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Abstract

Airborne Light Detection And Ranging (LiDAR) has been used extensively to model the topog-

raphy of the Earth surface by emitting laser pulses and measuring the distance (range) between

the LiDAR sensor and the illuminated object as well as the backscattered laser energy (inten-

sity). Nowadays, airborne LiDAR systems operating in near-infrared spectrum are also gaining

a high level of interest for surface classification and object recognition. Nevertheless, due to

the system- and environmental- induced distortions, airborne LiDAR intensity data requires

certain correction and normalization schemes to maximize the benefits from the collected data.

The first part of the thesis presents a correction model for airborne LiDAR intensity data based

on the radar (range) equation. To fill the gap in current research, the thesis introduces a set of

correction parameters considering the attenuation due to atmospheric absorption and scatter-

ing which have not been previously considered. The thesis further derives a set of equations to

compute the laser incidence angle based on the LiDAR data point cloud and GPS trajectory.

In the second part of the thesis, a normalization model is proposed to adjust the radiometric

misalignment amongst overlapping airborne LiDAR intensity data. The model is built upon

the use of a Gaussian mixture modeling technique for fitting the intensity histogram which can

then be partitioned into several sub-histograms. Finally, sub-histogram equalization is applied

to calibrate the LiDAR intensity data. To evaluate the effects of the proposed methods, a

LiDAR dataset covering an urban area with three different scans was used for experimental

testing. The results showed that the coefficient of variance of five land cover features were sig-
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nificantly reduced by 70% to 82% and 33% to 80% after radiometric correction and radiometric

normalization, respectively. Land cover classification was conducted on the LiDAR intensity

data where accuracy improvements of up to 15% and 16.5% were found on the classification

results using the radiometrically corrected intensity data, and radiometrically corrected and

normalized intensity data, respectively. With the improved land cover homogeneity and classi-

fication accuracy, the effectiveness of the proposed approach was demonstrated. The outcome

of the thesis fills the gap in existing airborne LiDAR research and paves the way for the future

development of LiDAR data processing system.
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Chapter 1

Introduction

1.1 Research Motivation

Land cover is defined as the physical composition and characteristics of land elements on the

Earth surface (Cihlar, 2000). Since distribution of land cover has significant impact on the

climate and environment, mapping the land cover patterns from global, regional, to local scales

are important for scientists and authorities to yield better monitoring of the changing world.

The Climate Research Committee of the National Research Council (2005) stressed that dis-

tribution of land cover has pronounced impact on the Earth’s radiation balancing since any

changes in land cover would affect the evaporation, transpiration and heat flux on the ground

surface. For instance, tree canopies absorb solar radiation resulting in a reduction of land sur-

face temperature on the ground. On the other hand, increase of impervious land cover in urban

area (e.g., asphalt, concrete, paving stones, etc.) prevents infiltration of groundwater which

may cause potential floods. Therefore, precise monitoring of land cover becomes indispensable

for decision makers in dealing with public policy planning and Earth resources management.

Satellite remote sensing has been demonstrated as an efficient tool to acquire the Earth’s

topography for a large spatial extent. Remote sensing sensors record the spectral reflectance of

different land cover features from visible to infrared wavelength, and from moderate to very high

spatial resolution. Since the launch of Landsat Multispectral Scanner System (or Landsat 1) in

1972, the first Earth observation remote sensing system, scientists have extensively explored the

use of these satellite images to derive land cover patterns by different computer-aided processing

techniques. Pattern classification techniques are commonly used to find out the land cover pat-

terns based on the spectral signatures from the remote sensing images. Currently, national and

international agencies have successfully created land cover classification systems and land cover

maps at national scale, for instance, United States Geological Survey’s (USGS) Global Land

1
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Cover Characteristics Database 1, European Environmental Agency’s (EEA) Coordination of

Information on the Environment (CORINE)2, European Commission’s Joint Research Cen-

tres GLC20003, Canadian Council on Geomatics and Natural Resources Canada’s GeoBase4

(see Fig. 1.1), etc. These regional/global land cover maps were produced from the satellite

remote sensing data such as AVHRR (Loveland et al., 2000), MODIS (Friedl, 2002), Landsat

(Tucker et al., 2004) and SPOT (Bartholomé and Belward, 2005). In addition, hierarchical land

cover/use classification systems were established and reviewed by national agencies including

USGS (Anderson et al., 1976) and United Nation (UN) / Food and Agriculture Organization

(FAO) (Gregorio and Jansen, 2000).
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Figure 1.1: An example of land cover GIS data available at Canadian GeoBase

1http://edc2.usgs.gov/glcc/glcc.php
2http://www.eea.europa.eu/publications/COR0-landcover
3http://bioval.jrc.ec.europa.eu/products/glc2000/glc2000.php
4http://www.geobase.ca
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The demand on land cover maps at finer scale, especially in urban areas, was raised with

evidence by numerous biophysical and socio-economic studies in urban heat island (Streutker,

2002; Streutker 2003; Tran et al., 2006; Liu and Weng, 2008; Zhang and Wang, 2008; Liu and

Weng, 2009; Nichol, 2009; Rajasekar and Weng, 2009; Buyantuyev and Wu, 2010; Onishi et

al., 2010; Zhou and Wang, 2011; Li et al., 2011; Weng et al., 2011; Chen et al., 2012; Mitraka

et al., 2012), urban sprawl pattern (Yeh and Li, 2001; Epstein et al., 2002; Herold et al., 2003;

Sudhira et al., 2004; Liu and Zhou, 2005; Zeng et al., 2005; Ji et al., 2006; Sun et al., 2007;

Tian et al., 2007; Xu et al., 2007; Yu and Ng, 2007; Durieux et al., 2008; Jat et al., 2008;

Bhatta, 2009; Bhatta et al., 2010a, 2010b; Rahman et al., 2011a; Kumar et al., 2011; Tewolde

et al., 2011), urban environmental quality (Nichol and Wong, 2005; Pauleit et al., 2005; Nichol

et al., 2006; Li and Weng, 2007; Nichol and Wong, 2009; Liang and Weng, 2011; Rahman et

al., 2011b), urban rainfall-runoff modeling (Van Der Sande et al., 2003; Thanapura et al., 2007;

Chormanski et al., 2008; Han and Burian 2009; Ravagnani et al., 2009; Berezowski et al., 2012),

urban anthropogenic heat (Kato and Yamaguchi, 2005 and 2007; Xu et al., 2008; Weng, 2009;

Zhou et al., 2012), and urban air pollution (Weng and Yang, 2006; Xian, 2007; Jiang et al.,

2008; Chattopadhyay et al., 2010; Superczynski and Christopher, 2011).

Very high spatial resolution optical satellite sensors, such as GeoEye and Worldview, now

provide less than half-meter pixel resolution in the acquired remote sensing images. Theo-

retically, users can derive larger scale of land cover maps from these high resolution satellite

images. Nevertheless, the problem of between-class spectral confusion and within-class spectral

variation in high spatial resolution imagery would degrade the separabilities amongst different

land cover features. Though intelligent image segmentation and object-based classification tech-

niques have been proposed to replace pixel-based classification to deal with these data (Benz

et al., 2004; Walter, 2004; Carleer et al., 2005; Yu et al., 2006; Zhou and Troy, 2008; Blaschke,

2010; Pu et al., 2011), the effects of shadowing and relief displacement still pose considerable

challenges in the derived products (Myeong et al., 2001; Dare, 2005; Zhou et al., 2009), see

Fig. 1.2(a). A survey conducted by Wilkinson (2005) addressed this issue by studying 574 clas-

sification experiments from 138 scientific papers over the past fifteen years. Surprisingly, the

development of remote sensing image classification techniques did not show a significant upward

trend in terms of the overall accuracy in the last two decades. With respect to the demand

of land cover maps at finer scales, one of the ways forward is to change the research direction

from algorithmic development into multi-sensor data fusion (Benediktsson et al., 2007; Zhang,

2010). That need thus inspires this thesis research which investigates the use of topographic

airborne LiDAR intensity data for land cover classification.

Airborne LiDAR is a laser profiling and scanning system for bathymetric and topographic

applications, which emerged commercially in mid-1990s. With the aid of direct geo-referencing

3
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technique, the laser scanning equipment installed in the aircraft collects a cloud of laser range

measurements for calculating the 3D coordinates (xyz) of the survey area. In contrast to

the 2D planimetric remote sensing data, the explicit LiDAR data point cloud thus describes

the 3D topographic profile of the Earth surface. Other benefits of airborne LiDAR include no

effects from relief displacement, penetration of tree canopy, and insensitivity to light conditions.

All these merits have promoted the proliferation of airborne LiDAR system. Recently, airborne

LiDAR technology is being deployed in commercial markets rapidly (Cary and Associates, 2009),

the technique has been effectively used for generating digital terrain models, construction of

digital 3D buildings, natural hazards assessment and deriving forestry parameters, etc.

  

  
  

 
(a)

  

  
  

 
(b)

Figure 1.2: An example of aerial photo vs airborne LiDAR data (a) High resolution aerial
photo with effects of shadows and tilted buildings and (b) Airborne LiDAR derived terrain

surface fused with intensity image

In addition to the geometric information (xyz ), airborne LiDAR sensors are capable of

recording intensity (I ) which is based on the measurement of laser energy backscattered from

the illuminated object. An example of LiDAR intensity image is shown in Fig. 1.2(b) compared

to the aerial photo in Fig. 1.2(a). As commercial topographic LiDAR sensors usually utilize the

Nd:YAG laser which operates at wavelength 1.064 µm, high separability of spectral reflectance

can always be found amongst different land cover materials in the near-infrared spectrum (see

Fig. 1.3). In this regard, the peak laser energy backscattered from different objects (intensity

data) can be utilized to distinguish different land cover features. In order to maximize the

benefits of using the intensity data for land cover classification, certain data processing scheme

should be applied to the aiborne LiDAR intensity data. Similar to any active remote sensing

sensors, such data processing scheme should be able to remove the attenuation due to the

system settings, topographic variation and atmospheric condition.
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Figure 1.3: Spectral reflectance of different materials across visible to infrared wavelengths

1.2 Research Objectives

The ultimate goal of this thesis research aims to maximize the benefits of using airborne LiDAR

intensity data for land cover classification. Due to the environmental- and system- induced dis-

tortions, airborne LiDAR intensity data has a certain level of noise which degrades the land

cover homogeneity. In this thesis, a data processing scheme is proposed for radiometric correc-

tion and normalization of airborne LiDAR intensity data. After applying the data processing

scheme, the intensity amongst different land cover features should be corrected in a relative

sense, which is capable of improving the accuracy of land cover classification. Specifically, the

objectives of the research are:-

1. To formulate a correction model for airborne LiDAR intensity data so as to remove the

laser energy attenuation due to the environmental- and system- induced distortions;

2. To propose a normalization approach for overlapping intensity data acquired by different

airborne LiDAR scans; and

3. To assess the effects of radiometric correction and normalization of airborne LiDAR in-

tensity data on land cover classification.

To meet the first objective, a radiometric correction model extended upon the well-established

radar (range) equation is proposed. Although a few research groups have begun to carry out

similar work, the thesis further introduces a set of methods, which have not been considered,

5
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for computing laser incidence angle and atmospheric attenuation coefficients in the correction

model. The research investigates the effects of different correction parameters (range, scan

angle, incidence angle and atmospheric attenuation factor) by assessing the land cover homo-

geneity on the corrected intensity data.

The second objective is achieved by proposing a radiometric normalization model based on

matching the intensity sub-histograms amongst overlapping LiDAR data strips. The underly-

ing principle of the model is to adjust the radiometric misalignment of intensity data in the

overlapping region so that an intensity transformation model (histogram equalization) can be

established. The transformation model is then used to calibrate the intensity of a LiDAR data

strip with reference to the intensity of another LiDAR data strip. The proposed normalization

model can be applied to both original intensity data and radiometrically corrected intensity

data.

Finally, the research examines the radiometrically corrected intensity data and radiometri-

cally normalized intensity data by carrying out land cover classification on these data. Different

classification scenarios were applied and tested on the intensity data to investigate the effects

of the corrected and normalized intensity data on the classification accuracy. A comparative

study is presented to determine the effectiveness of the proposed models on the intensity data

classification under different scenarios.

1.3 Organization of the Thesis

The thesis is organized as follows: Chapter 2 presents a literature review of the state-of-the-

art development in topographic airborne LiDAR sensors as well as the research of radiometric

correction and land cover classification using airborne LiDAR data. Chapter 3 presents a

radiometric correction model for single strip airborne LiDAR intensity data with emphasis

on the atmospheric correction model and the laser incidence angle. Experimental results are

presented to assess the land cover homogeneity before and after radiometric correction.

Chapter 4 presents a radiometric normalization model for overlapping airborne LiDAR in-

tensity data based on Gaussian mixture model and sub-histogram matching techniques. Com-

parisons on the land cover intensity data are carried out on the original intensity data, the

normalized intensity data and the corrected and normalized intensity data. Chapter 5 exam-

ines the corrected and normalized intensity data for different land cover classification scenarios.

A comparative study of the classification accuracy is presented for the land cover classification

results achieved by using the intensity data before and after correction and/or normalization.

Conclusions of the research are drawn in Chapter 6, along with directions for future work.

6



Chapter 2

Literature Review

This chapter provides an overview of existing literature related to airborne LiDAR system. As

shown in Fig. 2.1, the major components of an airborne LiDAR system include a laser ranging

unit for emitting and recording laser beams, an optical scanning mechanism (e.g., rotating mir-

ror) for cross laser track scanning, a computer processing system and storage media, a position-

ing and orientation system (including Global Positioning System (GPS), Inertial Measurement

Unit (IMU), a hardware platform for mounting the system components, a software for mission

planning and post processing, and other optional sensors like digital camera and temperature /

humidity control (Baltsavias, 1999a). The background literature pertaining to the system com-

ponents, including the historical development, laser construction, laser ranging and scanning,

positioning and orientation system, and LiDAR intensity are presented in Section 2.1. The

associated LiDAR research on land cover classification and radiometric calibration/correction

are provided in Sections 2.2 and 2.3, respectively. Finally, Section 2.4 summarizes and points

out the current gap in airborne LiDAR research which justifies the need for this study.

2.1 Airborne LiDAR System

2.1.1 Historical Development

LASER is an acronym for Light Amplification by Stimulated Emission of Radiation. The

development of lasers can be traced back from the invention of a solid-state laser, gas laser and

semiconductor laser in the mid-19th century. The Nobel Prize-winning physicists, Dr. Charles

Townes and Dr. Arthur Schawlow, first suggested the potential use of intense monochromatic

radiation for long distance measurement (Schawlow and Townes, 1958), where the idea forms

the core of the current laser-based measurement tools. Though early laser-based instruments

were mainly used for laboratory testing, various types of laser instrument were devised for

7
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surveying purposes afterwards. Examples are not limited to the electronic distance measuring

(EDM) devices, rangefinders, total stations and survey robots which are commonly used in

construction and surveying tasks.

   

 

GPS Satellite 
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Roll 
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GPS Satellite 

Figure 2.1: Schematic diagram of airborne LiDAR system

The first LiDAR system, which was proposed for Earth surface mapping, emerged as early

as 1965 using gas/semiconductor laser (Petrie and Toth, 2009a). The first commercial aircraft

LiDAR system proposed for topographic mapping operations was jointly developed by the Spec-

tra Physics Company and a major aerial surveying company, named Aero Service Corporation

(Petrei and Toth, 2009b). Steady and continuous development in airborne LiDAR system was

carried on throughout the 1970s to 80s with respect to the development of Nd:YAG laser and

GaAs laser. These solid-state and semiconductor lasers are capable of issuing high and stable

laser energy, which can overcome long distance measurement. In the 1970s, Avco-Everett (from

Everett, Massachusetts) produced its airborne LiDAR instrument using the Nd:YAG laser. In

the 1980s, the Dynatech Scientific (from Salem, Masschusetts) developed the PRAMIII laser

profiler using GaAs semiconductor diode laser where the system was applied for sea ice map-

ping (Lewis et al., 1993). The first airborne LiDAR from Canada was developed by Optech

Inc. (Toronto, Ontario) with an improved pulse width (15 ns) in a similar period. More details

can be found in Petrei and Toth (2009b).

NASA has played an important role in the development and commercialization of airborne

LiDAR system and the related techniques through its activities in Arctic topographic mapping

since the 1960s (Petrie and Toth, 2009a). A number of experimental airborne and spaceborne

LiDAR systems were devised to assess the characteristics of natural land cover. For instance,

8



9 CHAPTER 2. LITERATURE REVIEW

the Scanning LiDAR Imager of Canopies by Echo Recovery (SLICER5) is a medium footprint

LiDAR for modeling the vertical structure of tree canopy with the returned full-waveform; the

Shuttle Laser Altimeter (SLA6) is a satellite-based LiDAR for general land cover mapping; the

Laser Vegetation Imaging Sensor (LVIS7) is a full-waveform LiDAR for measuring woodland

with an embedded real-time classification algorithm; and finally the Geoscience Laser Altimeter

System (GLAS8) was designed to study the land and sea glacial masses in the Antarctic and

Greenland. A comprehensive summary of NASA laser altimeter can be found in the summary

sheet prepared by Mallet and Bretar (2009).

2.1.2 Laser Construction

A laser is discharged in reaction to different media (gas, liquid, chemical reaction or solid

material), and can be operated at different wavelengths. There are different types of lasers

including a gas laser, chemical laser, dye laser, metal vapor laser, solid-state laser and semi-

conductor laser, where each can be applied in a diverse range of applications. Some lasers

generate low energy pulses which are used for reading digital bar codes while high energy lasers

are applied in industrial cutting or even military weapons.

 

Highly reflecting mirror 

Highly reflecting mirror 

Laser Output 

Nd:YAG crystal (laser medium) 

Electric Supply 

Flashlamp (pump source) 
 

Nd:YAG solid-state laser 

Figure 2.2: Schematic diagram of a typical laser with three components

A laser is constructed with three principal parts (See Fig. 2.2) including an energy source

(or pump source), a gain medium (laser medium) and an optical resonator (Silfvast, 1996).

The pump source (e.g., arc lamps, flash lamps, chemical reactions and, even, explosive devices)

provides energy to the laser system. Selection of a pump source is usually dependent on the

5NASA SLICER: http://denali.gsfc.nasa.gov/sla/slicer/slicer.html
6NASA SLA: http://denali.gsfc.nasa.gov/sla/sla/sla1.html
7NASA LVIS: http://lvis.gsfc.nasa.gov/index.php
8NASA GLA: http://glas.gsfc.nasa.gov
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gain medium, and also determines how the energy is transmitted through the medium. The

gain medium is the major determining factor of the operating wavelength and other properties

of the laser. Examples of gain medium include liquid (for dye laser), gas (e.g., carbon dioxide),

solid (e.g., crystal and glass) and semiconductor. Finally, the optical resonator includes two

parallel mirrors placed around the gain medium. The mirrors are given optical coatings which

determine their reflective properties.

The laser action is activated from the pump source and it energizes a large number of atoms

in an excited state. The electrons of the atoms are raised from their normal ground state to a

much higher but unstable energy level where photons are spontaneously emitted. This process

is also called stimulated emission. Other atoms from the pump source are then stimulated to

emit photons with the same frequency and phase. Thus amplification of the radiation can be

produced through the stimulated emission process. The light energy in the form of photons may

be reflected between the highly reflective mirror and the partially reflective mirrors through the

gain medium over hundreds of times before exiting the partially reflective mirror.

For an airborne LiDAR sensor, since the laser beam travels a long distance between the

aircraft and the ground, the laser system is capable of generating a very high energy level where

solid-state and semiconductor lasers are commonly utilized. Solid state crystalline material such

as Nd:YAG and semiconductor material like GaAs are commonly used as gain medium in which

the electrons can be excited and raised to a much higher energy level (Petrie and Toth, 2009a).

2.1.3 Laser Ranging and Scanning

A rangefinder (or laser ranger) is the instrument that constructs and emits laser pulses and

records the returned laser pulses in order to derive the distance between the aircraft and the

ground. To determine the range measurement, the time pulse method and phase comparison

method are commonly used (Wehr and Lohr, 1999a; Baltsavias, 1999b). In the time pulse

method, the distance between the laser ranger and the point of the illuminated ground feature

can be determined using the following equation:-

t = 2
r

c
(2.1)

where t is the laser pulse two-way traveling time between the laser ranger and the reflected

ground object, c is the speed of the light and r is the range distance. If the laser transmits

continuous waveform (sinusoidal signal), the phase comparison method can be used. The math-

ematical expression of phase comparison method is:-

t = φ

2π
T + nT (2.2)

10
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where n is the number of full waveforms recorded, T is the period of the signal, φ is the

phase difference between the received and transmitted signal. By obtaining the value t, the

range distance can be solved by Eq. (2.1). With rapid development of laser transmitters and

receivers, current airborne LiDAR instrument can record the laser travelling time up to the

nearest nanosecond (ns). This is also the reason why digitization of full waveform LiDAR is

recently gaining significant interest. Nowadays, a laser scanning device uses an optical scanning

mechanism with rotating mirror for cross track scanning (perpendicular to the flight direction)

and illuminates a small footprint on the ground for each laser emission. Fig. 2.3 illustrates the

concept of airborne laser scanning.

 

Flying height ( ) 

Laser footprint ( ) 

Swath Width ( ) 

Scan Angle ( )

Beam Divergence ( ) 

Figure 2.3: Illustration of airborne laser scanning

The flying height of airborne LiDAR, defined as h, is usually within several hundred meters

to few kilometers. The size of laser footprint AL depends on the beam divergence γ and the

scan angle θ. Nowadays, airborne LiDAR sensor can be operated with scan angle up to 75○

and flying height up to 5 km so as to cover a wide area during a single flight. The narrowest

divergence of the laser beam defines the instantaneous field of view (IFOV) as:-

IFOV = 2.44
λ

D
(2.3)

where λ is the wavelength of the laser and D is the aperture of the laser ranger. The area of

the laser footprint AL varies when it hits on flat or rugged terrain. However, the general form

of the laser footprint can be represented as:-

AL = h

cos2(θinst)
γ (2.4)

11
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where θinst is the instantaneous angle of the field of view. A detail explanation of the general

form in flat and rugged terrain can be found in Baltsavias (1999b). Finally, the swath width

for the LiDAR survey, defined as SW , depends on the scan angle θ can be expressed as:-

SW = 2h tan
θ

2
(2.5)

In common practice, the 3D LiDAR point clouds are used to generate an intensity image

and DEM in raster format. To determine an optimal image resolution for the output images,

the mean point spacing can be used as a reference. First of all, the surveyed area rate can be

computed by multiplying the flying speed of the aircraft with the swath width:-

SA = 2vh tan
θ

2
(2.6)

where v is the flying speed of the aircraft which can be determined from the trajectory data

file. Then the mean point spacing (PS) can be approximated by first determining the mean

point density (PD) with reference to the pulse repetition frequency:-

PS =
1√
PD

(2.7)

where

PD = PRF
SA

(2.8)

2.1.4 Positioning and Orientation

Apart from the laser ranging unit, airborne LiDAR system are equipped with Global Position-

ing System (GPS) and Inertial Measurement Unit (IMU) integrated unit for determining the

position and monitoring the orientation (see Fig. 2.4). The GPS receiver records the instanta-

neous 3D position of the aircraft in WGS84 geodetic coordinate system while the IMU aims to

monitor the rotation of the three local axes of the aircraft. As the laser ranging unit and the

GPS/IMU integrated unit are installed in different locations inside the aircraft, offsets amongst

these instruments (lever arm) should be measured and fixed so that exterior orientation can

be solved. To compute the ground coordinates of the illuminated object, the LiDAR point

positioning equation is used by modeling the spatial relationships amongst the measurements

from the equipment (Habib et al. 2010 and 2011) as shown in Eq. 2.9.

