reserves play an important role in the 

electricity market and may be considered as responsible for price spikes. For example, on 

January 29, 2014 at 8:00 am, the HOEP, as discussed in Chapter 3, an hourly average of market 

clearning prices which are calculated at an interval of 5 minutes, was reported as $611.38/MWh 

(MSP, 2014). The hourly average demand at 8:00 am was reported as 23,048 MW, which is 400 

MW lower than the demand forecasted at the five periods prior to 8:00 am, at an interval of 5 

minutes each. Typically the price should be lower in real-time as compared to the pre-dispatch 

prices. The estimated prices was less than real-time prices, as expected, up to 7:45 am, but rose 

to $1,999 from 7:50 am to 8:00 am, whereas demand decreased by 70 MWs from 7:45 am to 

7:50 am. This price spike was reported as a result of shortage of offers for 30 minutes operating 

reserves. The operating reserve information, hence, is crucial in forecasting spike prices and is 

used in this Chapter to calculate the Supply Cushion.  

Supply cushion (SC) is calculated in terms of actual energy offered, total demand (TD) of 

the market and operating reserve (OR). The chances of occurrence of spikes are higher for low 

SC and vice-versa. In this Chapter, actual values are replaced with predicted values from SSRs 

and predicted supply cushion is calculated using Eq. (6.2).  

Supply data in SSR reports do not show linear correlations with HOEPs. Hence, the 

concept of Predicted Supply Cushion (PSC) is used as one of the candidate variables in this 

Chapter and is defined as follows (Zareipour et al., 2006):  

𝑃𝑆𝐶 =  
𝑃𝐸𝑂−(𝑃𝑇𝐷+𝑃𝑂𝑅)

𝑃𝑇𝐷+𝑃𝑂𝑅
 × 100                            (6.2) 

where PEO is the predicted energy offered, PTD is the predicted market demand, and POR is the 

predicted operating reserve, as observed from SSRs. Figure 6.2 shows relationships between the 

Predicted Supply Cushion and HOEP for the Year of 2011. The calculated linear correlation 
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coefficient between the HOEP and predicted supply cushion is -0.62. It was observed in 

Zareipour et al. (2006) that price spikes are more likely when the PSC is below 10%. Therefore, 

PSC is added as an explanatory candidate variable.  

 

Figure 6.2. Relationships between the Predicted Supply Cushion and HOEP for the Year of 2011 

The information on planned outage of generating facilities is also available in SSRs. The 

physical operating structure of the Ontario electricity market has an indirect influence on the 

behavior of HOEPs. For example, chances of occurrence of spikes increase if the low cost 

generation facilities are to be replaced with high cost generation facilities, due to the outage of 

low cost facilities, especially during low demand hours (MSP, 2014). A correlation with the 

HOEP is calculated for the outage data from SSRs, with a coefficient of 0.24. Therefore, the 

information on planned outage is not considered as a candidate variable in the neural network 

design.  
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model discussed in Chapter 5 is used to forecast the day-ahead electricity prices. In particular, as 

shown in Figures 5.4(a) and 5.4(b) in Chapter 5, the enhanced base neural network is trained 

using the data sets built by utilizing the MCCA algorithm. TDY,−=TDY-1,+=TDY-1,− = 55 for a total 

number of 165 training days, SD Y,− = SD Y-1,−= SD Y-1,+= 50 for a total of 150 similar days 

corresponding to each training day, and 5 similar price days for each similar day are selected. 

The results forecasted by the enhanced base model are classified as normal or spike prices using 

a spike classifier. The spike threshold is defined as  

PTH = μ + 2δ          (6.3) 

where μ in the mean and δ be the standard deviation of HOEPs from the previous year. The price 

values above this threshold level are considered as spike prices and are re-forecasted using an 

enhanced spike forecasting model called Net 5, trained using a new set of candidate variables. 

Whenever a spike is detected by the classifier, the model switches from the enhanced base model 

to enhanced spike forecasting model.  

