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Abstract

Resource Allocation in Clustered M2M Networks: A Q-Learning

Approach

c© Fatima Hussain, 2016

Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University

Machine to machine (M2M) communication has received increasing attention in recent years.

A M2M network exhibits salient features such as large number of machines/devices, low

data rates, delay tolerant/sensitive, small sized packets, energy-constrained and low or no

mobility. A large number of M2M terminals may exist in a small area with many trying to

simultaneously and randomly access for channel resources - which will result in overload and

access problem. This increased signaling overhead and diverse requirements of machine type

communication devices (MTCDs) call for the development of flexible and efficient scheduling

and random access techniques. In this thesis, we first review and compare various scheduling

and random access techniques in LTE-based cellular networks for M2M communication. We

also discuss how successful they are to fulfill the unique requirements of M2M communication

and networking. Resource management in M2M networks with a large number devices is

also reviewed from the access point of view.

We propose a multi-objective optimization based solution to the problem of resource

allocation in interference-limited M2M communication. We consider MTCDs in a clustered

network structure, where they are divided into clusters and the devices belonging to a cluster

communicate to cluster head (or controller). We maximize the number of admitted MTCD

controllers and throughput with least interference caused to conventional primary users. We

formulate the problem as a mixed-integer non-linear problem with multiple objectives and

solve it using meshed adaptive direct search (MADS) algorithm. Simulation results show the

effects of varying different parameters on cumulative throughput and the number of admitted
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MTCD controllers. We then formulate the slot selection problem in M2M networks with

admitted MTCDs as an optimization problem.

We present a solution using the Q-learning algorithm to select conflict-free slot assign-

ment in a random access network with MTCD controllers. The performance of the solution

is dependent on parameters such as learning rate and reward. We thoroughly analyze the

performance of the proposed algorithm considering different parameters related to its op-

eration. We also compare it with simple ALOHA and channel-based scheduled allocation

and show that the proposed Q-learning based technique has a higher probability of assigning

slots compared to these techniques. We then present a block based Q-learning algorithm for

the scheduling of MTCDs in clustered M2M communication networks. At first centralized

slot assignment is done and an algorithm is proposed for minimizing the inter-cluster inter-

ference. Then we propose to use an Q-learning algorithm to assign slots in a distributed

manner and comparison is made between the two schemes. Afterwards, we show the effects

of distributed slot-assignment with respect to varying signal-to-interference ratio on conver-

gence rate and convergence probability. Cumulative distribution function is used to study

the effect of various SIR threshold levels on the convergence probability. With the increase

in SIR threshold levels, increase in convergence time and decrease in convergence probability

are observed, as less block configuration fulfills the required threshold in the M2M network.
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Chapter 1

Introduction

Mobile communication systems have evolved from supporting analog voice only to rich mul-

timedia services poviding hundreds of thousands of different applications to billions of users.

We are just at the beginning of a transition into a fully connected networked society that

will provide access to information and sharing of data anywhere and anytime for anyone and

anything. Thus, in the future wireless access will not only be about connectivity for peo-

ple but for anything that benefits from being connected. This includes such diverse things

as household appliances, traffic control and safety functions, infrastructure monitoring sys-

tems, medical equipment, and much more. As a consequence, compared to the wireless

networks of today, next-generation wireless access will support a much wider range of use

case characteristics and corresponding access requirements [4].

1.1 M2M Communication

Transition to a networked society will lead to a massive number of connected devices, and cel-

lular network-based machine-to-machine (M2M) communications is fast becoming a market-

changing force for a wide spectrum of businesses and applications such as telematics, smart

metering, point-of-sale terminals, and home security and automation systems. M2M refers

to set of technologies that are used to connect systems for the purpose of remote monitor-
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ing and control without human intervention. To connect end devices with the surrounding

infrastructure, M2M communications typically rely on cellular or low-power wireless tech-

nologies [5].

Compared to traditional automation technologies, one major difference for this new gen-

eration of smart devices is how tightly they are coupled into larger-scale service infrastruc-

tures [6]. For example, in logistic operations, the locations of fleet vehicles can be tracked

with automatic vehicle location devices and uploaded into back-end automatic dispatching

and planning systems for real-time global fleet management. More and more emerging tech-

nologies also heavily depend on these smart devices. For instance, with smart grid, individual

customer’s power usage on a real-time and wide-area basis can be controlled through devices

such as the electric meters modules.

It is estimated that there are already tens of millions of such smart devices connected

to cellular networks worldwide, and within the next five years, this number will grow to

hundreds of millions. Various countries are embracing the M2M technology for different

applications. For example, the European Union’s goal is to have every vehicle equipped with

the eCall system by 2015. In Brazil, all new vehicles produced in, or imported to, will be

equipped with GPRS modules to reduce vehicle theft. The UK government vision is for every

home to have smart meters by 2020 [7]. Another reason for M2M growth is that it is offers

something to each entity in the ecosystem from chip set providers to M2M module makers to

network operators to system integrators. To the enterprises, it offers a common technology

infrastructure for providing value-added service offerings such as efficient managed services

and faster technical resolutions.

Currently, traditional cellular networks have been considered as one of the choices to bear

M2M communication [8, 9]. It has an advantage of large coverage area and economical for

operators in a single network. However, current cellular networks are designed for human

to human (H2H) communication which aim at voice and media transmission, with real

time, small delay, and high throughput. M2M communication over cellular networks poses

significant challenges as a result of large number of devices, small data transmissions, and
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vast applications range. Potential issues are on the air interface, including physical layer

transmissions, the random access (RA) procedure, scheduling and radio resource allocation

with massive number of machine type communication devices (MTCDs).

One of the important and challenging issues in M2M deployment, is to reduce the access

delay in simultaneous channel access attempts from massive number of MTCDs. Both ma-

chine devices and mobile users may suffer from severe collisions during network entry/reentry,

handover, scheduling request, and uplink timing synchronization. As a result, they have to

backoff their transmissions. This backoff and resulting retry attempts further add to the

access delay.

Important task is to efficiently handle MTCD traffic characteristics, specifically the load

generated by massive simultaneous low data rate transmissions. Therefore, network should

have the capability of counteracting signaling and traffic load spikes caused by a sudden surge

of massive numbers of MTCDs trying to access the eNB all at once. This massive access can

be due to several devices requesting to transmit at the same time by some applications or

due to roaming MTC devices suddenly attaching due to a fault in their home network thus

causing overload. In such situations, radio and signalling network congestions may occur

due to massive concurrent transmissions which can lead to large delays, packet loss and, in

the extreme case, service unavailability. M2M communications have different characteristics

from traditional Internet trafïňĄc, and applying traditional congestion control techniques to

M2M trafïňĄc may yield suboptimal results. Various overload control techniques are defined

by 3GPP such as M2M server triggering eNB for paging M2M terminals, broadcast-based,

rejecting connection requests in the radio access network and in the core network etc.

Efficient, fair and less complex resource allocation is important in M2M networks with

distributed implementation for a large number of MTCDs. Fixed channel allocation though

easy to implement often cannot satisfy the unbalanced and dynamic traffic demands in M2M

networks [10]. It has to be distributed and dynamic in nature. Also, resource allocation plays

an important role in interference management among MTCDs and human users.
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1.2 Reinforcement Learning Approach

Reinforcement learning is a trial-and-error approach to learning in which an agent operating

in an environment learns how to achieve a task in that environment. Original reinforcement

learning came out of the machine learning community, but where machine learning normally

is a type of supervised learning, reinforcement learning is not. In supervised learning meth-

ods, whenever an action is taken, the learner tells the agent afterwards what the best action

would have been. The agent can then adjust its behaviour according to this supervision. In

contrast to this, the reinforcement learning agent is just given a scalar reinforcement signal

as a response to its action, but no clue on what the best action would have been. It has to

find a good strategy for increasing the sum of the reinforcement signals by trial-and-error

interactions with the environment. This important distinction indicates that reinforcement

learning is well-suited for problems where the correct behaviour of the agent is not known

in advance, but can be derived from the trial-and-error interactions with a perhaps dynamic

environment.

In short, reinforcement learning enables an agent (e.g., a sensor node in WSN network

or smart device in M2M network) to learn by interacting with its environment. The agent

will learn to take the best actions that maximize its long-term rewards by using its own

experience. The most well-known reinforcement learning technique is Q-learning [11]. In

Q-learning, an agent regularly updates its achieved rewards based on the taken action at a

given state. The future total reward (i.e., the Q-value) of performing an action at at a given

state st is computed:

Q(st+1, at+1) = Q(st, at) + α(r(st, at)−Q(st, at)), (1.1)

where r(st, at) denotes the immediate reward of performing an action at and α is the learning

rate that determines how fast learning occurs (usually set to value between 0 and 1).

Machine learning techniques are widely applied to protocol design due to their ability to

deal with very complex systems in a relatively simple and efficient manner. The management
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of M2M massive access is no exception, and several studies in this domain have adopted

machine learning techniques to address different problems.

1.3 Resource Allocation in M2M Networks

Due to the diversity of M2M applications, M2M traffic shows different characteristics and

random patterns, which differ M2M traffic from conventional cellular traffic. It is comprised

of time-controlled and delay-tolerant traffic, synchronized and periodic traffic, and infre-

quent, bursty and one way data traffic. In general, the M2M devices generate more uplink

traffic than downlink in contrast to the existing cellular system.

Resource allocation and management is a challenging task in M2M networks due to

the diversity of M2M applications, special features and requirements of MTCDs specifically

become more critical when communication is done through cellular networks. Resource

management, sharing, scheduling and prioritization techniques need to be addressed properly

for the efficient M2M communication and with least interference caused to conventional

traffic. Therefore, attention must be focused on the design of resource allocation scheme,

and effort should be taken to make eNB more intelligent.

Implementing and optimizing the wireless resource sharing between the M2M and H2H

links is an challenging task. An orthogonal resource allocation is simple to implement and

does not cause any interference among both types of users. However, the resource efficiency

increases when using non-orthogonal sharing. Where both types of users are sharing the

same frequency and time, it results in interference thus costing efficiency.

The authors in [12], propose energy efficient radio resource allocation method for MTC-

enabled LTE networks in which they model resource allocation problem as sum power min-

imization problem. Similarly, the authors in [13] propose a max-utility scheduling method

for machine-type communication by considering QoS requirements as minimizing co-channel

interference between H2H and MTC devices. Group based allocation [3] and joint access

control and resource allocation method [14] consider fairness and random access efficiency
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in their allocation procedure. In this scheme, PRACH resources such as preamble sequences

and RA slots are separately allocated to M2M terminals and H2H terminals [15]. If the the

M2M terminals share the same PRACH resources as H2H terminals, then PRACH overload

condition could significantly affect RA quality of H2H terminals.

1.4 Thesis Contribution

In this thesis, we utilize reinforcement learning for slot allocation in MTCDs for maximizing

throughput with minimum interference in clustered M2M networks. The main contributions

of the dissertation are:

• Provided a comprehensive review of channel access and resource allocation techniques

for emerging heterogenous networks with M2M and H2H traffic, that covers both

scheduling and random access methods for MTCDs from various metrics perspectives.

• Formulated the problem of resource allocation in interference-limited M2M communi-

cation as a mixed-integer non-linear problem having multiple objectives, and solved it

using mesh adaptive direct search algorithm.

• Proposed a distributed self-organized conflict-free slot allocation scheme based on the

paradigm of independent learning, where agents are unaware of the other agents’ ac-

tions in a clustered M2M network.

• Proposed and analyzed a centralised and distributed block-based Q-learning algorithm

for slot assignment in MTCDs that minimizes inter-cluster interference.

1.5 Thesis Organization

Chapter 2 summarizes various scheduling techniques and protocols considered in literature

for MTCD with critical analysis. Also, various random access methods for MTCDs contend-

ing for channel access are discussed with a critical requirement of shared medium supporting
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higher load density. Resource allocation and energy efficiency in massive M2M communica-

tions are also discussed.

In Chapter 3, we consider a clustered network consisting of primary H2H users (PUs)

and MTCDs, where all MTCDs communicate with a cluster head. We propose a multi-

objective optimization based solution to the problem of resource allocation for maximizing

the number of admitted MTCD controllers and throughput with least interference caused to

conventional H2H users.

In Chapter 4, reinforcement learning is introduced and is proposed for slot allocation of

MTCDs. Convergence capabilities such as convergence time, convergence probability and

cumulative success rate are studied and simulation results of the proposed approach with

respect to different parameters are presented.

In Chapter 5, a block-based Q-learning algorithm is introduced for scheduling of MTCDs

in clustered M2M communication networks. It is used to assign slots to devices in a dis-

tributed manner. In addition to this, an centralized algorithm for the slot allocation of

MTCDs is proposed and comparison is made between two methods.

Finally, 6 concludes the thesis with summary of the work and potential future work.
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Chapter 2

Literature Review: Scheduling and

Access in M2M Networks

Machine to machine (M2M) communication has received increasing attention in recent years.

A M2M network exhibits some salient features such as large number of machines/devices,

low data rates, delay tolerant/sensitive, small sized packets, energy-constrained and low or

no mobility. A large number of M2M terminals may exist in a small area with many trying to

simultaneously and randomly access for channel resources - which will result in overload and

access problem. This increased signaling overhead and diverse requirements of machine type

communication (MTC) devices call for the development of flexible and efficient scheduling

and random access techniques. In a M2M scenario, where the network is operating at high

offered load with a large number of contending transmitters, distributed random access

techniques are more appropriate than centralized scheduling techniques due to less control

messages and better channel utilization. There is a need for comparison of various medium

access methods that can be used in the development of an efficient hybrid M2M and human

to human (H2H) network.

In this chapter, we review and compare various scheduling and random access techniques

in cellular networks, particularly in LTE based networks. We also discuss how successful

they are to fulfill the unique requirements of M2M communication and networking. Resource
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management in M2M networks with a large number of MTC devices is also discussed from the

access point of view. Energy efficiency, being one of the main challenges of QoS constrained

M2M communication, is also discussed. Minimization of the energy consumption is tightly

bound to channel access and hence considered in the comparison of various MAC protocols.

Finally, some potential research directions related to access control and resource allocation

are presented for future work.

2.1 Introduction

Machine to machine communication is defined in different ways and contexts in the litera-

ture. A broader definition of M2M communication includes the remote control of machines

(telematics), monitoring and collecting data from machines (telemetry). Recently, from a

mobile perspective, M2M is defined as communication between a machine and a mobile

terminal, or between a machine and a back-end information system [21]. The broader dis-

cipline of M2M communications is experiencing rapid growth across the globe. Due to the

advancement in inexpensive sensors and devices, and mobile communication technologies,

various M2M applications are emerging. This is noticed in a number of broad domains

such as, energy management, transportation infrastructure [22], smart city [23–25], smart

home [26, 27], vehicular telemetics [28, 29], medical/health services [30–32] and information

management [33–35], and industrial environment [36] as shown in Figure 3.1.

However, there are still significant barriers for its growth such as security, privacy, service

capabilities, testing, and certification of devices that need to be overcome before the M2M

market can reach its full potential [37]. Therefore, a number of standardization bodies and

regulatory authorities are striving hard for end-to-end connectivity and streamlining the frag-

mented M2M market. European telecommunication standard institute (ETSI) [38, 39]aims

at developing and maintaining an end-to-end architecture for M2M systems. It also ad-

dresses various issues of naming, addressing, QoS, security , charging, application interfaces

and hardware interfaces [40,41]. Also, 3rd generation partnership project (3GPP) technical

10



specifications group dealing with service and system aspects, has issued a number of specifi-

cations dealing with integration and support of M2M communications [42].The international

telecommunication union (ITU-T) addresses the area of networked intelligent sensors, covers

the issue of M2M communication with interconnected sensor to other networks.

Figure 2.1: M2M with Diverse Network Applications

MTC devices are typically small, inexpensive, able to operate unattended by human

for extended period of time, and communicate over the wireless area network. The M2M

network includes a large number of diverse often interconnected smart devices with the goal

to provide reliable connections among them. However, in M2M communication, there can

be a large number of MTC devices, each with only a small amount of data needing to be

transmitted. Therefore, air interface design already available for high data rate transmissions

does not effectively support this type of communication.

Currently, traditional cellular networks have been considered as one of the choices to bear

M2M communication [8, 9]. It has an advantage of large coverage area and economical for
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operators in a single network. However, current cellular networks are designed for human

to human (H2H) communication which aim at voice and media transmission, with real

time, small delay, and high throughput. M2M communication over cellular networks poses

significant challenges as a result of large number of devices, small data transmissions, and

vast applications range. Potential issues are on the air interface, including physical layer

transmissions, the random access (RA) procedure, scheduling and radio resource allocation

with massive number of MTC devices.

Resource allocation and management is expected to play an important role in the de-

ployment of MTC devices. Medium access control (MAC) layer allocates radio resources to

users according to several parameters such as source traffic characteristics, required QoS,

frequency, time and space diversity of the used channel [43]. MAC plays a key role in deter-

mining the throughput, delay, and power consumption of wireless networks. A MAC design

that is adaptable to the changing traffic and channel characteristics is required. Therefore,

the system performance can be improved by exploiting the radio resources more efficiently.

Before we go into details of various RA and scheduling techniques, we will briefly discuss

various technologies used for M2M communication so far. If channelization for M2M MAC

is considered, contention-based carrier sense multiple access (CSMA) and schedule-based

TDMA schemes are the traditional choices. CSMA due to its simplicity and flexibility, is

the natural choice. But its performance can be significantly degraded in situations of high

contention due to the high overhead accrued for resolving collisions. In contrast, TDMA

can generally achieve higher network throughput in situations of high contention as well

as energy efficiency [44]. However, scheduling the time slots is very difficult to achieve in

a distributed fashion for uplink M2M communication due to the stricter synchronization

requirement between each device and M2M base station. This thesis mainly address the

problem of distributed slot allocation in M2M networks.

A large number of MAC protocols previously used in wireless sensor networks (WSNs) are

proposed in one form or the another for MTC [45–48]. Although the use of WSNs in M2M

communication can bring significant advantages, M2M communication properties impose
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unique challenges including reliability, latency, packet errors and variable link capacity, under

harsh environmental condition, and resource constraints [49].

GPRS capabilities can be used to support some M2M applications since GPRS provides

a manageable and cost-effective way for M2M deployment [50, 51]. GPRS could also be

considered for MTC as it can support bursty traffic such as generated by several M2M ap-

plications. However, it has several limitations, which raises serious considerations for its

suitability for future M2M applications. As long as the number of MTC devices is small,

GPRS is an adequate solution. But as the number increases, it may be inappropriate. Be-

cause, GPRS capacity is limited for supporting the emerging M2M applications and services

with thousands of devices per cell [52]. Since the end devices must compete for the channel,

it suffers from degraded performance in terms of throughput and energy consumption, and

due to the high probability of collision at higher load [53].

Evolving LTE-A is expected to play a central role in interconnecting machines, and is

recommended to efficiently cater to M2M communications [52]. It offers higher capacity and

more flexible radio resource management (RRM) compared to GPRS. M2M is characterized

by a high device density in a cell, small amounts of payload, machine originated commu-

nications and low traffic volumes per machine. LTE for M2M communication can be a

conceivable choice due to its longevity, lower service cost and scalability [54]. However, LTE

has been originally designed for broadband applications such as voice calls, video streaming,

online gaming, social networking and web surfing; while most M2M applications transmit

and receive small amounts of data, leading to an unreasonable ratio between payload and re-

quired control information. Besides the need for supporting a large number of M2M devices,

the research efforts focus on addressing the vast diversity of M2M service characteristics,

need for low-energy devices or low latencies and coexistence with current communication

systems [3].

The main focus of this chapter is to present and analyze channel access techniques for

emerging M2M networks and resource allocation, from medium access point of view, in

cellular networks in particular LTE. It covers both scheduling and random access methods
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for massive access of MTC devices from various metrics perspectives. The choice of MAC

has a strong influence on the energy efficiency of the network, and thus the lifetime of the

devices. Therefore, energy efficiency analysis for various protocols is also done. We also

identify open challenges in various domains of machine type communications and discuss

prospective research. Comparison among various scheduling and random access techniques

is done and corresponding pros and cons are discussed.

This chapter is organized as follows. Section II summarizes various scheduling techniques

and protocols considered in literature for MTC access with critical analysis. In Section III,

various random access methods for MTC contending for channel access are discussed with a

critical requirement of shared medium supporting higher load density. Section IV discusses

resource allocation and energy efficiency in massive M2M communications. Section V covers

some prospective scheduling and random techniques in M2M networks. Section VI concludes

the chapter.

2.2 Scheduling in M2M Communication

Scheduling techniques are employed to achieve high spectral reuse and diversity gain in

wireless systems in addition to provide QoS guarantees to the users. Several scheduling

algorithms proposed for M2M have already been in use in other applications. The emerging

scheduling techniques should efficiently accommodate both traditional H2H traffic and the

MTC device traffic with different QoS requirements in a hybrid M2M/H2H networks for cost

effective operations.

Channel access involves establishment of radio bearers (RB) by first using a common

random access channel (RACH) to send relevant control information such as the identity of

an device followed by higher layer signalling messages and application data over scheduled

dedicated resources. Packet schedulers for both the downlink and the uplink are deployed at

the evolved node B (eNB), and it is in charge of performing both radio resource management

(RRM) and control procedures on the radio interface. Users are informed about the resource
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allocation decisions on a subframe basis through control channels [55]. Data channel (i.e.,

the PDSCH) is shared among the users, meaning that portions of the spectrum should be

distributed at every transmission time interval (TTI) among them.

Various scheduling techniques differ in terms of input connection parameters, objectives,

and service targets. In machine-type communication, researchers have classified the schedul-

ing mechanism on the basis of channel awareness, data rate, target delay, QoS provisioning

etc. Figure 2.2 summarizes various scheduling objectives considered in the literature for

M2M paradigm.

2.2.1 Channel Awareness in Scheduling

Channel awareness is a fundamental concept for achieving high performance in a wireless en-

vironment. It can be exploited in radio resource management using channel quality indicator

(CQI). Since the scheduling changes spatially and timely with each time slot, information

from neighboring eNBs is required for data decoding. This can be accomplished by the

exchange of channel state information (CSI) and other control signals among all eNBs. For

a cellular network consisting of multiple eNBs, however, such cooperation of instantaneous

CSI is problematic. It requires precise synchronization among eNBs, and estimation of CSI

for multiple cells create immense delays and large communication overhead [56].

