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 ABSTRACT 

 An experimental study on flapping wing flexibility in hovering flight has been conducted 

to investigate the wing flexibility for insect-inspired flapping Micro Aerial Vehicles (MAVs). 

Hawkmoth-like wing models, derived from Manduca sexta, were made of Polycarbonate (PC) 

sheet with a spanwise length of 200 mm and an aspect ratio of 6.18. For the distributions of wing 

flexibility, the wing thickness was selected as the design variable: rigid wing (3 mm-thick) and 

flexible wings (2, 1, 0.8, 0.5, 0.35, 0.2, and 0.1 mm-thick). In the experiment, the wing models 

were constrained to the symmetrical and sinusoidal flapping motions with sweeping and rotating 

amplitudes of 120° and 90°  in water tank with size of 3.5 m × 1.0 m × 1.1 m . Aerodynamic 

force and flow structures for flapping the wing were measured using a six-axis force/torque sensor 

and a high speed camera with a laser using Digital Particle Image Velocimetry (DPIV). To 

compare the flow structures of flexible wings with rigid wing, they were captured at the same 

chordwise cross-section as the rigid wing, 50% of wing length. Based on the experimental results, 

the delay in flapping motion, due to bending and twisting wing, influences the generations of 



iv 

vortices and aerodynamic force. Consequently, the wing with thickness of 0.8 mm has better 

aerodynamic characteristics than other wings in hovering flight. This finding will be instrumental 

in identifying the range of wing flexibilities that improves the aerodynamic efficiency for the 

development of insect-inspired flapping MAVs. 

 

 



v 

 ACKNOWLEDGEMENT 

 

I would like to express my deepest appreciation to my advisor, Dr. Joon Chung, for his 

guidance and support as well as his patience and constant encouragement.  

I’m grateful to my advisor in Korea Aerospace University, Dr. Jo Won Chang, for the 

opportunity to conduct aerodynamics experiments in his laboratory. 

I owe special thanks to the Ryerson Aerospace Engineering Department for the opportunity 

to be the Aerospace Engineer. 

 Finally, I would like to thank to my parents, ByungWook and YoungAe, and my sister, 

JooYeon, for their constant support and love. 



vi 

TABLE OF CONTENTS 

 

1 Introduction ............................................................................................................................. 1 

1.1 Motivation to study insect-inspired flapping air vehicles ................................................ 1 

1.2 Insect flapping flight ........................................................................................................ 2 

1.2.1 Experimental studies in insect flapping flight .......................................................... 2 

1.2.2 Computational studies in insect flapping flight ........................................................ 3 

1.3 Unsteady mechanisms in insect flapping flight ................................................................ 4 

1.3.1 Leading edge vortex and delayed stall ...................................................................... 5 

1.3.2 Rotational circulation ................................................................................................ 6 

1.3.3 Wake-capture (wing-wake interaction)..................................................................... 7 

1.4 Wing flexibility in insect flapping flight .......................................................................... 8 

1.5 Hovering flight ............................................................................................................... 10 

1.6 Experiment Facility ........................................................................................................ 11 

1.7 Aims and objectives in present study ............................................................................. 12 

2 Experimental setup and procedure ........................................................................................ 13 

2.1 Wing models .................................................................................................................. 14 

2.2 Water tank and experimental motion model .................................................................. 17 

2.3 Kinematics ...................................................................................................................... 19 

2.4 Force Measurements ...................................................................................................... 21 

2.5 Digital Particle Image Velocimetry (DPIV)................................................................... 23 

3 Results and discussion ........................................................................................................... 25 

3.1 Rigid wing ...................................................................................................................... 25 

3.1.1 Symmetrical flapping motion ................................................................................. 25 

3.1.2 Sinusoidal flapping motion ..................................................................................... 31 



vii 

3.2 Flexible wings ................................................................................................................ 36 

3.2.1 Symmetrical flapping motion ................................................................................. 36 

3.2.2 Sinusoidal flapping motion ..................................................................................... 44 

4 Conclusion and future work .................................................................................................. 51 

4.1 Symmetrical flapping motion vs. Sinusoidal flapping motion ....................................... 51 

4.2 Conclusion ...................................................................................................................... 54 

Reference ...................................................................................................................................... 57 

Appendices .................................................................................................................................... 64 

A. Experimental uncertainty ................................................................................................... 64 

B. Lift and drag coefficient..................................................................................................... 66 

i. Symmetrical Flapping motion ........................................................................................ 66 

ii. Sinusoidal flapping motion ............................................................................................ 70 

 



viii 

 LIST OF TABLES 

 

Table 1 Wing data in the present experiment ............................................................................... 17 

 



ix 

 LIST OF FIGURES 

 

Figure 1.1 Leading edge vortex on hawktmoth wing during downstroke. (a) smoke-visualization 

[11] (b) computational visualization [10] ....................................................................................... 3 

Figure 1.2 Summary of aerodynamic mechanisms in insect flapping flight, designed by Dickinson, 

M. H. in “Catching the Wake”, SCIENTIFIC AMERICANTM [20] .............................................. 4 

Figure 1.3 Flow around a thin airfoil [21] ...................................................................................... 5 

Figure 1.4 Hovering flight of fruit fly [20] ................................................................................... 10 

Figure 1.5 Dr. Chang’s laboratory in Korea Aerospace University ............................................. 11 

Figure 2.1(a) Real hawkmoth wing (b) Hawkmot-like wing model used in current experiment . 14 

Figure 2.2 Water tank and Flapping motion coordinates in current experiment .......................... 18 

Figure 2.3 Experimental Setup: Side-view ................................................................................... 19 

Figure 2.4 The wing motion sketches: 1. Pitching-down, 2. Constant, 3. Pitching-up, designed by 

Sun and Tang [12] ......................................................................................................................... 20 

Figure 2.5 Flapping wing motions: (a) Symmetrical flapping motion (b) Sinusoidal flapping 

motion ........................................................................................................................................... 21 

Figure 2.6 Scheme of Force measurement .................................................................................... 22 

Figure 2.7 Definition of force vectors on the wing ....................................................................... 23 

Figure 2.8 Scheme of Digital Particle Image Velocimetry (DPIV) system .................................. 24 

Figure 3.1 Trajectories of symmetrical flapping motion .............................................................. 25 

Figure 3.2 Lift and drag coefficients distributions of rigid cases in a symmetrical flapping motion

....................................................................................................................................................... 25 



x 

Figure 3.3 Normalized sweeping and rotating velocities each cycle in a symmetrical flapping 

motion ........................................................................................................................................... 26 

Figure 3.4 Lift and drag coefficient distributions of case 1 in a symmetrical flapping motion.... 28 

Figure 3.5 Time-resolved flow structures of case 1 at 0.5R chordwise cross-section in a 

symmetrical flapping motion: (a) t/T = 0.056, (b) t/T = 0.1, (c) t/T = 0.25, (d) t/T = 0.45, (e) t/T = 

0.55................................................................................................................................................ 29 

Figure 3.6 Trajectories of sinusoidal flapping motion .................................................................. 31 

Figure 3.7 Lift and drag coefficient distributions of rigid cases in a sinusoidal flapping motion 32 

Figure 3.8 Normalized sweeping and rotating velocities each cycle in a sinusoidal flapping motion

....................................................................................................................................................... 32 

Figure 3.9 Lift and drag coefficient distributions of case 1 in a sinusoidal flapping motion ....... 33 

Figure 3.10 Time-resolved flow structures of case 1 at 0.5R chordwise cross-section in a sinusoidal 

flapping motion: (a) t/T = 0.056, (b) t/T = 0.1, (c) t/T = 0.25, (d) t/T = 0.304, (e) t/T = 0.55 ....... 34 

Figure 3.11 Time-resolved lift and drag coefficient distributions, from case 1 to case 8, in a 

symmetrical flapping motion ........................................................................................................ 36 

Figure 3.12 Mean lift and drag coefficients from case 1 to 8 in a symmetrical flapping motion . 37 

Figure 3.13 Distributions of lift and drag coefficients for case 1, 4, 5, and 6 in a symmetrical 

flapping motion ............................................................................................................................. 38 

Figure 3.14 Sketches of side views for 0.5R chordwise cross-sectional DPIV test in a symmetrical 

flapping motion; (a) at t/T = 0.05 (b) at t/T = 0.25 ....................................................................... 39 

Figure 3.15 Time-resolved flow structures at 0.5R chordwise cross-section in a symmetrical 

flapping motion: (a) at t/T = 0.05, 0.1, 0.25, 0.45 ......................................................................... 41 



xi 

Figure 3.16 Time-resolved lift and drag coefficient distributions, from case 1 to case 8, in a 

sinusoidal flapping motion ............................................................................................................ 44 

Figure 3.17 Mean lift and drag coefficients from case 1 to 8 in a sinusoidal flapping motion .... 45 

Figure 3.18 Distributions of lift and drag coefficients for case 1, 4, 5, and 6 in a sinusoidal flapping 

motion ........................................................................................................................................... 46 

Figure 3.19 Sketches of side views for 0.5R chordwise cross-sectional DPIV test in a sinusoidal 

flapping motion; (a) at t/T = 0.056 (b) at t/T = 0.25 ..................................................................... 47 

Figure 3.20 Time-resolved flow structures at 0.5R chordwise cross-section in a sinusoidal flapping 

motion: (a) at t/T = 0.056, 0.1, 0.25, 0.304 ................................................................................... 48 

Figure 4.1 DPIV results for case 1 in both symmetrical and sinusoidal flapping motions........... 52 

Figure 4.2 𝐶𝐿1.5/𝐶𝐷 , from case 1 to 8, in symmetrical and sinusoidal flapping motions ......... 53 

 

Appendix Fig. 1 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 2 (2 mm-thick), in a 

symmetrical flapping motion ........................................................................................................ 66 

Appendix Fig. 2 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 3 (1 mm-thick), in a 

symmetrical flapping motion ........................................................................................................ 66 

Appendix Fig. 3 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 4 (0.8 mm-thick), in a 

symmetrical flapping motion ........................................................................................................ 67 

Appendix Fig. 4 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 5 (0.5 mm-thick), in a 

symmetrical flapping motion ........................................................................................................ 67 

Appendix Fig. 5 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 6 (0.35 mm-thick), in a 

symmetrical flapping motion ........................................................................................................ 68 

Appendix Fig. 6 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 7 (0.2 mm-thick), in a 

symmetrical flapping motion ........................................................................................................ 68 



xii 

Appendix Fig. 7 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 8 (0.1 mm-thick), in a 

symmetrical flapping motion ........................................................................................................ 69 

Appendix Fig. 8 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 2 (2 mm-thick), in a 

sinusoidal flapping motion ............................................................................................................ 70 

Appendix Fig. 9 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 3 (1 mm-thick), in a 

sinusoidal flapping motion ............................................................................................................ 70 

Appendix Fig. 10 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 4 (0.8 mm-thick), in a 

sinusoidal flapping motion ............................................................................................................ 71 

Appendix Fig. 11 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 5 (0.5 mm-thick), in a 

sinusoidal flapping motion ............................................................................................................ 71 

Appendix Fig. 12 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 6 (0.35 mm-thick), in a 

sinusoidal flapping motion ............................................................................................................ 72 

Appendix Fig. 13 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 7 (0.2 mm-thick), in a 

sinusoidal flapping motion ............................................................................................................ 72 

Appendix Fig. 14 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 8 (0.1 mm-thick), in a 

sinusoidal flapping motion ............................................................................................................ 73 

 



xiii 

 NOMENCLATURE 

 

Acronyms Definitions 

  

AOA Angle of attack 

  

AR Aspect Ratio 

  

DP Drag Peak 

  

DPIV Digital Particle Image Velocimetry 

  

DPSS Diode Pulsed Solid State 

  

LEV Leading Edge Vortex 

  

MAVs Micro Aerial Vehicles 

  

PC Polycarbonate 

  

PIV Particle Image Velocimetry 

  



xiv 

TEV Trailing Edge Vortex 

  

TTL Transistor-Transistor-Logic 

  

TV Tip vortex 

  

LP Lift Peak 

  

  

Symbols Definitions 

  

Fx Normal force to the wing 

  

Fy Parallel force to the wing 

  

𝐿𝑟𝑒𝑓 A reference length 

  

𝑈𝑟𝑒𝑓 A reference velocity 

  

𝑈𝑡𝑖𝑝 Wing-tip velocity 

  

𝑐̅ Mean chord length 

  



xv 

D Drag 

  

EI Flexural Stiffness 

  

f Flapping frequency 

  

F Applied force 

  

I Second of moment of area 

  

k Reduced frequency 

  

l A physical length 

  

L The effective beam length 

  

L Lift 

  

𝑃𝑅 Power required 

  

R Wing length (half span length) 

  

Re Reynolds Number 



xvi 

  

S Wing area (half wing) 

  

t Wing thickness 

  

t time 

  

T Total time each cycle 

  

U A linear velocity of the object 

  

β Wing-beat amplitude (rotating) 

  

Φ Wing-beat amplitude (sweeping) 

  

ω Mean angular velocity 

  

𝜔 Velocity of vorticity 

  

ω∗ Freqeuncy ratio 

  

𝜔𝑛 Natural frequency 

  



xvii 

ωvor Normalized velocity of vorticity 

  

𝑡/𝑇𝑎 Non-dimensional time for rotating wing 

  

𝑡/𝑇𝜙 Non-dimensional time for sweeping wing 

  

𝑡/𝑇 Non-dimensional time 

  

𝛼 Angle of attack (rotating) 

  

𝛿 Wing displacement 

  

𝜇 Coefficient of fluid viscosity 

  

𝜈 Kinematic viscosity 

  

𝜌 Fluid density 

  

𝜌𝑤 Wing density 

  

𝜙 Stroke angle (sweeping) 

 

 



1 

1 INTRODUCTION 

1.1 Motivation to study insect-inspired flapping air vehicles 

 In past decades, much research has been conducted on the flapping flight, like the concept 

of Leonardo da Vinci, in nature with aerodynamics study. Biological flyers, such as birds and 

insects, have evolved over 150 million years and are still impressive even though aeronautical 

technology has developed rapidly over the past 100 years. For example, the SR-71 flies at Mach 3 

(~2000 mph) and covers about 32 body lengths per second while a common pigeon, one of natural 

flight creatures, covers to 75 body lengths per second at 50 mph speed [2]. It shows that the 

biological flyers are more maneuverable than conventional aerial vehicles. However, their 

complex flight structures or principles have been a challenge to mimic them. 