6.3.1 Training of Net 5 

The enhanced spike forecasting model, Net 5, is shown in Figure 6.3 and is trained by 

using the ten spike prices occurring at the same hour as the detected spike hour identified from 

the day before the forecasting day up to the previous two years as well as the day-ahead 

forecasted demand and the predicted supply cushion using the SSR information. The results of 

enhanced spike forecasting model are combined with the results of enhanced base model using a 

data re-constructor and overall day-ahead price and spikes are forecasted with improved 

forecasting accuracy. 
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Figure. 6.3. Enhanced Spike Forecasting Neural Network (Net 5)  

For each detected spike hour in a forecasting day, Net 5 is trained over all the spike hours 

occurring from the day before the forecasting day up to the previous two years. For a particular 

spike hour, the training data set is composed of the predicted demand 𝑃𝐷𝑡
𝑃𝑒𝑎𝑘, predicted supply 

cushion 𝑃𝑆𝐶𝑡
𝑃𝑒𝑎𝑘 and 10 spike prices, denoted by 𝑃𝑖

𝑃𝑒𝑎𝑘 , i = 1, 2, …, m, and m = 10, occurring 

at the particular spike hour from the day before the forecasting day up to the previous two years. 

For example, to forecast the spike price at 12:00 hours on January 6, 2012, all spike hours over 

all the days for 24 hours a day from January 5, 2012, the day before the forecasting day, up to 

January 11, 2010 are used to train Net 5. A spike hour occurring from January 10, 2010 to 

January 1, 2010 is not used as a training data point since it does not have ten input spike prices. 
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A spike hour occurring from January 11, 2010 up to the day before the forecasting day may not 

have corresponding ten spike prices. In this case, the ten maximum prices at the same hour are 

used as the input spike prices. To forecast the spike price at 12:00 hour on January 6, 2012, the 

predicted demand and supply cushion from the day-ahead SSR at this hour along with the first 

ten spike prices occurring at 12:00 hour, counted backward from January 5, 2012 to January 11, 

2010, are applied as the inputs to the trained neural network, and the spike price at 12:00 hour on 

January 6, 2012 are re-forecasted. 

6.3.2 Spike Forecasting Results 

A total of 30 days are selected for the year of 2012, over different seasons and 24-hour 

ahead prices are forecasted using the enhanced base model. Nine days, out of the selected 30 

days, are classified as spike days and the prices for spike hours on these nine days are re-

forecasted in this Chapter using Net 5. The forecasting results for two representative days 

showing the deviation from the actual prices are displayed in Figure 6.4 and Figure 6.5 for the 

day of July 17, 2012 and August 4, 2012, respectively. 

  

Figure 6.4. Electricity Price Forecasting for July 17, 2012 Using the Combination of the 

Enhanced Base Model and Net 5 
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Figure 6.5. Electricity Price Forecasting for August 4, 2012 Using the Combination of the 

Enhanced Base Model and Net 5 

For July 17, 2012, the MAPE is reduced from 24.12% obtained with the enhanced base 

model to 10.57% achieved by the combination of the enhanced base model and Net 5. The 

MAPE for August 4, 2012 is reduced from 21.92% to 9.27%, which is a reduction of 57.71%. 

 

6.4 Numerical Experimental Results and Discussions 

Spike prices are forecasted using Net 5 and a data re-constructor is used to combine the 

results with the enhanced base model. Nine days are detected as spike price days from the 

forecasted prices of the selected 30 days by the enhanced base method. As discussed in Chapter 

5, the day of July 16, 2012 is not classified as a spike day by the enhanced base method in 

contrast to the results obtained by using Net 1 in Chapter 4. A comparison of MAPEs is 

presented in Table 6.1 for eight representative spike days. The MAPE results, discussed  in 

Chapter 5 using the combination of the enhanced base method with Net 3 are compared with the 

results from the combination of the enhanced base model and Net 5. Results for eight days are 

shown in Table 6.1 and improvements are achieved in terms of forecasting accuracy using Net 5. 