Channel aware scheduler can estimate the channel quality perceived by each user and

in turn, can predict the achievable throughput. If one can estimate the channel quality

perceived by a user on a given resource block, it is possible to allocate radio resources to

achieve high data rate. Maximum throughput scheduler aims to assign all those RBs to

users that maximize their throughput. It results in unfair resource sharing for users with

poor channel conditions. To provide fairness, proportional fair (PF) scheduler is used which

maximizes fairness at the expense of the throughput. In contrast to traditional scheduling

algorithms such as PF, which overlooks the users’s heterogeneous demands, incorporating

a proactive and traffic-aware scheduler exhibits gains [57]. Several other channel aware
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schedulers such as joint time and frequency domain scheduler, delay sensitive schedulers,

buffer-aware schedulers etc. are used for resource scheduling in LTE networks.

One of the main challenges of M2M networks is energy efficiency. We discuss this channel

aware techniques in that perspective. System information such as CSI and occupancy level

of the queues (QSI) are very helpful in the design of the scheduling policy. Performance goals

such as ensuring required QoS, providing fairness, maximizing throughput and minimizing

energy consumption can be achieved with specific schedular design. Main focus of research

in the design of M2M schedulers so far is maximizing throughput, reduce delay and provide

fairness. The designs based on the above are not energy efficient as effort is not made for

minimizing the overall energy consumption in M2M data transfer. However, based on current

CSI of each device, future energy usage can be estimated and that can be used for efficiently

scheduling heterogenous traffic with minimum transmission energy.

2.2.2 Delay Dependent Scheduling

To accommodate the delay limited M2M traffic, latency constrained MAC scheduler is cru-

cial in providing necessary physical resources to ensure their proper operation. Delay is a

significant QoS parameter and it has a notable impact on the number of users that can

be effectively served [58]. Capacity of the system can be improved by including the end

to end delay constraint in network design. There is little work done for latency constraint

M2M applications mainly based on packet delay budget of MTC devices considering channel

conditions.
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Opportunistic Hard Priority

In [43], authors proposed a resource allocation algorithm keeping in view of the delay con-

straint M2M applications. In this algorithm, delay threshold and delay budget are assigned

to each delay sensitive traffic flow. Same priority is set to all the packets as long as the packet

delay is below a certain delay threshold. Packets exceeding the threshold are set higher pri-

ority until they are served. The delay threshold is kept lower than the delay budget so that

there is a sufficient margin for the scheduler to serve the packets without violating the link

budget. Arrival of each packet is in cyclic order and their time in queue is monitored. If it

is greater than the delay threshold, it will be served with the highest priority.

This scheduler works well for the higher values of signal-to-noise ratio (SNR) as there are

less number of packets whose waiting time exceeds the delay threshold. Therefore, all the

packets are set to same priority. But at very lower values of SNR, most of the packets are

discarded due to the increase in delay compared to the delay threshold. In such conditions,

robust coding schemes are required to achieve target bit error rate.

Authors in [43] proposed another algorithm in which priority to the packets is assigned

using two components. One is delay aware earliest deadline due (EDD) and another is

channel aware PF. In EDD, users are prioritized according to packet delay level closer to delay

budget, while PF term will favor terminals with good channel conditions. The scheduling

tags are assigned to the users on the basis of their average throughput, waiting time and

maximum allowable delay. If they experience delay, EDD term dominates; otherwise, PF

term dominates the scheduling tag. Packets that exceed the delay budget are discarded.

The objective is to ensure that instantaneous packet delay is kept below a certain value.

At higher SNR values, this scheduler works well but as the SNR drops to a lower value,

throughput per user is very low due to higher outage probability. Also, discarding those

packets that exceed the delay budget can result in QoS deterioration. Instead, increment in

the delay of the remaining packets to be served, can be done.

Enhancement to this algorithm is made by delaying the EDD term. It improves the
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results over the entire range of SNR. It will work as a PF algorithm as long as packet delays

are far from exceeding the delay budget. This is the situation of high SNR value. When

the SNR is very low, delay is increased due to increased error probability. Therefore, packet

delay is above the delay budget and EDD term will give higher priority to the user, thus

decreasing the average packet delay. This scheme takes advantage of delay tolerance as a

result increasing the system capacity.

Delay Constrained Scheduling

Two uplink scheduling algorithms considering channel conditions and maximum allowable

delay of each MTC device have been proposed in [59, 64]. These are dynamic QoS and

channel-aware heuristic scheduling algorithms optimized on a per-TTI basis. First algorithm

assigns more weight to channel quality of the user while the second to maximum delay

tolerance. Authors assume that M MTC devices are accessing the shared medium along

with L LTE users in the given TTI, through Fk(k = 1, 2, ....M) and Ti(i = 1, 2, ...L) resource

blocks (RBs), respectively. Moreover, maximum delay tolerance of the kth device is Dk and

SNR seen by it over lth resource block RBl is γ(k,l).

• In Algorithm 1, maximum delay tolerance of each device along with the conventional

scheduler design is considered. Priority is given to existing users to access the total RBs

and the rest is available to MTC devices. MTC devices are organized in descending

order with respect to γ(k,l). Allocation of RBs with best SNR γ(k,l) i.e., RBl to the kth

MTC device is done only if maximum delay tolerance is smaller than the mean delay

tolerance of all the devices requesting access. Fk is reduced by one and this process is

repeated till Fk = 0 and γ(k,l) is set to 0. Thus, corresponding device cannot compete

for another RB but can compete for in adjacent RBs.

• In Algorithm 2, priority is given to devices with low delay tolerance. Best RBs in terms

of channel quality are found and assigned to them. Priority is also given to existing

users to access the total RBs and rest is available to MTC devices. MTC devices are
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organized in ascending order with respect to Dk. For the MTC of lowest Dk, RB with

the best SNR γ(k,l) is found and is assigned to the device. This is done only if this

is adjacent in frequeny with the previous RB and decrement Fk by one. This process

is repeated till Fk = 0 and γ(k,l) is set to 0, that means corresponding MTC device

cannot compete for another resource block.

The above work has taken MTC in more realistic way by considering the delay constraint

of each device, thus increasing the number of served MTC devices. Also, by exploiting

the channel quality of each device, cell throughput increases through multi-user diversity.

Both algorithms can serve the massive number of MTC devices as compared to conventional

channel aware scheduler but at the expense of decrease in bit error rate (BER) and increased

signalling overhead. This works well for the low rate applications but will fall behind in case

of high rate applications.

2.2.3 QoS Based Group Scheduling

To support a large number of MTC devices with small data transmissions and diverse QoS

requirements is a difficult task. MAC scheduler is an important and crucial entity responsi-

ble for efficiently allocating the radio resources among users having different QoS demands.

Group/cluster based MTC feature is one of the effective methods to serve the above pur-

pose [65]. Scheduling prioritization is imposed on these clusters. In the following, methods

to effectively arrange massive number of transmission requests with diverse QoS require-

ments into clusters of varying requirements are discussed. Also, different schedulers aware

of versatile QoS demands of MTC devices are discussed.

Group channel access achieves significantly smaller access delay and signalling congestions

than the conventional access scheme. Furthermore, it enables efficient resource reuse with

less power and energy consumption. As data sent by MTC devices is aggregated by the

controller/clusterhead and then transmitted to eNB, it reduces the transmission range and

in turn reduces the transmit power of each MTC device. Also, as each device is scheduled
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to send/receive at particular instant and need not to be awake all the time, it accounts

for less energy consumption. Moreover, cluster heads are usually selected in a way that

minimizes the total energy consumption and they may rotate among the MTC devices to

balance energy consumption.

QoS-aware Fair Scheduling

Scheduler for M2M communication should consider not only the throughput optimization

but also the QoS differentiation in an effective manner. In [60], a downlink MAC scheduling

algorithm is proposed that differentiates between different QoS classes and their require-

ments. Guaranteed bit rate (GBR) and non-guaranteed bit rate services are considered. It

exploits different users’ channel conditions and tries to create a balance between the QoS

guarantees and the multi-user diversity in a proportionally fair manner.

Incoming packets are categorized based on their priority order into five different MAC QoS

classes defined by the MAC scheduler. Authors used two schedulers, named as time domain

(TD) and frequency domain (FD) schedulers. The TD scheduler is used to differentiate the

users according to their QoS characteristics. While FD scheduler is responsible for assigning

the RBs among the priority users. TD scheduler creates two candidate lists (one for GBR

and the other for non-GBR). The FD scheduler starts with this GBR candidate list. The

physical resource blocks (PRBs) allocation is done iteratively, where one PRB with the

highest signal-to-interference plus noise ration(SINR) value is allocated for one bearer in

each iteration. The bearers in the candidate list get orderly chance to select the next best

PRB upon the highest SINR value. This PRB allocation process continues until all bearers

in candidate list get one PRB. At the end of each iteration, the achieved data rate of each

bearer is calculated and checked if sufficient data is available in the bearer buffer to be

served. If sufficient data rate is achieved, then the bearer is removed from the candidate list

for scheduling.
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Ubiquitous Massive Access

In [33], managing radio resources over clusters instead of individual MTC devices and the

corresponding benefits are presented. In the proposed scheme, eNB manages RB on a cluster

basis rather than on individual basis thus alleviating the complexity. Basic idea is the

formation of MTC device (indexed by i = 1, 2, ...,M) groups or clusters and each cluster is

associated with a prescribed QoS profile. Cluster formation is done on the basis of packet

arrival rate (γi) and maximum tolerable jitter (δi) for MTC devices.

MTC devices in the same cluster have identical QoS characteristics and requirements.

A cluster with a larger γi has a higher priority. eNB allocates access grant time interval

(AGTI) every 1/γi ms for cluster i according to the priority. If AGTIs for different clusters

are arranged in the same subframe, AGTI for the cluster with lower priority is postponed

to the subsequent subframe. When a MTC device attempts to transmit data, it sends

(γi, δi) to eNB to request RBs. After checking the sufficient condition for guaranteed QoS,

eNB will grant the service to the new device if the QoS (jitter) requirements of the new

and all admitted devices can be satisfied. Thus, this condition is sufficient to ensure QoS

requirements of all admitted MTC devices and in turn serve as access control.

Sophisticated calculations are avoided in the above proposed group/cluster based radio

resource management. As a result, the computational complexity can be reduced when

supporting a large number of MTC devices. Each cluster has different priority to occupy the

shared medium, but only during the allowed AGTI. However, channel quality of each device

is not taken into account in this work, which could have been used to increase the overall

throughput. Although, this group based scheduling decreases the signalling traffic, QoS class

identification raises several issues. Due to diverse traffic characteristics of MTC devices, the

number and class of each application must be carefully chosen. Because, dividing the devices

into a limited number of QoS classes may deteriorate the system performance. Therefore,

dynamic formation of QoS classes in particular application scenario is more appropriate in

M2M communication, particularly when device topology and individual characteristics are
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not known apriori. But defining the new cluster every time, a MTC device with different

QoS profile connecting to the network, is not efficient since this may lead to a large number

of clusters.

Scheduling with Queue Awareness

A packet scheduling scheme is proposed in [45] to cater for diverse QoS requirements in M2M

networks. Authors proposed an analytical model for predicting the QoS performance of M2M

services using fixed periodic scheduling (PS) algorithm. Afterwards, a modification to this

scheme by exploiting queueing-dynamics is made. They extended the work done in [66], in

which each terminal continuously reports to eNB about its buffer status and, at each TTI,

eNB may grant any RB to any device. At each granted TTI, an intra-cluster prioritization

scheme is employed, that is based on actual queue backlog of each device. Therefore, devices

with larger queues are first granted access to the scheduled TTI.

This scheme enhances the delay performance of MTC devices, since random traffic dy-

namics are utilized by the scheduler when allocating the RBs to devices. However, this

improvement induces a signaling and complexity cost, since the buffer status reports should

be fed back to the eNB just before the cluster granted TTI begins. Also, decided RBs and

scheduled pattern should be sent to the devices thus increasing the signalling overhead.

2.2.4 Efficient Spectrum Utilization

To increase spectral efficiency, the same spectrum can be utilized for H2H and M2M com-

munication. This mutual sharing of time and frequency resources among M2M and H2H

communication can result in co-channel interference [61]. This interference plays a detrimen-

tal role in degrading the overall system performance. Therefore, it is important to examine

efficient spectrum utilization for this purpose. Several types of performance indicators can

be considered. It is important to make sure that all users are served with best channel condi-

tions, and target of maximizing the number of users being served in particular time interval
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should be met [55]. The utilization of radio spectrum for both domains can be improved by

applying utility based assignment, as described below.

Resource Sharing Optimization

Resource allocation and power control among H2H and MTC devices sharing the same re-

sources are analyzed for different resource sharing modes in [62]. Minimum and maximum

spectral efficiency restrictions, and maximum transmit power or energy limitation are con-

sidered for optimum performance. In the following, different modes of sharing the spectrum

are dicussed:

• Non-Orthogonal Sharing: Among cellular traffic and MTC devices using the same

resources, causing interference to each other. eNB coordinates the transmit power for

both links.

• Orthogonal Sharing: In which MTC devices are using dedicated resources. There is

no interference between both types of users but resources allocated to them should be

optimized.

• Cellular Operation: In which MTC device’s traffic is relayed through eNB that acts as

a relay node. It is assumed that the cellular network performs radio resource manage-

ment functions for both the cellular and MTC connections. The portion of resources

allocated to each user is to be optimized.

The eNB selects one out of the three possible allocation modes subject to existing channel

and buffer status information. With non-orthogonal sharing, authors showed that the com-

paratively less number of optimal solutions exist than either of other two modes. Authors

evaluated their scheme in a single cell scenario and Manhattan grid environment to show

that substantial gain from effectively handling local traffic can be obtained. Thus, by proper

resource management, MTC can effectively improve the total throughput without generating

harmful interference to existing cellular network.
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Self Adaptive Persistent Scheme

A self-adaptive persistent contention scheme is presented in [63]. It deals with scheduling

MTC devices in a periodic reporting manner for efficient spectrum utilization. Bandwidth

utilization improvement along with congestion problem has been jointly dealt with here.

This scheme takes advantage of the existing contention schemes to serve massive access of

MTC devices, specifically when conventional access is unable to serve a large number of

devices simultaneously.

The above scheme is comprised of contention phase and compact phase. In contention

phase, attempt is made to decrease the collision probability, re-attempt count and access de-

lay. In the compact phase, physical resource utilization for MTC devices is tried to minimize

signaling overhead from core network to the front-end. MTC devices only contend on desig-

nated MTC device’s physical random access channel (PRACH), which is not used by H2H.

Therefore, H2H devices are not influenced by MTC device access traffic. Also, MTC devices

remember the optimized contention information to achieve contention-free RACH thus min-

imizing the percentage of additional RBs used by MTC devices during random access. Also,

every device can adjust itself using a dedicated contention resource to access the network;

therefore, success probability, access delay and the number of preamble transmissions are

optimized.

The above scheme increases the access probability and reduces the number of preamble

transmissions of MTC devices. Furthermore, it mitigates the impact to H2H devices and

optimizes the uplink bandwidth utilization of MTC devices. The access delay of the con-

tention in the proposed scheme is longer than that in the legacy scheme at first, and then it

improves.
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2.3 Random Access

When a device switches on or comes out of idle mode to get connected to the network,

the device does not have any resource or channel available to inform the network about

its desire to connect to it, so it will send its request over a shared medium; this process

is called random access, done via random access channel (RACH) in LTE. There are two

situations of random access: (a) contention based random access, and (b) non-contention

based random access. In contention based random access, there can be many devices in the

same area/cell sending same request in which there is also a possibility of collision among the

requests coming from other devices. In non-contention based random access, the network can

inform the device to use some unique identity (e.g., unique random access code) to prevent

its request from colliding with requests coming from other devices. On the other hand,

non-contention based random access is used for few specific usages, e.g., during handover

and resource request in connected mode operation non-contention based process to reduce

handover and resource allocation latency so that the service interruption can be reduced.

Non-contention based random access for initial access, especially for massive number of MTC

devices is not practical because there is only a small number of random access codes unless

one can over-provision the amount of random access resources. For contention based random

access, network vendors and operators evaluate and decide on the amount of air-interface

random access resources (PRBs) needed to have the required RACH success rate. With a low

or moderate arrival rate of H2H connection setups, a reasonable amount of RACH resources

per frame or per second is adequate for required RACH success rate. But, with the massive

number of M2M devices, it is not straightforward how much of RACH resources are needed,

especially when the arrival pattern of the M2M connection setups are not known. Typical

RA operation comprises four steps as shown by Figure 2.3:

1. MTC device transmits a randomly selected RA preamble sequence (announced by eNB

in the network) on physical random access channel (PRACH) to the eNB.
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Figure 2.3: Random Access Steps [1]

2. eNB transmits an RA response on the physical downlink shared channel (PDSCH)

in response to the detected preamble sequence. The response includes a preamble

identifier, uplink grant, and time alignment (TA) information.

3. MTC device adjusts uplink transmission time according to TA time. Then it trans-

mits its identity including RNTI and other messages (e.g., scheduling request) to the

eNB using the physical uplink shared channel (PUSCH) resources assigned in the RA

response in the second step.

4. eNB echoes the device identity it received in the third step on PDSCH.

Potential Problem: Problem will occur If numerous devices try to access simulta-

neously, in a situation when preambles/time-frequency resources are limited. It leads to

a larger chance of devices choosing the same preamble in the first step of choosing access

resources. If many devices send preambles with the same time/frequency resources, this will

cause the eNB to get the same RA RNTIs resulting into same UL grants and preamble in-

dexes. Therefore, all the M2M users(initially selected the same preamble) will send the data

to eNB on similar resources. However, the eNB just decodes the first received message and

It means other users will fail to access. If none of the users receive RAR message from eNB,

they will back off with a random time. In overload situation, number of optional backoff

values is far less than the number of contending MTC devices. These devices are choosing
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the backoff values at the same time, so may end up choosing the similar value resulting again

into collision in the next retrial.

Detailed discussion on RA procedure can be found in [8, 67, 68]. In the following, we

review some random access methods in view of MTC devices.

2.3.1 Random Access in MTC Devices

Random access in M2M is analyzed in the literature in different context. Most of the research

is based on resolving the contention among MTC devices when accessing the PRACH channel

[69]. Few researchers have addressed the physical data channel (PDCH) overload detection

and notification problem [15]. Few have made use of fixed timing alignment value between

MTC device and eNB for static devices [1]. Others have presented the concept of contention

based access (CBA) and discussed collision caused by it under high traffic load [70]. Slotted

multiple access with collision avoidance (MACA) with traffic load adaptation is also done for

M2M networks [71], where eNB on the basis of channel occupancy rate estimates the traffic

and calculates the RTS transmission probability for MTC devices. In [72], an statistical

approach for evaluation of synchronized traffic effects over signaling channels is presented.

Authors concluded that synchronization expected in some MTC applications, can block the

access channels or increase access delay. In the following, we will discuss few critical M2M

problems, on which most of the contemporary research is based on M2M networks. Figure

2.4 categorizes few research directions for MTC device channel access.

2.3.2 Access Delay

One of the important and challenging issues in M2M deployment, is to reduce the access delay

in simultaneous channel access attempts from massive number of MTC devices. Both ma-

chine devices and mobile users may suffer from severe collisions during network entry/reentry,

handover, scheduling request, and uplink timing synchronization. As a result, they have to

backoff their transmissions. This backoff and resulting retry attempts further add to the
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access delay. Therefore, efficient contention resolution with effective backoff algorithms are

required for such contention based scenarios. A comparative study on these backoff algo-

rithms with retry limit and access priority differentiation has been presented in [73].

Dynamic Access Control

In [74], fast retrial and dynamic RA algorithm is proposed to support massive M2M devices

by reducing the access delay. Authors proposed an estimation algorithm for finding the

access arrival rate in order to achieve the dynamic control of RA. In their scheme, MTC

devices suffering from collision during RA initial steps, will send a preamble immediately in

the next RA slot. Before each slot, eNB broadcasts dynamically calculated access rate.

Authors compare access delay and throughput of their scheme with backoff algorithm

used in 802.11 DCF. It was shown that the maximum throughput of the proposed algorithm

is higher even when the arrival rate of access is higher than the limitation of time slotted

Aloha scheme (1/a, while the throughput of backoff algorithm decreases rapidly when the

average arrival rate is higher than (1/a), where a is the arrival access rate. It is because,

in the proposed algorithm, the number of accesses in each slot no longer follows Poisson

distribution owing to the fast retrial scheme.

Backoff scheme brings greater time delay and fails to deal with higher arrival rate of

access, especially when there are large number of nodes. The proposed fast retrial and

dynamic access control algorithm, deals with the congestion in multi-channel RA under very

high arrival rate of access. It is able to achieve a comparatively low delay effectively utilizing

the channels. Therefore, it is a better choice in unique M2M environment for the efficient

channel utilization.

Multiuser Detection

To enable the efficient and low latency machine type communication, an contention based

assignment method is proposed in [70]. MTC devices transmit packets on randomly selected

resource without scheduling, which results in collisions. This problem is addressed by using
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multiuser detection technique, in which radio network temporary identifier (RNTI) of the

collided MTC device is decoded and used for regular scheduling in the subsequent subframe.

As resources are allocated for a group of MTC devices, collisions may occur when multiple

devices select the same resource. Authors suggested that RNTI sent by each device along

with the data on the randomly selected resource, should be used to resolve this issue. Due

to the small size of RNTI, it can be transmitted with most robust modulation and channel

coding scheme and can be successfully decoded when transmitted on the same time-frequency

resources. Afterwards, dedicated resources are allocated for data retransmissions bypassing

the regular preamble selection procedure.

As MTC devices select resources randomly without indications from eNB, it saves signal-

ing overhead. But this performance greatly depends on the coding rate of control information

and number of receiving antennas used in a system. If number of devices increases, the in-

terference is very severe which causes lots of retransmissions and hence latency is increased.

With more antennas, the channel capacity is increased and hence retransmission is reduced.

Multiuser detection is an expensive technique and its usage in everyday M2M applications

is infeasible. But this work can be useful in sophisticated M2M applications in areas such

as in military and surveillance.

No or Low Mobility

Some work has been done in joint massive access control and resource allocation in mobile

MTC devices. In contrast to mobile devices, fixed-location machine devices have a fixed

uplink timing alignment (TA) value which is considered in the random access procedure.

Based on this in [1], authors focus on fixed-location M2M services, such as smart metering

and remote sensing, by considering metrics such as collision probability and access delay to

evaluate their RA scheme. During initial access to a serving eNB, MTC devices use the

conventional RA steps, acquire and store their TA values. Since then, MTC devices will

utilize their own TA values assuming that it is fixed and unchanged unless the serving eNB

is updated. In the next RA procedure, a machine device which receives a RA response
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compares the TA value in the response with its own TA value. If it does not match, it

performs a retransmission procedure by selecting a random backoff value and by waiting for

the backoff time. If the received TA value matches with its own TA value, it continues to

perform a scheduled transmission.