Ð→
XG =Ð→Xo +Rω,ϕ,κ

Ð→
PG +Rω,ϕ,κR∆ω,∆ϕ,∆κRSααSθθ

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

−(r +∆r)

⎤⎥⎥⎥⎥⎥⎥⎦

(2.9)
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where
Ð→
XG is the 3D ground coordinates of the illuminated object,

Ð→
Xois the vector from the origin

of the ground reference frame to the origin of the IMU coordinate system, Rω,ϕ,κ refers to the

rotation matrix relating the ground coordinate system and IMU coordinate system,
Ð→
PG refers

to the offset between the laser ranging unit and the IMU coordinate system, Rω,ϕ,κR∆ω,∆ϕ,∆κ

refers to the rotation matrix relating the laser ranging unit and the IMU coordinate system,

RSααSθθ refers to the rotation matrix relating the laser unit and laser beam coordinate systems

with α and θ being the mirror scan angles, Sα and Sθ are the scale factors of the angles measured

by the scanner, r is the range vector whose magnitude is equivalent to the distance from the

laser firing point to its footprint and ∆r is a systematic error in the measured range.
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Figure 2.4: LiDAR system configuration and the positioning and orientation systems

The coordinates of the LiDAR points are the result of combining the derived measurements

from each of its system components and the mounting parameters relating such components.

The position of an object point
Ð→
XG is derived through the summation of three vectors (

Ð→
Xo,

Ð→
PG

and r) after applying the appropriate rotations (Rω,ϕ,κ, R∆ω,∆ϕ,∆κ, RSααSθθ). In this equation,
Ð→
Xo is the vector from the origin of the ground reference frame to the origin of the IMU coordinate

system (with respect to the IMU body frame), and r is the laser range vector whose magnitude

is equivalent to the distance from the laser firing point to its footprint. It should be noted

that
Ð→
Xo is derived through the GPS/INS integration process while considering the lever arm

vector between the IMU body frame and the phase centre of the GPS antenna. The term Rω,ϕ,κ

stands for the rotation matrix relating the ground and IMU coordinate systems which is derived
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through the GPS/INS integration process. The term R∆ω,∆ϕ,∆κ represents the rotation matrix

relating the IMU and laser unit coordinate systems which is defined by the boresight angles

(considering the y-axis of the IMU body frame aligned along the flight direction), while the

term RSααSθθ refers to the rotation matrix relating the laser unit and laser beam coordinate

systems with α and θ being the mirror scan angles. sα and sθ are the scale factors of the

angles measured by the scanner, while △r is a systematic error in the measured range. One

should note that, for a linear scanner, the mirror is rotated in one direction only, leading to

zero values for α and Sα. The involved quantities in the LiDAR point positioning equation are

all measured during the acquisition process except for the mounting parameters (i.e., the lever

arm and boresight angles), the scan angles scale factors and the range error; these parameters

are usually determined through a calibration procedure.

2.1.5 LiDAR Intensity Data

When an airborne LiDAR system flies over the survey area, the LiDAR sensor emits a laser

pulsed at a specific pulse repetition frequency, illuminates a footprint on the surface object,

and finally records the returned laser pulse signal after backscattered from the surface objects.

Single return of laser pulses can always be found in impenetrable surfaces like roofs, roads, etc.

while multiple returns of laser pulses are usually obtained from tree canopies where portion

of the laser footprint is illuminated on and backscattered from the leaves, stems and branches

before encountering the ground surface (Chasmer et al., 2006). For a discrete return LiDAR

sensor, the laser intensity represents the peak amplitudes recorded in the laser backscattering

beam return from the illuminated object where the intensity is usually linearized into an 8

bit or 11 bit data scale. For the latest full-waveform LiDAR, the sensor records not only a

discrete number of echoes, but also digitizes the entire waveform of the emitted pulse and the

backscattered echoes (Wagner, 2010) as illustrated in Fig. 2.5. To have a better understanding

on the physical meaning of LiDAR intensity data, the signal strength of the laser pulse return

should be modeled. As the airborne LiDAR system operates in similar principle to radar remote

sensing system, the radar (range) equation is adopted to explain the signal strength of the laser

pulse (Jelalian, 1992) as below:-

Pr =
PTGT
4πr2

σ

4πr2

πD2

4
ηsysηatm (2.10)

The effects on the physical properties of the received laser beam energy (Pr) are considered

using the radar (range) equation presented in Eq. (2.10), which takes into account the sensor

configuration and different environmental parameters. The received laser beam energy (Pr)

depends on two groups of parameters: a) system parameters and b) environmental parameters.

14
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The system parameters refer to the configuration and the characteristics of the laser scanning

system including the emitted laser energy PT , the gain factor of the antenna GT , the aperture

diameter D, the range of each laser pulse r, and the loss due to system inefficiency ηsys. Some

of the factors such as PT , D and ηsys can be assumed to be constant during the flight (Höfle

and Pfeifer, 2007). The environmental parameters include the atmospheric attenuation ηatm

(which is covered in Chapter 3) and the laser target cross section σ.

σ = 4πρsAtarget cos(θr) (2.11)
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Figure 2.5: Illustration of the laser pulse return signal and the recorded signal strength

The target cross section presented in Eq. (2.11) is one of the key parameters to be considered

in the radar (range) equation. It depends on the characteristics of the target surface (slope and

aspect) with respect to the direction of the laser pulse. The ρs in Eq. (2.11) refers to the

spectrum reflectance at the specific wavelength and Atarget refers to the target area which is

illuminated by the footprint of the laser beam. The scattering from the target area is usually

not uniform because almost all surfaces are rough by nature. The Lambertian assumption is

adopted to model the surface reflectance. Following this assumption, the scattered laser pulse

is constant at all reflected angles and the target cross section is proportional to the cosine of

the reflected angle θr (Steinvall, 2000). The θr (the angle between the incidence laser beam and

the surface normal of the ground object) can be assumed equal to the scan angle (θ), in cases

where the ground surface is relatively flat. However, this is not always the case particularly in
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urban areas and rugged terrain. A better estimate of the angle θr (which is covered in Chapter

3) can be calculated using the scan angle (θ) and surface slope as defined by the LiDAR point

cloud. With the assumption that the intensity (I) represents the peak value of Pr (Höfle and

Pfeifer, 2007), data providers linearly transformed Pr into 8 bit values to represent the intensity

data which is used in the radar (range) equation (Höfle and Pfeifer, 2007).

2.2 Land Cover Classification

Since airborne LiDAR permits accurate probing of the topography which is almost impossible

using passive remote sensing techniques (Korpela et al., 2010), a number of recent research

studies investigated the use of airborne LiDAR data for land cover classification. Charaniya

et al. (2004) and Bartels and Wei (2006) introduced supervised pixel-based classifiers on a

set of feature vectors (such as height, luminance, difference of multiple returns, etc.) derived

from the airborne LiDAR data. The classification strategies were mainly based on the use of

geometric information of the LiDAR data point cloud only. Unlike optical remote sensing data,

airborne LiDAR data does not have multi-spectral data which provide sufficient separabilities

of spectral reflectance amongst different land cover features. Therefore, fusion of airborne

LiDAR data with other remote sensing data were investigated to compensate for the lack of

spectral data, for example, fusion of LiDAR data with CASI data for classification of floodplain

vegetation (Geerling et al., 2007), multispectral images for classification of rangeland vegetation

(Bork and Su, 2007), hyperspectral images for classification of complex forests (Dalponte et al.,

2008), Quickbird data for mapping surface fuel models (Mutlua et al., 2008) and urban areas

(Chen et al., 2009). To further maximize the benefits of using airborne LiDAR data in land

cover classification, introduction of the intensity data or even the entire backscattered waveform

signal becomes a viable approach to improve the classification results.

Song et al. (2002) interpolated the intensity data of the point cloud into grid data and

applied image filters to remove noise within the intensity data. The separability amongst four

land cover classes (grass, house, road and tree) was assessed and low separability was found

between grass and tree classes. To enhance the quality of the intensity data classification, similar

studies have been conducted by incorporating ancillary data. Beasy et al. (2005) classified

near shore materials (bedrock, cobble and sand) on the Fundy coast of Nova Scotia using

intensity data, texture data and luminance data (the average digital numbers of ortho-rectified

aerial image). Fairly high separability was found in the experiment amongst the classes with

average Bhattacharrya distance near to 1.9. Goodale et al. (2007) utilized LiDAR intensity and

elevation data to classify coastal estuaries and beach habitats (such as mudflat, sand, cobble,

tree and shrub) with a logical filter classification model. It was found that LiDAR intensity
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data was useful in distinguishing coastal features. Object-oriented image segmentation has been

proposed for land cover classification using LiDAR range and intensity data. Approximate 90%

overall accuracy was reported by Brennan and Webster (2006) and Antonarakis et al. (2008).

Yoon et al. (2008) assessed the intensity data from the singular returns of LiDAR signal

of Optech ALTM 3070 sensor. The study compared the LiDAR intensity signal with the

reflectance measured from field spectroradiometer (GER 2600). The findings revealed that

there was no significant separability amongst land cover classes including vegetation and man-

made structures. Compared to the field spectroradiometer measurement, vegetation cover did

not show higher reflectance than other land cover classes in the LiDAR intensity. Also, artificial

structures such as asphalt, unpaved roads and concrete had similar reflectance patterns with

low intensity. In order to improve classification accuracy, knowing the physical property of land

cover classes is necessary and correction of intensity data should be applied with respect to the

system settings for each of the recorded laser pulse (Bretar et al., 2008).

2.3 Radiometric Calibration, Correction and Normalization

The importance of radiometric calibration and correction of active remote sensing data has

been emphasized for Japan Earth Resources Satellite-1 Synthetic Aperture Radar (Shimada,

1996), RADARSAT (Small et al., 1997), European Remote-Sensing Satellite Synthetic Aper-

ture Radar (Riegler et al., 1998) and Advanced Land Observation Satellite Phased Array type

L-band Synthetic Aperture Radar (ALOS PALSAR) (Shimada et al., 2009). Different rigorous

radiometric correction models were developed by considering the scanning geometry, backscat-

tering mechanism and terrain induced distortions (Loew and Mauser, 2007). In case of the

lack of ground calibration reference or sensor information, radiometric normalization is rec-

ommended for multi-temporal data analysis. The purpose of normalization aims to reduce

the radiometric differences amongst the multi-temporal dataset by building a relationship (or

transformation) across the image scenes. Applications of radiometric normalization in satellite

remote sensing can be found in change detection (Yan and Lo, 2000; Heo and FitzHugh, 2000;

Du and Cihlar, 2002), image mosaicking (McGovern et al., 2002), and gap filling (Helmer and

Ruefenacht, 2007; Roy et al., 2008).

Based on the aforementioned studies, it has been shown that radiometric calibration, cor-

rection and normalization have significant influence on the derived data products. Airborne

LiDAR systems have similar operational principles to RADAR and SAR systems. Laser energy

is emitted and the backscattered energy from the illuminated object is recorded by the airborne

LiDAR system. The backscattered energy and the time delay between the signal emission and

reception are used to derive a 3D point cloud, which is represented by the xyz coordinates while
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the intensity I represents the peak backscattered laser energy from the object. Due to the at-

mospheric effects and the object surface backscattering, radiometric correction of the airborne

LiDAR intensity data should be carried out to remove the effects of laser energy attenuation.

Radiometric correction of the LiDAR intensity data can be performed using empirical or

physical approaches (Höfle and Pfeifer, 2007). The empirical approach does not consider the

physical properties of the laser backscattering energy. Instead, it introduces statistical methods

to minimize the noise in the intensity data. Fang and Huang (2004) introduced a discrete wavelet

transform approach for noise reduction in LiDAR signal, the results demonstrated that the

proposed method outperformed the traditional digital filters by improving the signal-to-noise

ratio. Lai et al. (2005) investigated mean filtering algorithm to fuse the LiDAR intensity range

data and remove different types of signal noise. The results showed that the proposed filtering

algorithm merely improves the quality of the data. Boyd and Hill (2007) attempted to validate

the intensity data with HyMap sensor data (Band 42), which has a similar spectral wavelength,

over a forested area. Correlation can be found in a few forest species between the two datasets

but a practical correction method is still required. Höfle and Pfeifer (2007) introduced an

empirical approach by deriving a polynomial model based on the range and intensity data. A

least squares adjustment was conducted to fit the model by selecting homogenous backscattered

areas in the LiDAR dataset. The results achieved showed reduction of the intensity variation

over areas with the same land cover surface.

On the other hand, the physical approach relies on the use of radar (range) equation (Je-

lalian, 1992), and it was first proposed for radiometric correction of LiDAR intensity data by

Coren and Sterzai (2006), Höfle and Pfeifer (2007) and Kaasalainen et al. (2007). The cor-

rection process aims at converting the recorded intensity data into the spectral reflectance of

the illuminated object by studying the physical properties of the parameters involved in the

equation. The following studies were conducted to calibrate the LiDAR intensity data acquired

from a number of commercial LiDAR sensors using artificial targets (Kaasalainen et al., 2009a)

and natural targets (Vain et al., 2009). The effects of the flying height (Vain et al., 2009),

range (Kaasalainen et al., 2009b), incidence angle (Kukko et al., 2008), sensor aperture size

(Kaasalainen and Kaasalainen, 2008), surface moisture (Kaasalainen et al., 2010), automatic

gain control on the backscattered intensity (Vain et al., 2010) and reflection model (Jutzi and

Gross, 2010) have been studied. The objective of these studies aims to investigate the effects of

sensor operation parameters (e.g., range, incidence angle), backscattering properties, and the

relationship between the recorded intensity data from the field and the intensity data measured

from the laboratory using the same reference targets.

To prepare reference targets for radiometric calibration, different sand and gravel samples,

and brightness tarps made of PVC were used as reference targets for the airborne LiDAR
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survey (Kaasalainen et al., 2009a). The reflectance of the targets was measured by Spectralon

using 785 nm terrestrial laser scanner (TLS), 1.064 µm Nd:YAG laser instrument and CCD

camera in the laboratory. The findings in the study revealed that: 1) variation of intensity

data was found for targets like redbrick with rough surface (Kukko et al., 2008); 2) the effect

of moisture on the targets was demonstrated as a factor towards the surface reflectance in an

outdoor environment, where it varied by 30% to 50% in the reflectance measurement carried

out by Kaasalainen et al. (2009a); 3) the variation of reference targets between the field

and laboratory measurement should be minimized (i.e., the measurement geometry, selection

of gravel samples, the uniformity of the color and surface roughness of the samples should

be similar.) After considering all these factors, the results between the field and laboratory

measurements were found more consistent owing to the consideration of the above factors in

the second round of the experimental testing (Kaasalainen et al., 2009a). Kaasalainen et al.

(2009b) measured the intensity recorded by FARO and Leica TLSs with different distances

towards the known reference targets. Reduction of backscattered intensity was found when

the measurement distance increases. Yoon et al. (2008) conducted similar in situ spectrum

reflectance measurements, and range effect was obvious only in road features (concrete, unpaved

and asphalt roads) whereas vegetation cover got a high standard deviation of intensity. This

can be explained by the effects of observation geometry and how the surface properties (e.g.,

roughness, moisture) are much obvious in materials with higher reflectance in near-infrared red

spectrum (1.064 µm).

2.4 Discussion

In 1999, the ISPRS Journal of Photogrammetry and Remote Sensing published a special theme

issue on airborne laser scanning (Wehr and Lohr, 1999b) which has made a significant impact

on the LiDAR development in both industry and academic communities. One of the top

cited papers in this theme issue, published by Ackermann (1999), pointed out the expected

future development of airborne laser scanner in three different areas: 1) more and extended

applications, 2) additional information about the surface characteristics analyzed from the

returned signal, and 3) consolidation and extension of LiDAR data processing methods. After

ten years, the growth in the LiDAR market has been justified by an industrial survey (Cary

and Associates, 2009).

The survey indicated that there has been an increase of 75% in the number of LiDAR

systems in use, 53% in LiDAR operators, and 100% in the number of end users between 2005

and 2008. According to the same survey, such an upward trend is expected to continue in the

next several years. Despite this positive outlook, the respondents to the survey indicated that
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there are some barriers that could hinder the expected growth. Two of the top three barriers

are the quality of data and the shortage of experienced analysts. More specifically, the bulky

and explicit 3D data obtained from the airborne laser scanning makes data processing more

complex in extracting useful information. The lack of intelligent processing algorithms also

limits further exploration and applications.

So far, intelligent algorithms related to the collection and processing of airborne LiDAR

data have been applied to the fields of digital elevation/surface model generation (Lohr, 1998;

Lloyd and Atkinson, 2002; Shan and Sampath, 2005; Loyd and Atkinson, 2006), topographic

mapping (Vosselman et al., 2005; Matikainen et al., 2010), building/road features recognition

(Zhang et al., 2006; Vu et al., 2009), powerline extraction (Li et al., 2012) and 3D city modeling

(Brenner, 2005; Elberink and Vosselman, 2009; Kim and Shan 2011; Lafarge and Mallet, 2012).

All these mentioned work mainly rely on the analysis of geometric components of 3D LiDAR

data point clouds (xyz), where few of the previous work explore the use of LiDAR intensity

data (I), which echoes the argument mentioned by Ackermann as early as 1999. The limited

use of the intensity data can be ascribed to the environmental- and system- induced distortion.

Low classification accuracy using LiDAR intensity data is always found when compared to the

results achieved by using near-infrared red band in optical remote sensing. Therefore, a certain

correction scheme should be applied to the airborne LiDAR intensity data in order to maximize

the benefits of using it in surface classification and object extraction.

As reviewed in Section 2.3, practical methods were developed to eliminate the effects of

some system parameters and target characteristics through absolute correction and relative

calibration approaches. However, some of the factors, such as the atmospheric absorption and

scattering, combining overlapping intensity data, etc., have not yet been fully investigated where

a practical approach to integrate all the factors without in situ or laboratory measurements is

still desired. In addition, very few authors investigated the impacts of radiometric correction of

airborne LiDAR intensity data on surface classification and object recognition. In this regard,

this thesis research attempts to fill the current gap by proposing a radiometric correction model

and radiometric normalization model, and studying the effects of these models on land cover

classification results using airborne LiDAR intensity data.
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Chapter 3

Radiometric Correction

This chapter presents the approach for radiometric correction of airborne LiDAR intensity data.

The correction model extends upon the well-established radar (range) equation (as reviewed in

Section 2.1.5) which has been preliminarily investigated on the correction of LiDAR intensity

data. This thesis further consolidates the correction model by incorporating a set of empirical

equations for computing atmospheric attenuation and laser incidence angle. The proposed

approach was applied to a real airborne LiDAR dataset for experimental testing. Five rounds

of correction were conducted on the intensity data in order to evaluate the impacts of scan angle,

incidence angle and atmospheric attenuation factor on the results. Land cover homogeneity was

then assessed by studying the coefficient of variation in different land cover features before and

after correction. Finally, the chapter ends with a short summary of the proposed method and

results.

3.1 Method

3.1.1 Overall Workflow

Fig. 3.1 illustrates the overall workflow for radiometric correction of LiDAR intensity data.

Since raw LiDAR data (without post-survey processing) are mostly unavailable to end users,

a time-tagged 3D data point cloud is usually delivered in LAS file format together with a

GPS trajectory file (optional) after an airborne LiDAR survey. In this study, the LAS file

containing the 3D coordinates (xyz ) and the backscattered intensity (I ) of each laser pulse

was converted into ASCII format for data processing. With the GPS trajectory data and the

time tagged 3D data point cloud, instantaneous GPS coordinates were interpolated for each

of the laser pulse. After that, system parameters (range, horizontal angle and scan angle)

which describe the geometric relationship between the instantaneous position of the aircraft
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and the illuminated object were computed (refer to Section 3.1.2). The incidence angle, which

is the angle between the incidence laser pulse and the surface normal from the topography, was

computed so as to consider the topographic induced distortion. Atmospheric attenuation was

determined from the weather information (temperature, pressure and meteorological visibility)

before radiometric correction (refer to Section 3.1.3). Finally, the intensity, range, atmospheric

attenuation and incidence angle for each laser pulse were imported into the radar (range)

equation to determine the spectral reflectance of illuminated object, which was regarded as the

radiometrically corrected intensity (RCI) (refer to Section 3.1.4).
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Figure 3.1: Overall workflow for radiometric correction

3.1.2 Computation of Incidence Angle

Fig. 3.2 presents the geometric relationship between the instantaneous position of the LiDAR

sensor (L) and the object on the ground (P) in a XYZ Cartesian coordinate system. The scan
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angle denotes as θ and the distance between the sensor and the ground object is represented

by the range r. In case of flat terrain, the incidence angle is described between two vectors

which are the vertical vector from the ground object (
Ð→
PV ) and the range vector (

Ð→
PL), where

the incidence angle is equivalent to the scan angle θ. In the case of rugged terrain, the ground

object (P) is located on a surface with slope (α) and aspect (β) where the incidence angle

should be described with the range vector (
Ð→
PL) and the surface normal vector (

ÐÐ→
PN) to the

ground object.

 

Flying	
Direction	

V	
N

P	

Slope	(α)

X	

Y	

O	

Z	

Surface	Normal	Scan	Angle	θ	

Scan	

Angle	θ	 Incidence	Angle	θr	 P	

X	

Y	

X’	

Y’	

Aspect	(β)	

L	

L	

V	

N	Horizontal
Angle	θh	

Flying 
Height 

Range	  

N	

Surface	Normal	  

Vertical	Vector	

(a) (b) 

(c) 

L

Figure 3.2: Illustration of the geometric relationship between the airborne LiDAR system (L)
and the illuminated object (P )

In common practice, the range data are usually not included in the LAS file, the range

vector
Ð→
PL should be calculated by the instantaneous 3D coordinates of the aircraft and the 3D

coordinates of the illuminated object for each laser pulse. Since the laser pulse is recorded in

nanoseconds (ns), which is not synchronized with the GPS measurement (measured in seconds),

the instantaneous 3D coordinates of the aircraft (XL, YL, ZL) can be projected on the LiDAR

3D data point cloud (XP , YP , ZP ) by interpolating the GPS time into the corresponding time

of LiDAR data. Finally, the range and scan angle can be derived from the Eqs. (3.1) and (3.2).

PL = r =
√

(XL −XP )2 + (YL − YP )2 + (ZL −ZP )2 (3.1)

θ = cos−1 [ZL −ZP
r

] (3.2)
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In order to compute the incidence angle (θr or ∠LPN), three vectors (
Ð→
PL,

ÐÐ→
PN and

Ð→
LN) in

the triangle △LPN should be used. The computation of range vector
Ð→
PL has been described

in the aforementioned paragraph. The slope (α) and aspect (β) can be derived directly from

a TIN model generated from the 3D data point cloud. Then, vectors
ÐÐ→
PN and

Ð→
LN can be

calculated using following equations.