The maximum improvement of 14.47% is accomplished for the day of January 3, 2012 and no 

improvement is observed for August 24, 2012.  
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Table 6.1. Forecasting Day-ahead Electricity Prices and Spikes Using the Enhanced Base Model and Net 5 
H

O
U

R
 

   

January 3, 2012 March 4, 2012 June 20, 2012 June 28, 2012 

Actual 

Enhanced  

Base 

Method + 

Net 3 

Net 5 Actual 

Enhanced  

Base Method 

+ Net 3 

Net 5 Actual 

Enhanced  

Base Method 

+ Net 3 

Net 5 Actual 

Enhanced  

Base Method 

+ Net 3 

Net 5 

1 28.34 29.31  18.22 19.09  20.28 21.98  14.17 13.69  

2 27.69 28.92  18.32 19.21  21.64 23.56  16.64 15.92  

3 25.31 27.56  22.15 22.96  18.59 21.04  12.47 12.76  

4 25.22 27.42  22.25 23.12  19.50 21.15  12.65 12.94  

5 25.88 27.76  22.34 23.18  16.4 17.92  13.06 13.01  

6 26.66 28.72  20.88 21.74  20.34 19.57  4.38 5.31  

7 31.16 32.68  20.76 21.68  27.24 24.98  15.80 14.97  

8 34.77 35.09  19.26 21.02  31.15 29.64  21.06 20.88  

9 35.89 35.72  20.53 21.52  47.59 40.12  22.71 22.39  

10 33.82 34.38  20.56 21.49  56.88 50.24  28.24 28.19  

11 32.96 33.12  20.76 21.62  38.29 39.12  31.31 31.08  

12 29.05 32.24  21.01 22.48  50.51 47.65  29.16 29.12  

13 31.62 33.69  20.75 21.72  88.81 63.24  31.50 31.21  

14 31.48 32.42  20.74 21.77  66.28 57.41  30.70 30.94  

15 47.13 39.16  19.87 20.97  108.24 101.68 104.26 38.82 37.14  

16 44.83 36.42  20.28 21.38  44.68 61.54  93.76 82.36 83.67 

17 58.15 48.72  20.83 21.79  95.06 83.92 85.29 100.11 96.25 97.24 

18 115.20 81.30 93.15 41.47 38.24  95.79 89.46 92.67 71.86 73.65 73.49 

19 91.28 84.26 88.64 263.82 152.69 159.68 97.89 94.16 94.87 45.37 46.42  

20 135.3 112.89 122.36 389.66 255.91 271.39 62.7 67.38  44.38 44.45  

21 124.7 116.37 117.58 183.88 176.49 192.79 46.38 48.66  47.15 47.10  

22 41.33 65.14  26.53 71.11  28.95 30.87  56.56 54.91  

23 32.09 60.62  20.89 57.86  26.06 28.64  31.39 32.04  

24 29.16 58.42  19.37 37.11  24.13 25.44  21.70 22.14  

MAPE 17.61 15.07  28.72 27.11  10.70 10.02  3.30 3.01 

Improvement 

Over the 

Enhanced Base 

Method + Net 3 

14.42%  5.61%  6.36%  8.79% 
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Table 6.1. Forecasting Day-ahead Electricity Prices and Spikes Using the Enhanced Base Model and Net 5 (cont.) 
H

O
U

R
 

   