 Decreasing in size of aerial vehicles confronts a problem in aerodynamic force generation 

and flight control. The aerodynamic characteristics change considerably between the small-sized 

aerial vehicles and the conventional aerial vehicles due to the Reynolds number effect. Therefore, 

an understanding of flapping wing is a key to overcome the limitation of fixed or rotary wings in 

the small-sized aerial vehicles. The biological flyers need to investigate unsteady aerodynamics, 

flapping motions, flexible wings, as well as a rapid adaptation on different environment conditions 

[2]. With these biological features, high performances in free flights can be obtained. 

 In particular, insect flyers have encouraged many researchers to study and develop the 

small-sized flapping aerial vehicles for the use in reconnaissance missions in hazardous locations. 

In addition, all performances of insects are carried out at the wing root, and the wing weight of 

insects is very light, which accounts for 1% of the whole weight [3]. Insects flap their wings with 

large wing rotation angles that produce sufficient aerodynamic force when they fly. The flight 
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mechanisms of insects have been potential in Micro Aerial Vehicles (MAVs) development because 

of their hovering flight capacity and high maneuverability. 

1.2 Insect flapping flight 

  The objective of this thesis is to study and develop the inset-inspired flapping MAVs with 

a better understanding of aerodynamic characteristics for flapping wings at low Reynolds number. 

Since a high speed camera was invented that record the fast moving objects like the insect’s 

flapping wings as a photographic image on storage, insect flyers could be studied easier than before 

in order to develop insect-inspired flapping aerial vehicles. With the high speed camera, the various 

motions of insect flyers could be observed and analyzed in detail. In this chapter, the efforts in 

experimental and computational studies of the insect flapping flight are reviewed briefly. 

1.2.1 Experimental studies in insect flapping flight 

 It is difficult to measure flapping motions of free flight in insects due to their high wing-

beat frequency with small wing size. Flapping wings generate the unsteady aerodynamic force, so 

in the past some researchers tethered insects to measure flapping kinematics with the aerodynamic 

force and flow structures [4-7]. However, the tethered insects separated the inertial forces from the 

aerodynamic force. Furthermore, the flow visualizations for flapping were not clear enough and it 

was difficult to temporally measure the wake structures, which are related to the aerodynamic force 

generation in all degrees of freedom. Therefore, many researchers have developed mechanical 

models of insect wings with the considerations of Reynolds number in insect flapping flight. 

 Recently, Ellington [8] captured free-flight wing at 5000 frames per second to determine 

the kinematics of insects, and a high speed videography has been employed to determine the 

motions of their wings and bodies [9]. Using the high speed videography, researchers easily have 

measured the flapping kinematics each insect. Therefore, flapping kinematics have been performed 
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to measure aerodynamic characteristics of the flapping wing by using a dynamically scaled-up 

models.  

1.2.2 Computational studies in insect flapping flight 

 Computational methods offer a different approach in solving the mechanisms in insect 

flapping flight. Unlike the above experimental studies using tethered insects or robotic models, the 

computational methods require experimental data, such as wing kinematics, to design the 

Computational Fluid Dynamics (CFD) models. Based on the kinematic model in hovering 

hawkmoth [10], Liu et al. [11] studied initially the unsteady aerodynamics by using the three-

dimensional Navier-Stokes equations on a structured grid. This study confirmed the experimental 

results that were observed by Ellington et al. [12] in real and dynamically scaled model insect 

flight. Their computational results accurately predicted the complex vortex structures and the 

importance of the spanwise flow in stabilizing the spiral leading edge vortex (Figure 1.1). In 

addition, Sun and Tang [13, 14] studied the unsteady aerodynamics of a fruit fly model in 3-D 

Navier-stokes equations, and obtained the results roughly matching experimental results measured 

by Dickinson et al. [15]. 

 

Figure 1.1 Leading edge vortex on hawktmoth wing during downstroke. (a) smoke-visualization 

[12] (b) computational visualization [11] 
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 With advances in computational methods, many researchers have focused on the wing 

flexibility for flapping. Due to the inherent flexibility of insect wings, the aerodynamic and inertial 

forces for flapping insect wings can consequently induce considerable elastic deformations [16]. 

Fluid-Structure Interaction (FSI) problem is associated with the aerodynamics and structural 

dynamics of flapping wings. Experimentally, it is very difficult to solve the aero-elastic problem 

of flexible wing because it usually requires direct measurements of the wing deformation, the flow 

structures, and the aerodynamic forces [17-19]. The computational methods can approach the 

effects of the wing deformation on aerodynamics with relative easy. However, the computational 

methods still have the limits to predict the flow structures for flapping flexible wings, due to the 

complex unsteady mechanisms in insect flapping flight. 

1.3 Unsteady mechanisms in insect flapping flight 

 Flapping wings show specific flow structures and their unsteady aerodynamic mechanisms 

such as leading edge vortex [12], delayed stall [12, 20], rotational circulation [15], and wake-

capture (wing-wake interaction) [15]. Such criterion has explained how the flapping flights 

generate aerodynamic force such as lift and drag as shown in Figure 1.2. 

 

Figure 1.2 Summary of aerodynamic mechanisms in insect flapping flight, designed by 

Dickinson, M. H. in “Catching the Wake”, SCIENTIFIC AMERICANTM [1] 
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1.3.1 Leading edge vortex and delayed stall 

 Flapping thin airfoils with high angle of attack present that the local viscous forces within 

the fluid near a leading edge are smaller than the pressure forces generated by the high fluid 

velocity. The flow over the wing separates at the leading edge but reattaches before reaching a 

trailing edge, leading to the formation of a Leading Edge Vortex (LEV). In this case, the suction 

force is not parallel but normal to the wing as shown in Figure 1.3. Therefore, the suction force 

that is adding to a normal force helps to enhance the lift and drag generation. Additionally, the 

resultant force in the thin wing case is perpendicular to not the ambient flow velocity but the wing. 

 

Figure 1.3 Flow around a thin airfoil [21] 

 Most insects flap their wings at high angle of attack, thereby the leading edge vortex plays 

a role in lift generation in the flights of small-sized flapping aerial vehicles [12]. For example Liu 

and Aono [22] presented such size effects on hovering flights like a hawkmoth, a honeybee, a fruit 

fly and a thrips in the range of Reynolds numbers from101 to 104  using a biology-inspired 

dynamic flight simulator with an in-house Navier-Strokes solver. Their results showed that the 

LEV is a common feature for flapping wing at low Reynolds number, but the LEV characteristics 

to generate lift varied as different Reynolds number, reduced frequency, Strouhal number, wing 

flexibility, and flapping kinematics. Hawkmoth hovering showed that Trailing Edge Vortex (TEV) 

and Tip Vortex (TV) could contribute to generate the aerodynamic force with LEV, but lower 
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Reynolds numbers for honeybee and fruit fly presented that the TEV and TV became much more 

weaker. However, the honeybee and fruit fly could obtain the fore augmentation from the rapid 

rotation of the flapping wing instead of the TEV and TV. In addition, their results also showed the 

downstroke force to upstroke force ratio which decreased as the size or Reynolds number 

decreased. Furthermore, Sane [21] showed that the LEV grew in size for flapping the wing at 

continuously high angle of attack until the flow couldn’t be reattached in 2-D linear translation. 

The reattached LEV prior to ‘stall’ generated high lift coefficients on several chord lengths, and 

this phenomenon was called ‘delayed stall’. 

 Ellington et al. [12] also suggested that the delayed stall of LEV can enhance significantly 

lift for flapping wing through the experiments using a smoke fluid visualization around the wings, 

which were the hawkmoth Manduca sexta and a hovering large mechanical model in 3-D flapping 

translation. They showed that the LEV created a region of lower pressure above the wing and it 

enhanced the lift generation. In addition, they observed a steady spanwise flow from the wing and 

this spanwise flow was entrained by the leading edge vortex to spiral towards the wing tip. Through 

transferring the momentum in the spanwise direction with the momentum decrease in the 

chordwise direction, it caused the leading edge vortex to be smaller. The smaller leading edge 

vortex made the flow reattach easier and helped the reattachment be maintained for a longer time.  

1.3.2 Rotational circulation 

Dickinson et al. [15] have conducted the rotational force, which is caused by the rapid 

pitching-up rotation before reversing the wing. They measured the aerodynamic forces with a 

dynamically scaled-up model for flapping, and showed the large positive peaks which were 

observed for the rapid pitching-up rotation before the stroke reversal. The lift shows the negative 

peak in the delayed rotation due to the pitching-down when the wing rotated back after reversing 
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the stroke. They suggested that the insect could generate lift through the rotational mechanism as 

adjusting the timing of wing rotation. Sane and Dickinson [23] presented that the lift peak prior to 

the end of stroke was related to proportionally the wing angular-velocity, which the rotational 

coefficients depended on, based on a quasi-steady theory. Additionallyz, Sun and Tang [13] and 

Wu and Sun [24] revealed that the pitching-up rotation caused the circulation increment, which 

phenomena induced the lift increase. To sum up, the rotational circulation affects the lift increment 

for the pitching-up rotation prior to the end of stroke.  

1.3.3 Wake-capture (wing-wake interaction) 

 Wake-capture is often observed when flapping wings show a wing-wake interaction. 

During reversing the wings in their translational direction, the wings face to the wake generated 

by the previous stroke so that the fluid flow is effective to increases the fluid velocity and the peak 

on aerodynamics is shown. Dickinson et al. [15] used a robotic model to operate simple 

translational and rotational motions for measuring the aerodynamic forces. While they found a 

specific feature to generate force peaks after reversing the stroke, Sun and Tang [13] suggested 

that the peaks might occur due to the added-mass acceleration after reversing the stroke and 

pointed out that the specific flow was not the wake but a downwash. After the opposed conclusions 

between those above, Birch and Dickinson [25] examined the wing-wake interaction in detail 

through 2-D Digital Particle Image Velocimetry (DPIV) studies to visualize the flow around the 

flapping wing, which was a dynamically scaled robot. They showed that the developed- and shed- 

vortices for each strokes had a major effect to generate the forces during flapping wings. 

 Recently, some researchers [26, 27] studied a fundamental approach numerically and 

experimentally to present the wing-wake interaction on aerodynamic forces generation on a 2-D 

flapping wing. Lua et al. [27] proposed two kinds of wing-wake interaction. First, the lift was 
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related to the induced velocity of a pair of counter-rotating wake vortices on the reverse stroke. 

Second, it was associated with the vortex suction effect for the wing encountered by one vortex, 

and the suction effect caused the net force on the wing to decrease momentarily. Han et al. [28] 

presented that trailing edge vortex (TEV) for wing reversal affects significantly the characteristics 

of the wing-wake interaction. These results suggested that the wing-wake interaction could not 

always affect to enhance the lift and sometimes reduce the lift. Therefore, the wing-wake 

interaction is still important to study and develop the insect-inspired flapping MAVs. 

 In fact, the wing-wake interaction is very complicated because this interaction is essentially 

an inter-related phenomenon between the wake generated by the previous stroke and the wing 

motion in the next stroke. In conventional aerodynamics, the wake can be handled as an important 

element of the fully unsteady aerodynamic model. Although Theodorsen [29] presented a powerful 

theory written in terms of Bessel functions to solve two-dimensional unsteady aerodynamics as 

well as the flutter, it requires not only a simplification of the wing motion and an ability to keep 

the traces of the shed wake, but also a relatively complicated calculation. In addition, Sane and 

Dickinson [23] already showed that the wing-wake interaction was highly sensitive to the function 

of the wing kinematics. This implies that the wing kinematics, including the rotational and the 

translational dynamics, have to be synthetically contemplated with the flow structures in order to 

understand the lift augmentation that occurs as a result of the wing-wake interaction. Further 

research by elucidated that the wing-wake interaction was highly sensitive to the wing kinematics 

and flow structures. 

1.4 Wing flexibility in insect flapping flight 

 Insects have various flexible wing structures which are very complex to model because 

their wings are generally made by thin membrane with veins. The majority of prior investigations 
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simplified the wing structural models to assess the benefit of wing flexibilities in force generation 

due to the complexity on the nonlinear fluid flow. Zhao et al. [30] studied the chordwise flexibility 

effects with 16 different wings, which were made of polyester, polycarbonate, polyethylene and 

Mylar to obtain variable stiffness values. To ignore the spanwise flexibility, they attached the wing 

model with the rigid carbon fiber leading edge. The results from the experiments showed that the 

overall aerodynamic performance of flapping wings deteriorated as they became more flexible and 

the magnitude of force generation could be controlled by modulating the trailing edge flexibility. 

