
A CAVE Based 3D Immersive Interactive City

with Gesture Interface

by

Ziyang Zhang

B. Eng., Zhengzhou University,

China, 2012

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2014

c©Ziyang Zhang 2014

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my thesis may be made electronically available to the public.

i

A CAVE Based 3D Immersive Interactive City with Gesture Interface

Master of Applied Science 2014

Ziyang Zhang

Electrical and Computer Engineering

Ryerson University

Abstract

This thesis presents a system that visualizes 3D city data and supports gesture interactions

in a fully immersive Cave Automatic Virtual Environment (CAVE). To facilitate more natural

interactions in this immersive virtual city, novel techniques are proposed for operations such

as object selection, object manipulation, navigation and menu control. These operations form

a basis of interactions for most Virtual Reality (VR) applications. The proposed techniques

are predominantly controlled using gestures. We also propose the use of pattern recognition

methods, specifically a Hidden Markov Model, to support real time dynamic gesture recogni-

tion and demonstrate its use for menu control in VR applications. Qualitative and quantitative

user studies are conducted to evaluate the proposed techniques. The results of the user studies

demonstrate that the interaction techniques for object selection and manipulation are measur-

ably better than traditional techniques. The results also show that the proposed gesture based

navigation and menu control techniques are preferred by experienced users. These findings can

guide future user interface design in immersive environments.

ii

Acknowledgements

I would like to express my sincere thanks to my supervisor Dr. Ling Guan and my co-supervisor

Dr. Tim McInerney, for their support and guidance during my Master study, and for their

valuable suggestions and inspirations of new research ideas, as well as the help they gave in

shaping this thesis.

Many thanks also go to all the members of Ryerson Multimedia Laboratory. Their kind

help and the friendly environment in the lab make my two-year study here an enjoyable and

memorable time. Thank Mr. Jordan Sparks for his insightful comments on user interface design.

Thank Dr. Yifeng He, Dr. Ning Zhang and Mr. Xiaoming Nan for coordinating one of the user

studies. Thank all the colleagues and friends who volunteered in the user studies.

Finally I would like to thank my parents. The completion of this work would not be possible

without their constant love, support, and faith in me.

iii

Contents

Declaration . i

Abstract . ii

Acknowledgements . iii

List of Tables . vii

List of Figures . ix

List of Appendices . xi

1 Introduction 1

1.1 Background . 1

1.2 Purpose and Scope of This Thesis . 2

1.3 Contributions . 2

1.4 Overview of This Thesis . 4

2 Literature Review 5

2.1 VR Systems . 5

2.1.1 Tracking in VR systems . 6

2.2 3D Urban Data . 8

2.3 HCI in VR . 9

2.3.1 Input Hardware . 9

2.3.2 Interaction Techniques . 10

3 Methodology 12

3.1 System Configuration . 13

3.1.1 The CAVE . 13

3.1.2 Software Configuration . 14

3.1.3 Input Devices . 14

3.2 HMM Realtime Gesture Recognition . 15

3.2.1 Normalization and Quantization . 16

iv

3.2.2 Hidden Markov Model and Classification 18

3.3 System Control . 20

3.3.1 Menu Control by Button . 21

3.3.2 Menu Control by Gestures . 22

3.4 Navigation . 24

3.4.1 Joystick . 24

3.4.2 Posture Triggered Flying . 25

3.4.3 Waving Hand . 25

3.5 Selection . 26

3.5.1 Ray Casting Selection . 27

3.5.2 Paint Selection . 28

3.5.3 Stretch Selection . 28

3.6 Manipulation . 28

3.6.1 Wand Manipulation . 29

3.6.2 Two-Handed Gestures . 30

3.7 Visibility of Hidden Buildings . 31

3.7.1 Collapse . 32

3.7.2 Semi-Transparent . 32

3.7.3 Wireframe . 33

3.8 Adding Constraints . 33

3.8.1 Map Data Structure . 34

3.8.2 Linkage Between Map Data and 3D City Data 36

3.8.3 Path Finding by Dijkstra’s Algorithm . 37

3.8.4 High Level Interactions Enabled by Map 39

3.9 Summary . 40

4 Experiments & Results 42

4.1 Gesture Recognition . 43

4.1.1 Gesture Database . 43

4.1.2 Gesture Recognition Results . 43

4.2 3D City Data . 44

4.3 Empirical User Study . 44

4.3.1 User Study Design . 46

4.3.2 Results on Menu Control . 49

4.3.3 Realtime Gesture Recognition Records . 50

4.3.4 Results on Navigation . 52

v

4.3.5 Results on Selection . 53

4.3.6 Results on Visibility . 54

4.4 Quantitative Study . 55

4.4.1 User Study Design . 55

4.4.2 Results for Manipulation . 57

4.5 Summary . 58

5 Prototype Applications 60

5.1 Urban Plannning . 61

5.2 Virtual Touring . 61

6 Conclusions and Discussions 63

6.1 Summary of This Thesis . 63

6.2 UI Design . 64

6.3 Possible Future Work . 65

References 84

vi

List of Tables

2.1 Summary of immersion components for several VR or display systems. 6

3.1 Flystick button assignment for menu control. 21

3.2 Example iterations of Dijkstra’s algorithm. 38

4.1 Interaction techniques for comparison. 46

4.2 3× 3 Latin square used for the menu control techniques. 47

4.3 Overall score for menu control techniques. 49

4.4 ANOVA results for overall score for menu control techniques. 50

4.5 Percentage of choices for best menu control technique. 50

4.6 Realtime gesture recognition rate for different groups. 51

4.7 Overall score for navigation techniques. 52

4.8 ANOVA results for overall score of navigation techniques. 52

4.9 Percentage of choices for best navigation technique. 53

4.10 Overall score for single object selection techniques. 53

4.11 ANOVA results for overall score of single object selection techniques. 54

4.12 Overall score for multiple adjacent objects selection techniques. 54

4.13 ANOVA results for overall score of multiple object selection techniques. 54

4.14 Overall score of visibility techniques. 55

4.15 ANOVA results for overall score of visibility techniques. 55

4.16 Completion time (in seconds) recorded for the manipulation test. 58

4.17 ANOVA results for completion time. 58

2.1 Three versions of user study procedure. 70

4.1 Results of user study: menu control. 74

4.2 Results of user study: selection. 75

4.3 Results of user study: navigation. 75

4.4 Results of user study: visibility. 76

vii

4.5 Results of user study: Realtime Gesture Recognition. 76

viii

List of Figures

2.1 A user exploring a virtual city in a CAVE system. 7

2.2 Optical tracking camera and target. 8

3.1 Overview of the implementation in the CAVE. 13

3.2 A wand input device (Flystick). 14

3.3 Input configurations for gesture interaction. 15

3.4 HMM gesture recognition framework. 16

3.5 CAVE and tracking coordinate system. 17

3.6 Example of Markov chain and HMM. 19

3.7 User interacting with a menu in a CAVE. 21

3.8 A simulation view of the slide menu. 23

3.9 A simulation view of the touch menu. 23

3.10 Demonstration of joystick navigation. 25

3.11 Demonstration of posture triggered flying. 26

3.12 Demostration of waving hand navigation. 27

3.13 Ray casting selection. 27

3.14 Paint selection. 28

3.15 Stretch selection. 29

3.16 Manipulation by wand. 30

3.17 Illustration of two-handed manipulation. 31

3.18 Manipulation by wand. 32

3.19 The use of animated “collapse” to visualize hidden buildings. 32

3.20 Semi-transparent rendering of occluding building to visualize hidden buildings. . 33

3.21 The use of wireframe to visualize hidden buildings. 33

3.22 Class hierarchy of the map data structure. 35

3.23 An example of a XML map file. 36

3.24 Linkage between 3D city and map data. 37

ix

3.25 An example graph to demonstrate Dijkstra’s algorithm. 38

4.1 Gesture definition in a recorded database. 43

4.2 Independent recognition result: confusion matrix. 44

4.3 Sample city data. 45

4.4 UI design procedure. 46

4.5 Gesture recognition rate versus user’s rating. 51

4.6 Task description for quantitative manipulation test. 56

4.7 Distortion curves collected for the manipulation test. 57

5.1 Structure of prototype applications. 60

5.2 A user viewing demographic information for a selected area. 61

5.3 A user in the middle of a virtual tour. 62

x

List of Appendices

1 HMM Algorithms 67

2 User Study Procedure 70

3 Questionnaire Used in User Study 72

4 Data Collected in User Study 74

5 Published Papers 77

xi

Chapter 1

Introduction

1.1 Background

Three dimensional (3D) city models are now widely used in geographic applications such as

Google Earth, to facilitate map exploration, urban planning, virtual tourism, and for many

other purposes. The use of 3D urban data results in a more realistic visual experience for a

user and has also greatly changed the way users interact with these applications. For example,

in traditional 2D map-based applications, users can only move the map in two directions.

Applications using 3D data, on the other hand, enable users to control the viewing position

and direction in free space, generating unique and often insightful viewpoints.

However, despite the fact that various 3D navigation/manipulation methods have been

developed for a mouse and keyboard or multi-touch screens, there are still limitations when

interacting with 3D objects using these 2D input devices. Simply controlling the viewpoint

involves 6 Degrees of Freedom (DOF), let alone adjusting a virtual lens or manipulating virtual

objects. Learning the mapping from 2D input actions to 3D manipulations is arduous and has

hindered novice and expert users alike from fully harnessing the power of interactive 3D VR

applications.

The last two decades have witnessed the development of increasingly wider screens and

more immersive Virtual Reality (VR) systems (see section 2.1 for a more detailed introduc-

tion). Immersive systems, such as a head mounted display (HMD) [56], a Cave Automatic

Virtual Environment (CAVE) [18] and various multi-screen or curved-screen systems [37], have

a distinct advantage over traditional 2D displays for many applications. Furthermore, with the

development of various tracking technologies, movements of the user’s body can be fed into 3D

applications as inputs, opening up exciting new possibilities for Human Computer Interaction

(HCI) by significantly adding to the feeling of “presence” in the virtual scene. The design of

1

CHAPTER 1. INTRODUCTION 1.2. PURPOSE AND SCOPE OF THIS THESIS

3D user interfaces (3DUI) has been studied for decades since the beginning of VR [10]. Inter-

actions in a 3D virtual environment usually fall into several categories - navigation, selection,

manipulation, and system control - and various interaction techniques have been proposed for

each category. Bowman et al.[8] argued in 2006 that after the 1990s’ invention of basic 3D

interaction techniques, research in 3DUI should focus on more application and task specific

techniques and adapt to the ongoing trend of new large area tracking and display technologies.

As a result, there has been considerable and recent research work that attempts to bring VR

and 3D user interfaces together to create more effective applications, such as 3D medical data

visualization and various areas of design, such as mechanical design, building and architecture

design [27], and interior design [43].

However, the visualization of, and interaction with, massive 3D city data in a VR system

has not been fully studied. One important reason of this lack of research may be attributed to

the difficulty of acquiring 3D city models. This problem is being resolved by the advancement in

semi-automatic and automatic methods of generating 3D city models, from both the computer

vision and photogrammetry communities [22][71]. Commercial applications like Google Earth

have gathered an enormous amount of 3D city data through the contribution of 3D modelers.

1.2 Purpose and Scope of This Thesis

With a long term goal of creating a fully immersive interactive 3D city planning system, the

work described in this thesis focuses on interaction design in a virtual city scenario. Specifically,

more effective and more user friendly interactions in an immersive VR environment are explored

that support various functions needed for a virtual city application, such as navigation and path

finding, object selection and manipulation.

Though the proposed interaction techniques are implemented and tested in the CAVE sys-

tem, they can be adopted to other VR systems equipped with a tracking ability, such as various

head mounted devices recently released in the commercial market, for example the Oculus Rift

[65].

1.3 Contributions

The contributions of this work can be summarized as follows:

• The implementation of an integrated virtual city system that combines immersive visu-

alization of 3D urban data in a CAVE, a geographic data structure to support high-level

interactions, an optical tracking ability, and realtime gesture recognition. In order to

2

CHAPTER 1. INTRODUCTION 1.3. CONTRIBUTIONS

achieve natural and effective interaction within the system, the interface is predominantly

controlled by user gestures, from simple direct manipulation gestures for scene navigation

and object selection, to more complete gestures (e.g. a circular hand motion) for menu

control and other specialized purposes.

• The realization of a gesture interface through the application of a Hidden Markov Model

(HMM) to recognize more complete 3D dynamic gestures. To the best of our knowledge,

this is among the first systems that use a 3D tracker based HMM to assist in dynamic

gesture recognition in a VR environment.

• The exploration and study of novel interaction techniques for each of the following inter-

action categories:

– System control: compared to traditional button based menu control techniques, we

propose two gesture based menu control methods: “Touch Menu” and “Slide Menu”;

– Navigation: a “Posture Triggered Flying” and a “Waving Hand” technique are pro-

posed for navigation in a large scale city scene, needed for applications such as virtual

city touring;

– Selection: a “Paint Selection” and a “Stretch Selection” technique are proposed for

selecting multiple objects in order to simplify and make more efficient the subsequent

manipulation of multiple virtual buildings;

– Manipulation: a manipulation technique using two-handed gestures is proposed that

provides the ability to translate, rotate, and scale virtual objects.

Our system is evaluated with empirical and quantitative user studies, both from the ges-

ture recognition side and the user experience side. The use of the advanced HMM pattern

recognition algorithm leads to a good recognition result of the system control gestures. Based

on evidences from the user study, in the selection and manipulation categories, the proposed

multiple objects selection techniques and two-handed gesture manipulation technique are sig-

nificantly better than traditional ones. In the system control and navigation categories, the

results are mixed: one part of the user evaluations does not show a significant difference among

different techniques. However, another part of the user study results demonstrates that experi-

enced users clearly prefer gesture based interactions. These findings could guide future interface

design in immersive VR systems.

3

CHAPTER 1. INTRODUCTION 1.4. OVERVIEW OF THIS THESIS

1.4 Overview of This Thesis

The remainder of this thesis is organized as follows: Chapter 2 reviews existing work related

to the visualization and interaction of virtual cities in a VR environment; Chapter 3 illus-

trates our proposed methods and the system implementation in detail; Chapter 4 describes

our experiments and the results from both qualitative and quantitative user studies; Chapter 5

introduces two prototype applications built on top of the various proposed methods; Chapter

6 draws conclusions and discusses possible future work.

4

Chapter 2

Literature Review

2.1 Immersive Displays and VR Systems

The term Virtual Reality (VR) should be differentiated with Augmented Reality (AR) [5] [4]

where 3D virtual objects are integrated (augmented) into a real environment (e.g. an image

captured by a camera). VR is a term used for fully computer generated 3D environments and

it allows users to enter and interact with virtual environments [64] [23]. In VR applications,

users can be partially or fully immersed in a synthesized 3D world generated by computers.

Slater [57] [58] proposed that the term “immersion” should only be used to represent an

objective state that occurs when technology effectively mimics human sensory perception of the

real world:

“The more that a system delivers displays (in all sensory modalities) and tracking

that preserves fidelity in relation to their equivalent real-world sensory modalities,

the more that it is ‘immersive’.”

And the term “presence” should be used to stand for the subjective experience of being in a

virtual environment, as “a human reaction to immersion” [58]. However, in many other research

papers in the literature, the terms immersive display or immersive system are not differentiated

and represent display systems that deliver such an experience.

The overall level of immersion can be determined by many factors, including:

• field of view (FOV)–the size of the visual field (measured by degrees of the viewing angle),

• display size–which determines FOV together with viewing distance,

• display resolution,

• stereoscopy–displaying different images to left and right eye,

5

CHAPTER 2. LITERATURE REVIEW 2.1. VR SYSTEMS

• head tracking–providing the ability to display based on location and orientation of the
user’s head,

• display frame rate,

• realism of 3D models.

Depending on the degree of immersion, VR systems can be classified into non-immersive,

semi-immersive, and fully immersive VR systems [9] [46] [7]. Non-immersive VR system usu-

ally means displaying via a desktop monitor, without stereoscopy and head tracking. Fully

immersive VR systems, on the other hand, cover the full field of view of the human eye (ap-

proximately 210 degrees [3]), and are stereoscopic, with the added capability of head tracking.

Other semi-immersive VR systems exist in the middle of non-immersive and fully immersive,

such as various kinds of Head Mounted Display (HMD), and the so called “Fish Tank” VR [68],

which combines a traditional 2D display with head tracking. Table 2.1 shows the comparison

of several different VR or display systems.

