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ABSTRACT 

NATURAL CONVECTION AND SORET EFFECT IN A MULTI-

LAYERED LIQUID AND POROUS SYSTEM 

 

Master of Applied Science, 2012 

Hussam K. Jawad 

Mechanical and Industrial Engineering 

Ryerson University 

 

We investigated the onset of natural convection and thermodiffusion in an initially 

quiescent multi-layer system consisting of a porous layer sandwiched between two 

layers of a binary mixture, while the whole system is being heated from above. 

Two different water-alcohol mixtures were used with Soret coefficients of opposite 

sign. Then in similar situation a hydrocarbon mixture were investigated. It was 

found that when the Soret coefficient is negative, the lighter species migrates 

towards the colder surface while the denser species migrates towards the hotter 

surface. When the Soret coefficient is positive, the lighter species migrates towards 

the hotter surface while the denser species migrates towards the colder surface. 

Also, increasing the temperature difference leads to a greater separation of the 

mixture components because of the increase in the density gradient. In addition, 

increasing the porosity reduces the separation ratio due to the increased fluid 

mixing in the pores. 
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CHAPTER 1 

      Theory and Literature Review 

1.1    Introduction 

1.1.1  Onset of Natural Convection 

A porous media is defined as a material containing interconnected pores. The skeletal part of the 

material is called the “solid” or “matrix”, and the voids between them (pores) are normally filled 

with a fluid. Figure 1.1 shows a fluid flow in a porous media. Examples of porous media are 

prevalent throughout everyday life, ranging from natural substances such as soils, rocks, wood 

and limestone, biological tissues such as bones and animal fur, and man-made materials such as 

cements, brick, ceramics and fibreglass. 

Natural convection occurs in fluids due to the density gradient created by a temperature 

difference. This occurs since fluids of different temperatures have different densities. The fluid 

motion occurring from the mechanism of natural convection is not generated by any external 

source such as pumps, fans, or compressors. The motion is generated only due to the buoyancy 

forces induced in the system. When density decreases due to the rise in temperature, the lighter 

(less dense) components of the fluid rise and the heavier (more dense) components fall, leading 

to an unstable system that produces fluid motion. Through natural convection, hot fluid particles 

move from the bottom to the top of the space occupied by the fluid. The instability of the system 

occurs due to the opposite direction of buoyancy forces and natural convection.  

 

 

 

http://en.wikipedia.org/wiki/Material
http://en.wikipedia.org/wiki/Porosity
http://en.wikipedia.org/wiki/Fluid
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Figure 1.1: Schematic diagram of a fluid flow in a porous media  

 

The buoyancy force is strongly associated with the gravitational acceleration and their relation is 

expressed as: 

             

Where B, ρf, Vf and g are the buoyancy force, fluid density, volume of the displaced fluid, and 

gravitational acceleration, respectively. Hence, we can understand the impossibility for natural 

convection to occur in zero gravity environments. The study of natural convection in stacked 

systems consisting of a porous layer sandwiched between two fluid layers and subjected to 

heating from the top surface is of great importance due to the common occurrence of the system 

in many natural and industrial applications, particularly in oil reservoirs.  

 

 

 

 

Solid 

Voids 

Fluid Flow 
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1.1.2  Onset of Thermosolutal Convection with Soret Effect 

The phenomenon of mass flux in a mixture due to a temperature gradient is called the 

thermosolutal, thermodiffusion, or Soret effect. This phenomenon gained the attention of 

scientists, researchers, and engineers in the last decade due to its crucial role in many 

engineering and geophysical applications such as mineral migration and mass transfer in living 

matters, the analysis and study of compositional variation in hydrocarbon reservoirs, the 

separation of isotopic and isobaric mixtures [1], and drying processes or solute transfer in the 

mushy layer during the solidification of binary alloys [2]. The value of the Soret effect in a 

binary mixture can be obtained from the Soret coefficient (ST), which represents the ratio of the 

thermal diffusion coefficient (DT) to the molecular diffusion coefficient (DM). This relationship 

can be stated as the following equation: 

     
  𝐷 

  𝐷 
                                                                                                                                             

where βC is the solutal expansion coefficient and βT is the thermal expansion coefficient. 

Convection due to buoyancy has a large influence on the accuracy of ST, but the inherent flow 

resistance in a porous media reduces this influence. The separation ratio (q) describes the power 

of the Soret effect for a mixture, and it can be calculated from the following equation: 

q = c0 (1 - c0    C /  T) ST                                                                                                                 (1.2)  

where c0 is the initial concentration of the mixture. 
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1.2   Motivations 

The phenomenon of heat and mass transfer in a system that contains layers of both fluids and 

porous media is of great importance because of the common occurrence of the system in many 

environmental, natural, and industrial applications. Below are some of the applications in which 

this system occurs:   

 Ground water pollution, 

 Migration of minerals and mass transport modeling in living matters, 

 Geothermal systems, crude oil production, 

 Storage of nuclear waste material, 

  Solidification of castings, 

  Extraction of oil from oil sand and deep oil reservoirs, 

 Thermal insulation systems.  

 

 

1.3   Objectives and Organization of the Thesis 

The main objectives of this thesis are to study natural convection and thermodiffusion in an 

initially quiescent multilayer system consisting of a porous media layer sandwiched between two 

layers of a binary mixture, where the whole system is heated from above (top horizontal surface). 

Additionally, I investigate the effect of temperature difference, the sign of the Soret coefficient, 

and the effect of the porosity of the porous material on the aforementioned phenomena. I 

performed a series of numerical studies utilizing finite element techniques in order to achieve 

these objectives. 
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The thesis is divided into six main parts. First, the theoretical concepts and literature regarding 

natural convection and thermodiffusion, are discussed in chapter one. The simulations using the 

algorithm and plots from the visualizing tool are also presented.  The dimensional and non-

dimensional forms of the governing equations, geometrical and numerical models, and related 

boundary conditions are introduced in chapter two. In chapter three, natural convection in a 

multi-layered system of porous media squeezed between two binary fluid layers are discussed in 

detail, with a full comparison of the effect of heating orientation. To examine the importance of 

the Soret coefficient, thermodiffusion in water-alcohol mixtures with either negative or positive 

Soret coefficients are discussed in detail in chapter four. In chapter five, the same study of the 

Soret effect has been conducted on a hydrocarbon mixture, with the investigation of the 

relationship between porosity and the Soret effect. Finally, in chapter six, the conclusions and 

contributions are discussed, and recommendations for future work are suggested. 

 

1.4 Literature Review 

As mentioned earlier, the study of natural convection and thermodiffusion in a system consisting 

of fluid and porous layers has attracted much attention in the scientific community. The groups 

investigate and identify the most important parameters that affect heat and mass transfer in 

porous medium during natural convection and thermodiffusion. A detailed review of the related 

literature provides the framework for the present study. First, the literature on natural convection 

in systems of porous layers saturated by fluid is reviewed. Thereafter, the literature on 

thermodiffusion in porous media saturated with binary fluids is presented. 
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Nield [3] applied linear stability analysis to a two-layer system of a fluid on a porous layer, with 

a constant heat flux applied from the bottom. For an accurate analysis of interfacial fluid motion 

between the fluid and the porous media, and relating that to the shear stress in the fluid and slip 

velocity at the interface area, he used the Beavers-Joseph condition. He proposed the possibility 

of mass and heat transfer (at the interface) from the low surface-tension area to the area of high 

surface tension, which is known as the Marangoni Effect. This model is important for studying 

convection in a system consisting of porous and fluid layers, particularly because it adds in the 

effects of gravitational and surface tension numbers. This work is the current standard, and its 

equations are commonly used by engineers and scientists.  

Somerton et al. [4] studied the onset of convection for a system consisting of a fluid layer 

overlaying a porous layer saturated with a fluid, with the system heated or cooled from below. 

The Brinkman extension of Darcy’s law was used for calculating a wide range of independent 

physical parameters, such as the Darcy number, the Rayleigh number, thermal conductivity, 

effective viscosity, and permeability in the system. The results showed that fluid stability is 

inversely proportional to the Darcy number, because an increase in the permeability of the 

porous layer allows more fluid motion. It was found that at a higher thermal conductivity ratio (kf 

/ ks) the fluid layer becomes more stable due to the lack of convection rolls. Also, they found that 

the critical Rayleigh number increases with a stabilizing temperature gradient and decreases with 

a destabilizing temperature gradient. 

Saghir et al. [5] investigated the flow structure and mechanism of heat flow for a liquid layer 

overlaying a porous layer. They studied and analyzed the onset of the convection for two 

different cases: when the system was heated from the bottom and when a lateral heating was 

supplied to the system. Their system consisted of a rectangular enclosure filled with a porous 
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layer underneath a fluid layer, in which they studied the effect of changing the aspect ratio (AR) 

of the system, which is defined as the ratio of the cavity width to its thickness. For the first case 

(bottom heating) the study found that the AR will modify the flow configuration when there is 

natural convection in the liquid layer, while for the porous layer the AR has no effect. Further, 

large convective motion was present at a low thickness ratio of the liquid layer (defined as the 

ratio of layer thickness to the total thickness of both layers) and weakens as the thickness ratio 

increases. For the second case (lateral heating), multi-cellular flow is present for the liquid layer 

when the AR is large. The porous layer acts as an obstacle blocking the flow into the porous 

media. They concluded that for both cases (bottom or lateral heating), the liquid layer thickness 

determines whether the flow is mainly in the porous or liquid layer, and for some values of AR  

multi-cell flow patterns occur in addition to the Marangoni convection, both of which enhance 

the flow in the enclosure.  