It shows that the wing structures as well as the chordwise flexibility are important factors to 

develop the insect-inspired flapping MAVs. Bi and Cai [31] also presented that the highest 

spanwise flexibility is not a good choice on the thrust generation and propulsion efficiency through 

the aerodynamic experiment in water tank. 

 In the experimental results of Hu et al. [32], various flexible wing structures were examined 

to evaluate their implications on flapping wing aerodynamics, and the research showed that the 

flexible membrane wings were better than rigid wing for high-speed soaring flight or at relatively 

high angle of attack. These experiments showed the importance to select the proper wing flexibility 

of the membrane skins for achieving improved aerodynamic performances in soaring and flapping 

flight. Additionally, other researchers [33-35] demonstrated that the maximum propulsive force 

was generated when a flapping frequency was lower than the natural frequency of the flapping 

wing. Zhang et al. [33] concluded that a flat plate would generate a thrust to move forward if a 

flapping motion frequency was lower than the natural frequency of the plate via the lattice 

Boltzmann method. Ramananarivo et al. [34] also presented that the maximum thrust was obtained 

at the frequency ratio, between a flapping motion frequency and a natural frequency, of 
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approximately 0.7. Furthermore, Vanella et al. [36] described that the best aerodynamic 

performance was realized at the frequency ratio of 1/3 using numerical methods. 

 With above efforts to construct the relations between aerodynamics and wing flexibility, 

some researchers [30, 37, 38] outlined the advantages and disadvantages, as well as an importance 

of flexible flapping wing. Hamamoto et al. [38] presented that a very thin dragonfly wing could 

not take the wing shape, thereby losing the aerodynamic force. Lua et al. [39] took the finding 

from Hamamoto et al. [38] in an endeavor to answer the relationship between the wing flexibility 

and aerodynamic force generation through aerodynamic experiments. Their results demonstrated 

that wings with a specific stiffness could generate mean lift coefficient similar to that of a rigid 

wing in a hawkmoth motion, but less than that of a rigid wing in a sinusoidal flapping motion. 

However, the appropriate wing flexibility for insect-inspired flapping MAVs and the difference of 

flow structures between the rigid and flexible wings that affects the aerodynamic force 

deterioration have yet to be elucidated. 

1.5 Hovering flight 

 Some insects, such as fruit fly and hawkmoth, are capable of hovering flight, and the insects 

have two translational phases, upstroke and downstroke, and two rotational phases, pronation and 

Figure 1.4 Hovering flight of fruit fly [1] 
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supination [1]. Figure 1.4 shows the sample hovering flight of fruit fly. Downstroke and upstroke 

describe the dorsal to ventral motion and the ventral to dorsal motion of the wing, respectively. 

Supination is the rapid transition of downstroke-to-upstroke and pronation is the rapid transition 

of upstroke-to-downstroke. 

1.6 Experiment Facility 

 The aerodynamics experiments in this thesis have been conducted by ongoing collaboration 

between Ryerson University and Korea Aerospace University. Due to the lack of equipment for 

unsteady aerodynamics experiment in Ryerson University, the experiments to study the flapping 

flights were performed at Dr. Jo Won Chang’s Applied Aerodynamic Laboratory in Korea 

Aerospace University. Figure 1.5 shows Dr. Chang’s laboratory in Korea Aerospace University, 

and his laboratory has carried out the experimental researches for Micro/Nano Aerial Vehicles and 

ornithopter. There is equipment to measure the flow fields on aerodynamics: suction-type subsonic 

wind tunnel (size: 10.1 m × 2.0 m × 2.0 m), blow-type wind tunnel (size: 7 m × 2.0 m × 2.0 m), 

water tank (size: 3.5 m × 1.0 m × 1.1 m), vacuum chamber, pressure transducer, Particle Image 

Figure 1.5 Dr. Chang’s laboratory in Korea Aerospace University 
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Velocimetry (PIV) systems including a high speed camera and a laser, Dantec StreamLine (R) 

system, force data acquisition systems, etc. 

1.7 Aims and objectives in present study 

 The main objective of this thesis is to investigate the experimental aerodynamics on 

flapping flexible hawkmoth-like wings in hovering flight. Based on above studies of insect flight, 

it is clear that a better understanding of the unsteady aerodynamic mechanisms is important for the 

development of MAV-sized flapping aerial vehicles. Hawkmoth-like wing models are derived 

from Manduca sexta, and the wing thickness is chosen as design variables to simplify the 

comparison between various wing flexibilities. The wing models with spanwise length of 200 mm 

and an aspect ratio of 6.18, are constrained to a symmetrical motion and sinusoidal flapping motion 

with sweeping and rotating amplitude of 120° and 90° at Reynolds number (Re) of 10,744 in water 

tank with size of 3.5 m × 1.0 m × 1.1 m. Aerodynamic force and flow structures for flapping the 

wing models are measured by a six-axis force/torque sensor and a high speed camera with a laser 

using Digital Particle Image Velocimetry (DPIV) method. 
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2 EXPERIMENTAL SETUP AND PROCEDURE 

Many fluid-dynamic coefficients such as the lift and drag coefficients are related to the 

Reynolds number. The Reynolds number (Re) in this thesis can be defined as the following: 

Re =
Inertial Force

Viscous Force
=
𝜌𝑈2𝑙2

𝜇𝑈𝑙
=
𝑈𝑟𝑒𝑓𝐿𝑟𝑒𝑓

𝜈
=
(𝜔𝑅)𝑐̅

𝜈
 (1) 

where 𝑈 is the linear velocity of the object, 𝑈𝑟𝑒𝑓 is a reference velocity, l is the physical length, 

𝐿𝑟𝑒𝑓 is a reference length, μ is the coefficient of fluid viscosity, ν is the kinematic viscosity, and 

𝜈 =
𝜇

𝜌
 , 𝜌 is the fluid density. 𝑈𝑟𝑒𝑓  changes to the mean wingtip velocity (𝜔𝑅); R is the wing 

length (half span length), 𝜔 is the mean angular velocity of the wing, and 𝑐̅ is the mean chord 

length, 𝑐̅ = 𝑆/𝑅.  

The mean angular velocity of the wing is related to the wing-beat amplitude and the 

flapping frequency: 

𝜔 = 2Φ𝑓 (2) 

where Φ is the wing-beat amplitude in radians, and 𝑓 is the flapping frequency 

 The ratio between the forward velocity and the flapping velocity is important for 

aerodynamic performance, and in hovering flight this reduced frequency can be obtained by the 

following equation: 

𝑘 =
𝜋𝑓𝑐̅

𝑈𝑟𝑒𝑓
=
𝜋𝑓𝑐̅

𝜔𝑅
 (3) 

 In this experiment, the wing-beat amplitude, Φ, is 120° and a wingbeat frequency, 𝑓, is 

0.16 Hz. The water temperature, which affects water density, 𝜌, and viscosity, 𝜈, is 16.3±0.53 °C. 

The mean chord length, 𝑐̅, was 0.0647 m. Based on these data, the reduced frequency is 0.24 and 

the calculated average value of Reynolds numbers is 10,744 in this thesis. 
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2.1 Wing models 

 Hawkmoth-like wing model, which is derived from a Manduca sexta, is selected in this 

experiment as shown in Figure 2.1 (a). The hawkmoth-like wing has been studied for several years 

in order to improve the development of insect-inspired flapping MAVs due to its well-hovering 

flight with relatively heavy weight in comparison with other insects. Figure 2.1 (b) shows that a 

wing geometry of Usherwood and Ellington [40] is redrawn as the target model in this experiment. 

The wing models have a half-span length, R, of 200 mm, a mean chord length, 𝑐̅, of 64.7 mm, a 

wing area (S), 0.01294 m2 , and an Aspect Ratio, AR, of 6.187. Due to the experimental 

environment corresponding to the environment of flapping insects in nature, a wing-beat frequency 

is much lower than that of the real hawkmoth to maintain the range of Reynolds numbers. 

Therefore, the Reynolds number, which is calculated with function of the mean angular velocity, 

is 10,744 in this experiment by using above equation (1). For the distributions of wing flexibility, 

the wing models are made of only pristine Polycarbonate (PC) sheet, and the wing thickness (t) is 

a design variable in the present study. Case 1 is a rigid wing with thickness of 3 mm, and case 2 to 

8 are flexible wings with thickness of 2, 1, 0.8, 0.5, 0.35, 0.2, and 0.1 mm. 

 

Figure 2.1(a) Real hawkmoth wing (b) Hawkmot-like wing model used in current experiment 

 In current study, flexural stiffness (EI) values of wing models are calculated by the method 

which was described by Combes and Daniel [41]. They did not know the Young’s modulus (E) as 
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well as the second moment of area (I) each wing because their wing models were various real 

insects wings. For this reason, they obtained the flexural stiffness by measuring insect wing 

displacement in response to an applied force at approximately 70 % of wing span and chord, and 

used the beam theory to calculate the bending stiffness in both directions using the following 

equation: 

𝐸𝐼 =
𝐹𝐿3

3𝛿
 (4) 

where F is the applied force, L is the effective beam length (chord or half-span length), and 𝛿 is 

the wing displacement. 

By comparing to the calculated flexural stiffness in both directions, Combes and Daniel 

[41] found that the spanwise flexural stiffness was one to two orders of magnitude that is greater 

than the chordwise flexural stiffness. Mountcastle and Daniel [42] also borrowed above method to 

calculate a spanwise flexural stiffness of real Manduca sexta’s wing, and reached the conclusion 

that the flexural stiffness for the real insect wing has the range of 10−6 to 10−5 Nm2 in common 

with Combes and Daniel [41]. In addition, Zhao et al. [43] and Lua et al. [39] designed their wing 

models which were made of various materials and had different wing-thicknesses. Zhao et al. [43] 

had the insect-inspired flexible wings attached with spanwise rigid carbon fibre vein, thereby they 

characterized the flexural stiffness in the direction of wing chord using the equation (5). In the 

study of Lua et al. [39], different flexibilities of the wing models were performed by different 

materials and fabricated real hawkmoth-like veins. They measured the spanwise flexural stiffness 

of each wing using the above method. However, above experimental method to obtain the flexural 

stiffness is not suitable in this experiment due to the large wing models relatively compared to the 

real flapping insects. Additionally, case 6 to 8 were too bending to measure the flexural stiffness 

using above experimental method. Furthermore, the wing models in the current study are made of 
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Polycarbonate (PC) sheets, which sheets of different thickness were cut by using a computerized 

numerically controlled (CNC) machine tool, and there was no shape-deformation in this process. 

Young’s modulus (E) of the pristine PC sheets is 2.5 GPa so the method described in Combes and 

Daniel [41] is not needed in this study. For calculating the spanwise flexural stiffness (EI), the 

second moment of area (I) is required only in this experiment. They calculated the second of 

moment of area from the flexural stiffness for each half-span length (R) with the following 

equation in Gordon [44]: 

𝐼 =
𝑅t3

12
 (5) 

 In order to present the relationship between the wing and aerodynamic force, non-

dimensional stiffness (𝐸𝐼𝑛𝑜𝑛) is calculated by the following equation [18, 39, 45]: 

𝐸𝐼non =
𝐸𝐼

𝜌𝑓𝑈𝑟𝑒𝑓
2 𝑐̅4

 (6) 

where 𝜌𝑓 is the density in fluid; a water density in current study 

 As mentioned earlier, the flapping frequency is lower than the natural frequency of the 

wing model to obtain maximum thrust and power efficiency. In the current experiment, the natural 

frequencies in all cases are larger than the flapping frequency, 0.16 Hz as shown in Table 1. The 

natural frequency (ωn ) is calculated by following the first mode frequency equation, which 

assumes a cantilever beam hypothesis: 

ωn =
3.5156

2𝜋𝐿2
√
𝐸𝐼

𝜌𝑤𝑆
 (7) 

where 𝜌𝑤 is the density of wing model 
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 Finally, Table 1 shows the non-dimensional flexural stiffness and the frequency ratios (ω∗), 

which are used for comparing the effect of flexibility among different wing models that are used 

in this experiment. Sunada et al. [46] measured the natural frequencies of vibration in air with four 

different dragonfly wings and had the frequency ration in the range of 0.3-0.46. Ramananarivo et 

al. [34] also described that the maximum thrust was obtained at the frequency ratio, between a 

flapping motion frequency and a natural frequency, of approximately 0.7. Vanella et al. [36] 

described that the best aerodynamic performance was realized at the frequency ratio of 1/3 using 

numerical methods. In the current experiment, the wing models have the frequency ratio in the 

range of 0.05-1.73. The frequency ratio is given by Yin and Luo [47] and Tian et al. [48] with 

following equation: 

ω∗ =
2𝜋𝑓

𝜔𝑛
 (8) 

Table 1 Wing data in the present experiment 

Case 
Thickness 

(mm) 
I (𝐦𝟒) EI (𝐍𝐦𝟐) 𝑬𝑰𝒏𝒐𝒏 𝛚𝐧 𝛚∗ 

1 3 4.5 × 10−10 1.125 1892.095 17.412 0.05773 

2 2 1.333 × 10−10 0.333 560.994 11.608 0.0866 

3 1 1.667 × 10−11 0.0417 70.124 5.804 0.1732 

4 0.8 8.533 × 10−12 0.0213 35.876 4.643 0.2165 

5 0.5 2.083 × 10−12 0.00521 8.759 2.902 0.3464 

6 0.35 7.146 × 10−13 0.00178 3.005 2.031 0.4948 

7 0.2 1.333 × 10−13 0.000333 0.5607 1.1608 0.866 

8 0.1 1.667 × 10−14 4.167 × 10−5 0.07009 0.5804 1.732 

 

2.2 Water tank and experimental motion model 

 As earlier stated, the experiments in this thesis were performed at Dr. Chang’s laboratory 

in Korea Aerospace University. The 3-D flapping wing mechanism is shown in Figure 2.2, and 

wing models moved as the motion kinematics for hovering in water tank with size of 3.5 m ×
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1.0 m × 1.1 m. The motion model for sweeping and rotating the wing is composed of two servo 

motors (MX-28T, ROBOTIS Inc.), which are equipped at upper and lower sections of a dual-

connect frames. The upper servo motor with a horn, mounted under the upper aluminum plate, 

drive the sweeping motion (sweeping angle, 𝜙) along the X-Y plane. The rotation motion (rotating 

angle, 𝛼) along the X-Z plane is also operated by the lower servo motor, which is connected with 

both the dual-connect frames and the aluminum pipe. Two servos are connected in parallel, and 

each servo has an encoder resolution of 1/4096° for a highly precise motion control. The servo 

motors are able to control the position with a full 360-degree revolution, and they use the 

Transistor-Transistor-Logic (TTL) communication to connect with a computer based on the codes 

written in LabViewTM in Figure 2.3. 