The RA scheme discussed above is based on fixed information at a large number of fixed

devices, thus signaling overhead for location update is not necessary. Their proposed scheme

reduces collision probability, lowers average access delay, and achieves energy efficiency com-

pared with the conventional RA scheme. It enables the fixed-location MTC devices to

predetermine whether they can advance to the next step for scheduled transmission with a

higher probability of no collisions. Despite the above mentioned improvements, their scheme

suffers from unfairness issues depending upon the distribution of MTC devices. In a uni-

formly distributed case, as the distance from the eNB increases, the number of devices with

the same TA also increases. Thus, the group which is nearest to the eNB has a lower collision

probability than the group which is farthest from the eNB.
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Cooperative and Extended Access Class Baring

Authors in [81] presented the idea of cooperative access class barring (ACB) for access

load sharing to improve the access delay and congestion in M2M networks. Though the

cooperation among eNBs is already available in practice, they reinforced it by proposing

cooperative ACB. Evaluation was focused on two classes of performance metrics, (i) first the

average (access) delay and the average throughput averaged over all MTC devices and (ii)

secondly, the worst (access) delay and the worst case throughput that is the largest delay

among all MTC devices. In the same spirt, evolutionary game based ACB scheme is proposed

in [88]. Where MTC devices and all ACB parameters of eNBs are jointly optimized, based

on levels of congestions, resulting in effective improvements in access delay.

Extended access barring (EAB) has been recently introduced in 3GPP to control the

access load. Access class barring is used for H2H devices to provide prioritized access for QoS

users. In [89, 90], authors proposed EAB for MTC device overload control and showed that

overload situation can be effectively resolved. They gave complete model for the signaling and

overload control, by first calculating the theoretical maximum admission rate the network

can handle, and then EAB parameters were tuned accordingly to provide that admission

rate.

2.3.3 Traffic Overload and Congestion Control

One of the main challenges in M2M communication, is to efficiently handle MTC traffic

characteristics, specifically the load generated by massive simultaneous low data rate trans-

missions. Therefore, network should have the capability of counteracting signaling and traffic

load spikes caused by a sudden surge of massive numbers of MTC devices trying to access

the eNB all at once. This massive access can be due to several devices requesting to transmit

at the same time by some applications or due to roaming MTC devices suddenly attaching

due to a fault in their home network thus causing overload. In such situations, radio and

signalling network congestions may occur due to massive concurrent transmissions which
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can lead to large delays, packet loss and, in the extreme case, service unavailability. Various

overload control techniques are defined by 3GPP such as M2M server triggering eNB for

paging M2M terminals, broadcast-based, rejecting connection requests in the radio access

network and in the core network etc.

This increased overload primarily affects the PRACH and, is further aggravated if M2M

terminals try to repeat their access attempts without realizing that the unsuccessful RA

attempts are due to PRACH overload. Several solutions have been proposed to deal with

this overload situation such as access class barring [89], priority based backoff scheme [83,91],

methods for separating RACH resources [2], and increasing the RACH resource dynamically

to handle the overload [92].

Overload Analysis

When a large number of MTC devices attempts to access the channels thus causing the

network overload, the loading effect of non-active and active devices is evaluated in [93].

In the overload situation, MTC devices should enter detached state if they do not have

data to transmit. However, the drawback of a non-active MTC device staying in idle mode

is that serving eNB has to keep some information of the device for further use. Authors

compared two networks, one with active devices and another with nonactive devices. They

concluded that the loading of an eNB to handle idle and detached MTC devices is quite

similar. Considering the power saving and the complexity of context storing and forwarding,

MTC devices shall enter detached state if they do not have data to transmit.

PRACH Overload Control

An important issue of overload control is PRACH overload detection and notification, and it

has been discussed in [15]. Current LTE-advanced RA procedure includes a simple algorithm

for adjusting the PRACH transmit power for each unsuccessful RA attempt. The other

resources are not adapted according to the PRACH channel load condition. Here, authors

have devised a mechanism for eNB to automatically add or reduce PRACH resources when
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it detects an increase or decrease in PRACH load, respectively. A M2M terminal can be

instructed by the eNB to back off for a period of time before repeating the RA attempt.

Even though this backoff mechanism can be employed to reduce PRACH channel overload,

it is not scalable because all the M2M terminals do random backoff .

Reinforcement Learning Based eNB Selection

In typical overload control schemes, eNB selection for load sharing is not considered, which is

essential for efficient RA based M2M communication. To avoid congestion caused by random

channel access of MTC devices, a reinforcement learning-based eNB selection algorithm is

presented in [54]. It allows the MTC devices to choose the eNBs to transmit packets in a

self-organizing fashion. A MTC device in an overlapping area of multiple eNBs can choose

the eNB that maximizes its QoS performance. In this case, the MTC devices will observe,

learn, and adapt the eNB selection decision independently. Reinforcement learning algo-

rithm is used to address the eNB selection criteria, and specifically used as a load balancing

method to distribute MTC devices among the available eNBs. With the proposed eNB se-

lection algorithm, MTC devices have the ability to switch to the eNB that provides better

performance (i.e., smaller delay). In this thesis, reinforcement learning is used to allocate

time slots among competing MTCDs.

Prioritized Random Access

A prioritized random access (PRA) scheme is proposed in [2] to efficiently solve the RAN

overload problem and provide QoS for different classes of MTC devices. This is achieved

by pre-allocating RACH resources for different MTC classes with class-dependent backoff

procedures and preventing a large number of simultaneous RACH attempts by using dynamic

access barring (DAB). The authors have classified the MTC devices into categories. They

pre-assigned different amount of virtual resources for different MTC classes as shown in

Figure 2.5. The eNB decides the virtual resource allocation according to the knowledge of

the statistics of the MTC devices. Results shows that this scheme perform better than EAB
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schemes in terms of access probability and average access delay.

Figure 2.5: Virtual Resource Allocation For MTC Classes [2]

Code Expanded Random Access

In [83], authors presented a scheme to sustain a large and bursty random access of massive

MTC devices. Their scheme increases the amount of available contention resources with-

out the increase of contention subframes or preambles. This increase is accomplished by

expanding the contention space to the code domain through the creation of RA codewords.

Each device selects a codeword consisting of a randomly chosen preamble per every sub-

frame of the virtual frame. In this way, the number of contention resources is expanded

and the amount of collisions is reduced. But the collision occurs when two or more MTC

devices select the same codeword. Authors complimented this method with adaptive EAB

and creation of user classes, that were predicted according to the expected loads and traffic

types.

In the above schemes, by selecting the appropriate number of RA codewords, it is possible

to maintain the RA scheme efficiency over a large load region. For the same number of RA

access subframes and orthogonal preambles, the amount of available contention resources is

drastically increased, enabling the support of an increased number of MTC devices.
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Composite ACB and EAB

In [84], ACB and extended access barring (EAB) based on M2M traffic models are presented

as an overload control mechanism for MTC devices. Authors divided all UEs in different

access classes (ACs) and allow only specific class at a time depending upon barring factor,

which is the probability that it will be allowed or not.

• ACB: When network experiences overload, one or more ACs can be allowed while others

are barred from accessing the network. By suitably changing the barring factor and

barring time, network can control the proportion of allowed MTC devices accessing

PRACH and also their re-attempt rate. Thus it is very effective in controlling the

excessive access requests and signalling overhead. Also, it is helpful in improving the

access success rate significantly without introducing much penalty in terms of access

delay. One of the drawbacks of ACB is that, both the barring factor and barring

time are common for ACs. There is no mechanism to differentiate the service quality

in terms of barring probabilities for these classes of MTC devices. EAB has been

introduced with ACB to overcome this drawback.

• EAB: It is a method to control access overload and signalling congestion in M2M,

by allowing only a subgroup of devices at a time, so that collision among themselves

is manageable. One of the distinguishing factors of EAB from ACB is that in EAB

the ACs are either completely barred or unbarred, whereas in ACB it is based on

the probability. This means in EAB, only devices belonging to unbarred ACs can

attempt network access, whereas in ACB, among the devices belonging to the same

AC, some devices are barred while others are not. It is noted that MTC devices which

is configured for EAB, will first check EAB and than ACB to access PRACH.

Fair Congestion Control

In [82], fair congestion control method for terminal groups for telemetering and disaster

recovery, is proposed. This method distinguishes between RA collisions and idle signals using
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MAC layer information independent of physical layer specifications. The proposed method

is based on the existing exponential backoff method, the ALOHA reservation method and

uses exclusive and shared time slots (TSs). The eNB compares the number of received RAs

at both TSs, detects RA overload, and then controls the RA rates and packet rates of the

terminal groups.

Authors assumed that only important services construct exclusive groups thus using

exclusive TSs while other services share a slot by sharing a group. Some terms to understand

their method are listed below.

• Available Packet Rate (APR): of a group is defined as the sum of the packet rate that

is generated in terminals of the group and received by the base station.

• Offered Packet Rate (OPR): of a group is defined as the sum of the generated packet

rate in terminals of the group.

• Minimum Packet Rate (MPR): for each group is a static value and if the group’s OPR

is equal to or less than its MPR, the APR shall be the OPR. Here, the sum of MPRs

shall not exceed 1. The MPR shall be able to be set to any value between 0 and 1.

If the group’s OPR is more than its MPR, those groups share the remaining bandwidth,

and the APR of each group shall be proportionate to its MPR. The fair congestion control

method for terminal groups shall be effective at any OPR per terminal between 0 to 1, even

if the OPR changes dynamically.

With the proposed method, minimum call rate is assured to the terminal groups for

specific services even if all terminals make simultaneous RA attempts and re-attempts. This

method uses only MAC layer information, so it can be combined with any physical layer

specifications. In addition, eNB was able to control the packet rate of each group including

all the terminals persistently attempting to connect.
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PDCCH Bundling Transmission

In [85], authors dealt with congestion problem on the physical downlink control channel

(PDCCH). They provide mathematical analysis of access delay by using queuing theory.

Authors also evaluated access performance of M2M through system level simulation and

showed that the congestion on the air interface is very serious in some M2M applications.

To ease the congestion, they proposed bundling transmission scheme over PDCCH. They

suggested to choose one value from the reserved RNTI and define it as the MTC-RNTI.

eNB multiplexes the grant information of multiple MTC devices into one packet data unit

(PDU) and identification of each multiplexed MTC is masked with MTC RNTI. MTC devices

monitor PDCCH channel for both RNTI, i.e, for their cell and MTC RNTI. After receiving

the PDU, MTC device searches for their own grant information using their cell RNTI.

Two application scenarios of normal and emergency services are considered in [85]. The

normal case includes applications in which the access management can be applied and MTC

devices obtain access to the network in coordinated manner with uniform distribution. While

for emergency case, MTC devices access the network in an uncoordinated manner and beta

distribution is used to model the arrival rate. It was shown that almost 90 percent of

MTC devices finish the access within 100 ms by using proposed bundling scheme while the

percentage is only 60 percent without bundling transmission.

2.4 Resource Management

2.4.1 Resource Allocation

Efficient, fair and less complex resource allocation is important in M2M networks with dis-

tributed implementation for a large number of MTC devices. Fixed channel allocation

though easy to implement often cannot satisfy the unbalanced and dynamic traffic demands

in M2M networks [10]. M2M communication, which can utilize cellular networks as under-

lay and reuse the cellular resources, can potentially achieve improved spectral utilization
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and cell throughput enhancement. With optimum resource allocation for MTC devices,

M2M communication can effectively improve the total throughput along with interference

management between MTC devices and traditional cellular devices [94].Orthogonal resource

allocation between two kinds of links is one of the options to have no interference among

them. This sharing method is simple to implement; however, the resource efficiency still has

room to improve when using non-orthogonal sharing. Although with this sharing, high spec-

trum efficiency can be achieved, interference exists between M2M and H2H users, preventing

the system throughput from being further enhanced. Therefore, to mitigate interference is

another critical problem to deal with. Coordinated multipoint transmission and reception

(CoMP), in particular joint processing and coordinated beamforming, has proven to be a

beneficial solution for interference management in cellular networks [95]. Hence CoMP, where

multiple eNBs form a cluster and cooperate by exchanging signaling or user data via the

core and backhaul networks, can be utilized for interference mitigation in MTC devices as

well. In the following, various resource management methods with different perspectives for

M2M communications are discussed.

To address the interference problem in M2M/H2H communication, an intelligent resource

allocation scheme for massive number of devices is presented in [87]. There, MTC devices

share only a part of each cellular user resources, such that the interference on regular cellular

communications can be suppressed. In the mean time, MTC devices can share multiple

cellular users’ resources to meet their own QoS requirements. This is unlike a conventional

resource allocation scheme where each device shares only one cellular user’s entire resources.

Authors formulated the problem of radio resource allocation for M2M communications as a

mixed integer nonlinear programming, and proposed an greedy heuristic algorithm to lessen

interference utilizing channel gain information. They evaluated the network performance

through three parameters: system capacity, the stability of H2H communication and MTC

service rate. Stability of H2H communications is reflected through MTC impact on cellular

users. Their proposed scheme enhances the overall system capacity and provides better

system stability in M2M communications underlaying cellular networks while guaranteeing
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the performance of M2M communications. As M2M pairs share a part of cellular users

resources, M2M interference to one specific cellular user would be weakened in this design.

One of the most important problems in M2M networks is to efficiently handle the heavy

random access (RA) load caused by a large number of MTC devices. It includes RA preamble

allocation management followed by efficient resource allocation and management. Due to the

unique characteristics of M2M and related emerging applications, RA load is expected to be

more challenging. Increase in preamble contention results in increased collisions and in turn

increases the retransmission attempts. The number of transmission attempts and a timeout

period for uniform backoff after a collision, are the measures to quantify the throughput

and efficiency of the distributed networks [96]. In [86], RA preamble resource management

method to accommodate new network traffic patterns caused by frequent transmissions of

small data is presented. Authors presented two methods for RA preamble allocation and

management. First method is to split the set of available RA preambles into two disjoint

subsets: one for ordinary data applications and other for small data applications. While in

the second method, second subset is for both types of applications keeping the rest same.

Authors did throughput comparison between the two types of methods and demonstrated

that each method has benefits in throughput over the other depending on the load conditions.

2.4.2 Energy-Efficient Algorithms

M2M network usually consists of a large number of typically power constrained devices,

such as battery equipped sensors, that gather data and relay information without human

interaction. Thus in order to prolong network lifetime and provide ”green” communication,

M2M networks should take into account the energy efficiency requirement. In many M2M

applications, saving energy for machines is more imperative than increasing the throughput,

because machines usually transmit small data but have limited energy. One of the critical

issues of M2M is how to deal with a large number of access requests from massive amount

of devices while maintaining low power consumption of the embedded M2M system with
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tolerable latency.

There are four main sources of energy consumption in M2M networks: energy required

to keep the communication radios on; energy required for the transmission and reception of

control packets; energy required to keep sensors on; and energy required for data transmission

and reception. The fraction of total energy consumption for sensing remains constant and

cannot be controlled. While energy usage for data transmission/reception is optimized by

data aggregation schemes and hence, the energy expended to keep the communication system

on is the dominant component of energy consumption. In literature, there are several ways

for minimizing the energy consumption such as minimizing collisions, retransmissions and

idle times, and clusterings. A most common approach is duty-cycling the radio components

of the devices i.e, devices can switch on and off their radio transceivers to avoid waste of

energy when no communications are being carried out. Duration of the duty cycle period

will determine how efficiently devices can communicate [97]. Some of the work done in this

respect are discussed next.

Cooperative Sleep and Wake

An effective way to minimize energy consumption and to prolong network lifetime is to reduce

the time spent by nodes in idle listening. This idle listening consumes a large amount of

energy and various sleep-wake scheduling protocols have been proposed in literature [98,99]

to deal with them. In these papers, authors have considered a source communicating with

the corresponding destination with the help of multiple relays [76]. Authors also determine

the optimal transmission energy at each active relay, while providing QoS assurance to

the receiver. Instead of selecting a single relay and assuming fixed energy transmissions [98],

they combined cooperative communication techniques and sleep-wake mechanisms. Multiple

relays are selected assuming non fixed energy transmissions and also practicing sleep periods

of fixed length. In order to determine active relays, three alternative relay selection criteria

are used. The energy of the active relays is computed according to the minimization of the

total energy, subject to meeting error performance constraints. The proposed energy efficient
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sleep-wake mechanism combining relay selection techniques and sleep wake mechanism takes

place in two phases:

• In the first phase, N relays are selected to participate in the transmission process out of

L relays using three alternative criteria. These include, best channel state information

or the largest residual energies or a composite criterion involving both residual energies

and the channel state conditions of the relays. The remaining L − N relays that are

not selected sleep for a fixed time period.

• During the second phase, optimal energy allocated to theN selected relays is computed,

simultaneously guaranteeing a certain required QoS level for the destination node. The

computation of the energy allocated to each one of the N selected relays is based on the

minimization of the total consumed energy at the relays, subject to meeting a specific

constraint on the received SNR.

The method discussed above is shown to increase network lifetime and achieve a balanced

tradeoff between energy consumption and error performance.

Group Based Selection

In the context of network resource savings, authors in [3] suggested group based transmission.

They proposed MTC access control algorithm to ensure low uplink energy consumption (EC)

of MTC. MTC devices are arranged into groups. After grouping, one device will be assigned

as the coordinator in each group, and only coordinators are allowed to communicate with

eNB as shown in Fig. 2.6. This grouping and coordinator selection scheme result in devices

accessing with reduced uplink EC of the MTC system. Moreover, implementing grouping

reduces the redundant signaling to avoid congestion. In Figure 2.6, Link 1 is between MTC

device and coordinator and Link 2 is between coordinator and eNB. Both links operate

in different frequency bands to avoid interference. Moreover, weighting factor which takes

channel condition between the coordinator and eNB into consideration, is introduced to

further improve EC performance. A machine learning algorithm which clusters data rapidly
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with low complexity, is applied for the group formation and coordinator selection in each

group. Optimum energy consumption is implemented by exhaustive search to minimize the

energy consumption in each group. Various considerations of channel condition between

coordinator and eNB are also given.

Figure 2.6: Coordinator Random Access [3].

Similar grouping scheme is also used in [14], where joint massive access control and re-

source allocation schemes are proposed. It performs machine node grouping and coordinator

selection, and coordinates random access with a consideration of minimizing transmission

and circuit energy. Also, they have devised a mechanism to determine the proper number

of groups under a 2-hop transmission protocol, with minimum energy consumption in both

flat and frequency-selective fading channels.

Group based MAC can reduce signaling overhead and simplify the traffic, policing and

charging, thus increasing the energy efficiency of MTC devices. However, formation of

groups is done for minimizing the energy consumption without taking into account the delay

requirements of the devices. In the proposed scheme, group leader accumulates the received

uplink traffic and periodically merges the messages at its own internal buffer. Therefore,
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a group leader having a large internal memory and good communication link quality is

required. Selection of a group leader is also another problem to be further researched.

Data Aggregation

Applying data aggregation is one way to reduce energy consumption by reducing transmission

overhead and prolonging the lifetime of M2M network. Proceeding with the same idea,

various data aggregation schemes are proposed in [13,100–102]. In [101], two methods based

on the Karhunen Loe (KLT) or partial KLT transform for data aggregation in M2M gateways

are proposed. Main focus is on the use of capillary M2M networks for the estimation of

spatial random fields. Capillary network is composed of a high number of devices (e.g.,

sensors) equipped with short-range radio interfaces. This capillary network is coordinated

by a M2M gateway which is responsible for collecting spatially correlated sensor observations

and aggregating them prior to their re-transmissions to a remote application server. Optimal

duration of these two transmission phases for providing best trade-off in terms of packet

collisions and compression level is determined. Also, the effect on optimal point with the

change in spatial correlation properties of the underlying field is investigated.

To utilize data aggregation, M2M devices need to have message buffering by utilizing a

buffering timer. Upon its expiration, a M2M device retrieves data collected in the buffering

period and aggregates them into a new message, which increases the transmission delay from

the source to the application server. To address this issue, authors proposed an analytical

model in [102] to investigate the configuration on buffering. Authors discussed the perfor-

mance metrics related to latency of the application server, aggregated volume and energy

consumption against the buffering time configured in MTC devices.

Data accuracy, latency, energy efficiency and network lifetime are four key factors used

to determine the efficiency of data aggregation techniques. Data aggregation is a solution to

increase the efficiency and decrease the overhead associated with small and frequent M2M

data transmission. However, it poses extra challenges on per-hop and end-to-end security

since aggregating nodes essentially need to access the information content. Due to the fact
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that wireless medium is lossy in nature, longer aggregated packets are at more risk of errors

than shorter non aggregated messages. Also, long non intended packets can be received from

a valid node causing exhaustion of the nodes’ battery.

Client Relay Scheme

For reliable data transmission, energy expenditure exponentially grows with distance. Hence,

relaying the data over shorter intermediate hops seems to be beneficial. In this context, a

client relay scheme is proposed in [77] to improve the link reliability and energy efficiency for

MTC devices. Authors evaluated this scheme across client throughput, latency, and energy

consumption. They pointed out that latency and energy expenditure of cell edge M2M

devices may be dramatically lowered, when there are simultaneous network entry attempts

by a large number of MTC devices. Such surge in network access attempts may occur, for

example, in a power outage scenario where a large number of smart meters attempts to

connect to the network to report the outage event, and again when they reconnect to the

network upon restoration of power. Their proposed client relay scheme can help ensure that

the performance of other cellular devices is not adversely impacted by a large number of

uncontrolled network access attempts from M2M devices.

In the same context, authors in [103] have discussed the issue of relay selection, from

a pair or multiple pairs of MTC devices, serving as two-way relays for the cellular links.

Since MTC devices and cellular user may potentially be at different locations, their channels

towards eNB and cellular users are different. Therefore, when different MTC devices act as

the relay, they can help the cellular links achieve different rates. Relay selection criterion

depends on the channel state indicator (CSI) of both two-way relays, and MTC device

links unlike conventional relay channel where CSI of only two-way relay links are generally

considered.

Client relay is believed to be a promising concept that can boost the performance of

wireless cellular networks. By reducing transmission power through the use of client relays

will also reduce the overall interference to the neighboring cells. Therefore, these techniques
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may be preferred under interference limited conditions. Also, cell edge user performance is

improved when devices collaborate with each other. However, finding the optimal distance

to locate a relay between a source and a destination for a reliable transmission is a challenge

[104].

RFSA

In [75], reservation frame slotted aloha (RFSA) is recommended for the channel access of

MTC devices. Authors evaluated its performance through simulations and showed that it

is more efficient than frame slotted aloha (FSA) [53], as it guarantees collision free data

transmission once device succeeds for the first time. Performance of RFSA is evaluated

under M2M data burst transmission case, assuming delta traffic model. Authors assumed

a group of devices switching off their radio interfaces for certain periods of time to save

energy. They wake up periodically and transmit data, thus abruptly setting network to the

saturation condition. Each device intending to send L packets is waiting for the coordinator

to send a request for data. Afterwards it transmits a packet to the coordinator without

carrier sensing. If the coordinator has received the first data packet correctly, the successful

device reserves that slot for next L− 1 frames. After sending complete packets, device will

releases its slot for other devices in the subsequent frames. This is unlike FSA, in which the

device randomly selects one of the slots for each packet, thus contends independently for

each packet of the burst.