In △LV P :

V P = r ⋅ cos θ (3.3)

In △NV P :

PN = V P

cosα
(3.4)

Subs.(3.3) into (3.4)

PN = r ⋅ cos θ

cosα
(3.5)

Then, vector
Ð→
LN can be calculated from the following equations:

In △LV P :

LV = r ⋅ sin θ (3.6)

In △NV P :

NV = V P tanα (3.7)

Subs.(3.3) into (3.7)

NV = r ⋅ cos θ tanα (3.8)

In △NV L (See Fig. 3.2(c) bottom right):

∠NV L =∠Y ′V L −∠Y ′V N (3.9)

where angle ∠Y ′V N is an obtuse angle which is equal to the aspect (β) of the ground object P

on the terrain. The angle ∠Y ′V L and ∠Y LV are interior angles where ∠Y LV is the projected

horizontal angle between the Y-axis and the laser pulse. The projected horizontal angle ∠Y LV
(or θh) can be computed using the plane coordinates of the laser pulse and the instantaneous

position of the aircraft as follows:-

θh =∠Y LV = tan−1 [XP −XL

YP − YL
] (3.10)

According to the cosine law:

LN =
√
NV 2 +LV 2 − 2(NV )(LV )(cos∠NV L) (3.11)
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Subs. (3.6) and (3.8) into (3.11):

LN =
√

(r ⋅ cos θ tanα)2 + (r ⋅ sin θ)2 − 2(r ⋅ cos θ tanα)(r ⋅ sin θ)(cos(β − θh)) (3.12)

Finally, the incidence angle ∠LPN can be calculated using the three vectors (
Ð→
PL,

ÐÐ→
PN ,

Ð→
LN)

in △LPN in accordance to the cosine law:

In △LPN :

∠LPN = θr = cos−1 PN
2 + PL2 −LN2

2(PN)(PL) (3.13)

where
Ð→
PL is the range vector from Eq. (3.1),

ÐÐ→
PN can be obtained from Eq. (3.5), and

Ð→
NL can

be obtained from Eq. (3.12). By combining all the equations, Eq. (3.13) becomes:

θr = cos−1 ( r⋅cos θ
cosα )2 + r2 − (r ⋅ cos θ tanα)2 − (r ⋅ sin θ)2 + 2(r ⋅ cos θ tanα)(r ⋅ sin θ)(cos(β − θh))

2( r⋅cos θ
cosα )(r)

(3.14)

Eliminating the range vector r, Eq. (3.14) becomes:

θr = cos−1 ( cos θ
cosα)

2 + 1 − (cos θ tanα)2 − sin2 θ + 2(cos θ tanα)(sin θ)(cos(β − θh))
2( cos θ

cosα)
(3.15)

Multiplying cos2α in denominator and numerator, Eq. (3.15) becomes:

θr = cos−1 cos2 θ + cos2 α − cos2 θ sin2 α − sin2 θ cos2 α + 2(sin θ)(cos θ)(sinα)(cosα)(cos(β − θh))
2 cos θ cosα

(3.16)

θr = cos−1 cos2 θ(1 − sin2 α) + cos2 α(1 − sin2 θ) + 2(sin θ)(cos θ)(sinα)(cosα)(cos(β − θh))
2 cos θ cosα

(3.17)

θr = cos−1 cos2 θ(cos2 α) + cos2 α(cos2 θ) + 2(sin θ)(cos θ)(sinα)(cosα)(cos(β − θh))
2 cos θ cosα

(3.18)

Finally, the incidence angle is represented as:-

θr = cos−1[cos θ cosα + sin θ sinα cos(β − θh)] (3.19)
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3.1.3 Atmospheric Correction

Atmospheric attenuation ηatm is one of the major factors affecting the radar (range) equation

(Jenn, 2005). Although some previous studies assumed this factor as constant for short range

laser scanning or clear atmospheric conditions (Soudarissanane et al., 2007; Roncat et al., 2011),

this thesis research attempted to model this factor by studying the physical basis since the latest

LiDAR sensor can be operated up to a 4 km flying height. The ηatm follows the Beer-Lambert

Law where the laser energy is attenuated in an exponential manner as presented below.

ηatm = e−2τr (3.20)

where

τ = τas(λ) + τms(λ) + τaa(λ) + τma(λ) (3.21)

τ refers to the power of the extinction coefficient, and τ is the summation of: a) the aerosol

scattering (τas), b) the molecular (Rayleigh) scattering (τms), c) the aerosol absorption (τaa)

and d) the molecular absorption (τma). A number of studies have been conducted to model

the atmospheric extinction for the troposphere. It was found that extinction is wavelength

dependent, and the attenuation varies spatially and temporally (Hayes and Latham, 1975). As

the atmospheric extinction of Nd:YAG laser is not fully investigated in radiometric correction,

the effects of scattering and absorption are modeled using the following formulas and empirical

models.

Aersol scattering

Aerosol scattering (or Mie scattering) is mainly due to the short wavelength scattering caused

by small particles suspended in the air such as dust, smoke or droplets of salt water. The aerosol

scattering is difficult to model due to the lack of instantaneous aerosol measurements including

the composition, concentration and distribution in the air. Therefore, empirical approach was

developed to model the aerosol extinction in the atmosphere based on the wavelength and

visibility. The model developed by Filippov (1982) was commonly used where aerosol extinction

is formulated as τas = 3.91(n0+n1λ
−n2)/v where v is the meteorological visibility range measured

in km, and n0, n2 and n2 are fitting coefficients. In this study, the revised model proposed by

Ferdinandov et al. (2009) was used to characterize the aerosol scattering for near Earth surface

as shown in Eq. (3.22).

τas(λ) = (−2.565ln(λ) + 2.499)v−0.199ln(λ)+1.157 (3.22)

where λ is the wavelength in µm and v is the meteorological visibility range measured in km.
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This model was claimed to be suitable for close to ground troposphere. In addition, the model

was evaluated using different data acquired from the previous research published from 1957 to

2008. In practice, aircraft may not be equipped with a visibility sensor (e.g., transmissometer)

for measuring the meteorological visibility; therefore, the visibility data can be obtained by

accessing the weather data archive provided by the closest airport or weather station.

Rayleigh scattering

Rayleigh scattering is caused by small air particles and clusters in the atmosphere. The scat-

tering is significant for electromagnetic radiation with short wavelengths. Bucholtz (1995)

introduced a set of formulas for the Rayleigh Scattering Cross-Section calculation with ref-

erence to one standard atmospheric model (the 1962 U.S. Standard) and five supplementary

models (Tropical, Mid-latitude Summer, Mid-latitude Winter, Subarctic Summer and Subarctic

Winter). To calculate the extinction coefficient, the total Rayleigh scattering cross section per

molecule σr for a wavelength (λ) is given by:

σr(λ) =
24π3(ns(λ)2 − 1)2

λ4N2
s (ns(λ)2 + 2)2

Fk (3.23)

where Ns is the molecular density (2.54743 × 1019 cm-3) for standard air, Fk is the King

correction factor where Fk = (6 + 3ρn)/(6 − 7ρn), and ρn is the depolarization factor which

accounts for the anisotropy of the air molecule (Bates, 1984). Although Fk was not provided

for wavelength greater than 1 µm in Bucholtz (1995), the corresponding value of Fk in 1.064 µm

can be retrieved from the recent re-calculation of Rayleigh scattering in Tomasi et al. (2005).

The term ns(λ) is the refractive index for standard air for a specific wavelength (λ). It can be

calculated using Eq. (3.24) for wavelengths greater than 0.23 µm:-

(ns(λ) − 1)108 = 5,791,817

238.0185 − ( 1
λ)2

+ 167,909

57.362 − ( 1
λ)2

(3.24)

The total Rayleigh scattering coefficient τms for a specific wavelength (λ) is the product

of the total Rayleigh cross section per molecule σr(λ) calculated from Eq. (3.23) and the

molecular density N at a given pressure and temperature (i.e., τms(λ) = Nσr(λ)). As N is

practically difficult to be measured for most of the applications, the total Rayleigh volume-

scattering coefficient τms(λ) can be derived by normalizing the pressure (P) and temperature

(T ) with respect to the corresponding values at standard air Ns in Eq. (3.25). The atmospheric

model for the standard air used in this study is the mid-latitude summer model with standard
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pressure (Ps) = 1013 mbars and standard temperature (Ts) = 294 K.

τms(λ) = Nsσr(λ)
P

Ps

Ts
T

(3.25)

Aerosol and molecular absorptions

Aerosol and molecular absorption may cause energy loss of a laser beam through propagation

due to the existence of water vapour, carbon dioxide, oxygen, etc. (Zuev, 1976). The absorption

attenuates the energy of the laser beam when it travels from the sensor to the ground and

vice versa. Referring to the atmospheric transmission windows, the major contributor to the

absorption at wavelength 1.064 µm (Nd:YAG laser) is water vapor. To find the extinction

coefficient, public (free) molecular absorption database such as the HITRAN 2008 database

(Rothman et al., 2009) can be used. The HITRAN database contains 2.7 million spectral

lines for 42 different molecules. By selecting the specific molecules, range of spectral lines,

temperature and pressure, the absorption coefficient can be retrieved from the database. In

this study, the absorption coefficient of water vapor at the operating wavelength (1.064 µm) of

the airborne LiDAR sensor was retrieved from the HITRAN database.

3.1.4 Radiometric Correction

We substitute Eq. (2.11) into in Eq. (2.10), and the radar (range) equation becomes:

Pr =
PTGT
4πr2

4πρsAtarget cos(θr)
4πr2

πD2

4
ηsysηatm (3.26)

where Pr is the received laser energy, PT is the emitted laser energy, GT is the gain factor of

the antenna, ρs is the spectral reflectance of the illuminated target, Atarget is the illuminated

laser footprint on the target area, θr is the incidence angle, D is the diameter of the aperture, r

is the range, ηsys is the loss due to system inefficiency, and ηatm is the atmospheric attenuation

factor. Since some of the system parameters were not disclosed by commercial manufacturers,

a number of assumptions were made here.

First, it is understood that the received laser energy Pr is conceptually equivalent to the

LiDAR intensity data; however, the method of how the LiDAR sensor transformed Pr into I

remains unknown. Therefore, a linear approach, which has been previously mentioned by Coren

and Sterzai (2006), was assumed for the transformation from Pr into I. Before the launch of full-

waveform LiDAR sensors, most of the discrete return sensors did not record the emitted laser

energy PT (Höfle and Pfeifer, 2007); therefore, PT was assumed as constant together with the

system inefficiency factor ηsys and the aperture diameter D. The gain factor GT is used to keep
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the intensity measurements within the radiometric resolution (e.g., 8 bit). This is particularly

useful when the LiDAR sensor flies over a land surface with very low (e.g., dark asphalt road)

or very high reflectance surfaces. Though some attempts were conducted to model the pattern

of gain factor in Vain et al. (2010), this factor is sensor dependent and the mathematical model

is a black box unless proprietary LiDAR data processing software is used (e.g., Leica ALS Post

Processor). Up to this point, the gain factor was assumed as constant for a single strip airborne

LiDAR data. Nevertheless, such an assumption may induce systematic error on the LiDAR

intensity data when overlapping strips are combined. In Chapter 4, a statistical approach is

proposed to radiometrically normalize the overlapping strips of LiDAR intensity data so as to

remove the line stripping noise. The remaining factors including incidence angle θr, range r and

atmospheric attenuation factor were already covered in the previous sub-sections. Finally, the

spectral reflectance ρs can be derived from Eq. (3.26) where ρs is regarded as the radiometrically

corrected intensity data (RCI).

Effects of over-correction have been reported by Riaño et al. (2003) and Soenen et al. (2005)

while using the incidence angle in topographic correction of passive remote sensing images.

Since the cosine of incidence angle is assumed to be indirectly proportional to the corrected

intensity (or the spectral reflectance) in the correction process, the excessive correction is most

pronounced at the incidence angles approaching 90○ (Soenen et al., 2005). This phenomenon

has also been justified in our previous experiment in radiometric correction of airborne LiDAR

intensity data (Shaker et al., 2011) where most of the trees and building boundaries receive

excessive correction. To resolve this problem, we imitated the technique proposed by Richter et

al. (2009) which incorporated threshold angle values to decide the use of different parameters

in the correction model. In this study, we used the slope to control the selection of angle in

the correction process. When the slope was less than 40○, then the incidence angle was used in

the radar (range) equation; while the slope exceeded 40○, the scan angle was used. The reason

for using 40○ as the threshold was mainly due to the inclined surfaces in the study area, which

were found to be mostly less than this value.

3.2 Experimental Testing

3.2.1 Study Area and Dataset

The study area covers the British Columbia Institute of Technology (BCIT) located in Burn-

aby, British Columbia, Canada (122○59’W, 49○15’N), see Fig. 3.3. A LiDAR dataset was

acquired to test the feasibility of the proposed radiometric correction method. The LiDAR

mission was conducted on July 17, 2009 at local time 14:55. The survey day was a sunny day
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with temperature of 29.8 ○C. The vertical visibility and pressure were 48.3 km and 101.81 kPa,

respectively, as delivered by the National Climate Data and Information Archive from Environ-

ment Canada. As the airborne LiDAR survey did not acquire any information regarding the

atmospheric conditions, these archived climate data were used for atmospheric correction.
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Vancouver

Canada

USA
Strip 2 (West to East)

Strip 1 (East to West)

Strip 3 (East to West)

Figure 3.3: Study area in the British Columbia Institute of Technology, Vancouver, B.C.,
Canada

Table 3.1 summarizes the LiDAR system configuration and data specification, and Table

3.2 summarizes the information of the three LiDAR data strips. The LiDAR sensor used was

Leica ALS50 operating with 1.064 µm wavelength, 0.33 mrad beam divergence, and 83 kHz

pulse repetition frequency. Three LiDAR data strips were acquired where the 1st and the 3rd

strips were scanned from East to West and the middle strip (2nd strip) was scanned in reverse

direction (West to East). The overlapping area of the first two scans (strips 1 and 2) and

the last two scans (strips 2 and 3) were about 30% and 25%, respectively. The average flying

height of all scans was approximate 600 m resulting in a point density of 4 to 5 points per

meter square. The acquired data consisted of a 3D point cloud with multiple returns (up to

4 returns at maximum) in LAS format together with the trajectory data. The LAS data file

stored the xyz coordinates, the linearized intensity value in 8 bit, the number of the given

return, the total number of returns, and the time of each pulse of the point cloud. The LAS
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file was converted into an ASCII file using Lastools 9. The trajectory data stored the time

and the xyz coordinates of the LiDAR sensor when the LiDAR data was captured during the

flight. The dataset also contained an ortho-rectified aerial imagery which was produced using

the aerial photos captured during the same flight mission. The ortho-rectified aerial imagery

consisted of three bands (Red, Green and Blue) with 0.5 m spatial resolution. Figs. 3.4 and

3.5 show the collected airborne LiDAR data in 2D and 3D views, respectively.

Table 3.1: Airborne LiDAR system settings (left) and data specification (right)

System Parameters Settings

LiDAR Sensor Leica ALS50

Pulse Repetition Frequency 83 kHz

Beam Divergence 0.33 mrad

Wavelength (λ) 1.064 µm

Flying Height (h) ∼600 m

Flying Speed (v) ∼40 ms−1

Data Specification Settings

Number of Strips 3

Mean Point Density (PD) 4.3 points/m2

Mean Point Spacing (PS) 0.48 m

Number of Returns 4

Intensity (I ) 0 - 255 (8 bit)

Aerial Photos RGB in 0.5 m

Table 3.2: Data Configuration of the three LiDAR data strips

Strip 1 Strip 2 Strip 3

Direction East to West West to East East to West

Number of Points 1,705,016 1,362,273 1,325,717

Time 14:52:00 to 14:52:23 14:55:40 to 14:55:59 15:04:46 to 15:05:06

The “Quasi-Rigorous” method was implemented for geometric calibration of the LiDAR data

point cloud by our research collaborator from the University of Calgary (Habib et al., 2010).

This procedure utilized the LiDAR data in overlapping strips together with control points

for estimating the biases in the system parameters so as to reduce the discrepancies between

conjugate surface elements. The estimated biases in the system parameters were then used

to reconstruct the adjusted LiDAR point cloud coordinates in different strips and an iterative

process was conducted to make a better estimate of the system biases. After convergence, the

adjusted coordinates were used to compute the corrected ranges (r) and scan angles (θ). For the

geometrically calibrated LiDAR data, the vertical and horizontal accuracies were about ±20cm

and ±8cm, respectively. For more details regarding the implementation of “Quasi-Rigorous”

calibration procedure, interested readers can refer to Habib et al. (2010).

9http://www.cs.unc.edu/ isenburg/lastools/
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Figure 3.4: 2D view of the airborne LiDAR data
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Figure 3.5: 3D view of the airborne LiDAR data

3.2.2 Design of Experiment and Evaluation

Following the method in Section 3.1, radiometric correction was applied to the airborne Li-

DAR intensity data based on the radar (range) equation. The LiDAR dataset was displayed in

the ESRI® ArcGISTM 9.3 platform where the core of the correction model was built by using

ArcObjects and Visual Basic Applications (VBA). To evaluate the effects of the proposed at-

mospheric attenuation and the incidence angle in the correction model, five rounds of correction

were conducted on the intensity data with different settings as stated below:-

1. Radiometric correction using range and scan angle, the corrected intensity is named as

RCI R SA hereafter;

2. Radiometric correction using range, scan angle and atmospheric correction, the corrected

intensity is named as RCI R SA AC hereafter;

3. Radiometric correction using range and incidence angle, the corrected intensity is named

as RCI R IA hereafter;

4. Radiometric correction using range, incidence angle and atmospheric correction, the cor-

rected intensity is named as RCI R IA AC hereafter; and
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5. Radiometric correction using range, scan angle, incidence angle and atmospheric correc-

tion where the selection of either scan angle or incidence angle is controlled by the slope

with 40○, the corrected intensity is named as RCI R SA IA AC hereafter.

In terms of computational complexity, there was no significant difference in the data pro-

cessing time amongst the five trials since all parameters were appeared in the radar (range)

equation regardless of the trials. By interpolating the LiDAR data points in ArcGIS using

“void filling” method, intensity images were generated and exported in TIFF format with 0.4

m resolution. After that, we assessed the homogeneity of the intensity data before and after

radiometric correction. So far, there is no established standard method in remote sensing for

evaluating the homogeneity of intensity data. Ground truth is a desirable approach for the

evaluation, but in situ measurements by spectroradiometer were not available in this study.

Though aerial photos were acquired during the same flight of the LiDAR survey, the aerial

photos were not captured in the same wavelength as the LiDAR sensor did. Therefore, the

aerial photos were used as a reference for (a) visually selecting samples and (b) accuracy as-

sessment of land cover classification, which is covered in Chapter 5. Since identical reference

was not achievable, we imitated the statistical evaluation methods adopted in the correction of

magnetic resonance image (MRI) as summarized in Hou (2006) and Vovk et al. (2007).

A number of approaches were proposed to evaluate the MRI correction. The first approach

is to assess the variance of the entire or partial dataset, which is supposed to be reduced

after correction. Nevertheless, the results could be misleading as the units of the intensity are

different before and after correction (i.e., original intensity is equivalent to the received laser

power where correction intensity is related to the spectral reflectance of the illuminated object).

The second approach is to assess the coefficient of variation which is computed by dividing the

variance of a class ωi (e.g., a number of selected areas representing grassland) by its mean. This

approach is scale-invariant which can overcome the limitation of the first method.

cv(ωi) =
σ2(ωi)
µ(ωi)

(3.27)

In this context, smaller cv(ωi) corresponds to a smaller variation of intensity within the

land cover class. This thus acts as an indicator of better radiometric correction performance.

Other approaches such as classification/segmentation can be used to indirectly evaluate the

effects of the intensity correction. As such, we assessed the accuracy of different land cover

classification scenarios, which are discussed in Chapter 5. In this study, ten evenly distributed

target areas were identified for each of the land cover features (building, grass, road, soil and

tree) in each LiDAR data strip for computing the coefficient of variation (cv). These target

areas were intentionally selected in homogeneous surface with reference to the ortho-rectified
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aerial imagery. Fig. 3.6(a) to 3.6(c) shows the distribution of the target sample areas for the

five land cover features for data strip 1 to 3, respectively.

 

(a)

 

(b)

 

(c)

Figure 3.6: Distribution of homogeneous sample areas for computing the coefficient of
variation in (a) data strip 1, (b) data strip 2 and (c) data strip 3
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3.3 Results and Analysis

3.3.1 Visual Inspection

Figs. 3.7(a) to 3.7(f) show the original intensity (OI), RCI R SA, RCI R SA AC, RCI R IA,

RCI R IA AC and RCI R SA IA AC, respectively, in LiDAR data strip 1. Figs. 3.8(a) to 3.8(f)

show the OI, RCI R SA, RCI R SA AC, RCI R IA, RCI R IA AC and RCI R SA IA AC, re-

spectively, in LiDAR data strip 2. Figs. 3.9(a) to 3.9(f) show the OI, RCI R SA, RCI R SA AC,

RCI R IA, RCI R IA AC and RCI R SA IA AC, respectively, in LiDAR data strip 3. As shown

in the OI images (Figs. 3.7(a), 3.8(a) and 3.9(a)), the ground features were displayed in darker

tone (lower intensity) while the grass covers showed brighter tone (higher intensity) compared

to the ground. Though small dots of peak intensity were found along the main roads and park-

ing lots; these can be explained due to the existence of vehicles and road markings which have

high reflectance in near-infrared spectrum (Berdahl and Bretz, 1997; Yang et al., 2012). The

intensity values of building rooftops were homogeneous; however, the intensity of a few BCIT

campus buildings were mixed with the intensity of the road features due to the same paved

material (i.e., asphalt). Tree clusters, particularly those situated in the West of the study area,

were easily distinguished according to the morphology; however, the texture of canopies within

the intensity image was found to be non-uniform (rough). Therefore, high variance of intensity

values would be expected in the tree features.

By visually comparing the intensity images, the patterns and magnitudes of the corrected

intensity data using scan angle (RCI R SA and RCI R SA AC) and the proposed dataset

(RCI R SA IA AC) were similar to OI. On the other hand, it is apparent that the intensity

data corrected using the incidence angle (RCI R IA and RCI R IA AC) showed significant dif-

ference compared to the original intensity. The tree clusters showed high intensity values after

radiometric correction. The boundaries of BCIT campus buildings were discernible in these

two types of imagery. The contrast amongst other features (such as grass, road, sidewalks,

etc.) was decreased, but distinguishable. However, the effects of atmospheric correction were

not noticeable in the results, regardless of using scan angle or incidence angle in radiometric

correction. Therefore, qualitative analysis was carried out for in-depth comparison.