Pillatsis et al. [6] performed a linear stability analysis on a horizontal porous layer (with Darcy 

flow and the Boussinesq approximation) sandwiched between two fluid layers with the top and 

bottom boundaries dynamically free and kept at fixed temperatures. They applied the Beavers-

Joseph interfacial boundary conditions between the fluid and porous layers. They reported the 

stability analysis of the same configuration studied by Nield, [3] and compared their results to 

those of Nield except with free boundary conditions and a constant heat flux. They also 

discussed their results with respect to the quantitative effects of both thermal (constant heat) and 

hydrodynamic (free or rigid) boundary conditions. They found that when the boundary between a 

fluid layer and the porous layer closes, the critical conditions for the onset of convective motion 

in two different modes were affected. When the boundary is closed, the critical Rayleigh number 

is reduced due to the slip effect at the interface between the fluid layer and the porous layer. 
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They also found that for a low-permeability porous layer, the critical Rayleigh number is highly 

affected by the slipping conditions. 

Taslim and Narusawa [7] performed a stability analysis for the onset of convective motion in 

three systems of horizontal porous and fluid layers in the following configurations: 

a. A porous layer sandwiched between two fluid layers with rigid boundaries from the top 

and bottom, 

b. A fluid layer over a porous medium layer, and 

c. A fluid layer sandwiched between two layers of porous media. 

A detailed examination of the three systems was performed for a wide range of depth ratios 

(depth of the porous layer / depth of the fluid layer). They also studied the effect of the thermal 

conductivity ratio, the non-dimensional proportionality constant in the Beavers-Joseph condition, 

and the square root of the Darcy number on the critical Rayleigh number and the critical wave 

number. The authors used the slip conditions to predict the critical conditions for the onset of 

convective motion for various cases when the depth ratio, the square root of the Darcy number, 

and thermal conductivity ratio all possessed high values. They also found that the critical 

conditions for the onset of convective motion are highly dependent on the depth ratio and the 

value of the thermal conductivity. However, these critical conditions are only moderately 

affected by the square root of the Darcy number. 

The phenomenon of crude oil flow through layers of rock, sand, limestone, and shale as well as 

other geological and industrial applications motivated Vafai and Thiyagaraja [8] to analyze the 

fluid flow and heat transfer at interface regions between porous and fluid layers. Three different 

types of interface zones have been selected: (a) the interface between two different porous layers, 

(b) the interface between porous and fluid layers, and (c) the interface between porous and 
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impermeable layers. By employing the Forchheimer-Extended Darcy equation in their analyses 

and taking into account the continuity of shear stress and heat flux, they performed a detailed 

analysis for the distribution of velocity and temperature for the three zones. This study is 

considered the fundamental study of interfacial interactions around a saturated porous medium. 

They established that an analytical solution helps in improving the equations and relationships 

dealing with porous media. They also found reasonable agreement between analytical and 

numerical solutions can be achieved for a variety of practical situations. 

The Beavers-Joseph condition was one of the first studies describing fluid mechanics at the 

interface between fluid and porous layers. . Based on this work, Vafai and Kim [9] studied the 

fluid mechanics at the interface between fluid and porous layers. Their study focused on the 

effects of Darcy’s law and the inertia parameter on the fluid mechanics of this interfacial system. 

The model that was used in their work consisted of a fluid layer sandwiched between a porous 

layer from the top and a rigid boundary from the bottom. Their main conclusion was the first 

exact solution for the fluid mechanics at the interface between the fluid and porous layers. They 

found that the fluid velocity is affected by: 

 The Darcy number: Any decrease in the Darcy number will decrease the permeability of the 

porous layer, which leads to a lower mass flux through the porous layer. 

 The product of multiplying the Reynolds number by the inertia parameter: A higher value of 

(Re x Inertia Parameter) means greater resistance against the flow in the porous layer, which 

leads to a higher velocity of the fluid through the open area.  

To obtain an exact description of transport phenomena (heat, mass, or momentum) at the 

interface between fluid and porous layers for any numerical model, it is necessary to specify and 

select a boundary and/or initial condition. Alazmi and Vafai [10] used the same system 
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configuration which was used by Vafai and Kim [9] to investigate the differences in heat and 

mass transfer using different boundary conditions for the interfacial region between fluid and 

porous layers while employing the Brinkman equation. They used various boundary condition 

models to investigate the effects of selected physical parameters such as Reynolds number, 

effective viscosity, porosity, Darcy number, slip coefficient, and inertia parameter on the fluid 

flow and heat transfer at this interface. They examined the convergence of the models for the 

applied parameters. They found that the physical parameters have a large effect on the flow 

velocity, a small effect on the temperature, and even less effect on the Nusselt number.  

Umavathi et al. [11] studied unsteady (oscillatory) fluid flow and heat transfer in a porous media 

sandwiched between two viscous fluid layers. The system they modeled consists of three layers: 

a homogeneous and isotropic porous layer saturated with a viscous fluid and sandwiched 

between two different fluid layers. They applied boundary and interfacial conditions to find 

closed-form solutions for each region separately, and then computed numerically the effects of 

various physical properties such as porosity, periodic frequency, frequency, conductivity ratios, 

and viscosity ratios on the fluid velocity and temperature. They concluded that an increase in the 

value of each of porosity, Prandtl number, conductivity ratios, and viscosity ratios causes a 

reduction in the both temperature and velocity, which in turn restrains the flow. On the other 

hand, an increase in the frequency parameter and Eckert number values leads to an increase in 

both the temperature and velocity, which increases the flow. They also found that higher 

conductivity ratios and viscosity ratios increase the heat transfer rate at the top wall, while 

decreasing the heat transfer rate at the bottom wall.  
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Chang [12] studied the stability of thermal convection in a two-layer system with horizontal 

plane Couette flow. He used a system consisting of a fluid layer over a porous layer saturated 

with the same fluid sandwiched by two plates. The lower plate was kept warmer than the upper 

plate, and movement of the upper plate at a constant speed generated shear. He studied the effect 

of the flow shear and Prandtl number on both longitudinal and transverse convection rolls to 

provide a general analysis of the stability mechanism for thermal convection in the system. It 

was found that the onset of instability is controlled by the longitudinal mode and its neutral curve 

does not depend on the plane Couette flow, Reynolds number, and Pandtl number of the fluid. 

Chang [13] extended his previous investigation by examining the thermal convection in a system 

consisting of a fluid layer over a layer of a porous medium saturated with the same fluid. The 

system was heated from below and subjected to a horizontally plane Poiseuille flow (a flow with 

pressure drop through the flowing stream). He investigated the effects of the plane Poiseuille 

flow on the known instability mechanism of thermal convection in an unstable two-layer system. 

The author found that for longitudinal rolls at any depth, the onset of the instability ratio and the 

stability characteristics for the longitudinal rolls are independent of the Reynolds and Prandtl 

numbers. However, the stability of the transverse mode is strongly dependent on the Reynolds 

and Prandtl numbers, and it may be the same as for the longitudinal mode when the Reynolds 

and Prandtl numbers are close to zero. This similarity at low Reynolds and Prandtl numbers 

explains the stabilizing effects of the plane Poiseuille flow on the fluid layer.  

Bukhari [14] applied a numerical linear stability analysis to a bottom-heated system consisting of 

a horizontal viscous fluid layer sandwiched between porous layers saturated with the same fluid. 

He computed the stability curves of thermal convection in the viscous fluid using a reciprocal 

thermal conductivity of 0.7 W/ (m·K), a Darcy number of 4x10
-6 

 md, a Beavers-Joseph constant 
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of 0.1, and depth ratios of 0.01 to 0.2. He determined that the Rayleigh and wave numbers are 

inversely related to the depth ratio: As the depth ratio decreases, for a constant value of the wave 

number the Rayleigh number increases, and for a constant value of the Rayleigh number the 

wave number increases. 

Chen [15] implemented a linear stability analysis of the convection instability in a system 

consisting of a porous layer under a fluid layer with flow in the vertical direction. The top wall 

was kept at constant temperature that was lower than the bottom wall. Since the convection 

stability is independent of the Prandtl number (Pr) in the porous layer while Pr has a large effect 

on the convection stability in the fluid layer, Pr may play an important role in the convection 

stability of a system consisting of both porous and fluid layers. For this reason, Chen considered 

the depth ratio, Pr, and the through flow strength to be the most important parameters in the 

study. The author found that in a system consisting of both porous and fluid layers it is possible 

to enhance both the stabilizing and destabilizing factors for vertical flow. Changing the depth 

ratio or the strength and direction of the flow gives more accurate control of the buoyantly driven 

instability in porous and fluid layers. For instance, he found that for a depth ratio of 0.1, where 

the onset of convection occurs in both fluid and porous layers, the effect of Pr is minimal and 

there is a linear relationship between the flow strength and the critical Rayleigh number. 

Whereas, for a depth ratio of 0.2, where the onset of convection mainly occurs in the fluid layer, 

the critical Rayleigh number is proportionally related to the square of the flow strength. 

Balasubramanian et al. [16] performed a linear stability analysis on thermal convection in a 

system consisting of a horizontal fluid layer sandwiched between two porous layers of different 

permeability and thermal properties. They studied the effect on the onset of convection in the 

fluid layer created by the bounding porous walls, and compared that with the predicted results 
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obtained from free-free boundaries and rigid-rigid boundaries. They found that the onset of 

convection for the bounding porous walls is earlier than for rigid-rigid boundaries but later than 

for free-free boundaries. This result is because the critical Rayleigh number increases when the 

values in Darcy’s law for the lower and upper porous walls increase, and this is the same for the 

relationship between the critical Rayleigh number and the Biot number for the lower and upper 

porous walls. They also found that the wave number for adiabatic boundaries is less than for 

isothermal-isothermal boundaries. From the above results, they concluded the following: 

 Ra free  ≤  Ra porous ≤ Ra rigid  

 a free-free  ≤  a porous ≤ a rigid-rigid 

Where Ra is the Rayleigh number and a is the wave number. 