System Field of View Stereoscopy Head Tracking

Desktop PC ∼20-30 degrees No No
DSharp [61] [53] ∼110 degrees No No
GeoWall [26] [12] ∼60 degrees Yes No
CAVE ∼270-360 degrees Yes Yes

Table 2.1: Summary of immersion components for several VR or display systems.

The Cave Automatic Virtual Environment (CAVE), a fully immersive VR system, was pro-

posed back in 1992 [18] [17]. Over the past two decades of virtual reality technology develop-

ment, CAVE systems have been equipped with displays that have increasingly higher resolution

and frame rate, as well as more graphics computing power. As shown in Figure 2.1, a CAVE

system usually consists of 4 or more stereoscopic screens, configured as a cube surrounding the

user. A tracking system detects the user’s head location. The displayed images are calculated

in real time based on the user’s head position and the physical location of each screen.

As a result of this configuration, CAVE system achieves high level of immersion. It has

been successfully used in many applications [12], such as military and medical training, enter-

tainment, data visualization in the oil mining industry and automobile industry, etc.

2.1.1 Tracking in VR systems

Recent years saw various exciting new results in computer vision based tracking [30] [48], which

are proposed for tracking in Augmented Reality (AR) and potentially could be used in VR.

6

CHAPTER 2. LITERATURE REVIEW 2.1. VR SYSTEMS

Figure 2.1: A user exploring a virtual city in a CAVE system.

However, current vision based tracking still lacks the speed, accuracy, and robustness required

in VR systems in order to support realtime rendering of 3D scenes. Popular tracking systems

used in VR include magnetic tracking, mechanical tracking, acoustic tracking, inertial tracking,

optical tracking, and hybrid tracking [69] [11].

Different from vision based tracking, all the above mentioned tracking systems need to

attach trackers of some kind to the user’s body. Among these solutions, optical tracking offers

accurate results at relatively high speed and low latency with small user-worn components [69].

The biggest disadvantage of an optical tracking system is that it suffers from occlusion problems,

since light travels in direct lines. However, this problem can be partly solved by using multiple

camera arrangements that optimize tracking performance, at least within a limited range.

In an optical tracking system, the object whose position needs to be tracked is equipped

with markers, which can be passive or active [42] [47]. Active markers are usually in the form

of LEDs (Light-Emitting Diode) and emit internally generated light; while passive markers are

made with light reflective materials and reflect ambient light or light emitted elsewhere. Light

sources used in optical tracking systems are usually in the infrared range in order to avoid any

influence of the display system.

Figure 2.2 shows a tracking camera and a target consisting of 4 markers [2]. The tracking

cameras emit infrared light in a certain wavelength, which is then reflected by the markers

and captured by the camera. Multiple cameras are mounted, scanning a certain volume and

detecting the light that comes from the markers. Their images are processed to identify and

calculate potential marker positions in 2D image coordinates, as illustrated in Figure 2.2(c).

These two dimensional locations from different cameras, together with known camera loca-

tions, are combined to calculate the 3D position of a single marker. If multiple markers are

7

CHAPTER 2. LITERATURE REVIEW 2.2. 3D URBAN DATA

(a) Tracking camera (b) A target with 4 markers

(c) Threshold image from camera

Figure 2.2: Optical tracking camera and target [2].

combined into a target, with their relative locations known, the 6DOF (6 Degree of Freedom)

data of the target can be calculated, which include a 3D position and a 3D orientation.

2.2 Modelling and Visualization of 3D Urban Data

The computing and rendering power of graphics hardware has been dramatically increasing

since the first dedicated graphics cards appeared for desktop PCs. Researchers and developers

have also proposed new software and many algorithms that make the modelling and rendering

of 3D scenes more realistic. Therefore virtual 3D cities have seen increased usage in applications

such as Geographic Information Systems (GIS), urban planning, and gaming. Moreover, the

popularization of the internet has made it simpler and easier for sharing and distributing 3D

data and the applications that utilize them. All these factors have lead to the adoption of 3D

cities into web-based map services and virtual globes, which have subsequently changed the

way people acquire and interact with geographic information.

Considering 3D city data in particular, researchers have focused on the automatic or semi-

automatic construction of 3D city models [22][71], as well as network based rendering of large

scale data [54], to facilitate rendering in mobile devices with limited compute and rendering

8

CHAPTER 2. LITERATURE REVIEW 2.3. HCI IN VR

power.

While the majority of research work use traditional 2D displays for visualizing 3D city data,

some researchers have investigated the use of VR technology to achieve more immersive visual-

ization. Kang et al.[27] developed middle-ware that connects a CAVE-like 3-screen immersive

VR system with Autodesk Navisworks, a popular building design and simulation software under

the Building Information Model (BIM) standard. The feeling of “presence” greatly improved

the preview of a building being designed, which in turn helps the designer and planner make

better decisions.

Isaacs et al.[25] developed a 3D virtual city application as a decision support tool for urban

planners. Engel et al.[21] built a system that enables the display of virtual 3D city models

in a semi-immersive display system with 360◦ cylindrical projections. Their work focused on

the visualization side, using stereo screens to visualize an urban sustainability simulation, and

lacked the ability to interact with the virtual city using a natural 3D interface.

Johnson et al.[26] reviewed the development of the “GeoWall” project, a low-price 3D display

system designed for geoscience researchers. It was argued that GeoWall’s large stereoscopic

display helps the users’ understanding of spatial relationships, which is crucial in geoscience

research. However, once again the GeoWall system is designed mainly for visualization. It is

not fully immersive (see Table 2.1) and lacks the capability for natural 3D interaction.

2.3 Human Computer Interaction (HCI) in VR

2.3.1 Input Hardware

A common input device in VR systems is the “wand”. It is a remote control that consists

of positional trackers, buttons and sometimes a joystick or trackball. Individual buttons or a

combination of buttons correspond to certain actions such as menu selection, up/down direc-

tions, etc. Abramyan et al.at the Jet Propulsion Laboratory [1] used a Nintendo Wii remote

controller to control the viewing angle in a cylindrical displaying system that surrounds the

users, for the purpose of controlling surface spacecraft. A wand was used as hand tracker in

[33], to control a virtual table tennis game in an immersive VE that has 2 large stereoscopic

screens and head tracking. Koike and Makino [31] proposed a 3D solid modeling system using

wand to draw sketches on the screen, and a 3D model was then constructed from the original

manual sketch. An experimental study on interaction in the CAVE showed that the displaying

of a virtual hand is helpful in reducing interaction errors [63].

Besides the widely used wand devices, many other input devices have been invented for

more intuitive and natural interactions. Bowman et al.[11] gave a comprehensive review of

9

CHAPTER 2. LITERATURE REVIEW 2.3. HCI IN VR

the input devices developed for 3D interactions, for example various kinds of wearable devices

like data gloves and shoes with pressure sensors. However most of these devices were designed

for specific purposes and introduced intrusions (e.g. users have to wear complex devices) and

consequently were not adopted for general use.

Some resent research explores the use of touch screens on mobile devices as an input device

for Virtual Environments (VE). For example, Medeiros et al.[40] developed a system that use a

tracked tablet as an all-in-one controller for immersive VR applications. They implemented a

touch screen interface that supports selection, manipulation and navigation in 3D scenes. Song

et al.[60] and Khan et al.[28] both proposed to use touch screen devices, an Apple iPod or an

iPad, to control the rendering of 3D volume data.

2.3.2 Interaction Techniques

In addition to the design and configuration of input devices, the user experience in a VE is also

largely determined by the design of interaction techniques (i.e. the mapping of input device

actions into actions in the application). Although WIMP (Windows, Icons, Menus, Pointer)

has been a dominant metaphor in User Interface (UI) design in the 2D world, no interaction

techniques have reached this dominance in the 3D domain [70]. Along with the advance of

VR technology, various 3D interaction techniques have been designed and explored, both for

different kinds of input devices and for different interaction categories, such as navigation,

selection, manipulation, etc. Some examples of 3D interaction techniques are as follows:

• Ray-Casting is an intuitive and widely adopted selection technique, where a ray is defined

from a user defined location (derived from the input device position) to somewhere in

the 3D space and objects intersecting the ray are selected. The ray casting technique

has been modified in various ways to meet the requirements of specific conditions in a

VE [11]. The modifications are generally related to how the pointing direction and the

selection volume are defined.

• Stoakley et al.[62] proposed a manipulation technique called “Worlds in Miniature” (WIM)

to manipulate objects out of a user’s physical range. Instead of directly manipulating a

far away object, the user manipulates a smaller representation of that object in a smaller

version of the whole 3D scene.

• Kim et al.[29] proposed using a touch screen device to control navigation in VEs. The

fingers touch and movements onto the screen are mapped to navigation actions in the

CAVE. They compared this technique with traditional joystick controlled navigation by

10

CHAPTER 2. LITERATURE REVIEW 2.3. HCI IN VR

measuring the error of a user replicating a travelling (navigation) route, and concluded

their proposed technique outperforms joystick navigation.

• Bowman et al.[13] compared three different menu control techniques in a HMD VR envi-

ronment: their proposed TULIP menu, a floating menu and a tablet menu. The TULIP

menu is displayed at the end of each finger of a virtual hand, and is controlled by a glove

the user wears that can detect pinching; The floating menu is a widely adopted form in

VR applications, where the 2D menu is “floating” in front of the user; a tablet menu, on

the other hand, is displayed on the surface of a virtual tablet while the user also holds

a physical piece of cardboard, using a physical pen to select on that physical cardboard.

They concluded that the floating menu and tablet menu are the fastest, while the TULIP

menu was the technique most preferred by the users.

Pattern recognition methods have also been applied to support interactions with computers,

particularly in the form of speech recognition and gesture recognition. Laviola [32] investigated

applying speech commands in VEs. However, the biggest problem of speech input is the ac-

curacy with which the input processing technique can distinguish between the user issuing a

command or just talking with a co-worker. In addition to the lack of robustness, as well as

privacy issues, speech recognition has not seen widespread usage, both in VR systems and

traditional computing environments. Biomedical signals such as electroencephalogram (EEG)

signals from the brain and electromyography (EMG) signals from muscles have also been used

as inputs [41] [50]. However these technologies are still in their infancy and their potential to

be used as general purpose input devices may be limited.

In recent years many researchers have been issuing commands via gestures interpreted using

gesture recognition techniques, partly due to the widely affordable motion tracking devices

such as the Microsoft Kinect [51] [67]. Most of these new developments use gesture recognition

for non-VR environments. For example, Schlomer et al.[55] proposed a HMM based gesture

interface for media browsing, which recognizes 5 gestures from the acceleration sensor data

outputted from a Wii controller. Rigoll et al. [52] developed a real time vision based HMM

gesture recognition system, which detects a hand from camera images and uses the 2D hand

location as input to the classifier. Their system achieved approximately 90% accuracy for 24

gestures that involve intense hand movement. However, only a few researchers have reported

the use of gesture recognition in VR systems.

11

Chapter 3

Methodology

In this chapter, the integrated system is described and the developed interaction techniques

are presented. We start with introducing the hardware and software configuration of our VR

system, the CAVE, and the optical tracking system used for user inputs. Then, in the system

control section, functionalities of the proposed virtual city are summarized and organized into

a menu structure. In addition to traditional button controlling, two different gesture based

techniques for 3D menu control are proposed, which utilize the recognition power of a Hidden

Markov Model.

Navigation, selection, and manipulation are three of the most basic operations in all 3D

interactive applications. In the case of a virtual city, different interaction techniques for each

of these three operations are described and illustrated. While the joystick is one of the most

widely used means for navigating (travelling) in a virtual scene, in this thesis two posture and

gesture based travelling techniques are proposed in order to achieve more natural interaction.

For the selection operation, a ray casting technique is used to select single buildings. However,

ray casting is not as effective for selecting multiple buildings. Therefore, we propose “paint”

select and “stretch” select methods for multiple object selection. Finally, three methods are

proposed to deal with occluded viewpoints (i.e. when the desired view of a building/region is

blocked by one or more buildings).

The sum of all these general interactions is not enough to achieve natural interaction. User

friendliness is often achieved by utilizing application-specific and task-specific constraints. For

example, in medical data visualization users may prefer a selection technique that distinguishes

among different organs and tissues, over a general selection method that selects whatever volume

data is “pointed at”. In the case of a virtual city, the structure and layout of buildings, blocks

and streets can be used as “natural” constraints for interactions. Therefore, in this thesis a map

data structure is presented that encodes the geographical data in a high-level way. Special care

12

CHAPTER 3. METHODOLOGY 3.1. SYSTEM CONFIGURATION

is given to link the map structure with the 3D city data in order to create effective interaction

constraints. For example, using the map data structure, an implementation of Dijkstra’s path

finding algorithm has been added to enable high level navigation in the virtual city.

3.1 System Configuration

3.1.1 The CAVE

As illustrated in Figure 3.1, our CAVE consists of 4 wall size displays, covering the front, left

and right sides, and the floor of the user’s viewpoint. Each of these displays is driven by a stereo

projector and a workstation PC equipped with high-end graphics card. These workstations,

together with a server node, form a graphics cluster that runs the VR application.

Figure 3.1: Overview of the implementation in the CAVE.

Optical tracking cameras are mounted on top of the screens to capture the user’s movement.

13

CHAPTER 3. METHODOLOGY 3.1. SYSTEM CONFIGURATION

They emit infrared light and capture the light reflected by markers worn on the user’s head

and hands, as introduced in section 2.1.1. A tracking server collects these captured images and

outputs the location and orientation of marker sets to the user application.

To ensure real time response, a separate server continuously monitors the tracking result

for gesture recognition, and sends out a trigger signal once a predefined gesture is performed.

The gesture recognition algorithm will be described in section 3.2.

3.1.2 Software Configuration

We have constructed our virtual city application on top of Open Scene Graph (OSG) [66], a

popular cross platform visualization toolkit that supports a wide range of 3D data formats.

A highly configurable VR toolkit, VR Juggler [6], is used to direct the visualization into the

CAVE screens. The use of VR Juggler supports portability to various other display systems,

as well as a traditional desktop monitor. Figure 3.1(a) shows a user experiencing the virtual

city in the CAVE.

3.1.3 Input Devices

A “wand” is an input device that is commonly used in traditional VR systems. It consists of

a combination of a positional tracker and buttons/joysticks. Figure 3.2 shows the wand used

in our CAVE, which comes as an accessory to the ART optical tracking system, and is named

”Flystick” [2].

Figure 3.2: A wand input device (Flystick).

Holding the wand provides 6DOF tracking data of the user’s hand. However, in tasks such

as rotating and scaling an object, using 2 hands is more natural, as will be demonstrated later

14

CHAPTER 3. METHODOLOGY 3.2. HMM REALTIME GESTURE RECOGNITION

in chapter 4. In the proposed gesture interface, both hands of the user are tracked. One way of

doing this is to wear a set of markers on both hands, as shown in Figure 3.3(a). But the downside

is losing the power of wand buttons. We then have to design other ways to issue commands to

the system, such as the use of gestures. This means the user needs to memorize many gesture

commands resulting in a more complex interface and a reduction in the easiness of learning and

using the interface. Note that this complexity is not due to limitations of the gesture recognition

algorithm. The proposed gesture recognition scheme is capable of recognizing more gestures

than actually used, which will be shown in chapter 4. The primary reason for reducing the

number of gestures is the goal of creating a simple and natural user interface. Simplicity and

naturalness have been emphasized by experts and practitioners in user interface design [70][11].

(a) 2 hands (b) Hand and wand

Figure 3.3: Input configurations for gesture interaction.

Furthermore, for manipulation and selection tasks that require precise control, performing

another gesture to trigger the start of these operations could affect the accuracy of the interac-

tions themselves. Therefore, we believe a better solution is to use as few gestures as possible,

and complement them with wand buttons. Wand buttons are more robust, precise and familiar

to users from their use of a computer mouse. To make the interactions simple and easy, the

number of buttons used should also be small. In this work, only 2 buttons and 3 dynamic

gestures are used to control all functions. The input configuration is as follows: one hand is

tracked by a set of markers worn on the back of the hand; the other is tracked by the internal

markers of flystick, as shown in Figure 3.3(b). In this way, we have the ability to use two-handed

gestures and keep the buttons/joysticks for robust command triggering.

3.2 HMM Realtime Gesture Recognition

Because of its ability to handle stochastic signals, Hidden Markov Model (HMM) has been

widely used in speech recognition and gesture recognition, and has achieved good results [49]

15

CHAPTER 3. METHODOLOGY 3.2. HMM REALTIME GESTURE RECOGNITION

[20]. This section introduces our approach of applying HMM to recognize 3D trajectories of

dynamic hand gestures.

