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EFFECT OF TIME DELAYS IN CHARACTERIZING CONTINUOUS MIXING 
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Master of Applied Science 
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Chemical Engineering 

2010 

Vishal Kumar R. Patel 
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ABSTRACT 

 

Aqueous xanthan gum solutions are non-Newtonian fluids, pseudoplastic fluids 

possessing yield stress. Their continuous mixing is an extremely complicated 

phenomenon exhibiting non idealities such as channeling, recirculation and stagnation. 

To characterize the continuous mixing of xanthan gum solutions, three dynamic models 

were utilized: (1) a dynamic model with 2 time delays in discrete time domain, (2) a 

dynamic model with 2 time delays in continuous time domain, and (3) a simplified 

dynamic model with 1 time delay in discrete time domain. A hybrid genetic algorithm 

was employed to estimate the model parameters through the experimental input-output 

dynamic data. The extents of channeling and fully-mixed volume were used to compare 

the performances of these three models. The dynamic model parameters exerting strong 

influence on the model response were identified. It was observed that the models with 2 

time delays gave a better match with the experimental results.  

Keywords: Continuous mixing, Dynamic model, Non-Newtonian fluid, Parameter 

identification, Hybrid genetic algorithm. 
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CHAPTER 1 

 

    INTRODUCTION 

 

1.1  Background 

Continuous-flow mixing is a vital component to many processes including 

polymerization, fermentation, wastewater treatment, and pulp and paper 

manufacturing. its demonstrated ability to improve product uniformity and minimize 

shutdown, loading, and unloading times. Continuous mixing is considered as an 

efficient alternative to a batch mixing operation. 

 

        Understanding continuous mixing mechanisms is crucial especially when the 

fluids are non-Newtonian.  A wide range of working fluids in industrial mixers are 

non-Newtonian mostly pseudoplastic or shear thinning fluids with yield stress. 

Important non-Newtonian fluids such as pulp suspensions, food substances like 

margarine and ketchup, paints, cement, and certain polymer and biopolymer solutions 

are pseudoplastic with yield stress. These non-Newtonian fluids create considerable 

deviations from ideal mixing because continuous mixing of non-Newtonian fluids 

exhibit non idealities such as channeling, recirculation, and stagnant zones.  

 

        It is very important to characterize non idealities present during the continuous 

mixing of non-Newtonian fluids. Different dynamic models were developed in order 

to represent the dynamics of continuous mixing for non-Newtonian fluids. In this 

study, three dynamic models were utilizes to characterize the continuous mixing of 

non-Newtonian fluids: (1) a dynamic model with 2 time delays in discrete time 

domain, (2) a dynamic model with 2 time delays in continuous time domain, and (3) a 

simplified dynamic model with 1 time delay in discrete time domain. Hybrid genetic 

algorithm was used in order to identify dynamic model parameters. 
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1.2   Thesis objective and contribution 

1.2.1    Problem statement 

The continuous mixing of non-Newtonian fluids exhibits non idealities such as 

channeling, recirculation, and stagnant zones. Presence of non idealities is one of the 

main reasons for poor mixing performance of continuous mixer. It is important to 

identify the non idealities present during the continuous mixing of non-Newtonian 

fluids. The dynamic models which represent the dynamics of continuous mixing have 

two different concepts: (1) the dynamic models which have 2 time delay terms and 

(2) the dynamic model which has 1 time delay term. It is important to observe the 

effect of time delays in characterization of continuous mixing of non-Newtonian 

fluids.    

 

1.2.2    Dynamic models 

 In this study, three dynamic models were utilized for characterization of continuous 

mixing of non-Newtonian fluids:  

1. Ein-Mozaffari‟s dynamic model (Ein-Mozaffari et al., 2004) 

2. Patel‟s dynamic model (Patel et al., 2007) 

3. Soltanzadeh‟s dynamic model (Soltanzadeh et al., 2008) 

Ein-Mozaffari‟s dynamic model and Patel‟s dynamic model both have 2 time delays  

term while Soltanzadeh‟s dynamic model has 1 time delay term. 

 

1.2.3   Hybrid genetic algorithm  

Genetic algorithms (GAs) are global optimization techniques that are particularly well-

suited for highly nonlinear functions. GAs can handle noisy, discontinuous functions. 

GAs can rapidly locate the region in which the global optimum exists but they take 

relatively long time to locate the exact global optimum in the region of convergence. A 

combination of GA and a local search method can speed up the search to locate the 

exact global optimum. In such a hybrid, applying a local search to the solutions that are 

guided by a GA to the most promising region can accelerate convergence to the global 

optimum. The time needed to reach the global optimum can be further reduced if local 
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search methods and local knowledge are used to accelerate to locating the most 

promising search region in addition to locating the global optimum starting within its 

basin of attraction. Hybrid genetic algorithm can overcome genetic drift that arises as a 

result of finite population size. In this study “hybrid genetic algorithm” was utilized for 

identification of the dynamic models parameters, which uniquely integrating genetic 

algorithms with gradient search (a local search method). 

 

1.3   Thesis layout 

This thesis is organized in the following fashion: Chapter 2 includes an introduction of 

mixing, rheology of non-Newtonian fluids, and literature review on the continuous 

mixing of pseudoplastic fluid with yield stress. Chapter 3 introduces different dynamic 

models which used in characterization of the continuous mixing of non-Newtonian fluids. 

Chapter 4 details the system model that is the main focus of the identification procedure. 

Once the system has been modeled, the identification technique is introduced. Based on 

this objective function, the procedures to identify dynamic model parameters using 

hybrid genetic algorithm is formulated. A sensitivity analysis method is introduced. 

Chapter 5 includes genetic algorithms strength, weakness, and importance to hybridize 

the genetic algorithms. Chapter 6 includes overview of experimental work and rheology 

of xanthan gum. Chapter 7 includes simulation results and discussions. Chapter 8 details 

the conclusion, overall result of this research and possible future research in this topic.      
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CHAPTER 2 

 

 MIXING 

 

2.1 Introduction 

Mixing plays an important role in different industries such as food, pharmaceutical, 

paper, plastic, ceramics, and polymers. Mixing is a unit operation that involves 

manipulating a heterogeneous physical system with the intent to make it more 

homogeneous. There are two modes of mixing at the industrial level:                       

1. Batch Mixing Operation 

2. Continuous Mixing Operation. 

  

2.1.1 Batch Mixing Operation 

 A batch mixing process typically consists of three sequential steps: loading mix 

components, mixing, and discharge of the mixed product. In a batch mixing process all 

ingredients are loaded into a mixer and mixed for duration until they are homogenously 

mixed. The retention time in a batch mixer is normally arrived at based on trials wherein 

the time required for achieving the desired level of product homogeneity is established. 

Mixing cycle times can range from a few seconds with high intensity units to many hours 

where an additional processing like heating or cooling may be involved. The resulting 

mix is then discharged out of the mixing vessel. (Tekchandaney, 2009)  

    The total batch time is the time required for charging the material into the mixer, the 

mixing cycle time and the discharge time. For applications where product contamination 

between successive batches is not permitted, the time required for cleaning the mixer 

should also be added to the total batch time. 

2.1.1.1 Applications of Batch Mixing 

Batch mixing is preferred for applications where: 

 Many formulations are produced on the same production line.  

 Ingredient properties change over time.  
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 Production quantities are small.  

 Strict control of mix composition is required.  

2.1.1.2 Advantages of Batch Mixing 

The advantages of the batch mixing operation are as follows: 

 Precise control of mix quality.  

 Batch traceability  

 Lower installed and operating costs for small to medium capacities compared to 

continuous mixing  

 Flexibility of production.  

 Easy cleaning, lower cleaning costs when product changes are frequent. 

2.1.1.3 Disadvantages and Limitations of Batch Mixing 

The disadvantages of batch mixing are as follows: 

 Batch mixing is uneconomical when large quantities of material are to be mixed.  

 Batch mixing is requiring more labor compared to continuous mixing.  

2.1.2 Continuous Mixing Operation 

Continuous mixing is used to mix ingredients continuously in a mixer in a single pass. In 

a continuous mixing process, the loading, mixing, and discharge steps occur continuously 

and simultaneously.  

     The materials to be mixed are continuously charged into the mixer as per the 

formulation. The process of charging the materials in a continuous mixer is extremely 

critical and can significantly affect the quality of the final mix. The time taken by the 

material to travel from the feeding point to the discharge point is known as the retention 

time of the material in the mixer. Material retention time is not uniform in continuous 

mixing and can be directly affected by mixer speed, feed rate, mixer geometry, 

inlet/outlet location, and the design of mixer internals. Material is continuously 
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discharged at a constant rate which is generally termed as the capacity of the continuous 

mixer. (Tekchandaney, 2009) 

2.1.2.1 Applications of Continuous Mixing 

Continuous mixing is preferred for applications where:  

 Large quantities of a single product are to be mixed.  

 Requiring high production rate.  

 Strict batch integrity is not critical.  

 Smoothing out batch product variations is required.  

2.1.2.2 Advantages of Continuous Mixing 

The advantages of the continuous mixing operation are as follows: 

 High Capacity - Compared to batch type mixers, continuous mixers of smaller 

volumes and power can be used to produce large quantities of uniform mix. 

Hence for a given capacity they are more compact than batch mixers.  

 Lower Mixing Time - The mixing time in continuous mixers is lower than in 

batch mixers.  

 Consistent Mixing Performance – With proper feeding arrangements, online 

instrumentation and operation controls, a consistent mixing performance and 

uniform product quality can be achieved.  

 Suitability for Automatic Control - Operation of continuous mixers can be 

automated using online monitoring and measuring instruments.  

 Lower Cost of Mixers - Continuous mixers tend to be cheaper than the 

equivalent batch mixers because they are compact and require less space. 

However the cost of feeders for metering the product into the mixer, 

instrumentation and control may result in a higher overall cost of the system.  

 Minimum Labor – Since material feeding and discharging processes are 

automated, minimal labor is required for continuous mixing.  
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2.1.2.3 Disadvantages and Limitations of Continuous Mixing 

 Lack of Flexibility – Continuous mixing systems are designed for a particular 

application and cannot be easily tailored to mix different formulations. Even if a 

new ingredient is to be introduced, it calls for a change in the protocol, and the 

system has to be recalibrated.  

 Component Limitations – When a large number of ingredients are to be added, 

continuous mixers have limitations with respect to mixing uniformity when 

compared to batch mixers.  

 Higher Overall Maintenance Cost – Continuous mixers heavily depend on 

feeders, instrumentation and online control systems. Failure, malfunction in any 

one component can lead to complete stoppage. Hence, overall maintenance costs 

for continuous mixers are higher compared to batch mixers.  

 Calibration and Checking – The feeding devices in a continuous mixing require 

careful calibration and frequent checking for accuracy.  

 Critical Applications – Continuous mixers are not suited for critical applications 

where product formulations need to be exact. Batch mixers are better suited to 

processes that require a very tight product formulation and uniform composition.  