Authors showed that under idle/saturation conditions, RFSA outperforms FSA, in terms

of average contention period, network throughput, and average energy gains for the coor-

dinator and the devices. They concluded that there exists an optimal frame length which

optimizes the performance of the entire network for both the protocols. Proposed method

is energy efficient as energy gain on the devices can reach up to 48 percent for large net-

works, and increases further with the increase in the size. Such energy gains accounts for

the prolonged lifetime of M2M networks.
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Access Delay Constraint

Tradeoff between energy consumption and delay is investigated in [78] with respect to given

resources. Flat and slow fading channel environment is considered assuming that static

devices are distributed in rural area transmitting with low and fixed transmit power. As

MTC device is characterized by low transmit power, each device can have at most 2-hop

transmission, i.e., between MTC device and coordinator, and between coordinator and eNB.

Authors aim to minimize the total consumed energy while satisfying the assigned resource

and system delay constraints. First step starts by properly arranging MTC devices into

groups followed by coordinators selection. After that, each group re-selects a proper MTC

device as the coordinator to relay packets of other MTC devices in the same group to eNB.

The two steps execute alternately until the result of group and coordinator selection remains

unchanged. One of the most important features to maintain low energy consumption is to

extend the battery life of MTC devices. In the given scheme, total energy consumption is

minimized by reducing the energy required by each packet transmission.

2.4.3 Admission and Rate Control

Admission and rate control are crucial in efficient functioning of large number MTC de-

vices in M2M networks. Its intelligent design helps to allocate radio bandwidth based on

QoS demands in resource constrained M2M networks. Due to the versatile nature of MTC

devices and their application specific data traffic patterns, automatic admission control is

essential. An adaptive admission control should analyze and predict the QoS performance

of devices, and accordingly allocate appropriate wireless bandwidth to accommodate more

MTC sessions without QoS degradation. Several admission control schemes for M2M net-

works presented in literature are discussed next.

In [79], a cross-layer design of distributed admission and rate control is presented. A

game theory analysis module (GAM) is used to model the competition of radio bandwidth

among MTC devices. In addition, distributed QoS-aware and fair sharing for transmission
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opportunities are provided. Each device contains media format management entity and the

QoS management entity. Media management entity will examine that the requested session

by a device matches its capabilities, and QoS management entity will decide whether the

new media flow is acceptable or not. This decision is based on the results from two of its

modules i.e., of queuing analysis module (QAM) and GAM. GAM will select and announce

a tentative rate which could maximize the utility of the new media flow. Based on this

rate, each existing media service will invoke its GAM and feedback with an updated rate.

From then onward, all the media flows will compete under a non-cooperative game theory

framework.

Admission control schemes proposed above suffers from higher call blocking probability

due to poor handling of call requests. This is specifically true when the duration of trans-

mission interval for an MTC device is longer than its delay constraint. To overcome such

a limitation, an admission control scheme is proposed in [80] that improves the call block-

ing probability and reduces the call admission overhead by using the delay based priority

assignment scheme. The proposed method manages the MTC devices into group, and set of

devices with the same QoS requirement having QoS parameter is grouped together as one

cluster. MTC devices communicate with MTC controllers through eNB and once admitted,

they are allocated with radio resources for data transmission. Also it is assumed that there

are delay constraints. The elapsed time from the data creation of an device until it finishes

its transmission to an eNB is bounded by a maximum allowable delay. The eNB allocates

the granted time interval (GTI) to the clusters, which is a set of the RBs having both time

and frequency elements. A MTC device requests call admission by sending a request with its

QoS parameter to eNB through the random access channel. If there already exists a cluster

satisfying the QoS requirements, then the associated GTI has at least one available slot,

the request is accepted and the MTC device joins the cluster. Otherwise, a new cluster is

created. Also, it is checked in advance that the creation of the new cluster does not affect the

delay satisfaction of the existing clusters. If the GTIs for different clusters are overlapped

at the same time, the cluster that has a shorter delay is given a higher priority.
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2.5 Prospective Scheduling and Random Access Tech-

niques

It should be noted that 3GPP has proposed some important solutions for handling small data

transmissions in M2M networks over LTE [42]. Considering the traffic generated by machine-

type applications, RAN’s ability is enhanced by reducing signalling overhead between MTC

device and RAN, and also device’s power consumption is reduced.

These are achieved via improved connection management for short-lived connections and

improved handling of small data during live connections. Fewer control messages are pro-

posed by combining the information exchange between MTC devices and RAN. During the

idle-connected mode, the signalling is reduced by transferring small amount of data. Con-

nectionless data transmission is proposed for uplink data in device’s idle state using RACH

procedure. Overall, to handle small data transfer in M2M networks, some of the mentioned

solutions will require new procedures for random access and connection management in

future M2M enabled LTE networks.

The proposed solutions for power optimization include extending DRX (discontinuous

reception) value in idle modes applicable for delay tolerant applications. The MTC devices

can assist in adjusting the DRX values. In the connected mode, longer DRX cycles are

considered that will help devices to switch off their transceivers for longer periods of time.

Another solution is to delay the transmission if the radio coverage and channel conditions are

weak, again applicable for delay tolerant applications expected in traditional M2M networks.

By introducing another state (besides connected and idle states), MTC devices are expected

to save power. The above mechanisms will incur longer access delays and hence applicable

for machine-type services that can tolerate traffic with longer access delays. The radio

access protocols will require modification to accommodate DRX cycle extension. The level

of burstiness in the M2M traffic profile will largely influence the savings that can be realizable

using the proposed enhancements.
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Scheduling for Multi Class Services

Some authors have suggested scheduling and resource allocation schemes to deal with the

QoS requirements of multi class system. They used system capacity and the number of

effectively served requests as performance metrics. The resource allocation algorithm adapts

dynamically to the number of requests in the system, assigning resources with as much

fairness as possible.

Two scheduling algorithms are proposed: Single Channel Scheduling Algorithm (SC-

SA) and Multiple Channel Scheduling Algorithm (MC-SA) in the context of multiple class

traffic. SC-SA heuristic allows the assignment of at most one channel block per request and

per transmission time interval (TTI), independently of its QoS requirements. The aim of the

SC-SA allocation scheme is to allocate more radio blocks (RBs) to the requests experiencing

the worst conditions, than the ones which have a higher performance. The MC-SA algorithm

consists of allocating more than one resource block to the requests that are not meeting the

throughput target. The reason for allocating multiple RBs to a single request is in order to

help the requests such that the average throughput transmitted within one TTI is smaller

than the throughput target. If the number of requests is higher than the total number of

available RBs, the scheduler takes the requests that are experiencing the poorest performance

and assign them a RB. Their suggested algorithms seem to be excellent choice for the mixed

nature traffic of MTC devices, in which resource allocation assignment is done in a fair way

such that the throughput and delay are adaptively adjusted according to the traffic load and

traffic type.

Semi-Persistent Scheduling

A large number of MTC devices imposes serious constraints to the applicability of highly

dynamic scheduling approaches. It should support a massive number of MTC devices that

generate small amounts of periodic/non-periodic data traffic. Due to the special traffic

requirement of MTC, semi-persistent scheduling is a possible candidate in M2M networks.
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It allocates an uplink traffic channel periodically without any additional control message

during a traffic burst. An initial uplink traffic channel is obtained either by random access

or via an assigned control channel, over which a periodic reservation is made. The eNB

allocates an uplink grant that allows the terminal to send a buffer status reporting message,

and finally a traffic channel is granted to the terminal. Semi-persistent scheduling makes

an allocation decision for a longer time period; thus, it is not necessary to inform the MTC

device on a TTI basis. This avoids the unnecessary signalling overhead which is a serious

matter in simultaneous massive access attempts of MTC devices.

Subframe Allocation and Management

RACH is responsible for achieving uplink time synchronization for a user which either has not

yet acquired, or has lost its uplink synchronization. When multiple users transmit the same

RA preamble code in the same RACH subframe, it will result in collision and cause delayed

access by retransmission. For conventional RA procedures, some authors have suggested

increasing the RACH channels for high volume of users. It is recommended to use the same

scheme in massive M2M scenario. By increasing RACH subframes will also result in decrease

of average delay. There exists a tradeoff between the RACH subframes and subframes for

data transmission. Therefore, it is crucial to determine the number of RACH subframes as

per the arrival rate, in order to optimize the overall network performance while satisfying a

given delay requirement. A network should be able to detect the change of the arrival rate

of the random access preambles, and adapt the number of RACH subframes accordingly.

Application Specific QoS Dependent Scheduling

Diverse nature of M2M communication imposes different requirements on scheduler in con-

trast to ordinary systems. Ordinary LTE schedulers are mostly designed to maximize the

throughput while taking into account some fairness and QoS rules. Also, due to the limited

number of differentiated services (voice, video etc) and relatively very small difference in
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their delay tolerance constraints, channel quality plays a critical role in scheduler character-

ization. In machine type communication, channel quality and QoS constraints are equally

important for the design of a scheduling algorithm. It is also important to know that which

device can tolerate the denial of service and for how long can stay in channel congestion

situation. Knowledge of the exact delay tolerance of devices significantly affects the number

of served devices. Therefore, an efficient M2M scheduler is required, which is able to con-

tinuously allocate shared channel resources among both types of users, maintaining required

performance gains under diverse network conditions.

The emerging field of M2M communication has introduced new challenges for the com-

munication and networking research communities. It has also created new multi-disciplinary

research opportunities and potentials for collaborations among researchers in the communi-

cations, networks, signal processing, security, and sensor areas.

Other Research Possibilities

Most of the focus of the current research is on traffic overload, congestion control, admission

control and spectrum utilization. However, little work has been done in energy efficiency,

energy efficient MTC device design, QoS provision support for massive M2M communication

Unique features of M2M communication such as the larger number of connected devices

and the diversity of applications require specific enhancements to the existing communication

system. Fixed cost for M2M communication is very high as M2M nodes are transmitting

mostly small size data but the frequency of their making data connections is higher than H2H

communication. This is due to their specific roles and functions: e.g., frequently reported

small size measurement data.

One of the most important tasks is the energy efficient handling of massive RA load

generated by a possibly huge M2M population and avoiding the resulting congestion. The

energy required to sense events is usually a constant and cannot be controlled. While the

energy expended to keep the communication system on (for listening to the medium and for
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control packets) is the dominant component of energy consumption, which can be controlled

to extend the network lifetime. Periodic, asynchronous, on-demand sleep wake scheduling

are the most common ways to minimize energy consumption. However, additional delays are

incurred to exchange synchronization information among MTC devices and may be unac-

ceptable for delay sensitive applications. Another way is to quantify the minimum resources

that can be allocated, this will result into transmission of small data units, thus increasing

the energy efficiency. Also, energy efficiency strongly depends on the transmission power

and the adaptive modulation/coding procedure. Indeed, when an aggressive modulation is

used, the energy efficiency decreases for the transmission of small amounts of data, as the

physical resource blocks are under utilized. Also, there will be an optimum frame length

which minimizes the average delay and maximizes the energy efficiency of the M2M network.

Another challenge is of implementing and optimizing the wireless resource sharing be-

tween the M2M and H2H links. An orthogonal resource allocation is simple to implement

and does not cause any interference among both types of users. However, the resource effi-

ciency increases when using non-orthogonal sharing. Where both types of users are sharing

the same frequency and time, it results in interference thus costing efficiency. The severity

of interferences depends on two major factors; transmit powers of M2M transmitters and

specific resource allocation protocol. In order to guarantee the priority of cellular commu-

nication, keeping the transmit powers of M2M transmitters under specific thresholds is one

direct way to ease its interference to cellular receivers. However, this measure seriously harms

the reliability of M2M communication. Therefore, attention must be focused on the design

of resource allocation scheme, and effort should be taken to make eNB more intelligent.

Data aggregation schemes i.e., group based MAC has been suggested by many researchers

and seems efficient and applicable for massive M2M access. Group leader accumulates the

received uplink traffic and periodically merges the messages at its own internal buffer. It can

reduce signaling overhead and simplifies the traffic, policing and charging thus increasing the

energy efficiency of MTC devices. There are numbers of available algorithms on clustering

already in use by WSNs, that can be equally applicable for MTC devices. However, it is
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challenging to make/remake groups/clusters in real time with specific QoS requirements.

Currently extended access barring is considered as the good choice that could control the

potential surge of access attempts, and therefore it may be introduced as a baseline solution

to RAN overload in the future. The basic idea of EAB is that the MTC devices belonging to

certain access classes indicated by the network broadcasting information are not permitted

to access the network as long as EAB is activated. However, the enabling mechanism and

practical barring procedures for EAB are still in development. Broadcasting MTC access

barring by eNB is one of the solutions; however, this solution does not prevent congestion if

the devices try to connect simultaneously when the barring period elapses.

In addition to the above, prioritized random access for pre-allocating RACH for avoiding

simultaneous access attempts and the use of cooperative access class baring to offload the

excessive M2M traffic are proposed. However, these schemes are infeasible for static MTC

devices and do not accommodate additional traffic from H2H devices. Critical step in im-

plementing these schemes is to estimate the number of active MTC devices or ones triggered

by an event, and optimize the transmission probability in medium access. This problem is

even more important in event-driven M2M applications, which are characterized by highly

bursty traffic. However, these schemes work well under some conditions and seem infeasible

in others. In the given situation, distributed random access techniques may be a better

choice than scheduling.

Another research area is mainly on efficient congestion control and access delay during

channel access attempts. Still important issues such as fairness in resource allocation, max-

imization of throughput, energy efficient MTC device design, etc are yet to be explored.

Keeping in mind the versatile M2M application paradigm, it is very difficult to devise a

single generalized solution for all quality measures.

Intelligent power control scheme is required to minimize interference from M2M to H2H

layer. Power control needs to be complemented by mode selection, resource scheduling and

link adaptation to properly handle intra and inter-cell interference. Building M2M power

management on already standardized and widely deployed power control schemes facilitate
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not only a smooth introduction of MTC devices, but would also help to develop inter-

operable solutions between different devices and network equipments. However, due to new

interference scenarios in M2M networks, the question naturally arises whether the available

power control techniques are suitable for M2M communications.

2.6 Chapter Summary

In this chapter, a comprehensive survey and comparison of existing techniques for emerging

M2M communication is presented from the medium access control point of view. It covers

majority of noble research in channel access including scheduling as well as random access

techniques, and then the resource allocation for massive MTC device access. Since there are

many dimensions along which to classify the channel access mechanism, we do not attempt to

cover all the possible combinations. Rather, we summarize the choices made by the surveyed

mechanism and tried to extract the important objectives from the literature. We tried to list

M2M enabled LTE with possible emerging applications and it is an interesting research area

to pursue. More efficient and less complex solutions such as combination of scheduled and

random access for M2M communication over LTE could be examined towards more flexible

and diverse M2M traffic and application handling.

In the following chapter, we consider MTCDs in a clustered network structure, where they

are divided into clusters and the devices belonging to a cluster communicate to cluster head

(or controller). We propose a multi-objective optimization based solution to the problem of

resource allocation in interference-limited M2M communication. We formulate the problem

as a mixed-integer non-linear problem with multiple objectives and solve it using meshed

adaptive direct search algorithm.
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Chapter 3

MTCD Controller Resource

Allocation

In this chapter, we propose a multi-objective optimization based solution to the problem of

resource allocation in interference-limited machine to machine (M2M) communication. We

consider machine type communication devices (MTCDs) in a clustered network structure,

where they are divided into clusters and the devices belonging to the cluster communicate to

cluster head (or controller). The cluster head aggregates the traffic and relays from MTCDs

to eNB and vice versa. We maximize the number of admitted MTCD controllers and through-

put with least interference caused to conventional human users. We formulate the problem

as a mixed-integer non-linear problem with multiple objectives and solve it using meshed

adaptive direct search algorithm. Simulation results show the effects of varying different

parameters on cumulative throughput and the number of admitted MTCD controllers.

3.1 Introduction

The M2M application portfolio includes a vast number of diverse interconnected smart de-

vices, each with only a small amount of data needing to be transmitted. Massive number

of M2M terminals, trying random access (RA) for channel resources at once, will result in
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overload, congestion and access problem. Other potential issues are on-the-air interface in-

cluding physical layer transmissions, random access procedure, scheduling and radio resource

allocation with quality of service support.

A lot of research has been conducted in M2M domain from the channel access, overload

control and energy efficiency perspective as discussed in chapter 2. For instance, congestion

and overload control was dealt with in [82, 84], while access delay was taken care in [70,

74]. One of the promising approaches for overcoming the problem of spectrum scarcity and

overload problem is the grouping of MTCDs into clusters. In this context, cooperative and

group based access is proposed to ensure low uplink energy consumption of MTC devices

in [3, 77, 78]. A similar grouping scheme is also used in [14], where joint massive access

control and resource allocation schemes are proposed. In the same spirit, authors in [105–

107] presented the idea of joint optimization of cluster formation and power control. In

continuation to the above, a joint energy-saving mechanism, employing clustering is proposed

for M2M communication in [108, 109]. In [110], power allocation and energy maximization

is studied as a non-convex optimization problem in M2M networks, taking into account the

circuit energy consumption and battery storage capacities.

Most of the existing M2M work has predominantly been designed with the objectives

of maximizing the service quality and data rate for individual machines, minimization of

machine energy consumption and maximization of the number of MTCDs with minimum

data rate constraint. In our work, we formulate and solve the multi-objective optimization

problem of maximizing the number of admitted devices with dual interference and power

constraints for human and machine devices, for M2M communications. The proposed multi-

objective framework optimizes two conflicting objectives. The first objective is to maximize

the total throughput and second is to minimize the total transmitted power for MTCDs.

In addition, we want to maximize the number of MTCD controllers that can simultane-

ously access the channel to the base station (eNB). To best of our knowledge this type of a

work is not done by others before. Previous works are comprised of optimization of channel

access, resource allocation and cluster formation with a single objective, usually of energy
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minimization or power control etc., but we are optimizing two important system parameters

with simultaneous admission control. This type of problem is a mixed integer program-

ming problem, which is usually NP-hard. We use Optimization Interface Toolbox (OPTI

toolbox) for solving this mixed integer non-linear programming (MINLP) problem. Lot of

applications of MINLP are in engineering design problems, operations research and manage-

ment [111, 112]. OPTI toolbox is based on mesh adaptive direct search (MADS) [113–117]

and we are using it for solving our optimization problem, which has not been used in M2M

research for optimization of channel access and resource allocation.

The remainder of this chapter is organized as follows. Section II describes the system

model. Then multi-objective optimization problem is formulated in Section III. Simulation

setup and results are covered in Section IV. Finally, Section V provides concluding remarks.

3.2 System Model

We consider M2M communication supported in the traditional cellular systems. This is a

high machine density scenario with hundreds of machines within a macro cell. A single eNB

(base station) needs to support human devices as well as machine devices in the cell. One

major problem for this scenario is the limited random access to resources and also, eNB

may not be able to process massive number of access attempts generated by the machines

(MTCDs). As a result, a clustered structure has been proposed to divide machines into

several clusters. Note that formation of clusters on the basis of energy efficiency and QoS is

another interesting area. For simplicity of analysis, here we assume that clusters are formed

on the basis of MTCD spatial distribution. Within each cluster, a cluster head known as

MTCD controller is elected to process the data transmission to machine devices. Therefore,

the data from eNB is firstly transmitted to the MTCD controllers and then relayed to

MTCDs. This results in off-loading the eNB’s processing load, random access attempts and

alleviate collisions. From eNB perspective, MTCD controller acts like other human devices
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in the cell since they communicate directly to it through the regular resource allocation

process.

We consider a heterogenous wireless network with one eNB, K MTCD controllers and M

human devices as shown in Figure 3.1. MTCDs are arranged into K clusters and each con-

troller is responsible for the data transmission and scheduling for each device in a cluster. For

simplicity of analysis, we assume that all the controllers have same data rate requirements.

Figure 3.1: Heterogenous Network with eNB, MTCDS and Controllers

We consider the downlink transmission scenario for both human and machine links (i.e,

the eNB and cluster heads act as potential transmitters) in downlink. Channels from eNB

to human devices (HD) and MTCD controllers, and controllers to MTCDs in clusters are

downlinks. 1 We assume that MTCD controllers are using orthogonal channel assignment

from eNB, i.e., no two controllers are using the same channels. Therefore, inter-cluster

interference is eliminated. We denote by hk, the channel from the source to the kth MTCD

controller, gm,k the channel from the source to the mth primary (human) user. Also, pk, the

source power in the kth MTCD channel and Ps, the maximum source power i.e,
∑

k pk ≤ Ps.

The noise power is No in each channel. In Table 3.1, all the used parameters are listed.

1Note that HD can be human users or any protected users
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Table 3.1: Notations
Symbol Definition

MTCDs Machine type communication devices

MINLP Mixed integer non linear programming

M2M Machine to machine

eNB Evolved node base station

RA Random access

K Number of MTCD controllers

M Number of human devices(HD)

HD Human devices

No Noise power

Φtotal Total numbers of admitted MTCDs

Im,k Interference threshold at mth HD for channel used by kth controller

hk Channel between the eNB and the kth MTCD controller

pk Maximum allowed transmission power at the kth MTCD channel

Ps Maximum available power of the eNB

gm,k Channel between the eNB and the mth HD in the k MTCD channel

F () Fitness function

Ck Channel capacity of the kth controller

Cth Minimum capacity threshold for MTCD controllers

Ctotal Total throughput available from MTCD controllers

β Path loss component

ψ Rayleigh random variable

Ko Constant based on antenna characteristics

dm Distance between eNB and mth HD

R Radius of protected area of mth HD, Rm = R
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3.3 Problem Formulation and Solution

The problem that we are considering in this chapter is based on maximizing the number of

devices in a particular M2M scenario. We also consider maximization of total throughput

(sum data rate) available from the selected devices, minimization of the interference caused to

the human users and minimization of the transmission power. The problem can be described

as follows:

3.3.1 Problem Description

1) Maximizing the total throughput: Consider the channel capacity of the kth controller

for the shared channel:

Ck = log
[

1 +
pk

No

(

|hk|2
)

]

, ∀k = 1, 2, ...K (3.1)

where hk is the channel gain between the source and the kth controller.