 

Figure 2.2 Water tank and Flapping motion coordinates in current experiment 
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Figure 2.3 Experimental Setup: Side-view 

2.3 Kinematics 

Since researchers [8, 9, 49] measured the trajectories of flapping wing in hovering flights, 

kinematic data from their studies was available to draw the hovering motion. Ellington [8] 

attempted to capture free flight and hovering flight kinematics using single image high speed cine, 

and Willmott and Ellington [9] employed a high-speed videography to get greater light sensitivity 

and easier use. Fry et al. [49] also used three-dimensional infrared high-speed video to capture the 

wing and body kinematics of free-flying fruit flies. In addition, Dickinson et al. [15] and Sun and 

Tang [13] considered a similar flapping motion to show a normal hovering flight, and their studies 

suggested that three parts of each stroke, as shown in Figure 2.4. The wing rotates pitching-down 

(red arrow in Figure 2.4 downstroke 1 and upstroke 4) and accelerates on sweeping direction at 

the beginning of the stroke, and the wing moves at constant speed and angle of attack during the 

middle of stroke. Last part is the pitching-up rotation (red arrow in Figure 2.4 downstroke 3 and 

upstroke 6) and the deceleration on sweeping at the end of the stroke. Furthermore, Sun and Tang 

[14] compared their calculated results in hovering flight with previous data from Ellington [8], and 
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suggested that a duration of wing rotation (𝑡/𝑇𝜙 and 𝑡/𝑇𝛼, non-dimensional rotation time along 𝜙 

and 𝛼 respectively) was able to assume reasonably 20% of period of one flapping cycle. This 

motion was considered in this experiment as a symmetrical flapping motion in Figure 2.5 (a). 

 

Figure 2.4 The wing motion sketches: 1. Pitching-down, 2. Constant, 3. Pitching-up, designed by 

Sun and Tang [13] 

 In present study, a sinusoidal flapping motion is also investigated for comparing the 

symmetrical flapping motion. Wang et al. [50] compared computational, experimental, and quasi-

steady forces for hovering with sinusoidal motion along a horizontal stroke plane. Lua et al. [39] 

also derived sinusoidal motion on the above, called a simple harmonic motion in their paper, in 

order to compare with hawkmoth flapping motion. In current study, such sinusoidal flapping 

motion is used to compare the overall effect on aerodynamics by wing flexibility each wing. Figure 

2.5 (b) presents the sinusoidal flapping motion with the peak amplitudes in sweeping motion (ϕ) 

and rotating motion (β) of 60° and 45° respectively. The sinusoidal flapping motion was defined 

by the following equations: 

𝜙(𝑡) = ϕcos (2𝜋𝑓𝑡) (9) 

𝛼(𝑡) = 𝛼0 + βsin (2𝜋𝑓𝑡) (10) 
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Figure 2.5 Flapping wing motions: (a) Symmetrical flapping motion (b) Sinusoidal flapping 

motion 

2.4 Force Measurements 

 Figure 2.6 shows that a six-axis micro force/torque sensor (NANO 17 IP68, ATI Industrial 

Automation) is mounted on the wing-root side on the leading edge. The sensor has the measurable 

ranges of forces and moments, ±25 N and ± 250 N ∙ mm respectively, and it can operate under 4 

m depth of water. Figure 2.6 presents the scheme of force measurements and shows how the force 

and moment data are measured for flapping the wing model. Six raw signals from the sensor are 

stored in the computer as each angular position for the flapping model. The signals of forces and 

moments pass through a signal conditioner and MIO-16E4 DAQ-board to save them in the 

computer. Each case for flapping is separated by 250 points in this experiment, and the 

measurements of forces and moments are repeated over 250 times to converge the ensemble 

averaged values. With a calibration error of 0.51%, the error of the repeated measurements obtains 

1.133% using Type-A equation with the standard deviation of force data (detail calculation process 

in Appendices A). The value of precision errors is 2.283% in accordance with above errors. In 

addition, the bias errors have 0.00794 % in horizontal alignment of the model and 0.00152 % in 
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DAQ systems. Considering the precision errors, the force measurement uncertainty at 95% 

confidence is 3.196% in this experiment. 

 

Figure 2.6 Scheme of Force measurement 

 The sketch of force vectors to calculate lift and drag for flapping wing is shown in Figure 

2.7. The lift and drag are extracted by normal and parallel forces to the wing, 𝐹𝑥 and 𝐹𝑦, and they 

are given by 

L = 𝐹𝑥 cos(𝛼) − 𝐹𝑦sin (𝛼) (11) 

D = ±[𝐹𝑥 sin(𝛼) + 𝐹𝑦 cos(𝛼)] (12) 

 Furthermore, lift and drag coefficients are calculated by following equations: 

CL = 𝐿/(
1

2
𝜌𝑈𝑟𝑒𝑓

2 𝑆) (13) 

CD = 𝐷/(
1

2
𝜌𝑈𝑟𝑒𝑓

2 𝑆) (14) 

where 𝑈𝑟𝑒𝑓 is the wing tip velocity in hovering flight 
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Figure 2.7 Definition of force vectors on the wing 

2.5 Digital Particle Image Velocimetry (DPIV) 

 Digital Particle Image Velocimetry (DPIV) is an optical technique to measure the velocity 

of very small sized speeding-particles in the order of 10 to 100 micrometers with a laser and a 

speed camera. Each wing is dynamically actuated with a wing-beat frequency in water tank, and 

DPIV measurements are employed to study the chordwise cross-section of fluid flows around the 

flapping wing as shown in Figure 2.8. Shyy and Liu [51] suggested to determine the chordwise 

cross-section of 0.6R (where R is a wing length) for ignoring three-dimensional effects such as the 

wingtip vortex, and Birch and Dickinson [52] chose 0.65R as their measurement point because 

this point showed that the leading edge vortex was still attached and exhibited near-maximal 

spanwise vorticity. In current study, 0.5R chordwise cross-section is selected for ignoring three-

dimensional effects, such as the wingtip vortex. 

 The DPIV system consists of a high speed camera (FASTCAM SA3, Photron) and 1.5W 

Diode Pulsed Solid State (DPSS) laser with a standard lens (AF-S NIKKOR 50 mm F1.8G, Nikon). 

For the highly precise time-resolved measurements, the computer transmits a trigger pulse to the 

high speed camera with temporally running codes for the wing motions. The high speed camera 

can take 1,040 pictures totally of 1,024 × 1,024 pixels, and sequential 50 images at 125 frames/s 

are captured whenever the camera received the trigger pulse. In total, 40 pairs of pictures are used 
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to average the extracted flow vector field. To convert the captured images to the vector field image, 

PIVlab 1.32, which is a toolbox in MATALB, is used in this thesis. The program is operated in 

32 × 32 pixel interrogation with 50 % overlap on each image, and thereby the DPIV results have 

64 × 64 resolution. 

 

Figure 2.8 Scheme of Digital Particle Image Velocimetry (DPIV) system 
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3 RESULTS AND DISCUSSION 

3.1 Rigid wing 

3.1.1 Symmetrical flapping motion 

 Figure 3.1 shows the schematic trajectory of symmetrical flapping motion in this 

experiment. The symmetrical flapping motion presents that the wing is rotated in short time at the 

start and end of each stroke. As stated previously, the duration of wing rotation is able to assume 

20% of period of one flapping cycle (𝑡/𝑇𝜙 = 0.2 and 𝑡/𝑇𝛼 = 0.2).as presented in Figure 2.5 (a). To 

analyze the aerodynamic characteristics in the symmetrical flapping motion, the rigid wing model 

in case 1 and previous studies [13, 14, 28] are firstly discussed as shown in Figure 3.2. 

 

Figure 3.1 Trajectories of symmetrical flapping motion 

 

Figure 3.2 Lift and drag coefficients distributions of rigid cases in a symmetrical flapping motion 
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Figure 3.3 Normalized sweeping and rotating velocities each cycle in a symmetrical flapping 
motion 

 Figure 3.2 presents the results of lift and drag coefficients in case 1 (rigid wing with 

thickness of 3 mm in this experiment), Sun and Tang [14], and Han et al. [28]. There are three 

peaks in the lift coefficient and two peaks in the drag coefficient each data. Dickinson et al. [15] 

and Sun and Tang [14] presented the first peak and re-generation of lift before reaching third peak. 

The first and second peaks are signified by the enhanced force mechanisms such as the wing-wake 

interaction. Han et al. [28] also explained that the rotating time, 𝑡/𝑇𝛼, affects the peak point and 

the effective range of the rotational forces through their experimental data. Comparing the results 

of different rotating times, each peak developed from the start of the wing rotation and converged 

gradually as the wing was nearing the stroke reversal. 

 Furthermore, Sun and Tang [14] (black dash-line) has a small first peak in the distributions 

of lift and drag coefficient after the wing reversal in comparison with other results. Their wing 

model, derived from a Drosophila virilis, was constrained to the symmetrical flapping motion with 

sweeping angle of 150° and rotating angle of 103° for 𝑡/𝑇𝛼 = 0.19. The reason why their first 

peak is very small is because the wing flapped with the large sweeping angle. Wang et al. [50] and 
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Lua et al. [39] presented that the high first peak in the aerodynamic forces of the wing was caused 

by its small sweeping amplitude. When the sweeping amplitude is small, the wing stops and 

reverses in the wake at a high sweeping velocity. Thus, it causes the large peak in the aerodynamic 

force after the wing reversal. For this reason, Sun and Tang [14] had very small peak right after 

the wing reversal. 

 In Han et al. [28] (red dot-line), their wing had similar dimensions of the current 

hawkmoth-like wing. The amplitudes of sweeping and rotating motions were 120°  and 90° 

respectively, and the periods of sweeping or rotating, 𝑡/𝑇𝜙 or 𝑡/𝑇𝛼, were 0.12, 0.24, and 0.5 each 

period. As shown in Figure 3.2, the lift coefficient in the current rigid case is compared with one 

of their results, 𝑡/𝑇𝜙 or 𝑡/𝑇𝛼 = 0.24. They found that the wing-wake interaction was impacted by 

the rotational profiles rather than the translational profiles (sweeping angle). They concluded that 

the distinction of the peak levels each rotating period explained that the wing-wake interaction was 

more strongly influenced by the rotational motion of the wing with their flow visualizations. 

 Figure 3.4 re-presents the time-resolved lift and drag coefficients of case 1 in above Figure 

3.2. The lift coefficient shows dual peaks (LP1 and LP2) after the wing reversal and last peak (LP3) 

before the wing reversal. The dual peaks can be explained by the wing-wake interaction with the 

generation of leading edge vortex, and last peak (LP3) can be explained by the pitching-up motion 

(rotational force). In the drag coefficient, two peaks after and before the wing reversal (DP1 and 

DP2) are observed. DP1 is caused by the wing velocity increase with high angle of attack and the 

wing-wake interaction, and DP2 also occurs due to the pitching-up motion. To explain such peaks 

in the lift and drag coefficients each cycle, the current study provides supportive reasons based on 

the DPIV results to capture at near each peak-time. 
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Figure 3.4 Lift and drag coefficient distributions of case 1 in a symmetrical flapping motion 

 Figure 3.5 shows the DPIV results of case 1 at 0.5R chordwise cross-section in a 

symmetrical flapping motion, and it shows the velocity vector field and the vorticity distributions 

at t/T = 0.05, 0.1, 0.25, 0.45, and 0.55. The vorticity, ωvor, is normalized by the following equation: 

ωvor =
𝜔𝑐̅

𝑈𝑟𝑒𝑓
 (15) 

where the normalized vorticity (ωvor) has the range between -5.26 and 5.26 in the symmetrical 

and sinusoidal flapping motions. 