To clarify the terminology used in this paper, a dynamic gesture here is defined as a move-

ment pattern of a body part, such as a circular hand motion. Specifically, we use the trajectory

of the user’s tracked hand position as the input to dynamic gesture recognition. A static ges-

ture, on the other hand, is defined as a still posture. These dynamic and static gestures are

commonly referred to as offline gestures and need to be processed and recognized before the

corresponding command is triggered. However, when manipulating a virtual object, the current

location of the user’s body can directly be used to make changes, similar to the multi-touch

control of an image on a tablet or smartphone. These simple direct manipulation gestures are

commonly referred to as online gestures.

Figure 3.4 shows the framework of the proposed gesture recognition system.

Quantizer

Model 1
Tracking

Data
Model 2

...

Model

Classifier

K-means

HMM

Time Lock

Normalize

Figure 3.4: HMM gesture recognition framework.

3.2.1 Normalization and Quantization

The optical tracking system provides very accurate positional data. However, the position is in

a predefined coordinate system. For example, in the coordinate system defined by Figure 3.5,

when performing the same gesture at different locations the resulting hand positions are dif-

ferent. Therefore, without normalization, if the recognition system is trained by data collected

while standing in the center of the CAVE facing the front screen, exactly the same gesture

performed while standing in one side and facing the other side cannot be recognized properly.

One possible solution is to project the 3D position to a plane, and do recognition in a 2D

space. While it is true that most human hand gestures are 2-dimensional, projecting hand

positions to a plane will completely lose the ability to recognize 3-dimensional gestures.

In this work, a local reference coordinate system is used to normalize the hand position

data. The user’s head position is used as the origin for a reference coordinate. The normalized

16

CHAPTER 3. METHODOLOGY 3.2. HMM REALTIME GESTURE RECOGNITION

Figure 3.5: CAVE and tracking coordinate system.

hand position p is given by:

p = ph ∗M− pr, (3.1)

where ph = (xh, yh, zh) is the position of the user’s hand in global coordinates as returned by

the tracking system, and M is a rotation matrix with angle θy rotation around the vertical (in

our case, y) axis. The angle θy can be found by:

θy = arctan
sinψ sinφ+ cosφ cosψ sin θ

cosψ cos θ
, (3.2)

where (φ, θ, ψ) and pr = (xr, yr, zr) are the orientation Euler angle and position of the reference

coordinates (in this case, the user’s head), respectively. We use the rotation around the vertical

axis only, in order to eliminate the influence of the user lowering or nodding his/her head

(which are rotations around horizontal axes). The speed of the user’s hand is then calculated

on a frame by frame basis:

v = p− pt−1 (3.3)

where pt−1 is the normalized hand position in the last frame. Then a gesture sample can be

represented by a sequence of velocities:

G = {v1,v2, ...,vN} (3.4)

where N is the length of this sequence, in terms of the number of frames.

17

CHAPTER 3. METHODOLOGY 3.2. HMM REALTIME GESTURE RECOGNITION

Since a HMM has a finite number of states and observation symbols, as will be introduced

in the next section, speed data needs to be quantized into a finite number of states. K-means

clustering is used here to accomplish this.

K-means is an un-supervised clustering algorithm (semi-supervised in some sense, because

the number of clusters, K still need to be specified) [36]. It partitions the data (v1,v2, ...,vN)

into K sets V = {V1, V2, ..., Vk}, that have the minimum representation error:

argmin
V

K
∑

i=1

∑

vj∈Vi

||vj − µi|| (3.5)

The most common algorithm to solve the K-means problem is an iterative refinement tech-

nique, each iteration of which includes 2 steps:

• Assignment step: Assign each data point to the cluster whose mean is closest to it:

V
(t)
i = {vp : ||vp − µ

(t)
i || ≤ ||vp − µ

(t)
j || ∀1 ≤ j ≤ k} (3.6)

• Update step: Calculate the new means to be the centroids of the data points in the new

clusters.

µ
(t+1)
i =

1

|V
(t)
i |

∑

vj∈V
(t)
i

vj (3.7)

In our practical recognition system, the K value is chosen by testing the recognition system

on a gesture database. The K value that achieves the best recognition rate will be used. After

clustering, each incoming data v can be clustered to its nearest centroid, which is then fed into

the HMMs.

3.2.2 Hidden Markov Model and Classification

A discrete Hidden Markov Model (HMM) is an extension on top of a Markov chain, a random

process where the current state is only dependent on its previous state:

P [qt = Sj|qt−1 = Si, qt−2 = Sk, ...] = P [qt = Sj|qt−1 = Si]. (3.8)

where qt denotes the state at time t. There are N distinct states, S1, S2, ..., SN .

Furthermore, these transition probabilities are independent of time, represented by a matrix

A = {aij}:

aij = P [qt = Sj|qt−1 = Si], 1 ≤ i, j ≤ N, (3.9)

18

CHAPTER 3. METHODOLOGY 3.2. HMM REALTIME GESTURE RECOGNITION

where

aij ≥ 0

N
∑

j=1

aij = 1.
(3.10)

Another parameter that describes a Markov process is the initial state probability, π =

[π1, π2, ..., πN], where

πi = P [q1 = Si], 1 ≤ i ≤ N. (3.11)

Figure 3.6(a) shows a Markov chain with 5 states, while Figure 3.6(b) shows its extension to

HMM. For a HMM, the state at each time, qt is no longer observable. Instead, the only output

of the HMM is the observation symbol Ot, which could be one of M possible observations,

denoted as V1, V2, ..., VM . We use B = {bj(k)} to denote the probability of observing symbol

Vk at state Sj:

bj(k) = P [Ot = Vk|qt = Sj], 1 ≤j ≤ N

1 ≤k ≤M.
(3.12)

(a) An example Markov chain with 5 states (b) An example HMM with 5 states

Figure 3.6: Example of Markov chain and HMM.

Therefore, a HMM can be fully specified by the parameter set λ:

λ = (A,B, π) (3.13)

19

CHAPTER 3. METHODOLOGY 3.3. SYSTEM CONTROL

Classification

Appendix 1 gives a detailed description of training and recognizing algorithms of a HMM. For

each of C classes of gestures, we use some training sequences to adjust the HMM’s parameters.

The resulting HMM represents that specific class of gesture. As shown in Figure 3.4, in the

realtime recognition, a gesture sequence is fed into each of C trained gesture models. The output

of each model is the probability of the gesture sequence belonging to that model. Then the

classifier assigns this gesture sequence to the model with the highest probability, and outputs

this result. However if the highest probability is not big enough, the sequence is classified as

containing no gestures.

In a real time implementation, the frame rate of the tracking data (60Hz in out case) is much

higher than the perceivable speed of hand movements. Therefore tracked position data often

remains similar for multiple frames, and the recognizer often outputs the same class during all

these frames. This often happens when the performance of a gesture is about to end. Though

correct, we still want just one trigger signal for each gesture. To resolve this problem, a lock

mechanism is implemented to keep the recognizer from outputting the same class within a

period of time which is roughly half the length of the average gesture duration.

3.3 System Control

Now all inputs to the system are configured, including the wand and hand markers for tracking

(as illustrated in section 3.1.3), and the recognized gestures (the definition of gesture commands

will be given in section 4.1). This section will introduce system control methods, which enable

controlling the VR experience within the CAVE.

Considering that the most significant advantage of the CAVE system is its immersive visu-

alization capability, we focus the design of our user interface on controlling the viewing of the

virtual scene, while also adding some ability to modify parts of the scene. In particular, in a

3D virtual city, users typically want to navigate freely around the city, or view the city scene

along an interactively defined route (i.e. navigate along the route). In addition, city planners

may want to select and modify/manipulate single buildings or several buildings.

We have therefore defined 3 basic interaction modes that support the navigation and se-

lection/manipulation system functions: “FreeView”, “Selection”, and “RouteView”. In each

of these modes, there are functions such as selecting buildings, streets and waypoints, trans-

forming or replacing selected buildings, etc. In order to keep the interactions as simple and

natural as possible, a menu is used as the system control center, where the user selects different

functions or modifies the behaviour of the whole VR application. Figure 3.7 shows an image of

20

CHAPTER 3. METHODOLOGY 3.3. SYSTEM CONTROL

a user operating a menu in a CAVE.

Figure 3.7: User interacting with a menu in a CAVE.

In a 3D immersive VR system, the user is immersed in 3D content. Thus the menu is

displayed in 3D to provide a consistent experience and to enable the interaction of “touch” as

will be shown later. After the menu is activated (i.e. triggered), menu items, which consist of

3D texts or icons, will appear to float in front of the user.

3.3.1 Menu Control by Button

Controlling a menu by buttons is one of the oldest and most widely used interactions in Graph-

ical User Interfaces (GUI). Here, 4 buttons (on the Flystick, as shown in section 3.1.3) are

assigned to control the menu. The assignment is given in Table 3.1.

Action Flystick Button

Confirm/Trigger Menu Button 1
Cancel Button 2
Up Button 3

Down Button 4

Table 3.1: Flystick button assignment for menu control.

Due to limited number of buttons, some of them are used for multiple functions. For

example. Button 1 is used to trigger the menu, and is also used to confirm a selected menu

21

CHAPTER 3. METHODOLOGY 3.3. SYSTEM CONTROL

item. There are other functions, such as selection and manipulation, that will be triggered

using buttons and which will also be assigned to duplex function buttons.

Up and Down buttons are used to select different menu items. The selected menu item is

then highlighted to give a visual feedback. A press on the confirm button will call the function

or the submenu that a menu item represents. A press on the cancel button will cancel the whole

menu interface, or return to the parent level, if currently inside a submenu.

3.3.2 Menu Control by Gestures

Though button interactions are familiar to most users and therefore easy to get used to, gestures

are considered to be a more intuitive way of interacting [70][11].

Two gesture based menu control techniques are proposed: “Slide Menu”, and “Touch Menu”.

Similar concepts exist in a 2D domain. However, unlike the traditionally dominant “WIMP”

(Windows, Icons, Menus, Pointer) metaphor, the proposed slide menu does not need a pointer

for positioning on menus and icons. Instead, it’s totally controlled using 3D gestures. The

Touch Menu resembles common menu interactions on a touch screen. However, touching on

a 3D menu in an immersive environment gives far more realism and feeling of a true physical

menu floating in front of the user.

To activate the menu, the user performs a “sliding down” gesture, as if pulling down some-

thing above his/her head. This action will trigger the menu to be displayed in front of the

user.

Slide Menu

The Slide Menu works as follows: the user moves his/her hand up or down to highlight different

menu items. After the target item has been highlighted, a slide gesture towards the right will

confirm that selection, as if the confirm button had been pressed; a slide gesture towards the

left will count as a cancel action. Recognition results for left and right sliding gestures, as well

as the sliding down gesture to call out the menu, work as trigger signals and replace buttons.

Figure 3.8 shows a simulated view of the slide menu.

A problem with this design is that, after confirming a menu selection with a right slide, the

user needs to withdraws his/her hand from the right side. This withdrawing action is sometimes

recognized as a left slide and immediately cancels that menu selection. To solve this problem, a

lock mechanism is implemented. Specifically, left slide gestures that come within a short period

of time after a right slide gesture are ignored.

22

CHAPTER 3. METHODOLOGY 3.3. SYSTEM CONTROL

Figure 3.8: A simulation view of the slide menu.

Touch Menu

In a touch menu, the user moves his/her hand to “touch” a menu item on the 3D menu to select

it as well as confirm that selection. Returning to the parent level menu requires no additional

effort - just touching the parent menu item. Cancelling the menu is done by touching a menu

item named “cancel”. Figure 3.9 shows a virtual hand touching on a menu item. Since the

virtual hand is constantly following the user’s actual hand, it delivers a feeling of actually

reaching out and “touching” the menu.

Figure 3.9: A simulation view of the touch menu.

23

CHAPTER 3. METHODOLOGY 3.4. NAVIGATION

3.4 Navigation

Navigation in a VR application means to travel from one place to another in the virtual scene.

Though navigation generally means the changing of camera position, one effective way of trav-

elling is by manipulating and moving the whole virtual scene, since in a VR system the camera

position is actually the user’s eye location. Movement of the user is always confined by space

limitations of the VR system, for example the effective tracking range. Therefore the only way

of performing large scale travelling is by moving the virtual objects instead of physical eye

movement.

Manipulation techniques that will be introduced in section 3.6 are used here to support

scaling, rotating and moving of the entire virtual scene. This set of basic navigation interactions

can be performed at any time in the application, even in selection mode and route view mode.

The reasoning behind this design decision is that 3D city data is usually very large and the

user may not be able to find the area of interest when in selection/routeview mode. In this

case, a scaling down, moving and scaling up interaction sequence (i.e. pan and zoom of the

entire scene) is required. This interaction sequence resembles the Worlds in Miniature (WIM)

technique [62][8] in VR navigation, which manipulates a small version of much larger scene to

navigate in the large scene.

In order to have access to this navigation function from anywhere in the application and

in any mode, a wand button is reserved to trigger the manipulation of entire virtual scene.

Triggering by a dynamic gesture is also an option. However, gesture triggering is less robust

than a button trigger. Based on our experience, users become more frustrated upon failing to

trigger a navigation than upon failing to trigger a menu, since navigation is performed far more

often in a virtual city application. Also, the triggering gesture itself would affect the precision

of subsequent manipulation gestures.

In addition to manipulating the scene for navigation, sometimes the user may want to

“fly” in the scene without changing its scale, for example in a virtual tour. There are 3 such

navigation techniques implemented in this work.

3.4.1 Joystick

The use of a joystick is a popular way of navigating in many 3D applications, especially computer

games. Together with the direction pointed by the user, a 2-axis joystick offers the ability of

flying forward, backward and turning freely in 3D space. Figure 3.10 illustrates the usage of

joystick navigation.

24

CHAPTER 3. METHODOLOGY 3.4. NAVIGATION

Figure 3.10: Demonstration of joystick navigation: the right hand is used to point out a direction
and pushing on the joystick activates flying.

3.4.2 Posture Triggered Flying

To offer an option of navigation without joystick and buttons, a posture triggered flying inter-

action is proposed. As shown in Figure 3.11, the user raises his/her left hand above the head

to fly to the direction pointed by the right hand. The speed of travelling is calculated by a

sigmoid function:

|v| =

{

vmax

1+edy/k
: dy > 0

0 : dy < 0
(3.14)

and,

dy = ylhand − yhead (3.15)

where ylhand and yhead represent the height of the user’s left hand and head, respectively. The

user has some freedom of controlling the travel speed by the height of their left hand over their

head. The choice of a sigmoid function over a linear one is to place a limit on the highest speed.

Feedback from a user study finds that dizziness occurs when the speed is too high. vmax and k

are constants that control the highest speed and the sensitivity over hand height change.

3.4.3 Waving Hand

The waving hand technique comes from the desire to use manipulation like methods to travel.

Compared to the two-handed gesture manipulation described in section 3.6, the waving hand

navigation interaction differs in several ways. Firstly, only translation is considered, without

25

CHAPTER 3. METHODOLOGY 3.5. SELECTION

Figure 3.11: Demonstration of posture triggered flying: the right hand points out a direction
and raising the left hand activates flying.

rotation and scaling of of the scene. Secondly, the motion of one hand is considered, instead of

two, since the position of a single hand is sufficient for translation. Thirdly, an inertial motion

continues after the hand motion is complete to achieve a feeling of physical movement, which

greatly enhances the user experience.

Specifically, the speed and direction of travelling during current frame is determined by the

movement of the user’s right hand:

v = pr,t−1 − pr (3.16)

where pr and pr,t−1 represent the right hand position in the current frame and in the last

frame. After the navigation triggering button is released, the flying will continue until the

speed decreases below a threshold close to zero:

v =
|vt−1| − a

|vt−1|
vt−1 (3.17)

where a is the acceleration factor for inertial effect, and vt−1 is the travelling velocity in the

last frame.

3.5 Selection

Object selection is another basic function in 3D applications. In the virtual city, three selection

techniques are proposed. The first one is a traditional ray casting method. However, it selects

one building at a time and lacks effectiveness for selecting multiple buildings: a task often

26

CHAPTER 3. METHODOLOGY 3.5. SELECTION

Figure 3.12: Demostration of waving hand navigation: fly to the direction of hand waving.

performed in a city planning scenario. Therefore two effective ways of selecting multiple objects

are proposed in this thesis: “paint” selection and “stretch” selection.

3.5.1 Ray Casting Selection

The ray casting selection, as its name implies, is perfomed by casting a ray from user’s specified

position and direction, which in our case is pointed directly by user’s hand. As shown in Figure

3.13, the first object that intersects with the ray is selected.