July 6, 2012 July 17, 2012 August 4, 2012 August 24, 2012 

Actual 
Enhanced  

Base Method 

+ Net 3  

Net 5 Actual 
Enhanced  

Base Method 

+ Net 3 

Net 5 Actual 
Enhanced  

Base Method 

+ Net 3 

Net 5 Actual 
Enhanced  

Base Method 

+ Net 3 

Net 5 

1 21.13 20.84  28.44 27.15  27.44 26.23  25.00 25.00  

2 20.92 20.42  25.88 25.11  26.45 25.86  21.71 21.71  

3 19.87 19.64  24.99 24.09  27.47 26.35  18.64 18.64  

4 17.43 17.73  23.79 22.98  27.32 26.24  13.79 13.79  

5 16.55 16.98  23.94 23.21  25.37 24.82  19.17 19.17  

6 18.93 18.92  24.18 23.84  24.32 23.94  19.35 19.35  

7 24.39 23.86  25.33 24.52  25.77 25.12  18.3 18.3  

8 25.16 24.56  28.32 27.38  23.79 22.89  20.89 20.89  

9 30.47 29.24  32.39 30.54  24.81 24.23  22.67 22.67  

10 59.01 47.35  65.05 51.36  45.76 39.88  23.40 23.40  

11 107.06 85.39 88.27 87.79 66.85  58.58 46.38  26.88 26.88  

12 77.16 81.12 81.24 120.42 91.58 92.86 54.06 45.23  25.31 25.31  

13 119.04 109.65 110.68 138.32 112.79 114.86 84.14 64.83  31.56 31.56  

14 96.24 102.39 91.82 103.26 101.22 106.38 92.38 83.59 83.82 31.76 31.76  

15 96.33 98.9 91.87 105.14 101.31 106.87 100.75 89.36 91.78 77.52 75.82 75.98 

16 94.72 98.05 90.28 144.32 124.68 124.89 162.07 144.24 147.62 135.89 129.58 128.62 

17 93.17 99.21 88.89 147.66 131.87 132.45 157.31 143.73 144.85 97.72 109.79 108.96 

18 64.23 65.22  149.16 136.59 137.88 94.57 103.89 105.46 28.91 28.91  

19 43.37 46.38  148.18 138.64 139.54 109.79 114.56 112.92 28.47 28.47  

20 88.85 84.98 85.31 96.49 119.65 117.46 151.33 145.4 146.28 25.73 25.73  

21 86.84 85.33 84.29 69.71 67.89  49.97 59.61  22.65 22.65  

22 53.90 56.33  39.28 42.82  25.89 29.34  26.43 26.43  

23 53.17 55.21  41.45 43.33  23.77 27.52  20.62 20.62  

24 22.36 25.38  35.51 36.49  23.33 25.64  22.36 22.36  

MAPE 6.35 6.09  11.12 10.57  9.82 9.27  4.00 4.00 

Improvement 

Over the 

Enhanced Base 

Method + Net 3 

4.09%  4.95%  5.60%  0% 
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Forecasting results with accompanying MAPEs for selected five representative days using 

the enhanced base model and combinations of the enhanced base model with Net 3 and Net 5 are 

displayed in Figures 6.6 to 6.10. Results for the day of January 3, 2012 is presented in Figure 6.6. 

The MAPEs are improved from 20.26% with the enhanced based model, to 17.61% with the 

combination of the enhanced base model and Net 3, and to 15.07% when Net 5 is combined with 

the enhanced base model.  

 

Figure 6.6. Results by Using the Enhanced Base Model with Combinations with Net 3 and Net 5 

for January 3, 2012  

In a similar manner, results for other selected days are presented in Figures 6.7 to 6.10. The 

day of March 4, 2012 is shown in Figure 6.7 with an improvement of MAPEs from 28.72% to 

27.11%, an improvement of 5.61% from the combination of enhanced base model and Net 3 to 

enhanced base model and Net 5. 
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Figure 6.7. Results by Using the Enhanced Base Model with Combinations with Net 3 and Net 5 

for March 4, 2012  

 

Figure 6.8. Results by Using the Enhanced Base Model with Combinations with Net 3 and Net 5 

for June 28, 2012  

The days of June 28, 2012, July 17, 2012, and August 4, 2012 are shown in Figure 6.8, 

Figure 6.9, and Figure 6.10 with the MAPE improvements of 8.79%, 4.95% and 5.60%, 
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respectively, from the combination of enhanced base model and Net 3 to enhanced base model 

and Net 5. 

 

Figure 6.9. Results by Using the Enhanced Base Model with Combinations with Net 3 and Net 5 

for July 17, 2012  

 

Figure 6.10. Results by Using the Enhanced Base Model with Combinations with Net 3 and Net 