2.2 Continuous mixing of non-Newtonian fluids 

2.2.1 Introduction 

Continuous-flow mixing is widely used in many processes such as polymerization, 

fermentation, wastewater treatment, and pulp and paper manufacturing because of its 

demonstrated ability to improve product uniformity and minimize shutdown, loading, and 

unloading times. Continuous mixing of non-Newtonian fluids is difficult to characterize 

due to the complex rheology of non-Newtonian fluids.  

      Understanding continuous mixing mechanisms is crucial especially when the fluids 

are non-Newtonian.  A wide range of working fluids in industrial mixers are non-

Newtonian mostly pseudoplastic or shear thinning fluids with yield stress. Important non-

Newtonian fluids such as pulp suspensions, food substances like margarine and ketchup, 
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paints, cement, and certain polymer and biopolymer solutions are pseudoplastic with 

yield stress. The mixing of non-Newtonian fluids is often described as an “art” rather 

than a “science”, depending upon empirical correlations, working experience, and 

intuitive knowledge (Sue and Holland, 1968). 

 

2.2.2 Rheology of non-Newtonian Fluids 

Rheology studies the relation between force and deformation in materials. The 

relationship between stresses acting at a point in a fluid and deformations occurring as a 

result of their action is called rheological equation of state or constitutive equation 

(Malkin, 1994). 

 

          Viscosity is usually defined as the ratio of shear stress (τ) to shear rate (  ). Fluids 

having a constant viscosity for any shear rate are called Newtonian and their viscosity is 

called Newtonian viscosity. If the ratio of shear stress to shear rate is not constant, the 

fluid is called non-Newtonian, and their viscosity is called apparent or non-Newtonian 

viscosity (Morrison, 2001).  

 

Non-Newtonian fluids can be grouped into three different classes (Chhabra and 

Richardson, 1999) as indicated in Figure 1.  

             

2.2.2.1 Time-Independent Fluids 

Time-independent fluids are the most common type of non-Newtonian fluids. At any 

time, shear rate at any point in these fluids is determined only by the value of shear stress 

(Tanner, 2000). Under this category, two types of non-Newtonian fluids can be 

distinguished: fluids with yield stress and fluids without yield stress. 
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                                   Figure 1: Categories of non-Newtonian fluids 

 

Some non-Newtonian fluids show little or no deformation up to a certain level of stress. 

Such fluids behave like a solid below the level of stress and like a fluid above it. The 

stress at which such fluids start to flow is called yield stress, resulting in fluids often 

referred to as yield stress fluids (Barnes, 2000). The internal structure of yield stress 

fluids is capable of preventing movement below yield stress. However, the internal 

structure reforms to allow the fluid to move when shear stress exceeds yield stress 

(Macosko, 1994). Examples of fluids possessing yield stress can be found in plastic 

melts, coal, cement, margarine and shortenings, greases, chocolate mixtures, toothpaste, 

soap and detergent slurries, and paper and pulp suspension. Non-Newtonian fluids 

without yield stress, conversely, can flow at any stress. Examples of non-Newtonian 

fluids without yield stress include starch suspensions, fruit juice concentrates and 

printer's ink.  

 

       Non-Newtonian fluids with and without yield stress can be further divided into 

pseudoplastic and dilatants fluids. While pseudoplastic fluids thin at high shear rates, 

dilatants fluids thicken at high shear rates. Most of the non-Newtonian fluids encountered 
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in industries are pseudoplastic or shear thinning. These fluids characterized by apparent 

viscosity which decreases with increasing shear rate. Examples of pseudoplastic fluids 

are rubber solutions, adhesives, soap, detergents, paints, and paper and pulp suspension. 

Dilatants fluids characterized by apparent viscosity increases with increasing shear rate; 

thus these fluids are also called shear-thickening. Examples of dilatants fluids are corn 

flour/sugar solutions, and many pigment dispersions containing high concentration of 

suspended solids such as mica and powdered quartz. 

 

2.2.2.2 Time-Dependent Fluids 

 Shear rate in time-dependent fluids is a function of both magnitude and the duration of 

shear stress application to the fluid. Thixotropic and rheopectic or anti-thixoptropic fluids 

are the most common kinds of time dependent non-Newtonian fluids.  

 

      In thixotropy, the longer the fluid is subjected to shear stress, the lower its viscosity. 

However, in rheopecty, the longer the fluid is subjected to shear stress, the higher its 

viscosity. Many gels, paints, and printing inks are thixotropic, exhibiting a stable form at 

rest but becoming fluid when agitated (subjected to shear stress). Some lubricants and 

gypsum suspension thicken or solidify when shaken and hence are considered rheopectic 

fluids (Barnes, 2000).  

2.2.2.3 Viscoelastic Fluids 

Viscoelastic fluids exhibit the characteristic of both fluids and elastic solids, showing 

partial elastic recovery after deformation (after applying shear stress). 

 

      In a purely elastic solid the shear stress corresponding to a given shear rate is 

independent of time, whereas for viscoelastic substances the shear stress will gradually 

dissipate with time. In contrast to purely viscous liquids, viscoelastic fluids flow when 

subjected to shear stress but part of their deformation is gradually recovered upon 

removal of shear stress (Macosko, 1994).  Examples of viscoelastic fluids include 

bituminous, flour dough, and some polymer and polymer melts such as nylon. 

http://en.wikipedia.org/wiki/Shear_stress
http://en.wikipedia.org/wiki/Gel
http://en.wikipedia.org/wiki/Lubricant
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2.2.3 Literature review on continuous mixing of pseudoplastic with yield stress 

fluids 

Little information is available on continuous mixing of non-Newtonian fluids. It is 

important to investigate the dynamic behavior of continuous mixing. Traditionally 

continuous mixers have been designed assuming they are ideally mixed, with the 

dynamics represented by a first order transfer function. In order to understand continuous 

mixing mechanisms of non-Newtonian fluids, Ein-Mozaffari et al. (2002, 2005) studied 

the dynamics of a rectangular agitated pulp stock chest under controlled conditions of 

impeller speed, pulp suspension concentration, input pulp suspension flow-rate and vessel 

input and output locations. They attributed the deviations from ideal mixing to a number 

of factors including short-circuiting, recirculation and the presence of dead zones in the 

chest.  Such zones can arise from the interaction between the circulation patterns 

generated by the impellers, the suspension flow through the vessel and chest geometry 

(Ein-Mozaffari et al., 2004). 

 

            Dynamic tests conducted on a rectangular pilot stock chest by Ein-Mozaffari et al. 

(2003) showed that the extent of non-ideal flow can be significant. The percentage of 

channeling was as high as 90% of pulp feed at high input flow-rates and low impeller 

speed.  Ein-Mozaffari et al. (2004)  developed  a  dynamic  model  based  on  physical in- 

terpretation of the flow field and used it to characterize the non-idealities present in the 

continuous mixing. This dynamic model (Ein-Mozaffari et al., 2004) comprised two 

separate time delays one for a short-circuiting zone (channeling) and one for a mixing 

zone. 

 

      Ford et al. (2006) used a computational-fluid-dynamics (CFD) model of a rectangular 

pulp-stock mixing chest and reported that dynamic performance of pulp chest was far 

from ideal, with a significant extent of non-idealities. They showed that the dynamic 

model proposed by Ein-Mozaffari et al. (2004) capture the mixing dynamic of the scaled 

model chest fairly well. Soltanzadeh et al. (2008) used a simplified version of the model 

developed by Ein-Mozaffari et al. (2004) and tried to describe the mixer dynamic and 

flow non-idealities for a rectangular pulp chest. They used standard PEM (prediction-
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error minimization) function in MATLAB identification toolbox to predict the extent of 

non-ideal flows. They considered that the time delays for both mixing and short-

circuiting zones were equal.   

 

     Saeed et al. (2008) analyzed the performance of the continuous flow mixing in a 

cylindrical vessel. The fluid used in the experiment was xanthan gum solution which is a 

pseudoplastic fluid with yield stress. They showed that the performance of a continuous-

flow mixer can be improved by increasing the impeller speed, decreasing the flow rate, 

and decreasing the yield stress (by reducing the solution mass concentration), relocating 

the input/output location and proper type of impeller. CFD simulation was done in order 

to match the parameters of the dynamic model proposed by Ein-Mozaffari et al. (2004) 

with the experimental ones. 

 

      It is known that accurate modeling, precise parameterization and identification are 

very important to represent the dynamic of continuous mixing. Identification of dynamic 

model parameters has long been the topic of research interest in the past (Johansson, 

1994; Johansson et al., 1999; Soderstrom et al., 1997; Whitfield and Messali., 1987), The 

identification of systems with time delays have been reported (Sung and Lee, 2001; 

Wang et al., 2001) but these schemes are not generic enough to handle Ein-Mozaffari et 

al. (2004) dynamic model. Kammer et al. (2005) developed a numerical method for 

estimating model parameters in the model developed by Ein-Mozaffari et al. (2004). In 

this method, the estimation of the time delays was performed independently from the 

estimation of the remaining parameters of the model. The authors proposed two distinct 

stages for the identification: an efficient but less accurate search (Least Squares 

Minimization) for the optimal delays, followed by an accurate search (Sequential 

Quadratic Programming) for the whole set of parameters. Although this mechanism is not 

guaranteed to converge to the global minimum, a Monte Carlo simulation showed very 

encouraging results. 

 

    Upreti and Ein-Mozaffari (2006) presented a technique for the identification of non-

ideal flows. This technique provides a robust, good quality solution independent of 
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starting points, and auxiliary conditions. The technique is based on genetic algorithm 

(Holland, 1975) and they obtained better results in comparison to iterative dynamic 

programming as well as Sequential Quadratic Programming. Upreti and Ein-Mozaffari 

(2006) determined the optimal parameters of the pulp chest model using this technique. 

The technique “hybrid genetic algorithm” was developed by uniquely integrating genetic 

algorithms with gradient search. The hybrid algorithm identified the optimum parameters 

with high accuracy.   

 

     Patel et al. (2007) carried out simulation and identified mixing parameters of agitated 

pulp stock chests in a continuous time domain. The differential algebraic model was 

developed in order to represent the continuous mixing dynamic in continuous time 

domain. The differential algebraic model obviates the restrictions (zero order hold) 

imposed by the discrete time approaches. Hybrid genetic algorithm was utilized along 

with the differential algebraic model. They characterized the dynamic of agitated pulp 

stock chest at a higher sampling time. The differential algebraic model considered two 

separate time delays one for a short-circuiting zone (channeling) and one for a mixing 

zone. Patel et al. (2010) characterized the agitated pulp chest and obtained superior 

characterizations compared to those yielded by the discrete time domain approach.  
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CHAPTER 3  

MATHEMATICAL MODEL 

 

3.1 Introduction 

Eykhoff (1974) defined a mathematical model as „a representation of the essential 

aspects of an existing system (or a system to be constructed) which presents 

knowledge of that system in usable form. 