 Figure 3.5 (a) presents that LEV 1, generated by previous stroke, is going down under the 

wing and LEV 2 is growing up at the leading edge after the wing reversal. With the LEV 2 

generation, the first steep peak is caused by the wake which induces the rapid flow between LEV 

1 and TEV 1. Because of the wing reversal in a short time, TEV 1, generated by previous stroke, 

is close to the wing. Therefore, the vortices induce the velocity increase toward the wing and the 

induced velocity arises the lift augmentation (LP1) right after the wing reversal. This is called 

‘wing-wake interaction’. After obtaining the effect of wing-wake interaction, the lift increases 

continuously until the sweeping velocity is constant (LP2 at t/T = 0.1). The last peak (LP3) is due 
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to the dominant effect of the pitching-up motion of the wing over the wing slowing down [39]. As 

shown in Figure 3.3, the constant sweeping velocity decreases again after t/T = 0.4 so the 

aerodynamic force is also expected to decrease by following the sweeping motion. However, the 

lift coefficient increases with the velocity decrease, and then decreases steeply. As stated 

previously, some researchers [13, 23, 24] found the lift increase before the wing reversal. They 

revealed that the pitching-up rotation caused the circulation increment, which phenomena induced 

the lift increase. Figure 3.5 (d) also presents no specific flow structure to cause the lift increase so 

the lift augmentation before the end of stroke can be expected to occur due to the rotational force.   

 

Figure 3.5 Time-resolved flow structures of case 1 at 0.5R chordwise cross-section in a 

symmetrical flapping motion: (a) t/T = 0.056, (b) t/T = 0.1, (c) t/T = 0.25, (d) t/T = 0.45, (e) t/T = 

0.55 
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 In the drag coefficient, two peaks are occurred respectively after the start of stroke and 

before the end of stroke. Because the first peak (DP1) in drag coefficient can occur from the 

sweeping velocity increase with high angle of attack, it is unclear whether the first steep peak is 

caused by the wing-wake interaction or not. In a sinusoidal flapping motion, drag coefficient has 

a steep peak after the wing reversal even if there is no wing-wake interaction; it will be discussed 

in detail next chapter. However, the wing-wake interaction still has an effect on the steep increase 

of drag in the symmetrical flapping motion. The drag generation coincides with the lift generation 

for flapping, thereby the flapping wing obtains more drag force due to the wing-wake interaction. 

Furthermore, the pitching-up motion before the end of stroke causes the last peak (DP2) in drag 

coefficient, like the last peak in the lift coefficient. 
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3.1.2 Sinusoidal flapping motion 

 Figure 3.6 presents the schematic trajectory of simple harmonic flapping motion in this 

experiment. As shown in Figure 2.5 (b), the wing rotates continuously until the peak point at the 

middle of stroke, and then reverts back to the original position at the end of stroke. In line with 

previous chapter, the rigid wing model is firstly investigated for studying the general features, such 

as aerodynamic characteristics and flow structures, in a sinusoidal flapping motion. 

 

Figure 3.6 Trajectories of sinusoidal flapping motion 

 Figure 3.7 shows the distributions of lift and drag coefficients for the rigid wing with 

established studies [39, 50]. The rigid wing in case 1 (blue, solid-line) shows two peaks around 

the middle of stroke in the lift coefficient distribution, even though the lift coefficient generally 

reflects the sinusoidal flapping motion. Before reaching the first peak around t/T = 0.5, the lift 

increase is related to the velocity increase of flapping wing and the LEV 2 generation (shown in 

Figure 3.10). Figure 3.8 presents sweeping and rotating velocities, which are normalized by each 

maximum velocity. The sweeping velocity (blue, solid-line) increases while the rotating velocity 

(red, dash-line) decreases from the start of each stroke. With the increase of sweeping velocity 

after wing reversal, some studies [12, 25, 27] showed that the growing LEV 2 causes the lift 

generation prior to decreasing the sweeping velocity again. However, Wang et al. [50] presented 

a steep peak of lift coefficient right after reversing the wing as shown in Figure 3.7 dash-line. By 

virtue of their result, they indicated the relation between the magnitude of the steep peak in lift 
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coefficient and that of sweeping amplitude (ϕ). Lua et al. [39] also supported that the steep peak 

was reduced as the sweeping amplitude was increased. The current study has the sweeping 

amplitude of 120° so no steep peak right after reversing the wing is measured in the lift coefficient.  

 

Figure 3.7 Lift and drag coefficient distributions of rigid cases in a sinusoidal flapping motion 

 

Figure 3.8 Normalized sweeping and rotating velocities each cycle in a sinusoidal flapping 

motion 

 After the maximum sweeping velocity (blue, solid-line) reaches at the middle of stroke in 

Figure 3.8, the wing model slows down and the lift correspondingly diminishes. However, the lift 

increases again by presenting the second peak as shown in Figure 3.9 (a) LP2. With reference to 
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findings by Lua et al. [39], this increase can be explained that a pitching-up motion of the wing 

seems to have the dominant effect in comparison with the sweeping velocity decrease due to no 

significant feature in flow structure at this time in Figure 3.10. With the sequential images, the 

current study also doesn’t find any significant changes in flow structures, in order to re-generate 

the aerodynamic force after the middle of stroke. Therefore, the pitching-up effect may be 

displayed for a while even though the sweeping velocity keeps decreasing. 

 

Figure 3.9 Lift and drag coefficient distributions of case 1 in a sinusoidal flapping motion 

 The drag coefficient has a steep increase after wing reversal as shown in Figure 3.9 (b) 

DP1. The rotating velocity (red, dash-line in Figure 3.8) decreases while the sweeping velocity 

increases after the start of stroke. In addition, the wing moves forward relatively fast with high 

angle of attack right after the wing reversal. It causes the first steep peak in the drag coefficient. 

After the first steep peak of drag coefficient, the drag decreases and subsequently increases again 

due to the sweeping velocity increase until the middle of stroke. Therefore, the second peak (DP2) 

is indicative around the highest sweeping velocity. Furthermore, the drag coefficient keeps 

increasing after the middle of stroke until the third peak (DP3). It is also due to the dominant effect 

of pitching-up motion over the wing velocity decrease, like the second peak in the lift coefficient. 
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 The sinusoidal flapping motion is symmetrical so no significant difference in the vortex 

structures is found between downstroke and upstroke even though little differences in lift and drag 

coefficients exist as shown in Figure 3.9. Therefore, Figure 3.10 shows the DPIV results at 0.5R 

chordwise cross-section of case 1 in the sinusoidal flapping motion, and it describes the velocity 

vector field and the vorticity distributions at t/T = 0.056, 0.1, 0.25, 0.304, and 0.55.  

 

Figure 3.10 Time-resolved flow structures of case 1 at 0.5R chordwise cross-section in a sinusoidal 

flapping motion: (a) t/T = 0.056, (b) t/T = 0.1, (c) t/T = 0.25, (d) t/T = 0.304, (e) t/T = 0.55 

 LEV 1, which was generated for previous upstroke, is going down under the wing and LEV 

2 is generated and growing from the start of stroke as shown in Figure 3.10 (a) t/T = 0.056. After 

wing reversal, the LEV 1 is still attached to the wing surface, but it seems to be weak and diffused 
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under the wing. When the wing starts on the downstroke, the LEV 1 loses form and finally 

disperses from the trailing edge. TEV 1, called a starting vortex, also starts to be generated at 

around t/T = 0.056. Both LEV 2 and TEV 1 grow as sweeping and rotating the wing from the start 

of downstroke, and they start to be shed for rotating the wing. However, the LEV 2 is reattached 

on the wing so that a stall can be delayed, which is called ‘delayed stall’. The TEV 1 is shed from 

the trailing edge before t/T = 0.1, and the LEV 2 keeps growing with increase of the aerodynamic 

force. The LEV 2 is going down under the wing for the wing reversal as shown in Figure 3.10 (e) 

t/T = 0.55, and it will act like the LEV 1 at t/T = 0.056. These PIV results have a good agreement 

with the past studies [39, 50]. 

 In the symmetrical flapping motion in Figure 3.5, wing model rotates in a short period of 

time (𝑡/𝑇α = 0.2) when reversing the wing, thereby TEV generated by the wing reversal is close 

to the wing. After the wing reversal, LEV, generated by the wing reversal, with the TEV causes 

the wake to influence the wing. This wake arises the lift augmentation right after the wing reversal. 

However, the wing model in the sinusoidal flapping motion rotates gradually for pitching-up after 

the middle of stroke. Although TEV is generated by rotating the wing, the TEV is already far from 

the wing right after the wing reversing in Figure 3.10 (e). Therefore, there is no lift augmentation 

after reversing the wing in the sinusoidal flapping motion (Figure 3.9). 



36 

3.2 Flexible wings 

3.2.1 Symmetrical flapping motion 

 Flexible wings in this experiment are made of the PC sheets using the CNC machine so the 

flexible wings do not have the veins to sustain the forms of thin wings with high flexibility. 

Therefore, the current study is able to observe the pure effects of wing flexibility on aerodynamic 

characteristics, without considering the effect of veins. Figure 3.11 shows the distributions of lift 

and drag coefficients for rigid wing (case 1) and flexible wings (case 2 to 8) in the symmetrical 

flapping motion. These results can be divided into three parts as aerodynamic force generation and 

flow structures: (a) almost rigid wing: case 1 and 2 (3 and 2 mm-thick), (b) flexible wings with 

high aerodynamic efficiency: case 3 and 4 (1 and 0.8 mm-thick), (c) flexible wings with low 

aerodynamic efficiency: case 5 to 8 (0.5, 0.35, 0.2 and 0.1 mm-thick). 

 

Figure 3.11 Time-resolved lift and drag coefficient distributions, from case 1 to case 8, in a 

symmetrical flapping motion 

 First, lift and drag coefficients of case 2 (orange, thin dash-line) are similar to those of case 

1 (blue, thin solid-line). Case 2 shows a first steep peak in drag coefficient as well as dual peaks 

in lift coefficient after the start of stroke. Along with the flow structures of case 1 in Figure 3.5, 
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case 2 has similar flow structures so this thesis does not show the PIV results of case 2. On the 

other hand, case 3 (gray, thin dash-dot-line) and 4 (red, thin dot-line) do not show dual peaks but 

one great peak in lift coefficient after the wing reversal. Additionally, their first steep peaks in drag 

coefficient decrease while their first steep peaks in lift coefficient increase. Figure 3.2 shows the 

mean lift and drag coefficients each case in the symmetrical flapping motion. Aerodynamic forces 

of case 3 and 4 re-increase from case 2 but no significant difference between their flow structures 

is measured even though their aerodynamic forces are slightly different. The flow structure of case 

3, therefore, is not measured in this experiment.  

 

Figure 3.12 Mean lift and drag coefficients from case 1 to 8 in a symmetrical flapping motion 

 Case 5 to 8 demonstrate that the aerodynamic force is growing less as the wing stiffness 

decreases in Figure 3.12. Their aerodynamic forces are remarkably less than case 1 to 4, and 

besides the start-times to increase the aerodynamic force are outstandingly delayed in comparison 

with case 4. The delayed time is caused by the delayed-motion of the flexible flapping wings. As 

the wing becomes more flexible, the flexible wings don’t have enough stiffness to sustain the fluid 

Jump Jump 
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flow for flapping wings. The flexible wings are bending and twisting so the delayed motion arises 

for flapping. Furthermore, the wing models of case 7 and 8 are too flexible to measure the 

aerodynamic force precisely. Although case 7 and 8 show the trend to deteriorate the aerodynamic 

force as the flexibility, it is difficult for the flapping motion to generate the measured forces of 

case 7 and 8. The force data of case 7 and 8 are measured around the sensor’s measuring part, not 

on the whole wing due to the excessively bending and twisting wings. In other words, the forces, 

affected materially to the wing for flapping, decrease remarkably by the big wing deformation. 

From this cause, it is difficult to bring the measured force data and PIV results of case 7 and 8 to 

the current experimental results. Based on the above results, this thesis focuses a discussion on 

four cases (case 1, 4, 5, and 6) and their lift and drag coefficients also are redrawn in Figure 3.13. 

In addition, Appendices B. i. shows the distributions of lift and drag coefficients each case 

comparing with case 1. 

 

Figure 3.13 Distributions of lift and drag coefficients for case 1, 4, 5, and 6 in a symmetrical 

flapping motion 

 Some researchers [17, 18, 36, 47, 53] emphasized that the wing deformations including 

spanwise bending, twist, and camber of the flexible wing play an important role to influence the 

aerodynamic force and flow structures through computational and numerical methods. For 
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instance, Liu et al. [53] presented that a delay of the breakdown of leading-edge vortex for the 

flexible wing leads to strengthen the LEV and vortex ring in comparison with the rigid wing. Along 

with the breakdown-delay, phase delays in the angles of attack (𝛼) along leading edge enhances 

the production of vertical aerodynamic force. Nakata and Liu [17] showed that the rotating angle 

(𝛼) is advanced and the sweeping angle (𝜙) is delayed for flapping flexible wing. They presented 

that this wing deformation enhances the production of aerodynamic force for flapping wing. In 

present study, Figure 3.14 shows what motion-differences between the rigid wing (case 1) and the 

flexible wings (case 4, 5, and 6) are occurred at t/T = 0.05 and 0.25 in the symmetrical flapping 

motion. While the rigid wing is captured at 0.5R chordwise cross-section, other flexible wings are 

twisting and bending so the captured sections are different from the rigid wing. 

 

Figure 3.14 Sketches of side views for 0.5R chordwise cross-sectional DPIV test in a 

symmetrical flapping motion; (a) at t/T = 0.05 (b) at t/T = 0.25 

 In Figure 3.14 (a) t/T = 0.05, the wing cross-section of case 4 is located behind the position 

of case 1 (rigid wing) and them of case 5 and 6 are located in advance of rigid wing. The wings in 

case 5 and 6 cause the delay in rotating the wing due to their high flexibility. The delays in 

reversing and rotating the wing must generate different flow structures in comparison with case 1; 

it will be discussed in DPIV results. Moreover, the wing cross-section of case 6 still moves in the 
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opposite direction of downstroke unlike other cases although wing root of case 6 was already 

reversed. 