5 for August 4, 2012  
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Table 6.2 Combined Forecasting Results 

by the Combination of Enhanced Base Model with Net 3 and Net 5 

Days 
Enhanced Base Method 

+ Net 3 

Enhanced Base Method 

+ Net 5 

January 3, 2012  (Tuesday) 17.61 15.07 

 January 4, 2012  (Wednesday) 6.24 6.24 

January 5, 2012  (Thursday) 6.78 6.78 

January 6, 2012  (Friday) 3.46 3.46 

January 7, 2012  (Saturday) 7.16 7.16 

January 8, 2012  (Sunday) 6.56 6.56 

March 2, 2012 (Friday) 4.92 4.92 

March 3, 2012 (Saturday) 8.24 8.24 

March 4, 2012 (Sunday) 28.72 27.11 

March 5, 2012 (Monday) 7.68 7.68 

March 6, 2012 (Tuesday) 7.24 7.24 

June 20, 2012 (Wednesday) 10.70 10.02 

June 28, 2012 (Thursday) 3.30 3.01 

July 6, 2012  (Friday) 6.35 6.09 

July 16, 2012 (Monday) 14.78 14.78 

July 17, 2012 (Tuesday) 11.12 10.57 

July 18, 2012 (Wednesday) 6.07 5.45 

July 19, 2012 (Thursday) 6.28 6.28 

July 20, 2012 (Friday) 6.49 6.49 

July 21, 2012 (Saturday) 7.38 7.38 

July 22, 2012 (Sunday) 7.72 7.72 

August 4, 2012 (Saturday) 9.82 9.27 

August 24, 2012 (Friday) 4.00 4.00 

October 1, 2012 (Monday) 6.47 6.47 

October 2, 2012  (Tueday) 5.21 5.21 

October 3, 2012 (Wednesday) 8.16 8.16 

October 4, 2012 (Thursday) 4.02 4.02 

October 5, 2012 (Friday) 6.38 6.38 

October 6, 2012 (Saturday) 5.19 5.19 

October 7, 2012 (Sunday) 3.59 3.59 

Average (Overall) 7.92 7.68 

Average (Spike Days) 10.85 10.07 

Average (Non-Spike Days) 6.66 6.66 

Improvement over Enhanced Base Model + Net 3 

 (Overall) 
3.03% 

Improvement over Enhanced Base Model + Net 3  

(Spike Days) 
7.19% 
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The comparison of MAPEs by the combination of enhanced base model and Net 5 with the 

combination of enhanced base model and Net 3 for all the selected 30 days in 2012 is displayed 

in Table 6.2. The improvements of 3.03% overall and 7.19% for the spike days are obtained by 

the combination of enhanced base model and Net 5 over the combination of enhanced base 

model and Net 3.   

The forecasting performance of the method is also measured using various other criteria, as 

discussed in Chapter 5, including mean absolute error (MAE), forecast mean square error 

(FMSE), and mean absolute percentage deviation (MAPD). Error variance σ2 is also calculated 

in order to further test the robustness (Mandal et al., 2013). Improvements over the combination 

of the enhanced base model and Net 3 are observed for all measuring criteria, as demonstrated in 

Table 6.3. The performance criteria are defined as follows: 

 

MAE       =       |
1

ℎ
∑ (𝑃𝑖

𝐴 − 𝑃𝑖
𝑓
)ℎ

𝑖=1 |                (6.4) 

FMSE    =     √ 
1

ℎ
∑ (𝑃𝑖

𝐴 − 𝑃𝑖
𝑓
)ℎ

𝑖=1

2
               (6.5) 

MAPD   =      
∑   |𝑃𝑖

𝐴−𝑃𝑖
𝑓
|ℎ

𝑖=1

∑  (𝑃𝑖
𝐴)ℎ

𝑖=1

                (6.6) 

σ2     =  
1

ℎ
  (∑

|𝑃𝑖
𝐴−𝑃𝑖

𝑓
|

�̅�𝑖
𝐴 − 

𝑀𝐴𝑃𝐸

100

ℎ
𝑖=1  )

2

                   (6.7) 

The actual and forecasted hourly prices are represented by 𝑃𝑖
𝐴 and 𝑃𝑖

𝑓
, respectively, for i = 

1, 2,…, 24, and �̅�𝑖
𝐴 denotes the average of the actual prices over h = 24 hours.  
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Table 6.3 Various Forecasting Error Measures 

Using the Combination of the Enhanced Base Model and Net 5 

 