The total throughput available from MTCD channel is the sum of throughput available

from each channel. i.e,

Ctotal =
K
∑

k=1

Ck (3.2)

From (3.2), we can see that Ck can be maximized by changing the maximum allowed

transmission power pk. Therefore, our first objective can be written as:

maxpk
: Ctotal (3.3)

Note that as all devices may not be admitted in a certain channel, and hence we introduce

a variable xk such that:

xk =











1 if kth controller is admitted,

0 otherwise.
(3.4)

In this case (3.2) can be written as:

Ctotal =
K
∑

k=1

xkCk (3.5)
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and (3.3) can be written as:

maxxk,pk
: Ctotal (3.6)

2) Reduction in the transmission power of each controller: It will reduce the

interference from devices in kth MTCD channel to mth HD.

We require that total power from all MTCD controllers should be less than the total

available power of source, i.e,
K
∑

k=1

xkpk ≤ Ps (3.7)

Transmission power pk should be such that it creates interference less than the interference

threshold at the the mth HD, i.e,

pk ≤
[

Imk

gm,k

]

for ∀k = 1, 2...K,m = 1, 2...M (3.8)

where gm,k is the channel between the source and the mth HD in the kth MTCD channel.

Therefore, the second objective is written as:

min
xk,pk

: Ptotal

subject to

pk ≤
[

Imk

gm,k

]

(3.9)

where

Ptotal =
K
∑

k=1

xkpk (3.10)

3) Maximize the number of controllers: Effort is made to maximize the number of

controllers in each channel. The total number of controllers admitted into the network is

given as:

Φtotal =
K
∑

k=1

xk, ∀k = 1, 2...K (3.11)

The third objective is described as maximization of (3.12), i.e,

maxxk
: Φtotal (3.12)
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We want to combine the above mentioned objectives; however, all of these objectives have

different units and variations. Therefore, it is not possible to combine them as such. We

normalize each objective value between 0 and 1 such that these could be combined. The

first objective is normalized by the maximum throughput available, i.e.,

Cmax
total =

K
∑

k=1

Cmax
k (3.13)

Using (3.13), we can rewrite (3.6) as:

F1 = maxxk,pk

Ctotal

Cmax
total

(3.14)

Similarly, second objective can be normalized by maximum source power Ps, consequently

(5.1) can be rewritten as:

F2 = min
Ptotal

Ps

subject to

pk ≤
[

Imk

gm,k

]

for ∀k = 1, 2...K,m = 1, 2...M (3.15)

The third objective is normalized by total number of MTCD controllers and is rewritten

as:

F3 = maxxk

φk

K
(3.16)

To make (3.16) into a joint minimization problem, we convert F1, F3 into a minimization

problem by rewriting them as (1− F1) and (1− F3). We further introduce weights for each

objective which are based on the emphasis we want to place on each objective. In this case,

joint objective function is given as:

F = w1 (1− F1) + w2F2 + w3 (1− F3) , (3.17)

where w1, w2 and w3 are input weights for each objective function and:

w1 + w2 + w3 = 1 (3.18)
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Making use of (3.17), the joint multiobjective optimization problem can be rewritten as:

OP1 :

min
xk,pk

F

subject to

C1 : pk ≤ xkPs, ∀k

C2 :
K
∑

k=1

pk ≤ Ps

C3 : pk|gm,k|2 ≤ Im,k, ∀(m, k)

C4 : Ck ≥ xkCth, ∀k

C5 : xk ∈ [0, 1],

(3.19)

where we have added additional constraints C1, C2 and C4. The constraints can be described

as:

• C1 ensures that the power in each selected channel is less than the maximum available

source power.

• C2 ensures that the total transmission power in all the channels is less than the maxi-

mum source power. Note that C1 ensures that any non-selected MTCD controller will

have zero power. In the absence of C1, non-selected controllers can still have non-zero

transmission power.

• C3 ensures that interference caused by devices in kth channel to the mth HD is less

than a given interference threshold.

• C4 ensures that the throughput in each channel is greater than a minimum threshold

Cth.

• C5 ensures that xk is a binary integer variable.

The optimization problem in OP1 is a class of mixed integer programming problem [118]

that is generally NP-hard. Once discrete realization is known, the rest of the continuous
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optimization problem is a convex optimization problem [119]. The optimal solution for

discrete variables of the above problem can be computed using branch and bound method

[120] or exhaustive search but their computational complexity is very high. Also for every

discrete realization of OP1, we have to solve a constraint continuous optimization problem.

A number of algorithms are available to solve mixed integer programming problems with

box constraint only. In our work, we use meshed adaptive direct search (MADS) algorithm

to solve OP1.

3.3.2 Proposed Solution

Meshed adaptive direct search (MADS) is iterative derivative-free global optimization algo-

rithm that uses direct method with polling and searching criterion. Each iteration of MADS

evaluates a finite set of mesh points in the solution search space. A polling step is used

after mesh search that leads to convergence of this solution. Let us first describe the MADS

notations used in this chapter.

————————————————————————

1. ITER: Maximum number of iterations and i is the ith iteration.

2. Mi: Set of mesh points at the ith iteration.

3. Γi: Set of poll points at the ith iteration.

4. ∆m
i ∈ R+: Mesh size parameter at the ith iteration

5. ∆p
i ∈ R+: Poll size parameter at the ith iteration

6. Θm: Mesh contraction/expension factor

7. Θp: Poll contraction/expension factor

8. Dm
i : Finite set mesh direction matrix at the ith iteration

9. Dp
i : Finite set poll direction matrix at the ith iteration
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Algorithm 1 : MADS
1: Initialization:

2: i← 0, ∆m
i > ∆p

i > 0

3: Terminate← FALSE, ImprovedFound← FALSE

4: Initialize Zm
i ,Zp

i , 0 < Θm < Θp < 1

5: F ← w1 (1− F1) + w2F2 + w3 (1− F3)

6: Algorithm Execution:

7: while Terminate == FALSE do

8: Mi =
⋃

z∈βi

{z +∆m
i D

m
i }

9: Zm
i ←















arg min
z∈Mi

F

subject to C1, C2, C3 and C4 of (3.19);
10: if F (Zm

i ) > F (Zm
i−1) then

11: Γi =
⋃

z∈βi

{z +∆p
iD

p
i }

12: Zp
i ←















arg min
z∈Γi

F

subject to C1, C2, C3 and C4 of (3.19);
13: if F (Zp

i ) < F (Zp
i−1) then

14: ImprovedFound← TRUE

15: end if

16: else

17: ImprovedFound← TRUE

18: end if

19: if ImprovedFound == TRUE then

20: ∆m
i+1 ← ∆m

i /Θ
m, ∆p

i+1 ← ∆p
i /Θ

p

21: else

22: ∆m
i+1 ← ∆m

i Θ
m, ∆p

i+1 ← ∆p
iΘ

p

23: end if

24: ImprovedFound← FALSE

25: i← i+ 1

26: if Termination Criterion Satisfied then

27: Terminate← TRUE

28: end if

67



10. βi: Set of finite points at the ith iteration to evaluate the optimization objective

11. z: Any arbitrary point on the solution space

12. n: The number of variables

The MADS algorithm is a kind of iterative contraction and expansion algorithm. The algo-

rithm searches the solution in different directions on predefined neighborhood. By getting

better solution in the neighbor, MADS contracts its searching region across the better so-

lution point, otherwise it expands the neighbor search space. A detailed description of the

algorithm is given in Algorithm 1. As mentioned above that to get optimal solution, either

we need branch and bound method or exhaustive search algorithm for discrete variables. The

complexity of worst case branch and bound algorithm is same as exhaustive search which

increases exponentially with the number of discrete variables. In case of optimization prob-

lem in OP1, their complexity is O(2K). It is shown in the literature that MADS converges

to ε-optimal solution in finite steps [121] [122]. In [123], based on Clarke’s [124] calculus for

non-smooth optimization problem, authors prove that MADS converges to global optimum

with error tolerance of ε. They also show that the convergence of MADS is independent

of start point. The complexity of MADS to get ε-optimal solution is O(K2

ε
) [121]. This

computational complexity is mush lower than the complexity of branch and bound method

or exhaustive search algorithm.

3.4 Results and Discussion

3.4.1 Simulation Setup

Figure 3.2 shows the simulation setup layout with one eNB in the centre shown by a triangle.

Two human users (HDs) shown by squares and multiple MTCD controllers shown by stars

are uniformly distributed in the entire area. In all the simulations, the channels between

source and destination have independent distribution. Some common parameter values for
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simulation are shown in Table 3.2. Channel gain h is modeled as:

h = ΨKo

(

do

d

)β

, (3.20)

where Ko is a constant that depends on the antenna characteristic and average channel

attenuation, do is the reference distance for the antenna far field, d is the distance between

transmitter and receiver, β is the path loss constant and Ψ is the Rayleigh random variable.

Since this formula is not valid in the near field, in all the simulation results, we assume

that d is greater than do. In all the results, do = 10m, Ko = 50 and β = 2. The HD’s

protected distance Rm is set to 10m for all M . MTCD controllers and HDs are uniformly

distributed. For each HD, there is a HD protection area wherein the strengths of MTCD

controllers must be constrained. We define as R, the radius of the protected circular area for

each individual HD. Given a distance dm between the eNB and the mth HD and the radius

Rm of the protected circular area of the mth HD, the channel from the source to mth HD in

kth channel is given as:

gm,k =
g̃m,k

(dm − Rm)β
, (3.21)

where g̃m,k is the small scale fading and β is the path loss exponent .

Table 3.2: Common Parameter Values

Parameters Values

Ps 10W

Im,k {10mW, 100mW}

K 2,4,6,8,10

M 1, 3

Cth 5

No 10−6W

Bandwidth 1MHz
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Figure 3.2: Layout for M=2

3.4.2 Results and Discussion

We first show the effect of weights on sum rate, sum power and number of admitted MTCDs.

We vary w1, w2 and w3 and solve the optimization problem corresponding to these weights.

We simulate for four different sets of weights: w1 = 0.1, w2 = 0.3 and w3 = 0.6, w1 = 0.33,

w2 = 0.33 and w3 = 0.3, w1 = 0.5, w2 = 0.25 and w3 = 0.25, and w1 = 0.8, w2 = 0.1 and

w3 = 0.1. These sets can be used to demonstrate the effects on the optimization results by

varying the weights.

We present sum rate and the number of admitted MTCDs versus total number of MTCDs

in Figure 3.3. The total number of MTCDs is varied from two to ten in a step of two. The

optimization problem (OP1) is solved with different sets of weights described above and the

obtained values of xk and pk for all values of k are used to calculate the sum rate. From

Figures 3.3(a)-3.3(c), the following observations can be made:

• It can be seen in Figure 3.3(a) that when w1 is less than both w2 and w3, the sum rate

is the lowest.

• When w1 and w2 are equal and both are greater than w3, the sum rate increases in

Figure 3.3(b) compared to Figure 3.3(a).
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• The increasing trend continues as w1 becomes greater than both w2 and w3, and is

maximum for w1 = 0.8 in Figure 3.3(d) as in this case a lot of emphasis is placed on

maximizing the sum rate.

• It can be further seen that the sum rate is decreasing as the number of MTCDs

increases. This is especially evident in Figure 3.3(a). The reason is that as w3 is

the largest in this case, most of the emphasis is placed on maximizing the number

of admitted MTCDs, followed by the minimization of power and maximization of

capacity. Since more emphasis is placed on minimization of power and as the number

of admitted users increases, the power pk of each controller will be less with increasing

number of users. As a result, the sum capacity decreases with increasing number of

users in Figure 3.3(a).

• In Figures 3.3(b) and 3.3(c), a similar trend as in Figure 3.3(a) can be noted although

the decrease in sum rate with respect to the maximum sum rate is less. In Figure

3.3(c), for a number of admitted MTCDs equal to ten, the sum rate increases. In

Figure 3.3(d), as w1 is much higher than w2 and w3, more emphasis is placed on sum

rate maximization and as a result, an increasing trend for the sum rate can be seen.

• A linear trend with respect to the number of admitted MTCDs can be seen as all the

MTCDs are admitted.

Next we present a comparison of sum rate and sum power for the same sets of weights as

used for Figure 3.3. The results are shown in Figure 3.4 and the following observations can

be made:

• It can be seen that when w2 is greater than or the same as w1, the sum power is almost

the same with increasing number of MTCDs. Normally, this power should increase

as more users will consume more power. However, the higher emphasis placed on w2

stops this increase from happening.
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• As w2 decreases, the sum power increases in Figures 3.4(c)-3.4(d). In Figure 3.4(d),

the sum power is the highest as little emphasis is placed on minimizing it and more

emphasis is placed on maximizing sum rate. The increase in power may be offset by a

much higher increase in sum rate.

• It can be seen in Figure 3.4(c) that the sum power increases for a number of MTCDs=10,

which explains the reason why sum rate increases in Figure 3.3(c).

We present the number of admitted users for different rates and interference thresholds

for w1 = 0.8, w2 = 0.1, w3 = 0.1, in Figure 3.5. Figure 3.5(a) shows the results for an

interference threshold of 10 mW. For a rate of 250 kbps, the number of admitted users is

the same as the number of MTCDs, hence a linear relationship can be seen. For the rate of

500 kbps, this relationship is not linear and the number of admitted users is less than the

number of MTCDs, especially for the number of MTCDs equal to 6 and 10, the number of

admitted MTCDs is 5 and 8, respectively. In Figure 3.5(b), the same results are presented

for an interference threshold of 100 mW. It can be seen again that for a rate of 250 kbps, a

linear relationship can be seen, whereas for a rate of 500 kbps, this relationship is non-linear

as the number of admitted MTCDs is less than the number of MTCDs for 6, 8 and 10

MTCDs. However, the number of admitted MTCDs is higher for 10 MTCDs for the higher

interference threshold. We can make the following observations:

• A higher rate leads to a lower number of admitted MTCDs as higher rate requires

higher power. However, due to interference constraints, the power is limited and hence

a lower number of users are admitted to satisfy the constraint.

• A lower interference threshold causes the constraint C2 to be more strict, resulting in

less number of admitted MTCDs.

Figure 3.6 shows the number of admitted MTCDs versus the number of MTCDs for two

cases: number of HDs equal to one and number of HDs equal to three. For M=1, i.e., a

single HD, the number of admitted MTCDs is the same as the number of MTCDs, whereas
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for M=3, the number of admitted MTCDs is less than the number of MTCDs for 8 and 10

MTCDs. Hence, the relationship between number of admitted MTCDs and the number of

HDs is inversely proportional. The reason for this is that a higher number of HDs may lead

to more constraints due to higher number of channels. As a result, some of the channels

may be worse than others leading to stricter constraints, resulting in less number of MTCDs

being admitted.

3.5 Chapter Summary

In this chapter, we considered a clustered network consisting of H2H (HDs) and machine

type communication devices (MTCDs), where all MTCDs communicate with a cluster head.

Cluster head is responsible to receive the aggregated data from eNB and relay them to its

associated devices. We further formulated the problem of resource allocation in interference-

limited M2M communication as a mixed-integer non-linear problem having multiple objec-

tives. The multiple objectives were combined using weights, where these objectives are to

maximize the cumulative throughout, reduce the transmission power for minimizing inter-

ference to HDs and maximize the number of controllers. We solved the problem using mesh

adaptive direct search algorithm. Simulation results showed the dependence of cumulative

throughput and the number of admitted devices with respect to different weights and other

factors, such as interference threshold and different number of HDs.

In the following chapter, we apply a Q-learning algorithm to carry out slot assignment

for MTCDs in M2M communication. We first make use of a K-means clustering algorithm

to overcome the congestion problem in an M2M network where each MTCD is associated

to one controller. Subsequently we formulate the slot selection problem as an optimization

problem. Then we present a solution using the Q-learning algorithm to select conflict-free

slot assignment in a random access network with MTCD controllers.
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Figure 3.3: Sum Rate and Admitted MTCD for different set of weights: Number of HDs =

1, With the increase in the w1, the sum rate will increase. (a) [w1 w2 w3] = [0.1 0.3 0.6], (b)

[w1 w2 w3] = [0.33 0.33 0.3], (c) [w1 w2 w3] = [0.5 0.25 0.25], (d) [w1 w2 w3] = [0.8 0.1 0.1]

.
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Figure 3.4: Sum Power and Sum Rate for different set of weights : Number of HDs = 1, Less

value of W2 means less importance to power optimization. (a) [w1 w2 w3] = [0.1 0.3 0.6], (b)

[w1 w2 w3] = [0.33 0.33 0.3], (c) [w1 w2 w3] = [0.5 0.25 0.25], (d) [w1 w2 w3] = [0.8 0.1 0.1]

.
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Figure 3.5: Admitted MTCD for different rate and interference. (a) [w1 w2 w3] =

[0.8 0.1 0.1], Interference = 10mW (b) [w1 w2 w3] = [0.8 0.1 0.1], Interference = 100mW:

Less interference threshold means less number of admitted MTCDs

.
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Figure 3.6: Admitted MTCD for different number of human users: Less HDs means more

number of admitted MTCDs [w1 w2 w3] = [0.33 0.33 0.33], Interference = 10mW

.
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Chapter 4

Slot Allocation without Interference

In the last chapter, a multi-objective optimization for resource allocation in M2M networks

was discussed. One such objective is the number of admitted users (MTCDs) in the M2M

network under a cluster. We now assume that proper number of MTCDs have been admitted

and than the problem of time slot allocation among them is then addressed without any

inter-cluster interference.

In the considered M2M system, we apply a reinforcement learning algorithm to carry out

slot assignment for machine type communication devices. We first make use of a K-means

clustering algorithm to overcome the congestion problem in an M2M network where each

MTCD is associated to one controller. Subsequently, we formulate the slot selection problem

as an optimization problem. Then we present a solution using the Q-learning algorithm to

select conflict-free slot assignment in a random access network with MTCD controllers. The

performance of the solution is dependent on parameters such as learning rate and reward. We

analyze the performance of the proposed algorithm considering different parameters related

to its operation. The convergence time, i.e., the time required to reach a solution decreases

with increasing value of learning rate, whereas the convergence probability increases. In

addition, for smaller values of learning rate, the convergence time decreases with increasing

reward values. We also compare with simple ALOHA and channel-based scheduled allocation

and show that the proposed Q-learning based technique has a higher probability of assigning
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slots compared to these techniques.

4.1 Introduction

Massive access from large number of MTCDs and resulting overhead are major concerns in

future M2M networks [4]. Therefore, data aggregation becomes an important technique to

achieve efficient data transmission [125]. Several researchers have employed data aggrega-

tion after forming virtual and physical clusters. Clustering is a energy efficient technique

that alleviates network congestion [126–128]. An M2M network usually consists of a large

number of typically power constrained devices, which gather and relay data without human

interaction. The K-means clustering algorithm is one such algorithm, in which cost function

usually measures the sum of the distances (squared differences) between data items and

estimated centroid of clusters [46, 129, 130]. According to the initial clustering center, it

classifies the objects of data set and recalculates the clustering center and the data object

classification. The end of the iteration marks that the clustering criterion function has con-

verged [131]. In [33], managing radio resources over clusters instead of individual MTCDs

and the corresponding benefits are presented.

In [132], persistent resource-allocation algorithm is proposed for M2M communication,

which allocates resource to machines in an recursive manner based on the tree. This method

reserves radio resources without any additional control signalling but it is only beneficial

for periodic traffic and is not useful for aperiodic or bursty data. Most existing resource

allocation methods in M2M communications are based on random competition [33, 52, 133–

136]. These methods require MTCDs to accomplish the random access procedures before

actual resource allocation.

Q-learning algorithm is a well known reinforcement learning (RL) technique, which en-

ables an agent (e.g., a sensor node) in M2M networks to learn by interacting with its environ-

ment. The agent will learn to take the best actions that maximize its long-term rewards by

using its own experience [11]. In [54], RL-based base station selection algorithm is proposed
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that allows the MTCDs to choose the base station in a self-organizing fashion. While authors

in [137] used QoS performance measure to switch from one base station to another and it is

the ratio between the device throughput and its delay. In [138], a distributed algorithm in

which MTCDs share resources with a particular cellular user in a TDMA manner is proposed.

Fast adaptive slotted Aloha (FASA) is proposed in [139] taking into account the knowledge

of the idle/successful/collided state of the previous slots. Slotted Aloha exploiting succes-

sive interference cancellation (SIC), called Frameless Aloha, is presented in [140]. These

techniques can ideally provide high performance in a M2M scenario in terms of throughput.

Nonetheless, efficiency and complexity aspects are not considered. In particular, the SIC

mechanism sets quite high requirements to the eNB in terms of storage and processing capa-

bilities. In addition, this is not energy efficient as for each frame, the devices must transmit

a large set of replicas of the same packet to the eNb making it inefficient.

Q-learning RACH access scheme (QL-RACH) is proposed in [141, 142] to control M2M

traffic in order to reduce its impact on a cellular network. It uses Aloha and an intelligent

slot assignment strategy to avoid collisions amongst the MTCDs. However, the performance

of this scheme is dominated by the uncontrolled H2H traffic especially at the upper load

limit. Also, there is a restriction of using a virtual M2M frame having length (in time slots)

equal to the number of MTCDs in the network. This imposes the upper bound on the

number of MTCDs being served simultaneously. In addition to this, every node keeps a

Q-value for each slot in the M2M frame to record the transmission history on that slot in

consecutive frames, which is not an efficient mechanism for the energy constrained, battery

limited nodes.

In contrast to these references, in our work, Q-learning is used for resource allocation

of MTCDs. Dedicated orthogonal resources are assignment to H2H and M2M users and

there is no human-MTCD traffic interaction. Controllers make use of Q-learning to transmit

data to their associated devices by picking up the best slot. Also, controllers are keeping

record of Q-values of each slot instead of each MTCD. Slot allocation is decentralized and

there is no communication involved among controllers and eNB and between controllers and
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MTCDs. Only control channel ACK, NACK is involved to report collision to the controllers.

In addition to this, our method does the channel access and resource allocation at the same

time. It is similar to Aloha but keeps knowledge of previous success/failure. Therefore, it is

more efficient in terms of admittance rate and success probability.

The motivation of this work is to develop a distributed conflict-free slot allocation scheme

for MTCDs in a clustered random access M2M network and to show the reinforcement learn-

ing mechanism can be used with robust performance. Hence, we consider a clustered network

in which the cluster head/controller is responsible for all communications between eNB and

MTCDs, thus reducing signaling overhead. We assume that human users and machine de-

vices are separated by orthogonal division, therefore, M2M communication is in dedicated

channel thus not affecting H2H communication [61]. MTCD controllers are separated in

frequency but share the same time slot for communication. There exist simultaneous com-

munication between cluster heads and MTCDs, and between cluster heads and eNB using

orthogonal resource allocation. Here, we focus on communication from cluster heads to its re-

spective MTCDs, and study how cluster heads distributively make decisions about resource

(slot) allocation. These decisions strongly depend on slot selection made by neighboring

clusters as the system performance is limited by the collision caused due to simultaneous

data transmission in the same frequency band and in the same time slot by all the clus-

ter heads/controllers. This scenario can easily be mapped onto a multi-agent system [143]

since it consists of multiple intelligent and autonomous agents, i.e., the cluster controllers

and independent MTCDs. These agents have incomplete information and capabilities for

solving the simultaneous transmission and resulting collision on their own. Also, there is

no central entity in charge of providing information and global control of interference. The

main contributions of this chapter are:

• We propose a self organized slot allocation based on the paradigm of independent

learning, where agents are unaware of the other agents’ actions in a clustered M2M

network.
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• Our work in comparison with the existing literature utilizes Q-learning for the resource

allocation of MTCDs. The advantage is the performance enhancement of MTCDs

through selecting the conflict-free time slots in congested scenarios using Q-learning

distributively.