 In Figure 3.14 (b) t/T = 0.25, the wings in case 1, 4, 5, and 6 move in the same direction 

but the wing deformations still present big differences at the middle of downstroke (t/T = 0.05). 

The wing models come up during the downstroke as the wings become more flexible. 

Simultaneously with spanwise bending, the twist also causes the change of angles of attack. Unlike 

the computational methods such as previous studies [17, 18], it is hard to measure exactly how 

much delay of phase for the flexible wing arises numerically in flapping flights. However, it is 

undoubtable for flexible wings to cause the changes of sweeping and rotating angles for flapping 

via the sequential images observed from a high speed camera. 

 The symmetrical flapping motion has no significant difference in the vortex structures 

between the downstroke and upstroke although the lift and drag coefficients each stroke are 

slightly different. As previous chapter, DPIV tests take the images at same chordwise cross-section 

of 0.5R as the rigid wing. In addition, four capture points are chosen for DPIV tests each stroke: 

𝑡/𝑇 = 0.05, 0.1, 0.25, 0.45 for downstroke, according to the above aerodynamic characteristics. 

Figure 3.15 illustrates the time-resolved DPIV results to describe the velocity vector field and the 

vorticity distributions at 0.5R chordwise cross-section in the symmetrical flapping motion. 

 As noted earlier in this thesis, the lift generation is delayed as the wing becomes flexible 

and leading edge vortex after the wing reversal is related to generating the lift. In Figure 3.15, the 

generation of LEV 2 is delayed as the thickness of the wing becomes thinner. While case 1 already 

forms LEV 2 at 𝑡/𝑇 = 0.05, case 4 starts to generate LEV 2 and case 5 and 6 do not show the 

generation of LEV 2 at this time. Considering the amount of time required to generate the lift in 

Figure 3.13, it can be proved that the LEV 2 is related to generate the lift. The delay in time to 
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form the LEV 2 causes the delay in time to increase the lift in general. Furthermore, the size of 

LEV 2 has an effect to increase the lift and besides the size decreases depending on the delayed 

generation of LEV 2. Compared with case 1, Figure 3.15 presents that the flexible wings have 

small size of LEV 2 at t/T =0.25. In addition, Figure 3.13 (a) also shows that the lift in flexible 

wings (case 4, 5, and 6) is smaller than the lift in rigid wing (case 1) at t/T = 0.25. 

 

Figure 3.15 Time-resolved flow structures at 0.5R chordwise cross-section in a symmetrical 

flapping motion: (a) at t/T = 0.05, 0.1, 0.25, 0.45 

 The important point in the symmetrical flapping motion is the wing-wake interaction after 

the wing reversal. In the rigid wing (case 1), LEV 1 generated by previous stroke is attached under 
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the wing in the new stroke and TEV 1 is generated close to the wing during the process of reversing 

the wing. The attached LEV 1 and the TEV 1 indicates that the wake between the vortices induces 

the flow velocity increase toward the wing. This induced velocity increases with LEV 2 generation 

causing the lift augmentation right after the wing reversal. In flexible wings, case 4 shows the 

wing-wake interaction even if the time of its occurrence is a little later than case 1. The time in the 

wing reversal is delayed due to the delayed-motion of the flexible wing, and especially the hind 

wing is reversed later than the fore wing. The delayed hind wing generates TEV 1 late, so the 

influence of the wing-wake interaction in case 4 arises later than case 1. 

 After the steep augmentation of lift in the rigid wing, the lift decreases and re-increases 

due to the sweeping velocity increase. However, case 4 doesn’t show the lift decline right after the 

first peak. Case 4 keeps the lift increase until the sweeping velocity is constant from t/T = 0.1. 

With the sweeping velocity increase, LEV 2 in Case 4 starts to generate from t/T = 0.05 as shown 

in Figure 3.15 (b) so the generation of LEV 2 causes the ever-increasing lift until t/T = 0.1. On the 

other hand, the drag in case 4 has lower first peak than case 1. As stated above, the effect of the 

wing-wake interaction in case 4 is less than the rigid wing so the induced flow towards the wing 

is weakened. In addition, the angle of attack relatively increases due to the bending and twisting 

wing. Therefore, the first steep peak of the drag coefficient in case 4 declines expectably as shown 

in Figure 3.13 (b).  

 Case 5 and 6 show different flow structures during the wing reversal in comparison with 

previous cases. Figure 3.15 (c) and (d) describe that LEV 1 disperses above the leading edge, not 

going down under the wing. The wings with high flexibility are elevated higher than case 1 and 4 

for flapping. As replaying the sequential images in case 5 and 6, the wings are going down 

suddenly for the wing reversal so they generate vortices on high. Therefore, LEV 1 is located 
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above the wing after the wing reversal and the wing loses the effect of the wing-wake interaction 

to cause the steep increase. In addition, the wing in case 6 generates LEV 2 too late due to the 

delayed-motion with the distribution of LEV 1 on the wing. The delay in the LEV 2 generation 

and the small size of the LEV 2 also cause the low lift in case 5 and 6. Consequently, the wing-

wake interaction is not acted without LEV 1 even if all cases generate TEV 1 for the wing reversal. 

 Based on above aerodynamic characteristics and flow structures, specific wing flexibility 

(in this thesis, case 4 with thickness of 0.8 mm) generates more aerodynamic force than rigid wing. 

In addition, the wing with high flexibility is too bending and twisting to generate the stable vortex 

structure. LEV 2 in case 5 and 6 disperses earlier than case 1 and 4 as shown in Figure 3.15 t/T = 

0.45, and the wing-wake interaction occurred by the induced flow between LEV 1 and TEV 1 is 

not measured in case 5 and 6. It presents that the wings with high flexibility are not suitable to 

develop the insect-inspired flapping MAVs with better aerodynamic force to overcome their 

weight. 
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3.2.2 Sinusoidal flapping motion 

 Lua et al. [39] demonstrated that the distributions of aerodynamic force decreased as the 

wing became more flexible in a sinusoidal flapping motion. However, the current study found that 

specific range of wing thickness is able to generate more aerodynamic force than rigid wing. Figure 

3.16 shows the distributions of lift and drag coefficients for rigid wing (case 1) and flexible wings 

(case 2 to 8) in the sinusoidal flapping motion. These results can also be divided into three parts 

like above symmetrical flapping motion: (a) almost rigid wing: case 1 and 2 (3 and 2 mm-thick), 

(b) flexible wings with high aerodynamic efficiency: case 3 and 4 (1 and 0.8 mm-thick), (c) flexible 

wings with low aerodynamic efficiency: case 5 to 8 (0.5, 0.35, 0.2, and 0.1 mm-thick). 

 

Figure 3.16 Time-resolved lift and drag coefficient distributions, from case 1 to case 8, in a 

sinusoidal flapping motion 

 Comparing case 1 with other cases, it seems to have little differences in case 1 to 4 but the 

dual peaks in lift coefficient and the first steep peak in drag coefficient are different. While the 

rigid wing (case 1) shows the dual peaks due to the pitching-up motion to overcome the sweeping 

velocity decrease, the lift coefficient in case 3 and 4 doesn’t decrease but keeps increasing before 

losing the effect of the pitching-up motion. The continuous increase is generated by the similar 
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reason to the symmetrical flapping motion; the delayed motion arises the delay in time to generate 

and break-down new LEV. 

 In addition, the first steep peak in drag coefficient also decreases as the wing becomes 

flexible. Figure 3.17 shows that the aerodynamic force in case 3 and 4 is larger than case 1 and 2 

and the aerodynamic force in case 5 to 8 decreases steeply comparing to previous cases. 

Furthermore, case 7 and 8 are not considered in this thesis by the same reason in the symmetrical 

motion. Therefore, the sinusoidal flapping motion also discusses only four cases, case 1, 4, 5 and 

6, with their PIV results and their lift and drag coefficients are redrawn in Figure 3.18. In addition, 

Appendices B. ii shows the distributions of lift and drag coefficients each case comparing with 

case 1.  

 

Figure 3.17 Mean lift and drag coefficients from case 1 to 8 in a sinusoidal flapping motion 

Jump Jump 
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Figure 3.18 Distributions of lift and drag coefficients for case 1, 4, 5, and 6 in a sinusoidal 

flapping motion 

 In the sinusoidal flapping motion, the velocities in sweeping and rotating angles change by 

following the sinusoidal phase all over the stroke. Unlike the symmetrical flapping motion, the 

rapid changes are not expected so the wing positions have relatively less changes for the wing 

reversal as shown in Figure 3.19 (a). At t/T = 0.056, 0.5R cross-sections of case 4 and 5 are located 

behind the position of rigid wing (case 1) and that of case 6 is located in advance of rigid wing. 

While the wings of case 4 and 5 move in the direction of downstroke, the wing of case 6 moves in 

the opposite direction of downstroke even though the wing root was reversed already. This is 

similar to the wing motion in the symmetrical flapping motion as shown in Figure 3.14. The 

sinusoidal flapping motion also causes the delay in the wing rotation for the wings with high 

flexibility so it generates different flow structure at the trailing edge. In other words, the flow 

structures are also a little changed for the wing reversal in case 1 and 4. However, case 5 and 6 

still show very different flow structures for reversing the wing in the sinusoidal flapping motion, 

due to too much bending and twisting wings.  
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Figure 3.19 Sketches of side views for 0.5R chordwise cross-sectional DPIV test in a sinusoidal 

flapping motion; (a) at t/T = 0.056 (b) at t/T = 0.25 

 At the middle of downstroke in Figure 3.19 (b), the wings in case 1, 4, 5, and 6 move in 

the same direction but the wing deformations still present big differences. In addition, the wing 

comes up as the flexible wing have less stiffness so it indicates that, simultaneously with spanwise 

bending, the twist causes the change of angles of attack. The wing deformations for flapping 

flexible wings arise the effect to delay the aerodynamic force generation, and they also must affect 

the flow structures around the flapping wing. In Figure 3.16, the time to reach the highest peaks in 

lift and drag coefficients become delayed as the wing is more flexible. 

  As stated earlier, flexible wings cause the delays of flapping motion and aerodynamic 

force generation. Then, delay in time to reach the highest peaks occurs as the time to generate 

aerodynamic force is delayed. The delay of highest peak time is related to the delay of new LEV 

generation right after the wing reversal. Unlike case 1 and 4, case 5 and 6 present that their highest 

peaks in the aerodynamic force are reached too late. It expresses that the wing with high flexibility 

is not efficient to generate the aerodynamic force for the flapping flight. Besides, the time to 

generate the new LEV is too late to grow it enough to produce high aerodynamic force. The 

sinusoidal flapping motion is also symmetrical in each cycle although the lift and drag coefficients 
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each stroke are different in small. In common with the DPIV results of the rigid wing (case 1), the 

flow structures of flexible wings are measured at the same cross-section as the rigid wing. Figure 

3.20 shows the time-resolved flow structures of case 1, 4, 5, and 6 at 0.5R chordwise cross-section. 

Four capture points in the sinusoidal flapping motion are a little different from the symmetrical 

flapping motion: 𝑡/𝑇 = 0.056, 0.1, 0.25, 0.304 based on the aerodynamic characteristics. 

 

Figure 3.20 Time-resolved flow structures at 0.5R chordwise cross-section in a sinusoidal 

flapping motion: (a) at t/T = 0.056, 0.1, 0.25, 0.304 
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 As the wing becomes flexible, LEV 1, generated by previous stroke, is not going down and 

its influence to the wing also declines in Figure 3.20 (a) to (d) at t/T = 0.056. Poelma et al. [54] 

and Lua et al. [39] presented that the LEV 1 is shed from the trailing edge and merges with newly 

TEV for reversing the wing. However, the wings with high flexibility (case 5 and 6) are bending 

and twisting too much so they are suddenly going down when the wing starts to be reversal. 

 In particular, case 6 shows that the wing rotates by following the motion of a leading edge 

around the wing root for reversing. Therefore, the wing is suddenly going down and new vortex, 

which describes LEV 1 in Figure 3.20 (d) at t/T = 0.056, is generated. Unlike case 1, 4, and 5, the 

location of LEV 1 in case 6 is above the wing and the LEV 1 partially disperses beyond the 

forwarding wing. Due to the dispersing LEV 1, TEV 1 is not generated yet at the captured section 

and simultaneously the wing is going up again for downstroke. Although TEV 1 is not shown in 

Figure 3.20 (d) at t/T = 0.1, it can be expected to generate TEV 1 late due to going down the LEV 

1 late and decreasing the influence of LEV 1 under the wing. 

 LEV 2, which is related to generate the lift for flapping, at 0.5R chordwise cross-section 

also decreases as the wing becomes flexible in Figure 3.20. The time to generate the LEV 2 in the 

flexible wing is delayed so consequently the size of LEV 2 in the flexible wing becomes also 

smaller than the rigid wing. Figure 3.18 presents that flexible wings such as case 4 to 6 generate 

aerodynamic force late. The lift is reduced due to decreasing the size of LEV 2 each case. In short, 

the differences between their lift coefficients must be related to the generating time, the size, and 

breaking-down time of LEV 2 when comparing the rigid wing with the flexible wings. 