 

        A mathematical model usually describes a system by a set of variables and a set 

of equations that establish relationships between the variables. The value of the 

variables can be practically anything such as real or integer numbers, Boolean values 

or strings. The variables represent some properties of the system, for example, 

measured system outputs often in term of signals, timing data, counters, and event 

occurrence (yes/no). The actual model is the set of functions that describe the relations 

between the different variables. 

 

Classification of mathematical models  

Most mathematical models can be classified in the following ways (Kapur, 1998): 

 

(1) Linear vs. nonlinear: mathematical models are usually composed by variables, which 

are abstractions of quantities of interest in the described systems, and operators that 

act on these variables, which can be algebraic operators, function, differential 

operators, etc. if all the operators in a mathematical model present linearity, the 

resulting mathematical model is defined as linear. A model is considered to be 

nonlinear otherwise. 

 

(2) Deterministic vs. probabilistic (stochastic): A deterministic model is one in which 

every set of variable states is uniquely determined by parameters in the model and by 

sets of previous states of these variables. Therefore, deterministic models perform the 

same way for a given set of initial conditions. Conversely, in a stochastic model, 
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randomness is present, and variable states are not described by unique values but 

rather by probability distributions. 

(3) Static vs. dynamic: A static model does not account for the element of time, while a 

dynamic model does. Dynamic models typically are represented with difference 

equations or differential equations. 

 

(4) Discrete vs. continuous: A discrete model in which system jumps from one state to 

the next at fixed interval or time steps. A continuous model in which system changes 

continuously over time. The continuous model is more amenable to algebraic 

manipulation. 

 

(5) Non-parametric vs. parametric: Non-parametric model in which the model structure 

is not specified a prior but is instead determined from data. The term Non-parametric 

is not meant to imply that such models completely lack parameters but that the number 

and nature of the parameters are flexible and not fixed in advance. The parametric 

model has specified structure. 

 

3.2 Dynamic models for continuous mixing of non-Newtonian fluids 

 

3.2.1 Ein-Mozaffari’s dynamic model 

As mentioned earlier, different models have been developed to describe the dynamics of 

continuous fluid mixing.  

Figure 2 shows block diagram of the dynamic model proposed by Ein-Mozaffari et al. 

(2004) for continuous mixing, which has two distinct zones  

 

1. A mixing zone consisting of a first order transfer function with time delay and 

feedback for recirculation. 

     2.  A short-circuiting zone consisting of a first order transfer function plus time delay. 
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                        Figure 2: Block diagram of Ein-Mozaffari‟s dynamic model  

 

On the basis of this dynamic model a fraction of the incoming feed-stream,  f,  by-passes 

the mixing zone and moves directly to the exit of the mixing vessel while the remaining 

fraction (1 – f ) enters the mixing zone around the impeller. The primary mixing occurs in 

the mixing zone and poor mixing could also occur in the short-circuiting zone. Mixing in 

both zones was represented by a first order transfer function (   and   ).    and    are 

the time delays for short-circuiting and mixing zone respectively. Time delay is the time 

interval between the changes in input variable and time the output variable start to 

respond.    and     are the time constants for short-circuiting and mixing zone 

respectively. Time constant is the time required for the output variable to reach 63.2% of 

the total change when the input variable change in a step fashion. u and y are input and 

output signals, respectively, they are either the pulp fiber mass concentration, in 

industrial settings, or suspension conductivity, in the scale model.  The combine transfer 

function of mixing vessel for the dynamic model proposed by Ein-Mozaffari et al. (2004) 

in continuous time domain is given by: 
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The model reduces to a first-order transfer function, representing an ideally mixed chest, 

when f = 0 and R = 0, with the time constant of a mixing zone approaches the dominant 

time constant. 

 

3.2.2 Patel’s dynamic model 

 

Figure 3 shows the dynamic model proposed by Patel et al. (2007) for the continuous 

mixing process with the same fundamental used by Ein-Mozaffari et al. (2004). This 

model also includes two separate time delays T1 and T2 for short-circuiting and mixing 

zones, respectively.  The zero order hold which was used for discrete time domain 

approach is not considered in continuous time domain for identification of dynamic 

model parameter. 

 

 

                    fF, u fF, y1 

 

        

Input                                                                                                                    Output                        

F, u        (1 - f )F, u      F2, yj     F2, y2     (1 - R )F2, y2       F, y 

  

 

 R F2, y2  

 

                           Figure 3: Block diagram of Patel‟s dynamic model 

 

  The output signal at a time   [y (t)] is dependent on the intermediate output of short-

circuiting zone (  ) and mixing zone (  ). F is the volumetric flow rate, V1 and V2 are the 

volumes of the short-circuiting and mixing zone, u and y are the input and output signals 

of the mixing vessel. With time ( t ) as the independent variable, the mass balances for 

two zones are given by following differential equations:  

 

       Short-circuiting zone 
              Of volume    

 

       Short-circuiting zone 
              Of volume    
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 With R as the fraction of pulp re-circulated within the mixing zone, 

 

    
   

   
                                                                                                                                     

 

                                                                                                                                                                                                                                                

The system output is as follow: 

 

                                                                                                                   

                                                         

where     and    are both zero for negative times. 

The initial condition for equation (2) and (3) are 

 

                                                                                                                                              

                                                                                      

where         is the experimental output specified at the initial steady state. 

 

3.2.3 Soltanzadeh’s dynamic model 

 

Figure 4 shows Soltanzadeh et al. (2008) model a simplified version of Ein-Mozaffari et 

al. (2004) dynamic model, which has two distinct zones 

1. Mixing zone 

2. Short-circuiting zone. 

The model interpreted that the fluid stream flows in a plug flow from inlet to the mixing 

zone where fraction f of fluid separates and proceeds to the outlet through the short-

circuiting zone. The fraction 1 – f  passes through the mixing zone and proceeds to the 

outlet of the mixing vessel. 
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                                      f 
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                                  1- f 

 

                              Figure 4: Block diagram of Soltanzadeh‟s dynamic model                                                                              

   

The time delays for two zones are equal and merged so that only one time delay term is 

considered (T1 = T2 = T). Thus fluid takes equal time to pass from inlet to outlet of the 

mixing vessel for both zones. Insignificant mixing happens in the short-circuiting zone 

which is modeled as a first-order transfer function with time constant   .  Significant 

mixing is expected to take place in the mixing zone and is modeled as the transfer 

function with a time constant,   . The transfer function for both short-circuiting and 

mixing zone G1 and G2 are first order with the same time delay. The combined transfer 

function of mixing vessel (system) for dynamic model proposed by Soltanzadeh et al. 

(2008) in continuous time domain is given by: 
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CHAPTER 4  

 

SYSTEM IDENTIFICATION 

 

4.1 Introduction 

Generally speaking, the system identification method is a “black box” process for 

estimating the dynamic system under study using simultaneously measured input and 

output data. The procedure is typically iterative and consists of three basic steps: (a) 

data generation/collection, (b) model determination and (c) model validation (see 

Figure 5) 

 

 Prior knowledge 

 

 

 

                                                                Model determination                                                  
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                                                                                                               Revise 

 

 

             Figure 5: Flow diagram of system identification (Xiao, 2009) 
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      For the data generation/collection step, does not only involve choosing the signals  to 

be measured and by what means but also designing the experiments so that the measured 

signals are sufficiently informative for the subsequent procedures. More significantly, for 

nonparametric models, which do not assume any particular structure, the signals should 

contain all the frequencies of the system under study. On the other hand, for parametric 

models, which assume a particular structure, the input signals should contain at least as 

many frequency components as the number of parameters characterizing the system.  

 

     Model determination is the step to choose a model that “best” couples the input-output 

data from a pool of candidates. Although nonparametric models are attractive in the sense 

that they do not assume any particular mathematical structure and are relatively easy to 

estimate, they are only applicable to systems operating in open-loop conditions, which 

are, unfortunately, not the case in continuous mixing mechanisms. Therefore, parametric 

models are more often used for analyzing continuous mixing mechanisms. Another key 

question that must be addressed in establishing a set of candidate models is: can the 

system under study be represented with linear and time-invariant (LTI) model? The 

complex mixing system is generally nonlinear and time varying, however, LTI models 

may be nearly valid when the data are collected during short time periods of stable, 

unchanging experimental conditions. 

 

     After an optimal model is chosen, its parameters are usually determined by 

minimizing the variance of the unobserved stochastic disturbance. The hybrid genetic 

algorithm approach is appropriate when the unobserved disturbance is normally 

distributed. 

 

     Once the model is determined, a final step remains as to demonstrate the validity of 

the model for its intended purpose. The most obvious approach for model validation 

would be to obtain an independent measure of the system dynamics (without the use of 

system identification) against which the estimated model may be compared. Thus model 

validation is based on the way in which the model is used, prior information on the 

system, the fitness of model to real data, etc. For example, if we identify the transfer 
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function of a system, the quality of an identified model is evaluated based on the step 

response and/or the pole-zero configurations. Further more if the ultimate goal is to 

design a control system, then we must evaluate control performance of a system designed 

by the identified model. If the performance is not satisfactory, we must go back to some 

earlier stage of system identification as shown in the Figure 5. 

 

      Model identification comprised two experiments. In the first experiment, the input 

signal was a rectangular pulse which allowed the estimation of an approximate model to 

design the excitation for the second experiment (Kammer et al., 2005). The excitation 

energy for the second experiment was concentrated at frequencies where the Bode plot is 

sensitive to parameter variations (Ljung, 1999). Therefore, the frequency-modulated 

random binary input signal was designed for this purpose. 

 

      In this study three different dynamic model were utilized in order to describe the 

dynamics of continuous mixing. To represent dynamics of continuous mixing, the 

dynamic model proposed by Ein-Mozaffari et al. (2004) has total six parameters, the 

dynamic model proposed by Patel et al. (2008) has six parameters, and the dynamic 

model proposed by soltanzadeh et al. (2009) has five parameters. The recirculation was 

not observed in lab scale continuous mixer so it was neglected in all three dynamic model 

parameter estimation.  

 

 

4.2 Estimation of parameters via hybrid genetic algorithm 

Extensive and profound studies have been performed in the area of parameter estimation. 

Generally, conventional techniques, such as Least Square Estimator (LSE), Maximum 

Likelihood Estimator (MLE), Bayes Estimator (BE), instrumental Variable Methods 

(IVM), and so on, can deliver adequate identification results. However, the conventional 

approaches often depend on the calculation of gradients (the first or higher order 

derivatives of the cost function with respect to the unknown parameters) greatly. For the 

non-differentiable cost functions, those methods will not be able to locate the optimal 

estimates of the unknown parameters. Even for the differentiable cost functions, if they 
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have multiple local minima, the gradient-based methods suffer from being trapped at one 

of the local minima. That makes them very sensitive to the initial guesses of the estimated 

parameters. Furthermore, although the conventional techniques very often provide good 

results with respect to convergence and error minimization, they also are limited in their 

ability to handle the presence of noise (Sheta and De Jong, 1996). 