The rest of this chapter is organized as follows: In the next section, we describe the

system model and cluster formation. Section III introduces reinforcement learning and the

proposed solution. In section IV, we present simulation results convergence capabilities of

the proposed approach with respect to different parameters. The convergence capabilities

are defined as convergence time, convergence probability and cumulative success rate. Then

section V concludes this chapter.

4.2 System Model

We consider an M2M network having dedicated frequency channels, separated from H2H

communication. All the MTCDs are arranged in form of clusters and formation of clusters

is done using the K-means algorithm. A list of notations used in this paper is given in Table

4.1. Note that we use cluster head and controller interchangeably in this paper.

4.2.1 Clustered M2M Network

A clustered M2M network is considered in which the number of MTCDs per unit area is

large and a single eNB is not able to serve all the devices in an efficient manner. Therefore,

all the MTCDs are divided into clusters and each cluster has a cluster head/controller.

Figure 4.4 shows the simple clustered M2M network as an example, in which four clusters

with three devices per cluster are considered for analysis. The K-means algorithm is used

for the formation of clusters because of its simplicity. A single eNB is present, which is

in communication with the cluster heads/controllers. MTCD controllers are responsible for

data aggregation and data transmission to/from their respective MTCDs.
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Table 4.1: Notations

Symbol Definition

K Number of clusters/MTCD controllers

u Number of devices in each cluster

T Number of slots in each frame

α Learning rate

D Total number of MTCDs in a system

cj Centroid of jth cluster

Uj Set of MTCDs in jth cluster

xij Binary variable to show the association of ith MTCD with

jth cluster

j Index of clusters

βij Decision variable

i Index of MTCDs

C1, C2...CK Centers of clusters 1 to K

w Number of frequencies in a cluster

A Action performed by controller

Q Quality of any action

R Reward function
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4.2.2 Slot/Channel Allocation

There are two layers of communication taking place, one between eNB and cluster heads

and the other between cluster heads and associated devices. In this paper, we are looking

into communication from cluster heads to their associated MTCDs. We consider a frame

having T slots and each controller will send data, received from eNB, to its associated

MTCDs in downlink communication. Let K be the total number of clusters, D be the total

number of devices in a network and u be the maximum number of devices in each cluster.

Each controller transmits data using TDMA to its associated devices. TDMA allows several

devices to share the same frequency band by dividing the signal into different time slots. For

simplicity of analysis we assume1 T = K, i.e., the number of cluster heads is the same as the

number of slots available in a frame. In our case it allows multiple controllers to share the

same wireless channel used by multiple devices, by transmitting one after the other, using

different time slots.

We also use multiple frequencies within the clusters when the number of MTCDs is

large. This will improve the system performance as a large number of devices simultaneously

transmit and receive data to or from cluster heads. In case of only one frequency channel

per cluster, controllers have to multiplex data for all the devices and transmit. Typically,

MTCDs have a large amount of data to be sent and received at one instant; if this is the case,

then multiplexing will not be a feasible choice. The second method is to transmit sequentially

or randomly. It will not be efficient as it will be slower for sequential transmission and needs

a central entity for sequencing. Random transmission is not energy efficient in an energy

constrained M2M network, as all the devices have to be active and receptive all the time.

The use of multiple frequency channels within the cluster not only offloads burden from

controllers by dividing all the devices into different frequency groups, but is also energy

efficient.
1If K > T , then admission control is required to admit a certain number of controllers into the system.

If K < T , then a frame with empty slots is transmitted.
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4.2.3 Formation of Clusters

Let there be i = {1, 2, 3...D} MTCDs forming j = {1, 2, ..K} clusters. Each MTCD will

associate itself to only one cluster. We denote ith MTCD associated with jth cluster by xij ,

where xij is a binary variable ∀i, such that

xij =











1 if ith MTCD ∈ jthcluster,

0 otherwise.
(4.1)

K
∑

j=1

xij ≤ 1, ∀i (4.2)

It means that each MTCD can belong to only one cluster at one time.

We use an iterative K-means algorithm for the formation of clusters. Let tuples N and

C be the vector representing the positions of ith MTCD and jth controller, respectively. For

initialization, centres (C1, C2, ...CK) are decided at random. Association of each MTCD to

the jth cluster is made on the basis of some decision parameter βij . This parameter can be

shortest distance, channel gain, or signal to noise ratio (SNR).

In this paper, Euclidean distance between MTCDs and controllers is used for the for-

mation of clusters for simplicity and any other parameters can be considered to form the

clusters. Therefore, the distance between two tuples (Ni) and (Cj) is given by (4.3), where,

ni = (nxi, nyi) and Cj = (cxj , cyj). This means each MTCD is associated to the nearest

cluster head.

dij =
√

(nxi − cxj)2 + (nyi − cyj)2, ∀i, j (4.3)

After the first association of MTCDs with cluster heads, a new location of cluster heads

is found by iterative calculation of new centroids. New centroids are formed as:

cj =
∑

i∈Uj
xijNi

‖Uj‖
, ∀i,j (4.4)

Splitting the equation for the x and y coordinates of the new centroid:

cxj =
∑

i∈Uj
xijnxi

‖Uj‖
, ∀i,j (4.5)
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cyj =
∑

i∈Uj
xijnyi

‖Uj‖
, ∀i,j (4.6)

where Uj is the set of MTCDs in the jth cluster. The above procedure is repeated till the

position of cluster heads remains the same. cxj, cyj and nxj , nyj are the x, y coordinates of

the points C and N , respectively. Table 4.2 shows various steps for the K-means algorithm

used.

Table 4.2: K-Means Algorithm

K-means Steps

1) Select initial cluster centroids (position of MTCD controllers) by

choosing K data points at random.

2) Compute the distance from each MTCD to each of the K centroids

using Equation (4.3).

3) Associate the MTCDs to specific cluster head by their closest dis-

tance.

4) Compute the new cluster centroids using the shortest distance of

MTCDs with respective centroid.

5) Repeat until no change in the centroids of the clusters.

In this section, we considered a clustered M2M network. An algorithm for the formation

of clusters is given. MTCDs in each cluster are associated with a controller. In the next

section, we shall explain slot allocation among different controllers and then formulate the

problem.

4.3 Problem Formulation

After the formation of clusters, resource allocation for MTCDs within each cluster is done. As

each controller is responsible for data transmission to its associated devices, it needs a unique

time slot for each transmission. As controllers and associated MTCDs are not scheduled for
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data transmission/reception, a careful distributed selection of wireless channels is required

to avoid collision. MTCDs are separated by various frequency channels within the cluster,

and controllers are separated by time slots in a frame as discussed earlier. The actual task

is that controllers need to select unique time slots for data transmission to their MTCDs

avoiding any inter-cluster and intra-cluster collision. In the following we will discuss the

slot selection by the controllers employing Q-learning technique. We consider two cases: In

the first case, devices use the same frequency, while in the second case devices use multiple

frequencies.

4.3.1 Single Frequency Case

We consider a scenario in which some selected devices are transmitting using the same

frequency. For example, consider three clusters and three slots. We want to assign three

devices, one from each cluster to one time slot in such a way that no two clusters assign

the same slots to their devices. Consider the frame with three slots in a three-cluster M2M

network as follows; where a device i in jth cluster is denoted as U j
i as shown in Figure 4.1.

In this case, MTCD 3 from cluster 1 is in slot 1 of the frame, while MTCDs 1 and 2 of

clusters 2 and 3 are in slots 2 and 3, respectively. As each slot is assigned to only one device,

we consider the assignment of MTCDs to be successful. Now consider the following case:

In this case, as slot 1 is assigned to MTCDs 3 and 1 from cluster 1 and 2, respectively,

transmission is considered unsuccessful, as shown in Figure 4.2. There will be a collision

between transmissions to MTCDs 3 and 1 from both cluster heads. Considering the above

scenario, we first define a vector, U = U1
1 , U

1
2 , U

1
3 , U

2
1 , U

2
2 , U

2
3 , U

3
1 , U

3
2 , U

3
3 ]. We further define
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Figure 4.1: Frame Example

Figure 4.2: Collision in Slots
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a matrix I whose columns are the slot numbers and rows are the replicas of U , i.e.,

III =































U1
1 U1

1 U1
1

U1
2 U1

2 U1
2

. . .

. . .

U3
3 U3

3 U3
3































(4.7)

The entry of this matrix is 1 if that device is assigned in a particular slot and 0 otherwise,

i.e.,

III =































1 0 0

0 0 1

. . .

. . .

0 1 0































(4.8)

shows that device 1 from cluster one is assigned to slot 1, device 3 from cluster three is

assigned in slot 2 and device 1 from cluster two is assigned slot 3. Keeping in view the

Figures 4.1, 4.2 and Equations (4.7), (4.8), the problem of assigning devices in each slot

while avoiding collisions at the same time can be formulated as finding a matrix I according

to the following constraint:

|I1|, |I2|, |I3| = 1 (4.9)

|I1|, |I2|, |I3| ≤ 1 (4.10)

|U1
1 , U

1
2 , U

1
3 |, |U2

1 , U
2
2 , U

2
3 |, |U3

1 , U
3
2 , U

3
3 | = 1 (4.11)

where I i is the ith column and Ij is the jth row of I and || represents the number of non-

zero elements. The first constraint ensures that each slot is occupied, the second constraint

ensures that each cluster assigns at least one device to each slot, while the third constraint

ensures that each cluster does not take more than one slot.

88



In a general case where there are T slots, K clusters and u devices, the problem can be

defined as finding a matrix I of size (u×K)× T as:

|I i| = 1, ∀i = 1, 2...T (4.12)

|Ij| ≤ 1, ∀j = 1...u×K (4.13)
u
∑

k=1

U l
k = 1, ∀l = 1, ..K (4.14)

The solution to this matrix is found by using the Q-learning algorithm, i.e., unique slots are

determined by controllers with repeated experience. Data transmission is ensured after the

favourable slot selection avoiding collision and resulting congestion.

4.3.2 Multiple Frequency Case

Now we consider the case in which multiple frequencies are used in each cluster. Let w =

(1, 2...W ) be the number of frequencies in a cluster and MTCD i in jth cluster using wth

frequency channel be denoted as U j,w
i . Consider the same scenario as for single frequency

case, and vector U , matrix I are modified for multiple frequencies as follows.

We first define a vector, Uw = U1,w
1 , U1,w

2 , U1,w
3 , U2,w

1 , U2,w
2 , U2,w

3 , U3,w
1 , U3,w

2 , U3,w
3 ] that

shows the ith device in jth cluster using frequency w. We further define a matrix I, which

is a concatenation of matrices for each frequency. Each matrix represents a single frequency

and has columns as the slot numbers and rows as the replicas of U at a single frequency w,

i.e.,

I = [Iw=1, Iw=2, Iw=3] (4.15)

IwIwIw =































U1,w
1 U1,w

1 U1,w
1

U1,w
2 U1,w

2 U1,w
2

. . .

. . .

U3,w
3 U3,w

3 U3,w
3































(4.16)
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for each frequency w. The entry of this matrix is 1 if that device is assigned to a particular

slot at the frequency w and 0 otherwise, i.e.,

IwIwIw =































1 0 0

0 0 1

. . .

. . .

0 1 0































(4.17)

In this case, our problem can de defined as finding a matrix I of size (u×K)× (T × u) by

observing the following constraints at each frequency w:

|I i,w| = 1, ∀i = 1, 2...T (4.18)

|Iw
j | ≤ 1, ∀j = 1...u×K (4.19)

u
∑

k=1

Uk,w
l = 1, ∀l = 1, ..K (4.20)

In this section, we showed that the slot allocation problem can be seen as finding a matrix

I under certain constraints that enforce unique slot allocation. In the next section, we shall

present a solution for this problem, which is based on the Q-learning algorithm.

4.4 Proposed Solution

In this section, we first describe traditional Aloha and channel based allocation techniques.

Then we define a Q-learning algorithm for M2M communication followed by a slot selection

procedure.

4.4.1 Classic Techniques

ALOHA is the most simple and traditional Random Access (RA) technique, in which any

user can send any time. We use ALOHA for comparison with our proposed technique.

As in our scenario, controllers will transmit data in any slot any time and it is similar to
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ALOHA. It may happen that two controllers happen to transmit data in same slot and may

result in collision. Channel Based Allocation (CBA) is also performed for comparison, where

controllers are allowed to pickup the wireless channel with best channel gain and transmit

data in each slot. This criterion accounts for the improved average SNR, but does not prove

beneficial for successful channel access. As we are addressing the random access problem,

allocation of a collision free channel is the success criterion and above two methods are not

much of the benefit in our case. In our future work, we will consider the SNR value for the

slot selection, for which CBA seems to be attractive choice. However, it may not prove to be

best choice for distributive interference minimization requirement among controllers sharing

the same slot.

4.4.2 Reinforcement learning

The basic idea behind reinforcement learning is as follows: an agent learns by trial and error.

The agent learns that its actions and decisions have consequences upon the surrounding

environment. The agent acts as a controller of this decision process, as the actions that

it takes will lead to transitions between states. Upon the selection of an action, the agent

should analyze the new state that it has transitioned to. A reward function is defined for

each action to check its correctness [137]. A higher reward illustrates that the action had

beneficial consequences while a lower one illustrates that a different action needs to be tried

out. Let R be the reward function associated with any action A and Q value is updated as:

Qt+1 = Qt + α(R−Qt) (4.21)

where α is the learning rate and t is the time at which action is taken.

4.4.3 Q-Learning Algorithm for M2M Communication

Q-learning is one of the reinforcement learning algorithms. We are using a Q-learning al-

gorithm for scheduling of MTCDs in a clustered network such that there is no collision of
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packet transmission. Each cluster head transmits data to its associated devices on a specific

frequency and time slot in downlink. Each cluster head tries to randomly transmit to devices,

which may result in collision if some other neighbouring controller is also utilizing the same

frequency and time slot for transmission simultaneously. Every controller learns with previ-

ous experience and schedules its MTCDs in such a way that no two MTCDs of neighbouring

clusters are utilizing same slots on the same frequency. Stateless Q-learning [144] is used in

this scheme to obtain the learning experience. Each controller has individual Q values for

every slot, and they represent the preference of the slot selections. Q values are denoted by

Q(j, T, w) and they represent that controller j takes an action on slot T for obtaining the

frequency channel w. The previous Q values and the current reward all contribute to the Q

value update. The Q value is updated as below after the reward is returned:

Qt+1(j, T, w) = Qt(j, T, w) + α(R−Qt(j, T, w)) (4.22)

• Agent: MTCD controller j, ∀1 ≤ j ≤ K. Controllers (or cluster heads) are the agents

running the Q-learning algorithm for the best slot selection.

• Action:A(t) = aj,T (t), T ǫ[T1, ...Tk]. aj,T (t) is defined as the action of jth controller at

time t and is to choose time slot Tj out of T , where Tk is the maximum number of

time slots in a frame. Controllers will transmit data on the specific slots according to

some information obtained in the previous slots.

• Reward:R is defined as:

R =



























0 Tj = φ,

+1 Tj is unique,

−1 Tj = Tĵ.

(4.23)

where Tj is the slot chosen by the jth cluster head and Tĵ is the same slot chosen by any

other cluster head.
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Each controller is using the Q-learning algorithm to transmit data randomly in time

slots. Also, the ACK/NACK protocol is being used by these controllers to get notified for

the success/failure of the transmission in a given slot. If no two cluster heads select the

same slot, the transmission is successful and ACK is received. Thus a controller will assign

a positive reward value to that slot. If the transmission fails, i.e., two (or more) controllers

send data in the same time slot resulting into collision and NACK is received by both (or

more). And a negative reward is assigned to that slot. In this way, controllers will learn by

experience which slot is good for data transmission by comparing their Q values. Slots with

higher Q values will always be preferred, i.e.,

Ij,w = maxT,j,wQt(j, T, w) (4.24)

If multiple slots have the same Q value, controllers will randomly select one of them. All the

Q values are initialised to 0 at the very beginning. Figure 4.3 shows the flow of operation of

controllers finding the best slot for data transmission with the Q-learning algorithm.

In a multiple frequency case, w frequencies are available in a cluster for use by MTCDs.

For simplicity of analysis, we keep u = w in a cluster such that each MTCD will get a unique

frequency, thus avoiding intra-cluster interference. We assign the first frequency to MTCD

1 of each cluster, second to MTCD 2 and so on. Another method of channel assignment

can be based on the best channel for each MTCD and cluster controller. The proposed Q-

learning algorithm will run for each frequency in a cluster controller to find the appropriate

slot allocation.

In this section, we showed that a solution to the problem of slot allocation can be seen

as maximization of Q-values among different slots. As the algorithm is dependant on α and

R, we shall present a thorough analysis in the next section that shows how the performance

is affected by these parameters.
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Random slot selection

/ data transmission by controllers

Initialize slot with

zero Q values

If collision

update the slot Q-value with lower R value

If successful transmission

update the slot Q-value with maximum R value

Process repeated for some number

of frames

Q-values of all slots compared

slot with highest value is selected

Repeat till each controller

has unique slot selected

Figure 4.3: Slot Search Flow Chart

4.5 Results and Discussions

In this section, we present simulation results showing the performance of the proposed al-

gorithm. We compare the convergence time with respect to varying learning rate (α) and

reward (R). We further compare the cumulative success probability with respect to channel

based selection (scheduled) and ALOHA (totally random) in channel assignment.

The simulation setup is as follows: We consider four clusters (K = 4), having three

devices (u = 3) in each, as shown in Figure 4.4. Each cluster has three frequencies (w = 3)

controlled by the cluster head. A frame also has four time slots (T = 4), one slot is for each
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Figure 4.4: Clustered M2M Network

controller. Each controller will transmit data coming from eNB to its associated devices

in one of the selected time slots using the proposed Q-learning algorithm. For ALOHA,

controllers will randomly select a slot and transmit data to its associated devices. It will

result into collision if two or more controllers choose to send in the the same slot. After

collision, controllers will retransmit again by randomly picking the slot. For the channel

based allocation, controllers are allowed to pickup the channel with best channel gain, with-

out considering the selection made by neighbouring controllers. It may result in collision if

the same slot is selected by others for the same channel. This transmission is considered

unsuccessful and retransmission takes place following the same procedure.

4.5.1 Effect of Learning Rate α

We assign different values of α and variable positive and negative reward values for R. In

Figure 4.5, convergence time is analyzed with respect to learning rate. We define it as the
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time taken by the controllers to learn with repeated data transmission and resulting Q values,

for the selection of a unique time slot for their data transmission. Convergence is declared

when there is no change in slot assignment. We calculate convergence time obtained over

1000 iterations and average the results. Different values of α varying from 0.1 to 0.9 in a

step-size of 0.1 are used to study the rise and fall of the convergence rate. The convergence

rate varies from 4 to 13. It is noted that as α is increasing, the convergence rate increases and

it takes less time to converge. This is an expected behavior as with an increase in α, more

weight is given to the reward than to the current Q value. This can be seen by rewriting

(4.22) as follows:

Qt+1(j, T, w) = Qt(j, T, w)(1− α) + αR (4.25)

We can see that by increasing α, the ratio of weight assigned to R compared to Qt(j, T, w) is

given as α
1−α

. Increasing value of α gives more weight to R. As a result, quicker convergence

is achieved due to more emphasis given to current values and actions. For α = 0.1 to 0.9,

the ratios are given as: 1
9
, 1

4
, 3

7
, 2

3
, 1, 3

2
, 7

3
, 4, 9, respectively. Hence, as the ratio increases,

the convergence time decreases.

Figure 4.6 shows convergence probability versus α. Convergence probability is defined as

ratio of number of times simulation converge and the total number of simulations, i.e. 1000.

α is varied from 0.1 to 0.9 in a step size of 0.1. Except for a small increase in convergence

probability between 0.1 and 0.2, a decreased trend can be observed. From Figures. 4.5 and

4.6, we can observe that a higher α decreases both convergence time and probability. Thus

a lower α is preferable for increased convergence probability at the expense of increased

convergence time.

4.5.2 Effect of Reward R

We now show the effects of varying both positive and negative rewards on the the average

convergence time. In Figure 4.7, negative and positive rewards are kept the same at one

instant. Analysis is done for different values of reward function i.e, at ±0.1, ±0.2, ±0.3 and
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Figure 4.5: Variable Learning Rate; dots show the actual data points and line shows the

curve fitted data

±0.4, ±1, ±2, ±3 and ±4. The value of α for the plots is fixed as 0.1 and 0.9. Convergence

time for different reward values is shown. It can be seen that for α = 0.1, the convergence

time decreases when the reward is changed from ±1 to ±2, and stays almost the same when

the reward is ±4. For α = 0.9, the convergence time is constant with respect to changing

reward. The reason for this behavior can be described as follows.

By increasing the reward, more emphasis is placed on the current value of reward R.

This fact can be seen by considering that if the reward is increased by a factor f , (4.22) can

be rewritten as:

Qt+1(j, T, w) = Qt(j, T, w) + α(f × R−Qt(j, T, w)) (4.26)

then can be further written as:

Qt+1(j, T, w) = Qt(j, T, w)(1− α) + f × αR (4.27)

In the above equation, the ratio of weight assigned to R compared to Qt(j, T, w) is given as

fα

1−α
. As the value of f is increased, the ratio increases meaning that more weight is given

97



Alpha Learning Rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
n
v
e
rg

e
n
c
e
 P

ro
b
a
b
ili

ty

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Figure 4.6: Convergence Probability

to R.

Let us consider α = 0.1 and 0.9. In this case, the ratio of weights assigned to R compared

to Qt(j, T, w) is given as. f×0.1
0.9

and f×0.9
0.1

, respectively. Now the reward is changed from

f = 1 to f = 4, this ratio is given as 0.11, 0.22, 0.33 and 0.44, respectively. For α = 0.9, and

this ratio is given as 9, 18, 27, 36, respectively. When the reward is changed from f = 0.1

to f = 0.4, this ratio is 0.011, 0.022, 0.033 and 0.044, respectively, for α = 0.1, and 0.9, 1.8,

2.7 and 3.6, respectively, for α = 0.9.