Selected Days Forecasting Error Measures 

MAE FMSE MAPD σ2 

January 3, 2012  (Tuesday) 7.15 11.56 0.15 0.5 

 January 4, 2012  (Wednesday) 2.02 2.72 0.06 0.09 

January 5, 2012  (Thursday) 1.74 1.88 0.07 0.1 

January 6, 2012  (Friday) 0.83 0.99 0.03 0.03 

January 7, 2012  (Saturday) 1.58 1.99 0.07 0.11 

January 8, 2012  (Sunday) 1.61 1.73 0.07 0.09 

March 2, 2012 (Friday) 0.97 1.16 0.05 0.05 

March 3, 2012 (Saturday) 2.12 3.79 0.08 0.15 

March 4, 2012 (Sunday) 14.63 34.53 0.27 1.62 

March 5, 2012 (Monday) 1.76 1.79 0.08 0.13 

March 6, 2012 (Tuesday) 1.45 1.46 0.07 0.12 

June 20, 2012 (Wednesday) 4.81 7.42 0.1 0.22 

June 28, 2012 (Thursday) 1.05 2.26 0.03 0.02 

July 6, 2012  (Friday) 3.42 5.42 0.06 0.08 

July 16, 2012 (Monday) 5.77 10.14 0.15 0.48 

July 17, 2012 (Tuesday) 7.61 11.6 0.11 0.25 

July 18, 2012 (Wednesday) 1.99 3.38 0.05 0.07 

July 19, 2012 (Thursday) 1.5 1.6 0.06 0.09 

July 20, 2012 (Friday) 1.81 3.19 0.06 0.09 

July 21, 2012 (Saturday) 1.96 2.91 0.07 0.12 

July 22, 2012 (Sunday) 2.47 3.75 0.08 0.13 

August 4, 2012 (Saturday) 5.66 7.74 0.09 0.19 

August 24, 2012 (Friday) 1.34 2.84 0.04 0.04 

October 1, 2012 (Monday) 1.82 3.12 0.06 0.09 

October 2, 2012  (Tueday) 1.34 2.58 0.05 0.06 

October 3, 2012 (Wednesday) 2.11 3.77 0.08 0.15 

October 4, 2012 (Thursday) 0.81 1.26 0.04 0.04 

October 5, 2012 (Friday) 1.37 1.88 0.06 0.09 

October 6, 2012 (Saturday) 1.1 1.29 0.05 0.06 

October 7, 2012 (Sunday) 0.85 0.99 0.04 0.03 

Average (Overall) 2.82 4.69 0.08 0.18 

Average (Spike Days) 5.30 9.64 0.10 0.33 

Average (Non-Spike Days) 1.76 2.57 0.07 0.11 

Improvement over the Enhanced 
Base Model + Net 3 (Overall) (%) 

4.08 5.25 0.00 5.26 

Improvement over the Enhanced 
Base Model + Net 3 (Spike Days) (%) 

7.02 8.28 9.09 13.16 
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6.5 Summary 

In this Chapter, publicly available information as contained in the System Status Report 

(SSR) from the Ontario electricity market is evaluated and mined to identify explanatory 

candidate variables to improve HOEP forecasting accuracy. A range of market information is 

studied in detail, and two explanatory variables, the day-ahead SSR forecasted demand and 

predicted supply cushion (PSC), are selected based on the correlation criterion. PSC is calculated 

from the information available in SSR and PDP reports published by IESO, which is an 

important explanatory variable along with the predicted demand and prices. A spike forecasting 

neural network called Net 3 discussed in Chapter 4 is enhanced and a new neural network trained 

by using the ten spike prices, day-ahead forecasted demand, and predicted supply cushion, called 

Net 5, is developed. The numerical experimental results in this Chapter demonstrate a significant 

improvement in the accuracy of the forecasted HOEPs than any other reported HOEP forecasts. 

In this Chapter, the combination of Net 5 with the enhanced base method shows improvements 

over the methods discussed in Chapters 4 and 5. In particular, in terms of MAPE, the 

improvements of 3.03% overall and 7.19% for spike days are achieved as compared to the 

combination of enhanced base model and Net 3 presented in Chapter 5. 
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CHAPTER 7 

Contributions and Future Work 

 

7.1 Summary of Contributions  

The overall contribution of this dissertation is the development of various machine 

learning-based methods to forecast day-ahead electricity prices and spikes in deregulated 

electricity markets. The methods developed are tested and applied to forecast electricity prices 

and spikes for the wholesale electricity market in the Province of Ontario, Canada, one of the 

most volatile electricity markets in the world. Forecasting spike prices for the Ontario wholesale 

electricity market is reported for the first time in the literature (Sandhu et al., 2016a). The 

specific contributions in this thesis are summarized as follows:  

1. A comprehensive review of the Ontario electricity market including rules and regulations 

to participate in the market is presented. Volatility analysis for prices is carried out for the 

Ontario electricity market, in comparison to other major electricity markets of the world. It 

is shown that the Ontario electricity market is one of the most volatile electricity markets in 

the world. 