Rudraiah et al. [17] studied the fluid flow in a sparsely packed porous medium sandwiched 

between two fluid layers. They specified proper boundary conditions for porous layers of 

different depths and properties. For this reason, two configurations were used in their study: (a) a 

thin, sparsely packed porous medium sandwiched between two thick fluid layers, and (b) a thick, 

sparsely packed porous medium sandwiched between two thin fluid layers. They studied the 

effect of the porous layer thickness, viscous parameter, and porosity on the mass flow and 

friction factor in these systems. The authors found that increasing the thickness of porous layer 

will decrease the mass flow rate, which can be controlled by varying the thickness of porous and 

fluid layers. However, when the thickness of the porous layer is increased, the friction factor is 

decreased due to the low resistance to the flow offered by the low density of the porous medium. 

Prasad et al. [18] conducted flow visualization and heat transfer experiments for buoyancy-

driven flow in a cylindrical cavity filled with a fluid-superposed porous layer of beads that was 

heated from below. The authors observed that the flow is highly complex and active flow 
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interactions between the fluid and the underlying porous layer were seen even when the Rayleigh 

number for the porous layer was of the order of unity. Results showed that there was a sharp 

drop in the critical Rayleigh number from the value of 4Л
2 

when the porous layer thickness was 

reduced below unity. This is due to the convective flow moving from the porous layer to the 

fluid layer. They also found that for beads of small diameter the Nusselt number decreases when 

the thickness ratio increases. For larger size of beads, the Nusselt number decreases with the 

thickness ratio until the minimum particle size is reached (particle diameter / total height of the 

cavity), at which point it begins increasing again. The authors show that the Rayleigh number, 

particle size, thickness ratio, thermal conductivity ratio, and fluid viscosity all have important 

effects on the heat transfer rate. 

V. Prasad [19] extended the above experimental study and conducted a visualized flow field and 

heat transfer experiment for natural convection in a bottom-heated and top-cooled cylindrical 

enclosure filled with a fluid over a horizontal porous layer saturated with the same fluid. The 

purpose of this experiment was to investigate the heat transfer and visualised flow field for a 

wide range of physical properties such as Rayleigh number, Prandtl number, porous layer height, 

and thermal conductivity ratio. He used a Plexiglas tube (7-inch. diameter) as a cylindrical 

enclosure with a bottom end made out of an aluminum plate (0.25’’ thick), which was heated by 

a thermo foil heater fixed underneath the plate. A similar plate fixed to the top end was cooled by 

circulated water supplied from a constant-temperature circulator to obtain an isothermal surface. 

In order to reduce the heat loss due to conduction from the bottom end, the enclosure was placed 

inside a Plexiglas recess (1’’ thick plate). A number of thermocouples placed on both sides of the 

enclosure were used to calculate the approximate heat lost by conduction. The enclosure was 

insulated and another group of thermocouples were fixed at radial locations. He used different 
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sizes and materials of spherical beads as the porous layer to fill to the desired height, then filled 

the cylindrical enclosure with fluid (Dow Corning 200, silicon fluid and ethylene glycol) with 

maintain the aspect ratio (AR) to be equal to one. For the flow visualization, he used very fine 

aluminum particles (diameter = 5-20 µm) which were lit by a beam of light  passing through the 

center axis of the enclosure, and time exposures were recorded optically by a camera. He 

observed that the heat transfer rates and convective flow are related to the particle size, Rayleigh 

number, porous layer height, and thermal conductivity ratio, which shows that the rate of heat 

transfer in the system can be raised by using porous media with a high thermal conductivity. This 

result explains why the energy transferred in a system filled with porous media is greater than 

one filled with fluid when the permeability of the porous media is high and the conductivity ratio 

is low. He also found that regardless of the thermal conductivity ratio, the relationship between 

the Nusselt number and the porous medium layer thickness is not simple. However, the Prandtl 

number has no effect on the convection rate as long as the Prandtl number is large and the 

permeability of the porous medium is high. 

Beckermann et al. [20], motivated  by natural convection in a solidifying cast, performed a 

numerical and experimental study to investigate the steady-state convection fluid flow and heat 

transfer between fluid and porous media. They used a rectangular enclosure partially filled with a 

fluid-saturated porous medium, and they applied a temperature gradient in the horizontal 

direction of the system. The porous medium consisted of spherical beads, and a mixture of water 

and glycerine was the fluid. The interface region between the fluid and the porous layer was 

permeable to allow the fluid to move between layers. The authors found that the flow penetration 

into the porous layer increases with an increase in the Darcy number, because larger beads 

(porous media) have less resistance to the fluid flow, which allows natural convection to occur in 
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the entire enclosure, while for smaller beads there is almost no penetration into the porous 

region. They also found that when the fluid penetrates into the porous layer, natural convection 

in the entire enclosure is different compared to that in fully porous or fluid-filled cells. 

P. Nithiarasu et al. [21] investigated the effect of porosity on natural convection and heat transfer 

in a fluid-saturated porous medium using a generalized non-Darcy model with porosity as a 

separate parameter and applying the Boussineq approximation to the momentum equation. The 

authors found that at higher Darcy numbers, there is a large effect of the porosity on both the 

convective flow and heat transfer in the fluid-saturated porous medium. This effect is smaller but 

not negligible at lower Darcy numbers. 

K. Vafai et al. [22] studied the effect of a boundary and the inertial forces on fluid flow and heat 

transfer in a porous medium confined by an external boundary. Specifically, the authors 

examined the flow through the porous medium near to an impermeable boundary. The authors 

found three important flow resistances in this model: the bulk damping resistance due to the 

porous structure, the viscous resistance due to the boundary, and inertial resistance due to the 

inertial forces. They found that there are minimal effects of the boundary on the flow, but it has a 

large effect on the heat transfer. They also found that the inertial effects increase with a higher 

permeability and lower fluid viscosity and that the velocity gradients increase close to the walls, 

which leads to an increase in the viscous resistance (due to the boundary). Accordingly, the 

boundary effects are further enhanced when inertial forces increase. 

Raptis et al. [23] studied the phenomena of natural convection and heat transfer flow of a viscous 

incompressible fluid passing through a porous layer surrounded by a vertical plane walls. They 

studied the effect of the Grashof number (Gr) and permeability (K) of the porous layer on the 

velocity and rate of heat transfer. The authors found that when the permeability of the porous 
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medium increased, the flow velocity also increased. This phenomenon is more noticeable with a 

higher value of Gr. They also found that the velocity increased when the concentration 

difference above and below the porous layer increased. They observed that the media porosity 

plays an important role in reducing the rate of heat transfer, especially in systems with a higher 

Gr. 

Kim et al. [24]   studied the effects of the Darcy number, Prandtl number, and Reynolds number 

on a local thermal non-equilibrium system consisting of porous media and a fluid, by comparing 

the temperature of the solid phase with the temperature of the fluid phase when the values of the 

numbers were varied. The authors used the thermal non-equilibrium test to investigate different 

problems of convective heat transfer. They found that the local thermal equilibrium condition 

could be satisfied with high values of porosity, scaled thermal conductivity ratio, and heat 

transfer coefficient. A porous medium such as metal foam that has low thermal conductivity of 

the interstitial fluid compared to that of the solid, gives low values of the thermal conductivity 

ratio. Porous media with low thermal conductivity ratio cause more heat to be transferred by 

conduction through the solid rather than heat convection through the fluid. 

Huke et al. [25] conducted two- and three-dimensional numerical investigations on laterally 

periodic convection structures of binary mixtures (ethanol-water) in the Rayleigh–Bénard system 

with positive Soret effect. They found that ethanol, which is the lighter component of the 

mixture, immigrated in the direction of the hot surface. They also found that at a smaller 

temperature difference, the density gradient causes a larger convective instability than in the case 

of a pure fluid. 

Md. Rahman and Saghir [26] investigated the onset of thermo-solutal (Double Diffusion) 

convection in a liquid layer over a porous layer in a system heated laterally. They studied two 
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different cases: the first case was without thermodiffusion (Soret effect) and the second case was 

in in the presence of the Soret effect. The liquid in this study was water, with either 0.1 or 0.5 

mass fraction of isopropanol. Also, different thickness ratios (layers thickness) were selected to 

study the effect of this ratio on the convection cells produced. The authors observed multiple 

cells in the fluid layer for the mixture containing 10% isopropanol and 90% water. However, 

only a single cell was observed for the mixture of 50% isopropanol and 50% water. They also 

found when the thickness ratio increased, the flow moved to the porous layer. For the case with 

Soret effect, it was found that the isopropanol components traveled either to the cold or hot side 

depending on the sign of the Soret effect of the mixture. In addition, there was a strong effect of 

gravity on the convection due to thermodiffusion. 