Hence, as the ratio is increasing, the convergence time decreases for α = 0 − 1. For

α = 0.9, the ratio is already so high that changing it does not have much effect on the

convergence time, hence a nearly constant trend is seen. When the reward > ±2, trend

almost becomes constant due to higher values of weight, as can also be seen in Figure 4.5.

In Figure 4.8, negative reward is fixed at −1 and the positive reward is varied, whereas

in Figure 4.9, positive reward is fixed at +1 and the negative reward is varied. It can be

seen that as the positive reward is increased, the convergence time decreases for α = 0.1 and

stays the same for α = 0.9. In Figure 4.9, as the magnitude of negative reward is decreased,
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the convergence time deceases for α = 0.1 and stays almost constant for α = 0.9, which

shows that that magnitude of negative reward should be less, as then, collision will have less

effect.
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Figure 4.7: Variation in Both Negative and Positive Rewards

4.5.3 Effect of Both α and R

Relationship between alpha and positive/negative reward is further investigated through

Figures. 4.10 and 4.11. In Figure 4.10, relationship between one positive and four negative

reward values at one instance is investigated. Four curves in this figure shows four different

positive rewards, and their relationship with all four negative reward values at α = 0.1.

Same plots are obtained for α = 0.9.

In Figure 4.11, relationship between one negative and four positive reward values at one

instance is investigated. Four curves on this figure show four different negative rewards and

their relationship with all four positive reward values for α = 0.1. Same plots are obtained

for α = 0.9. A trend similar to Figures 4.7, 4.8 and 4.9 can be seen. For one value of

positive reward, the convergence time decreases when the negative reward is decreased, or
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Figure 4.8: Variable Positive Reward

Variable Negative Reward
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Figure 4.9: Variable Negative Reward
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Figure 4.10: Variation in Positive Reward with Different Negative Rewards at α = 0.1,0.9.

dotted line:α = 0.1, solid line:α = 0.9
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Figure 4.11: Variation in Negative Reward with Different Positive Rewards at α = 0.1,0.9.

dotted line:α = 0.1, solid line:α = 0.9
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for one value of negative reward, the convergence time decreases when the positive reward

is increased. Some variations from this trend may be noted; however, it can be observed

from the encircled points that the convergence time shows little variation when both rewards

are the same in the range of one to four. This can also be observed from Figure 4.7, which

further confirms our analysis.

4.5.4 Q-Learning versus RA/CBA
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Figure 4.12: Comparison between Q-Learning and Channel Based Allocation

In Figure 4.12, comparison is made among ALOHA type random access (RA), channel

based access (CBA) and the proposed Q-learning algorithm. ALOHA and CBA are two

extreme channel access techniques used as a reference to compare our performance. The

cumulative success probability for each is plotted with increasing time. It is defined as the

probability of observing less than or equal to a given number of success for slot allocation.

Slot selection is done with above mentioned methods. It is seen that Q-learning performs

better than the rest as expected. Q-learning is able to achieve a cumulative success probabil-

ity of 0.6, whereas for the other two approaches, it is around 0.1. As with Q-learning, each
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cluster head learns with experience which slot is better in terms of data transmission and

reduced collisions, resulting in better success rate. CBA shows slightly better performance

than ALOHA, but poor performance values compared with Q-learning plot. For Q-learning,

the probability increases almost linearly till 20 slots and becomes constant after that. This

constant value indicates the convergence point for the Q-learning algorithm. Once converged,

i.e., once each controller learns by experience to successfully transmit in specific time slot

without any collision, it will continue to transmit into the same slot.

In this section, we showed the dependency of our solution on α and R values and showed

that our algorithm has higher success probability. Based on simulation results and analysis,

we can make the following conclusions:

• A lower α value gives higher convergence time and higher convergence probability.

• Increasing both positive and negative rewards can be seen equivalent to increasing the

learning rate.

• A higher positive reward and lower magnitude of negative reward gives lower conver-

gence time.

• Equal positive and negative rewards give low variation in the convergence time for a

reward greater than or equal to one.

• For lower values of α, changing the reward significantly affects the convergence time.

4.6 Chapter Summary

In this chapter, we presented a solution to the slot assignment problem for machine type

communication devices (MTCDs) in M2M communication. We first used a clustering algo-

rithm to overcome the congestion problem. Then we showed that the slot allocation problem

can be seen as a constrained optimization problem. We used a Q-learning algorithm to solve

this problem. The dependency of the solution on learning rate and rewards is subsequently
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analyzed. We showed that when the learning rate increased, the convergence time decreased

and the convergence rate increased. We demonstrated by means of analysis that the effect

of increasing reward values is the same as increasing the learning rate. Simulation examples

demonstrated that the convergence time decreased with the increase of positive reward val-

ues and with a negative reward with lower magnitude. We further showed that the negative

and positive rewards should be similar in order to have a consistent behavior. We compared

our technique with ALOHA and channel based assignment and showed that our method had

better performance. The cumulative probability of our solution successfully assigning slots

is more than five times higher compared to these methods. For the future work, we aim to

use Q-learning within a distributive shared slot TDMA environment in the next chapter.

In the next chapter, we present a block based Q-learning algorithm for the scheduling

of MTCDs in distributive manner in clustered M2M communication networks. At first

centralized slot assignment is done and an algorithm is proposed for minimizing the inter-

cluster interference. Then we use Q-learning algorithm to assign slots in a distributed manner

and comparison is made between the two schemes.
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Chapter 5

Slot Allocation with Interference

Earlier slot allocation for MTCDs is considered with no interference amongst transmissions.

However, this is inefficient as frequency/time resources are not reused spatially. With some

tolerable interference (subject to SIR threshold level) the capacity of M2M system can be

improved, which is the focus of the work in this chapter.

In this chapter, we present a block based Q-learning algorithm for the scheduling of

machine type communication devices in clustered M2M communication networks with inter-

cluster interference. We first form clusters based on the spatial distribution of MTCDs. At

first centralized slot assignment is done and an algorithm is proposed for minimizing the

inter-cluster interference. Then we use Q-learning algorithm to assign slots in a distributed

manner and comparison is made between the two schemes. Afterwards, we show the effects

of distributed slot-assignment with respect to varying signal-to-interference ratio on conver-

gence rate and convergence probability. Cumulative distribution function is used to study

the effect of various SIR threshold levels on the convergence probability. With the increase

in SIR threshold levels, increase in convergence time and decrease in convergence probability

are observed, as less block configuration fulfills the required threshold in the M2M network.
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5.1 Introduction

In a typical machine to machine (M2M) network, large number of MTCDs exist and they

mostly transmit a small amount of data. This results in simultaneous random access of

channel resources, which causes overload and access problem. Clustering is a technique that

can reduce network congestion and increase the energy efficiency [125,126]. In [33], managing

radio resources over clusters instead of individual MTCDs and the corresponding benefits

are presented. In our work also, we implement the clustering of MTCDs with cluster heads

(or controllers) to facilitate the hierarchal control allocation of resources in massive M2M

networks.

We first consider the centralized slot allocation for MTCDs in our clustered network

followed by the distributed assignment. We perform the comparison of the two and conclude

the superiority of the latter in terms of MTCD admittance rate. Also, distributed allocation

performs well in terms of computational complexity and time, reduced network traffic and

no involvement of evolved node base station (eNB).

In [145], resource allocation problem is analyzed through both non-cooperative and co-

operative game to maximize their data rate and minimize utilization of power. The per-

formance of coordinated and uncoordinated transmission strategies for multiple access is

analyzed in [133, 134]. Authors in [146] proposed a predictive resource allocation scheme

employed at the eNB based on propagation characteristics for M2M applications. Similarly

resource allocation and scheduling is discussed in [52, 64]. In [147], classification of M2M

scheduling techniques from the perspective of versatile traffic requirements is presented.

Q-learning algorithm is a well known reinforcement learning (RL) technique, which en-

ables a MTCD in a M2M network to learn by interacting with its environment [148]. Af-

terwards, it adapts to the best action by gaining experience with number of trials [11, 149].

Authors in [150] propose an online RL algorithm that continuously adapts to the changing

network traffic in deciding which action to take to maximize energy saving at eNB. A decen-

tralized Q-learning technique is proposed in [151] to manage the interference generated by
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multiple wireless area networks. Q-learning is employed in [152] to choose different trans-

mission parameters and to make an efficient assignment of spectrum and transmit powers in

cognitive radios. In [153], the RL approach is used for interference mitigation of a macrocell

network underlaid with self-organized femtocells, in which each femtocell adapts its strategy

and gradually learns by interacting with its environment. In [154], a distributed Q-learning

algorithm for sharing spectrum among femtocells and macrocells in a decentralized manner

is presented. In [155], online reinforcement learning framework is presented for the traffic

offloading in a stochastic heterogeneous cellular network.

Fast adaptive slotted Aloha (FASA) is proposed in [139] taking into account the knowl-

edge of the idle/successful/collided state of the previous slots. This information is exploited

to improve the performance of the access control protocol. Slotted ALOHA exploiting suc-

cessive interference cancellation (SIC), called Frameless ALOHA, is presented in [140]. These

techniques can ideally guarantee high performance in a M2M scenario in terms of through-

put. Nonetheless, energy efficiency and complexity aspects are not considered. In particular,

the SIC mechanism sets quite high requirements to the eNB in terms of storage and process-

ing capabilities. In addition, the energy consumption of MTCDs’ is a major concern here as

for each frame, the devices must transmit a large set of replicas of the same packet to the

eNb.

In [54], RL-based base station selection algorithm is proposed that allows the MTCDs

to choose the base station in a self-organizing fashion. While [137] used QoS performance

measure to switch from one base station to another and it is the ratio between the device

throughput and its delay. In [138], a distributed algorithm in which MTCDs share resources

with a particular cellular user in a TDMA manner was proposed.

Q-learning RACH access scheme (QL-RACH) is proposed in [141, 142] to control M2M

traffic in order to reduce its impact on a cellular network. It uses ALOHA and an intelligent

slot assignment strategy to avoid collisions amongst the MTCDs. Q-learning based MAC

with informed receiving (ALOHA-QIR) for wireless sensor networks (WSNs) is presented

in [156], where frame based slotted ALOHA and Q-learning are used such that nodes have
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certain intelligence to access slots with a lower probability of collision. However, the per-

formance of these scheme is dominated by the uncontrolled of H2H traffic especially at the

upper load limit. Also, there is a restriction of using a virtual M2M frame having length (in

time slots) equal to the number of MTCDs in the network. This imposes the upper bound

on the number of MTCDs being served simultaneously. In addition to this, every node keeps

a Q-value for each slot in the M2M frame to record the transmission history on that slot in

consecutive frames, which is not an energy efficient mechanism for the energy constrained,

battery limited nodes.

In this chapter, we try to avoid overload and congestion by forming clusters on the

basis of MTCDs spatial distribution. Afterwards, inter-cluster interference is minimized for

meeting the desired signal to interference ratio (SIR) by the MTCDs in each cluster. We

deal with the problem of slot assignment in random access network (RAN) of MTCDs in a

clustered network and present a strategy for selection of time slots in a frame by controllers in

TDMA-based M2M networks. As same time slots are used by all the controllers, there will be

inter-cluster interference. Our purpose is to assign the MTCDs in each cluster distributively

in such a way that inter-cluster interference is minimized. In addition to this, the concept

of Q-learning is applied on a block of slots instead of individual slots.

In our previous work [18], distributed channel assignment in clusters was done avoiding

inter-cluster interference. However, it is inefficient because one slot was being utilized by

only one cluster and no spatial reuse of time slots was realized. In this work, slots can be

used simultaneously by more than one cluster however giving rise to interference. But this

interference is minimized by the use of block-based Q-learning algorithm in this paper. Our

work in comparison with [141,142,156] is novel in a sense that we reduce the computational

complexity and time by introducing the concept of block-based or clustered slot allocation

using Q-learning. We improve the efficiency by performing distributed slot assignment,

by not only minimizing inter-cluster interference, but also benefitting from frequency reuse

among all the clusters. We do not study the channel allocation strategies in this work. It

is expected that frequency diversity will increase the SIR performance in a multi-channel
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system.

The contribution of our work is the performance enhancement of MTCDs through select-

ing the minimum conflict time slots in congested scenarios using Q-learning.

• MTCDs are arranged into clusters to overcome the congestion and overload problem

in M2M network. Each MTCD is associated with the nearest controller with the help

of K-means algorithm. As a result, each MTCD has to use less energy to send its data

to respective controller resulting in an energy efficient system.

• A centralized algorithm is proposed for slot allocation for MTCDs such that minimum

inter-cluster interference is experienced by all the devices. This is based on graph

colouring mechanism.

• Slot allocation based on the Q-learning algorithm is proposed. Block based or clustered

slot allocation for M2M communication in a distributed manner is presented.

• Comparison between the centralized and distributed slot allocation is made in terms

of average SIR and admittance rate is made, for the clustered M2M network.

• Computational complexity and time is improved by introducing block-based allocation

using Q-learning.

• We further analyze the convergence capabilities ( convergence time and convergence

probability) of the proposed approach with respect to different parameters.

• We propose various reward schemes for the Q-learning algorithm and perform the

comparison.

This chapter is organised as follows: Section II describes the system model and section III

presents centralized and distributed methods for resource allocation. It introduces an idea of

block Q-learning and presents it as a preferred solution for resource allocation. Simulation

results are presented in section IV and section V concludes this chapter.
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5.2 System Model

A clustered network with downlink communication is considered as shown in Figure 5.1. We

assume that number of MTCDs per unit area is high and a single eNB is not able to serve

all the devices in an efficient manner. A single eNB is present that is in communication

with the cluster heads/controllers. MTCDs controllers are responsible for data aggregation

and transmission to their respective MTCDs as shown in the figure. When more than one

controller transmits in the same time slot, interference is experienced as the transmission is

not coordinated.

We consider a TDMA-based network with a frame having T slots and a controller for

each cluster will send data to its associated devices in these slots. Let K be the total number

of clusters and D be the maximum number of devices in each cluster.

Figure 5.1: Clustered M2M Network

Each slot in each cluster will have a device assigned to it for transmission. Let device

i in jth cluster be denoted as U j
i , e.g., in the Figure 5.2, slot 1 in cluster 1 has user 1

assigned to it. Slot 1 in cluster 2 has also user 1 assigned to it, whereas slot 1 in cluster 3

has user 3 assigned to it. Let the rth frame be denoted as Fr, e.g., frame 1 in cluster 1 is
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Figure 5.2: Frame Allocation and Interference. (T = 3, K = 3, D = 3)

F1 = [U1
1 , U

1
3 , U

1
2 ]. Similarly, F2 = [U2

1 , U
2
2 , U

2
3 ] and F3 = [U3

3 , U
3
1 , U

3
2 ] are frame 1 of cluster

2 and cluster 3, respectively in the previous example.

There is no intra-cluster interference as TDMA is being used within the cluster and all

devices are sharing the same frequency but at different times. However, as each time slot is

used by all the controllers (or clusters), there will be inter-cluster interference. Our purpose

is to assign slots to the users in each cluster in such a way that inter-cluster interference is

minimized with reinforcement learning approach such as Q-learning.

Let the interference between different clusters in slot t be denoted as Et on a particular

frequency channel. This interference is the function of different devices assigned to slot t in

each cluster. In the case of Figure 5.2, devices 1, 1, 3 are assigned to slot t = 1 in cluster

1, 2, 3, respectively. Let γt be the resulting signal to interference ratio (SIR) of devices in

slot t. The SIR can be written as: γt = f(U1
1 , U

2
1 , U

3
2 ), where f = () is the function that

calculates the SIR based on MTCDs assignment. We calculate the actual power transmitted

by each controller to its associated devices based on distance and the same received power,

which is used to calculate the interference caused to devices sharing the same time slot.

111



Afterwards, we calculate the SIR for each device in all the clusters. We want to find the

combination of devices assigned to slot t in such a way that the interference is as low as

possible and SIR is maximum. In the above example with three clusters, it can be written

as:

max
U

j

i

γt, ∀t, i = 1− 3, j = 1− 3

subject to

|Fr| = T, ∀r

(5.1)

where Fr counts the number of devices assigned in rth frame. The above constraint means

that all devices are assigned slots in all the frames and no frame should be left empty. In a

general case where there are T slots, R frames, K clusters and D MTCDs, the problem can

be written as: At each time instant t,

max γt, ∀t = 1, 2, ..., T (5.2)

s.t.|Fr| = T, ∀r = 1, 2....., R (5.3)

U = [U1
1 ...U

1
D, U

2
1 ...U

2
D, ....U

K
1 ...U

K
D ] (5.4)

where U is the vector consisting of all the devices in each cluster. Here, each MTCD is

numbered from 1 to D, and we assume equal number of devices in each cluster.

5.3 Proposed Solution

There are two ways for slot assignment; centralized and distributed. In the centralized

method, eNB is responsible for the formation of conflict graph and it broadcast the conflict

free slot assignment to all the controller/heads. We use graph colouring approach to identify

slot assignment to MTCDs. Afterwards this slot schedule is advertised by the controller to

all the MTCDs in its cluster. While in the distributed slot assignment, each controller is

responsible for the formation and advertisement of the slot schedules.
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5.3.1 Centralized Slot Allocation

Downlink data transmission from controllers to their respective MTCDs is analogous to many

independent point-to-point flows in the network. Best scheduling assignment is the conflict

free assignment which is some times not possible due to existence of large number of MTCDs

per unit area (as a distributed assignment). We try to assign slots in such a manner that all

MTCDs are able to maintain the required SIR threshold. The conflicting node transmissions

are determined based on an interference graph in the centralized assignment.

The network is represented by a graph G = (V,E), where V is the set of nodes in a graph

G. These nodes correspond to D + K = |V |, total number of MTCDs and controllers in a

network. The E are the transmission links from controllers to MTCDs to be scheduled).

A node may interfere/overhear another node, so these nodes should not transmit/recieve

simultaneously. The interference graph C = (V, I) is found by the estimation of SIR level

among various nodes. I ⊂ V ×V is the set of edges such that (i, p)ǫI, and i and p belongs to

n and m clusters respectively, if either i or p can hear each other or one of them can interfere

with a signal intended for the other (even if they cannot hear each other). Therefore, if i is

receiving, p should not be scheduled to receive from controller at the same time. Therefore,

any conflicting nodes are not colored the same color.

Coloring a graph (nodes) is analogous to assigning a time slot to various MTCDs. Con-

troller corresponding to each cluster should take into account the interferers within their

range while generating schedules. After assigning the colors to the nodes, controllers broad-

cast this information to neighboring controllers. Neighboring controllers assign the time

slots to the nodes associated to them, taking into account the already assigned potentially

conflicting nodes, which are associated with previous controllers. Table 5.1 states the steps

for the slot assignment algorithm. Let us consider i MTCD served by cluster head n and

Gni be the channel gain between them. Pni be the transmission power of cluster head n.
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Table 5.1: Algorithm for SIR Based Slot Assignment

1) At start time slots are assigned to all the MTCDs of a biggest

cluster.

2)Time slots are assigned to all the interfering MTCDs of other

clusters one at a time.

3) SINR is calculated and time slot giving the best value of SINR

is assigned to respective MTCD.

4) After the slot assignment is done to all the MTCDs in a second

cluster, process is repeated for all the clusters in the network.

Figure 5.3: Interference Graph
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Expression for the SIR at i MTCD is given by (noise is neglected):

γi
t(i−→n) =

PniGni
∑K

j=1
j 6=n
O∈Ii

PjOGjO

, (5.5)

where Ii is the set of MTCDs in a cell that can potentially interfere with ith MTCD. Let Pmp

and Plk be the transmitted power from m and l controllers intended for p and k MTCDs in

their own clusters respectively. This transmission is overheard by the ith MTCD as three of

them are using the same time slot t. Channel from m and l controller to ith MTCD is given

by Gmi and Gli respectively. Therefore (5.5) is modified as:

γi
t(i−→n) =

PniGni

PmpGmi + PlkGli

(5.6)

Similarly, SIR of MTCD p served by cluster head m is given by:

γp
t (p−→m) =

PmpGmp
∑K

j=1
j 6=m
O∈Ii

PjOGjO

(5.7)

Slot Assignment

Using an example we assume that total number of slots are 3 in a frame. Twelve MTCDs

are served simultaneously by the controller and thirteen onward will experience denial of

service. No two MTCDs will have same slot within the cluster but two MTCDs of different

cluster share the same slot.

• We start with the cluster of maximum MTCDs and time slots are sequentially assigned

to all the members.

• Distance to all the controllers is calculated and search for the potential interfering

MTCDs is started from cluster of closest controller.

• Time slots are assigned to ith MTCD iteratively to calculate the SIR. Time slot giving

the best value of SIR is assigned to respective MTCD. From interference perspective,

115



both i and p can safely receive in the same time slot as overhearing caused by them

is not significant to obstruct required/proper SIR demands. If it has not been the

situation, then both MTCDs are declared as interfering neighbours and are assigned

different slots.

• After the slot assignment is done to all the MTCDs in a second cluster, controller

nearest to it is searched and the same process is repeated. This continues for all the

clusters till least interference slot assignment for the entire network is done.

Select Results

We used the centralized algorithm explained above to obtain the conflict free slot assignment

as shown in Figure 5.4. Note that we used 8 slots per frame to obtain this figure to better

explain the conflict graph and colour assignment. MTCDs using the same colour are using

the same time slot and these are assigned in a way that minimum interference is experienced

by each of them. This colour assignment is listed in Table 5.2.

Simulation results are provided later for centralized algorithm in section IV.

Table 5.2: Colour Assignment

Slot

No.

Colour

Assigned

Slot

No.

Colour

Assigned

1 yellow 5 green

2 blue 6 white

3 cyan 7 black

4 magenta 8 red
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Figure 5.4: Slot Assignment

5.3.2 Distributed Slot Allocation

In our problem of slot assignment as a distributed implementation, joint learning and actions

are carried out by each controller independent of each other. As controllers are independent

of each other and eNB is not involved in any traffic exchange, we call it a distributed

approach. Our scenario is the case of multiple agents with multiple actions; therefore, we

use Multi-Agent Reinforcement Learning (MARL) algorithm to solve it [157, 158]. There

are two distinct ways in which Q-learning could be applied to a multi-agent system. MARL

algorithm as an independent learner (IL) algorithm, because the agents perform their actions,

obtain rewards and update their Q-values independent of the actions performed by other

agents [159]. On the other hand, a joint action learner (JAL) is an agent that learns Q-values

by performing joint action and it is also influenced by other agents’ actions. In our case,

each controller is taking actions independent of each other; therefore, it is MARL with IL.

But individual Q-value is affected by other controllers’ decisions, therefore, they are also

JAL. As there is not any joint Q-value and joint reward update, our problem falls into both
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categories. Our problem is identified as distributed, decentralized, MARL with combination

of JAL and IL.