3.3.2 Coefficient of Variation

Table 3.3 and Fig. 3.10 show the cv for the five land cover features (building, grass, road,

soil and tree) on the original intensity data and the five different corrected intensity data,

and Table 3.4 shows the percentage change in cv of the corrected intensity data. Amongst all

the LiDAR data strips, the cv of building generated from OI was the smallest (from 0.962 to
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Figure 3.7: Airborne LiDAR intensity images (data strip 1) before and after radiometric
correction
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(f) RCI R SA IA AC

Figure 3.8: Airborne LiDAR intensity images (data strip 2) before and after radiometric
correction
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(f) RCI R SA IA AC

Figure 3.9: Airborne LiDAR intensity images (data strip 3) before and after radiometric
correction
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2.144) amongst all the land cover types. Reduction of cv between 0.4% to 11.3% was found on

the intensity data corrected by using range and scan angle only (RCI R SA). By adding the

atmospheric attenuation factor, the cv was further reduced by ∼45% in data strips 1 to 3. Such

argument was valid in the rest of land cover types amongst the three datasets. For instance,

the cv of grass samples decreased 17% to 35% in the RCI R SA and the values were further

reduced by 52% to 61% in RCI R SA AC; the cv of road samples were reduced 3% to 11% in

RCI R SA and the values were further dropped by 44% to 48% in RCI R SA AC . Although

the cv of tree samples were relatively higher (7.781 to 9.737) than the others, the RCI R SA

and RCI R SA AC still demonstrated a reduction of 10% to 21% and 48% to 53%, respectively,

in this sample. Up to this point, it is proven that radiometric correction using the range and

scan angle increases the land cover homogeneity as inferred by the modified LiDAR intensity

readings. With the proposed atmospheric attenuation, further reduction of cv can be achieved

which proves the effectiveness of such factor in the radiometric correction process.

Table 3.3: Coefficient of variation of five land cover features generated from the original and
corrected intensity data

Building Grass Road Soil Tree

LiDAR Data Strip 1

OI 1.192 3.415 3.992 3.566 9.737

RCI R SA 1.057 2.204 3.554 2.663 7.730

RCI R SA AC 0.611 1.327 2.062 0.799 4.546

RCI R IA 4.270 5.234 6.486 1.077 83.075

RCI R IA AC 2.965 3.691 4.634 0.799 82.624

RCI R SA IA AC 0.307 0.626 1.029 0.783 2.525

LiDAR Data Strip 2

OI 0.962 1.659 1.538 3.925 8.990

RCI R SA 0.910 1.208 1.498 3.154 8.064

RCI R SA AC 0.522 0.700 0.857 1.837 4.674

RCI R IA 0.370 0.930 0.600 7.435 86.116

RCI R IA AC 0.265 0.677 0.429 9.756 84.957

RCI R SA IA AC 0.265 0.371 0.429 0.963 2.437

LiDAR Data Strip 3

OI 2.144 8.120 2.395 2.815 7.781

RCI R SA 2.136 6.735 2.253 2.244 6.904

RCI R SA AC 1.220 3.938 1.302 1.326 4.021

RCI R IA 4.086 2.772 2.598 5.954 75.206

RCI R IA AC 2.904 2.026 1.893 6.482 74.344

RCI R SA IA AC 0.654 1.999 0.668 0.719 2.076
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(a) LiDAR data strip 1  
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(b) LiDAR data strip 2

 

 

 

0

1

2

3

4

5

6

7

8

9

10

Building Grass Road Soil Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on OI

RC_R_SA

RC_R_SA_AC

RC_R_IA

RC_R_IA_AC

RC_R_SA_IA_AC

0

1

2

3

4

5

6

7

8

9

10

Building Grass Road Soil Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on OI

RC_R_SA

RC_R_SA_AC

RC_R_IA

RC_R_IA_AC

RC_R_SA_IA_AC

0

1

2

3

4

5

6

7

8

9

10

Building Grass Road Soil Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on OI

RC_R_SA

RC_R_SA_AC

RC_R_IA

RC_R_IA_AC

RC_R_SA_IA_AC

75.206 74.344

86.116 84.957

83.075 82.624

(c) LiDAR data strip 3

Figure 3.10: Coefficient of variation of five land cover features generated from the original and
corrected intensity data

In the results of corrected intensity using range and incidence angle, the argument of cv

reduction was no longer stood. In the RCI R IA datasets from LiDAR data strips 1 to 3, most

of the results were recorded with an increase of cv. In the building samples, the cv was raised
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Table 3.4: Percentage change in coefficient of variation

Building Grass Road Soil Tree

LiDAR Data Strip 1

RCI R SA ↓ 11.3% ↓ 35.5% ↓ 11.0% ↓ 25.3% ↓ 20.6%

RCI R SA AC ↓ 48.7% ↓ 61.2% ↓ 48.4% ↓ 77.6% ↓ 53.3%

RCI R IA ↑ 258.2% ↑ 53.3% ↑ 62.5% ↓ 69.8% ↑ 753.2%

RCI R IA AC ↑ 148.7% ↑ 8.1% ↑ 16.1% ↓ 77.6% ↑ 748.6%

RCI R SA IA AC ↓ 74.2% ↓ 81.7% ↓ 74.2% ↓ 78.0% ↓ 74.1%

LiDAR Data Strip 2

RCI R SA ↓ 5.3% ↓ 27.2% ↓ 2.6% ↓ 19.6% ↓ 10.3%

RCI R SA AC ↓ 45.7% ↓ 57.8% ↓ 44.3% ↓ 53.2% ↓ 48.0%

RCI R IA ↓ 61.5% ↓ 43.9% ↓ 61.0% ↑ 89.4% ↑ 857.9%

RCI R IA AC ↓ 72.4% ↓ 59.2% ↓ 72.1% ↑ 148.5% ↑ 845.0%

RCI R SA IA AC ↓ 72.4% ↓ 77.6% ↓ 72.1% ↓ 75.5% ↓ 72.9%

LiDAR Data Strip 3

RCI R SA ↓ 0.4% ↓ 17.1% ↓ 6.0% ↓ 20.3% ↓ 11.3%

RCI R SA AC ↓ 43.1% ↓ 51.5% ↓ 45.6% ↓ 52.9% ↓ 48.3%

RCI R IA ↑ 90.6% ↓ 65.9% ↑ 8.5% ↑ 111.5% ↑ 866.5%

RCI R IA AC ↑ 35.5% ↓ 75.1% ↓ 21.0% ↑ 130.2% ↑ 855.4%

RCI R SA IA AC ↓ 69.5% ↓ 75.4% ↓ 72.1% ↓ 74.5% ↓ 73.3%

by two to three times in data strips 1 and 3, while contradictorily, a decrease of cv (↓61.5%)

was recorded in the building samples obtained from data strip 2. This can be explained by

considering that the samples acquired in data strips 1 and 3 were mostly located on inclined

rooftops of small houses where the samples of data strip 2 were mainly located on the flat

rooftops of BCIT campus buildings. Such large fluctuations in cv also appeared in the grass

samples (from ↓66% to ↑53%), road samples (from ↓61% to ↑62%) and soil samples (from ↓70%

to ↑111%). It is worth noting that the elevation in the South of the study area is higher than

the elevation in the North of the study area (See Fig. 3.4), the change in slope would cause the

increase of incidence angle resulting in the over-correction effects as reported in the previous

literatures for satellite remote sensing sensors (Riaño et al., 2003; Soenen et al., 2005). In the

tree samples, the cv even spiked from 10 (in OI) to 80 in RCI R IA and RCI R IA AC datasets.

Adding the atmospheric attenuation factor slightly relieved the over-correction effects or further

reduced the cv, the ultimate solution of radiometric correction should combine the use of both

scan angle and incidence angle together with the proposed atmospheric attenuation factor. As

such, a new processing scheme was proposed in Section 3.1.4 by using the slope as a threshold

value in selecting either using the incidence angle (when slope ≤40) or scan angle (when slope
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> 40) in the radiometric correction process. The cv obtained from the results derived by this

approach (RCI R SA IA AC) reached the smallest values as shown in Tables 3.3 and 3.4. The

cv values decreased ranging from 70% to 82% in the five land cover types where the results

yielded the best amongst all trials and datasets. With respect to the significant reduction in cv,

the proposed approach can counteract the over-correction effects that occur when the incidence

angle approaches 90○, and thus produce improvement of land cover homogeneity for all the land

cover types after radiometric correction.

3.4 Chapter Summary

In this chapter, a radiometric correction model based on the radar (range) equation was pre-

sented. The proposed model included a set of empirical models for the computation of atmo-

spheric attenuation and formulas for computing the incidence angle based on the GPS trajectory

and LiDAR derived TIN model. As over-correction has been previously reported when using

incidence angle in radiometric correction (Shaker et al., 2011), this thesis research proposed to

utilize the slope as a threshold to control either using scan angle (when slope > 40) or incidence

angle (when slope ≤ 40) in the radiometric correction process. Five rounds of correction were

conducted on the intensity data in order to evaluate the impacts of scan angle, incidence angle

and atmospheric attenuation on the results. The coefficient of variation was assessed in five

different land cover samples (building, grass, road, soil and tree) generated from the original

and corrected intensity data. Regardless of the land cover features, most of the cv values were

significantly reduced by an average of 15% and 52% in RCI R SA and RCI R SA AC, respec-

tively. In the radiometrically corrected intensity dataset using incidence angle (RCI R IA and

RCI R IA AC), reduction of cv was not guaranteed. Increase of cv was found in a few land

cover samples ranging from 8% to 866%. The significant increase of cv was mostly found in

tree samples. In the proposed RCI R SA IA AC, experimental results demonstrated that the

cv within the same land cover feature was reduced by 70% to 82%. To conclude, the proposed

approach combines the merits of using the scan angle and incidence angle in the radiometric

correction process. All the cv values were significantly reduced across all land cover features.

In addition, the proposed atmospheric attenuation factor demonstrated its usefulness in further

reducing the cv. As the intensity homogeneity within the same land cover type was improved,

it is expected to achieve higher accuracy of land cover classification when using the corrected

intensity data, which is covered in Chapter 5.
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Chapter 4

Radiometric Normalization

This chapter presents the approach for radiometric normalization of multiple airborne LiDAR

intensity data strips. Though radiometric correction was applied to the LiDAR intensity data,

and intensity discrepancy still appeared when combining the overlapping LiDAR data strips.

Such a discrepancy represents a source of noise which may degrade classification accuracy. To

resolve the radiometric misalignment, the thesis proposes a normalization model to match the

sub-histograms amongst the multiple LiDAR intensity data. The criterion to split the entire

intensity histogram into sub-histograms was based on the Gaussian mixture modeling technique.

Radiometric normalization was implemented by matching the corresponding sub-histogram

between the LiDAR data strips using histogram equalization. The proposed normalization was

applied to original intensity data and radiometrically corrected intensity data for the entire block

of LiDAR data strips. Four study areas were identified in the overlapping regions for analysis

of results. Finally, land cover homogeneity was again assessed by studying the coefficient of

variation of different land cover features before and after radiometric normalization.

4.1 Introduction

Recalling the research goal as stated in Chapter 1, this thesis aims to improve the intensity ho-

mogeneity within the same type of land cover features. After radiometric correction, variability

in single strip LiDAR intensity data at nadir and maximum swath were significantly reduced as

demonstrated in the previous chapter. A question now arises, “How would the results appear

when combining multiple overlapping LiDAR intensity?” Fig. 4.1 shows an intensity image

combined by two different scans of LiDAR flight. Obviously, the result of combining intensity

data included a significant line stripping problem which represented a source of systematic noise.

Radiometric correction did not perfectly reduce the discrepancy between the two LiDAR data
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strips where line stripping problem occurred in the result intensity image. The main reason

for such discrepancy was mainly due to the assumption of gain factor as constant in the radar

(range) equation.

 

Flying	
Height	

Flying	
Direction	

1st	Scan	
2nd	Scan	

Laser	Footprints	 	

2nd	Scan	

1st	Scan	

Intensity	Image	 	

Line	Stripping	
Noise	 	

Figure 4.1: Result of combining intensity data acquired from two overlapping scans

The gain factor (or automatic gain control, AGC) aims to control the range of the recorded

intensity within the radiometric resolution, for example, 0 to 255 for an 8 bit intensity data.

Vain et al. (2010) discussed the principal of AGC as follows: when the LiDAR sensor emits

laser pulse on a low reflective object (e.g., water bodies), a null return may be recorded and

thus the AGC would be automatically increased. When the LiDAR sensor flies over highly

reflective objects, intensity values over 255 may be obtained, and thus the AGC would be

adjusted. Although few proprietary software bundled with LiDAR sensor are used to normalize

the intensity value from AGC on to AGC off, the method of AGC is not disclosed by the

sensor manufacturer where the technique to remove the effects of AGC remains questionable.

Recently, Korpela et al. (2010) and Vain et al. (2010) attempted to model the effects of AGC

by using two different linear empirical models which shed the light on the black box of AGC.

Based on the empirical formulas, the effects of AGC are controlled by a scale factor and a shift

(offset). As a result, the transformation equation between the intensity data with AGC-on and

AGC-off should be in a form of piecewise linear function. Though fitting a piecewise linear

function in a joint intensity histogram (or comparagram) between two identical images has

been demonstrated for color mapping in computer science studies (Mann 2000; Candocia, 2003;

Candocia 2005; Wu et al., 2010), such an approach is not viable in airborne LiDAR intensity

data since the LiDAR data points between two strips are not suited at the exact location.

Therefore, this thesis proposes to radiometrically align the intensity data amongst different

strips based on a sub-histogram matching technique.
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GMM(n) 
Iteration
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Figure 4.2: Overall workflow for radiometric normalization

4.2 Method

4.2.1 Overall Workflow

Fig. 4.2 shows the overall workflow for radiometric normalization of multiple LiDAR intensity

data. The intensity data here refers to the radiometrically corrected intensity data. Never-

theless, the method can also be applied to the original intensity data if radiometric correction

cannot be achieved (e.g., GPS trajectory data is not available). Firstly, overlapping areas for

the 1st to the nth LiDAR data strips were identified in which the area is preferable to have a

variety of land cover features covering a wide range of intensity values. Histograms (H1 to Hn)

of the overlapping LiDAR data strips were generated individually from the intensity data (I1 to

In). Gaussian mixture modeling technique was applied to the histogram in order to fit a Gaus-

sian component for each individual sub-histogram. The intersection points, which were used

to partition the histogram into sub-histograms, were derived by finding the intersection points
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of the adjacent Gaussian components. The process was then repeated for all the histograms

generated from the overlapping LiDAR intensity data strips. Finally, sub-histogram matching

was carried out based on the histogram equalization techniques so as to normalize the intensity

of 2nd to nth LiDAR data strips with reference to the intensity of the 1st LiDAR data strip. In

the coming section 4.2.2, we follow the notation of GMM as defined by Lai et al. (2012) for

presenting the mathematical model of radiometric normalization.

4.2.2 Gaussian Mixture Model

Consider a LiDAR dataset X with N number of points; X = {x1, x2,⋯, xn,⋯, xN} where 1 ≤
n ≤ N . For a 8 bit LiDAR data, the intensity value I lies between 0 to 255. The intensity of

LiDAR data point xn is denoted as I(xn). Let nI be the number of LiDAR data points with

intensity I. The probability density function of nI over N is defined by:

PI =
nI
N

(4.1)

Given a histogram of the LiDAR dataset X, we need to partition the histogram into K sub-

histograms. Let i1, i2, . . . and iK−1 be the K-1 intersection points that partition the histogram

with 2 ≤ K ≤ 255.The cumulative density function of each sub-histogram is calculated by:

c1 =
i1

∑
I=0

PI , c2 =
i2

∑
I=i1+1

PI , . . . , cK =
255

∑
I=iK−1+1

PI (4.2)

As such, the sum of the cumulative density functions would be:

K

∑
k=1

ck = 1 and 0 ≤ ck ≤ 1 (4.3)

Based on Eq. (4.2), the mean of each sub-histogram can be expressed as:-

µ1 =
i1

∑
I=0

I
PI
c1
, µ2 =

i2

∑
I=i1+1

I
PI
c2
, . . . , µK =

255

∑
I=iK−1+1

I
PI
cK

(4.4)

The variance for each of the K sub-histogram can be calculated by:

σ2
1 =

i1

∑
I=0

(I − µ1)2PI
c1
, σ2

2 =
i2

∑
I=i1+1

(I − µ2)2PI
c2
, . . . , σ2

K =
255

∑
I=iK−1+1

(I − µK)2 PI
cK

(4.5)
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Commonly, a histogram is in a form of multi-modal distribution which can be regarded as

a Gaussian Mixture Model (GMM). GMM is a parametric statistical model that assumes the

data originates from a weighted sum of several Gaussian components. The probability of the

LiDAR data point xn, with respect to the kth Gaussian component, is defined as:-

G(I(xn), µk, σ2
k) =

1√
2πσ2

k

exp

⎡⎢⎢⎢⎢⎣

−(I(xn) − µk)2

2σ2
k

⎤⎥⎥⎥⎥⎦
(4.6)

The Gaussian Mixture Model for the intensity of data point xn is a weighted sum of the

individual Gaussian components, and GMM is defined as follows:-

P (I(xn)) =
K

∑
k=1

αkG(I(xn), µk, σ2
k) (4.7)

where αk denotes the weight of the kth Gaussian function under the condition α1+α2+ . . .+αk+
. . .+αK = 1 and 0 ≤ αk ≤ 1. The expectation maximization (EM) algorithm is commonly used to

estimate the set of parameters: mean {µ1 . . . µK}, variance {σ2
1 . . . σ

2
K} and weight {α1 . . . αK}

in Eq. (4.7) through an iterative process.

Step 1: Partition the entire histogram into K sub-histograms with equal range.
Compute the mean µ1 . . . µK and variance σ2

1 . . . σ
2
K for each sub-histogram

using Eq. (4.4) and (4.5). Assume the weight αk as 1
K .

Initialization

Step 2: Compute the new weight (αk,new) for each sub-histogram using the fol-
lowing equation:New weight

αk,new = 1

N

N

∑
n=1

αkG(I(xn), µk, σ2
k)

K

∑
k=1

αkG(I(xn), µk, σ2
k)

(4.8)

Step 3: Compute the new mean (µk,new) for each sub-histogram using the following
equation:New mean

µk,new =

N

∑
n=1

αkG(I(xn),µk,σ
2
k)

K

∑
k=1

αkG(I(xn),µk,σ
2
k
)

I(xn)

N

∑
n=1

αkG(I(xn),µk,σ
2
k
)

K

∑
k=1

αkG(I(xn),µk,σ
2
k
)

(4.9)
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Step 4: Compute the new variance (σ2
k,new) for each sub-histogram using the fol-

lowing equation:New variance

σ2
k,new =

N

∑
n=1

αkG(I(xn),µk,σ
2
k)

K

∑
k=1

αkG(I(xn),µk,σ
2
k
)

(I(xn) − µk)2

N

∑
n=1

αkG(I(xn),µk,σ
2
k
)

K

∑
k=1

αkG(I(xn),µk,σ
2
k
)

(4.10)

Step 5: Check the difference of the new and previous values; i.e., If ∣αk,new - αk∣ <
threshold and ∣µk,new - µk∣ < threshold and ∣σ2

k,new - σ2
k∣ < threshold, then

the process stop, else go to step 2. The threshold in this study is 10-3.

Check

4.2.3 Histogram Partition

After fitting the Gaussian component for each sub-histogram, the next step is to partition the

entire histogram based on the intersection of adjacent Gaussian components. The intersection

point can be found by equaling the function of any pairwise adjacent Gaussian components.

Mathematically, it can be solved by:-

αkG(I, µk, σ2
k) = αk+1G(I, µk+1, σ

2
k+1) (4.11)

or equivalently

αk√
2πσ2

k

exp

⎡⎢⎢⎢⎢⎣

−(I − µk)2

2σ2
k

⎤⎥⎥⎥⎥⎦
= αk+1√

2πσ2
k+1

exp

⎡⎢⎢⎢⎢⎣

−(I − µk+1)2

2σ2
k+1

⎤⎥⎥⎥⎥⎦
(4.12)

αkσk+1

αk+1σk
=

exp[−(I−µk+1)
2

2σ2
k+1

]

exp[−(I−µk)2
2σ2
k

]
(4.13)

ln

⎡⎢⎢⎢⎢⎣

αkσk+1

αk+1σk

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

−(I − µk+1)2

2σ2
k+1

⎤⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎣

−(I − µk)2

2σ2
k

⎤⎥⎥⎥⎥⎦
(4.14)

2σ2
kσ

2
k+1ln

⎡⎢⎢⎢⎢⎣

αkσk+1

αk+1σk

⎤⎥⎥⎥⎥⎦
= −σ2

k(I − µk+1)2 + σ2
k+1(I − µk)2 (4.15)

(σ2
k+1 − σ2

k)I2 + 2(µk+1σ
2
k − µkσ2

k+1)I + σ2
k+1µ

2
k − σ2

kµ
2
k+1 − 2σ2

kσ
2
k+1ln

⎡⎢⎢⎢⎢⎣

αkσk+1

αk+1σk

⎤⎥⎥⎥⎥⎦
= 0 (4.16)
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Eq. (4.16) can be represented in the form of:-

aI2 + bI + c = 0 (4.17)

where

a = σ2
k+1 − σ2

k; b = 2(µk+1σ
2
k − µkσ2

k+1); c = σ2
k+1µ

2
k − σ2

kµ
2
k+1 − 2σ2

kσ
2
k+1ln

⎡⎢⎢⎢⎢⎣

µkσk+1

µk+1σk

⎤⎥⎥⎥⎥⎦
(4.18)

The solution of Eq. (4.17) would be:-

I = −b
√
b2 ± 4ac

2a
(4.19)

4.2.4 Sub-histogram Matching

Finally, the intersection points of all the pairwise adjacent Gaussian components are com-

puted. Recalling the notation as defined in Section 4.2.2, the entire histogram is partitioned

into K histogram based on the intersection points {0, i1, i2, . . . , iK−1,255}. Assuming the in-

tensity data (XA) of LiDAR data strip A is normalized with reference to the intensity data

of (XB) LiDAR data strip B, the intersection points of both strips’ histogram are denoted

as {0, iA1 , i
A
2 , . . . , i

A
K−1,255} and {0, iB1 , i

B
2 , . . . , i

B
K−1,255}. The sub-histogram matching process

first computes the cumulative probability density function for each sub-histogram of XA based

on the intersection points:

cA1 =
iA1

∑
I=0

PI , c
A
2 =

iA2

∑
I=iA1 +1

PI , . . . , c
A
K =

255

∑
I=iAK−1+1

PI (4.20)

The intensity value in each sub-histogram of XA is transformed to the intensity of the

corresponding sub-histogram of XB by using the histogram equalization technique:

f1[I(xn)] = 0 + (iB1 − 0)cA1 (4.21)

f2[I(xn)] = iB1 + (iB2 − iB1 )cA2 (4.22)

. . . . . .

fK[I(xn)] = iBK−1 + (255 − iBK−1)cAK (4.23)

Combining all the transformation functions, the entire histogram equalization model is
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represented as:-

F [I(xn)] = f1[I(xn)] ∪ f2[I(xn)] ∪ . . . ∪ fK[I(xn)] (4.24)

Based on the transformation function F , the intensity data in XA are normalized with

reference to the intensity data in XB where the normalized intensity of XA is computed by

F [I(xn)]∀I(xn) ∈ XA. Fig. 4.3 demonstrates a pictogram example for the entire radiometric

normalization process.
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Figure 4.3: An example of GMM and sub-histogram matching from LiDAR data strip A to B
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4.3 Experimental Testing

As reported in Chapter 3, three data strips were acquired during the airborne LiDAR flight

survey. Since the LiDAR data strip 2 falls in between the data strips 1 and 3 (refer to Fig.