 In Figure 3.18 (a), case 4 has no double peaks at around the middle of stroke because the 

wing with specific flexibility arises less motion-delay than other wings with high flexibility. This 

less motion-delay causes the deceleration-delay after reaching the maximum velocity around the 
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middle of stroke. It seems to maintain the maximum sweeping velocity around the 0.5R chordwise 

cross-section even if the velocity of wing root starts to decrease right after the middle of stroke. 

Nakata and Liu [17] also showed that the angular velocity on sweeping angle increases earlier, 

then decreases later than that of the rigid wing. In the current study, sequential captured-images 

present that LEV 2 also keeps growing right after the middle of stroke and detaches later due to 

relatively the delay to rotate the wing. Therefore, the decline of the lift after the middle of stroke 

is not shown in Figure 3.18 (a) and the lift coefficient keeps increasing continuously. 

 On the other hand, LEV 2 in case 5 and 6 loses the capability to reattach to the wing for 

flapping. As early mentioned, the flexible wings are captured at the same chordwise cross-sections 

as the rigid wing so that the flexible wings actually are captured at cross-sections close to the 

wingtip, not exactly 0.5R chordwise cross-section. Therefore, Figure 3.20 (d) at t/T = 0.25 and 

0.304 presents the chordwise cross-section near 70% of the wing length. Considering overall flow 

structures in case 5 and 6, it shows that the area of stable LEV 2 becomes growing less as increasing 

the flexibility. In addition to generating the LEV 2 late, the size of the LEV 2 is small and disperses 

easily. As shown in Figure 3.20 (c) and (d) at t/T = 0.25 and 0.304, the wings are going forward 

with relatively upper location. LEV 2 in case 5 and 6 also doesn’t maintain its form at 

approximately 70% of the wing length. However, TEV 1 in case 5 and 6 is not existed so LEV 2 

disperses only for downstroke unlike the rigid wing. The unstable flow structures show that the 

wings with high flexibility are not able to obtain aerodynamic force as much as insect-inspired 

flapping MAVs overcome their weight. 
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4 CONCLUSION AND FUTURE WORK 

4.1 Symmetrical flapping motion vs. Sinusoidal flapping motion 

Based on the previous discussions, the different features between the symmetrical flapping 

motion and sinusoidal flapping motion were presented through the studies of aerodynamic 

characteristics and flow visualizations. In the rigid wing, the symmetrical motion has the dual 

peaks right after the wing reversal and the last peak before reversing the wing in lift coefficient. 

The first dual peaks are caused by the wing-wake interaction with the generation of leading edge 

vortex, and the last peak is due to the dominant effect of the pitching-up motion of the wing over 

the wing slow-down. In drag coefficient, the first steep peak is caused by the velocity increase 

with a high angle of attack and the wing obtains more drag due to the wing-wake interaction. 

Moreover, the pitching-up motion around the end of stroke causes the last peak in the drag 

coefficient. In the simple harmonic motion, the rigid wing has the dual peaks around the middle 

of stroke in lift coefficient and the first steep peak right after the wing reversal in drag coefficient. 

The lift coefficient increases with the generation of LEV 2 until the maximum sweeping velocity, 

and the second peak is caused by the pitching-up motion. In drag coefficient, the first steep increase 

is caused by the velocity increase with high angle of attack. During rotating the wing, the drag 

decreases but re-increases with the velocity increase until the middle of stroke. 

 Figure 4.1 shows the flow structures of the rigid wing (case 1) in the symmetrical and 

sinusoidal flapping motions. The big difference between them is whether TEV generated from the 

previous stroke is close to the wing right after the wing reversal or not. In the symmetrical flapping 

motion, the wake from LEV 1 and TEV 1 induces the flow velocity increase, thereby the lift 

augmentation occurs right after the wing reversal. Another difference between them is the size of 

LEV 2. LEV 2 is very important factor to generate the lift in hovering flight. The wing in the 



52 

sinusoidal flapping motion rotates gradually and the sweeping velocity increases continuously 

before reaching the middle of stroke. The continuous increment makes the bigger LEV 2 than the 

symmetrical flapping motion as presented in Figure 4.1. Therefore, the maximum lift in the 

sinusoidal flapping wing is larger comparing Figure 3.12 with Figure 3.17. 

 

Figure 4.1 DPIV results for case 1 in both symmetrical and sinusoidal flapping motions 

 In flexible wings, both flapping motions present that case 4 is better than other cases to 

generate the aerodynamic force. This finding means that the specific range of flexibility may exist 

in order to obtain better aerodynamic force in hovering flight. To compare the aerodynamic 

efficiency, the power required (𝑃𝑅) in both flapping motions is presented by using the following 

equation [55]: 

𝑃𝑅 ∝
𝐶𝐿
1.5

𝐶𝐷
 (16) 

 The power required is an important factor to maintain the steady level of flight in the 

propulsion system. MAVs are very small and have a low velocity so they need the efficient power 
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consumption to obtain the aerodynamic force over their weight. When 𝐶𝐿
1.5/𝐶𝐷 is a maximum 

value, the minimum power required occurs. Figure 4.2 shows 𝐶𝐿
1.5/𝐶𝐷  from case 1 to 8 in 

symmetrical and sinusoidal flapping motions. Both flapping motions have the highest 𝐶𝐿
1.5/𝐶𝐷 in 

case 4, but the sinusoidal flapping motion has no big difference between case 3 and 4. Moreover, 

the symmetrical flapping motion shows that case 5 has the similar value to case 1 and 3 so the 

flexible wings in case 5 is efficient enough to generate the aerodynamic force compared to the 

rigid wing (case 1). In all cases, the 𝐶𝐿
1.5/𝐶𝐷 in the symmetrical flapping motion is larger than the 

sinusoidal flapping motion. These results describe that the symmetrical flapping motion is better 

to obtain high aerodynamic efficiency, and the flapping kinematics are also important point for the 

development of the insect-inspired flapping MAVs. 

 

Figure 4.2 𝐶𝐿
1.5/𝐶𝐷 , from case 1 to 8, in symmetrical and sinusoidal flapping motions 

 

Jump 
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4.2 Conclusion 

 This study has investigated the effects of flapping hawkmoth-like wing flexibility on the 

aerodynamic characteristics in a symmetrical flapping motion and a sinusoidal flapping motion. 

The aerodynamic force generally decreases as the wing becomes flexible, but case 4 (0.8 mm-

thick) has more aerodynamic force than rigid and other flexible wings. Moreover, the lift and drag 

coefficients of case 5 to 8 (0.5, 0.35, 0.2, and 0.1 mm-thick) decrease extremely as the wing 

becomes thinner. These findings present that the flexible wings have the effects on the 

improvement of aerodynamic force as well as on the decline of aerodynamic force. They also 

demonstrate that the wings with high flexibility as well as the rigid wing are unsuitable for flapping 

flight in MAVs. 

 PIV studies for flexible wing cases were not implemented experimentally in past literatures 

[39, 43] because of the difficulties to capture exact cross-sections, thereby the current study 

suggests a photographic method to capture the flexible wings on the same chordwsie cross-section 

as a rigid wing to compare overall flow structures each case. Based on the DPIV results, this study 

shows that different vortex-structures undoubtedly affect the generations of aerodynamic force. 

Because of the bending and twisting wings, several points to generate the aerodynamic force are 

described in this thesis: the delay in flapping motion, the delay in time to generate vortices, and 

the delay to break-down/shed vortices. Each case has various flow structures via above points, and 

especially LEV 2 related to the lift generation presents a great difference between the cases. The 

flapping motion of flexible wings is delayed due to relative easy at which they bend and twist, so 

the flexible wings are located behind the position of rigid wing. After the wing reversal, even the 

wing in case 6 moves in the opposite direction to the stroke and still rotates due to the delayed-

motion. The delayed transition for the flexible wings also affect the angle of attack, the induced 
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velocity to the wing, and the flow structures, and it causes the delay in time to generate and disperse 

vortices. The delayed time influences the generation of aerodynamic force, and it appears to cause 

the decline of aerodynamic force. 

 One of the main points in this experiment is the wing-wake interaction after the wing 

reversal. The sinusoidal flapping motion doesn’t show the wing-wake interaction, generated by 

the TEV and LEV from the previous stroke. There is no the first steep increase right after the wing 

reversal in the lift coefficient. Because the TEV is already far from the wing during the wing 

reversal, it’s not possible for only the LEV to induce the flow velocity increase as much as the 

steep increment. However, in the symmetrical flapping motion, the TEV from the previous stroke 

is close to the wing enough due to the rapid wing reversal in a short time. Therefore, the TEV and 

LEV after the wing reversal induces the flow to increase the flow velocity toward the wing. The 

induced flow influences the steep lift augmentation right after the wing reversal. Aside from this 

unsteady aerodynamic mechanism, the sweeping velocity increment as well as the rotational force 

with the LEV generation also affects the aerodynamic force in both flapping motions. 

In all cases, case 4 (0.8 mm-thick) shows the increase of aerodynamic force significantly. 

According to the DPIV results, the wing in case 4 has a benefit to obtain more aerodynamic force 

from the delay in time to generate and shed vortices even though the aerodynamic force generation 

is a little late. While the wings with high flexibility, such as case 5 and 6, are too bending and 

twisting to increase the aerodynamic force, the flexibility of case 4 has an increase effect of 

aerodynamic force due to a little bending and twisting of the wing. The delayed-motion of case 4 

overcomes the influence of velocity decrease in a sweeping direction right after the middle of 

stroke, so the lift coefficient increases continuously in comparison with the rigid wing. In addition, 

the change of angle of attack right after the middle of stroke is also delayed due to the delayed 
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motion so that the LEV and TEV keep on growing until the whole wing rotates and decelerates in 

the sweeping direction. Therefore, the aerodynamic force keeps increasing after the middle of 

stroke unlike the rigid wing. In the symmetrical flapping motion, case 4 has not only the benefit 

from the wing-wake interaction, but also the continuous LEV growth from the delayed-motion so 

it has better aerodynamic efficiency than other cases. The sinusoidal flapping motion also presents 

that case 4 has more aerodynamic force due to the delayed-motion by appropriate flexibility.  

These findings demonstrate the importance of studying the flexible flapping wing in 

hovering flight. Also, they can motivate the researchers to look forward the range of the specific 

flexural stiffness for the development of Insect-inspired flapping MAVs with better aerodynamic 

efficiency. However, this finding is still difficult to find the specific flexibility with high 

aerodynamic efficiency in hovering flight. Because the flow structures are influenced by both 

flapping kinematics and wing flexibility, it is not easier that some specific range of flexibility is 

better to design the insect-inspired flapping MAVs. As previous researches [13-15, 50] have 

presented, flapping motion kinematics is a very important factor to obtain high aerodynamic 

efficiency so in the future work it is implemented for above flexible wings to obtain the high 

aerodynamic efficiency in similar kinematics to real flight of hawkmoth. 

 

 



57 

REFERENCE 

[1] A. Hall. (1999, June 28) Catching the Wake. SCIENTIFIC AMERICANTM. Available: 

http://www.scientificamerican.com/article/catching-the-wake/ 

[2] W. Shyy, Y. Lian, J. Tang, D. Viieru, and H. Liu, Aerodynamics of Low Reynolds Number 

Flyers. New York: Cambridge, 2008. 

[3] C. P. Ellington, "The Aerodynamics of Hovering Insect Flight. II. Morphological 

Paramters," Philosophical Transactions of the Royal Society of London. Series B, 

Biological Sciences, vol. 305, pp. 17-40, 1984. 

[4] M. Cloupeau, J. F. Devillers, and D. Devezeaux, "Direct Measurements of Instantaneous 

Lift in Desert Locust; Comparison with Jensen'S Experiments on Detached Wings," The 

Journal of Experimental Biology, vol. 80, pp. 1-15, 1978. 

[5] R. H. Buckholz, "MEASUREMENTS OF UNSTEADY PERIODIC FORCES 

GENERATED BY THE BLOWFLY FLYING IN A WIND TUNNEL," The Journal of 

Experimental Biology, vol. 90, pp. 163-173, 1981. 

[6] J. Blondeau, "Electrically evoked course control in the fly Calliphora Erythrocephala," 

The Journal of Experimental Biology, vol. 92, pp. 143-153, 1981. 

[7] D. L. Grodnitsky and P. P. Morozov, "VORTEX FORMATION DURING TETHERED 

FLIGHT OF FUNCTIONALLY AND MORPHOLOGICALLY TWO-WINGED 

INSECTS, INCLUDING EVOLUTIONARY CONSIDERATIONS ON INSECT 

FLIGHT," The Journal of Experimental Biology, vol. 182, pp. 11-40, 1993. 

[8] C. P. Ellington, "The Aerodynamics of Hovering Insect Flight. III. Kinematics," 

Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 

vol. 305, pp. 41-78, 1984. 

http://www.scientificamerican.com/article/catching-the-wake/


58 

[9] A. Willmott and C. Ellington, "Measuring the angle of attack of beating insect wings: 

robust three-dimensional reconstruction from two-dimensional images," J Exp Biol, vol. 

200, pp. 2693-704, 1997. 

[10] A. P. Willmott and C. P. Ellington, "The mechanics of flight in the hawkmoth Manduca 

sexta. I. Kinematics of hovering and forward flight," J Exp Biol, vol. 200, pp. 2705-22, 

Nov 1997. 

[11] H. Liu, C. Ellington, K. Kawachi, C. van den Berg, and A. P. Willmott, "A computational 

fluid dynamic study of hawkmoth hovering," J Exp Biol, vol. 201 (Pt 4), pp. 461-77, Feb 

1998. 