Figure 3.13: Ray casting selection: a ray is cast by the user’s hand pointing at an object. The
first object that the ray intersects is selected.

27

CHAPTER 3. METHODOLOGY 3.6. MANIPULATION

3.5.2 Paint Selection

The concept of “painting”, popular in 2D drawing and photo editing software, is familiar and

simple. In the 3D CAVE environment, the paint “brush” can be represented with a 3D object

of arbitrary shape, although for most applications a simple shape such as a sphere or a cube is

used. All scene objects that intersect the 3D brush are selected, with the movement of user’s

hand controlling the position of the brush (once the selection function is triggered). In our

implementation, a simple sphere brush is used, as shown in Figure 3.14.

Figure 3.14: Paint selection: the user moves a spherical brush to “paint” in the scene. Every
object that intersects the brush is selected.

3.5.3 Stretch Selection

Stretch selection is a concept borrowed from 2D GUIs, where users can select icons by creating

and stretching a rectangular box; those icons inside the box are selected. In the 3D world,

we can still create a box but it will be a cuboid instead of a 2D rectangle. When holding the

selection button, the user’s hand position is used to stretch the box as shown in Figure 3.15.

Since buildings are not the same height, the height of the box might not be suitable for all

buildings intended to be selected. Therefore, the stretched box is projected to the ground, into

a rectangular area. Every building inside that area will be selected.

3.6 Manipulation

According to the Oxford English Dictionary, to “manipulate” means to handle or control (a

tool, mechanism or information, etc.) in a skilful manner. In the context of 3D user interfaces,

the definition of manipulation usually narrows to the action of handling spatially rigid objects

28

CHAPTER 3. METHODOLOGY 3.6. MANIPULATION

Figure 3.15: Stretch selection: the user stretches a 3D box, which is then projected to a
rectangular area on the ground. Every building inside that area is selected.

[11], which means changing the position, rotation, or size of a target object (or objects), and pre-

serving its (their) shape. The virtual city application is built in an immersive VR environment

whose main advantage is the realism of visualization. Therefore the purpose of our manipula-

tion interaction design is focused on the easiness of usage and support for visualization tasks

rather than precise 3D modeling manipulations required when constructing individual objects.

3.6.1 Wand Manipulation

As introduced in section 3.1.3, a wand in a VR system has its 6DOF position and orientation

tracked. With the addition of a triggering button, the wand is able to act like a virtual hand,

picking up a selected object, and then moving and rotating it. This is one of the common

interactions implemented in many existing VR applications.

Figure 3.16 shows the usage of wand manipulation. To move (translate) the target object

(or objects), simply move the wand while holding the manipulation triggering button. The

movement of the wand is mapped directly to the movement of virtual objects. This also applies

to rotation, as shown in Figure 3.16(b). Rotation of the wand will rotate the virtual objects.

The user has the option to set rotation pivot point to the center of target object or the current

position of wand.

While the rotation and translation action use up all the 6 degree of freedom tracking in-

formation, including position and orientation, we cannot build the ability of scaling on top of

the tracking data (i.e. using a gesture to scale at the same time with rotation and translation).

One solution to this problem is to add a separate scaling mode. For example, user calls out the

menu to switch to scaling mode, instead of rotation and translation, and then uses the slide

up or down gesture to enlarge or diminish target objects. However, this would increase the

29

CHAPTER 3. METHODOLOGY 3.6. MANIPULATION

(a) Translation (b) Rotation (c) Scaling

Figure 3.16: Manipulation by wand.

complexity of manipulation interface.

Therefore, two buttons are used for scaling. When the manipulation triggering button is on

hold, the scale up button is pressed to increase the size of selected objects and the scale down

button to decrease the size, as shown in Figure 3.16(c).

3.6.2 Two-Handed Gestures

The idea of two-handed gestures for manipulation is based on multi-touch gestures used on

smartphones for moving, zooming and rotating pictures. By adding another tracked hand

position, two-handed manipulation achieves a more natural user experience by imitating the

physical action of moving and rotating. Suppose pl0 and pr0 denote the position of left and

right hands upon manipulation triggering time t0, respectively, and pl and pr represent the

corresponding position at the current time t. Calculation of the rotation, scaling and moving

parameters is given as follows:

• Rotation. As shown in Figure 3.17(a), rotation of the virtual object can be represented

by the rotation from vector l0 to l, where

l0 = pr0 − pl0

l = pr − pl

(3.18)

• Scaling. As in Figure 3.17(b), the scaling factor of the virtual object is given by:

s =
|l|

|l0|
(3.19)

30

CHAPTER 3. METHODOLOGY 3.7. VISIBILITY OF HIDDEN BUILDINGS

• Moving. Translation can be represented by:

t =
pr + pl

2
−

pr0 + pl0

2
(3.20)

Left hand at time t

Rotation axis

Object

Right hand at time t

Right hand at time (t0)

Rotation

Left hand at time (t0)

(a) Rotation

d

Object

Right hand at time t

Right hand at time (t0)
Left hand at time (t0)

d0

Left hand at time t

(b) Scaling

Figure 3.17: Illustration of two-handed manipulation.

Figure 3.18 depicts a two-handed gesture for 3D manipulation and a multi-touch gesture

for 2D manipulation.

3.7 Visibility of Hidden Buildings

Visibility issues are a common and well known problem in 3D applications since the area

of interest is often occluded (i.e. blocked) by other objects. For example, in a virtual city

visualization, a city planner may want to have a whole view of a community from a specified

view point, which is however blocked by a high rising tower close to that community. In this case,

having an option to look “through” the obstacle is one way of solving the occlusion problem.

In this work, three options are proposed to tackle the occlusion problem. These options can be

individually selected from the control menu.

31

CHAPTER 3. METHODOLOGY 3.7. VISIBILITY OF HIDDEN BUILDINGS

(a) 2 hands gesture in 3D (b) Muti-touch in 2D

Figure 3.18: Manipulation by wand.

3.7.1 Collapse

The first method is named “collapse”, since it resembles a physical collapsing of a building.

Figure 3.19 shows a building halfway collapsing down to show the view blocked by it.

(a) Original view (b) Halfway of collapsing

Figure 3.19: The use of animated “collapse” to visualize hidden buildings.

3.7.2 Semi-Transparent

Another way to deal with the occlusion problem is to render the the occluding building semi-

transparent, as shown in Figure 3.20.

32

CHAPTER 3. METHODOLOGY 3.8. ADDING CONSTRAINTS

Figure 3.20: View from the same point when occluding building is semi-transparent, with a
transparency of 20%.

3.7.3 Wireframe

In additional to displaying buildings semi-transparently, wireframe rendering can also be used

to enable seeing through the obstacle. In this mode only the outline of a building is displayed,

as demonstrated in Figure 3.21.

Figure 3.21: View from the same point when the occluding building is displayed in wireframe.

3.8 Adding Constraints

The selection and manipulation techniques introduced in the previous sections can all be used

for general VR applications, not just the virtual city. However, designing application specific

interactions could potentially significantly improve the user experience [8]. This means utilizing

constraints in a specific application and limiting the degrees of freedom in interactions.

For example, one of the natural constraints in a virtual city is that buildings and other

33

CHAPTER 3. METHODOLOGY 3.8. ADDING CONSTRAINTS

infrastructure objects have a vertical orientation with respect to the ground. Thus, during

manipulation, a building should only have the freedom of rotating around the vertical axis.

Equation 3.18, which describe the rotating manipulation of buildings, will therefore change to:

l0 = (xr0, 0, zr0)− (xl0, 0, zl0)

l = (xr, 0, zr)− (xl, 0, zl)
(3.21)

Note that p = (x, y, z). In the new equation 3.21, y values in all hand positions are set to 0,

thereby eliminating rotation around y axis.

Using the same constraint (i.e. the relationship between the vertical axis and the ground),

the degrees of freedom in a selection interaction can also be limited. In the stretch selection

method introduced in section 3.5.3, target objects need to be inside the box to be selected.

However, in a virtual city, all buildings are on top of the ground, and no building can float in

the air on top of one another. In this case there is no need to consider height while drawing the

selection box. Wherever the user draws a selection box, it can be projected to a rectangular

box on the ground and buildings inside that area will be selected, as already shown in Figure

3.15.

Yet another higher level constraint in a virtual city is the geographic information. A city

consists of a large number of different buildings, which are connected by streets and other

kinds of transportation systems such as subway lines. A city can also be divided into multiple

districts and communities serving different purposes. City planners or tourists usually want

high level functions that understand geographic relationships. For example, they may want to

tour a specific street or a certain area, and have the tour path automatically constrained to

the center of streets; they may also want to check the nearest way to shopping centers from a

proposed new residential project. The remaining part of this section will introduce the map

data structure and path finding algorithm in order to achieve these goals.

3.8.1 Map Data Structure

There are 2 types of data models used in the field of Geographic Information System (GIS):

vector data models, and raster data models [16]. Vector data models use points and their x-,y-

coordinates to represent discrete features with a clear spatial location and boundary; a raster

data model, instead, uses a grid and grid cells to represent continuous features.

Modern web-based map services, such as Google Maps and Microsoft Bing Maps, use a

combination of raster data and vector data to deliver realistic map visualizations. For example,

raster images from satellite imagery are used as a basic background map. Vector layers con-

sisting of boundaries, roads and place markers are added on top for the purpose of searching

34

CHAPTER 3. METHODOLOGY 3.8. ADDING CONSTRAINTS

and path finding.

In this work, a vector based data structure is implemented to represent geographic informa-

tion, similar to the data structure in Open Street Map (OSM) [24], an open-source, public-edited

online map service. Different from OSM, which is designed for general maps covering both ur-

ban and rural areas, the data structure implemented here focuses on urban situations where

the most interesting objects are streets and buildings.

Figure 3.22 shows the class hierarchy of the proposed data structure for storing city maps.

All classes are inherited from the base obj, which has unique ID for searching and referencing.

The node class stores the location of a point in both local 3D coordinate with x, y, z values

and in an Earth coordinate system with a latitude and longitude.

base_obj

Base class

id, parentlist

node
Represent points

x,y

lat, long

path

Represent lines

Nodelist

street
Represent streets

Name, buildinglist

Intersection List

region
Represent areas

Boundary(which

is a path)

building
Represent buildings

Name, streetlist,

streetNum

cityRoot

Root node

Name, buildinglist,

streetlist, nodelist

intersection
Represent points

StreetList

node: class name

Represent points: introduction

x, y, lat, long: data member
: store pointers to

: inherited class

Legend:

Figure 3.22: Class hierarchy of the map data structure.

The path class stores line segments formed by multiple points, which can then be used to

define the boundary of a region class object, or can be used to define a street. The building

class derives from class region and represent a building, with a list of pointers to its adjacent

streets. In the same way, a street object has a list of pointers to all buildings along that street.

35

CHAPTER 3. METHODOLOGY 3.8. ADDING CONSTRAINTS

Also, a list of pointers to all its intersections is stored in a street object. The intersection class

is derived from class node and stores pointers to connected streets.

An object of class cityRoot is created for a city and stores pointers to all its streets, buildings,

intersections, etc. In this way, the entire map can be organized into a tree structure, with

cityRoot as its root, streets and buildings as its branches, and nodes as end leaves.

To store the map data, a file input and output interface is implemented using the Extensible

Markup Language (XML) [15], which is an open standard document encoding format that

focuses on simplicity and generality. Figure 3.23 gives an example of a saved map file.

Figure 3.23: An example of a XML map file.

3.8.2 Linkage Between Map Data and 3D City Data

In a traditional digital map, 3D buildings are added “on top of” the map by simply assigning

3D models their geographic location, such as latitude, longitude and direction. This scheme is

used in osgEarth, an open source digital globe [38] and Google Earth. User interactions such as

location-based searching and path finding are fundamentally dealing with 2D map information.

This approach is designed mainly for adding 3D visualization to a 2D map, and works well for

2D desktop environments.

However, in an immersive VR system, interactions are often 3D in nature. Therefore, a

stronger link between 3D data and 2D map data is needed. For example, when selecting a

building or a street, the application needs to know what the user is selecting, its name, its

location, and its neighbors. In a traditional approach, the location of selected objects in the

3D coordinate system is known, and is mapped into global coordinates. Then, a search in the

map database using this global location returns what object is in that place. This process could

be significantly faster if we directly link 3D objects to the corresponding objects in the map

36

CHAPTER 3. METHODOLOGY 3.8. ADDING CONSTRAINTS

database.

In this work, an explicit linkage between 3D buildings, street meshes and their corresponding

objects in the map data set is proposed and implemented. As shown in Figure 3.24, 3D objects

and map objects are linked together by pointers, which are initialized at the application launch

time by checking model names and ID numbers stored in 3D city and map files.

3D Models

Building 1

Building 2

Street 1

…

Map Data Set

Building 1

Buiding 2

Street 1

…

pointers

Figure 3.24: Linkage between 3D city and map data.

3.8.3 Path Finding by Dijkstra’s Algorithm

Path finding, also known as navigation in some online map services, is a frequently used function

when people plan trips to unfamiliar areas. A good path finding system considers the speed

limit on different streets, realtime traffic, or even weather conditions, as well as distances, to

find a way to reach a destination in the shortest time.

Dijkstra’s algorithm is one of the most widely used graph search algorithms that find the

shortest path between 2 points on a graph with non-negative edges [19] [59]. It is implemented

on top of our map data structure and is used for path finding.

To give a brief description of Dijkstra’s algorithm, the terms vertex, edge, graph will be

used, which correspond to intersection, street, and map in a city, respectively. Figure 3.25 gives

an example of a graph. There are 6 vertices, denoted as a, b, c, d, e, and f . Edges connect

some of the vertices together, with a number denoting the cost value, in our case the distance

between 2 vertices. From an initial vertex, for example vertex a, the algorithm will find the

shortest distance and path to the initial vertex, in an iterative way:

• 1. Assign to every vertex a tentative distance D: 0 for initial vertex and infinity for all

others.

• 2. Mark all vertices unvisited; Set the initial vertex as the current vertex.

• 3. For the current vertex, consider all of its unvisited neighbors and calculate their

tentative distances, by adding the edge’s distance to the current vertex’s distance. If the

37

CHAPTER 3. METHODOLOGY 3.8. ADDING CONSTRAINTS

newly calculated tentative distance is smaller than the current assigned value, assign the

newly calculated one and set the current vertex as that neighbor’s previous vertex. For

example, in the first iteration in Table 3.2, b and c are assigned new distance values 2 and

3, since they are smaller than the original infinity, and current vertex a is set to be the

previous vertex along the shortest path to b and c.

• 4. After all the neighbors are considered, mark the current vertex as visited, which will

not be checked again.

• 5. If the destination vertex has been marked visited or if the smallest tentative distance

among unvisited vertices is infinity (when there is no connection between the initial vertex

and remaining unvisited vertices), then stop. The algorithm has finished.

• 6. Select the unvisited vertex with the smallest tentative distance, and set it as the new

”current vertex”, then go back to step 3.

a

b

c

d

e

f

2

3

5

6
3

1

1

2

4

Figure 3.25: An example graph to demonstrate Dijkstra’s algorithm.

Iteration Current Unvisited D(a) D(b) D(c) D(d) D(e) D(f)

0 {a, b, c, e, d, f} [0] ∞ ∞ ∞ ∞ ∞
1 a {b, c, d, e, f} [2] 3 ∞ ∞ ∞
2 b {c, d, e, f} [3] 7 5 ∞
3 c {d, e, f} 7 [4] ∞
4 e {d, f} [5] 8
5 d {f} [7]
6 ∅

Table 3.2: Example iteration of Dijkstra’s algorithm for Figure 3.25: each row represents an
iteration, with the shortest distance in [] brackets, which will serve as current in next iteration.

38

CHAPTER 3. METHODOLOGY 3.8. ADDING CONSTRAINTS

Table 3.2 shows all the iterations of Dijkstra’s algorithm applying to Figure 3.25. For a

graph G with vertices v0,v1, ...,vn, and edge distance w(vi,vj) > 0, to find the shortest path

between vstart and vend, Dijkstra’s algorithm in pseudo-code is as follows:

for i = 1 to n do

D(vi) = 0

P (vi) = vi

add vi to Q

end for

D(vstart) = 0

while vend ∈ Q and Q not empty do

u = vertex in Q with minimum D(u)

remove u from Q

for each neighbor v of u do

if D(u) +w(u,v) < D(v) then

D(v) = D(u) +w(u,v)

P (v) = u

end if

end for

end while

return D(vend) and P for previous path

A data conversion is performed at application initialization to construct a graph from our

map data structure. Intersections are used as vertices. For each street that pass an intersection,

the previous and next intersection on that street will be the neighbors. Distances are calculated

by a sum of distances among each intermediate node on street, instead of calculating the

straight line distance between 2 neighboring intersections. This takes into consideration that

some streets are curved.