3.3), the experimental work attempted to normalize the intensity data of these two data strips

with reference to the intensity of data strip 2. Before generating the intensity histograms,

thirty-two polygons were selected in the overlapping regions, and the intensity histograms of

these polygons were investigated so as to make sure they followed normally distributed. These

polygons covered different land cover features in the study area with a wide range of intensity

values. The upper part of Fig. 4.4 shows the polygons located at the overlapping region of

data strips 1 and 2, where the lower part shows the polygons located at the overlapping region

of data strips 2 and 3. A number of programs were developed to implement the normalization

process in MATLAB R2011b. Though MATLAB offers the gmdistribution function for GMM

fitting based on EM algorithm, the programs were built based on the equations as reported in

Section 4.2 in order to have a better control over the initialization and iteration.

 

Figure 4.4: Distribution of polygons for generating intensity histograms in the overlapping
regions of LiDAR data strips

The intensity of LiDAR data points within these polygons were first extracted from the

corresponding LiDAR data strip. Both original intensity data and corrected intensity data were

utilized to generate intensity histograms so that radiometric normalization can be implemented

on both datasets. Since it was proven that the RCI R SA IA AC yielded the best land cover
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(a) Histogram of OI from data strip 1	
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(b) Histogram of RCI from data strip 1	
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(c) Histogram of OI from data strip 2
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(d) Histogram of RCI from data strip 2

Figure 4.5: Intensity histograms generated using polygons located at the overlapping region of
LiDAR data strips 1 and 2

homogeneity as reported in Chapter 3, the RCI R SA IA AC datasets were used as the corrected

intensity, denoted as RCI, in the rest of the experiment in this chapter. Figs. 4.5 and 4.6

show the intensity histograms (OI and RCI) generated using the polygons acquired in the

overlapping areas located at data strips 1 and 2, and data strips 2 and 3, respectively. The

intensity histograms were in tri-modal distribution in Fig. 4.5 and bi-modal distribution in

Fig. 4.6 with similar shape and appearance between the histograms of OI and those of RCI.

In the histograms of LiDAR data strips 1 and 2 (Fig. 4.5), the maximum intensity value in

OI was found to be between 60 and 70, whereas the maximum intensity in RCI was within

20 to 25. The reason for the significant reduction of intensity range was because the values of

RCI were in float data type (unlike OI in integer data type); therefore, the histograms shown
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in Fig. 4.5(b), 4.5(d), 4.6(b) and 4.6(d) were generated with a round-up process. However, in

the experimental computations, the processes were conducted based on its corresponding data

type. In Fig. 4.6, a slightly bigger difference in the intensity range between OI and RCI was

observed. In the histograms of data strip 2, the maximum intensity reached to 56 and 34 in

the OI and RCI respectively, while the maximum intensity values were 37 (OI) and 24 (RCI) in

the histograms of data strip 3. Compared to the combined intensity in data strips 1 and 2, it is

foreseen that the line stripping problem in the combined data strips 2 and 3 would be manifest

since the range of the intensity was significantly different.
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(a) Histogram of OI from data strip 2	
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(b) Histogram of RCI from data strip 2	
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(c) Histogram of OI from data strip 3
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(d) Histogram of RCI from data strip 3

Figure 4.6: Intensity histograms generated using polygons located at the overlapping region of
LiDAR data strips 2 and 3

All the above intensity histograms were fitted with Gaussian components using the method

proposed in Section 4.2.2. Taking the intensity histogram of OI of data strip 1 as an example
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(see Fig. 4.5(a)), the intensity was in a form of tri-modal distribution which were fitted with

three Gaussian components. Initial values of means and variances were assigned for the three

Gaussian components with µ1 = 19.1, µ2 = 22.0, µ3 = 40.0, σ1 = 15.6, σ2 = 19.6, and σ3 =

14.7 in the initialization stage. After 40 iterations, all the results started to converge to their

optimal values without further changes. As shown in Fig. 4.7(a), µ1 dropped from 19.1 to 6.6

after 35 iterations, where both µ2 and µ3 slightly increased from their initial values and then

reached steady state at 20.2 and 44.2, respectively. All the variance showed similar trends as

µ1 where the values of σ1, σ2, and σ3 started at its initial values and gradually decreased to

2.2, 5.8 and 6.6, respectively after 37 iterations. Figs. 4.7 and 4.8 show the statistics of GMM

generated from the OI and RCI intensity histograms generated from the LiDAR data strips 1

and 2, and LiDAR data strips 2 and 3, respectively. Figs. 4.9 and 4.10 show the fitted Gaussian

components generated from the OI and RCI intensity histograms generated from the LiDAR

data strips 1 and 2, and LiDAR data strips 2 and 3, respectively.
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(a) Statistics of GMM generated from
the OI histogram of data strip 1
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(b) Statistics of GMM generated from
the RCI histogram of data strip 1
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(c) Statistics of GMM generated from
the OI histogram of data strip 2
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(d) Statistics of GMM generated from
the RCI histogram of data strip 2

Figure 4.7: Statistics of GMM generated from the OI and RCI intensity histograms generated
from the LiDAR data strips 1 and 2

56



57 CHAPTER 4. RADIOMETRIC NORMALIZATION

	

 

5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

Number of iterations

In
te

ns
ity

 

 
1 2 1 2

5 10 15 20 25 30
0

5

10

15

20

25

Number of iterations

In
te

ns
ity

 

 
1 2 1 2

5 10 15 20 25 30
0

5

10

15

20

25

Number of iterations

In
te

ns
ity

 

 
1 2 1 2

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

Number of iterations

In
te

ns
ity

 

 
1 2 1 2

(a) Statistics of GMM generated from
the OI histogram of data strip 2
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(b) Statistics of GMM generated from
the RCI histogram of data strip 2	
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(c) Statistics of GMM generated from
the OI histogram of data strip 3
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(d) Statistics of GMM generated from
the RCI histogram of data strip 3

Figure 4.8: Statistics of GMM generated from the OI and RCI intensity histograms generated
from the LiDAR data strips 2 and 3
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(a) Histogram of OI from
data strip 1
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(b) Histogram of RCI from
data strip 1
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(c) Histogram of OI from
data strip 2
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(d) Histogram of RCI from
data strip 2

Figure 4.9: Fitted Gaussian components in the OI and RCI intensity histograms generated
from LiDAR data strips 1 and 2
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(a) Histogram of OI from
data strip 2
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(b) Histogram of RCI from
data strip 2
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(c) Histogram of OI from
data strip 3
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(d) Histogram of RCI from
data strip 3

Figure 4.10: Fitted Gaussian components in the OI and RCI intensity histograms generated
from LiDAR data strips 2 and 3

After fitting the Gaussian components, the entire intensity histogram was partitioned into

sub-histograms based on the method proposed in Section 4.2.3. By equaling the functions of

a pair of neighbor Gaussian components, the intersection point between the two components

was derived and regarded as the point for splitting the histogram. Table 4.1 summarizes the

intersection points derived from all the aforementioned datasets. Although most of the intensity

histograms were ended at its maximum value (e.g., maximum intensity of OI in data strip 1

=66), the value 255 was used as the end of the last sub-histogram scan since there were a few

intensity data appearing between the maximum value and 255.

Table 4.1: Computed intersection points for all the datasets

OI RCI

Data Strip 1 Data Strip 2 Data Strip 1 Data Strip 2

Start 1 1 1 1

IP 11 6 3 5

IP 31 25 9 9

IP 66 56 18 17

End 255 255 255 255

Data Strip 2 Data Strip 3 Data Strip 2 Data Strip 3

Start 1 1 1 1

IP 16 6 9 4

IP 56 37 34 24

End 255 255 255 255

*IP = Intersection Point

The derived intersection points, which represented the intensity range of the sub-histograms,

were used for implementing the sub-histogram matching. As mentioned in Section 4.2.4, the

58



59 CHAPTER 4. RADIOMETRIC NORMALIZATION

matching technique was based on the histogram equalization which implemented in each sub-

histogram. For example, in the histograms of OI in LiDAR data strips 1 and 2, the 1st sub-

histogram of data strip 1 (with intensity range from 1 to 11) was used to compute the cumulative

density function, and then histogram equalization was implemented to map the cumulative

density function into the range of the 1st sub-histogram of data strip 2 (with intensity range

from 1 to 6). With the histogram equalization function computed in each sub-histogram, the

combined function appeared in a form of piecewise linear function which transforms the intensity

of data strip 1 to the intensity of data strip 2. Fig. 4.11 shows the transformation function from

data strip 1 to data strip 2, and data strip 3 to data strip 2. One should note that there were

a few number of LiDAR data points with intensity values beyond the range of the histograms

as shown in Fig. 4.6; therefore, stepwise curves were appeared in later region of Fig. 4.11(b).
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Figure 4.11: Histogram equalization of (a) data strips 1 and 2 and (b) data strips 2 and 3

Finally, all the intensity of LiDAR data points in data strip 1 and 3 were normalized into

the intensity range of data strip 2 based on the above histogram equalization functions. After

that, all the LiDAR data points were combined for results and analysis. The original intensity

were directly combined which is denoted as OI. The normalized OI of data strips 1 and 3 were

combined with the OI of data strip 2, which is denoted as ONI in the rest of this chapter. The

normalized RCI of data strips 1 and 3 were combined with the data RCI of data strip 2, which is

named as RCNI hereafter. Intensity images were generated by interpolating the data points in

all the aforementioned datasets. Similar to Chapter 3, the results and analysis were conducted

based on visual inspection of the intensity images and coefficient of variation of different land

cover samples.
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4.4 Results and Analysis

4.4.1 Visual Inspection

Radiometric normalization was applied to the original intensity data and radiometrically cor-

rected intensity data in the entire LiDAR data strips 1 and 3 with reference to data strip 2.

Four sub-areas in these two overlapping regions were selected for further examination. Figs.

4.12(a) to 4.12(d) show the aerial photo, OI, ONI and RCNI of an area including different land

cover types in the overlapping region of LiDAR data strips 1 and 2. Systematic stripping noises

were found on the building rooftop in the OI image (Fig. 4.12(b)). Such noises were somehow

reduced in the ONI (Fig. 4.12(c)) where these noises were further reduced in the RCNI images

(Fig. 4.12(d)).

	 	 	 	
 

(a)	 	 	 	
 

(b)	 	 	 	
 

(c)	 	 	 	
 

(d)

Figure 4.12: (a) Aerial Photo, (b) OI, (c) ONI and (d) RCNI in an area located at the
overlapping region of LiDAR data strips 1 and 2

	 	 	 	
 

(a)	 	 	 	
 

(b)	 	 	 	
 

(c)	 	 	 	
 

(d)

Figure 4.13: (a) Aerial Photo, (b) OI, (c) ONI and (d) RCNI in an area located at the
overlapping region of LiDAR data strips 1 and 2

Figs. 4.13(a) to 4.13(d) show the aerial photo, OI, ONI and RCNI in another area, which

was located in the overlapping region of LiDAR data strips 1 and 2. In this example, the
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line stripping noises were manifest on the grass cover and the building rooftop. The ONI

image seemed to have slight reduction on the variability of intensity while these noises were less

obvious in the RCNI image. One should note that the building rooftops in these two examples

were inclined; radiometric correction demonstrated a positive influence in reducing the intensity

difference between the inclined surfaces. Fig. 4.14 demonstrates an example of inclined building

rooftops in the same study area as Fig. 4.13. As shown in the aerial photo, a building roof with

opposite inclined orientation was located at the North of the flight line. In the original intensity

data, the intensity value on surface B (close to the aircraft) was much higher than the surface

A where the cv of the entire rooftop was 1.308. Difference of intensity was observed in the

surfaces A and B on the building rooftop. After applying radiometric correction, the cv value

reduced 27% and reached 0.948. Therefore, radiometric correction improved the normalized

intensity results compared to the results of ONI.

 
Original Intensity Corrected Intensity 

Surface A 

Surface B 

Surface A 

Surface B 

Coefficient of 
Variation 

 

ROI = 1.308 
RCI = 0.948 

Same 
Material 

255

Flying 
Height 

0

Figure 4.14: Effects of radiometric correction on the same roof surface with opposite inclined
orientation

In the example of Figs. 4.15 and 4.16, the study areas were located at the overlapping region

of LiDAR data strips 2 and 3, the stripping noise problem was extremely serious (comparable

to those scan line corrector problem in satellite remote sensing sensor). Unlike the previous

examples, the noises appeared on the ground, grass cover and building rooftops in a vertical

direction (see Figs. 4.15(b) and 4.16(b)). After radiometric normalization, such discrepancy

was significantly reduced in ONI and RCNI, leaving a few low level noises in the result images.

However, the difference between both normalized intensity data (Fig. 4.15(c) versus Fig 4.15(d)

or Fig. 4.16(c) versus Fig. 4.16(d)) was not visually distinguishable. Statistical methods should

be applied to reveal the difference.
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(a)	 	 	 	
 

(b)	 	 	 	
 

(c)	 	 	 	
 

(d)

Figure 4.15: (a) Aerial Photo, (b) OI, (c) ONI and (d) RCNI in an area located at the
overlapping region of LiDAR data strips 2 and 3
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(c)

	
	 	 	 	

 
(d)

Figure 4.16: (a) Aerial Photo, (b) OI, (c) ONI and (d) RCNI in an area located at the
overlapping region of LiDAR data strips 2 and 3

4.4.2 Coefficient of Variation

Following the way of analysis in Chapter 3, the coefficient of variation in each of the land cover

samples was computed. Fig. 4.17(a) to 4.17(d) show the distribution of land cover samples in

the four sub-areas as shown in Section 4.4.1.

	 	
	 	 	 	

 
(a) Sub-area 1

	 	
	 	 	 	

 
(b) Sub-area 2

	 	
	 	 	 	

 
(c) Sub-area 3

	 	
	 	 	 	

 
(d) Sub-area 4

Figure 4.17: Distribution of land cover samples for computing the coefficient of variation
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Table 4.2 shows the cv of five land cover features generated from OI, ONI and RCNI, and

Table 4.3 shows the percentage change in cv of the five land cover features generated from ONI

and RCNI with respect to the OI. Overall speaking, most of the cv values were reduced in the

results of ONI and all the cv values of RCNI were decreased as shown in Fig. 4.18. In the

building samples, the cv values ranged from 1.117 to 2.285, and reduction of cv values from 10%

and 62% were found in the ONI generated from data strips 1 and 2 (sub-areas 1 and 2), while

an increase of cv (↑34%) was observed in the building rooftop of sub-area 3. Since the cv value

was around 2.5, the noisy effect was not obvious. In the grass samples, most of the results were

recorded with a decrease in cv ranging from 12% to 80% in all the study areas, except the ONI

in sub-area 2 recorded with an 8.7% increase in cv. The cv of road samples were the lowest

compared to other land cover samples. Except the study area in sub-area 3, the cv values of

road samples were lower than 1 in the OI datasets. Decreases of cv were consistently shown in

the RCNI ranging from 44% to 76%. In the data strips 1 and 2 (sub-areas 1 and 2), 22% to

66% of reduction in cv was achieved in ONI, while the cv of ONI in the overlapping region of

data strips 2 and 3 (sub-areas 3 and 4) did not show any significant improvement.

Table 4.2: Coefficient of variation of five land cover features generated from the OI, ONI and
RCNI

Building Grass Road Soil Tree

Sub-area 1 in Fig. 4.17(a)

OI 1.117 0.898 0.855 Nil 5.697

ONI 1.001 0.790 0.288 Nil 5.071

RCNI 0.747 0.564 0.202 Nil 3.429

Sub-area 2 in Fig. 4.17(b)

OI 2.285 1.401 0.732 Nil 6.996

ONI 0.878 1.523 0.569 Nil 5.529

RCNI 0.667 0.592 0.334 Nil 3.812

Sub-area 3 in Fig. 4.17(c)

OI 1.878 1.447 1.882 2.466 4.875

ONI 2.517 1.185 1.777 1.506 6.278

RCNI 1.012 0.826 0.692 0.903 3.105

Sub-area 4 in Fig. 4.17(d)

OI Nil 2.954 0.191 2.108 6.589

ONI Nil 0.980 0.195 1.692 6.778

RCNI Nil 0.566 0.108 1.011 3.973

63



CHAPTER 4. RADIOMETRIC NORMALIZATION 64

 

 

0

1

2

3

4

5

6

Building Road Grass Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on

OI

ONI

RCNI

0

1

2

3

4

5

6

7

8

Building Road Grass Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on

OI

ONI

RCNI

0

1

2

3

4

5

6

7

Building Grass Road Soil Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on

OI

ONI

RCNI

0

1

2

3

4

5

6

7

8

Grass Road Soil Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on

OI

ONI

RCNI

(a) sub-area 1
 

 

0

1

2

3

4

5

6

Building Road Grass Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on

OI

ONI

RCNI

0

1

2

3

4

5

6

7

8

Building Road Grass Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on

OI

ONI

RCNI

0

1

2

3

4

5

6

7

Building Grass Road Soil Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on

OI

ONI

RCNI

0

1

2

3

4

5

6

7

8

Grass Road Soil Tree

Co
ef
fi
ci
en
t	o
f	V
ar
ia
ti
on

OI

ONI

RCNI

(b) sub-area 2  
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(c) sub-area 3
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Figure 4.18: Coefficient of variation of five land cover features generated from the OI, ONI
and RCNI

Only two soil samples were found in the overlapping regions of LiDAR data strips 2 and

3. Both study areas were consistently found with reduction in cv. In sub-area 3, the cv of soil

sample was 2.466, 1.5606 and 0.903 in the OI, ONI and RCNI dataset. In sub-area 4, similar

reduction of cv was recorded where the corresponding cv values of OI, ONI and RCNI were

2.108, 1.692 and 1.011, respectively. Finally, similar to the results in Section 3.3.2, the cv values

of tree samples were the highest amongst all the land cover features. In this land cover type,

the cv of ONI showed a diversity of results: the first two study areas were exhibited a decrease

in cv by 11% and 21%, while the cv of tree samples in the remaining study areas were increased

by 3% and 29% in the ONI. Again, the RCNI outperformed than the ONI; all the cv of tree

samples were reduced by 36% to 46% leading to the cv values bounded between 3 to 4.
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Table 4.3: Percentage change in coefficient of variation

Building Grass Road Soil Tree

Sub-area 1 in Fig. 4.17(a)

ONI ↓ 10.4% ↓ 12.0% ↓ 66.3% Nil ↓ 11.0%

RCNI ↓ 33.1% ↓ 37.1% ↓ 76.4% Nil ↓ 39.8%

Sub-area 2 in Fig. 4.17(b)

ONI ↓ 61.6% ↑ 8.7% ↓ 22.3% Nil ↓ 21.0%

RCNI ↓ 70.8% ↓ 57.7% ↓ 54.5% Nil ↓ 45.5%

Sub-area 3 in Fig. 4.17(c)

ONI ↑ 34.0% ↓ 18.2% ↓ 5.6% ↓ 38.9% ↑ 28.8%

RCNI ↓ 46.2% ↓ 42.9% ↓ 63.2% ↓ 63.4% ↓ 36.3%

Sub-area 4 in Fig. 4.17(d)

ONI Nil ↓ 66.8% ↑ 1.7% ↓ 19.7% ↑ 2.9%

RCNI Nil ↓ 80.8% ↓ 43.6% ↓ 52.0% ↓ 39.7%

4.5 Chapter Summary

In this chapter, a radiometric normalization model based on sub-histogram matching technique

was presented. The principle of the model aimed to align and match the intensity sub-histogram

of a data strip with reference to the intensity sub-histogram generated from a reference LiDAR

data strip. The criterion to split the histogram into sub-histograms was based on fitting the

Gaussian mixture components in the multi-modal histogram acquired in the overlapping region

of the two LiDAR data strips. The proposed radiometric normalization method was applied to

the radiometrically corrected intensity data for the entire LiDAR data strips 1 to 3 with reference

to the LiDAR data strip 2. Since radiometric correction may be inapplicable in common

practice (for instance, lack of GPS trajectory data or LiDAR data without time tag), the

normalization model was also investigated using the original intensity data. After radiometric

normalization, the line stripping problems were obviously resolved or even removed. Regardless

of the land cover features, the coefficient of variation was significantly reduced after radiometric

normalization in a range of 33% to 80% in the corrected intensity data. In two-thirds of the land

cover samples, the results of ONI showed a decrease of cv by 6% to 67%; however, reduction of

cv was not guaranteed in ONI where the rest of the land cover samples were reported with a cv

increase by 2% to 34%. Based on the experimental results, the proposed normalization model

works effectively on the radiometrically corrected intensity data in improving the land cover

homogeneity. In addition, the experiment further justifies the effectiveness of the proposed

correction model, particularly in reducing the intensity discrepancy in inclined rooftops.
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Chapter 5

Land Cover Classification

Given the proposed radiometric correction and radiometric normalization in Chapters 3 and

4, respectively, the objective of this chapter is to assess the impact of these techniques on the

LiDAR intensity data classification. This chapter describes in detail the design and experiment

of land cover classification using airborne LiDAR intensity data under different scenarios. Two

case studies are presented in this chapter. The first case evaluated the classification results

using the original intensity and five radiometrically corrected intensity datasets of LiDAR data

strip 2 (as presented in Chapter 3) for land cover classification. The second case assessed

the classification results using all the datasets (OI, ONI and RCNI) in the four sub-areas as

presented in Chapter 4. Accuracy assessment was conducted on all the classification results

with reference to the ortho-rectified aerial imagery. Finally, a comparative study is presented to

evaluate the overall accuracy and the kappa statistics of individual land cover feature derived

from the classification results.

5.1 Overall Workflow

Fig. 5.1 shows the overall workflow of experimental testing for land cover classification. A

number of LiDAR dataset including original intensity data, radiometrically corrected intensity

data and radiometrically normalized intensity data were used for experimental testing. Before

land cover classification, training sites were selected with reference to the high resolution ortho-

rectified aerial imagery acquired during the airborne LiDAR survey. Polygon-based training

sites were selected for different combinations of land cover classes. A commonly used pixel-based

classification technique, maximum likelihood classifier, was applied to all the intensity datasets.

Accuracy assessment was carried out on the classification results by using evenly distributed

checkpoints generated from the ortho-rectified aerial imagery. Finally, classification accuracies
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amongst all the results were compared so as to investigate the effectiveness of the proposed

radiometric correction and normalization models on the airborne LiDAR intensity data.

 

Maximum	Likelihood	Classification		

Accuracy	Assessment		

Classification	Results	
Selection	of	Training	Sites		

Corrected	
Intensity	

Original	
Intensity	

Normalized	
Intensity	

Ortho‐rectified	Aerial	Photo	

Training	Sites	

Figure 5.1: Overall workflow for land cover classification

5.2 LiDAR datasets

Two case studies were conducted to investigate the effects of the proposed radiometric cor-

rection and normalization models towards the airborne LiDAR intensity data for land cover

classification. The first case aimed to evaluate the classification results using the radiometri-

cally corrected intensity data as reported in Chapter 3. A subset of LiDAR data strip 2 was

clipped (∼ 1 million points) with the dimension of 500 m × 400 m for experimental testing.

The reason for selecting this particular area of the BCIT campus was mainly due to the variety

of the land cover features on the ground. The area has buildings, parking lots connected by

sidewalks and pavements, shrubs and open spaces with grass coverage. Dense tree clusters are

present in the West side of the study area. All the corrected intensity data (OI, RCI R SA,

RCI R SA AC, RCI R IA, RCI R IA AC and RCI R SA IA AC) were utilized for land cover

classification and comparison. Fig. 5.2 shows the aerial photo and the shaded DEM generated

from the 3D LiDAR data point cloud of the study area.