 

       The difficulties in the field of parameter estimation naturally lead to the exploration 

of other search techniques for parameter estimation of nonlinear systems. In particular, 

global optimization techniques have been introduced into the field of parameter 

estimation. Genetic Algorithms (GAs) are population-based global optimization 

techniques that emulate natural genetic operators. Because they simultaneously evaluate 

many points in the parameter space, they are very likely to converge toward the global 

solution. They require no gradient information or continuity of the searching space. 

Therefore, application of GAs in the field of parameter estimation and system 

identification has received a lot of attention over the last two decades. 

 

      Although GAs have appealing properties and have been applied successfully in the 

field of parameter estimation, they could be very computationally inefficient, especially 

for complex nonlinear dynamic systems with multiple unknown model parameters. As 

mentioned in previous discussion, GAs for solving optimization problem consist of a 

sequence of computational steps, which asymptotically converge at an optimal solution. 

Differing from the most classical point-to-point optimization techniques, such as the 

Newton-Raphson method, GAs performs a multiple directional search by maintaining a 

population of potential solutions. Each iteration has a large number of points in the 

parameter space are evaluated. While the population to population approach makes the 

search escape from local optima, the price is paid by increasing computation time 

dramatically. 

 

      In this study, a hybrid genetic algorithm-based parameter estimation strategy is 

proposed to improve the computational efficiency of GAs yet without losing their 

advantages. It starts with a GA to search for „good‟ starting points globally through the 
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possible solution areas, and then applies a gradient-based optimization approach to find 

the solution in the likelihood sense. Instead of selecting starting points arbitrarily, the 

hybrid genetic algorithm provides a systematic search procedure, such that MLE is more 

likely to achieve the global minimum. In addition, the hybrid genetic algorithm is more 

efficient than pure GAs because the gradient-based techniques converge along the 

deepest descending direction. Further description of the GAs and hybrid genetic 

algorithm is given in Chapter 5.   

 

     There were two different approaches used for parameter estimation of dynamic model 

which represent dynamic of the continuous mixing system, along with the hybrid genetic 

algorithm.  

1. Discrete time domain approach 

2. Continuous time domain approach 

4.2.1 Discrete Time Domain Approach 

Since the data are measured at fixed time intervals, the continuous model is initially 

transferred in to a simple discrete-time model (Kammer et al. 2005). By applying zero-

order hold to the transfer function (Equation 1), the equivalent discrete time transfer 

function is given by Equation 9. 
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     The Z-transformation contains the value at the sampling instants. These values depend 

on the sampling time    also the transform does not contain information on the function 

for the negative time. In this approach, it was assumed that the time delays were multiple 

of the sampling time. Equation 1 can also discretized by modified Z- transform but this 

would add more terms to the Equation 9. Since the sampling time      is small enough to 

describe time delays with significant accuracy, the consideration of fractional time delays 

is not necessary. The zero-order hold      equivalent to each of the transfer functions 

(Seborg et al. 1989) in above equations is   

 

      
     

     
  

         

            
                                                                           

 

A zero-order hold simply holds the value of the input between samples without 

accumulation and it describe the effect of converting a continuous-time-signal to a 

discrete-time signal by holding each sample value for one sample interval. 

 

      The dynamic model with 2 time delays (Ein-Mozaffari et al. 2004) in discrete time 

domain was given by Equations from (9) to (14). It was further augmented, for 

constraints (from Equation 16 to Equation 18) and penalty function (Equation 56). The 

output from the dynamic model with 2 time delays in discrete time domain (Ein-

Mozaffari‟s model) was given by Equation 19. Related derivatives (from Equation 20 to 

Equation 26) were derived and solved using hybrid genetic algorithm. 

 

                                                                                                                       

                                                                                                                           

                                                                                                                                               

The output signal  

                         

     
                       

                                 
                                                            

                               



27 

Derivatives for gradient search method 

   
   

                                            
     
   

   
     
   

                     

 

   
   

               
   
   

 

      

   

    
 

        
 
 

  
  

 

       
                                          

 

   
   

                                                
     
   

   
     
   

         

 

 

   
   

               
   
   

 

      

   

   
 

        
 
 

  
  

 

       
                                             

 

   
  

                                                 

   
     
  

   
     
  

                                                                                                               

 

   
  

               
   
  

 

      

   

   
 

      
 

 

        
                                                             

 

   
   

                                                                                                                                                    

 

 

      The dynamic model with 1 time delay (Soltanzadeh et al. 2008) in discrete time 

domain was given by Equations from (27) to (32). This model was further augmented, for 

constraints (from Equation 33 to Equation. 35) and penalty function (Equation 57). The 

output from the dynamic model with 1 time delay in discrete time domain 
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(Solatanzadeh‟s model) was given by Equation 36. Related derivatives (from Equation 37 

to Equation 43) were derived and solved using hybrid genetic algorithm. 
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The output signal  
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4.2.2 Continuous Time Domain Approach 

 In recent years, with the advent of inexpensive computing power, much work has been 

done for study of discrete time domain approaches. Today, system parameters are 

routinely estimated through many methods (standard least-square, extended least-squares, 

generalized least-squares, and maximum likelihood methods). However, many 

applications, especially those in the process industries, are inherently continuous time 

systems. In many of these cases, continuous-time parameter estimates are more 

meaningful when characterizing system dynamics. These parameters can be indirectly 
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estimated by transforming the discrete-time transfer function into the continuous-time 

domain. 

 

     The dynamic model with 2 time delay (Patel et al. 2008) in continuous time domain 

was given by equations from (2) to (6). This model was further augmented, for 

constraints (from Equation 44 to Equation 46) and penalty function (Equation 58). The 

system output in continuous time domain, for patel‟s model is given by Equation 6. 

Related partial derivatives (from Equation 47 to Equation 50) were derived and solved 

using hybrid genetic algorithm. For continuous time domain approach, fifth-order Runge-

Kutta Fehlberg method with Cash-Karp parameters, and adaptive step-size control (Press 

et al., 2002) in conjunction with the genetic operations, were used.  
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4.3 Sensitivity analysis 

Engineering and scientific phenomena are often studied with the aid of mathematical 

models designed to simulate complex physical processes. In the process industry, 

modeling the continuous mixing of non-Newtonian fluid is important to know mixing 

dynamics in the mixers. One of the steps in the model development is the determination 

of the parameters, which are the most influential on model results. A “sensitivity 

analysis" of these parameters is not only critical to model validation but also serves to 

guide future research. Sensitivity analysis is used to determine how “sensitive” a model is 

to changes in the value of the model parameters.  Parameter sensitivity is usually 

performed as a series of tests in which the modeler sets different parameter values to see 

how a change in the parameter causes a change in the dynamic model response. By 

showing how the model behavior responds to changes in parameter values, sensitivity 

analysis is a useful tool in model building as well as in model evaluation. 

 

       Sensitivity analysis helps to build confidence in the model by studying the 

uncertainties that are often associated with parameters in models. Many parameters in 

system dynamics models represent quantities that are very difficult, or even impossible to 

measure to a great deal of accuracy in the real world. Also, some parameter values 

change in the real world. Therefore, when building a system dynamics model, the 

modeler is usually at least somewhat uncertain about the parameter values  he/she 

chooses. Sensitivity analysis allows him/her to determine what level of accuracy is 

necessary for a parameter to make the model sufficiently useful and valid. If the tests 

reveal that the model is insensitive, then it may be possible to use an estimate rather than 

a value with greater precision. Sensitivity analysis can also indicate which parameter 

values are reasonable to use in the model. If the model behaves as expected from real 

world observations, it gives some indication that the parameter values reflect, at least in 

part, the “real world.” Sensitivity tests help the modeler to understand dynamics of a 

system. Experimenting with a wide range of values can offer insights into behavior of a 

system in extreme situations. Discovering that the system behavior greatly changes for a 

change in a parameter value can identify a leverage point in the model a parameter whose 

specific value can significantly influence the behavior mode of the system. 
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       Sensitivity analysis (Hamby, 1994) method used in this study was one-at-a-time 

analysis. Sensitivity measure was done by increasing and decreasing the parameter value 

by 20% from its base class value. Base class value of parameters is identified value of the 

parameter by simulation for a specified dataset.   
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CHAPTER 5  

 

GENETIC ALGORITHM 

 

5.1  Introduction 

Genetic algorithms (GAs) are adaptive methods which may be used to solve search and 

optimization problems. They are based on the genetic processes of biological organisms. 

Over many generations, natural populations evolve according to the principles of natural 

selection and "survival of the fittest”. By mimicking this process, genetic algorithms are 

able to "evolve" solutions to real world problems, if they have been suitably encoded. 

The basic principles of GAs were first laid down rigorously by Holland [1975]. 

 

        GAs work with a population of "individuals", each representing a possible solution 

to a given problem. Each individual is assigned a "fitness score" according to how good a 

solution to the problem it is. The highly-fit individuals are given opportunities to 

"reproduce", by "cross breeding" with other individuals in the population. This produces 

new individuals as "offspring", which share some features taken from each "parent". The 

least fit members of the population are less likely to get selected for reproduction, and so 

"die out".  

 

        A whole new population of possible solutions is thus produced by selecting the best 

individuals from the current "generation", and mating them to produce a new set of 

individuals. This new generation contains a higher proportion of the characteristics 

possessed by the good members of the previous generation. In this way, over many 

generations, good characteristics are spread throughout the population. By favoring the 

mating of the more fit individuals, the most promising areas of the search space are 

explored. If the GA has been designed well, the population will converge to an optimal 

solution to the problem. 
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5.1 The method 

The evaluation function, or objective function, provides a measure of performance with 

respect to a particular set of parameters. The fitness function transforms that measure of 

performance into an allocation of reproductive opportunities. The evaluation of a string 

representing a set of parameters is independent of the evaluation of any other string. The 

fitness of that string, however, is always defined with respect to other members of the 

current population. In the genetic algorithm, fitness is defined by:       where    is the 

evaluation associated with string   and     is the average evaluation of all the strings in 

the population. 

 

       Fitness can also be assigned based on a string's rank in the population or by sampling 

methods, such as tournament selection. The execution of the genetic algorithm is a two-

stage process. It starts with the current population. Selection is applied to the current 

population to create an intermediate population. Then recombination and mutation are 

applied to the intermediate population to create the next population. The process of going 

from the current population to the next population constitutes one generation in the 

execution of a genetic algorithm. The standard GA is represented in figure 6. 

 

                       Selection                                      Recombination 

                     (Duplication)                                   (Crossover)                              

 

 

 

 

 

 

 

 

  Current                                   Intermediate                                                     Next 

Generation n                            Generation n                                               Generation n+1 

                                   Figure 6: Standard genetic algorithm 
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        In the first generation, the current population is also the initial population. After 

calculating        for all the strings in the current population, selection is carried out. The 

probability that strings in the current population are copied (i.e. duplicated) and placed in 

the intermediate generation is in proportion to their fitness. 