Eslamian et al. [27] developed a dynamic model to investigate the phenomenon of 

thermodiffusion and to suggest formulas to assist in the estimation of the thermal diffusion factor 

for binary liquids. They associated the net heat transfer in non-equilibrium thermodynamics with 

the activation energy of viscous fluid flow, which represents the minimum amount of energy 

required for a chemical reaction to occur. The authors then proposed the following simple 

expressions for the estimation of the thermal diffusion factor for binary liquids: 
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where α is the thermal diffusion factor, x1 and x2 are the mole fractions of components 1 and 2, 

MW1 and MW2 are the molecular weights of components1 and 2, RT is the approximation of  
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     𝜇 /     and E
vis

 is the activation energy of viscous flow of that component in pure form, at 

the given mixture pressure and temperature. 

Mansour et al. [28] studied analytically and numerically the combined effect of  thermodiffusion 

and lateral heating on double diffusive natural convection in a horizontal homogeneous and 

isotropic porous layer using the Darcy model. The porous layer was saturated with a binary, 

Boussinesq, and incompressible fluid and subjected to uniform heat and mass fluxes on the long 

sides of the rectangular closure. The results showed that the thermodiffusion could create a 

higher concentration of solute on the boundary opposite to the side where the mass flux was 

imposed. Also, they found that the Soret effect may modify significantly the heat transfer in the 

system by causing a complete disappearance of the flow, hence bringing the system back to a 

purely conductive state. 

Shukla and Firoozabadi [29] presented a model for prediction of the thermal diffusion 

coefficients in binary fluids using the rules of thermodynamics in irreversible processes. The 

model was used to predict the coefficients of thermal diffusion at various values of pressure and 

temperature for hydrocarbon (C1/C3, C1/C4, C7/C12 and C7/C16) and non-hydrocarbon (Ar/C02, 

N2/CO2, H2/N2 and H2/CO2) fluid mixtures.  Comparison with theoretical results showed that the 

model performed successfully. It was found that the thermodiffusion coefficients are not 

influenced by pressure or temperature when the model is not near to the critical point.  

Davarzani et al. [30] determined the effective Darcy-scale coefficients for heat and mass transfer 

in porous media using a volume averaging technique. The results showed that the effective Soret 

number differs from the micro-scale value because of the effects of advection. They also showed 

that for the convective regimes, the effective thermodiffusion coefficient depends on the pore-

scale properties (e.g. geometry, conductivity ratio). The study concluded that for low Péclet 
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numbers the effective Soret number in porous media is the same as for a free fluid, and it is 

independent of the conductivity ratio. While in convective regimes the effective Soret number 

decreases. Therefore, a change in the conductivity ratio will change the effective thermodiffusion 

coefficient in addition to the effective thermal conductivity coefficient. 

Benano-Melly et al. [31] numerically addressed the problem of thermodiffusion in binary fluid 

mixtures within a porous medium and subjected to a horizontal thermal gradient. They 

reproduced Soret number measurement experiments and explained the disagreement observed 

between numerical and experimental results. Their study showed that multiple convection-roll 

flow patterns can be developed when solutal and thermal buoyancy forces oppose each other, 

that is, depending on the value of the Soret number of the binary mixture. It also showed that for 

a given binary mixture the maximum separation ratio occurs at the larger cell aspect ratio. The 

authors observed a disagreement between numerical and experimental results when evaluating 

the optimum permeability for solute separation. They found that dispersion can be responsible 

for this phenomenon and that it can greatly affect the diffusion and 

thermodiffusion coefficients. 

Melnikov et al. [32] employed a Darcy–Brinkman model to experimentally model the double-

diffusive convection with Soret effect in a system consisting of a fluid region adjacent to a 

porous medium saturated with and laterally sandwiched between the same liquid. For these 

experiments the liquid possessed a positive Soret effect (50% 1, 2, 3, 4-tetrahydronaphthalene 

(THN)-dodecane solution). A temperature difference (1, 3, and 5 K) was applied between the 

sidewalls of the model. The authors found that the concentration field in a pure liquid is uniform 

in the central region, producing an obvious boundary layer at the interface due to buoyant 

convection. They also found that when there is a large concentration gradient in the liquid near 
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the porous region there is strong mass diffusion from the liquid to the porous medium at both the 

hot and cold sides, which drives the mass transfer that strongly affects the separation of the 

liquid components. 

Bennacer et al. [33] studied the phenomenon of natural convection with Soret effect in a binary 

fluid saturating a shallow, horizontal porous layer. The vertical walls of the model were heated 

and cooled by uniform heat fluxes with a cross-solutal gradient. They found that when the 

vertical concentration gradient is stable, steady-state solutions become possible with a range of 

buoyancy ratios that are dependent on the Soret coefficient. 

Mansour et al. [34] conducted a numerical analysis to study the Soret effect in fluid flow as well 

as heat and mass transfer due natural convection in a square porous cavity with a cross 

concentration and temperature gradients. They found that the Soret effect can affect the heat and 

mass transfer in the cavity, and it can improve or impair the mass transfer, depending on the flow 

structure and the sign of the Soret coefficient. 

Safi and Benissaad [35] studied numerically the heat and mass transfer in a homogeneous and 

anisotropic porous medium saturated with a binary fluid mixture. The vertical walls of the 

rectangular enclosure were subjected to horizontal thermal and concentration gradients. The 

horizontal walls of the enclosure were adiabatic and impermeable. The Darcy-Brinkman-

Forchheimer model was used to describe the flow in the enclosure. The authors discussed the 

effect of the thermal anisotropic ratio, buoyancy ratio, and Lewis and Darcy numbers on the 

Nusselt and Sherwood numbers. The results showed that the heat and mass transfer are weak 

functions of the Darcy number for all conductivity regimes, and the mass transfer is enhanced 

faster when Ra increases. They also showed that for a certain range of the parameters, the heat 

transfer decreases when the flow penetrates into the porous medium. 
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CHAPTER 2 

Mathematical Formulation and Numerical Approach 

 

2.1 Model Configuration and Boundary Conditions   

The schematic diagram for the model used in this study is illustrated in Figure 2.1. It shows a 

two-dimensional rectangular cavity split into three regions: a porous layer sandwiched between 

two fluid layers of the same physical specifications. The liquid layers are assumed to be 

incompressible, Newtonian, and viscous with a thermal expansion coefficient of βT and solutal 

expansion coefficient of βC.  

 

Figure 2.1: Configuration model and boundary conditions of the problem 
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The width (D) of the enclosure is 10 mm with a total height (L) of 45 mm. The porous layer has a 

height (d3) of 32.2 mm, while each of the fluid layers (d1 and d2) has a height of 6.40 mm. The 

physical properties of the liquid are assumed constant. The side (vertical) walls of the enclosure 

are assumed adiabatic. The temperature of the top wall (Th) of the enclosure will be greater than 

the temperature of the bottom wall (Tc), and the temperature difference (∆T) between them will 

be 5, 10, or 20 K. It is assumed that the liquid and the porous layers are in thermal equilibrium. 

The porous medium has a porosity 𝜙 = 0.39 and thermal conductivity equal to 0.64 W/(m·K), 

which corresponds to a group of glass beads of 3.25 mm diameter. The Darcy number was 

calculated by using the Kozeny-Carmen relation: 

    
  

     

  

      
                                                                                                                                    

 

 

2.2  Governing Equations for the Fluid Layer 

The flow under consideration is assumed laminar and incompressible. The model is presented in 

Cartesian coordinates. The complete continuity, momentum balance, energy balance, and mass 

balance equations were solved simultaneously using the finite element technique. The equations 

were solved numerically for both liquid layers. The equations presented are for the two-

dimensional transient model, but similar equations without the t (time) term were used for the 

steady-state model. The dimensional and non-dimensional equations are explained in detail in 

appendix (A). 
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2.2.1   Continuity Equation 

The continuity equation of fluid dynamics is a mathematical formula which states that mass is 

always conserved in fluid systems regardless the complexity or direction of flow: 

 𝑢

  
  

 𝑣

  
                                                                                                                                                      

where u and v are the velocity components in the x and y directions, respectively. 

 

2.2.2   Momentum Balance Equation 

The Navier-Stokes equations are used as the momentum balance equations for the flow in the 

fluid layer. The momentum balance equation in the x-direction is expressed as: 
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where ρ is the fluid density, p is the pressure, and µ is the fluid viscosity.  

In the y-direction, there is a buoyancy-driven flow induced by temperature differences that 

should be considered in computation, which is represented by the Boussinesq approximation. 

The Boussinesq approximation states that the density variation in a fluid is small and can be 

neglected except when it is multiplied by the term of gravitational acceleration (g). The 

Boussinesq approximation can be expressed as: 

         𝑇 𝑇  𝑇   – 𝐶                               (2.4) 

where βT and βC are the thermal and solutal expansion coefficients, respectively, and ρ0, T0 and c0 

are the initial fluid density, temperature, and concentration, respectively. From equation (2.4), it 

can be noted that the fluid density is a linear function of both fluid temperature and 

concentration. Similarly, the momentum balance equation in the y–direction can be expressed as: 
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2.2.3    Energy Balance Equation 

Jiang et al. [36] expressed the energy conservation equation for a system consisting of a porous 

layer saturated with a fluid as: 

    𝐶𝑝    

  
 𝑢 

 

  
[  𝐶𝑝    𝑇]  𝑣 

 

  
[  𝐶𝑝    𝑇]     [

  𝑇

   
 

  𝑇

   
]                                        

where (ρ p)e is the effective volumetric heat capacity of the system and ke is the effective 

thermal conductivity of the system. Relationships between these effective physical parameters 

and the fluid properties and the solid-layer properties are expressed as: 

  𝐶𝑝 
 
      𝐶𝑝 

 
           𝐶𝑝 

 
                                                                                            (2.7) 

                  
 

                                                                                                                        (2.8)  

Substituting Eq (2.7) and (2.8) into (2.6) with porosity ( ) equal to 1 (100%) for a pure fluid, the 

thermal energy conservation equation for the fluid layer becomes: 

 ρ     [
  

  
    

  

  
     

  

  
]      [

   

   
 
   

   
]                                                                                            

  (A) 

Term (A) is the rate of change of the temperature within the medium due to the convection of 

fluid into it. Once multiplied by (ρCp)f, it becomes the rate of change of thermal energy per unit 

 volume of fluid, due to convection. 
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2.2.4    Mass Balance Equation 

 The mass (concentration) balance equation in the fluid layer can expressed as follows [37]: 

[
  

  
  𝑢 

  

  
   𝑣 

  

  
]   𝐷  [

   

   
 

   

   
]  𝐷  [

  𝑇

   
 

  𝑇

   
]                                                      

where c is the concentration, DM is the molecular diffusion coefficient, and DT is the thermal 

diffusion coefficient. 