The second case aimed to test the effect of radiometric normalization of LiDAR intensity

data on land cover classification. As reported in Section 4.4, the LiDAR data strips 1 and

3 were normalized with reference to the data strip 2 where four sub-areas were identified for

experimental testing. Sub-areas 1 and 2 were located at the overlapping region of LiDAR data
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 (b)

Figure 5.2: (a) Aerial photo and (b) shaded DEM generated from the LiDAR data in the 1st

case

	

	
(a)	 (b)	 (c)	 (d)	

	

	
	 	 	 	

	

(e)	

(f)	 (g)	 (h)	

Fig.	5.3	(a)	–	(d)	Aerial	photo	of	sub‐areas	1	to	4,	(e)	–	(h)	Shaded	DEM	generated	from	

the	LiDAR	data	of	sub	areas	1	to	4.	

	

5.2.2.	Design	of	Land	Cover	Classes	

Several	classification	scenarios	with	different	number	of	land	cover	classes	were	carried	

out	 on	 the	 airborne	 LiDAR	 intensity	 data	 before	 and	 after	 the	 radiometric	 correction	

and/or	radiometric	normalization	to	evaluate	the	impact	on	the	classification	accuracy.	

The	classes	design	 followed	the	standardized	national	United	States	Geological	Survey	

(USGS)	Land	Cover	Classification	Scheme	(LCCS)	for	remote	sensing	image	classification	

at	different	scales	and	resolutions	(Anderson	et	al.,	1976).	The	first	scenario	classified	

the	study	area	into	two	land	cover	classes:	i)	urban	or	built‐up	land	(Class	1	in	Level	I	of	

USGS	LCCS),	ii)	natural	land.	The	second	scenario	sub‐divided	the	natural	land	into	trees	

and	grass	land,	remaining	the	built‐up	land	as	unchanged.	The	third	scenario	comprised	

four	classes:	i)	urban	or	built‐up	land,	ii)	trees,	iii)	grass	land,	and	iv)	barren	land	(Class	

7	in	Level	I	of	USGS	LCCS)	which	is	described	as	an	area	of	thin	soil,	sand,	or	rocks	where	

less	than	one‐third	of	the	area	has	vegetation	or	other	cover	(Anderson	et	al.,	1976).	The	

last	 scenario	 contained	 five	 classes	 after	 subdividing	 the	 urban	 or	 built‐up	 class	 into	

roads	and	buildings	(Level	II	of	USGS	LCCS).	The	five	land	cover	classes	were	as	follows:	

i)	 roads,	 ii)	 buildings,	 iii)	 trees,	 iv)	 barren	 land	 (soil),	 and	 v)	 grass	 land.	 Table	 5.1	

summarizes	the	four	classification	scenarios	and	their	corresponding	land	cover	classes.	

(a) Sub-area 1

	

	
(a)	 (b)	 (c)	 (d)	
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(f)	 (g)	 (h)	

Fig.	5.3	(a)	–	(d)	Aerial	photo	of	sub‐areas	1	to	4,	(e)	–	(h)	Shaded	DEM	generated	from	

the	LiDAR	data	of	sub	areas	1	to	4.	

	

5.2.2.	Design	of	Land	Cover	Classes	

Several	classification	scenarios	with	different	number	of	land	cover	classes	were	carried	

out	 on	 the	 airborne	 LiDAR	 intensity	 data	 before	 and	 after	 the	 radiometric	 correction	

and/or	radiometric	normalization	to	evaluate	the	impact	on	the	classification	accuracy.	

The	classes	design	 followed	the	standardized	national	United	States	Geological	Survey	

(USGS)	Land	Cover	Classification	Scheme	(LCCS)	for	remote	sensing	image	classification	

at	different	scales	and	resolutions	(Anderson	et	al.,	1976).	The	first	scenario	classified	

the	study	area	into	two	land	cover	classes:	i)	urban	or	built‐up	land	(Class	1	in	Level	I	of	

USGS	LCCS),	ii)	natural	land.	The	second	scenario	sub‐divided	the	natural	land	into	trees	

and	grass	land,	remaining	the	built‐up	land	as	unchanged.	The	third	scenario	comprised	

four	classes:	i)	urban	or	built‐up	land,	ii)	trees,	iii)	grass	land,	and	iv)	barren	land	(Class	

7	in	Level	I	of	USGS	LCCS)	which	is	described	as	an	area	of	thin	soil,	sand,	or	rocks	where	

less	than	one‐third	of	the	area	has	vegetation	or	other	cover	(Anderson	et	al.,	1976).	The	

last	 scenario	 contained	 five	 classes	 after	 subdividing	 the	 urban	 or	 built‐up	 class	 into	

roads	and	buildings	(Level	II	of	USGS	LCCS).	The	five	land	cover	classes	were	as	follows:	

i)	 roads,	 ii)	 buildings,	 iii)	 trees,	 iv)	 barren	 land	 (soil),	 and	 v)	 grass	 land.	 Table	 5.1	

summarizes	the	four	classification	scenarios	and	their	corresponding	land	cover	classes.	

(b) Sub-area 2
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Fig.	5.3	(a)	–	(d)	Aerial	photo	of	sub‐areas	1	to	4,	(e)	–	(h)	Shaded	DEM	generated	from	

the	LiDAR	data	of	sub	areas	1	to	4.	

	

5.2.2.	Design	of	Land	Cover	Classes	

Several	classification	scenarios	with	different	number	of	land	cover	classes	were	carried	

out	 on	 the	 airborne	 LiDAR	 intensity	 data	 before	 and	 after	 the	 radiometric	 correction	

and/or	radiometric	normalization	to	evaluate	the	impact	on	the	classification	accuracy.	

The	classes	design	 followed	the	standardized	national	United	States	Geological	Survey	

(USGS)	Land	Cover	Classification	Scheme	(LCCS)	for	remote	sensing	image	classification	

at	different	scales	and	resolutions	(Anderson	et	al.,	1976).	The	first	scenario	classified	

the	study	area	into	two	land	cover	classes:	i)	urban	or	built‐up	land	(Class	1	in	Level	I	of	

USGS	LCCS),	ii)	natural	land.	The	second	scenario	sub‐divided	the	natural	land	into	trees	

and	grass	land,	remaining	the	built‐up	land	as	unchanged.	The	third	scenario	comprised	

four	classes:	i)	urban	or	built‐up	land,	ii)	trees,	iii)	grass	land,	and	iv)	barren	land	(Class	

7	in	Level	I	of	USGS	LCCS)	which	is	described	as	an	area	of	thin	soil,	sand,	or	rocks	where	

less	than	one‐third	of	the	area	has	vegetation	or	other	cover	(Anderson	et	al.,	1976).	The	

last	 scenario	 contained	 five	 classes	 after	 subdividing	 the	 urban	 or	 built‐up	 class	 into	

roads	and	buildings	(Level	II	of	USGS	LCCS).	The	five	land	cover	classes	were	as	follows:	

i)	 roads,	 ii)	 buildings,	 iii)	 trees,	 iv)	 barren	 land	 (soil),	 and	 v)	 grass	 land.	 Table	 5.1	

summarizes	the	four	classification	scenarios	and	their	corresponding	land	cover	classes.	
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Fig.	5.3	(a)	–	(d)	Aerial	photo	of	sub‐areas	1	to	4,	(e)	–	(h)	Shaded	DEM	generated	from	

the	LiDAR	data	of	sub	areas	1	to	4.	

	

5.2.2.	Design	of	Land	Cover	Classes	

Several	classification	scenarios	with	different	number	of	land	cover	classes	were	carried	

out	 on	 the	 airborne	 LiDAR	 intensity	 data	 before	 and	 after	 the	 radiometric	 correction	

and/or	radiometric	normalization	to	evaluate	the	impact	on	the	classification	accuracy.	

The	classes	design	 followed	the	standardized	national	United	States	Geological	Survey	

(USGS)	Land	Cover	Classification	Scheme	(LCCS)	for	remote	sensing	image	classification	

at	different	scales	and	resolutions	(Anderson	et	al.,	1976).	The	first	scenario	classified	

the	study	area	into	two	land	cover	classes:	i)	urban	or	built‐up	land	(Class	1	in	Level	I	of	

USGS	LCCS),	ii)	natural	land.	The	second	scenario	sub‐divided	the	natural	land	into	trees	

and	grass	land,	remaining	the	built‐up	land	as	unchanged.	The	third	scenario	comprised	

four	classes:	i)	urban	or	built‐up	land,	ii)	trees,	iii)	grass	land,	and	iv)	barren	land	(Class	

7	in	Level	I	of	USGS	LCCS)	which	is	described	as	an	area	of	thin	soil,	sand,	or	rocks	where	

less	than	one‐third	of	the	area	has	vegetation	or	other	cover	(Anderson	et	al.,	1976).	The	

last	 scenario	 contained	 five	 classes	 after	 subdividing	 the	 urban	 or	 built‐up	 class	 into	

roads	and	buildings	(Level	II	of	USGS	LCCS).	The	five	land	cover	classes	were	as	follows:	

i)	 roads,	 ii)	 buildings,	 iii)	 trees,	 iv)	 barren	 land	 (soil),	 and	 v)	 grass	 land.	 Table	 5.1	

summarizes	the	four	classification	scenarios	and	their	corresponding	land	cover	classes.	
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Fig.	5.3	(a)	–	(d)	Aerial	photo	of	sub‐areas	1	to	4,	(e)	–	(h)	Shaded	DEM	generated	from	

the	LiDAR	data	of	sub	areas	1	to	4.	

	

5.2.2.	Design	of	Land	Cover	Classes	

Several	classification	scenarios	with	different	number	of	land	cover	classes	were	carried	

out	 on	 the	 airborne	 LiDAR	 intensity	 data	 before	 and	 after	 the	 radiometric	 correction	

and/or	radiometric	normalization	to	evaluate	the	impact	on	the	classification	accuracy.	

The	classes	design	 followed	the	standardized	national	United	States	Geological	Survey	

(USGS)	Land	Cover	Classification	Scheme	(LCCS)	for	remote	sensing	image	classification	

at	different	scales	and	resolutions	(Anderson	et	al.,	1976).	The	first	scenario	classified	

the	study	area	into	two	land	cover	classes:	i)	urban	or	built‐up	land	(Class	1	in	Level	I	of	

USGS	LCCS),	ii)	natural	land.	The	second	scenario	sub‐divided	the	natural	land	into	trees	

and	grass	land,	remaining	the	built‐up	land	as	unchanged.	The	third	scenario	comprised	

four	classes:	i)	urban	or	built‐up	land,	ii)	trees,	iii)	grass	land,	and	iv)	barren	land	(Class	

7	in	Level	I	of	USGS	LCCS)	which	is	described	as	an	area	of	thin	soil,	sand,	or	rocks	where	

less	than	one‐third	of	the	area	has	vegetation	or	other	cover	(Anderson	et	al.,	1976).	The	

last	 scenario	 contained	 five	 classes	 after	 subdividing	 the	 urban	 or	 built‐up	 class	 into	

roads	and	buildings	(Level	II	of	USGS	LCCS).	The	five	land	cover	classes	were	as	follows:	

i)	 roads,	 ii)	 buildings,	 iii)	 trees,	 iv)	 barren	 land	 (soil),	 and	 v)	 grass	 land.	 Table	 5.1	

summarizes	the	four	classification	scenarios	and	their	corresponding	land	cover	classes.	
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Fig.	5.3	(a)	–	(d)	Aerial	photo	of	sub‐areas	1	to	4,	(e)	–	(h)	Shaded	DEM	generated	from	

the	LiDAR	data	of	sub	areas	1	to	4.	
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roads	and	buildings	(Level	II	of	USGS	LCCS).	The	five	land	cover	classes	were	as	follows:	

i)	 roads,	 ii)	 buildings,	 iii)	 trees,	 iv)	 barren	 land	 (soil),	 and	 v)	 grass	 land.	 Table	 5.1	

summarizes	the	four	classification	scenarios	and	their	corresponding	land	cover	classes.	
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Fig.	5.3	(a)	–	(d)	Aerial	photo	of	sub‐areas	1	to	4,	(e)	–	(h)	Shaded	DEM	generated	from	

the	LiDAR	data	of	sub	areas	1	to	4.	

	

5.2.2.	Design	of	Land	Cover	Classes	

Several	classification	scenarios	with	different	number	of	land	cover	classes	were	carried	

out	 on	 the	 airborne	 LiDAR	 intensity	 data	 before	 and	 after	 the	 radiometric	 correction	

and/or	radiometric	normalization	to	evaluate	the	impact	on	the	classification	accuracy.	

The	classes	design	 followed	the	standardized	national	United	States	Geological	Survey	

(USGS)	Land	Cover	Classification	Scheme	(LCCS)	for	remote	sensing	image	classification	

at	different	scales	and	resolutions	(Anderson	et	al.,	1976).	The	first	scenario	classified	

the	study	area	into	two	land	cover	classes:	i)	urban	or	built‐up	land	(Class	1	in	Level	I	of	

USGS	LCCS),	ii)	natural	land.	The	second	scenario	sub‐divided	the	natural	land	into	trees	

and	grass	land,	remaining	the	built‐up	land	as	unchanged.	The	third	scenario	comprised	

four	classes:	i)	urban	or	built‐up	land,	ii)	trees,	iii)	grass	land,	and	iv)	barren	land	(Class	

7	in	Level	I	of	USGS	LCCS)	which	is	described	as	an	area	of	thin	soil,	sand,	or	rocks	where	

less	than	one‐third	of	the	area	has	vegetation	or	other	cover	(Anderson	et	al.,	1976).	The	

last	 scenario	 contained	 five	 classes	 after	 subdividing	 the	 urban	 or	 built‐up	 class	 into	

roads	and	buildings	(Level	II	of	USGS	LCCS).	The	five	land	cover	classes	were	as	follows:	

i)	 roads,	 ii)	 buildings,	 iii)	 trees,	 iv)	 barren	 land	 (soil),	 and	 v)	 grass	 land.	 Table	 5.1	

summarizes	the	four	classification	scenarios	and	their	corresponding	land	cover	classes.	
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Fig.	5.3	(a)	–	(d)	Aerial	photo	of	sub‐areas	1	to	4,	(e)	–	(h)	Shaded	DEM	generated	from	

the	LiDAR	data	of	sub	areas	1	to	4.	

	

5.2.2.	Design	of	Land	Cover	Classes	

Several	classification	scenarios	with	different	number	of	land	cover	classes	were	carried	

out	 on	 the	 airborne	 LiDAR	 intensity	 data	 before	 and	 after	 the	 radiometric	 correction	

and/or	radiometric	normalization	to	evaluate	the	impact	on	the	classification	accuracy.	

The	classes	design	 followed	the	standardized	national	United	States	Geological	Survey	

(USGS)	Land	Cover	Classification	Scheme	(LCCS)	for	remote	sensing	image	classification	

at	different	scales	and	resolutions	(Anderson	et	al.,	1976).	The	first	scenario	classified	

the	study	area	into	two	land	cover	classes:	i)	urban	or	built‐up	land	(Class	1	in	Level	I	of	

USGS	LCCS),	ii)	natural	land.	The	second	scenario	sub‐divided	the	natural	land	into	trees	

and	grass	land,	remaining	the	built‐up	land	as	unchanged.	The	third	scenario	comprised	

four	classes:	i)	urban	or	built‐up	land,	ii)	trees,	iii)	grass	land,	and	iv)	barren	land	(Class	

7	in	Level	I	of	USGS	LCCS)	which	is	described	as	an	area	of	thin	soil,	sand,	or	rocks	where	

less	than	one‐third	of	the	area	has	vegetation	or	other	cover	(Anderson	et	al.,	1976).	The	

last	 scenario	 contained	 five	 classes	 after	 subdividing	 the	 urban	 or	 built‐up	 class	 into	

roads	and	buildings	(Level	II	of	USGS	LCCS).	The	five	land	cover	classes	were	as	follows:	

i)	 roads,	 ii)	 buildings,	 iii)	 trees,	 iv)	 barren	 land	 (soil),	 and	 v)	 grass	 land.	 Table	 5.1	

summarizes	the	four	classification	scenarios	and	their	corresponding	land	cover	classes.	

(h) Sub-area 4

Figure 5.3: (a) to (d) Aerial photo of sub-areas 1 to 4, (e) to (h) Shaded DEM generated from
the LiDAR data of sub-areas 1 to 4 in the 2nd case

strips 1 and 2 where sub-areas 3 and 4 were located at the overlapping region of LiDAR data

strips 2 and 3. The sub-area 1 (See Fig. 5.3(a)) includes mainly built-up areas where the

sub-area 4 is mostly covered by vegetation (See Fig. 5.3(d)). An approximate 50/50 ratio of
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built-up and natural lands is found in the sub-areas 2 and 3 (See Figs. 5.3(b) and 5.3(c)). Since

these four sub-areas have different distribution of land cover features, a number of land cover

classification scenarios were implemented by using OI, ONI and RCNI for experimental testing.

5.3 Land Cover Classification

5.3.1 Design of Land Cover Classes

Several land cover classification scenarios were carried out using the airborne LiDAR intensity

data in order to evaluate the effects of the proposed radiometric correction and normalization

on the classification accuracy. The reason for testing different classification scenarios is to

avoid any biases of experimental testing towards a specific problem domain. Therefore, the

classes design followed the standardized national United States Geological Survey (USGS) Land

Cover Classification Scheme (LCCS) for remote sensing image classification at different scales

and resolutions (Anderson et al., 1976). The first scenario classified the study area into two

land cover classes: i) “Built-up Land” (Class 1 in Level I of USGS LCCS), and ii) “Natural

Land”. The second scenario sub-divided the “Natural Land” into “High Rangeland” (or “Tree”)

and “Low Rangeland”, and remained the “Built-up Land” as unchanged. The third scenario

comprised four classes: i) “Built-up Land”, ii) “Tree”, iii) “Grass Land” and iv) “Barren Land”

(Class 7 in Level I of USGS LCCS) which is described as an area of thin soil, sand, or rocks

where less than one-third of the area has vegetation or other cover. The last scenario contained

five classes after sub-dividing the “Built-up Land” class into “Building” and “Road” (Level II

of USGS LCCS). The five land cover classes were as follows: i) “Road”, ii) “Building”, iii)

“Tree”, iv) “Barren Land” (or “Soil”) and v) “Grass Land”. Table 5.1 summarizes the four

classification scenarios and their corresponding land cover classes.

Table 5.1: Design of the land cover classes for experimental testing

2 Classes 3 Classes 4 Classes 5 Classes

1. Natural Land 1. High Rangeland (Tree) 1. Tree 1. Tree
2. Low Rangeland 2. Grass Land 2. Grass Land

3. Barren Land (Soil) 3. Barren Land (Soil)

2. Built-up Land 3. Built-up Land 4. Built-up Land 4. Building
5. Road
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5.3.2 Training Data

Reference data for training and accuracy assessment were obtained with reference to an ortho-

rectified aerial imagery which was produced from a set of high resolution aerial photos. The

aerial photos were captured by a digital aerial camera, Trimble AIC Pro 65+, during the

same flight of the airborne LiDAR survey. Each aerial photo was taken with red, green and

blue channels in a size of 8984 × 6732 pixels. The aerial photos were ortho-rectified by using

an angle-based true orthophoto generation method proposed in Habib et al. (2007), named

adaptive radial sweep. After ortho-rectification, the aerial imagery was resampled in TIFF

format with 0.5 m resolution. When selecting training data, Chen and Stow (2002) tested

three training strategies with a Gaussian maximum likelihood classifier (MLC) on multiple

spectral images in five different spatial resolutions. Their study revealed that polygon or block

type training sites with large numbers of pixels were likely to be required in order to extract

representative training statistics, especially for spectrally heterogeneous classes.

Therefore, polygon-based training sites were selected and distributed evenly on the intensity

images. The training data were mostly selected at homogeneous areas with reference to the

ortho-rectified aerial imagery. The polygons were re-drawn if the land cover type was mixed

or questionable. In the first case, the training data for land cover classification included 1527

pixels for “Building”, 1323 pixels for “Grass”, 1289 pixels for “Road”, 1389 pixels for “Soil”,

and 2280 pixels for “Tree”. In the second case, since the distribution and area of land cover

features were not identical, the same number of training pixels cannot be achieved. In sub-area

1, the training data for “Building”, “Grass”, “Road” and “Tree” were 514 pixels, 368 pixels,

441 pixels and 288 pixels, respectively. In sub-area 2, the training data for “Building”, “Road”,

“Soil” and “Tree” were 1439 pixels, 334 pixels, 664 pixels and 395 pixels, respectively. In sub-

area 3, the training data for “Building”, “Grass”, “Road”, “Soil” and “Tree” were 988 pixels,

307 pixels, 332 pixels, 644 pixels and 501 pixels, respectively. In sub-area 4, the training data

for “Grass”, “Road”, “Soil” and “Tree” were 338 pixels, 970 pixels, 1123 pixels and 974 pixels,

respectively.

5.3.3 Classification Technique

PCI Geomatica V10.3.2 was used for land cover classification in this study. The software pro-

vides a number of classification techniques including contextual classifier, k-Nearest neighbor

classifier, MLC, minimum distance classifier, neural network classifier and parallelepiped clas-

sifier. Amongst these techniques, MLC was selected since it is a proven technique for remote

sensing image analysis (Jensen, 2005; Yan and Shaker, 2011). The MLC technique relies on the

computation of probability density function for the training statistics of each land cover class.
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The estimated probability function for class ωi can be determined for n dimensional space (or

bands) as follows:-

P (X ∣ωi) =
1

(2π)n2 ∣Vi∣
1
2

exp[−1

2
(X −Mi)TV −1

i (X −Mi)] (5.1)

where n is the number of bands, Vi is the covariance matrix for each class, the Mi is the mean

vector of each class, and X refers to the pixel value of the image dataset in the n bands.

All these input data can be computed when training sites are identified for each class. After

computing the probability function for all the classes, the maximum likelihood decision rule

decides X ∈ ωi if and only if

P (X ∣ωi) ⋅ P (ωi) ≥ P (X ∣ωj) ⋅ P (ωj) (5.2)

for all i and j out of 1, 2, . . ., m possible classes. Therefore, the pixel X will be assigned with

the class ωi with the largest probability density function. Post-processing techniques, such as

applying a majority filter for recoding the isolated pixels or noise removal (e.g., shadow) on

the classification results, were usually undertaken in land cover mapping studies to improve the

quality of the final product (Yuan et al., 2005). Nevertheless, the experiments in this thesis

would ignore these steps since they may bias the evaluation of the effectiveness of the proposed

correction and normalization models on the intensity data classification.

5.3.4 Accuracy Assessment

A total of 1010 and 510 random sample checkpoints were generated as reference data for ac-

curacy assessment in the first case and in each of the sub-area of the second case, respectively.