3.8.4 High Level Interactions Enabled by Map

After the integration of the map data structure and the path finding algorithm, our virtual city

application has the interaction ability that constrains to geographic information.

The selection of buildings benefits from this integration. For example, the user can select

those buildings on one side of a street, by first selecting that street using ray casting technique,

and then finishing the selection by calling the corresponding function in the menu. The user

can also select buildings or streets based on a city block, which is usually defined as the smallest

area that is surrounded by streets. This is because that an object of the region class (as in

39

CHAPTER 3. METHODOLOGY 3.9. SUMMARY

Figure 3.22) can store the boundary of city blocks, as well as pointers to all the inside buildings

and streets.

Navigation also benefits from the integration of the map data and path finding algorithm.

The user is able to define an arbitrary route, which means a line that connecting any number

of user defined points. The path class enables this definition. For example, a user can make a

route from the ground outside his apartment building under construction, all the way to the

window in his suite, looking outside, and then have a virtual walk through along that route, to

see what it will look like from that window.

Defining a route can also be automatically done with the path finding algorithm. For

example, a user may want to have a virtual tour from the Wall Street to the World Trade

Center, both in New York City. He/she can simply select the beginning point and the end

point. The path that having the shortest distance will be automatically generated, probably

along the Broadway and Liberty Street. Then the user can go through the virtual tour along

this path.

3.9 Summary

This chapter covers the methods and contributions used or proposed in our virtual city system.

Hardware and software configurations are first introduced, followed by arguments on the choice

of input devices.

The second section of this chapter describes the realtime gesture recognition system based

on a Hidden Markov Model. Methods for system control are proposed in the third section,

featuring a button menu, and 2 gesture controlling techniques, touch menu and slide menu,

respectively.

Section 3.4 to 3.7 introduces the proposed interaction techniques for each of the basic ele-

ments of a 3D application: navigation, selection, manipulation and visibility issues.

The last section of this chapter discusses application specific constraints, which could further

improve the user experience. A map data structure that links with 3D city data is proposed

to achieve the ability of higher level interaction. A path finding function based on Dijkstra’s

algorithm is also implemented on top of map data set.

As a system application that exploits various sources of speciality, and integrates different

kinds of advanced algorithms, the proposed CAVE based virtual city has 3 main contributions.

First, a HMM based pattern recognition system that detects 3 dimensional gestures is pro-

posed to assist user interaction in a VR environment. Second, novel interaction techniques are

proposed for system control, navigation, selection and manipulation in immersive VR environ-

ments. To be specific, gesture based techniques, controlling a 3D menu by touching and sliding,

40

CHAPTER 3. METHODOLOGY 3.9. SUMMARY

navigation triggered by posture and a waving hand, selecting virtual objects by painting and

stretching, and manipulation by two-handed gestures are proposed. A third contribution of

this work is the integration of application specific constraints, which focus on interactions in

a virtual city scenario, that is implemented for selection, manipulation, as well as high level

navigation and path finding.

41

Chapter 4

Experiments and Results

This chapter will describe the experiments that were performed to evaluate our proposed meth-

ods. The results of the experiments are presented and and analyzed.

For the HMM based gesture recognition system, an independent test on a collected gesture

database is performed first. The test achieves an overall recognition rate of 96.8%. However,

while independent off-line testing is easy to conduct and appropriate for testing algorithms, it

does not necessarily reflect realtime performance. This is because in a recorded gesture database

the start-point and end-point of a gesture sequence are known, which is not true while running

in realtime.

Therefore a realtime recognition test is performed together with the empirical user study,

which is conducted to evaluate the proposed interaction techniques in the CAVE. Participants

are invited to perform several tasks that involve navigation, selection, and menu control using

different techniques. User feedback is then collected via questionnaires and used to evaluate

the proposed interaction techniques. The results show that while new users tend to have no

clear preferences, expert users prefer gesture based techniques over traditional ones. Also, we

count the failures of gesture recognition while the user is doing their tasks and record a realtime

gesture recognition rate of 89.11%.

A quantitative user study is done to evaluate the proposed two-handed gesture manipula-

tion, compared with traditional wand manipulation. Times and distortions to finish a manip-

ulation task are collected as evaluation metrics. The results show that two-handed gesture is

significantly faster than traditional wand manipulation.

42

CHAPTER 4. EXPERIMENTS & RESULTS 4.1. GESTURE RECOGNITION

4.1 Independent Gesture Recognition Test

4.1.1 Gesture Database

As discussed in section 3.1.3, there are only 3 gestures used to control the virtual city application.

However, to test the capability of the recognition system while leaving room for future updates

of controlling gestures, a database containing 7 gestures is collected. The definition of gestures

is shown in Figure 4.1.

Figure 4.1: Gesture definition in a recorded database: (a) Circle; (b) Crossing; (c) Sliding;
(d)-(g) Arrows.

The database was collected from 5 participants, among which there were 4 males and 1

female. Each of them performed 25 samples for each of the 7 gestures. Therefore a database

containing 875 samples was collected.

4.1.2 Gesture Recognition Results

Ten samples are randomly selected for each gesture as training data, while the remaining

115 samples are used as testing data. Under this testing arrangement, we have an average

recognition rate of 96.8%. The confusion matrix is shown in Figure 4.2.

In Figure 4.2, each column represents the recognition rate of the corresponding gesture and

the rate of incorrect recognition as other gestures, while the black color represents recognizing

no gestures (i.e. a miss). For example, Figure 4.2 shows gesture (a) is recognized 100% correctly,

while around 95% of the time gesture (b) is recognized correctly, with a 5% miss rate. We can

see from these results that each of these gestures is well recognized. The crossing (b) and

sliding (c) gestures are sometimes not recognized, while the up arrow (d) and right arrow (g)

43

CHAPTER 4. EXPERIMENTS & RESULTS 4.2. 3D CITY DATA

0

20

40

60

80

100

a b c d e f g None

Recognition Rate (%)

Gesture: (a) (b) (c) (d) (e) (f) (g)

Figure 4.2: Graphical demonstration of confusion matrix in the independent recognition test.

are occasionally mis-classified as other gestures. This may be due to the similarity among

gesture definitions. For example, the first half of the right arrow resembles the sliding gesture.

4.2 3D City Data for Experiment

A group of 3D models are used for the prototype applications and the user study. These models

include 35 buildings in Midtown Manhattan, New York City, USA, spanning from 41st St. on

the south side to 54th St. on the north side. In the east-west direction, these buildings are

located in the middle of 3rd Ave. and 5th Ave. Figure 4.3(a) shows a screenshot of the 3D

data, with all the intersection points marked with dots and numbers. Figure 4.3(b) shows a

map from OpenStreetMap [24] [45] covering the same area.

4.3 User Study for Interaction Techniques

In the field of user interface design, designers usually follows a procedure that iteratively im-

proves the design through informal and formal user studies [70] [11], as summarized in Figure

4.4. After analyzing user tasks and finishing an initial design, there are 2 stages of evaluation,

heuristic evaluation and user studies in a larger scale. Heuristic evaluation is a method in which

several expert users evaluate a UI design by applying a set of heuristics or design guidelines

[44] [11]. After rounds of heuristic evaluations and refinements, the design is then evaluated

by user studies that involve more users from diversified backgrounds. If problems are reported,

the design would be sent back for refinements again, until a satisfactory result is achieved.

44

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

(a) 3D data used for testing

(b) Open Street Map showing the same area [45].

Figure 4.3: Sample city data.

In this work the interaction design also undergo iterative user evaluation, both informal

and formal, and a refinement process. Many details in the techniques described in chapter 3

have been modified multiple times based on feedbacks from user studies. For example, gestures

chosen for menu control were originally designed using gesture a-circle , b-crossing and c-right

sliding defined in Figure 4.1. However users reported experiencing lagging due to the relatively

long length of these gestures. Users commented that they desired simple and short gestures.

Therefore, the design in section 3.3.2 was finalized with 3 sliding gestures for menu triggering,

confirming and canceling.

45

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

User Task

Analysis

Interaction

Design

Heuristic

Evaluation
User Study

Iteratively Refinement

Final

Application

Figure 4.4: UI design procedure.

4.3.1 User Study Design

After design refinements based on feedback from expert users, a user study involving a simpler

experience for novice users was conducted. Interaction techniques for comparison are sum-

marized in Table 4.1. There are 4 interaction categories, each containing 3 techniques for

comparison.

Category Technique Code∗

Menu Control Button C1
(section 3.3) Touch C2

Slide C3

Navigation Joystick N1
(section 3.4) Posture Triggered Flying N2

Waving Hand N3

Selection Ray Casting S1
(section 3.5) Paint Selection S2

Stretch Selection S3

Visibility Collapse V1
(section 3.7) Semi-transparent V2

Wireframe V3

Table 4.1: Interaction techniques for comparison. ∗ Code is a short representative of a technique
name to simplify the description of the user study procedure.

Tasks Description

In order to cover all 4 interaction categories in a reasonable way, participants of the user study

were asked to complete 2 different tasks, each involving 2 categories of interaction. While

a detailed description of user study procedure will be given in Appendix 2, the 2 tasks are

summarized here:

46

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

• Task-1 Menu Control and Building Selection. The user needs to: use the control menu

to choose a selection technique; select a specified building; clear that selection from the

menu; then select 6 other designated buildings; and clear the selection again using menu.

• Task-2 Navigation and Visibility. In this task, the user is asked to navigate along a

designated path, and then deal with a high building that blocks a desired view.

In order to minimize the influence of unrelated variables, the number of degrees of freedom

in the test application is controlled in a careful way. For example, in the selection task, partic-

ipants are not able to move or change the size of buildings by manipulating the whole scene,

though doing this could facilitate the selection process with a better viewing angle. However,

if manipulation is allowed, the evaluation of the selection techniques would be affected, since

different participants may have different habits or skills of manipulating while selecting. Also

the scale(size) of the virtual city is fixed in the navigation task. So the user can focus on the 3

techniques of “flying” in the city.

Another issue in an empirical user study is that, the order of the test could influence the

results. To be more specific, for a new user, the experience gained in testing the first technique

could have some effects such as improvement in the performance of the next technique. The

Latin square [14] [35] is a method commonly used to deal with this problem. The idea is to

divide participants into random groups, use different testing orders for different groups. For

example, Table 4.2 shows the Latin Square used for the order of menu control techniques.

Participants are randomly divided into 3 groups. The first group uses the order shown in first

row: C1, C2, C3, which correspond to button, touch and slide, respectively, as assigned in Table

4.1. The second and third group will use the second and third row in the Latin square. Latin

squares are designed such that an element occurs only once in each row and in each column.

C1 C2 C3

C2 C3 C1

C3 C1 C2

Table 4.2: 3× 3 Latin square used for the menu control techniques.

A detailed procedure of the user study can be found in Appendix 2.

Evaluation Metrics

A Likert scale [39] [34] is a common way of collecting participants’ attitudes in an empirical

study. To use a Likert scale, the users are given a series of statements and asked to indicate

47

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

whether they agree or disagree with each statement. For example, the following statements are

used to evaluate the joystick navigation technique:

1. The “Joystick” technique is easy to learn and use.

1. The “Joystick” technique can take you from one point to another effectively.

3. The “Joystick” technique, as a whole, is a good navigation method.

Strongly Disagree Somewhat Neutral Somewhat Agree Strongly

Disagree Disagree Agree Agree

1 2 3 4 5 6 7

The participant is asked to give a scale number indicating his/her degree of agreement or

disagreement to each statement, as shown above.

For each technique in the navigation and menu control category, participants are asked to

evaluate 3 statements, corresponding to the easiness, effectiveness, and overall experience of a

technique. For a technique in the selection category, the evaluation involves its overall expe-

rience in selecting single object and multiple adjacent objects. For techniques in the visibility

category, their overall experiences are evaluated.

In addition to a Likert scale, the participants are also asked to choose a best technique for

each category. For example:

1. Please choose a menu control technique you think is best overall, ✷Button, ✷Touch, or

✷Slide?

2. Please choose a navigation technique you think is best overall, ✷Joystick, ✷Posture Trig-

gered Flying , or ✷Waving Hand?

Appendix 3 gives the full questionnaire used in this user study.

Experiment Setup

There were 12 participants in this user study, including 3 females and 9 males, with an average

age of 27.

A participant’s previous experience with 3D user interfaces and virtual reality is divided

into 3 levels:

1. Totally new to VR, with very limited experience with 3D applications like video games

or modeling software.

48

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

2. Medium previous experience, for example users that often play with 3D modelling soft-

wares and other 3D applications, and have some knowledge about VR but have never

played with a CAVE.

3. Rich previous experience in 3DUI and VR, including developing and testing 3D or VR

applications.

In the 12 participants, 6 were in the first level, 3 in the second, and 3 in the third. In our

statistical analysis of the results, level 1 participants are considered as novice users, while level

2 and 3 are considered as expert users.

A participant was first introduced to the system for about 5 minutes. Then, the participant

was asked to finish 2 tasks defined previously. For each task, different techniques were tested,

using the order from the Latin square. Before performing a task using a designated interaction

technique, the participant had 2-5 minutes to learn and practise that interaction technique.

After finishing all tasks, the user was then asked to fill out the questionnaire. The experiment

procedure, questionnaire, and user responses can be found in Appendix 2, 3, and 4.

4.3.2 Results on Menu Control

Table 4.3 shows the mean and standard deviation of the participants overall scores for different

menu control techniques.

Interaction Group Mean Standard deviation

C1-Button Expert 5.5 0.96
Novice 6 1.00
All 5.75 1.01

C2-Touch Expert 6.17 1.21
Novice 5.67 0.94
All 5.91 0.95

C3-Slide Expert 5.5 1.50
Novice 4.67 1.37
All 5.08 1.49

Table 4.3: Overall score for menu control techniques.

The statistics in Table 4.3 show that expert users give 12.2% higher scores for touch menu

than for button menu and slide menu, while their average scores for slide menu and button

menu are the same. However, for new users, the button menu gets the highest scores, followed

by the touch menu and the slide menu.

49

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

An Analysis of Variance (ANOVA) [14] [35] is performed on the overall scores to analyze

the significance of differences. The result is shown in Table 4.4.

Source of Sum of Degree of Mean Square F p
variation squares (SS) freedom (df) (MS)

Interaction technique 4.667 2 2.333 1.54 0.2299
Total 54.75 35

Table 4.4: ANOVA results for overall score for menu control techniques.

However, the ANOVA result in Table 4.4 shows the difference is not statistically significant.

This is caused by similar average scores and relatively large deviation among participants. The

probable reason for this result could be that the difference of the user experience among these 3

techniques are not large enough to cause a significant deviation of scores. We should also note

that different participants have different criteria on giving scores, resulting in a large variance,

or using a 7 point Likert scale limits the range to 1− 7, resulting in similar average scores.

On the other hand, the ANOVA only gives results about statistical significance, which

evaluates the probability that the results are due to chance. This is not the same as practical

significance [35]. From another perspective, one may check responses to the “best choice”

question, as given in Talbe 4.5.

Group C1-Button C2-Touch C3-Slide

Expert 0% 66.67% 33.33%
Novice 50% 33.33% 16.67%
All 25% 50% 25%

Table 4.5: Percentage of choices for best menu control technique.

We can see from Table 4.5 that none of the participants in the expert group chose the

button menu, however half of the novice group chose the button menu. This might be due to

the fact that new users are more familiar with button interactions through their previous usage

of similar keyboard controlled menus on computers, TV sets, ATMs etc. After getting used

to 3D environments and interactions, as shown in choices by the expert group, gesture based

techniques start to show their strength.

4.3.3 Realtime Gesture Recognition Records

While participants doing tasks that involve using a gesture controlled menu, whether touch

or slide, the performance of realtime gesture recognition is recorded. To be more specific, let

50

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

A denotes the total number of attempts that a user performs a gesture to be recognized; F

denotes the total number of false positives, which means a gesture is recognized while the user

does not perform one; S denotes the number of successful recognitions. During the test, A, F ,

and S values are recorded for each user and then used to calculate the recognition rate S/A

and false positive rate F/A. The average rates are given in Table 4.6.

The possible relationship between recognition rates and a user’s evaluations of the slide

menu is also investigated. Figure 4.5 shows the plot of overall scores given by a user for the

slide menu, versus the gesture recognition rate for that user.

Group False Positive Rate Recognition Rate

Expert 1.05% 91.05%
Novice 3.41% 87.32%
All 2.28% 89.11%

Table 4.6: Realtime gesture recognition rate for different groups.