 

2.3 Governing Equations for the Porous Layer 

2.3.1 Continuity Equation 

The continuity equation for the porous media region will be same as for the fluid region: 

 𝑢

  
  

 𝑣

  
                                                                                                                                                    

where u and v are the velocity component of the fluid in the x and y directions, respectively. 

 

2.3.2 Momentum Balance Equation 

 For the momentum balance equation, scientists have found additional forms of Darcy’s law. 

Brinkman [38] found an alternative extension to Darcy's law, which is used to explain the 

transitional flow between boundaries by adding a viscous term to Darcy’s law. For the porous 

layer, the Brinkman model is an appropriate momentum equation to use; therefore, the Brinkman 

model is used in this study. The momentum balance equation in the x-direction can be expressed 

as: 
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where   is the porosity, µ is the fluid viscosity, and K is the permeability of the porous medium. 

The momentum balance equation in the y-direction with the Boussinesq approximation can be 

expressed as: 
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2.3.3   Energy Balance Equation 

The energy balance equation for the porous layer can be expressed as: 

  𝐶𝑝   [
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where ke is the effective thermal conductivity of the system. 

 

2.3.4    Mass Balance Equation 

The mass balance equation for the species can be expressed as: 

[
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where c is the concentration, DM is the molecular diffusion coefficient and DT is the thermal 

diffusion coefficient. 
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2.4   Dimensional Analysis 

Frank White [39] defined dimensional analysis as: “a method for reducing the number and 

complexity of experimental variables that affect a given physical phenomenon, by using a sort of 

com ac ing  echniq e.”. The author also stated the Principle of Dimensional Homogeneity 

(PDH) as: “If an eq a ion  r l  e  resses a  ro er rela ionshi  be ween  ariables in a  h sical 

process, it will be dimensionally homogeneous; that is, each of its additive terms will have the 

same  imensions.” Dimensionless parameters have many advantages, such as a fewer number of 

variables and a reduction in the number of experiments, simulations, and communications, which 

saves time and money. Scaling the fundamental variables with respect to typical values and 

constructing dimensionless parameters provides a measure of the relative importance of the 

various terms in the equations and identifies the dominant physical phenomena [40]. Examples 

of some of these dimensionless parameters are illustrated in appendix (B). The dimensionless 

parameters used to change equations (2.2) to (2.15) to their dimensionless forms are: 
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 𝛼
 

            (2.16) 

Where U and V are the non-dimensional x and y components of velocity, respectively, and X and 

Y are the non-dimensional x and y coordinates, respectively. P is the non-dimensional pressure 

term, θ is the non-dimensional temperature term, and τ is non-dimensional time. L, T, and u0, 

respectively denote the characteristic length, temperature, and velocity. In non-dimensional 

analysis, several other parameters appear, such as the Reynolds number Re, the Prandtl number 

Pr, the Darcy number Da, the thermal Raleigh number for the liquid layer RaTL, the solutal 

Raleigh number for the liquid layer RaSL, the thermal Raleigh number for the porous layer RaTP, 

the solutal Raleigh number for the porous layer RaSP, and the Schmidt number Sc. The 

parameters in equation (2.16) are used in the analysis, which is fully outlined in appendix (A).  

 

2.5 Non-Dimensional Liquid Layer Governing Equations 

2.5.1 Continuity Equation: 

The dimensionless form for the continuity equation can be expressed as follows: 

  

  
  

  

  
                                                                                                                                                   

where U and V  are the non-dimensional x and y component of velocity, respectively, X and Y 

are the non- dimensional x and y coordinates, respectively. 
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2.5.2 Momentum Balance Equations: 

The Navier-Stokes equations for the x and y directions are given as follows: 

 In the X direction: 

  [
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]                                                                             

where Re is the Reynolds number, P is the non-dimensional pressure term and, τ is non-

dimensional time. 

In the Y direction: 
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2.5.3   Energy Balance Equation: 

The non-dimensional form of the energy balance for the fluid layers can be stated as: 
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]                                                                                      

where Pr is the Prandtl number and θ is the non-dimensional temperature term. 

 

2.5.4   Mass Balance Equation: 

The non-dimensional form of the mass balance equation in the fluid layers can be expressed as 

follows: 
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where C is the non-dimensional concentration term, Sc is the Schmidt number, and α is the 

thermal diffusivity of the fluid. 

 

2.6   Non-Dimensional Porous Layer Governing Equations 

2.6.1    Continuity Equation: 

The non-dimensional form of the continuity equation for the porous layer can be stated as the 

same as the one of the fluid layer: 

  

  
  

  

  
                                                                                                                                                  

where U and V  are the non-dimensional x and y components of velocity, respectively, and X and 

Y are the non-dimensional x and y coordinates, respectively. 

 

2.6.2   Momentum Balance Equations: 

The Navier-Stokes Equations for the x and y-directions are given as follows: 

 In the X-direction: 
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where Da is the Darcy number, which is equal to K/H2. 

In the Y-direction: 
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where GrT is the thermal Grashof number, and N is the buoyancy factor. 
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2.6.3   Energy Balance Equation: 

The energy balance equation in its dimensionless form can be expressed as: 
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]                                                                                   

where G is the non-dimensional thermal conductivity, defined as:  

   
   

  
  

            

  
 

2.6.4    Mass Balance Equation: 

The non-dimensional form of the mass balance equation of the fluid layers can also be utilized to 

represent the mass balance in the porous layer: 
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where C is the non-dimensional concentration term, Sc is the Schmidt number, and α is the 

thermal diffusivity of the fluid. 

 

2.7 Numerical Solution Technique   

The finite element method was used in this study. The source code for various cases of our 

research is shown in Appendix (E). For rigid surface problems, we used the segregated solver, 

which sequentially solves the governing equations (segregated from one another) by solving each 

degree of freedom separately. Parameters such as heat flux, mass flux, stream function, and flow 

rate can be derived from the temperature, pressure, velocity, and species fields, which were 
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numerically computed. Then, numerical results were plotted graphically with the use of the 

graphics postprocessor programme FIPOST. 

 

2.7.1 Finite Element Analysis  

The full transient Navier-Stokes equations together with the energy and mass transfer equations 

were solved numerically using the finite element technique. The thermodiffusion coefficients 

were assumed constant and the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) 

equation of state was used to evaluate the liquid properties of the non-associating mixture in the 

model. Galerkin finite-element procedure was applied to the transient Navier-Stokes equations 

utilizing the implicit time integrator, which is unconditionally stable regardless the size of the 

time step used. This method was also used in combination with a powerful adaptive time-

stepping scheme that dynamically set the size of the time step to maintain a predefined level of 

temporal accuracy. 

The numerical procedure consisted of solving the non-dimensional equations (2.16) to (2.26) 

using the finite element technique. The finite element technique reduces the infinite number of 

degrees of freedom in a problem to a finite number by solving a system of equations. For the 

present two-dimensional model, the computational domain was divided into many small 

quadrilaterals. To achieve greater accuracy in the results, a finer mesh was applied to the vertical 

walls of the rectangular cavity and at the free surface where the driving force of the flow was 

located. The mesh was defined as a finite number of elements, and its variables were evaluated 

simultaneously. As can be seen in Figure 2.2, the bottom surface of the cavity was defined by 

key-points 1 and 2, the bottom fluid-porous layer interface by key-points 3 and 4, the top fluid-

porous layer interface by key-points 5 and 6 and lastly, the top surface by key-points 7 and 8. 
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The velocities, temperature, pressure, and species were unknown and were numerically 

calculated at each node in the meshed cavity.  

 

2.7.2 Mesh Sensitivity Analysis 

Accuracy and processing time are essential factors for any simulation process. Therefore, in 

order to obtain accurate, time-efficient, and cost-effective results, the optimum mesh size 

(density) has to be selected carefully. For this study, we used a mesh of 31 quadrilateral elements 

in the x-axis by 135 quadrilateral elements in the y-axis for the entire analysis. Since a higher 

temperature gradient and more mass flux are assumed to occur in the fluid layers, a finer mesh 

was placed in both regions of the liquid layers (top and bottom) as illustrated in Figure 2.3.  

 

 

Figure 2.2: Node numbers for key-points 
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The Nusselt number across the enclosure has been used for the purpose of determining mesh 

sensitivity because of its direct relationship to the driving force of the simulation in this study. 