Identification of the reference land cover classes for these checkpoints was conducted using the

ortho-rectified aerial imagery. All land cover features at the checkpoint locations could be

clearly identified on that aerial imagery. Verification of the checkpoints was made visually by

comparing each classification result with the reference aerial imagery. As the aerial imagery

was acquired during the same LiDAR flight, assessment error due to the seasonal effect was

not taken into account in this study. By comparing the classified land cover classes of different

scenarios and the reference land cover classes for all the checkpoints, a confusion matrix and a

random sample list were generated for each classification result using PCI Geomatica V10.3.2

Focus module. Kappa statistic (KS), overall accuracy, user accuracy and producer accuracy

were generated in each confusion matrix. Finally, comparisons of the classification accuracies

derived from the original and the corrected/normalized airborne LiDAR intensity data were

carried out.
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5.4 Results and Analysis

5.4.1 Effect of Radiometric Correction on Land Cover Classification

In the first case, 24 trials of land cover classification were carried out for the original and

corrected intensity data with different combinations of land cover classes. Table 5.2 summarizes

the overall accuracy of the classification scenarios derived from the OI and five radiometrically

corrected intensity data, Fig. 5.4 shows the accuracy improvement of overall accuracy in the

results of radiometrically corrected intensity data classification, and Fig. 5.5 shows the KS of

the land cover features in all the classification scenarios. The classified images are shown in Figs.

B.1 to B.4 in Appendix B. In the 2-classes scenario (“Built-up Land” and “Natural Land”),

the overall accuracy of OI was 72.5%. The accuracy increased to 74.6% in the classification

result of RCI R SA. Adding the atmospheric attenuation factor led to a small improvement

in the classification result of 0.3%. When using incidence angle in radiometric correction, the

classification results were improved by more than 6% in both RCI R IA and RCI R IA AC. In

terms of KS, the values of OI derived “Natural Land” and “Built-up Land” were 0.624 and

0.362, respectively. An increase of KS values with average 0.05 was found in the “Natural

Land” derived from all the classification results using corrected intensity data. Regarding the

“Built-up Land”, a maximum 0.04 and 0.14 increases of KS were observed in the intensity data

corrected using scan angle and incidence angle, respectively.

Table 5.2: Overall accuracy of land cover classification

Dataset 2-classes 3-classes 4-classes 5-classes

OI 72.5% 60.0% 52.0% 30.3%

RCI R SA 74.6% 62.3% 57.3% 33.9%

RCI R SA AC 74.9% 62.0% 57.4% 34.2%

RCI R IA 78.8% 71.9% 65.7% 45.4%

RCI R IA AC 78.7% 71.7% 65.1% 45.4%

RCI R SA IA AC 75.0% 62.7% 57.7% 32.9%

Similar accuracy improvement pattern can be observed in the 3-classes scenario where

“High Rangeland” (“Tree”), “Low Rangeland” (“Grass” and “Soil”) and “Built-up Land” were

classified. The overall accuracy of OI classification results was 60%. Approximately 2% to

3% improvements were recorded in the classification results of RCI R SA, RCI R SA AC and

RCI R SA IA AC. The KS values between OI and these three dataset were less than 0.1 in all

the land cover features. Nevertheless, the overall accuracy spiked to 72% when using incidence
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Figure 5.4: Accuracy improvement of land cover classification results using radiometrically
corrected intensity data
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(a) 2-classes scenario
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(b) 3-classes scenario
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(c) 4-classes scenario
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(d) 5-classes scenario

Figure 5.5: Kappa statistics of land cover classes
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angle in radiometric correction resulting in a 12% accuracy improvement in the classification re-

sults of RCI R IA and RCI R IA AC. The significant improvement can be reflected by the sharp

increase of KS value in “High Rangeland” from 0.101 (OI) to 0.610 (RCI R IA or RCI R IA AC)

and “Built-up Land” from 0.451 (OI) to 0.739 (RCI R IA or RCI R IA AC), as shown in Fig.

5.5(b), even a slight drop of KS was found in “Low Rangeland”.

In the 4-classes scenario, the OI classification results produced an overall accuracy with

52%. 5.3% and 13.1% of accuracy improvements were observed in the classification results of

RCI R SA and RCI R IA, respectively. No significant difference between the classification re-

sults occurred when the intensity data was corrected with atmospheric correction. RCI R SA IA

AC consistently performed slightly better than RCI R SA with an overall accuracy of 57.7%. In

individual land cover feature (see Fig. 5.5(c)), RCI R SA, RCI R SA AC and RCI R SA IA AC

produced slightly higher KS values across all land cover features compared to those of OI, except

for the “Built-up Land”. Nevertheless, RCI R IA and RCI R IA AC outperformed all the other

results where all the land cover features demonstrated an increase of KS, in particular “Tree”

and “Built-up Land” where the KS values were increased from 0.048 (OI) to 0.614 (RCI R IA

or RCI R IA AC) in “Tree” and 0.451 (OI) to 0.795 (RCI R IA or RCI R IA AC) in “Built-up

Land”.

In the 5-classes scenario, the classification problem was the most heterogeneous since the

“Built-up Land” had to be sub-divided into “Building” and “Road”. Therefore, the overall

accuracy of OI dropped to 30.3%. The RCI R SA and RCI R SA AC both reached to approxi-

mate 34% overall accuracy. The use of incidence angle in radiometric correction demonstrated

a significant accuracy improvement in all trials. Both RCI R IA and RCI R IA AC generated

a classified image with 45.4% overall accuracy leading to a 15% accuracy improvement when

compared to the result of OI. Similar to the preceding classification scenario, the significant

rise of overall accuracy can be ascribed by the improvement of KS in most of the land cover

features. The KS of “Tree” was recorded with an increase of 0.567, where “Building”, “Road”

and “Soil” were found to have an increase of KS close to 0.1 (see Fig. 5.5(d)).

5.4.2 Effect of Radiometric Normalization on Land Cover Classification

Sub-Area 1

Table 5.3 summarizes the overall accuracy of all classification scenarios in sub-area 1 and Fig.

5.6 shows the KS of land cover classes in all the trials. The classified images are shown in Figs.

B.5 in Appendix B. In sub-area 1, the area is mainly occupied by a factory building rooftop

leaving the main road and vegetation cover at the North. In the 2-classes scenario, the overall

accuracy achieved using OI was 88.6% which was identical to the results of RCNI. ONI showed
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Table 5.3: Overall accuracy of land cover classification in sub-area 1

Dataset 2-classes 3-classes 4-classes

OI 88.6% 87.1% 67.6%

ONI 90.0% (↑ 0.4%) 85.3% (↓ 1.8%) 69.6% (↑ 2.0%)

RCNI 88.6% (↑ 0.0%) 85.3% (↓ 1.8%) 68.8% (↑ 1.2%)
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Figure 5.6: Kappa statistics of land cover classes in sub-area 1

a slight increase in overall accuracy by 0.4% where such increase was mainly contributed by

the “Natural Land”. The KS of “Natural Land” increased from 0.405 (OI) to 0.450 (ONI),

see Fig. 5.6(a). In the 3-classes scenario, the overall accuracy remained high at 87.1% in OI

since the 3-classes scenario sub-divided the “Natural Land” into “High Rangeland” and “Low

Rangeland” which only occupied a small portion in the study area. A decrease of accuracy

was recorded in ONI and RCNI with 1.8%. As shown in Fig. 5.6(b), both “High Rangeland”
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and “Built-up Land” were found with a slight reduction in KS by 0.04 (in ONI) and 0.08 (in

RCNI), respectively. In the 4-classes scenario, OI produced a 67.6% overall accuracy; the ONI

and RCNI were classified with 69.6% and 68.8% overall accuracy resulting in a 2.0% and 1.2%

of improvement, respectively. Nevertheless, the KS of all the land cover classes did not show

consistent increase (see Fig. 5.6(c)). In ONI, the KS of “Tree” and “Soil” were slightly higher

than the KS generated from OI where the KS of “Grass” and “Built-up Land” were recorded

with a slight reduction. The difference of KS values between OI and ONI were within 0.04 in

all these land cover features. In RCNI, “Grass” and “Soil” produced a slightly higher KS value

than that in OI by 0.014 and 0.017, respectively, where the KS of “Built-up Land” and “Tree”

were decreased by 0.04 and 0.06, respectively.

Based on the experimental testing in sub-area 1, the difference of classification accuracy

between OI and the two normalized intensity data was ±2%. The KS of individual land cover

classes generated from ONI and RCNI demonstrated a slight difference (±0.08) when compared

to the corresponding KS value from OI. In addition, the KS values of “Tree” were very small;

most of the cases were less than 0.2. This was mainly due to the high variance of intensity

value in treed areas which led to spectral confusion with other land cover classes. Since the

experimental results did not demonstrate consistent improvement in terms of overall accuracy

and KS when using the normalized intensity data, the efficiency of the proposed correction model

and normalization model was not great enough to justify in this study area. Nevertheless, in

the coming sub-areas 2 to 4, significant difference can be found in the classification results using

corrected and normalized intensity data.

Sub-Area 2

In the sub-area 2, the line stripping noise in the intensity data was more obvious when compared

to the intensity data in sub-area 1. As shown in Table 5.4, although less than 1% of accuracy

reduction was found in ONI and RCNI results in the 2-classes scenario, the overall accuracy

remained high (∼80%). Fig. 5.7(a) shows the KS of “Natural Land” and “Built-up Land”

where the differences amongst them were insignificant. This argument can be justified by the

classified images as shown in Fig. B.6 in Appendix B. In the 3-classes scenario, OI produced

59.4% of overall accuracy while ONI and RCNI improved the classification results by 3% and

1.8%, respectively. As shown in Fig. 5.7(b), the KS value of “Low Rangeland” generated

from RCNI was higher than its corresponding KS value from OI by 0.08. A similar accuracy

improvement pattern was achieved in the 4-classes scenario where the overall accuracy of OI,

ONI and RCNI were 57.6%, 59.8% and 60.6%, respectively. As the noisy effect was reduced

in RCNI, the KS of “Soil” and “Road” were increased from 0.794 (OI) to 0.8463 (RCNI) and

from 0.356 (OI) to 0.459 (RCNI), see Fig. 5.7(c).
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Table 5.4: Overall accuracy of land cover classification in sub-area 2

Dataset 2-classes 3-classes 4-classes

OI 80.0% 59.4% 57.6%

ONI 79.4% (↓ 0.6%) 62.4% (↑ 3.0%) 59.8% (↑ 2.2%)

RCNI 79.2% (↓ 0.8%) 61.2% (↑ 1.8%) 60.6% (↑ 3.0%)
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Figure 5.7: Kappa statistics of land cover classes in sub-area 2

Since sub-area 2 had more variety of land cover features compared to sub-area 1, the spectral

mixture amongst different land cover caused a significant drop of overall accuracy particularly

in the 3-classes and 4-classes scenarios. Despite this, improvement in overall accuracy was

slightly higher than those achieved in sub-area 1, after applying the proposed normalization

model on the intensity data (max 3.0%). The KS values in all the land cover features were

similar to those in sub-area 1, except “Tree”. The KS of “Tree” was notably small (∼0.05). This
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thus influenced the classification results in 3-classes scenario where a significant drop of overall

accuracy was found from 80% (in 2-classes) to 60% (in 3-classes). The reason for the small KS

value in “Tree” class was mainly due to the three different tree species located in sub-area 2

(see Fig. 5.3(b)) in which the intensity values of these species were completely different in the

intensity value (see Fig. 4.13(b)). Although the experiment recorded reduction of KS in “Tree”

class, this thus implied that the intensity data would be useful in distinguishing certain tree

species.

Sub-Area 3

Unlike the previous two sub-areas, the experimental work in sub-area 3 classified all the land

cover classification scenarios as listed in Table 5.1. Table 5.5 summarizes the overall accuracy

in this case; the classified images are displayed in Fig. B.7 in Appendix B. In the 2-classes

scenario, the overall accuracy produced by OI was close to 83% where both ONI and RCNI

produced the same overall accuracy at 86.5%. Such increase was mainly due to the improvement

of distinguishing “Built-up Land” after radiometric normalization, where both ONI and RCNI

recorded a KS value of 0.758 compared to 0.594 recorded in the results of OI (see Fig. 5.8(a)). In

the 3-classes scenario, the overall accuracy of OI was 71.8%; 7% and 8% accuracy improvements

were achieved in the classification results of ONI and RCNI, respectively. The KS value in both

ONI and RCNI was found with an increase by ∼0.1 in both “High Rangeland” and “Low

Rangeland” (see Fig. 5.8(b)). In the 4-classes and 5-classes scenarios, the overall accuracy

dropped to 63.5% and 45.1%. Nevertheless, an increase of overall accuracy was found in all the

normalized intensity data classification results. Respective increases of 10.6% and 13.4% were

observed in ONI and RCNI in the 4-classes scenario. An accuracy improvement of more than

16% was achieved in both normalized data classification results in the 5-classes scenario where

the overall accuracy of OI was 61.4%. As shown in Figs. 5.8(c) and 5.8(d), “Tree”, “Grass”,

“Soil” and “Built-up Land” were found with an increase ranging from 0.09 to 0.21 in the ONI

and RCNI classification results when compared to the corresponding KS values generated from

OI.

Table 5.5: Overall accuracy of land cover classification in sub-area 3

Dataset 2-classes 3-classes 4-classes 5-classes

OI 82.7% 71.8% 63.5% 45.1%

ONI 86.5% (↑ 3.8%) 78.8% (↑ 7.0%) 74.1% (↑ 10.6%) 61.4% (↑ 16.3%)

RCNI 86.5% (↑ 3.8%) 79.8% (↑ 8.0%) 76.9% (↑ 13.4%) 61.6% (↑ 16.5%)
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Figure 5.8: Kappa statistics of land cover classes in sub-area 3

As shown in Fig. 4.15(b), the OI in sub-area 3 had the most serious line stripping noise.

Owing to the successful removal of noise in the intensity data, accuracy improvement was found

to be significant after radiometric normalization. The results in the first three classification sce-

narios achieved more than 75% overall accuracy which was higher than most of the preceding

experimental trials in sub-area 2 and the 1st case. The over 60% classification accuracy gener-

ated from ONI and RCNI in 5-classes scenario was even much higher than all the RCI datasets

in the first case (maximum is 45% only). One should note that the more line stripping noise

on the land cover features in OI, the more improvement of KS in ONI and RCNI. For instance,

the KS of “Tree” in 5-classes scenario was 0.077 in OI and it increased to 0.298 in RCNI; the

KS of “Grass” in the same scenario was 0.174 in the OI classification result and 0.384 in the

RCNI classification result, respectively. Up to this point, the sub-area 3 successfully proves the

effectiveness of the proposed radiometric normalization model on land cover classification.
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Sub-Area 4

Table 5.6 shows the overall accuracy of land cover classification in sub-area 4 and Fig. B.8

in Appendix B shows the land cover classification results. As shown in Table 5.6, the OI

achieved 87.5% classification accuracy in the 2-classes scenario. Both ONI and RCNI did not

demonstrate significant impact on the classification results where less than 1% of increase in

overall accuracy was found.

Table 5.6: Overall accuracy of land cover classification in sub-area 4

Dataset 2-classes 3-classes 4-classes

OI 87.5% 66.3% 59.0%

ONI 87.6% (↑ 0.1%) 72.0% (↑ 5.7%) 68.0% (↑ 9.0%)

RCNI 88.4% (↑ 0.9%) 72.7% (↑ 6.4%) 68.2% (↑ 9.2%)
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Figure 5.9: Kappa statistics of land cover classes in sub-area 4
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The KS values, as shown in Fig. 5.9(a), showed an opposite trend in the normalized intensity

data classification results. The “Natural Land” demonstrated a drop of KS with 0.04 in ONI

classification result and 0.01 in RCNI classification result. Contradictorily, the KS value of

“Built-up Land” increased from 0.697 (OI) to 0.742 in ONI and 0.760 in RCNI. In the 3-classes

scenario, ONI and RCNI produced 5.7% and 6.4% accuracy improvements, respectively, when

compared to the classification results of OI which was only 66.3%. “High Rangeland” and “Low

Rangeland” were observed with an increase of KS with more than 0.1 in RCNI classification

result when compared to that of OI (Fig. 5.9(b)). Following the trend in 3-classes, 9% of overall

accuracy improvement was found in the normalized intensity where the accuracy of classification

using OI was 59% only. Consistently, an increase of KS values ranging from 0.04 to 0.21 were

found in all the land cover features classified using ONI and RCNI (see Fig. 5.9(c)). Since

sub-area 4 was located at the same overlapping region of sub-area 3, the line stripping noisy

effect was manifest. After radiometric normalization, the discrepancy of intensity within the

same land cover feature was significantly reduced resulting in a large accuracy improvement in

the 3-classes and 4-classes scenarios.

5.5 Chapter Summary

In this chapter, two case studies were used to investigate the effects of radiometric correction

and radiometric normalization of LiDAR intensity data on land cover classification. In the first

case, radiometric correction applied to the airborne LiDAR intensity data demonstrated an

improvement in land cover classification accuracy from 2% to 15%. Amongst all the trials, the

LiDAR intensity data corrected using range and scan angle (RCI R SA and RCI R SA AC)

produced a slight increase of overall accuracy from 2% to 6%. The largest increase in overall

accuracy (6% to 15%) was achieved by using the intensity dataset corrected with range and

incidence angle (RCI R IA and RCI R IA AC). Most of these increases were mainly due to the

over-corrections in the vegetation cover which made it easily distinguished from the built-up

land. Although all the results demonstrated an accuracy improvement when using radiomet-

rically corrected intensity data, the proposed atmospheric correction and proposed method

RCI R SA IA AC did not show their significant performance as revealed when we assessed

the land cover homogeneity. Only 2.5% to 5.7% of accuracy improvements were recorded in

the RCI R SA IA AC classification results in the four different classification scenarios. Such

amount of improvement was similar to what RCI R SA and RCI R SA AC achieved amongst

all the trials.

It should be noted that though the RCI dataset using incidence angle (RCI R IA or RCI R I

A AC) obtained the best classification accuracy amongst others, this does not imply that ra-
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diometric correction using incidence angle should always be implemented. The effects of over-

correction did cause the tree canopies in RCI R IA and RCI R IA AC to be easily distinguished

from other land cover features. However, it does not mean that all tree canopies possess such

a high physical reflectance. If RCI R IA or RCI R IA AC is used to estimate biophysical and

land surface parameters, the derived results would be misleading. Therefore, the proposed ap-

proach RCI R SA IA AC is corrected in a relative sense where the land cover homogeneity is

mostly preserved within the same land cover type. Nevertheless, the data would be of no value

for deriving any biophysical information unless absolute ground calibration is performed on the

corrected intensity data.

In the second case, land cover classification was conducted on OI, ONI and RCNI with

different classification scenarios. In the first two sub-areas, the difference of overall accuracy

between the OI classification results and the classification results of ONI or RCNI was not likely

to exceed 3%. In some classification scenarios, slight reduction of overall accuracy was reported

in the ONI or RCNI classification results. Given the stripping noise was not manifest in these

two areas, the difference of classification results between OI and ONI or OI and RCNI was not

significant. Nevertheless, in case of serious stripping noise in the intensity data, radiometric

normalization can significantly contribute to the improvement of land cover classification. In

sub-areas 3 and 4, increases of overall accuracy were found with 5.7% to 16.5% (excluding

the 2-classes scenario) in the ONI and RCNI classification results. Comparing between the

land cover map derived from ONI and RCNI, it was found that the basic pattern of these two

results were very similar. In terms of specific land cover classes, “Built-up Land” (“Building”

and “Road”) always demonstrated a high classification accuracy as reflected from its KS value

(most of the time ≥ 0.5) regardless of classification scenarios. Nevertheless, “High Rangeland”

(or “Tree”) showed a relatively low KS value (< 0.2) due to the heterogeneous surface of tree

canopies resulting in a high variance of intensity.

Previous studies in radiometric correction of remote sensing images usually addressed a

single classification scenario (Tokola et al., 2001; Blesius and Weirich, 2005; Zurita-Milla et al.,

2007). The claimed accuracy improvements (after radiometric correction) were only tested and

concluded for a specific classification scenario. The efficiency of radiometric correction may

not be fully investigated which may in turn to be either an over- or underestimate. Based on

the results of this chapter, which assessed different classification scenarios, it does not appear

necessary to perform radiometric correction and radiometric normalization on the intensity data

for a simple classification scenario. The results showed no significant differences in classification

accuracy in most of the trials of 2-classes scenario and intensity data with unclear level of

stripping noise. Nevertheless, for a more a heterogeneous classification scenario or when using

intensity data with serious line stripping problems, the proposed method showed significant
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improvements on the LiDAR data classification results.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

As depicted in Chapter 1, the demand of land cover maps at finer scale has been raised with

evidence by numerous biophysical and socio-economic studies in urban areas. This thesis aims

to explore the use of airborne LiDAR intensity data for land cover mapping, which can over-

come the limitations of using high resolution satellite imagery. Nevertheless, the presence of

systematic noise and intensity heterogeneity in airborne LiDAR intensity data pose challenges

to the qualitative data analysis and applications. Though a few existing research addressed

radiometric calibration and correction of LiDAR intensity data based on the radar (range)

equation, some of the factors, such as atmospheric attenuation, combining overlapping inten-

sity data, etc., have not been fully investigated. In this regard, this thesis research attempts

to fill the current gap by (a) formulating a radiometric correction model, (b) proposing a ra-

diometric normalization model, and (c) studying the effects of these models on different land

cover classification scenarios. The contributions of this thesis research include the following:

1. Introduces a set of models for removing the effects of atmospheric attenuation.

Since some of the previous studies assumed the atmospheric attenuation as constant for

short range laser scanning or clear atmospheric condition, this thesis research attempted

to model the atmospheric attenuation factor, which follows the Beer-Lambert Law. The

aerosol and molecular scattering coefficients can be derived based on two empirical models

proposed by Bucholtz (1995) and Ferdinandov et al. (2009). The extinction coefficients

of aerosol absorption and molecular absorption can be retrieved with reference to the

HITRAN molecular database. Experimental results demonstrated that the coefficient of

variation (cv) of the intensity data corrected using range and scan angle was reduced by

0.4% to 35.5%. Adding the atmospheric attenuation correction led to a further reduction
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of cv by 43.1% to 77.6%.

2. Develops a set of mathematical formulas to compute the laser incidence angle.

Existing research in radiometric correction did not consider or clearly identify the effects

of incidence angle in the laser cross section of the radar (range) equation. Therefore, a set

of formulas were developed to compute the incidence angle using the time-tagged LiDAR

data and GPS trajectory data file. Based on the derived formulas, the incidence angle

can be computed by the scan angle, projected horizontal angle, surface slope and surface

aspect. Since effects of over-correction have been reported in the previous literatures

while using incidence angle in radiometric correction, this thesis further proposed to

incorporate both scan angle and incidence angle for radiometric correction. Experimental

results demonstrated that the cv within the same land cover feature was reduced by 70%

to 82% in the proposed corrected intensity data.

3. Proposes a radiometric normalization model for airborne LiDAR data strips.

Though radiometric correction was applied to the intensity data, combining intensity data

from overlapping LiDAR data strips had significant line stripping problem which degraded

the land cover homogeneity. Therefore, a radiometric normalization model was proposed

to adjust the radiometric misalignment by matching the intensity sub-histogram of a data

strip with reference to the intensity sub-histogram generated from a reference data strip.

The criterion to split the histogram into sub-histograms was based on fitting the Gaussian

mixture components in the multi-modal histogram acquired in the overlapping region of

the two LiDAR data strips. The intensity sub-histogram of the target LiDAR data strip

was normalized to the corresponding sub-histogram of the reference data strip based on

histogram equalization. By visually examining the intensity images, the systematic noises

were reduced after radiometric normalization. Experimental results showed that the cv

within the same land cover feature was significantly reduced in a range of 33% to 80%

with respect to the corrected and normalized intensity data.