1 2 3 4 5 6 7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Overall rating for slide menu, in Likert scale

G
es

tu
re

 r
ec

og
ni

tio
n

ra
te

Figure 4.5: Relationship between gesture recognition rate and user’s rating for slide menu: the
2 variables have a correlation of 0.851.

From Table 4.6, we can see that our system achieves a 89.11% realtime recognition rate,

which is lower than the independent off-line test in section 4.1. This is reasonable since a

realtime system has no start and end point information available as in a recorded gesture

database, and it is subject to more uncertainties such as an unstable frame rate and noise.

It is also observed that the expert group has a lower rate of false positives and a higher rate

51

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

of successful recognition than the novice group. This matches the result in Table 4.3 that the

expert group gives higher scores to the slide menu than the novice group. Figure 4.5 further

confirms the relationship between recognition rates and subjective scores (scores for the slide

menu are used because the slide menu is controlled fully by recognized gestures). These 2

variables have a correlation coefficient of 0.851, indicating a strong linear relationship. This

indicates that the user’s experience could be improved by further increasing the accuracy of the

gesture recognition system.

4.3.4 Results on Navigation

Table 4.7 shows the mean and standard deviation of participants’ overall scores for 3 navigation

techniques. The corresponding ANOVA result is given in Table 4.8.

Interaction Group Mean Standard deviation

N1-Joystick Expert 5.83 1.07
Novice 5.5 0.96
All 5.67 1.03

N2-Posture Triggered Flying Expert 5.67 1.25
Novice 6.33 0.75
All 6 1.08

N3-Waving Hand Expert 5.83 1.07
Novice 4.5 2.34
All 5.17 1.95

Table 4.7: Overall score for navigation techniques.

Source SS df MS F p

Navigation technique 4.222 2 2.111 0.96 0.3922
Total 54.75 35

Table 4.8: ANOVA results for overall score of navigation techniques.

Again, average scores for the 3 techniques are close to each other. ANOVA also shows the

difference is not statistically significant (F = 0.96, p = 0.39). This result somehow indicates

that using any of the 3 tested navigation techniques does not have too much impact on a user’s

experience. Answers to the question “choose a best technique” are summarized in Table 4.9.

We can see from Table 4.9 that a higher percentage of novice users choose N2-Posture

Triggered Flying as their favorite, which matches the observation in Talbe 4.7 that novice users

give higher scores for N2, than expert users. This might be caused by the simplicity of the N2

52

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

Group N1 N2 N3

Expert 16.67% 33.34% 50%
Novice 0% 50% 50%
All 8.33% 41.67% 50%

Table 4.9: Percentage of choices for best navigation technique.

technique: simply raising the left hand leads to a navigation action. In comparison, the joystick

has 2 degrees of freedom to control for navigation.

Another phenomenon worth noting is that, though the waving hand technique does not get

the highest score, half of participants in both the expert and novice groups still choose it as

their favorite. And expert users give 29.56% higher scores to the waving hand technique than

novice users. This indicates the waving hand navigation is harder to learn than the other 2

techniques. However, once mastered, waving hand technique starts to gain preference.

4.3.5 Results on Selection

Evaluation of 3 selection techniques are done separately, for selecting single buildings, or multi-

ple adjacent buildings. The mean and standard deviation, as well as ANOVA results on overall

scores for selecting single buildings are given in Table 4.10 and Table 4.11. Results for selecting

multiple buildings are shown in Table 4.12 and Table 4.13.

Interaction Group Mean Standard deviation

S1-Ray Casting Expert 7 0
Novice 6.5 0.76
All 6.75 0.59

S2-Paint Expert 5.5 1.26
Novice 5 1.63
All 5.25 1.48

S3-Stretch Expert 3.83 1.21
Novice 3.83 1.77
All 3.83 1.52

Table 4.10: Overall score for single object selection techniques.

Scores in the selection task category demonstrate a more significant difference among the 3

techniques. Ray casting gets the highest scores for selecting single building, followed by paint

selection and stretch selection. The differences are statistically significant (F = 14.48,p =

3.055 × 10−5).

53

CHAPTER 4. EXPERIMENTS & RESULTS 4.3. EMPIRICAL USER STUDY

Source SS df MS F p

Selection technique 51.056 2 25.5278 14.48 3.055 × 10−5

Total 109.222 35

Table 4.11: ANOVA results for overall score of single object selection techniques.

Interaction Group Mean Standard deviation

S1-Ray Casting Expert 4.83 0.69
Novice 4.5 1.5
All 4.67 1.17

S2-Paint Expert 6.67 0.47
Novice 6.5 0.76
All 6.58 0.64

S3-Stretch Expert 5.83 1.07
Novice 5.33 1.37
All 5.58 1.25

Table 4.12: Overall score for multiple adjacent objects selection techniques.

For selection of multiple adjacent buildings, paint selection gets the highest scores, while

ray casting scores the lowest, with a statistically significant difference (F = 8.99,p = 0.0008).

This is due to the low efficiency of ray casting, since it only selects one object at a time, while

paint selection and stretch selection are designed for selecting multiple objects.

4.3.6 Results on Visibility

Table 4.14 gives the scores for 3 visibility techniques. Table 4.15 shows the ANOVA result.

The differences in scores for the 3 visibility techniques are not statistically significant, and

are due to chance with a high probability (F = 0.06,p = 0.9393). This makes sense that

preference in this category is highly determined by personal choice.

Source SS df MS F p

Selection technique 22.0556 2 11.0278 8.99 0.0008
Total 62.5556 35

Table 4.13: ANOVA results for overall score of multiple object selection techniques.

54

CHAPTER 4. EXPERIMENTS & RESULTS 4.4. QUANTITATIVE STUDY

Interaction Group Mean Standard deviation

V1-Collapse Expert 6.17 0.69
Novice 5.33 0.75
All 5.75 0.83

V2-Semi-Transparent Expert 5.67 0.94
Novice 5.67 0.75
All 5.67 0.85

V3-Wireframe Expert 5.33 1.49
Novice 5.83 1.46
All 5.58 1.49

Table 4.14: Overall score of visibility techniques.

Source SS df MS F p

Visibility technique 0.1667 2 0.0833 0.06 0.9393
Total 44 35

Table 4.15: ANOVA results for overall score of visibility techniques.

4.4 Quantitative Comparison of Manipulation Techniques

In addition to the qualitative user study described in the previous section, a quantitative user

study is also conducted, to compare the proposed two-handed gesture manipulation with tra-

ditional wand manipulation.

4.4.1 User Study Design

Task Description

The task is set in an interior design scenario, where the user is asked to arrange furniture

in a virtual building. As shown in Figure 4.6(b), a virtual computer is located initially on a

table. The initial state represents the position, the orientation, and the size of the object before

manipulation while the target state represents the expected state after manipulation. The user

is asked to put the virtual computer to the target state displayed as wire frame on another

table. The manipulation involves translating, rotating and scaling.

Evaluation Metrics

The performance of a manipulation technique can be evaluated with two metrics: distortion

and completion time. Distortion is a time variant variable that represents the deviation between

55

CHAPTER 4. EXPERIMENTS & RESULTS 4.4. QUANTITATIVE STUDY

(a) A user performing the manipulation test

Target state

Initial state

(b) Initial and target states

Figure 4.6: Task description for quantitative manipulation test: user is asked to put a virtual
computer from its initial state to a target state.

the current state and the target state of the object. For a virtual object, let V denote the set

of all vertices on the object represented by a 3D polygonal mesh. The distortion D(t) at time

t, in the form of Mean Squared Error (MSE), is given by:

D(t) =
1

|V|

|V|
∑

i=1

(di(t))
2 (4.1)

where |V| represents the number of vertices in the object to be manipulated, and di(t) represents

the distance of the i-th vertex at time t with the target position of that vertex. The distortion

curve, measured in squared feet (f2) versus time in seconds, is dependent on the the arrangement

of initial and target state, as well as the size of object. However, as the task is fixed during

the whole test, we can directly use the computed distortion for comparison without additional

normalization. In our task setup (Figure 4.6), the initial distortion is 47f2.

Another metric, the completion time, is defined as the time spent manipulating measured

from the initial state until a required satisfactory distortion value is reached, which we set at

0.1f2.

Experiment Setup

We invited 15 students from Ryerson University to participate in this test, including 2 females

and 13 males, 1 left-handed and 14 right-handed. The participants were divided into 2 groups:

8 of them were in the expert group, who had been developing or using VR applications for

more than 6 months and are familiar with the interaction techniques to be tested; another 7

participants were in the novice group, who had no previous experience on 3D interactions and

VR systems.

56

CHAPTER 4. EXPERIMENTS & RESULTS 4.4. QUANTITATIVE STUDY

Both the wand manipulation and two-handed manipulation were tested for the same task.

Each participant performed the task, 2 times with wand manipulation, and 2 times with two-

handed manipulation.

4.4.2 Results for Manipulation

The distortion curve, which represents the change of distortion versus time, as described pre-

viously, is collected during the user test. The distortion curves for the expert group and novice

group are averaged separately. The average distortion curve for both groups are given in Figure

4.7.

0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

50

Time (second)

D
is

to
rt

io
n

Two−handed
Wand

(a) Expert Group

0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45

50

Time (second)

D
is

to
rt

io
n

Two−handed
Wand

(b) Novice Group

Figure 4.7: Distortion curves collected for the manipulation test.

We can see from Figure 4.7 that the distortion curves for two-handed manipulation decrease

and converge faster towards zero than wand manipulation, for both the expert and novice

groups. The fastest deviation of distortion between two interaction methods happens around

t = 0.7s, where the users generally start to adjusting the size of target object. This observation

meets the problem described in section 3.6, that scaling can not be integrated together with

rotation and translation in wand interaction. Since buttons are used for scaling, it takes more

time to adjust the size than a two-handed gesture does.

The completion times for both manipulation techniques are also recorded. The mean and

standard deviation values are given in Table 4.16. Table 4.17 shows the analysis of variance

(ANOVA) results.

The result in Table 4.16 shows smaller completion times for two-handed manipulation than

wand manipulation, in both expert and novice groups. The ANOVA results shows the difference

is statistically significant (F = 67.698 and p = 5.908 × 10−9).

57

CHAPTER 4. EXPERIMENTS & RESULTS 4.5. SUMMARY

Interaction Group Mean(s) Standard deviation

Hand Expert 4.04 0.13
Novice 4.34 0.54
All 4.18 0.48

Wand Expert 5.34 0.13
Novice 5.77 0.32
All 5.54 0.32

Table 4.16: Completion time (in seconds) recorded for the manipulation test.

Source SS df MS F p

Interaction Technique 11.154 1 11.154 67.698 5.908 × 10−9

Error 4.613 28 0.165
Total 15.767 29

Table 4.17: ANOVA results for completion time.

4.5 Summary

This chapter describes experiment setups and results to evaluate the proposed methods.

First, an offline performance of the gesture recognition system is tested in an independent

test, with a gesture database containing 875 samples. A recognition rate of 96.8% is achieved.

Second, an empirical user study is performed to compare different techniques in each in-

teraction category. The users’ evaluations of menu control and navigation techniques do not

show statistically significant difference among techniques. This might indicate there is no sig-

nificant difference in a user experience between button based menu and gesture triggered menu,

or between joystick navigation and gesture based navigation techniques. However, the expert

user group shows preference for gesture based techniques over traditional ones, while the novice

group does not. This could be attributed to the familiarity that novice users have with tradi-

tional ways of interaction, such as buttons and joysticks. After getting familiar with the gesture

based interface, the user preference could shift, as the expert group indicates. An experiment

confirming this trend will be considered in future work.

Realtime gesture recognition performance is also evaluated in the user study, with reduced

gesture number and simplified definition of gestures. An overall recognition rate of 89.11%

is recorded. Moreover, a relationship between realtime gesture recognition rate and a user’s

degree of satisfaction with gesture triggered menu control is recorded, which indicates a user’s

experience could be improved by developing more accurate gesture recognition systems.

Finally, a quantitative user study compares the proposed two-handed manipulation tech-

58

CHAPTER 4. EXPERIMENTS & RESULTS 4.5. SUMMARY

nique with the traditional direct wand manipulation. The completion time and a distortion

measure are recorded for an object manipulation task. The results show that two-handeds

manipulation is significantly faster than wand manipulation.

59

Chapter 5

Prototype Applications

Based on the methods proposed in chapter 3, two prototype applications have been developed.

Figure 5.1 overviews the structure of the prototype functions. Supported by data sources that

provide 3D models, map data, and demographic data, the applications provide functions such

as basic selection and manipulation, constrained selection and navigation based on geographic

information, as well as viewing demographics.

3D Models

Map Data

Demographic

Data

V
ir

tu
a

l
C

it
y

 A
p

p
lic

a
ti

o
n

Selection

Manipulation

Demographics

Route View

Ray Casting

Paint

Stretch

Constrained

Buildings

along

Street

Buildings

In

City BlockFree Move

Replace

Visibility

Define Path

Path finding

Virtual Tour

Collapse

Semi-Trans

WireFrame
View Data

Select

WayPoint

Functions

Add New

Figure 5.1: Structure of prototype applications.

60

CHAPTER 5. PROTOTYPE APPLICATIONS 5.1. URBAN PLANNNING

5.1 Urban Plannning

This application can be used as a decision support tool in urban planning. It gives realistic and

immersive visualization of proposed constructions, which helps comparing, reviewing, or demon-

strating project plans. Figure 5.2 shows an example where a user is viewing the demographic

data of an area.

(a) User in CAVE. (b) Simulation view.

Figure 5.2: A user viewing demographic information for a selected area.

In the future, the virtual city experience could be further improved by adding data sources

from various sensor networks that monitor a city’s status, such as realtime traffic, temperature

and weather conditions, power and water supply system status, etc. The feel of immersion,

freedom of navigation and manipulation would help build a good visualization end node for a

future smart city.

5.2 Virtual Touring

The best usage of an immersive virtual city might be virtual tourism. In the prototype appli-

cation, a user can travel freely in a virtual city, or view the scene along pre-defined, manually

defined or automatically searched routes. Figure 5.3 shows an example of a virtual tour along

a manually selected path.

Audio information can also be added to give the user an improved feeling of presence, for

example, from the background noise or from people and traffic in a downtown area, or an

introductory footage to a place of attraction.

61

(a) User in CAVE. (b) Simulation view of user defined route.

Figure 5.3: A user in the middle of a virtual tour.

Chapter 6

Conclusions and Discussions

6.1 Summary of This Thesis

In this thesis, designing user interactions for an interactive virtual city application in the im-

mersive CAVE system is investigated. Guided by the goal of developing a natural and intuitive

user interface that fits with the virtual city scenario, prototype applications are built, and in-

teraction techniques are tested. The system implementation combines immersive visualization,

optical tracking for gesture control, and realtime gesture recognition. Various interaction tech-

niques are proposed for object selection, manipulation, navigation, system control, as well as

solving visibility issues.

First, a Hidden Markov Model based realtime gesture recognition system is built as a sup-

porting part for system inputs. Special care is taken for the normalization of 3D positional data

and realtime implementation. To the best of our knowledge, this is among the first systems that

use a 3D tracker based HMM to assist in dynamic gesture recognition in a VR environment.

The gesture recognition system is tested both by a gesture database and in realtime usage.

In a database that contains 875 samples and 7 gesture classes, a recognition rate of 96.8% is

achieved. In the realtime case, the gestures are simplified for better user experience, and an

overall recognition rate of 89.11% is recorded. It is also discovered that users with previous

experience tend to have better performance in realtime gesture recognition, and there is a linear

relationship between gesture recognition rate and the user’s evaluation of the system control

interfaces that use those gestures.

Second, interactions that are primarily controlled by gestures are proposed for system menu

control and navigation. To be more specific, a touch menu and a slide menu are proposed,

in which the user can call out the menu by a gesture, and select memu items by “touching”

or “sliding” gestures. In the navigation part, a “Posture Triggered Flying” technique and a

63

CHAPTER 6. CONCLUSIONS AND DISCUSSIONS 6.2. UI DESIGN

“Waving Hand” technique are proposed. In an empirical user study, these 2 menu control tech-

niques are compared with traditional button controlled menu, while the 2 navigation techniques

are compared with traditional joystick navigation. Results show no statistically significant dif-

ferences among users’ evaluations of the compared techniques. However, a clear preference is

found towards gesture based touch menu and slide menu in the expert user group. Further-

more, all user groups prefer the gesture based navigation techniques: the expert group prefer

the “Waving Hand” navigation technique, while the novice group prefer the simpler “Posture

Triggered Flying” technique.