The average Nusselt number has been calculated for different mesh sizes. The average Nusselt 

number is equal to the average value of  the Nusselt number on the both of the hot and cold 

horizontal surfaces, and it can be expressed as: 

 𝑢   
 𝑢    𝑢 

 
                                                                                                                                                  

  where, 
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Figure 2.3: Finite element meshes for model defined by 31elements in the x-axis and by 135 

elements in the y-axis 

 

 

Table 2.1 shows the average Nusselt number for each case. It was found that the mesh size of (31 

x 135) is the optimum size  for this type of study because above this value Nu  is constant 

making it unnecessary to use a finer mesh. 
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Table 2.1: Calculated average Nusselt number for mesh sensitivity 

Number ofNodes Average Nusselt Number 

11 x 43 0.1625 

21 x 91 0.1393 

31 x 135 0.14 

41 x 181 0.13999 

 

 

 

 

Figure 2.4: Mesh sizes vs. the average Nu number 
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CHAPTER 3 

Natural Convection in a Multi-Layered System of Porous Media and 

Binary Fluid Layers 

3.1 Introduction 

Natural convection is a mechanism in which heat and mass transfer occurs in fluids due to the 

motion generated by a difference in the fluid density due to a temperature gradient. This density 

difference leads to the generation of a gravitational force called the “buoyancy force,” which 

induces convection rolls. Hence, the buoyancy and gravitational forces play an important role in 

the onset of natural convection. In a vertical, multi-layered system, natural convection can occur 

when there is a density difference of the fluids due to a temperature gradient. The temperature 

gradient in such a system can be produced by heating the system from one of its horizontal sides 

and cooling from the opposite side, i.e., heating from the bottom side and cooling from the top 

side or vice versa. In the case of applying heat from the bottom and cooling the top surface, the 

temperature gradient will lead to a density gradient in the fluid in the same direction of the 

gravitational force. In this situation, the influence of the buoyancy force will be greater than that 

of the viscous force, which generates convection swirling patterns. This then causes the system 

to be in an unstable condition with the temperature distribution evenly disturbed, as shown in 

Figure 3.1a. The heat and mass are transferred from the bottom layers to the upper layers by 

means of natural convection.  

On the other hand, in the opposite configuration where the temperature of the top surface is 

greater than that of the bottom surface, the density will not decrease in the same direction of the 
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gravity forces, which will lead to a reduction of the buoyancy forces. As a result, no patterns of 

motion will occur in the system and it will be under stable conditions. Such a system, with a 

temperature distribution stratified (layered), is shown in Figure 3.1b. In a system like this, no 

convection patterns will be produced, and if any pattern does appear, it is due to the geometry of 

the cavity. The heat and mass transfer in this case are through a conduction mechanism rather 

than through convection. 

 

Figure 3.1: Conditions in fluid sandwiched between two horizontal surfaces at different 

temperatures. (a) Unstable temperature gradient, (b) Stable temperature gradient [41]. 

 

To study the patterns of fluid motion that occur during convection, several different techniques 

have been utilized in order to visualize the flow behaviour. The most common of these 

techniques is the streamline. Streamlines are defined as “lines drawn through the flow field in 

such a manner that the velocity vectors of the fluid at each and every point on the streamline are 

 angen   o  he s reamline a   ha  ins an ” [42]. The stream function is a useful mathematical 

model that is used to plot streamlines, satisfy, and solve the continuity and momentum equations 

directly for a single variable. For two-dimensional incompressible flow, the constant value of the 
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stream function (expressed as Ψ) can be represented by the streamlines and can be calculated by 

using the following relationships:  

      /    and           /                                                                                                            

 

3.2   Natural Convection in a Water-Alcohol Binary Mixture 

Our first study was the investigation of natural convection in a system that consists of a layer of a 

porous material sandwiched between two layers of a water-alcohol binary mixture. The mixture 

used in this study was 10% isopropanol with 90% water. The physical properties of the mixture 

of 10% isopropanol with 90% water can be found in appendix (C). The porous material used in 

this study was a group of glass beads with diameter of 3.25 mm and a thermal conductivity (ks) 

of 0.64W/(m·K). The model configuration and the boundary conditions used in this study were 

similar to those mentioned in Section (2.1) of this thesis. The system was heated from the top 

surface and was subjected to temperature differences of 5, 10 and 20 K (for each case study 

separately) between the bottom and the top surfaces. For the comparison, validation, and better 

understanding of this phenomenon, an identical model but with heating from the bottom surface 

(with a temperature difference between the bottom and the top surfaces = 20 and 50 K) was 

numerically simulated. Here we will name it as the Bottom Model (∆T). One of the important 

variables, which is directly related to the phenomenon of natural convection, is the Nusselt 

number (Nu). It is a dimensionless number that represents the ratio of convective to conductive 

heat transport in a system. If the value of Nu is equal or less than unity, the conductive heat 

transfer is the dominant mechanism. If Nu is greater than unity, then convection is the dominant 

heat transfer mechanism. Kim et al. [43] carried out calculations in order to evaluate the effects 
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of the porous material on the heat transfer rate at the horizontal bounding walls. The results for 

the heat transfer rate were represented in a dimensionless form of the Nu. The Nu in the bottom 

layer (which represents the porous layer) can be expressed as: 
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Moreover, at the top surface (which represents the fluid layer in the mentioned study) it is given 

by: 
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where Tt is the temperature of the top layer. 

Taking equations (3.2) and (3.3), the model used in this study, and taking into consideration that 

the Nu is neglected in the porous layer since in that layer the mechanism will be conduction, the 

Nu for this system can be expressed as: 

 𝑢    ∫
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The overall averaged Nusselt number will be: 

 𝑢     
 𝑢    𝑢 
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3.2.1 Natural Convection in a Water-Alcohol Binary Mixture Heated from 

Below 

Case 1: Temperature difference ∆T = 50 K 

The temperature difference between the top and bottom surfaces considered in this case (∆T = 50 

K) was sufficient to produce strong convection patterns and thus high values of velocity inside 

both fluid layers. In this case, the fluid was able to penetrate through the porous layer due to the 

strong convection patterns and the relatively high velocity of these fluids in both the bottom and 

top layers of the binary fluids. The contours of the streamlines and x component of the fluid 

velocity for this case are shown in Figure 3.2 (a) and (b), respectively. The high values of the 

velocity inside both fluid layers were responsible for the temperature disturbance of the whole 

system, as shown in Figure 3.3. The numerically calculated total averaged Nu number for this 

case is 2.854, which is greater than unity, which indicates that convection is the dominant heat 

transfer mechanism. 
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                (a)                                                                                   (b) 

Figure 3.2: The case of heating the system from below at ∆T=50K; (a) contours of stream lines, 

(b) contours of the x component of fluid velocity 

 

 

Figure 3.3: Temperature contours for the case of heating the system from below at ∆T=50K. 
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Case 2: Temperature difference ∆T = 20 K 

Figure 3.4a shows the streamline contours for the bottom model (20K). There are noticeable 

convection patterns in both liquid layers, but the fluid remains within the liquid layers with the 

porous layer simply acting as a trap or a rigid wall preventing the flow from protruding in. The 

stream function in this model vary between -0.49959 x 10
-3

 to 0.52485 x 10
3
. These weak values 

of the stream function are related to the low velocity inside the model due to the small 

temperature difference between the bottom and top surfaces, and to the presence of the porous 

layer between both binary liquid layers. This is expected since the number and values of the 

convection patterns are inversely proportional to the height of the porous layer. The x component 

of the velocity (U) varies between (-0.114 x 10
-1

) to (0.10987 x 10
-1

) as shown in Figure 3.4b. 

                                                   

(a)                                                                                        (b) 

Figure 3.4: The case of heating the system from below at ∆T=20K; (a) contours of stream lines, 

(b) contours of the x component of fluid velocity 
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In order to explain what is happening inside this model, a plot of U along the Y-axis of the model 

is shown in Figure 3.5. The negative values of U indicate the clockwise direction of the flow 

patterns and the positive values of U indicate the direction of the flow patterns is 

counterclockwise. There is observable movement in the fluid layers, while in the porous layer the 

fluid that has saturated the porous medium is steady with a small and constant velocity due to the 

resistance of the porous medium against the fluid flow.  

 

 

 

Figure 3.5: The x component of fluid velocity along the Y-axis for the case of heating the 

system from the bottom surface at ∆T=20K. 

 

From Figure 3.6, it is clear that there is a temperature disturbance in both fluid layers. Also, it is 

noticeable that there is less temperature distribution within the porous layer than in the fluid 

layers. This disturbance is due to the swirling motion of the fluid created by convection.  
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Figure 3.6: Temperature contours for the case of heating the system from below at ∆T=20K. 

The numerically calculated averaged Nusselt number (Nuavg) for this model is 0.3965, which is 

less than unity. The value of the averaged Nusselt number for this model indicates that the 

dominant mechanism of heat transfer is conduction, because the temperature difference of  

∆T=20 K is not sufficient to create a density gradient to increase the velocity of the binary fluid 

inside the model. If the velocity were increased, then convection would be the dominant 

mechanism of heat transfer in this case. The convection patterns that appeared in this model are 

due to the finite geometry of the system and the temperature difference between the horizontal 

surfaces (top and bottom) and the adjacent vertical surfaces (right and left). To explain the effect 

of the temperature difference on the convection in the fluids and the porous medium, the 

temperature disturbance along the vertical axis of the cavity at the center of the horizontal axis is 

shown in Figure 5.7.  
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It is noticeable that at the lower temperature difference (∆T=20K), the system is more stable due 

to the decreased motion of the fluid. This is further due to the smaller density gradient produced 

by buoyancy forces in the binary mixture, which causes the hot fluid to rise and displaces the 

colder fluid that is denser. The characteristic velocity at the system is a function of ∆T, and the 

Reynolds number (Re) is a function of the characteristic velocity as in the following equations: 

𝑢   √      𝑇 𝐿                                                                                                                                         

        

    𝑢  
𝐿

 
                                                                                                                                                       

         

From the above two equations, it is clear that increasing ∆T will increase the characteristic 

velocity, which will in turn increase Re, which gives us an idea about whether the fluid flow is 

laminar, streamlined, or turbulent.  