 

        Individuals are chosen using "stochastic sampling with replacement" to fill the 

intermediate population. A selection process that will more closely match the expected 

fitness values is "remainder stochastic sampling." For each string   where        is greater 

than 1.0, the integer portion of this number indicates how many copies of that string are 

directly placed in the intermediate population. All strings (including those with        less 

than 1.0) then place additional copies in the intermediate population with a probability 

corresponding to the fractional portion of       . For example, a string with       = 1.27 

places 1 copy in the intermediate population, and then receives a 0.27 chance of placing a 

second copy. A string with a fitness of        = 0.57 have a 0.57 chance of placing one 

string in the intermediate population. Remainder stochastic sampling is most efficiently 

implemented using a method known as stochastic universal sampling (It is a technique 

used for selecting potentially useful solution for recombination). Assume that the 

population is laid out in random order as in a pie graph, where each individual is assigned 

space on the pie graph in proportion to fitness. An outer roulette wheel is placed around 

the pie with N equally-spaced pointers. A single spin of the roulette wheel will now 

simultaneously pick all N members of the intermediate population.  

 

        After the selection has been carried out the construction of the intermediate 

population is complete and recombination can occur. This can be viewed as creating the 

next population from the intermediate population. A crossover is applied to randomly 

paired strings with a probability denoted   . The population should already be sufficiently 

shuffled by the random selection process. Pick a pair of strings. With probability     

"recombine" these strings to form two new strings that are inserted into the next 

population. 
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        Consider the following binary string: 1101001100101101. The string would 

represent a possible solution to some parameter optimization problem. New sample 

points in the space are generated by recombining two parent strings. Consider this string 

1101001100101101 and another binary string, yxyyxyxxyyyxyxxy, in which the values 0 

and 1 are denoted by x and y. Using a single randomly-chosen recombination point, 1-

point crossover occurs as follows: 

 

                                                  11010 \/ 01100101101 

                                                  yxyyx /\ yxxyyyxyxxy 

 

Swapping the fragments between the two parents produces the following offspring: 

11010yxxyyyxyxxy and yxyyx01100101101. After recombination, we can apply a 

mutation operator. For each bit in the population, mutate with some low probability   . 

Typically the mutation rate is applied with 0.1% - 1% probability. After the process of 

selection, recombination and mutation is complete, the next population can be evaluated. 

The process of valuation, selection, recombination and mutation forms one generation in 

the execution of a genetic algorithm. 

 

5.1.2 Strengths 

The power of GAs comes from the fact that the technique is robust and can deal 

successfully with a wide range of difficult problems. GAs is not guaranteed to find the 

global optimum solution to a problem, but they are generally good at finding "acceptably 

good" solutions to problems "acceptably quickly". Where specialized techniques exist for 

solving particular problems, they are likely to outperform GAs in both speed and 

accuracy of the final result. Even where existing techniques work well, improvements 

have been made by hybridizing them with a GA. The basic mechanism of a GA is so 

robust that, within fairly wide margins, parameter settings are not critical. 

 

5.1.3 Weaknesses 

 A problem with GAs is that the genes from a few comparatively highly fit (but not 

optimal) individuals may rapidly come to dominate the population, causing it to converge 
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on a local maximum. Once the population has converged, the ability of the GA to 

continue to search for better solutions is effectively eliminated: crossover of almost 

identical chromosomes produces little that is new. Only mutation remains to explore 

entirely new ground, and this simply performs a slow, random search. 

 

5.2 Hybrid Genetic Algorithm 

 

5.2.1 Introduction 

 The performance of a genetic algorithm, like any global optimization algorithm, depends 

on the mechanism for balancing the two conflicting objectives, which are exploiting the 

best solutions found so far and at the same time exploring the search space for promising 

solutions. The power of genetic algorithms comes from their ability to combine both 

exploration and exploitation in an optimal way. However, although this optimal 

utilization may be theoretically true for a genetic algorithm, there are problem in practice. 

These arise because Holland assumed that the population size is infinite, that the fitness 

function accurately reflects the suitability of a solution, and that the interactions between 

genes are very small.  

 

        In practice, the population size is finite, which influences the sampling ability of a 

genetic algorithm and as a result affects its performance. Incorporating a local search 

method within a genetic algorithm can help to overcome most of the obstacles that arise 

as a result of finite population sizes. Incorporating a local search method can introduce 

new genes which can help to combat the genetic drift problem caused by accumulation of 

stochastic errors due to finite populations (genetic drift is the random change in the 

genetic composition of a population due to chance events causing unequal participation 

of individuals in producing succeeding generations. Along with natural selection, genetic 

drift is a principal force in evolution). It can also accelerate the search towards the global 

optimum, which in turn can guarantee that the convergence rate is large enough to 

obstruct any genetic drift. 
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        Due to its limited population size, a genetic algorithm may also sample bad 

representatives of good search regions and good representatives of bad regions. A local 

search method can ensure fair representation of the different search areas by sampling 

their local optima, which in turn can reduce the possibility of premature convergence. A 

finite population can cause a genetic algorithm to produce solutions of low quality 

compared with the quality of solution that can be produced using local search methods. 

The difficulty of finding the best solution in the best found region accounted for the 

genetic algorithm operator‟s inability to make small moves in the neighborhood of 

current solution. Utilizing a local search method within a genetic algorithm can improve 

the exploiting ability of the search algorithm without limiting its exploring ability. If the 

right balance between global exploration and local exploitation capabilities can be 

achieved, the algorithm can easily produce solutions with high accuracy.  

 

       Although the genetic algorithms can rapidly locate the region in which the global 

optimum exists, they take relatively long time to locate the exact local optimum in the 

region of convergence. A combination of genetic algorithm and a local search method 

can speed up the search to locate the exact global optimum. In such a hybrid, applying a 

local search to the solutions that are guided by a genetic algorithm to the most promising 

region can accelerate convergence to the global optimum. The time needed to reach the 

global optimum can be further reduced if local search methods and local knowledge are 

used to accelerate to locating the most promising search region in addition to locating the 

global optimum starting within its basin of attraction. 
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                                    Figure 7: Hybrid genetic algorithm 

 

In the present study the optimal parameters of the dynamic models are determined using 

hybrid genetic algorithm. As shown in Figure 7, the algorithm is a combination of the 

genetic algorithm and the gradient search (local search method). The hybrid genetic 

algorithm steps used for discrete time domain approaches in this study are based on 

Upreti and Ein-Mozaffari (2006) presented algorithm. The hybrid genetic algorithm steps 
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used for continuous time domain approach were given by Patel et al. (2007). The 

objective function, constraint, mapping, and input variables used in this hybrid genetic 

algorithm are given in next section. 

 

Objective function  

The objective function used in this simulation is given by: 

                  
 

      

   

                                                                                                                

 

 

Mapping 

For any optimization parameter, a mapping relates the binary-coded deviation         

and the mean parameter value       to the parameter value     . Thus, a mapping provides 

a vector     corresponding to each binary-coded deviation vector       in its population. 

The presented optimization algorithm (Upreti, 2006) uses the following logarithmic and 

linear mappings: 

 

Logarithmic Mapping 

The purpose of logarithmic mapping is to emphasize relative precision (Coley, 1999b) 

within the elements of X. For any optimization parameter, the logarithmic mapping 

provides the value,        where, 

 

                          If                    

                                     If                                                                                                                                   

           
  

         
                                                                                                           

 

In Equation 52, b is logarithmic base and        and        are the maximum and 

minimum values of the parameter,   . In Equation 53,    is the value of the domain 
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between the limits of        and  , and        is the number of representative bits for 

any i-th element of      i.e.      . 

 

Linear Mapping 

The linear mapping is straightforward, and given by 

       
  

         
                                                                                                                     

                                                                                                                         

 

Inputs 

The presented optimization algorithm needs the following inputs: 

(1) The mathematical model and its parameters for the calculation of objective 

function; 

(2) The number of optimization parameters     , and constraints; 

(3) The minimum values        of control domain, its maximum value 

                       and a factor      to vary the size of control domain; 

(4) A seed number to generate pseudo-random numbers; 

The following parameters for the genetic operations of selection, crossover, and 

mutation: 

(a) The number of bits          for each optimization parameter 

(b) The number of cross-over sites       for each       i.e each optimization parameter 

(c) The probability of cross-over      

(d) The probability of mutation      

(e) The power index     to select objective function 

(f) The number of genetic generations        every iteration 

The hybrid optimization algorithm developed in the above section was applied to the 

optimization problem for above mentioned three dynamic models. A multi-parameter 

mapped coding (Goldberg, 1989) was employed for the binary representation of the 

optimization parameters.  
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5.2.2 Steps of algorithm 

Following is the hybrid genetic algorithm: 

(1) Initialize, 

                   (a)   , the vector of mean value of optimization parameters using, 

                                         

                                                                                                                        

where    in equation (24) is the  -th pseudo-random number obtained                                                                       

from a pseudo-random number generator (Knuth, 1973). 

(b) a population of      binary-coded deviation vectors     using the 

pseudo-  random number generator; 

                    (c) the parameter domain,                      for each optimization                               

.                   parameter. 

                    (d)        and        based on empirical conditions. 

(2)  Set logarithmic mapping for the genetic operations of selection, crossover, and 

mutation. 

(3) Generate an optimal vector by repeating the following consecutive operations on 

the population of      for      generation: 

 

i. Objective function     evaluation for each    ,  

ii. Selection based on the scaled objective function     , 

iii. Crossover with probability   , 

iv. Mutation with probability   , 

(4) Obtain the vector,   , and corresponding     generated so far using genetic 

operators. Set the counter,      Set            and    
   
    . 

(5) For gradient search, the augmented function based on the interior penalty function 

(Rao, 1996) is given by: 

for Ein-Mozaffari‟s dynamic model 
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for Patel‟s dynamic model 

        

 
 
 
 

 

     
 

 

     
 
 

  
 
 

  
 
 

  
 
 

  
 

 

    

 
 

    
 

 

   
 

 

      
 
 
 

                  

for Soltanzadeh‟s dynamic model 

        

 
 
 
 

 

     
 
 

  
 
 

  
 

 

    
 

 

    
 

 

   

 
 

     
 

 

   
 

 

      
 
 
 

                    

                     where   is a small positive number. 

     Equation (56),     incorporates the inequality constraints, i.e., equation (16) - (18).  

     Equation (57),     incorporates the inequality constraints, i.e., equation (33) - (35).  

     Equation (58),     incorporates the inequality constraints, i.e., equation (44) - (46).  

The derivatives required for the gradient search are provided in Appendix. Set     

in this step. 

(6) Set the gradient search counter,      Set             and    
   
    

   
  calculate the 

corresponding augmented objective function     
   
  for the gradient search. 

(7) Calculate the vector of the partial derivatives of    
   

, i.e.,   
       

By using equations (20) – (26) for Ein-Mozaffari‟s dynamic model.  

By using equations (47) – (50) for Patel‟s dynamic model. 

By using equations (37) – (43) for soltanzadeh‟s dynamic model. 

If    
     then set              and go to step 12. 