4. Assesses the land cover classification accuracy using LiDAR intensity data.

Two case studies were performed to investigate the effects of radiometric correction and

radiometric normalization of LiDAR intensity data on land cover classification. In the first

case, original intensity data and radiometrically corrected intensity data were classified

under different scenarios. Radiometric correction applied to the airborne LiDAR intensity

data demonstrated an improvement in land cover classification accuracy of 2% to 15%,

compared to the classification results using the original intensity data. In the second

case, original intensity (OI) data, normalized intensity (ONI) data, and corrected and
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normalized intensity (RCNI) data were used for land cover classification. Experimental

results showed that increases of 5.7% to 16.5% in overall accuracy were recorded in both

ONI and RCNI classification results. Despite these improvements, radiometric correction

and normalization seemed unnecessary for simple classification scenario (e.g., 2-classes

scenario for separating built-up land from natural ground).

As aforementioned, a few research groups have already carried out the studies in airborne

LiDAR intensity correction (Coren and Sterzai, 2006; Höfle and Pfeifer, 2007; Kaasalainen et

al., 2007). Nevertheless, very little of these other efforts addressed the effects of the proposed

techniques on real applications. This thesis sets a good example for proving the effectiveness

of radiometric correction and radiometric normalization on airborne LiDAR intensity data and

applications. It is apparent from the findings of this thesis that radiometric correction and

radiometric normalization have positive impacts on the airborne LiDAR intensity data for

land cover classification. Therefore, airborne LiDAR data should be radiometrically corrected

and normalized to remove the effects of environmental- and system- induced distortions in

the intensity data before performing any thematic applications. This thesis fills the gap in

existing airborne LiDAR research and paves the way for the development of future LiDAR data

processing system.

6.2 Future Work

The research presented in this thesis provides a foundation for developing a computer-based

processing software for LiDAR intensity data correction. Although the thesis focuses on the

discrete multiple-return LiDAR data, the proposed method can be applied to full-waveform

LiDAR data with slight modification. Despite the improvement in land cover homogeneity, the

results are not purported to be the last word in the subject of radiometric correction of LiDAR

intensity data. The proposed approach has certain limitations that can be further investigated

in future research. Several imperatives for future work are listed as follows:

Other LiDAR Sensors: During the Ph.D. study, a number of trials have been carried out

to radiometrically correct mobile laser scanning intensity data. Nevertheless, the corrected

intensity data (which were not reported in this thesis) did not show any improvement on the

intensity homogeneity, which intimated the inappropriate use of radar (range) equation on

mobile LiDAR sensor. A number of experimental trials have been reported for radiometric cali-

bration of terrestrial laser scanning intensity data using different external targets (Kaasalainen

et al., 2009a). Further research conducted by Kaasalainen et al. (2011) addressed the need for
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searching an optimal correction method for mobile laser scanner with respect to the range and

incidence angle for practical applications. Apart from civilian applications, a number of space

agencies have planned or launched satellite-based laser scanners for planetary exploration, such

as the NASA Lunar Orbiter Laser Altimeter, China National Space Administration (CNSA)’s

Chang’E-1 Laser Altimeter, NASA’s Mars Orbiter Laser Altimeter, NASA’s Mercury Laser Al-

timeter, etc. An accurate radiometric correction method is desired for precise crustal mapping

and better understanding of the historical geology through studying the recorded laser intensity

data.

Multi-wavelength Intensity Data: There are a number of experimental LiDAR sensors

operating at different wavelengths currently being developed in laboratory for retrieving the

backscattered reflectance of small plant and tree canopy (Morsdorf et al., 2009; Chen et al.,

2010; Suomalainen et al., 2011; Zhu et al., 2011). Preliminary findings have already proven the

usefulness of multi-wavelength LiDAR data to detect small changes in leaf reflectance due to

the biochemical concentration at leaf level (Gong et al. 2012). The backscattered intensity data

at different wavelengths were used to develop normalized difference vegetation index (NDVI)

and photochemical reflectance index for measuring plant physiology (Woodhouse et al., 2011;

Wallace et al., 2012). An improved efficiency in classification and interpretation compared to

the traditional monochromatic LiDAR data was demonstrated (Woodhouse et al., 2011; Hakala

et al.,2012). Nevertheless, most of these work focused on the short range LiDAR sensor for ter-

restrial mapping without performing radiometric correction. When technology matures, it is

worth investigating radiometric correction of backscattered intensity signals recorded by multi-

wavelength airborne LiDAR sensor so as to serve a large scale surface mapping and object

recognition applications.

Other Atmospheric Factors: Though a set of empirical methods were introduced to model

the effects of atmospheric absorption and scattering in Chapter 3, additional research should

be conducted to test the correction model under different climatic conditions. Furthermore,

the influence of atmospheric turbulence has not been considered in an airborne LiDAR sensor.

Atmospheric turbulence is mainly caused by the laser beam wandering and scintillation due to

the random variations of refractive index caused by temperature, pressure and wind variations

along the beam propagation path (Pedireddi and Srinivasan, 2010). This thus leads to fluctu-

ations of laser beam signal resulting in distortion of the recorded laser intensity. Recently, the

atmospheric turbulence effect has been studied in free space optical communication (Motlagh et

al., 2008), laser ranging system (Cole et al., 2008) and radar system (McMillan, 2010). Cole et

al. (2008) added an additional corrective term in the laser range equation considering the tur-
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bulence effect where such factor depends on the radius of the receiving aperture. Kaasalainen

and Kaasalainen (2008) demonstrated the impacts of the sensor aperture size on the backscat-

tered laser intensity. Though the aperture size of airborne LiDAR sensor is commonly known

as between 8 cm and 15 cm (Wehr and Lohr, 1999a), the specific value was not disclosed by

most sensor manufacturers. As a consequence, the atmospheric turbulence factor is not yet

considered in modeling the LiDAR backscattered intensity which can be further explored.

Laser Reflectance Model: The thesis proposed to incorporate both scan angle (θ) and

incidence angle (θr) in the radiometric correction model. To relieve the over-correction effect, a

correction mechanism was proposed by using the slope as a threshold to select either using scan

angle or incidence angle in the radar (range) equation. Nevertheless, the suggested method may

not be universal to all topography and LiDAR dataset. Since cos(θ) and cos(θr) in the radar

(range) equation do not stand for all kinds of materials as reported in the laboratory testing by

Kukko et al. (2008), future research should investigate and develop a universal laser reflectance

model for modeling the peculiar characteristics of laser intensity at different backscattering

geometry. Initial study can be carried out by first investigating the cosine correction, Minnaert

correction, statistical-empirical correction, C correction, SCS correction, SCS+C correction,

which are commonly adopted in optical satellite remote sensing (Soenen et al., 2005). In addi-

tion, existing semi-empirical bi-directional reflectance distribution functions (BRDF) in remote

sensing and computer graphics (i.e., Torrance-Sparrow, Maxwell-Beard, Standard Robertson,

Phong, Blinn-Phong, Cook-Torrance and Oren-Nayar) can also be tested on the airborne Li-

DAR intensity data.

Statistical Analysis: Since this thesis research focuses on radiometric correction and nor-

malization instead of classifier development, in-depth statistical analysis was not conducted in

the classification results for assessing the significance. Further effort can be expended in run-

ning statistical tests such as Cochran’s Q-Test (Patil, 1975), Looney’s F-Test (Looney, 1988)

or McNemar’s Test (Foody, 2004) to investigate if there are any significant differences amongst

the classification results before and after radiometric correction and/or radiometric normal-

ization. The test’s results could be another qualitative indicator (in addition to the overall

accuracy and kappa statistics) to demonstrate the impact of the proposed models on the land

cover classification. Different stastical classifiers can also be investigated in order to improve

the classification accuracy using the corrected and normalized intensity data. Initial stduy has

been conducted to compare the pixel-based and object-based classifers on the LiDAR intensity

data (El-Ashmawy et al., 2011). In addition to statistical classification, a study of error prop-

agation (or sensitivity analysis) can be carried out to investigate the variables’ uncertainties in
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the radar (range) equation. Such study would be important to reveal the influence of different

parameters (such as range, scan angle, incidence angle, etc.) in the equation for quantifying

the uncertainty in the corrected intensity data.
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Appendix A

Glossary of Acronyms

AGC Automatic Gain Control

ALOS Advanced Land Observation Satellite

ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

AVHRR Advanced Very High Resolution Radiometer

BRDF Bidirectional Reflectance Distribution Function

CNSA China National Space Administration

cv Coefficient of Variation

EEA European Environmental Agency

EM Expectation Maximization

FAO Food and Agriculture Organization

GaAs Gallium Arsenide

GIS Geographic Information System

GLAS Geoscience Laser Altimeter System

GMM Gaussian Mixture Model

GPS Global Positioning System

IFOV Instantaneous Field of View

IMU Inertial Measurement Unit

KS Kappa Statistics

LASER Light Amplification by Stimulated Emission of Radiation

LCCS Land Cover Classification System

LiDAR Light Detection and Ranging
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LVIS Laser Vegetation Imaging Sensor

MLC Maximum Likelihood Classification

MODIS Moderate Resolution Imaging Spectroradiometer

NASA National Aeronautics and Space Administration

Nd:YAG Neodymium-doped Yttrium Aluminium Garnet

NDVI Normalized Difference Vegetation Index

NOAA National Oceanic and Atmospheric Administration

NRCan Natural Resources Canada

OI Original Intensity

PALSAR Phased Array type L-band Synthetic Aperture Radar

RCI R IA Radiometrically Corrected Intensity using Range and Incidence Angle

RCI R IA AC Radiometrically Corrected Intensity using Range, Incidence Angle and

Atmospheric Correction

RCI R SA Radiometrically Corrected Intensity using Range and Scan Angle

RCI R SA AC Radiometrically Corrected Intensity using Range, Scan Angle and

Atmospheric Correction

RCI R SA IA AC Radiometrically Corrected Intensity using Range, Scan Angle,

Incidence Angle and Atmospheric Correction

RCI Radiometrically Corrected Intensity

RCNI Radiometrically Corrected and Normalized Intensity

SLA Shuttle Laser Altimeter

SLICER Scanning Lidar Imager of Canopies by Echo Recovery

SPOT Système Pour l’Observation de la Terre

TLS Terrestrial Laser Scanning

USGS United States Geological Survey
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Appendix B

Land Cover Classification Results

Appendix B lists all the results of land cover classification as reported in Chapter 5. Figs. B.1

to B.4 show the land cover classification results as reported in Section 5.4.1, where Figs. B.5

to B.8 show the land cover classification results as reported in Section5.4.2.
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(a) OI

 

(b) RCI R SA

 

(c) RCI R SA AC

 

(d) RCI R IA

 

(e) RCI R IA AC

 

(f) RCI R SA IA AC

Figure B.1: Land cover classification results using OI and five RCI data: 2-classes scenario
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(a) OI

 

(b) RCI R SA

 

(c) RCI R SA AC

 

(d) RCI R IA

 

(e) RCI R IA AC

 

(f) RCI R SA IA AC

Figure B.2: Land cover classification results using OI and five RCI data: 3-classes scenario
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(a) OI

 

(b) RCI R SA

 

(c) RCI R SA AC

 

(d) RCI R IA

 

(e) RCI R IA AC

 

(f) RCI R SA IA AC

Figure B.3: Land cover classification results using OI and five RCI data: 4-classes scenario
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(a) OI

 

(b) RCI R SA

 

(c) RCI R SA AC

 

(d) RCI R IA

 

(e) RCI R IA AC

 

(f) RCI R SA IA AC

Figure B.4: Land cover classification results using OI and five RCI data: 5-classes scenario
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(a) OI (2-classes)

 
(b) ONI (2-classes)

 
(c) RCNI (2-classes)

 
(d) OI (3-classes)

 
(e) ONI (3-classes)

 
(f) RCNI (3-classes)

 
(g) OI (4-classes)

 
(h) ONI (4-classes)

 
(i) RCNI (4-classes)

Figure B.5: Land cover classification results in sub-area 1
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(a) OI (2-classes)

 
(b) ONI (2-classes)

 
(c) RCNI (2-classes)

 
(d) OI (3-classes)

 
(e) ONI (3-classes)

 
(f) RCNI (3-classes)

 
(g) OI (4-classes)

 
(h) ONI (4-classes)

 
(i) RCNI (4-classes)

Figure B.6: Land cover classification results in sub-area 2
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(a) OI (2-classes)

 
(b) ONI (2-classes)

 
(c) RCNI (2-classes)

 
(d) OI (3-classes)

 
(e) ONI (3-classes)

 
(f) RCNI (3-classes)

 
(g) OI (4-classes)

 
(h) ONI (4-classes)

 
(i) RCNI (4-classes)

 
(j) OI (5-classes)

 
(k) ONI (5-classes)

 
(l) RCNI (5-classes)

Figure B.7: Land cover classification results in sub-area 3

100



101 APPENDIX B. LAND COVER CLASSIFICATION RESULTS

 
(a) OI (2-classes)

 
(b) ONI (2-classes)

 
(c) RCNI (2-classes)

 
(d) OI (3-classes)

 
(e) ONI (3-classes)

 
(f) RCNI (3-classes)

 
(g) OI (4-classes)

 
(h) ONI (4-classes)

 
(i) RCNI (4-classes)

Figure B.8: Land cover classification results in sub-area 4
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R. Two-channel hyperspectral LiDAR with a supercontinuum laser source. Sensors,

10(7):7057–7066, 2010.

[36] Chen Z., Gong C., Wu J., and Yu S. The influence of socioeconomic and topographic fac-

tors on nocturnal urban heat islands: a case study in Shenzhen, China. International

Journal of Remote Sensing, 33(12):3834–3849, 2012.

[37] Chormansk J., Van de Voorde T., De Roeck T., Batelaan O., and Canters F. Improv-

ing distributed runoff prediction in urbanized catchments with remote ssensing based

estimates of impervious surface cover. Sensors, 8(2):910–932, 2008.

[38] Cihlar J. Land cover mapping of large areas from satellites: status and research priorities.

International Journal of Remote Sensing, 21(6&7):1093–1114, 2000.

[39] Cole W.P., Marciniak M.A., and Haeri M.B. Atmospheric-turbulence-effects correction

factors for the laser range equation. Optical Engineering, 47(12):126001, 2008.

[40] Coren F. and Sterzai P. Radiometric correction in laser scanning. International Journal

of Remote Sensing, 27(15):3097–3104, 2006.

[41] Dalponte M., Bruzzone L., and Gianelle D. Fusion of hyperspectral and LiDAR remote

sensing data for classification of complex forest areas. IEEE Transactions on Geo-

sciences and Remote Sensing, 46(5):1416–1427, 2008.

[42] Dare P.M. Shadow analysis in high-resolution satellite imagery of urban areas. Photogram-

metric Engineering & Remote Sensing, 71(2):169–177, 2005.

[43] Du Y., Teillet P.M., and Cihlar J. Radiometric normalization of multitemporal high-

resolution satellite images with quality control for land cover change detection. Remote

Sensing of Environment, 82(1):123–134, 2002.

[44] Durieux L., Lagabrielle E., and Nelson A. A method for monitoring building construction

in urban sprawl areas using object-based analysis of SPOT 5 images and existing GIS

data. ISPRS Journal of Photogrammetry and Remote Sensing, 63(4):399–408, 2008.

[45] El-Ashmawy N., Shaker A., and Yan W.Y. Pixel vs object-based image classification

techniques for lidar intensity data. International Archives of Photogrammetry, Remote

Sensing, and Spatial Information Sciences, 38(Part 5/W12):1–6, 2011.

[46] Elberink S.O. and Vosselman G. Building reconstruction by target based graph matching

on incomplete laser data: analysis and limitations. Sensors, 9(8):6101–6118, 2009.

[47] Epstein J., Payne K., and Kramer E. Techniques for mapping suburban sprawl. Pho-

togrammetric Engineering & Remote Sensing, 63(9):913–918, 2002.

106



107 REFERENCES

[48] Fang H.T. and Huang D.S. Noise reduction in lidar signal based on discrete wavelet

transform. Optics Communication, 233(1-3):67–76, 2004.

[49] Ferdinandov E., Dimitrov K., Dandarov A., and Bakalski I. A general model of the

atmospheric scattering in the wavelength interval 300-1100nm. Radioengineering,

18(4):517–521, 2009.

[50] Filippov V.L., Makarov A.S., and Ivanov V.P. Construction of regional semiempirical

models of optical characteristics of the atmosphere. Akademiia Nauk SSSR, Doklady,

265(6):1353–1356, 1982.

[51] Foody G.M. Thematic map comparison: evaluating the statistical significance of dif-

ferences in classification accuracy. Photogrammetric Engineering & Remote Sensing,

70(5):627–633, 2004.

[52] Friedl M.A., McIver D.K., Hodges J.C., Zhang X.Y., Muchoney D., Strahler A.H., Wood-

cock C.E., Gopal S., Schneider A., Cooper A., Bacinni A., Gao F., and Schaaf C.

Global land cover mapping from modis: algorithms and early results. Remote Sensing

of Environment, 83(1-2):287–302, 2002.

[53] Geerling G.W., Labrador-Garcia M., Clevers J.G.P.W., Ragas A.M.J., and Smits A.J.M.

Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR

data. International Journal of Remote Sensing, 28(19):4263–4282, 2007.

[54] Goodale R., Hopkinson C., Colville D., and Amirault-Langlais D. Mapping piping plover

(Charadrius melodus melodus) habitat in coastal areas using airborne LiDAR data.

Canadian Journal of Remote Sensing, 33(6):519–533, 2007.

[55] Gong W., Song S., Zhu B., Shi S., Li F., and Cheng X. Multi-wavelength canopy LiDAR

for remote sensing of vegetation: design and system performance. ISPRS Journal of

Photogrammetry and Remote Sensing, 69:1–9, 2012.

[56] Gregorio A.D. and Jansen L.J.M. Land Cover Classification System, Classification Con-

cepts and User Manual. 2000.

[57] Habib A.F., Kim E.M., and Kim C.J. New methodologies for true orthophoto generation.

Photogrammetric Engineering & Remote Sensing, 3(1):25–36, 2007.

[58] Habib A., Bang K.I., Kersting A.P., and Chow J. Alternative methodologies for LiDAR

system calibration. Remote Sensing, 2:874–907, 2010.

[59] Habib A., Kersting A.P., Shaker A., and Yan W.Y. Geometric calibration and radiometric

correction of LiDAR data and their impact on the quality of derived products. Sensors,

11(9):9069–9097, 2011.

107



REFERENCES 108

[60] Hakala T., Suomalainen J., Kaasalainen S., and Chen Y. Full waveform hyperspectral

LiDAR for terrestrial laser scanning. Optical Express, 20(7):7119–7127, 2012.

[61] Han W.S. and Burian S.J. Determining effective impervious area for urban hydrologic

modeling. Journal of Hydrologic Engineering, 14(2):111–120, 2009.

[62] Hayes D.S. and Latham D.W. A rediscussion of the atmospheric extinction and the ab-

solute spectral-energy distribution of Vega. The Astrophysical Journal, 197:593–601,

1975.

[63] Helmer E.H. and Ruefenacht B. A comparison of radiometric normalization methods

when filling cloud gaps in Landsat imagery. Canadian Journal of Remote Sensing,

33(4):325–340, 2007.

[64] Heo J. and FitzHugh T.W. A standardized radiometric normalization method for change

detection using remotely sensed imagery. Photogrammetric Engineering & Remote

Sensing, 66(2):173–181, 2000.

[65] Herold M., Goldstein N.C., and Clarke K.C. The spatiotemporal form of urban growth:

measurement, analysis and modeling. Remote Sensing of Environment, 86(3):286–302,

2003.

[66] Hou Z. A review on MR image intensity inhomogeneity correction. International Journal

of Biomedical Imaging, 2006:1–11, 2006.
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K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., and Vander Auwera J. The

HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy

& Radiative Transfer, 110(9/10):533–572, 2008.

[135] Roy D.P., Ju J., Lewis P., Schaaf C., Gao F., Hansen M., and Lindquist E. Multi-temporal

MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and

prediction of Landsat data. Remote Sensing of Environment, 112(6):3112–3130, 2008.

[136] Schawlow A.L. and Townes C.H. Infrared and optical masers. Physical Review,

112(6):1940–1949, 1958.

[137] Shaker A., Yan W.Y., and El-Ashmawy N. The effects of laser reflection angle on radio-

metric correction of the airborne LiDAR intensity data. In ISPRS Workshop Laser

Scanning 2011, Calgary, Canada, August 29-31 2011.

[138] Shan J. and Sampath A. Urban DEM generation from raw LiDAR data: a labeling

algorithm and its performance. Photogrammetric Engineering & Remote Sensing,

71(2):217–226, 2005.

[139] Shimada M. Radiometric and geometric calibration of JERS-1 SAR. Advanced Space

Research, 17(1):79–88, 1996.

114



115 REFERENCES

[140] Shimada M., Isoguchi O., Tadono T., and Isono K. PALSAR radiometric and geomet-

ric calibration. IEEE Transactions on Geoscience Remote Sensing, 47(12):3915–3931,

2009.

[141] Silfvast W.T. Laser Fundamentals. Cambridge University Press, New York, 1996.

[142] Small D., Holecz F., Meier E., Nesch D., and Barmettler A. Geometric and radiomet-

ric calibration of RADARSAT images. In Proceedings of Geomatics in the Era of

RADARSAT, Ottawa, Canada, May 24-30 1997.

[143] Soenen S.A., Peddle D.R., and Coburn C.A. SCS+C: A modified sun-canopy-sensor topo-

graphic correction in forested terrain. IEEE Transactions on Geoscience and Remote

Sensing, 43(9):2148–2159, 2005.

[144] Song J.H., Han S.H., Yu K., and Kim Y.I. Assessing the possibility of land cover classifica-

tion using LiDAR intensity data. In Proceedings of the ISPRS Technical Commission

III Symposium 2002, Graz, Austria, September 9-13 2002.

[145] Soudarissanane S., J. Van Ree, Bucksch A., and Lindenbergh R. Error budget of terrestrial

laser scanning: influence of the incidence angle on the scan quality. In Proceedings 3D-

NordOst, Berlin, Germany, 2007.

[146] Steinvall O. Effects of target shape and reflection on laser radar cross sections. Applied

Optics, 39(24):4381–4391, 2000.

[147] Streutker D.R. A remote sensing study of urban heat island of Houston, Texas. Interna-

tional Journal of Remote Sensing, 23(13):2595–2608, 2002.

[148] Streutker D.R. Satellite-measured growth of the urban heat island of Houston, Texas.

Remote Sensing of Environment, 85(3):282–289, 2003.

[149] Sudhira H.S., Ramachandra T.V., and Jagadish K.S. Urban sprawl: metrics, dynamics

and modeling using GIS. International Journal Applied Earth Observation and Geoin-

fomation, 5(1):29–39, 2004.

[150] Sun H., Forsythe W., and Waters N. Modeling urban land use change and urban sprawl:

Calgary, Alberta, Canada. Networks and Spatial Economics, 7(4):353–376, 2007.

[151] Suomalainen J., Hakala T., Kaartinen H., Räikkönen E., and Kaasalainen S. Demonstra-
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