 

Figure 3.7: Distribution of temperature along the Y-axis at the center of the cavity for different models. 
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3.3 Natural Convection in a Water-Alcohol Binary Mixture Heated from 

Above 

 

The model under investigation in this study was previously described in Sections 2.1 and 3.2. In 

the configuration of heating from above, the first model had a temperature difference of 5 K 

between the top and bottom horizontal surfaces. Figures 3.8a and 3.8b show the temperature 

distribution along the Y-axis of the model with a non-dimensional temperature ( ) ranging from 

1 to 0. It is noticeable that the temperature distribution is stratified from the top horizontal to the 

bottom horizontal surface.  

       

(a)                                                                                        (b) 

Figure 3.8: Temperature contours (a) and temperature distribution along the Y-axis of the model 

(b) for the case of heating the system from above at ∆T=5K. 
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The temperature stratification indicates that the system is stable and there is no density gradient 

for the binary fluid, which leads to ceased fluid flow inside the system. It also indicates that the 

heat inside the model transfers via a conduction mechanism. The temperature gradient in the 

fluid layers is greater than in the porous medium because the fluid velocity in the pure fluid 

layers is higher than that of the saturated fluid in the porous layer due to the resistance of the 

porous particles towards the fluid flow. The x component of the velocity (U) and the streamline 

contours in this model are shown in Figures 3.9a and 3.9b, respectively. 

            

(a)                                                                           (b) 

Figure 3.9: The case of heating the system from above at ∆T=5K; (a) contours of 

stream lines, (b) contours of U 
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To validate these results, the Nusselt number was numerically calculated for this case. The Nu is 

0.3329, which is less than unity (<1), therefore there is no convective heat transfer and the main 

mechanism of heat transfer in this model is conduction. The simulations in this model were 

repeated twice, once with the temperature difference between the top and bottom surfaces at 10 

K and the other time at 20 K. Contours of the temperature, streamlines, and x-component of the 

fluid velocity have been plotted separately for each of these two cases as shown in Figures 3.10 

and 3.11. There are no important differences in the temperature contours of these models from 

the model that used a temperature difference of ∆T = 5 K. For that reason, the original model, 

with ∆T = 5 K will be utilized to demonstrate the temperature contours for the three cases (refer 

to Figure 3.12). Likewise for the contours of the streamlines and U, there are no major 

differences from the case of the ∆T = 5 K, except a minor increase in the values of these two 

contours. The values of these contours, however, do not affect the stability of the system when it 

is heated from above. Similarly to the first model, Nu was numerically calculated for these two 

cases, and it was found to be equal to 0.3274 and 0.29176 for the case of ∆T = 10 K and ∆T = 20 

K, respectively. For both cases, Nu is less than unity, which indicates that the conductive heat 

transfer mechanism is the dominant mode for these models. Multiple patterns in the horizontal 

direction are noticeable adjacent to the vertical wall, which is due to the temperature difference 

between the horizontal and the adjacent vertical walls with the heat focused on the top surface. 

Also, one can notice the low velocity of the fluid motion in the fluid layers. This is due to the 

opposition in the directions of Rayleigh–Bénard convection with the gravitational force. The 

temperature gradient along the y-axis of the model resulting from heating the top surface is 

considered a stabilizing temperature gradient because it works to minimize the fluid movement 
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from the density gradient. This is different from the bottom-heated case, in which the 

temperature gradient causes instability in the system.   

                       

(a)                                                                                (b) 

Figure 3.10: The case of heating the system from above at ∆T=10K; (a) contours of 

stream lines, (b) contours of U 
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(a)                                                                                (b) 

Figure 3.11: The case of heating the system from above at ∆T=20K; (a) contours of stream lines, 

(b) contours of U 
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Figure 3.12: Distribution of temperature along the Y-axis at the center of the cavity for different 

models 
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3.4 Summary 

A numerical study has been carried out to investigate natural convection in a cavity consisting of 

a porous layer sandwiched between two fluid layers of the same water-alcohol mixture. The 

cavity was subjected to a heat flux from the top horizontal surface. Three different models were 

simulated with a temperature difference between the top and bottom horizontal surfaces of 5, 10, 

and 20 K. For comparison, another two models were simulated with heating from the bottom 

horizontal surface. The temperature difference between the top and bottom horizontal surfaces 

was 20 K and 50 K for those two simulations. Contours of temperature, streamlines, and the x-

component of the fluid velocity (U) were plotted for all five models. In addition, the average 

Nusselt number for each case was calculated. The results obtained from this part of the study are 

summarized as follows: 

 Natural convection in a multi-layered system of a porous medium sandwiched between 

two fluid layers is not possible to be found when the system is heated from the top 

surface.  

 The onset of natural convection in such a system occurs when the system is heated from 

the bottom surface, and the temperature difference between the top and bottom surfaces is 

sufficient to produce a density gradient of the saturated fluid, increasing the velocity of 

the fluid and producing the convection patterns (rolls). 

 When heating from the top surface, the heat transfer occurs by the conduction 

mechanism, and the average Nusselt number is less than unity (Nuavg < 1). 

 No fluid motion happens when heating the system from the top surface. The system in 

this case is stable with a stratified temperature profile. 
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CHAPTER 4 

Thermodiffusion in a Binary Fluid System 

4.1 Introduction 

The tendency of a convection-free mixture to separate under a temperature gradient is called the 

thermal diffusion process, which is also known as the Soret effect [44]. It was first discovered by 

the German scientist Carl Ludwig in 1856 and developed later by the Swiss physicist Charles 

Soret in 1879. The presence of a temperature gradient is the major parameter to describe thermal 

diffusion in a multi-component mixture (binary or ternary mixtures). Simply, when a binary 

mixture is under a temperature gradient, a separation of its components occurs caused by one 

component moving in the direction of the hot side and the other component moving in the 

direction of the colder side, as shown in Figure 4.1.  

 

 

 

  

 

 

 

Figure 4.1: Schematic diagram of the thermal diffusion in a binary mixture 

 

The sign of the Soret coefficient of the mixture and the density of the individual components 

influence this movement or separation of the components. The Soret effect for a binary mixture 

Hot 

Cold 
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can be obtained from Soret coefficient (ST), which represents the ratio of the thermal diffusion 

coefficient (DT) to the molecular diffusion coefficient (DM). It is given as: 

    
𝐷 

𝐷 
                                                                                                                                                      

The sign of the Soret effect coefficient is either positive (+) or negative (-), which indicates 

the direction the components move during the separation. As a rule of thumb, the sign will be 

positive when the denser component moves in the direction of cold side and negative when the 

less dense component moves toward the colder side. According to the governing Navier-Stockes 

(mass balance equation), the mass flux can be presented as per the following equation: 

 

   𝑢   𝐷              𝐷  𝑇                                                                                                 

     

         A           B                       C 

 

where the terms A, B, and C represent the convective, diffusive, and thermodiffusive flux, 

respectively. 

 

For the condition of steady state with no convection, the total mass flux (J) becomes zero and 

equation (4.2) is expressed as: 

 

 𝐶    
𝐷 

𝐷 
         𝑇                                                                                                                            

 

When the two phenomena of convection and thermodiffusion are combined together in one 

system, a larger separation of the species in the mixture occurs. In binary mixtures, the density 

gradient is a function of both of the temperature gradient and mass flux (concentration) gradient, 

that means: 

    
  

 𝐶
|
 
 𝐶   

  

 𝑇
|
 
 𝑇                                                                                                                           
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The thermal and concentration expansion coefficients can be expressed as: 

      
 

  

  

 𝑇
                                                                                                                                                 

and 

     
 

  

  

 𝐶
                                                                                                                                                  

From equations (4.4), (4.5), and (4.6), with the assumption that temperature and concentration 

vary minimally, the linear variation of the density can be written as: 

                        𝑇   𝑇                                                                                                   

Note that βC is negative if c is for the denser component.  

The separation ratio describes the power of the Soret effect for a mixture, and can calculated 

from the following equation: 

            
  

  
                                                                                                                                      

Equation (4.8) represents the ratio of the concentration caused by the density gradient to that 

which is caused by the temperature gradient in the system. The concentration gradient normally 

occurs from external boundary conditions, but it is possible for it to exist in a system similar to 

the one of the current study. The Soret effect is responsible for producing a concentration 

gradient from the temperature gradient. From equations (4.1) to (4.8), the density gradient for 

binary fluids can be expressed as: 

                𝑇                                                                                                                                   

Several models and methods have been developed to measure the Soret coefficients of binary 

systems. Some of these methods are listed below [45]: 

 Flow cell: a very thin layer flows in the Poiseuille regime and a sharp edge at the outlet 

separates the flow in the upper and lower halves. By employing densitometry, a 
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calculation of the difference in concentration between the two halves will indicate the 

separation process in this thin layer. 

 Diaphragm cell: a porous medium is used to separate the flow into two columns at 

different temperatures. This creates a differential accumulation of different species at the 

top and bottom. The Soret coefficient is then calculated from these separation processes 

that happen in the system. 

 Laser-Doppler velocimetry (LDV) technique: an experimental cell consists of two 

horizontal copper plates that are maintained at different, constant temperatures. The 

imposed temperature difference is then gradually increased. Enough time is allowed 

between two successive temperature increments to allow a steady state to be established. 