Multi-Agent Reinforcement Learning (MARL)

Reinforcement learning (RL) is a mathematical tool for modeling interactions between

agents, i.e., machine devices, providing them with the capability of learning, which can

enable them to make certain decision [160]. Our case is the multi agent scenario in which

each controller is learning from its environment of the suitability of its slot assignment. Each

controller transmits data to its associated MTCD on a specific time slot and frequency chan-

nel, which are shared by all the controllers. This results in interference caused to one another

transmission. Every controller learns with previous experience and schedules its MTCDs in

such a way that minimum interference is caused to the neighbouring controller with whom

it is sharing the slot and frequency channel.

Block Q-Learning for M2M Network

Block Q-learning or clustered Q-learning is a new concept and introduced for the first time

in this paper. As we are considering distributed slot assignment in which controllers are

independent of each other decisions. If slot wise learning is performed, complexity increases

exponentially with the increase in number of MTCDs, as each device has to learn with

respect to every other device in a network. We suggest the block-based assignment in which

each controller is assigning slots to all of its associated devices at the same time in contrast

to doing it on individual basis. Q-learning is employed to learn with experience which slots

are suitable for all the devices in the cluster with a single action for all. This way, not

only the computational complexity decreases but also efficiency is improved as each cluster

is learning with experience the best suitable slots, influenced by the actions performed by

other clusters.

Block Q-Learning: It is based on learning experience by controllers on a set or block of

slots simultaneously. Reward function is assigned to the block of slots instead of an individual
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one, and Q-values are also updated for the block of slots in contrast to the conventional Q-

learning usage. Devices are also taken in a group; that is, each controller will assign reward

values and gain experience on all the devices at once rather on per device basis. Let K(D!) be

the total number of blocks available to be used by all the controllers, where K is the number

of clusters and D is the number of devices in each cluster. From this set, each controller will

select one block on the basis of previous Q-values and then calculate the reward on the basis

of received SIR.

Complexity: In conventional Q-learning algorithm, all the learning agents need to

maintain Q-functions, one for each slot in the system. These Q-functions are maintained

internally by the learning agent, assuming that these values are affected by other agents

actions and rewards. In terms of space complexity, it is linear with the frame size. More

the number of slots, more is the complexity. Also, as the number of agents increases, com-

putational complexity increases exponentially. We introduced the block-based Q learning in

order to reduce the space and computational complexity. space complexity is reduced from

TK to 1÷ Tbl where Tbl is the number of slots in a block. Computational complexity is also

reduced from KD to K(D!), as each controller has to calculate the Q- value and resulting

rewards for all the devices simultaneously rather to do it on individual basis.

We define a matrix γ, having rows equal to number of cluster heads and columns as the

SIR of each associated device of all controllers. By considering device assignment in Figure

5.2, matrix γ is obtained as under:

γγγ =















γ11 γ13 γ12

γ21 γ22 γ23

γ33 γ31 γ32















, (5.8)

where γi,j represents SIR of the ith device of the jth cluster. After calculating the SIR of

each device, controller will check if it meets the required γ
th or not. Using (5.12), ′0′ and ′1′

is assigned and matrix γ̂ is obtained.
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γ̂̂γ̂γ =















1 1 1

1 0 1

0 1 0















, (5.9)

where discrete values for SIRs depend on whether they meet the threshold or not and is

assigned in γ̂. For instance, second and third device of cluster 3, and second device of

cluster 2 did not meet the required threshold; therefore, 0 is placed. While the rest of the

devices in all the clusters met the required threshold, 1 is placed. After obtaining the matrix

γ̂, reward Rbl is obtained using (5.16) as explained below.

Q-Value Update: Stateless Q-learning is used in this scheme to obtain the learning

experience. Each controller has individual Q values for every block, and they represent the

preferred block selection such that maximum number of MTCDs is able to meet the required

SIR threshold. Q values are denoted by Q(j, Tbl, w) and they represent that controller j takes

an action on block of slots Tbl for obtaining the frequency channel w. In this paper, we are

taking w = 1 and same approach can be used for multiple frequencies. The previous Q

values and the current reward all contribute to the Q value update. The Q value is updated

as below after the reward is returned:

Qn+1(j, Tbl, w) = Qn(j, Tbl, w) + α(Rbl
n+1 −Qn(j, Tbl, w)) (5.10)

• Agent: MTCD controller j, ∀1 ≤ j ≤ K. Controllers (or cluster heads) are the agents

running the Q-learning algorithm for selection of the best block of slots for associated

devices.

• Action:A(n) = aj,T̂bl(n), Tblǫ[Tbl1 , ..., TblD ]. aj,T (n) is defined as the action of jth con-

troller at time instance n and is to choose a block T̂bl out of Tbl, where |Tbl| = (D!)

is the number of blocks available to each controller while K(D!) is the total number

of blocks. For instance, block combinations for controller 1 having three associated
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devices are 3! = 6, and they are:

Tbl =











































































U1U2U3

U1U3U2

U2U1U3

U2U3U1

U3U2U1

U3U1U2

(5.11)

The order of block gives the allocation sequence for each associated device. For ex-

ample, first block indicates that first device is assigned to first slot, second device to

second slot and third device to third slot. These blocks are selected at random in the

start followed by the Q-value preference afterwards.

• Reward: is defined as the benefit that controllers will get in terms of SIR, as described

below.

Reward Calculation: We are assigning reward in two stages:

• First, calculate SIR of individual slots and interpret SIR into discrete values as:

Rsl =











1, γ ≥ γth,

0, γ < γth,
(5.12)

where γth is the required signal to interference ratio by the MTCDs for the proper

functionality. Using this reward function and (5.9), matrix γ̂ is obtained.

• Secondly, actual reward allocation on a block of slots is followed by Q-value update.

Rbl is calculated by counting the numbers of 1’s in the γ̂ as follows for the above

example:
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Rbl =











































1 all 1′s,

−1 one 0,

−2 two 0′s,

−3 all 0′s.

(5.13)

Rewards Schemes: Three different schemes for reward allocation are suggested.

• Pessimistic Reward (R1):- If all the MTCDs of a cluster reach the required SIR thresh-

old, 1 is placed for each slot in a block, and then block reward is assigned as 1. If only

2 devices get the required SIR, block will have one 0 and two 1′s, and block reward is

assigned as −1. Hence, for our reward scheme, number of 0′s are counted to determine

the reward. MTCDs are penalized more for wrong selection of slots and rewarded less

for good choice in this scheme. For the given example in matrix γ̂, reward assignment

will be as follows:

Rbl =



























1,

−1,

−2.

(5.14)

There are two more reward schemes one can use,

• Optimistic Reward (R2):-

Rbl =











































3 all 1′s,

2 two 1′s,

1 one 1,

−1 no 1′s.

(5.15)

• Balanced Reward (R3):-
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Rbl =











































1 all 1′s,

0.5 one 0,

−0.5 two 0′s,

−1 no 1′s.

(5.16)

After obtaining Rbl, Q values are updated using (5.10). Controllers will learn by expe-

rience which block is good for data transmission by comparing their Q values. Block with

higher Q values will always be preferred by controller j for frequency w, i.e.,

Ij,w = maxTbl,j,wQt(j, Tbl, w) (5.17)

All the Q values are initialised to 0 at the very beginning. If multiple blocks have the same

Q value, controllers will randomly select one of them. Figure 5.5 shows the flow chart for

block-based Q-learning algorithm used.

All three schemes can be better explained and compared with the example in Table

5.3. We have three clusters and each having three users. Three slots in a frame have to be

assigned by controllers to their MTCDs in way to minimize the interference. We will consider

the block allocation in one cluster with the same situation for all three reward schemes. In

the pessimistic scheme, as there is only a single positive reward, only the combination of

slots which gives that reward will lead to an increasing Q-value. All the other combinations

will decrease Q-values and hence will not be selected. In the optimistic scheme, as there

are multiple rewards, it is possible that a two-slot combination will always be selected as

that too can increase the Q-values. Hence, in the optimistic scheme, we can have multiple

slot combinations that can increase the Q-value with a possibility that the Q-value is only

maximum for that reward, but not the maximum over all rewards. This is the same case

with the balanced scheme, although it will happen less frequently due to a higher difference

between the two positive rewards.
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Numerical Results

We illustrate the performance of the algorithm with respect to different rewards in Figure

5.6. We show the evolution of Q-values versus iterations for different reward values. For

better illustration, we assume a low value of α and assume that only one reward is selected till

the end of all iterations. In this way, we obtain six evolving Q-values, one for each reward

over 1000 iterations. As it can be seen, positive rewards lead to increasing Q-values and

negative rewards lead to decreasing Q-values. If the difference of rewards is less, difference

between the evolving Q-values is also less, e.g., for reward R = 3 and R = 2, the Q-values are

close, whereas for R = 1 and R = 0.5, the difference is more. In fact, for R = 0.5, a similar

Q value as R = 1 takes much more iterations, compared to R = 2 and R = 3. In Table

5.4, comparison between centralized and distributed schemes is presented. This comparison

is based on inter and intra-cluster interferences, complexity and number of users per slot.

Inter-cluster interference is avoided in fully distributed scheme and minimized in rest of the

two. While the intra-cluster interference is avoided in all three schemes. Number of users

transmitting in one slot is more than one in centralized and partially distributed schemes

while only one user per slot is transmitting in fully distributed case. Centralized scheme has

the highest complexity due duplex communication among eNB, controllers and controller,

MTCDs. Also, it adds to network traffic and network congestion is increased. Partially

distributed scheme has higher complexity and communication is between controllers and

MTCDs. Fully distributed scheme has lower complexity than other two schemes. There

is no direct communication among MTCDs, controllers and eNB. Only exchange of ACK,

NACK signals is done between controllers and associated devices.

In the following section, simulation results are presented to further illustrate the proposed

block based Q-learning algorithm.
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5.4 Results and Discussion

In this section, we present results showing the performance of the proposed distributed

algorithm. We do the comparison for the centralized and distributed techniques. We obtain

and analyze the convergence time and convergence probability at various SIR thresholds.

We further analyze the effect of varying SIR thresholds on the admittance rate of MTCDs

with the help cumulative success probability.

We are using a grid of 50m×50m, over which 4 cluster heads and 12 devices are uniformly

distributed. Clusters are formed on the basis of spatial distribution. Table 5.5 summarizes

the parameters and values used in the simulations.

5.4.1 Centralized vs Distributed Implementation

We perform the comparison between centralized and distributed slot allocation and show

the superiority of latter in terms of admittance rate. In Figure 5.7, admittance rate for both

types of slot allocation at various SIR thresholds is shown. It is evident that more number

of MTCDs are satisfying the required SIR threshold in distributed allocation. This is due

to the repeated reward calculation and resulting slot allocation. Convergence criteria for

the block-based Q-learning algorithm is to maximize the number of MTCDs qualifying the

given SIR threshold. In Figure 5.8, average SIR for both types of allocation for various SIR

threshold is shown. Centralized allocation outperforms the distributed allocation, this is due

to the less number of MTCDs admitted at the same SIR level compared to the distributed.

As centralized allocation emphasizes on maximum SIR only rather than maximizing the

number of admitted users, which is the case in the distributed case.

Also, distributed allocation performs well in terms of computational complexity and time.

We have used block-based Q-learning approach which enables controllers to allocate slots to

all of their associated MTCDs simultaneously, thus improving the efficiency. In addition to

this, there is no involvement of eNB in slot allocation by controllers, which not only reduces

the burden on eNb but also significantly reduce the network traffic.
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5.4.2 Distributed Implementation

Distributed resource allocation is better than centralized in many aspects. In centralized

approach, a central controller has access to the global channel and network knowledge, and

therefore is capable of making coordination and resource allocation decisions. Therefore, it is

responsible of assigning resources to all the devices in the network. Without an efficient and

fast infrastructure, centralized allocation is an hard task due to the exchange of inter-cell

scheduling information and the large amount of feedback required by the cotrollers to send all

the information. Also, complexity increases exponentially with the increase of devices. The

distributed strategy reduces both signaling and feedback requirements as compared to its

counter part. Also, distributed schemes are scalable and information exchange and overhead

can be adapted according to the size of the network. Hence, in the following, the distributed

scheme is further analyzed in detail.

Reward Schemes

Comparison among various reward schemes is shown in Figures 5.9, 5.10. Convergence

probability and convergence time are the parameters used for comparison of various schemes.

Performance of algorithm depends upon the reward scheme being used. We can see from

the plots that pessimistic reward (R1) performs better than the rest of two schemes. It has

highest convergence probability as immediate rewards are biased towards negative values

which enables controllers to try different combinations of slot allocation. This increases

the possibility of convergence. While for optimistic reward scheme, as immediate rewards

are biased towards positive values and there is less probability for controllers to pick up

new combinations for slot allocations. Therefore, there are less chances of convergence as

controllers will keep on adopting the same slot allocation combination. Most of the time,

the algorithm is unable to allocate the slots, the only time it is able to do that is when the

initial slot allocation matches the required slot allocation or is very close to the required

slot allocation. Thus, when the initial slot allocation is close to the required allocation, the
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algorithm converges quickly.

The reason for such a performance and the dependency on reward schemes can be seen

by considering the difference between the reward schemes: In the pessimistic scheme, there is

only a single positive reward and that is awarded only when all three slots meet the required

SIR threshold, meaning that Q-value is only increased in that scenario. In the optimistic

scheme, there are multiple positive rewards, it means that even when there is only a single

slot that meets the SIR threshold, the reward is still positive, which will increase the Q-value.

In the balanced scheme, the Q-value will only increase when a minimum of two slots meet

the required SIR threshold. The proposed algorithm selects the block that has the maximum

Q-value. In case of pessimistic scheme, that block can only be the one where all slots meet

the required threshold. In case of optimistic and balanced schemes, there can be multiple

blocks that will lead to a higher Q-value. Thus, it means that the solution given by the

optimistic and balanced schemes is not always unique and is dependant on the initialisation.

From above numerical and simulation results, pessimistic reward scheme appears to be

the best choice. We apply this reward scheme for the further analysis of our algorithm.

Convergence Time

In Figure 5.11, convergence time is shown with respect to various SIR thresholds. We

define the convergence time as the time taken by the controllers to learn with repeated data

transmission and resulting Q values, for the selection of best block and best time slots for

their data transmission. Convergence is declared when there is no change in block selection

and in turn slot assignment. We calculate the convergence time obtained over 1000 iterations

and average the results. Different values of SIR varying from 2 to 10 in a step-size of 2 are

used to study the change in convergence time. Convergence time varies from 2 to 9 slots.

The convergence time increases as the SIR threshold is increased. This is because, with

increasing threshold, there are less configurations of MTCDs that can meet the required

threshold. It was expected as it is difficult for all the MTCDs to meet the required SIR

threshold and it takes more time by controllers to learn with experience that how to pick up

127



the best block.

Convergence Probability

Figure 5.12 shows convergence probability for various SIR thresholds. Convergence prob-

ability is defined as ratio of number of times simulation converge and the total number of

iterations. SIR is varied from 2 to 10 in a step size of 2. A decreasing trend in convergence

probability can be observed between 0.5 and 0.9. We can see that when SIR threshold is

increased, then convergence probability is decreased. This is because with the increase of

SIR threshold, less configurations of MTCDs can fulfill the required thresholds as also seen

in Figure 5.11. Hence, the simulation converges less number of times as the SIR threshold

increases indicating that it is difficult for all the MTCDs to get desired threshold simulta-

neously.

Admittance Rate

In Figure 5.13, cumulative distribution function is used to study the effect of SIR threshold on

number of MTCDs meeting the required SIR level. It shows only the number of successful

MTCDs at each threshold level provided all of them meet the convergence criteria. For

example at γ = 10, 50 percent of times, all of the devices meet the required SIR criteria

(that is all the MTCDs will get the SIR greater than SIR threshold). We can see that as

the SIR level increases, convergence probability decreases and not all the devices meet the

required threshold. As SIR threshold is decreased, increase in number of satisfying MTCDs

is observed. When the number of MTCDs is 8 and the admittance rate is 0.5, it means

that only 4 MTCDs are admitted. For γ = 2, all the MTCDs are admitted as the threshold

is low enough. This can also be seen by Figures 5.11, 5.12, where at γ = 2, convergence

time is minimum and convergence probability is maximum. For γ = 4 to 8, the admittance

rate starts decreasing from 10 MTCDs and goes to 0.5 for 12 MTCDs. In case of γ = 10,

the admittance rate is the lowest. A decreasing trend of admittance with respect to SIR

threshold can be seen, which shows that with an increase of SIR threshold, lower number of
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MTCDs will be admitted.

Figure 5.14 shows the percentage of MTCDs satisfying the given SIR threshold criteria.

Three SIR levels 2, 6 and 10 are used do the analysis. We can see that for γ = 2, 90 percent

of times all MTCDs reach the required level while for γ = 6, this number reduces to 75

percent and for γ = 10 to 30 percent.

5.5 Chapter Summary

We carried out slot allocation in random access network of MTCDs in a centralized/distributed

manner and presented a strategy for the selection of time slots by MTCD controllers. We

showed the superiority of distributed assignment over centralized in terms of complexity and

average SIR. We have used block-based Q-learning for the resource allocation for MTCDs

in a distributed manner. We explored the relationship between SIR threshold and conver-

gence probability. It is observed that convergence probability decreases with the increase in

SIR threshold. We further showed that it takes longer to converge at higher values of SIR

threshold.
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Figure 5.5: Block Q-learning Flow Chart
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Table 5.3: Comparison of Reward Schemes

Pessimistic Reward Optimistic Reward Balanced Reward

Block

selec-

tion

Block Q-

value

Block Q-

value

Block Q-

value

Time

U1U2U3

√
-0.5

√
1

√
0.25

U1U3U2 0 0 0

U2U1U3 0 0 0 t=1

U2U3U1 0 0 0

U3U1U2 0 0 0

U3U2U1 0 0 0

U1U2U3 -0.5
√

1.5
√

-

.125

U1U3U2

√
-1 0 t=2

U2U1U3 0 0

U2U3U1 0 0

U3U1U2 0 0

U3U2U1 0 0

U1U2U3 -0.5
√

0.5 -

.125

U1U3U2 -1 0
√

0.25 t=3

U2U1U3

√
1 0 0

U2U3U1 0 0 0

U3U1U2 0 0 0

U3U2U1 0 0 0
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Figure 5.6: Evolution of Q-values vs Iteration for Various Rewards

Table 5.4: Comparison between Centralized and Distributed Schemes

Attributes CentralizedFully

Dis-

tributed

[18]

Partially

Dis-

tributed

Inter-cluster Int.
√ × √

Intra-cluster Int. × × ×

Users per slot > 1 1 > 1

Communication eNb ↔

controller

↔ MTCD

ACK,

NACK

controllers↔

MTCDs

Complexity high low high
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Table 5.5: Notations and Values
Symbol Definition

K = 4 Number of clusters/MTCD controllers

D = 3 Number of devices in each cluster

T = 3 Number of slots in each frame

Uj Set of MTCDs in jth cluster

γth = 2, 4, .., 10 SIR Threshold

Pr = 1 mW Received power
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Figure 5.7: Admittance Rate for Centralized and Distributed Allocation
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Figure 5.8: Average SIR for Centralized and Distributed Allocation
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Chapter 6

Conclusions and Future work

This dissertation mainly focused on resource allocation of MTCDs in an M2M network.

MTCDs are grouped into cluster to accommodate massive random access, as clustering and

group based MAC has been suggested by many researchers and seem efficient and applicable.

Each cluster is managed by a cluster head and all cluster heads or MTCD controllers will

receive aggregated data from eNB and distribute to its associated devices.

6.1 Conclusion

We tried to maximize the number of admitted MTCD controllers into the network with least

interference caused to conventional human users. We formulated the problem as a mixed-

integer non-linear problem and solved it using meshed adaptive direct search algorithm.

Afterwards we did scheduling of MTCDs within a cluster. At first, we formulated the slot

selection problem as an optimization problem. Then we presented a solution using the Q-

learning algorithm to select conflict-free slot assignment in a random access network with

MTCD controllers. In continuation to the above, we presented a block based Q-learning

algorithm for the scheduling of MTCDs in distributive manner. At first centralized slot

assignment is done and an algorithm is proposed for minimizing the inter-cluster interference.

Then we used Q-learning algorithm to assign slots in a distributed manner and comparison
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is made between the two schemes. Effort is made to avoid or minimize the intra-cluster and

inter-cluster interference and to ensure at least the minimum SIR requirements of MTCDs

in a cluster.

6.2 Future Work

• Formation of M2M clusters on the basis of energy efficiency and QoS is still not much

explored topic. Due to unique properties of MTCDs, we aim to investigate and imple-

ment QoS based clustering. To schedule mixed and individual traffic without affecting

human users is a task. We intend to form mixed traffic and individual traffic clusters.

Scheduling for both types of clusters is performed and comparison should be done for

analyzing the validity and usefulness of a specific criteria. However, it is challenging

to make/remake groups/clusters in real time with specific QoS requirements.

• We intend to introduce the concept of hybrid MAC protocol for MTCD’s channel

access. As in the mixed traffic case, various data rates and priority devices have to be

accommodated without deteriorating their QOS, scheduling is a challenge. MTCDs

belonging to different classes will require different channel/slot/access grant interval

time (AGTI) for fulfilling their required data rate demands. We plan to use Z-MAC

for the scheduling of mixed traffic within a cluster. Z-MAC combines the strengths

of TDMA and CSMA and, we want to benefit from its adaptability to the level of

contention in the network. We plan to make two classes, for instance, one with periodic

access but lesser number of required slots and the second with priority access but not

so frequent with larger slots requirement. Z-MAC will accommodate both types of

devices with improved network throughput.

• We aim to use frequency hopping in a clustered M2M network to avoid the signalling

overhead in energy limited MTCDs. The key challenge is the design of hopping se-

quences to guarantee interference-free communication. Existence of large number of
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MTCDs will result into longer hopping sequence which further results into congestion

due to longer waiting time. We aim to design an distributed and adaptive multichannel

hopping protocol which can efficiently accommodate varying MTCD traffic with less

delay.

• In this thesis, we used Q-learning with in an distributive shared slot TDMA envi-

ronment. For the future work, we aim to use Q-learning with in an distributive

shared slot OFCDM environment, in which, controllers will learn with experience which

code/spreading is preferred for them in terms of lowest interference and best channel

gain. MTCDs will be able to choose between time domain spreading and frequency

domain spreading according to the amount of traffic in a network.

• For admitting MTCD controllers using non-linear programming, simple case of ex-

istence of only three human/primary users and ten MTCDs was considered in our

present work. We aim to extend it for larger number of both types of users with differ-

ent distributions. We also aim to examine the effects of all three performance metrics

with different weights.
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