Third, novel interaction techniques are designed for object selection and manipulation. A

paint selection technique and a stretch selection technique are proposed in order to select mul-

tiple adjacent objects more efficiently. The empirical user study shows significant improvement

of user evaluation for these 2 techniques over a traditional ray casting selection technique. Also,

a two-handed manipulation technique is proposed to achieve more intuitive manipulation inter-

actions. We conduct a quantitative user study to compare this technique with traditional direct

wand manipulation. Evaluated by completion time and distortion of a manipulation task, the

two-handed manipulation technique is significantly faster than wand manipulation.

6.2 User Interface Design for Immersive Virtual City

The interface designing procedure and user studies in this thesis work generate some insight on

general UI design for an immersive VR environment. Users usually want an interface that is:

• Intuitive – the interface should match the users’ expectations or real world experience in

such interactions. It should be easy to learn and use;

• Simple – users do not want to get lost in complex commands, modes, and control struc-

tures, so the interface need to be simple;

• Efficient – the interface should get things done quickly;

• Smart – the interface should be capable of understanding and supporting some higher

level decisions. For example, it is more desirable in a manipulation task that the object

“snap” to the target location when it’s close enough.

It is shown statistically that in our virtual city application, the gesture controlled menu and

navigation have similar scores with traditional button and joystick techniques. This result is

reasonable, since the most exciting experience in such an application is the immersive and real-

istic visualization. The users might not pay full attention to the experience of how controlling

is done.

64

CHAPTER 6. CONCLUSIONS AND DISCUSSIONS 6.3. POSSIBLE FUTURE WORK

Based on these statistics, it could be argued that developing gesture interfaces is useless

in this case. However, our user study also shows that the majority of users prefer gesture

based navigation techniques, and experienced users prefer gesture based menu control. These

preferences can be viewed in 2 perspectives. First, new users usually are more attracted by

the simpleness of a gesture interface, for example, their preference to the “Posture Triggered

Flying” technique. Second, some gesture interfaces need time and experience to be mastered, for

example the gesture based menu control and “waving hand” navigation. Once getting familiar

with these techniques, experienced users show a preference towards them, probably due to their

effectiveness and intuitive mimicking of real world experiences.

6.3 Possible Future Work

This thesis work presents an immersive interactive virtual city application with gestural inter-

faces. This prototype system and the proposed interaction techniques could be improved in the

future.

In this prototype application, the map data is linked to 3D city models manually. In the

future, this process could be simplified by an automatic method that loads map data from

public sources like OpenStreetMap, and links to 3D models by reading the geographic location

data attached with 3D models.

As the user study results suggest, the user experience with gesture based menu control could

be improved by increasing realtime gesture recognition rate. Therefore this could be a possible

direction of future work.

Selection techniques could also be improved. Ray casting and painting could be combined

together, by replacing the “ray” with a small paint brush “tip” that can be easily positioned,

and offering a mechanism to easily adjust the size of paint brush. In this way, the user can

select single or multiple objects without changing the selection method.

A 3D modelling process often requires accuracy in manipulation of virtual objects. However,

in an immersive environment, users usually focus on the visualization of virtual scenes, not

modelling. Nevertheless it could still be beneficial if the manipulation techniques became more

accurate. For example, the rotation of an object can be achieved by a coarse rotation first and

then a fine rotation, therefore more precisely controllable.

A possible reason that novice users prefer a button based menu control is that they have

previous experience using buttons, while not being familiar with gesture based interactions.

Further research into this possibility could also be conducted in the future, for example by a

within-subject user study, where the same users are invited to perform the same task from

time to time, and observe the change of their attitude after becoming familiar with a specific

65

CHAPTER 6. CONCLUSIONS AND DISCUSSIONS 6.3. POSSIBLE FUTURE WORK

interaction technique.

66

Appendix 1

HMM Algorithms

HMM for Recognition

Given a HMM, λ and an observation sequence O = O1O2, ...OT , one basic problem is how to

efficiently compute P [O|λ], the probability of the observation sequence, given the model.

The solution to this problem is the way to test an observed sequence in a classification

application, since the probability of the sequence represents the probability of this sequence

belonging to that specified model. If we have a trained HMM model for each class, a simple

way is to classify the observed sequence to the model that gives the largest probability.

There is an efficient way to solve this problem, namely the Forward-Backward Procedure

[49]. Consider the forward variable αt(i) defined as:

αt(i) = P (O1O2...Ot, qt = Si|λ) (1.1)

i.e., the probability of the partial observation sequence until time t, and state Sj at time t,

given the model. Then the following procedure solves for αt(i) and P [O|λ] inductively:

1. Initialization:

α1(i) = πi ∗ bi(O1), 1 ≤ i ≤ N. (1.2)

2. Induction:

αt+1(j) =

[

N
∑

i=1

αt(i)aij

]

∗ bj(Ot+1), 1 ≤t ≤ T − 1

1 ≤j ≤ N.

(1.3)

67

APPENDIX 1. HMM ALGORITHMS

3. Termination:

P [O|λ] =
N
∑

i=1

αT (i). (1.4)

Similarly, define the backward variable βt(i) as:

βt(i) = P (Ot+1Ot+2...OT |qt = Si, λ) (1.5)

i.e., the probability of the partial observation sequence from t+ 1 to the end, given state Si at

time t and the model λ. The inductive procedure is:

1. Initialization:

βT (i) = 1, 1 ≤ i ≤ N. (1.6)

2. Induction:

βt(i) =
N
∑

j=1

aijbj(Ot+1)βt+1(j), 1 ≤t ≤ T − 1

1 ≤i ≤ N.

(1.7)

3. Termination:

P [O|λ] =
N
∑

i=1

πibi(O1)β1(i). (1.8)

Train HMM from Training Sequences

Another basic problem of HMM is that, given the observation sequence O, how to adjust the

model parameter λ, to maximize P [O|λ].

The solution to this problem is the way to train a HMM from training samples. We adjust

the model parameter to achieve the largest probability on all the observation sequences used

for training, thus resulting in a trained model.

Define the variable:

γt(i) = P [qt = Si|O,λ] (1.9)

which represents the probability of being in state Si at time t, given the observation sequence

O, and the model λ. γt(i) can be derived using forward-backward variables:

γt(i) =
αt(i)βt(i)

P [O|λ]
=

αt(i)βt(i)
∑N

i=1 αt(i)βt(i)
(1.10)

68

APPENDIX 1. HMM ALGORITHMS

Define another variable ξt(i, j) as the probability of being in state Si at time t and state Sj

at time t+ 1, given the model and the observation sequence:

ξt(i, j) = P [qt = Si, qt+1 = Sj|O,λ] (1.11)

this can also be derived from forward-backward variables:

ξt(i, j) =
αt(i)aijbj(Ot+i)βt+1(j)

P [O|λ]

=
αt(i)aijbj(Ot+i)βt+1(j)

∑N
i=1

∑N
i=1 αt(i)aijbj(Ot+i)βt+1(j)

(1.12)

As long as these variables are ready, we can re-estimate the model parameter:

T−1
∑

t=1

γt(i) = expected number of transitions from state Si (1.13a)

T−1
∑

t=1

ξt(i, j) = expected number of transitions from Si to Sj . (1.13b)

A maximum likelihood estimation of a HMM’s parameters is given as:

π̄i = expected probability in state Si at initial time = γ1(i) (1.14a)

āij =
expected number of transitions from Si to Sj
expected number of transitions from state Si

=

∑T−1
t=1 ξt(i, j)

∑T−1
t=1 γt(i)

(1.14b)

b̄j(k) =
expected number of times in state Sj and observing vk

expected number of times in state Sj

=

∑T
t=1

s.t. Ot=vk

γt(j)

∑T
t=1 γt(j)

(1.14c)

It is proved that each time the model is re-estimated using (1.14), the probability of O being

observed is improved [49]. After repeating this procedure iteratively, an optimal (sometimes

locally optimal) model parameter set can be achieved. Therefore (1.14) is a maximum likelihood

estimation of HMM, which is also named the Baum-Welch method.

69

Appendix 2

User Study Procedure

For each interaction category, a Latin square is used to produce 3 different versions, with

different test orders. Please refer to section 4.3.1 for details about Latin square and interaction

techniques’ code names.

Version 1:

Version 2:

Version 3:

C1 C2 C3

C2 C3 C1

C3 C1 C2

S2 S3 S1

S3 S1 S2

S1 S2 S3

N1 N2 N3

N2 N3 N1

N3 N1 N2

V2 V3 V1

V3 V1 V2

V1 V2 V3

Therefore 3 versions of procedure are made. As shown in Table 2.1, in each version, task

1 is performed 3 times, with different menu control and selection techniques; task 2 is also

performed 3 times, with different navigation and visibility techniques.

Version 1 Version 2 Version 3

Task 1, first try C1/S2 C2/S3 C3/S1
Task 1, second try C2/S3 C3/S1 C1/S2
Task 1, third try C3/S1 C1/S2 C2/S3
Finish questionnaire about menu control and selection.
Task 2, first try N1/V2 N2/V3 N3/V1
Task 2, second try N2/V3 N3/V1 N1/V2
Task 2, third try N3/V1 N1/V2 N2/V3
Finish questionnaire about navigation and visibility.

Table 2.1: Three versions of user study procedure: order of techniques tested.

In task 1, the virtual city is set to a small size, with a scale factor of 1 : 300. In each try, the

participant is first introduced to the menu control and selection techniques that will be tested

in this try. Then:

70

APPENDIX 2. USER STUDY PROCEDURE

0. Two to five minutes are allowed for him/her to get familiar with these techniques.

1. Call out menu, go to selection method submenu.

2. Choose the designated selection method.

3. Select the “Metlife” building.

4. Call out menu, go to selection submenu, choose “Clear” to de-select that building.

5. Call out menu, go to selection method submenu.

6. Choose the designated selection method.

7. Select the all buildings on the south side of “Metlife”.

8. Call out menu, go to selection submenu, choose “Clear” to de-select all buildings.

In task 2, the virtual city is set to a large size, with a scale factor of 1 : 3. In each try, the

participant is first introduced to the navigation and visibility techniques that will be tested in

this try. Then:

0. Two to five minutes are allowed for him/her to get familiar with these techniques.

1. Navigation starts on 42nd St and Park Ave, in front of the Grand Central Terminal.

2. Use the designated navigation technique, go west along 42nd St.

3. Turn right at Vanderbit Ave.

4. Turn right again at 46th St.

5. Turn left at Park Ave.

6. Go along Park Ave until 48th St.

7. Go up to the top east corner of “JP Morgan & Chase” Tower, at 48th St and Park Ave.

8. Select “JP Morgan & Chase” Tower by ray casting, use designated visibility technique to

open the blocked sight.

71

Appendix 3

Questionnaire Used in User Study

Participant Name: Gender: Age:

Previous Experience in VR and 3DUI:
1. Totally New User; 2. Medium Experience; 3. Expert.

Choose a number that best describe your agreement of disagreement with each statements.

Strongly Disagree Somewhat Neutral Somewhat Agree Strongly
Disagree Disagree Agree Agree

1 2 3 4 5 6 7

C1-Q1: “Button Menu” is easy to learn and use.
C1-Q2: “Button Menu” let you select menu items effectively.
C1-Q3: “Button Menu”, as a whole, is a good menu control method.

C2-Q1: “Touch Menu” is easy to learn and use.
C2-Q2: “Touch Menu” let you select menu items effectively.
C2-Q3: “Touch Menu”, as a whole, is a good menu control method.

C3-Q1: “Slide Menu” is easy to learn and use.
C3-Q2: “Slide Menu” let you select menu items effectively.
C3-Q3: “Slide Menu”, as a whole, is a good menu control method.

N1-Q1: “Joystick” navigation is easy to learn and use.
N1-Q2: “Joystick” navigation can take you from one point to another effectively.
N1-Q3: “Joystick” navigation, as a whole, is a good navigation method.

N2-Q1: “Posture Triggered Flying” is easy to learn and use.
N2-Q2: “Posture Triggered Flying” can take you from one point to another effectively.
N2-Q3: “Posture Triggered Flying”, as a whole, is a good navigation method.

N3-Q1: “Waving Hand” navigation is easy to learn and use.

72

APPENDIX 3. QUESTIONNAIRE USED IN USER STUDY

N3-Q2: “Waving Hand” navigation can take you from one point to another effectively.
N3-Q3: “Waving Hand” navigation, as a whole, is a good navigation method.

S1-Q1: “Ray Casting” selection is a good way to select single object.
S1-Q2: “Ray Casting” selection is a good way to select multiple adjacent objects.

S2-Q1: “Paint” selection is a good way to select single object.
S2-Q2: “Paint” selection is a good way to select multiple adjacent objects.

S3-Q1: “Stretch” selection is a good way to select single object.
S3-Q2: “Stretch” selection is a good way to select multiple adjacent objects.

V1: “Collapse” method is a good way to solve blocked sights.
V2: “Semi-Transparent” method is a good way to solve blocked sights.
V3: “WireFrame” method is a good way to solve blocked sights.

Best Choices:

Which one you think is the best overall, Button, Touch, or slide?

Which one you think is the best overall, Joystick, Posture Triggered Flying, or Waving Hand?

73

Appendix 4

Data Collected in User Study

“Exp” in following tables stands for previous experience in 3DUI and VR, see 4.3.1 for details.

ID Exp. C1-Button C2-Touch C3-Slide

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Choice

1 3 6 4 5 7 7 7 5 6 6 2

2 3 5 7 5 6 7 6 4 5 4 2

3 3 5 6 4 6 7 7 5 3 3 2

4 2 7 6 6 6 4 5 7 7 7 3

5 2 6 5 6 6 5 5 7 7 7 3

6 2 7 6 7 6 7 7 6 5 6 2

7 1 7 7 4 7 7 6 7 7 7 3

8 1 6 6 6 7 6 6 5 5 5 2

9 1 7 5 6 7 7 7 5 5 5 2

10 1 6 4 6 6 6 6 5 3 3 1

11 1 7 7 7 5 5 5 3 3 3 1

12 1 7 7 7 4 5 4 7 5 5 1

Table 4.1: Results of user study: menu control. Q1: Easiness; Q2: Effectiveness; Q3: Overall.

74

ID Exp. S1-Ray Casting S2-Paint S3-Stretch

Q1 Q2 Q1 Q2 Q1 Q2

1 3 7 5 7 7 4 6

2 3 7 4 6 6 2 4

3 3 7 5 3 6 4 6

4 2 7 5 6 7 4 5

5 2 7 4 5 7 3 7

6 2 7 6 6 7 6 7

7 1 7 6 6 7 4 4

8 1 7 6 6 6 7 7

9 1 7 5 7 7 5 6

10 1 6 5 5 7 3 3

11 1 5 3 2 5 2 6

12 1 7 2 4 7 2 6

Table 4.2: Results of user study: selection. Q1: Selecting single building; Q2: Selecting multiple
adjacent buildings.

ID Exp. N1-Joystick N2-Posture Triggered N3-Waving Hand

Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Choice

1 3 7 6 6 6 6 6 6 7 7 3

2 3 5 6 4 6 6 6 3 3 5 2

3 3 5 4 5 2 3 3 6 4 4 3

4 2 7 7 7 6 6 6 4 5 6 1

5 2 7 6 6 7 7 7 7 6 6 2

6 2 7 7 7 6 4 6 7 6 7 3

7 1 7 7 4 6 6 6 5 7 7 3

8 1 6 5 6 5 6 6 4 3 4 2

9 1 7 6 6 7 7 7 7 7 7 3

10 1 6 5 5 5 5 5 6 6 6 3

11 1 7 7 7 7 7 7 2 1 1 2

12 1 5 6 5 7 7 7 3 2 2 2

Table 4.3: Results of user study: navigation. Q1: Easiness; Q2: Effectiveness; Q3: Overall.

ID Exp. V1-Collapse V2-SemiTransparent V3-Wireframe

1 3 7 7 5

2 3 6 5 4

3 3 5 5 3

4 2 6 5 7

5 2 6 7 7

6 2 7 5 6

7 1 5 6 7

8 1 6 7 5

9 1 6 5 7

10 1 5 5 6

11 1 6 5 3

12 1 4 6 7

Table 4.4: Results of user study: visibility.

ID Exp. False Positive Total Try Success Rate

1 3 0 24 23 95.83%

2 3 0 35 32 91.43%

3 3 1 33 28 84.85%

4 2 0 28 27 96.43%

5 2 1 31 29 93.55%

6 2 0 39 34 87.18%

7 1 1 26 26 100%

8 1 0 27 24 88.89%

9 1 0 35 31 88.57%

10 1 2 44 35 79.55%

11 1 4 41 34 82.93%

12 1 0 32 29 90.62%

Table 4.5: Results of user study: Realtime Gesture Recognition.