2. A novel methodology based on neural networks is developed to forecast day-ahead 

electricity spikes and prices. First, a base neural network model (Net 1), trained using 

information from similar days and similar price days identified by correlation tests, is 

created and electricity prices are forecasted. Second, the prices above a threshold level, 

calculated from the previous year’s prices, are classified as spike prices, and are re-

forecasted using another neural network. To test the impact of input features, three spike 

forecasting neural networks (Net 2, Net 3, and Net 4) are developed. Third, the overall 

forecasting for electricity prices and spikes is achieved by combining the results from the 

base model and a spike forecasting model. The idea of switching from one neural network 

to another to forecast spike prices is novel. Various forecasting error measures are 

calculated to assess the performance of the methods developed. The numerical 
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experimental results employing data from the Ontario electricity market show significant 

improvements in the forecasting accuracy in terms of various error measures.  

3. To improve the performance of the base model (Net 1), multi-set canonical correlation 

analysis (MCCA), a popular technique for data fusion, is utilized to select the optimal 

numbers of training days, similar days, and similar price days. Furthermore, to avoid the 

over fitting and under fitting of neural networks, the optimal number of neurons in the 

hidden layer is also determined. This is the first time that MCCA is introduced into the 

electricity price forecasting problem. Similarly, the overall forecasting for electricity prices 

and spikes is obtained by re-constructing the results from the enhanced base model and a 

spike forecasting model (Net 3). The Ontario electricity market is utilized as the case 

market to carry out extensive numerical experimental studies, which demonstrate 

significant improvements in terms of forecasting performance.     

4. Information contained in the System Status Report available publicly from the Ontario 

electricity market is mined to improve the price spike forecasting. A new neural network 

(Net 5), having inputs of the past ten spike prices and two additional variables, the 

forecasted demand and the predicted supply cushion based on information available from 

the day-ahead SSR information, is developed to forecast the price spikes. Data from the 

Ontario electricity market is used to conduct numerical experiments, which demonstrate 

significant improvements in the forecasting accuracy.  

 

7.2 Future Work 

As summarized in the previous section, various machine learning-based methods to 

forecast day-ahead electricity prices and spikes in deregulated electricity markets are developed 

and presented in this dissertation. The wholesale electricity market in the Province of Ontario, 

Canada, one of the most volatile electricity markets in the world, is utilized to test and apply the 

methods developed. The methods developed in this research are trained using the publicly 

available data from the Ontario electricity market. These methods may be applied to other 

electricity markets using different sets of data and may need to be re-trained using appropriate 

data sets. The new training data sets may be selected using different numbers of training days 
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with different numbers of similar days and similar price days corresponding to each training day. 

Further research may be pursued in the following directions: 

 In this thesis, spikes are classified using Eq. (4.10) based on the commonly utilized 

definition in the literature and the prices above the threshold price, PTH = μ + 2δ, are 

considered as the spike prices. It would be worthwhile to investigate how the forecasting 

accuracy will be impacted if the classification methodology is changed, e.g. defining PTH = 

μ + 1.5δ. 

 The price and spike forecasting methodology developed can be applied to study other 

electricity markets, including spot markets in multi-settlement electricity markets, which 

are used in settling the differences between the demand and supply in real time. 

 This thesis focuses on day-ahead electricity price and spike forecasting. Methods can be 

developed to forecast week-ahead electricity prices and spikes and their accuracy can be 

assessed by applying the methods developed to electricity markets.  

 It would be worthwhile to investigate in detail how the information on day-ahead 

forecasting can be utilized by various participants including generators, consumers, and 

market operators, in electricity markets.   