(8) Calculate        along the steepest descent direction as follows: 

                    
  
    

   
     

 

Where   is some positive function. Calculate the corresponding   
     . 
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(9) If    
        

   then set            , and    
        

     and go to step 12. 

(10)     If      
   
   
     

    then set                and    
        

        

    and go to step  12. 

(11) Set        and go to step 7. 

(12) Calculate   
     

 corresponding to         If    
        

   then set       
   

, and 

         and go to step 15. 

(13) Set       
     

, and            If       
      

        , or     then 

        go to step 15. 

(14) Reduce the penalty term by setting       for, Equation (56) of Ein-Mozaffari‟s 

dynamic model in discrete time domain, Equation (57) of Patel‟s dynamic model in 

continuous time domain, and Equation (58) of Soltanzadeh‟s dynamic model in 

discrete time domain. Where    is some positive fraction.  Set      , and go to 

Step 6. 

(15) Store the resulting optimal value of objective function      , and corresponding 

optimal vector       

(16) Replace    by   . 

(17) Repeat Steps 3 – 16 once with linear mapping. 

(18) For each optimization parameter: 

i. If    is equal to either      or       , set the size variation factor for control 

domain,      
  . (This step allows the alternation of the successive 

contraction of     with its successive expansion.) 

ii. Set        . If        , set        . If            set          

(This step allows the variation of    within its limits.) 

(19) Go to Step 2 until the iterative change in     is negligible. 
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5.3 Experimental overview 

The experimental data used in this work were gathered by Saeed et al. (2008). A 

complete system was designed to investigate the continuous-flow mixing process (Figure 

8). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

                                          Figure 8: Schematic of experimental setup 

 

1 Tracer Tank, 2 Injection pump, 3 Solenoid valve, 4 Computer, 5 Feed tank, 6 

Progressive cavity pump, 7 Flow through conductivity sensor and transmitter, 8 Mixing 

vessel, 9 Rotary torque transducer with an encoder disk, 10 Motor, 11 Discharge tank. 

 

The major component of the mixing system is the mixing vessel. A flat-bottomed 

cylindrical, tank with a volume of 0.075 m
3 

was used (internal diameter 40 cm and height 

60 cm). The tank was equipped with four baffles (4 cm wide and 1.2 cm thick) whose 

 

 

               

 

          9 

  

  9 

 

 3 

 

 

            7 

 

 

 

 

 

 5 

8 

10 

6

  
2

2

11 

2

  
2

2

  4 

  1 

  4 

6

  
2

2



46 

lengths were equal to the tank height. The tank was supplied with a, 2.5 cm diameter top-

entry shaft driven by a 2 hp motor (Neptune Chemical Pump Co., USA). Impeller torque 

was measured with a torque meter (Staiger Mohilo, Germany) equipped with an encoder 

disk to measure impeller speed. Impeller speed was also checked with a tachometer.  

 

       The second part of the experimental setup was flow system, consisting of feed 

section and discharge section. Each section contains a 0.3 m
3
 cylindrical tank and a 

progressive cavity pump (Moyno Industrial Products, USA). Mixing tank liquid level was 

kept constant at 41 1 cm. To maintain this constant level, inlet flow-rate was kept 

constant and the outlet flow-rate was manipulated to adjust liquid level in the tank. 

 

       The third part of the experimental system was the tracer injection unit. To study the 

dynamic of continuous mixing, a tracer was injected in the input stream by using a 

metering pump (Milton Roy, USA). The tracer was prepared in a 0.06 m
3
 plastic tank (1). 

The injection of the tracer was controlled by a solenoid valve (3) (Ascolectric Ltd., 

Canada). The conductivity variation in inlet and outlet streams of the mixing vessel were 

measured using two flow-through conductivity meter. 

 

       The last part of the experimental setup was the data acquisition system (4). This 

system was able to record impeller torque and both input and output conductivity 

readings. Data acquisition system was controlled by using LABVIEW software (National 

Instruments, USA). 

 

      The xanthan gum solution was pumped from feed tank through a cylindrical mixing 

vessel and into the discharge tank. The mixing vessel was equipped with a top entry 

impeller. The dynamic tests were performed by injecting a tracer (saline solution) 

through a computer controlled solenoid valve into the xanthan gum feed. The 

conductivity of input and output streams were measured with flow through conductivity 

sensors and analyzed.  
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       The process variables used in the experiment were impeller speed, fluid mass 

concentration, fluid flow rate, and input/output location. The ranges of experimental 

variables used in the simulation are given in Table 1. 

 

 

 Table 1 Variables used in experimental work. 

Variables Range 

A200 impeller Speed, (rpm) 50 to 700 

Xanthan gum mass concentration 0.5%, 1.0%, 1.5% 

Xanthan gum flow rate, L/h 227, 603, 896 

Input and output location  

 

 

 

 

 

Configuration 1                 Configuration 2 

 

 

5.4 Rheology of xanthan gum 

 

Xanthan gum is a high-molecular-weight extracellular polysaccharide. It is soluble in 

cold water and it has a wide range of applications. Xanthan gum applications are split 

approximately 50/50 between food and non food. Non-food applications include oil field, 

personal care, pharmaceutical and home care. Typical food applications include sauces 

and dressings, baked goods, beverages, desserts and ice creams (Imenson., 2010). 
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      The xanthan gum solution exhibit Newtonian viscosity at very low shear rates, 

followed by a pseudoplastic region as shear rate increases and, finally, an upper 

Newtonian viscosity at very high shear rates. These rheological properties translate into 

the very effective suspending and flow properties exhibited by xanthan gum solutions. 

Xanthan gum is a very effective thickner and stabilizer compared to other hydrocolloids 

(Imenson., 2010).  

 

 

 In this study, parameters of the dynamic models were identified by using the technique 

(hybrid genetic algorithm) developed by Upreti and Ein-Mozaffari (2006). The discrete 

time domain approach and continuous time domain approach were used for identification. 

The simulation was done in three ways: dynamic model with 2 time delays (Ein-

Mozaffari et al., 2004) in discrete time domain,  dynamic model with 2 time delays (Patel 

et al., 2007) in continuous time domain, and dynamic model with 1 time delay 

(Soltanzadeh et al., 2008) in discrete time domain. The constraint used for parameters are 

given in Appendix. The sensitivity analysis was done in order to check influence of 

parameters on dynamic model (Ein-Mozaffari et al., 2004) results. One-at-a-time analysis 

(D. M. Hamby, 1994) method was used to check sensitivity of dynamic model 

parameters. The experimental data used in this study were for cylindrical mixing vessel 

and pseudoplastic fluids with yield stress material (xanthan gum solutions). 

 

 

 

 

 

 

 

 

 

 

 



49 

CHAPTER 6 

 

RESULTS AND DISCUSSION 

 

Two parameters were used here to quantify the performance of the continuous mixing: f, 

the fraction of fluid short-circuiting or channeling in the mixing vessel, and       , the 

ratio of the fully mixed volume to the total volume of the fluid in the mixing vessel. The 

primary mixing occurs in the mixing zone; hence the volume ratio is given by: [Ein-

Mozaffari et al., 2002] 

 

   

  
 
        

  
                                                                                                                             

 

where Q is the fluid flow rate through the mixing vessel and    is the total volume of 

the fluid in the mixing vessel. The effect of recirculation was not observed in the 

dynamic response of laboratory scale mixing, thus R (recirculation) was set to zero in 

this study. The hybrid genetic algorithm was employed to compare the dynamic 

parameters for the following models using the input-output data: 

 

 Dynamic model with 2 time delays in discrete time domain, (Figure 2) 

 Dynamic model with 2 time delays in continuous time domain, (Figure 3) 

 Dynamic model with 1 time delay in discrete time domain, (Figure 4) 

 

6.1 Model validation 

 In this study the dynamic models were validated in two steps. In the first step, we 

identified the dynamic model parameters using the first set of data. In the second step, 

using the parameters obtained from the first step, we simulated the second dataset in 

order to compare the model output with experimental (real system) output. The second 

dataset had the same experimental conditions as the first dataset but different input signal.  
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        Figure 9 shows the experimental input, experimental output and above mentioned 

three dynamic model predicted outputs for the two steps of model validation. The 

experimental conditions for the data shown in Figure 9 are: A200 impeller type, 250 rpm 

impeller speed, 0.5% mass concentration of xanthan gum, and 227 L/h fluid flow rate. 

Figure 9 a and b show that the predicted outputs using the dynamic model with 2 time 

delays in discrete time domain (Ein-Mozaffari‟s model) were in good agreement with the 

experimental outputs for first and second dataset, respectively. Figure 9 c and d show that 

the predicted outputs through the dynamic models with 2 time delays in continuous time 

domain (Patel‟s model) were in good agreement with the experimental outputs for first 

and second dataset, respectively. Figure 9 e and f show that the predicted outputs using 

the dynamic model with 1 time delay in discrete time domain were not in good agreement 

with the experimental outputs for first and second dataset, respectively. The predicted 

parameters by dynamic models for first set of data are given in Table 2.  

 

       Model validation shows that the dynamic models with 2 time delays in both discrete 

and continuous time domain were able to represent accurately the dynamic behavior of 

the continuous mixing system. While the dynamic model with 1 time delay  in discrete 

time domain little poorly represented the dynamics of the continuous mixing system. The 

extent of channeling predicted by the dynamic model with 1 time delay in discrete time 

domain was 15.02% instead of 23.30% (saeed et al., 2008). 

 

 

Table 2 Predicted parameters by the dynamic models for first set of data.  

Parameters               

Ein-Mozaffari‟s Model  40 197 0.9893 0.9989 0.2301 

Patel‟s Model  40 197 0.9893 0.9989 0.2348 

Solatanzadeh‟s Model 60 --- 0.998 0.9988 0.1502 
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(a)                                                                 

 

(b) 

 

(c) 
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(d)  

 

(e) 

 

 (f)    

 Figure 9: Predicted outputs using 3-dynamic model in model validation, Experimental 

input signal (Dark gray line), Experimental output signal (Gray line), and dynamic model 

predicted output (Black line).                         
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6.2 Model predicted output     

 

 Figure 10 shows the experimental input, experimental output, dynamic model predicted 

output for above mentioned dynamic models. The experimental conditions for the data 

shown in Figure 10 are: A200 impeller type, 150 rpm impeller speed, 1.5% mass 

concentration of xanthan gum, and 896 L/h fluid flow rate. Figure 10 shows that the 

simulation results of the dynamic models with 2 time delays in both discrete time domain 

and continuous time domain were in good agreement with the experimental output, while  

the predicted outputs using the dynamic model with 1 time delay were not in good 

agreement  with the experimental output. The dynamic model with 1 time delay 

considered that material takes equal time in both short-circuiting and mixing zones, to 

pass from inlet to outlet of the mixing vessel. Because of this assumption, the predicted 

output shows deviation from the experimental output. Generally in the short-circuiting 

zone fluid leaves the mixing vessel sooner than the fluid in the mixing zone.  