[12] C. P. Ellington, C. van den Berg, A. P. Willmott, and L. R. Thomas, "Leading-edge vortices 

in insect flight," NATURE, vol. 384, pp. 626-630, 1996. 

[13] M. Sun and J. Tang, "Unsteady aerodynamic force generation by a model fruit fly wing in 

flapping motion," J Exp Biol, vol. 205, pp. 55-70, Jan 2002. 

[14] M. Sun and J. Tang, "Lift and power requirements of hovering flight in Drosophila virilis," 

J Exp Biol, vol. 205, pp. 2413-27, Aug 2002. 

[15] M. H. Dickinson, F. O. Lehmann, and S. P. Sane, "Wing rotation and the aerodynamic 

basis of insect flight," Science, vol. 284, pp. 1954-60, Jun 18 1999. 

[16] R. J. Wootton, "Support and deformability in insect wings," Journal of Zoology, vol. 193, 

pp. 447-468, 1981. 

[17] T. Nakata and H. Liu, "Aerodynamic performance of a hovering hawkmoth with flexible 

wings: a computational approach," Proc Biol Sci, vol. 279, pp. 722-31, Feb 22 2012. 

[18] T. Nakata and H. Liu, "A fluid-structure interaction model of insect flight with flexible 

wings," Journal of Computational Physics, vol. 231, pp. 1822-1847, 2012. 



59 

[19] J. Young, S. M. Walker, R. J. Bomphrey, G. K. Taylor, and A. L. Thomas, "Details of 

insect wing design and deformation enhance aerodynamic function and flight efficiency," 

Science, vol. 325, pp. 1549-52, Sep 18 2009. 

[20] M. H. Dickinson and K. G. Gotz, "Unsteady Aerodynamic Performance of Model Wings 

at Low Reynolds Numbers," The Journal of Experimental Biology, vol. 174, pp. 45-64, 

1993. 

[21] S. P. Sane, "The aerodynamics of insect flight," J Exp Biol, vol. 206, pp. 4191-208, Dec 

2003. 

[22] H. Liu and H. Aono, "Size effects on insect hovering aerodynamics: an integrated 

computational study," Bioinspir Biomim, vol. 4, p. 015002, Mar 2009. 

[23] S. P. Sane and M. H. Dickinson, "The aerodynamic effects of wing rotation and a revised 

quasi-steady model of flapping flight," J Exp Biol, vol. 205, pp. 1087-96, Apr 2002. 

[24] J. H. Wu and M. Sun, "Unsteady aerodynamic forces of a flapping wing," J Exp Biol, vol. 

207, pp. 1137-50, Mar 2004. 

[25] J. M. Birch and M. H. Dickinson, "The influence of wing-wake interactions on the 

production of aerodynamic forces in flapping flight," J Exp Biol, vol. 206, pp. 2257-72, Jul 

2003. 

[26] D. Kim and H. Choi, "Two-Dimensional Mechanism of Hovering Flight by Single 

Flapping Wing," Journal of Mechanical Science and Technology, vol. 21, pp. 207-221, 

2007. 

[27] K. B. Lua, T. T. Lim, and K. S. Yeo, "Effect of wing-wake interaction on aerodynamic 

force generation on a 2D flapping wing," Experiments in Fluids, vol. 51, pp. 177-195, 2011. 



60 

[28] J. Han, J. W. Chang, J. Kim, and J. Han, "Experimental study on the unsteady 

aerodynamics of a robotic hawkmoth Maanduca sexta model," in 52th Aerospace Sciences 

Meeting, National Harbor, Maryland, 2014. 

[29] T. Theodorsen, "General Theory of Aerodynamic Instability and the Mechanism of 

Flutter," NACA1934. 

[30] L. Zhao, Q. Huang, X. Deng, and S. Sane, "The effect of chord-wise flexibility on the 

aerodynamic force generation of flapping wings: experimental studies," in Robotics and 

Automation, 2009. ICRA '09. IEEE International Conference, Kobe, Japan, 2009. 

[31] S. Bi and Y. Cai, "Effect of Spanwise Flexibility on Propulsion Performance of a Flapping 

Hydrofoil at Low Reynolds Number," Chinese Journal of Mechanical Engineering, vol. 

25, pp. 12-19, 2012. 

[32] H. Hu, A. G. Kumar, G. Abate, and R. Albertani, "An experimental investigation on the 

aerodynamic performances of flexible membrane wings in flapping flight," Aerospace 

Science and Technology, vol. 14, pp. 575-586, 2010. 

[33] J. Zhang, N. S. Liu, and X. Y. Lu, "Locomotion of a passively flapping flat plate," Journal 

of Fluid Mechanics, vol. 659, pp. 43-68, 2010. 

[34] S. Ramananarivo, R. Godoy-Diana, and B. Thiria, "Rather than resonance, flapping wing 

flyers may play on aerodynamics to improve performance," Proc Natl Acad Sci U S A, vol. 

108, pp. 5964-9, Apr 12 2011. 

[35] A. Gogulapati and P. P. Friedmann, "Approximate Aerodynamic and Aeroelastic Modeling 

of Flapping Wings in Hover and Forward Flight," in 52ND AIAA/ASME/ASCE/AHS/ASC 

STRUCTURES, Denvor, CO, 2011. 



61 

[36] M. Vanella, T. Fitzgerald, S. Preidikman, E. Balaras, and B. Balachandran, "Influence of 

flexibility on the aerodynamic performance of a hovering wing," J Exp Biol, vol. 212, pp. 

95-105, Jan 2009. 

[37] H. Aono, C. Kang, C. E. S. Cesnik, and W. Shyy, "A Numerical Framework for Isotropic 

and Anisotropic Flexible Flapping Wing Aerodynamics and Aeroelasticity " in 28th AIAA 

Applied Aerodynamics Conference, Chicago, Illinois, 2009. 

[38] M. Hamamoto, Y. Ohta, K. Hara, and T. Hisada, "Application of fluid-structure interaction 

analysis to flapping flight of insects with deformable wings," Advanced Robotics, vol. 21, 

pp. 1-21, 2007. 

[39] K. B. Lua, K. C. Lai, T. T. Lim, and K. S. Yeo, "On the aerodynamic characteristics of 

hovering rigid and flexible hawkmoth-like wings," Experiments in Fluids, vol. 49, pp. 

1263-1291, 2010. 

[40] J. R. Usherwood and C. P. Ellington, "The aerodynamics of revolving wings I. Model 

hawkmoth wings," J Exp Biol, vol. 205, pp. 1547-64, Jun 2002. 

[41] S. A. Combes and T. L. Daniel, "Flexural stiffness in insect wings. I. Scaling and the 

influence of wing venation," J Exp Biol, vol. 206, pp. 2979-87, Sep 2003. 

[42] A. M. Mountcastle and T. L. Daniel, "Aerodynamic and functional consequences of wing 

compliance," Experiments in Fluids, vol. 46, pp. 873-882, 2009. 

[43] L. Zhao, Q. Huang, X. Deng, and S. P. Sane, "Aerodynamic effects of flexibility in flapping 

wings," J R Soc Interface, vol. 7, pp. 485-97, Mar 6 2010. 

[44] J. E. Gordon, Structures: or Why Things Don’t Fall Down. New York: Penguin Books, 

1978. 



62 

[45] C. Kang, H. Aono, C. E. S. Cesnik, and W. Shyy, "Effects of Flexibility on the 

Aerodynamic Performance of Flapping Wings," Journal of Fluid Mechanics, vol. 689, pp. 

32-74, 2011. 

[46] S. Sunada, L. Zeng, and K. Kawachi, "The relationship between dragonfly wing structure 

and torsional deformation," Journal of Theoretical Biology, vol. 193, pp. 39-45, 1998. 

[47] B. Yin and H. Luo, "Effect of wing inertia on hovering performance of flexible flapping 

wings," Physics of Fluids, vol. 22, 2010. 

[48] F. B. Tian, H. Luo, and J. Song, "Force production and asymmetric deformation of a 

flexible flapping wing in forward flight," Journal of Fluids and Structures, vol. 36, pp. 

149-161, 2013. 

[49] S. N. Fry, R. Sayaman, and M. H. Dickinson, "The aerodynamics of free-flight maneuvers 

in Drosophila," Science, vol. 300, pp. 495-8, Apr 18 2003. 

[50] Z. J. Wang, J. M. Birch, and M. H. Dickinson, "Unsteady forces and flows in low Reynolds 

number hovering flight: two-dimensional computations vs robotic wing experiments," J 

Exp Biol, vol. 207, pp. 449-60, Jan 2004. 

[51] W. Shyy and H. Liu, "Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge 

Vortices," AIAA Journal, vol. 45, pp. 2817-2819, 2007. 

[52] J. M. Birch and M. H. Dickinson, "Spanwise flow and the attachment of the leading-edge 

vortex on insect wings," Nature, vol. 412, pp. 729-33, Aug 16 2001. 

[53] H. Liu, T. Nakata, N. Gao, M. Maeda, H. Aono, and W. Shyy, "Micro air vehicle-motivate 

computational biomechanics in bio-flights: aerodynamics, flight dynamics and 

maneuvering stability," Acta Mechanica Sinica, vol. 26, pp. 863-879, 2010. 



63 

[54] C. Poelma, W. B. Dickson, and M. H. Dickinson, "Time-resolved reconstruction of the full 

velocity field around a dynamically-scaled flapping wing," Experiments in Fluids, vol. 41, 

pp. 213-225, 2006. 

[55] J. D. Anderson, Jr, Aircraft performance and design: McGraw-Hill, 1999. 



64 

APPENDICES 

A. Experimental uncertainty 

 In this experiment, experimental uncertainty is calculated by two sources: bias errors (B) 

and precision errors (P). The bias errors consist of horizontal alignment of the model and DAQ 

systems, and the precision errors are considered as each servo’s resolution, water temperature to 

cause density change, and repeated-measurements with Type-A uncertainty and calibration error 

of 0.510204%. The bias errors have 0.00794% in horizontal alignment of the model and 0.00152% 

in DAQ systems. Therefore, the bias errors (B) are given by: 

𝐵 = √(
𝑢(ℎ)

ℎ
)

2

+ (
𝑢(𝐷𝐴𝑄)

𝐷𝐴𝑄
)

2

 (17) 

                           = √0.007942 + 0.01522 = 8.0842 × 10−3  

 In the precision errors, the errors along sweeping and rotating axis are calculated as 0.0733% 

and 0.1163% and the errors in temperature range of 16.3±0.53 °C are 0.0089%. In addition, the 

aerodynamic forces are measured over 250 cycles repeatedly to reduce the white noise, and the 

measurements start after 10 cycles in order to avoid the underdeveloped wake and the added-mass 

effects as Birch and Dickinson [25]. The error of these repeated measurements is 0.0338% as the 

following Type-A equation with standard deviation of lift data: 

𝑢(𝑑𝑎𝑡) = (
1

n(n − 1)
∑(𝑑𝑖 − �̅�)

2
𝑛

𝑘=1

)

1
2

+ 𝑢(𝑐𝑎𝑙) (18) 

                                              = (
71.1468

250(249)
)

1

2
+ 0.510204 = 0.544  
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 The precision errors (P) also can be calculated by the following equation: 

𝑃 =

√
  
  
  
  
  

(
𝑢(𝜌)

𝜌
)

2

+ (
2𝑢(Φ)

Φ
)

2

+ (
2𝑢(α)

α
)

2

+(
2𝑢(dat)

dat
)

2  (19) 

                                        = √
(0.020192)2 + (2 × 0.0733)2 + (2 × 0.1163)2

+(2 × 1.1329)2
  

                                        = 2.2867  

 Considering above bias and precision errors, the force measurement uncertainty at 95% 

confidence is calculated by following equation: 

𝑈(95%) = √𝐵2 + 1.96 × 𝑃2 = 3.195749 (20) 
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B. Lift and drag coefficient 

i. Symmetrical Flapping motion 

 

Appendix Fig. 1 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 2 (2 mm-thick), in a 

symmetrical flapping motion 

 

 

Appendix Fig. 2 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 3 (1 mm-thick), in a 

symmetrical flapping motion 
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Appendix Fig. 3 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 4 (0.8 mm-thick), in a 

symmetrical flapping motion 

 

 

Appendix Fig. 4 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 5 (0.5 mm-thick), in a 

symmetrical flapping motion 
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Appendix Fig. 5 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 6 (0.35 mm-thick), in a 

symmetrical flapping motion 

 

 

Appendix Fig. 6 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 7 (0.2 mm-thick), in a 

symmetrical flapping motion 
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Appendix Fig. 7 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 8 (0.1 mm-thick), in a 

symmetrical flapping motion 
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ii. Sinusoidal flapping motion 

 

Appendix Fig. 8 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 2 (2 mm-thick), in a 

sinusoidal flapping motion 

 

 

Appendix Fig. 9 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 3 (1 mm-thick), in a 

sinusoidal flapping motion 
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Appendix Fig. 10 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 4 (0.8 mm-thick), in a 

sinusoidal flapping motion 

 

 

Appendix Fig. 11 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 5 (0.5 mm-thick), in a 

sinusoidal flapping motion 
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Appendix Fig. 12 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 6 (0.35 mm-thick), in a 

sinusoidal flapping motion 

 

 

Appendix Fig. 13 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 7 (0.2 mm-thick), in a 

sinusoidal flapping motion 
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Appendix Fig. 14 Lift and drag coefficients: case 1 (3 mm-thick) vs. case 8 (0.1 mm-thick), in a 

sinusoidal flapping motion 

 

 

 