 The methods and techniques developed in this thesis are based on supervised machine 

learning and data mining techniques to achieve day-ahead forecasting. Methods can be 

developed using unsupervised machine learning techniques, e.g., self-organizing map 

(SOM) and k-mean clustering, along with data mining techniques, in the initial stage to 

form various clusters and next supervised machine learning techniques can be developed to 

obtain day-ahead electricity price and spike forecasting. 

 Methods can be developed to handle data streaming using big data technologies such as 

Apache Spark and Apache Kafka, in the initial stage and cascaded neural networks in the 

following stage to forecast market clearing prices at an interval of 5-minutes and averaging 

prices over 12 intervals to forecast HOEP.  
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Appendices 

Sample Representative Data 

 

A.1 Sample Data Set for Price Forecasting Model Representing One of the Training 

Days  

 

The data set for the 15th training day corresponding to January 6, 2012 is as follows: 

Hours of Training Day 

(December 22, 2011) 

Price at Hour 't' 

(CAD) 

Demand at Hour 't' 

(MW) 

Average of Similar Price 

Days at Hour 't+1' 

1 29.43 15446 24.55 

2 22.68 14387 22.15 

3 22.20 13980 19.71 

4 18.40 13654 18.20 

5 18.23 13520 18.21 

6 19.14 13575 23.41 

7 24.11 14258 27.10 

8 27.37 15646 25.70 

9 23.98 17138 25.99 

10 26.72 17432 26.88 

11 24.10 17335 25.86 

12 23.72 17171 25.39 

13 24.91 17021 25.07 

14 23.53 16992 24.39 

15 21.90 16890 25.53 

16 24.79 16965 24.29 

17 22.24 17253 28.35 

18 28.32 18153 30.04 

19 30.82 19267 30.42 

20 31.03 19122 30.72 

21 30.72 18834 28.98 

22 28.86 18621 27.66 

23 27.69 18035 26.53 

24 25.96 17022 23.41 
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A.2  Sample Calculations for Five Similar Price Days Corresponding to December 22, 

2011 

 

For Hour 1 

Similar Price 

Days 

November 26, 

2011 

November 28, 

2011 

December 19, 

2010 

December 7, 

2011 

December 18, 

2011 

Price Values 25.33 19.34 25.99 26.64 25.47 

 

Average over Five 

Similar Price Days 
24.55 

 

 

For Hour 2 

Similar Price 

Days 

November 30, 

2011 

November 30, 

2010 

December 20, 

2011 

Jannuary 5, 

2011 

December 6, 

2011 

Price Values 22.55 22.36 23.70 20.91 21.24 

 

Average over Five 

Similar Price Days 
22.15 

 

 

For Hour 3 

Similar Price 

Days 

November 30, 

2010 

December 7, 

2011 

December 2, 

2010 

November 30, 

2011 

December 12, 

2010 

Price Values 19.30 18.62 18.51 20.81 21.30 

 

Average over Five 

Similar Price Days 
19.71 
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A.3 Selection of 10 Peak Prices in Spike Forecasting Model - Net 3  

 

For the spike detected at 13:00 hour on June 28, 2012 

Inputs of Net 3 
 Spike Days Corresponding to 

13:00 Hour 
 Prices in CAD 

𝑃1
𝑃𝑒𝑎𝑘 August 8, 2011 256.00 

𝑃2
𝑃𝑒𝑎𝑘 August 5, 2011 101.93 

𝑃3
𝑃𝑒𝑎𝑘 July 21, 2011 98.59 

𝑃4
𝑃𝑒𝑎𝑘 June 30, 2011 86.56 

𝑃5
𝑃𝑒𝑎𝑘 June 8, 2011 147.75 

𝑃6
𝑃𝑒𝑎𝑘 June 7, 2011 188.25 

𝑃7
𝑃𝑒𝑎𝑘 May 11, 2011 558.24 

𝑃8
𝑃𝑒𝑎𝑘 April 3, 2011 90.23 

𝑃9
𝑃𝑒𝑎𝑘 August 9, 2010 141.56 

𝑃10
𝑃𝑒𝑎𝑘 August 11, 2011 115.21 
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