 

      The dynamic models with 2 time delays have two separate time delays for short-

circuiting zone and mixing zone, hence they captured well the dynamics of both short-

circuiting and mixing zones. The root mean square error between the models predicted 

output and experimental output are: 7.35% for the model with 2 time delays in discrete 

time domain, 7.36% for the model with 2 time delays in continuous time domain, and 

18.37% for the model with 1 time delay in discrete time domain. When the channeling is 

high, the dynamic model with 1 time delay was not predict correctly the extent of short-

circuiting and fully-mixed volume for the continuous mixing systems.  
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 (a)   

 (b)  

 (c)  

Figure 10: Predicted outputs using 3-dynamic models, Experimental input signal (Dark 

gray line), Experimental output signal (Gray line), and dynamic model predicted output 

(Black line).                         
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6.3 Effect of impeller speeds on the extent of channeling and fully mixed volume  

 

Figure 11 shows the results predicted by dynamic model with 2 time delays in discrete 

time domain (Ein-Mozaffari‟s model), dynamic model with 2 time delays in continuous 

time domain (Patel‟s model), and dynamic model with 1 time delay in discrete time 

domain (Soltanzadeh‟s model). The experimental conditions for the data shown in Figure 

11 are: A200 impeller type, 1.5% mass concentration of xanthan gum, and 227 L/h fluid 

flow rate. It can be seen that f and        values computed by the dynamic models with 

2 time delays in both discrete time domain and continuous time domain, are in good 

agreement with those reported by saeed et al., (2008). However, the results predicted by 

dynamic model with 1 time delay deviates from those reported by saeed et al., (2008) 

especially at N < 200 rpm. 

     

       Figure 11 shows that f (channeling) decreased and the ratio         increased as the 

impeller speed increased. The mixing zone in the mixing vessel progressively increases 

as the impeller speed increases. As a result, the short-circuiting in the mixing vessel 

decreases. The results predicted by dynamic models with 2 time delays, in both discrete 

and continuous time domain show good agreement with experimental results from higher 

to lower impeller speed. However, results predicted by the dynamic model with 1 time 

delay show that as the impeller speed increases from100 rpm to 150 rpm and from 200 

rpm to 250 rpm,  f  increases and         decreases. We expect that as the impeller speed 

increases f decreases and         increases. Thus, some of the results obtained from the 

dynamic model with 1 time delay contradict those predicted by the dynamic models with 

2 time delays. The dynamic model with 1 time delay underestimates f (channeling) and 

overestimates        especially at lower impeller speed. When the channeling is high, 

the dynamic model with 1 time delay was not predict correctly the extent of channeling 

and fully-mixed volume for the continuous mixing systems. Table 3 shows the CPU time 

taken for simulation, by above mentioned three dynamic models. 
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(a) 

 

 

(b) 

 

           Figure 11: Predicted results using 3-dynamic models at different impeller speeds 
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Table 3 Comparison of time taken for simulation by computer (Pentium (R) 4 CPU 3 

GHz, 0.99 GB of RAM), For specified search intervals of parameters. The experimental 

conditions are: A200 impeller, 1.5% xanthan gum solution, and 227 L/h fluid flow rate.  

rpm Model with 1 time 

delay in discrete 

 time domain, 

 simulation  

time in s. 

Model with 2 time 

delays in discrete 

time domain,  

simulation  

time in s. 

Model with 2 time 

delays in continuous 

time domain, 

simulation  

time in s. 

Sampling 

time in s.  

50  206.54 386.08 3184.19 2071 

100 121.27 344.30 1069.38 2319 

150 192.14 398.84 1066.38 2249 

200 232.22 483.53 1230.48 2299 

250 218.24 400.47 1116.93 2290 

300 205.37 416.86 1448.92 2239 

400 165.73 383.81 1525.61 2174 

500 98.42 373.02 2321.13 2299 

600 123.19 313.21 1797.88 2309 

700 125.93 292.24 1923.46 2379 
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    Table 4 shows the root mean square errors obtained with dynamic model with 1 time 

delay in discrete time domain, for given search interval of parameters. The experimental 

conditions for the data shown in Table 4 are: A200 impeller type, 1.5% mass 

concentration of xanthan gum, and 227 L/h fluid flow rate. Minimum root mean square 

error indicates the optimum values of the f (channeling), within given search interval of 

parameters (Appendix). Table 4 a shows that for a given experimental conditions, the 

dynamic model with 1 time delay in discrete time domain predicted optimum channeling 

has the range of minimum root mean square error. Table 4 b shows root mean square 

errors obtained with the dynamic model with 1 time delay in discrete time domain, for 

different parameters of the genetic algorithm. It can be seen that for given search interval 

of parameters, the predicted channeling by the dynamic model with 1 time delay in 

discrete time domain are optimum values.  

 

Table 4 Root mean square errors obtained from the dynamic model with 1 time delay in 

discrete time domain, for the given search region of parameter f  

(a)       0.7,     0.04,           80 

RPM f = 0 - 0.2 f  = 0.2 - 

0.4 

f  = 0.4 - 

0.6 

f  = 0.6 - 

0.8 

f  = 0.8 - 

1.0 

Predicted 

f 

Experimental  

f 

50 1.270 0.118 1.160 1.170 1.260 0.510 0.715 

100 0.367 0.365 3.670 0.367 0.368 0.264 0.642 

150 0.465 0.456 4.650 0.465 0.465 0.344 0.594 

200 0.315 0.314 3.560 0.359 0.360 0.206 0.492 

250 0.285 0.246 2.470 0.294 0.317 0.376 0.409 

300 0.564 0.512 5.530 0.820 1.130 0.275 0.336 

400 0.156 0.245 5.690 0.946 1.390 0.111 0.188 

500 0.613 0.693 1.240 1.770 2.340 0.080 0.117 

600 0.577 0.797 1.210 1.700 2.230 0.050 0.028 

700 0.487 0.637 1.080 1.560 2.000 0.020 0.003 
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(b)      0.95,     0.04,           120 

RPM f = 0 - 1 Predicted 

f 

Experimental  

f 

50 1.160 0.516 0.715 

100 0.367 0.289 0.642 

150 0.465 0.332 0.594 

200 0.301 0.205 0.492 

250 0.246 0.377 0.409 

300 0.512 0.275 0.336 

400 0.167 0.117 0.188 

500 0.619 0.080 0.117 

600 0.577 0.050 0.028 

700 0.487 0.020 0.003 

 

 

6.4 Effect of xanthan gum mass concentration on the extent of channeling and fully 

mixed volume 

 

Figure 12 shows the extent of channeling and fully mixed volume predicted by three 

dynamic models at different xanthan gum mass concentrations (0.5%, 1.0%, and 1.5%) as 

a function of impeller speed. The experimental conditions for the data shown in Figure 12 

are: fluid flow rate 603 L/h and different speed of impeller A200. The data reported by 

Saeed et al., (2008) for different xanthan gum mass concentrations show that f 

(channeling) increased and the ratio         decreased as suspension concentration 

increased at a fixed impeller speed. Energy delivered by the impeller will be quickly 

dissipated in the concentrated xanthan gum solution without producing enough mixing in 

the vessel, leading to higher f (channeling) and lower        values. 
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(a) 0.5%Xanthan gum solution                        

 

 

 

(b) 0.5%Xanthan gum solution                         
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(c) 1.0% Xanthan gum solution                        

 

 

 

 

(d) 1.0% Xanthan gum solution                        

 

                                                                      

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 100 200 300 400 500 600

f
Saeed's Data (2008)

Ein-Mozaffari's Model (2004)

Patel's Model (2007)

Soltanzadeh's Model (2008)

Impeller Speed (rpm)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600

V
fm

/ 
V

t

Impeller Speed (rpm)

Saeed's Data (2008)

Ein-Mozaffari's Model (2004)

Patel's Model (2007)

Soltanzadeh's Model (2008)



62 

(e) 1.5% Xanthan gum solution                        

 

 

 

(f) 1.5% Xanthan gum solution                        

 

   

   Figure 12: Predicted results using 3-dynamic models at different mass concentrations. 
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     Figure 12 b shows that as the impeller speed increased from 150 rpm to 200 rpm, 

        decreased, based on the results predicted by the dynamic model with 1 time 

delay in discrete time domain. Figures 12 c and d shows that as the impeller speed 

increased from 50 rpm to 150 rpm, f (channeling) increased and         decreased, for 

the results obtained from the dynamic model with 1 time delay in discrete time domain. 

Figure 12 e shows that as the impeller speed increased from 150 rpm to 200 rpm, f 

(channeling) increased based on the results computed by the dynamic model with 1 time 

delay in discrete time domain. It can be seen that the dynamic model with 1 time delay 

was not predict correctly the extent of f and fully mixed volume as a function of impeller 

speed especially at the lower impeller speed. The estimated values by the dynamic model 

with 2 time delays in both discrete and continuous time domain show that as the impeller 

speed increased the f (channeling) decreased and         increased. 

 

 

      Figure 12 shows when mass concentration increases from 0.5% to 1.5%, at a fixed 

impeller speed (50 rpm), f (channeling) decreased and          increased based on the 

results obtained from the dynamic model with 1 time delay in discrete time domain. We 

expect that at a specified impeller speed, as the xanthan gum mass concentration 

increases, f (channeling) increases and         decreases. However the results estimated 

by the dynamic model with 1 time delay in discrete time domain contradict those results 

reported by saeed et al., (2008). Because of the assumption of the equal time delays, the 

dynamic model with 1 time delay underestimates f (channeling) and overestimates     

  . When the channeling is high, the dynamic model with 1 time delay is not capturing 

well the effect of xanthan gum concentration and impeller speed on the dynamics of 

continuous mixing. Figure 12 shows that the dynamic models with 2 time delays in both 

discrete time domain and continuous time domain were able to predict well the effect of 

xanthan gum mass concentration on the dynamic behavior of the continuous flow mixing 

system. 
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6.5 Effect of fluid flow rates on the extent of channeling and fully mixed volume 

 

Figures 11, 12 e - f, and 13  shows the extent of channeling and fully mixed volume 

predicted by three dynamic models at different flow rates (227 L/h, 603 L/h, and 896 L/h) 

as a function of A200 impeller speed at 1.5% xanthan gum concentration. It can be seen 

that based on the results reported by saeed et al., (2008),  f (channeling) increased and  

        decreased as the fluid flow rate increased at a fixed impeller speed. Increasing 

the flow rate reduces the mean residence time in the vessel, forcing the material to leave 

the vessel faster without going into the well-mixed region close to the impeller.  Figure 

13 a and b show that as the impeller speed increased from 150 rpm to 200 rpm, f 

increased and         decreased, based on the results computed by the dynamic model 

with 1 time delay in discrete time domain. When fluid flow rate increased from 227 L/h 

to 603 L/h, Figure 11 and 12 e-f show that at a fixed impeller speed (e.g. 50 rpm and 100 

rpm)  f decreased and         increased, based on the results computed by the dynamic 

model with 1 time delay in discrete time domain. We expect that at a fixed impeller 

speed, as the fluid flow rate increases, f increases and         decreases. However the 

results predicted by the dynamic model with 1 time delay in discrete time domain 

contradict those reported by saeed et al., (2008).  