Appendix 5

Published Papers

The following papers related to this thesis’ topic have been published or accepted during my

study at Ryerson University:

Conference Paper

Ziyang Zhang, Tim McInerney, Ning Zhang, Ling Guan, A Cave Based 3D Immersive

Interactive City With Gesture Interface, 22nd WSCG International Conference on Computer

Graphics, Visualization and Computer Vision, June 2014.

Yifeng He, Ziyang Zhang, Xiaoming Nan, etc., vConnect: Connect the Real World to the

Virtual World, 2014 IEEE International Conference on Computational Intelligence and Virtual

Environments for Measurement Systems and Applications. (CIVEMSA 2014)

Xiaoming Nan, Ziyang Zhang, Ning Zhang, Fei Guo, Yifeng He, Ling Guan, VDesign:

Toward Image Segmentation and Composition in CAVE Using Finger Interactions, IEEE China

Summit / International Conference on Signal and Information Processing (ChinaSIP), 2013.

Journal Paper

Xiaoming Nan, Ziyang Zhang, Ning Zhang, Fei Guo, Yifeng He, Ling Guan, vDesign: A

CAVE-based Virtual Design Environment Using Hand Interactions, Journal on Multimodal

User Interfaces (Springer), Accepted in July, 2014.

77

References

[1] Lucy Abramyan, Mark Powell, and Jeffrey Norris. Stage: Controlling space robots from a

cave on earth. In Aerospace Conference, 2012 IEEE, pages 1–6. IEEE, 2012.

[2] A.R.T. Advanced realtime tracking. http://www.ar-tracking.com/products/, Accessed

on September 1st, 2014.

[3] David A Atchison, George Smith, and George Smith. Optics of the human eye, 2000.

[4] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Simon Julier, and Blair

MacIntyre. Recent advances in augmented reality. Computer Graphics and Applications,

IEEE, 21(6):34–47, 2001.

[5] Ronald T Azuma et al. A survey of augmented reality. Presence, 6(4):355–385, 1997.

[6] Allen Bierbaum, Christopher Just, Patrick Hartling, Kevin Meinert, Albert Baker, and

Carolina Cruz-Neira. Vr juggler: A virtual platform for virtual reality application devel-

opment. In Virtual Reality, 2001. Proceedings. IEEE, pages 89–96. IEEE, 2001.

[7] Frank Biocca and Ben Delaney. Immersive virtual reality technology. Communication in

the age of virtual reality, pages 57–124, 1995.

[8] Doug A Bowman, Jian Chen, Chadwick A Wingrave, John F Lucas, Andrew Ray,

Nicholas F Polys, Qing Li, Yonca Haciahmetoglu, Ji-Sun Kim, Seonho Kim, et al. New

directions in 3d user interfaces. IJVR, 5(2):3–14, 2006.

[9] Doug A Bowman, Sabine Coquillart, Bernd Froehlich, Michitaka Hirose, Yoshifumi Kita-

mura, Kiyoshi Kiyokawa, and Wolfgang Stuerzlinger. 3d user interfaces: new directions

and perspectives. IEEE computer graphics and applications, 28(6):20–36, 2008.

[10] Doug A Bowman, Ernst Kruijff, Joseph J LaViola Jr, and Ivan Poupyrev. An introduction

to 3-d user interface design. Presence: Teleoperators and virtual environments, 10(1):96–

108, 2001.

78

http://www.ar-tracking.com/products/

REFERENCES REFERENCES

[11] Doug A Bowman, Ernst Kruijff, Joseph J LaViola Jr, and Ivan Poupyrev. 3D user inter-

faces: theory and practice. Addison-Wesley, 2004.

[12] Doug A Bowman and Ryan P McMahan. Virtual reality: how much immersion is enough?

Computer, 40(7):36–43, 2007.

[13] Doug A Bowman and Chadwick A Wingrave. Design and evaluation of menu systems

for immersive virtual environments. In Virtual Reality, 2001. Proceedings. IEEE, pages

149–156. IEEE, 2001.

[14] George EP Box, William Gordon Hunter, J Stuart Hunter, et al. Statistics for experi-

menters. John Wiley and sons New York, 1978.

[15] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and François Yergeau.

Extensible markup language (xml). World Wide Web Consortium Recommendation REC-

xml-19980210. http://www. w3. org/TR/1998/REC-xml-19980210, 1998.

[16] Kang-tsung Chang. Introduction to geographic information systems. McGraw-Hill New

York, 2010.

[17] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. Surround-screen

projection-based virtual reality: The design and implementation of the cave. In Proceedings

of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pages

135–142. ACM, 1993.

[18] Carolina Cruz-Neira, Daniel J Sandin, Thomas A DeFanti, Robert V Kenyon, and John C

Hart. The cave: audio visual experience automatic virtual environment. Communications

of the ACM, 35(6):64–72, 1992.

[19] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[20] Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. John Wiley &

Sons, 2012.

[21] Juri Engel, Sebastian Pasewaldt, Matthias Trapp, and J Dollner. An immersive visualiza-

tion system for virtual 3d city models. In Geoinformatics (GEOINFORMATICS), 2012

20th International Conference on, pages 1–7. IEEE, 2012.

[22] Christian Frueh and Avideh Zakhor. Constructing 3d city models by merging ground-based

and airborne views. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003

IEEE Computer Society Conference on, volume 2, pages II–562. IEEE, 2003.

79

REFERENCES REFERENCES

[23] GA Giraldi, Rodrigo Silva, and JC Oliveira. Introduction to virtual reality. Technical re-

port, LNCC Research Report# 06/2003, National Laboratory for Scientific Computation,

ISSN: 0101 6113, 2003.

[24] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street maps. Per-

vasive Computing, IEEE, 7(4):12–18, 2008.

[25] John P Isaacs, Daniel J Gilmour, David J Blackwood, and Ruth E Falconer. Immersive

and non immersive 3d virtual city: decision support tool for urban sustainability. Journal

of Information Technology in Construction, 2011.

[26] Andrew Johnson, Jason Leigh, Paul Morin, and Peter Van Keken. Geowall: stereoscopic

visualization for geoscience research and education. Computer Graphics and Applications,

IEEE, 26(6):10–14, 2006.

[27] Julian Kang, Adithya Ganapathi, and Hussam Nseir. Computer aided immersive virtual

environment for BIM. In International Conference on Computing in Civil and Building

Engineering, 2012.

[28] Naimul Mefraz Khan, Matthew Kyan, and Ling Guan. Immervol: An immersive volume

visualization system. In Computational Intelligence and Virtual Environments for Mea-

surement Systems and Applications (CIVEMSA), 2014 IEEE International Conference on,

pages 24–29. IEEE, 2014.

[29] Ji-Sun Kim, Denis Gračanin, Krešimir Matković, and Francis Quek. The effects of finger-

walking in place (fwip) for spatial knowledge acquisition in virtual environments. In Smart

Graphics, pages 56–67. Springer, 2010.

[30] Georg Klein and David Murray. Parallel tracking and mapping for small ar workspaces.

In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International

Symposium on, pages 225–234. IEEE, 2007.

[31] Mikiko Koike and Mitsunori Makino. Crayon a 3d solid modeling system on the cave. In

Image and Graphics, 2009. ICIG’09. Fifth International Conference on, pages 634–639.

IEEE, 2009.

[32] Joseph J LaViola Jr. Whole-hand and speech input in virtual environments. Master’s

thesis, Brown University, 1999.

80

REFERENCES REFERENCES

[33] Yingzhu Li, L Shark, Sarah Jane Hobbs, and James Ingham. Real-time immersive table

tennis game for two players with motion tracking. In Information Visualisation (IV), 2010

14th International Conference, pages 500–505. IEEE, 2010.

[34] Rensis Likert. A technique for the measurement of attitudes. Archives of psychology, 1932.

[35] I Scott MacKenzie and Steven J Castellucci. Empirical research methods for human-

computer interaction. In CHI Extended Abstracts, pages 1013–1014, 2014.

[36] James MacQueen et al. Some methods for classification and analysis of multivariate ob-

servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and

probability, volume 1, pages 281–297. California, USA, 1967.

[37] A. Majumder and B. Sajadi. Large area displays: The changing face of visualization.

Computer, 46(5):26–33, 2013.

[38] Pelican Mapping. osgearth. http://osgearth.org/, Accessed on September 1st, 2014.

[39] David Martin. Doing psychology experiments. Cengage Learning, 2007.

[40] Daniel Medeiros, Lucas Teixeira, Felipe Carvalho, Ismael Santos, and Alberto Raposo. A

tablet-based 3d interaction tool for virtual engineering environments. In Proceedings of

the 12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and

Its Applications in Industry, pages 211–218. ACM, 2013.

[41] José del R Millán. Adaptive brain interfaces. Communications of the ACM, 46(3):74–80,

2003.

[42] Jurriaan D Mulder, Jack Jansen, and Arjen van Rhijn. An affordable optical head tracking

system for desktop vr/ar systems. In Proceedings of the workshop on Virtual environments

2003, pages 215–223. ACM, 2003.

[43] Xiaoming Nan, Ziyang Zhang, Ning Zhang, Fei Guo, Yifeng He, and Ling Guan. vdesign:

Toward image segmentation and composition in cave using finger interactions. In Signal and

Information Processing (ChinaSIP), 2013 IEEE China Summit & International Conference

on, pages 461–465. IEEE, 2013.

[44] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 249–256. ACM,

1990.

81

http://osgearth.org/

REFERENCES REFERENCES

[45] OpenStreetMap. Website. http://www.openstreetmap.org/, Accessed on September 1st,

2014.

[46] Randy Pausch, Dennis Proffitt, and George Williams. Quantifying immersion in virtual

reality. In Proceedings of the 24th annual conference on Computer graphics and interactive

techniques, pages 13–18. ACM Press/Addison-Wesley Publishing Co., 1997.

[47] Francisco Pinto, Alexandre Buaes, Diego Francio, Alécio Pedro Delazari Binotto, and Pedro

Santos. Bratrack: a low-cost marker-based optical stereo tracking system. In SIGGRAPH

Posters, page 131, 2008.

[48] Vivek Pradeep, Christoph Rhemann, Shahram Izadi, Christopher Zach, Michael Bleyer,

and Steven Bathiche. Monofusion: Real-time 3d reconstruction of small scenes with a

single web camera. In Mixed and Augmented Reality (ISMAR), 2013 IEEE International

Symposium on, pages 83–88. IEEE, 2013.

[49] Lawrence Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[50] MBI Reaz, MS Hussain, and Faisal Mohd-Yasin. Techniques of emg signal analysis: detec-

tion, processing, classification and applications. Biological procedures online, 8(1):11–35,

2006.

[51] Zhou Ren, Jingjing Meng, Junsong Yuan, and Zhengyou Zhang. Robust hand gesture

recognition with kinect sensor. In Proceedings of the 19th ACM international conference

on Multimedia, pages 759–760. ACM, 2011.

[52] Gerhard Rigoll, Andreas Kosmala, and Stefan Eickeler. High performance real-time ges-

ture recognition using hidden markov models. In Gesture and Sign Language in Human-

Computer Interaction, pages 69–80. Springer, 1998.

[53] George Robertson, Mary Czerwinski, Patrick Baudisch, Brian Meyers, Daniel Robbins,

Greg Smith, and Desney Tan. The large-display user experience. Computer Graphics and

Applications, IEEE, 25(4):44–51, 2005.

[54] Jérôme Royan, Patrick Gioia, Romain Cavagna, and Christian Bouville. Network-based

visualization of 3d landscapes and city models. Computer Graphics and Applications,

IEEE, 27(6):70–79, 2007.

82

http://www.openstreetmap.org/

REFERENCES REFERENCES

[55] Thomas Schlömer, Benjamin Poppinga, Niels Henze, and Susanne Boll. Gesture recognition

with a wii controller. In Proceedings of the 2nd international conference on Tangible and

embedded interaction, pages 11–14. ACM, 2008.

[56] Takashi Shibata. Head mounted display. Displays, 23(1):57–64, 2002.

[57] Mel Slater. Measuring presence: A response to the witmer and singer presence question-

naire. Presence: Teleoperators and Virtual Environments, 8(5):560–565, 1999.

[58] Mel Slater. A note on presence terminology. Presence connect, 3(3):1–5, 2003.

[59] Moshe Sniedovich. Dijkstra’s algorithm revisited: the dynamic programming connexion.

Control and cybernetics, 35:599–620, 2006.

[60] Peng Song, Wooi Boon Goh, Chi-Wing Fu, Qiang Meng, and Pheng-Ann Heng. Wysiwyf:

exploring and annotating volume data with a tangible handheld device. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, pages 1333–1342.

ACM, 2011.

[61] Gary K Starkweather. Dsharpa wide-screen multi-projector display. Journal of Optics A:

Pure and Applied Optics, 5(5):S136, 2003.

[62] Richard Stoakley, Matthew J Conway, and Randy Pausch. Virtual reality on a wim:

interactive worlds in miniature. In Proceedings of the SIGCHI conference on Human factors

in computing systems, pages 265–272. ACM Press/Addison-Wesley Publishing Co., 1995.

[63] Alistair Sutcliffe, Brian Gault, Terence Fernando, and Kevin Tan. Investigating interac-

tion in cave virtual environments. ACM Transactions on Computer-Human Interaction

(TOCHI), 13(2):235–267, 2006.

[64] John Vince. Introduction to virtual reality. Springer, 2004.

[65] Oculus VR. Oculus rift. http://www.oculusvr.com/, Accessed on September 1st, 2014.

[66] Rui Wang and Xuelei Qian. OpenSceneGraph 3 Cookbook. Packt Publishing Ltd, 2012.

[67] Youwen Wang, Cheng Yang, Xiaoyu Wu, Shengmiao Xu, and Hui Li. Kinect based dynamic

hand gesture recognition algorithm research. In Intelligent Human-Machine Systems and

Cybernetics (IHMSC), 2012 4th International Conference on, volume 1, pages 274–279.

IEEE, 2012.

83

http://www.oculusvr.com/

REFERENCES REFERENCES

[68] Colin Ware, Kevin Arthur, and Kellogg S Booth. Fish tank virtual reality. In Proceedings

of the INTERACT’93 and CHI’93 conference on Human factors in computing systems,

pages 37–42. ACM, 1993.

[69] G. Welch and E. Foxlin. Motion tracking: no silver bullet, but a respectable arsenal.

Computer Graphics and Applications, IEEE, 22(6):24–38, 2002.

[70] Daniel Wigdor and Dennis Wixon. Brave NUI World: Designing Natural User Interfaces

for Touch and Gesture. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st

edition, 2011.

[71] Qing Zhu, Mingyuan Hu, Yeting Zhang, and Zhiqiang Du. Research and practice in three-

dimensional city modeling. Geo-spatial Information Science, 12(1):18–24, 2009.

84

	Declaration
	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Appendices
	Introduction
	Background
	Purpose and Scope of This Thesis
	Contributions
	Overview of This Thesis

	Literature Review
	VR Systems
	Tracking in VR systems

	3D Urban Data
	HCI in VR
	Input Hardware
	Interaction Techniques

	Methodology
	System Configuration
	The CAVE
	Software Configuration
	Input Devices

	HMM Realtime Gesture Recognition
	Normalization and Quantization
	Hidden Markov Model and Classification

	System Control
	Menu Control by Button
	Menu Control by Gestures

	Navigation
	Joystick
	Posture Triggered Flying
	Waving Hand

	Selection
	Ray Casting Selection
	Paint Selection
	Stretch Selection

	Manipulation
	Wand Manipulation
	Two-Handed Gestures

	Visibility of Hidden Buildings
	Collapse
	Semi-Transparent
	Wireframe

	Adding Constraints
	Map Data Structure
	Linkage Between Map Data and 3D City Data
	Path Finding by Dijkstra's Algorithm
	High Level Interactions Enabled by Map

	Summary

	Experiments & Results
	Gesture Recognition
	Gesture Database
	Gesture Recognition Results

	3D City Data
	Empirical User Study
	User Study Design
	Results on Menu Control
	Realtime Gesture Recognition Records
	Results on Navigation
	Results on Selection
	Results on Visibility

	Quantitative Study
	User Study Design
	Results for Manipulation

	Summary

	Prototype Applications
	Urban Plannning
	Virtual Touring

	Conclusions and Discussions
	Summary of This Thesis
	UI Design
	Possible Future Work

	HMM Algorithms
	User Study Procedure
	Questionnaire Used in User Study
	Data Collected in User Study
	Published Papers
	References