 

     The extent of  f (channeling) and         predicted by the models with 2 time delays 

in both discrete time domain and continuous time domain show that as the impeller speed 

increased f decreased and         increased. f and ratio       , predicted by the models 

with 2 time delays show that as the fluid flow rate increased the f  increased and         

decreased. When the channeling and fluid concentration are high, the dynamic model 

with 1 time delay is not capable of capturing the effect of fluid flow rate and impeller 

speed on the dynamics of continuous mixing. Figures 11, 12 e - f, and 13 shows the 

predicted results of dynamic models with 2 time delays in both discrete time domain and 

continuous time domain, are in good agreements with the data reported by saeed et al., 

(2008).  
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(a) 

   

 

(b) 

              

               Figure 13: Predicted results using 3-dynamic models for 896 L/h flow rate. 
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6.6 Effect of different output locations on the extent of channeling and fully mixed 

volume 

 

Figure 14 shows the effect of the outlet location on the degree of f and        , predicted 

by three dynamic models. The outlet locations are: (a) Configuration 1 with bottom outlet 

and (b) Configuration 2 with side outlet (Table 1). The experimental conditions for the 

data shown in Figure 14 are: xanthan gum mass concentration 0.5%, flow rate 227 L/h, 

A200 impeller. Configuration 1 gave the lower value of f  and the higher value of     

   for a given impeller speed. Configuration 2 (where the exit location is on the side of 

the vessel) enables a large percentage of feed to be conveyed directly to the exit location, 

without being drawn into the mixing zone. In Configuration 1, however, the feed is 

forced to flow through the mixing zone before leaving the vessel.  

 

      Figures 14 a and b show that as the impeller speed increased from 200 rpm to 250 

rpm, f (channeling) increased and         decreased based on the results obtained from 

the dynamic model with 1 time delay. Figure 14 c and d show that as the impeller speed 

increased from 200 rpm to 250 rpm,  f (channeling) increased for the results predicted by 

the dynamic model with 1 time delay. The dynamic model with 1 time delay 

underestimates the extent of f (channeling) and overestimates the extent of        . The 

predicted values by the dynamic model with 1 time delay show that a large percentage of 

feed passed through the mixing zone instead of the short-circuiting zone for 

Configuration 2. At impeller speeds 150 rpm and 200 rpm, the predicted results by the 

dynamic model with 1 time delay in discrete time domain showed that channeling were 

20.57% and 20.01%, respectively, while the results reported by saeed et al., (2008)  were 

58 % and 44.8%, respectively. Figure 14 shows that the dynamic models with 2 time 

delays in discrete time domain and continuous time domain were able to accurately 

capture the effect of outlet locations on the dynamic behavior of the continuous mixing 

system. While the dynamic model with 1 time delay in discrete time domain was not able 

to capture the effect of outlet location. 
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(a) Configuration 1 

 

 

 

(b) Configuration 1 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400 500

f

Saeed's Data (2008)

Ein-Mozaffari's Model (2004)

Patel's Model (2007)

Soltanzadeh's Model (2008)

Impeller Speed (rpm)

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400

V
f 

m
/ 

V
t

Impeller Speed (rpm)

Saeed's Data (2008)

Ein-Mozaffari's Model (2004)

Patel's Model (2007)

Soltanzadeh's Model (2008)



68 

(c) Configuration 2 

 

 

 

(d) Configuration 2 

 

 

                         

      Figure 14: Predicted outputs by using 3-dynamic models for different output locations 
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6.7 Sensitivity analysis 

 

It was observed that the predicted results by the dynamic models with 2 time delays gave 

a better match with the experimental results than those computed by using the dynamic 

model with 1 time delay. In order to study the effect of the dynamic model parameters on 

the dynamic model response, sensitivity analysis was done for the dynamic model with 2 

time delay in discrete time domain. Figure 15 shows the sensitivity analysis plots for the 

parameters of the Ein-Mozaffari et al. (2004) dynamic model. The experimental 

conditions for the data shown in Figure 15 are: xanthan gum mass concentration 1.0%, 

flow rate 603 L/h, A200 impeller, 100 rpm and 500 rpm impeller speed. 

 

       Figure 15 a shows that    is more sensitive at lower impeller speed (N = 100 rpm) 

when mixing is far from ideal. Figure 15 b shows that    is more sensitive at higher 

impeller speed (N = 500 rpm) when the mixing quality approaches to ideal. It was 

observed that as the channeling increases or fully-mixed volume decreases, the sensitivity 

of parameter    increases, and as the channeling decreases or fully-mixed volume 

increases, the sensitivity of parameter    increases. Figure 15 c shows that the parameter 

    is more sensitive in the case of high channeling than low channeling. As the 

channeling increases or fully-mixed volume decreases the sensitivity of parameter     

increases. Figure 15 d shows that the parameter     is more sensitive in the case of low 

channeling than high channeling. As the channeling decreases, the sensitivity of 

parameter     increases on the dynamic model results. It was observed that the parameter 

    became dominant parameter when mixing approached to an ideal mixing. 
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(a) 
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(c)  

                                                                    

 

 

(d)  

 

                                                    Figure 15: Sensitivity analysis 
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 CHAPTER 7 

 

 CONCLUSION AND RECOMMENDATION FOR FUTURE WORK  

 

7.1 Conclusion 

The characterization parameters for the continuous mixing of xanthan gum solutions 

were determined. The dynamic models with 2 time delays were able to predict well the 

effect of process variables (e.g. impeller speed, mass concentration, flow rate, output 

location) on the dynamic behavior of the continuous flow mixing system. The dynamic 

responses computed using the dynamic models with 2 time delays in both discrete time 

domain and continuous time domain showed excellent agreement with the experimental 

results.  

 

The simplified dynamic model with 1 time delay in discrete time domain, underestimated 

   (channeling) and overestimated       , especially when the mixing was far from ideal 

mixing.  

 

The sensitivity analysis with respect to dynamic model parameters indicated that the 

parameters representing the short-circuiting zone were sensitive toward the model 

predicted results when the channeling was high. The parameters representing the mixing 

zone were sensitive toward the model-predicted results when the continuous mixing of 

xanthan gum solutions approached ideal mixing. 
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7.2 Recommendations for future work 

 

The following are suggestions for future investigations: 

 

1. Estimate dynamic model parameters by using standard PEM (prediction-error 

minimization) function in MATLAB identification toolbox and compare with the 

parameters predicted in this work 

 

2. Determine parameters sensitivity on the dynamic model predicted results by using 

other methods for sensitivity analysis 

 

3. Estimate dynamic model parameter by using hybrid genetic algorithm for industrial 

data of continuous mixing of non-Newtonian fluids. 
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APPEDIX 

 

Parameter constraints  

   = 10 – 500,    = 10 – 1000, and   = 0 - 1 

A200 Impeller, 227 l/h flow rate, 1.5% mass concentrations. 

 

rpm                       

50 0.995 - 0.001 0.99 - 0.0016 

100 0.9978 - 0.001 0.99 - 0.0016 

150 0.9958 - 0.001 0.99 - 0.0016 

200 0.9958 - 0.001 0.99 - 0.0013 

250 0.9958 - 0.001 0.99 - 0.0012 

300 0.965 - 0.03 0.9988 - 0.0005 

400 0.965 - 0.03 0.9988 - 0.0005 

500 0.79 - 0.2 0.9988 - 0.0011 

600 0.86 - 0.1 0.9987 - 0.0012 

700 0.5 - 0.4 0.9987 - 0.0012 

 

 

A200 Impeller, 603 l/h flow rate, 0.5% mass concentrations. 

 

rpm                       

50 0.85 - 0.14 0.995 - 0.0045 

100 0.85 - 0.11 0.995 - 0.0045 

150 0.93 - 0.05 0.996 - 0.003 

200 0.92 - 0.05 0.996 - 0.003 

250 0.15 - 0.8 0.9967 - 0.0032 

300 0.15 - 0.8 0.9967 - 0.0032 

400 0.1 - 0.8 0.9968 - 0.0029 

500 0.05 - 0.8 0.9968 - 0.0029 

 



80 

A200 Impeller, 603 l/h flow rate, 1.0% mass concentration. 

 

rpm                       

50 0.98 - 0.01 0.995 - 0.004 

100 0.96 - 0.03 0.995 - 0.004 

150 0.94 - 0.05 0.995 - 0.004 

200 0.94 - 0.05 0.996 - 0.003 

250 0.91 - 0.06 0.996 - 0.003 

300 0.85 - 0.1 0.9967 - 0.003 

400 0.5 - 0.45 0.9968 - 0.003 

500 0.55 - 0.3 0.9968 - 0.003 

600 0.1 - 0.85 0.9967 - 0.003 

 

 

A200 Impeller, 603 l/h flow rate, 1.5% mass concentrations. 

 

rpm                       

50 0.98 - 0.001 0.9952 - 0.0047 

100 0.98 - 0.001 0.99 - 0.003 

150 0.95 - 0.03 0.9952 - 0.0047 

200 0.95 - 0.024 0.9957 - 0.0042 

250 0.91 - 0.05 0.9957 - 0.0032 

300 0.95 - 0.04 0.9957 - 0.0032 

400 0.95 - 0.04 0.9967 - 0.0031 

500 0.94 - 0.05 0.9967 - 0.0031 

600 0.8 - 0.1 0.9967 - 0.0032 

700 0.8 - 0.1 0.9967 - 0.0032 
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A200 Impeller, 896 l/h flow rate, 1.5% mass concentrations. 

 

rpm                       

50 0.99 - 0.005 0.991 - 0.005 

100 0.96 - 0.03 0.991 - 0.008 

150 0.96 - 0.03 0.991 - 0.008 

200 0.9 - 0.09 0.991 - 0.005 

250 0.9 - 0.08 0.9953 - 0.003 

300 0.9 - 0.08 0.9953 - 0.004 

400 0.1 - 0.8 0.9953 - 0.004 

500 0.1 - 0.8 0.9953 - 0.004 

600 0.1 - 0.8 0.995 - 0.004 

700 0.1 - 0.8 0.994 - 0.005 

 

 

A200 Impeller, 227 l/h flow rate, 0.5% mass concentration for Configuration 1. 

 

rpm                       

150 0.99 - 0.0065 0.9985 - 0.001 

200 0.99 - 0.004 0.998 - 0.001 

250 0.99 - 0.008 0.9987 - 0.001 

400 0.96 - 0.032 0.9987 - 0.001 

 

A200 Impeller, 227 l/h flow rate, 0.5% mass concentration for Configuration 2. 

 

 

 

 

 

 

 

rpm                       

150 0.998 - 0.0017 0.99 - 0.0013 

200 0.998 - 0.0017 0.99 - 0.0013 

250 0.998 - 0.0017 0.99 - 0.0012 

400 0.96 - 0.03 0.99 - 0.0012 
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