The time-dependent velocity amplitude is recorded, and on the onset of convection the 

critical temperature difference and the dimensional frequency corresponding to the 

oscillation of the velocity amplitude is used to calculate the Soret coefficient.  

 

4.2 Sign of the Soret Coefficient 

 

According to Fick’s law of diffusion, the thermal diffusion flux can be presented as per equation 

(4.2). When the system containing the binary fluid reaches the condition of steady state, J = 0 and 

the convective term can be eliminated. At this condition, equation (4.2) can be expressed as: 

 

     𝐷             𝐷  𝑇                                                                                                

      

    

     
        𝐷  𝑇

𝐷 
                                                                                                                     

      

                  𝑇                                                                                                                     
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 𝑇
                                                                                                                                         

        

 

Equation (4.13) gives the direction of the species separation according to the sign of the Soret 

coefficient. If ST is negative, then the term (∇C/ ∇T) is positive, which means that the 

concentration of one of the components is greater at the hotter surface than at the colder 

surface. To know which component has a higher concentration close to the hot surface, we 

need to know the value of βC, if βC > 0, which means the thermal induced density gradient is 

positive ( 
  

  
   

  

  
  > 0), then the denser species have moved to the hotter side. 

Therefore, when ST is negative, the denser component moves in the direction of the hotter 

side. These equations explain the different signs of the Soret coefficient for a binary mixture 

of isopropanol and water when the mixing percentage rates (molar fraction) change, as will 

be explained in Section 4.3.   

 

 

4.3 Thermodiffusion in a Water-Alcohol Mixture 

In the present Section, we will study the thermodiffusion or Soret effect in water and isopropanol 

binary mixtures, and determine the separation process depending of the sign of the Soret 

coefficient. As shown in Figure 4.2, the sign of the Soret coefficient of a water-isopropanol 

binary mixture is strongly dependent on the component ratio. The Soret coefficient is negative 

(ST < 0) if the water content is greater than 75%, otherwise the Soret coefficient is positive  

(ST > 0). Therefore, to study the phenomenon of the Soret effect in a binary mixture, we 

examined two water-isopropanol mixtures having different Soret coefficients. The first case will 
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deal with a binary mixture of 10% isopropanol and 90% water, having a Prandtl number Pr = 

10.846 and the Schmidt number was Sc = 1620.9. In the second case for the mixture of 50% 

isopropanol and 50% water, the Prandtl number was higher at Pr = 49.165 and the Schmidt 

number was equal to Sc = 23216.667.  

  

Figure 4.2: Dependence of the Soret coefficient on the mass fraction of water in water-

isopropanol mixture (298.15 K) [46] 

 

 

To activate the Soret effect, both the molecular diffusion coefficient DM and the thermodiffusion 

coefficient DT have been taken into consideration in the mass balance equation and were 

assumed constant during the calculations despite the changing temperature difference. The model 

configuration, fluid properties, and porous specifications are the same as were used in chapter 3.  
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4.3.1 Thermodiffusion in Water-Alcohol Mixture with Negative ST 

The first part of the study was to investigate the separation process and the direction of the 

component movement when the Soret coefficient of the binary mixture was negative. For this 

purpose, the mixture of 10% isopropanol and 90% water was selected and modeled in a cavity 

with a configuration and boundary conditions shown in Figure 4.3. 

 

Figure 4.3: Model configuration and boundary conditions for the system under study. 
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The liquid layers were assumed quiescent, incompressible, Newtonian, and viscous with thermal 

expansion coefficients of βT and solutal expansion coefficients of βC. The width of the closure 

(D) is 10 mm with a total height (L) of 45 mm. The porous layer has a height (d3) of 32.2 mm, 

while each of the fluid layers has a height (d1 and d2) of 6.40 mm. The physical properties of the 

liquids are assumed constant. The side (vertical) walls of the closure assumed adiabatic. The 

temperature of the top wall (Th) of the closure will be greater than the temperature of the bottom 

wall (Tc), and the temperature difference (∆T) between them will be 5, 10, and 20 K. It is 

assumed that the liquid and the porous layers are in thermal equilibrium. The porous medium has 

a porosity 𝜙 = 0.39, which corresponds to glass beads of 3.25 mm diameter. The Darcy number 

was calculated by using Kozeny-Carmen relation as described in equation (2.1). Three different 

cases have been selected to study the effect of temperature on the thermodiffusion. The three 

cases differ in the temperature difference between the hotter top surface and the colder bottom 

surface. The three temperature differences were 5, 10 and 20 K, keeping the bottom (colder) 

surface as 298 K for all of the three cases. A full set of plots for temperature, horizontal velocity 

(U), streamlines, and species separation, were drawn to study each case separately. For the 

temperature contours, no difference was noticed from the case of natural convection, which was 

discussed in chapter 3. The temperature in these cases is stratified in the same style and with 

similar values as for the equivalent case of natural convection (for all the values of ∆T=5, 10 and 

20 K). Figure 4.4 illustrates the separation process that occurred in the mixture for each case of 

∆T. The concentration of the isopropanol (lighter component of the mixture) is higher near the 

colder surface (bottom), while the concentration of water (heavier component of the mixture) is 

higher near the hotter surface (top). This is due to the presence of the thermodiffusion 

phenomenon, as expected. The streamlines and horizontal velocity (U) are shown in Figures 4.5 
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and 4.6, respectively. It is clear that there is a small increment in the values of these two 

parameters over that of the case of natural convection, and there is some noticeable fluid motion 

and currents in the bottom fluid layer near the colder surface. This motion and current are results 

of the separation process and the migration of the lighter component (isopropanol) toward the 

cold side. 

 

                   (a)                                       (b)                         (c) 

 

Figure 4.4: Contours of the isopropanol species [(a) ∆T = 5 K, (b) ∆T = 10 K and (c) ∆T = 20 K] 
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                         (a)                       (b)                      (c) 

 

Figure 4.5: Contours of streamlines (a) ∆T=5K, (b) ∆T=10 K and (c) ∆T=20K. 

 

 

                 (a)                     (b)                       (c) 

 

Figure 4.6: Contours of U; (a) ∆T=5 K, (b) ∆T=10 K and (c) ∆T=20K. 
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Because binary mixtures have more components (species), more phenomena can occur than in 

pure fluids. Therefore, in pure fluids, the temperature gradient is the only reason for producing 

buoyancy forces, which are responsible for the onset of natural convection. In binary mixtures, 

on the other hand, the buoyancy forces produced are due to both the temperature and species 

concentration gradients. Buoyancy convection in binary mixtures is noticeably more complicated 

than in pure fluids. This is because of the interaction between convection, thermal diffusion, and 

solutal diffusion. The orientation of temperature and concentration gradients relative to each 

other plays a major role in determining the dynamics of convection in binary mixtures, and these 

can be very different from those induced by thermal buoyancy [47]. In the top-heating 

configuration, the density will not decrease in the same direction as the gravitational force, which 

will lead to a diffusive regime. Therefore, this diffusion will cause a separation of species in the 

porous layer. For this particle configuration, eliminating the convection is important to be able to 

study the thermodiffusion effect. The thermal characteristic time, which represents the time 

required for heat to diffuse through a distance equal to the characteristic length of the system in 

order to establish the applied temperature field in that system, can be expressed as: 

     
𝐿 

𝛼
                                                                                                                                                          

While the mass diffusion characteristic time (diffusive characteristic time) can be written as:  

    
𝐿 

𝐷 
                                                                                                                                                         

In most binary mixtures such water-alcohol, there is a time difference between the thermal 

characteristic time and diffusive characteristic time in the system. This time difference is due to 

the slower rate of the mass diffusion of isopropanol than the rate of the heat diffusion in the 

system caused by the temperature difference between the surfaces. This time difference leads to 
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the occurrence of some convection patterns. For both of the mixtures used in our study, the mass 

flow characteristic time (τD) is greater than the thermal characteristic time (τth) (as shown in 

Appendix C) which causes thermodiffusion to be the major mechanism for the separation of the 

species in the mixture. The Rayleigh number is considered the criterion for determining whether 

heat transfer will be in the form of convection or conduction. When heating the system from 

above, the Rayleigh number will be opposite to the gravitational force (g), which will reduce the 

convection in the system.  In binary fluids, two types of Rayleigh numbers need to be 

considered: the solutal and thermal Rayleigh numbers. We have calculated both the thermal and 

solutal Rayleigh numbers for the three layers of our system for the three cases of ΔT of 5, 10 and 

20 K for the mixture of 10% isopropanol and 90% water. Table 4.1 shows the values of RaS and 

RaT for both of the fluid layers and the porous medium. The calculated Rayleigh numbers 

indicate that the RaT in all the layers of the system under study is opposite to the gravity force, 

which means that is no convection in the system and diffusion is the only way for heat to be 

transferred. For all the three cases of ΔT, RaT > RaS which means that heat diffusion has greater 

effect than mass diffusion. It is expected that RaS at the bottom fluid layer is greater than top 

fluid layer. This is because ST < 0, which causes the lighter component of the mixture to migrate 

in the direction of the colder surface (bottom), and because this bottom fluid layer is surrounded 

by the porous layer from the top, which resists the fluid flow, causing a convective motion to 

occur in this layer until the concentration has reached steady state. Brand et al. [48] first 

recognized that with the Soret effect it is possible to have oscillatory convection induced by 

heating from above. They evaluated the range of the existence of an oscillatory instability as a 

function of the separation ratio (q) and found that if the expansion coefficient (βC) is negative 

and the thermodiffusion coefficient is negative, instability could start by sustained oscillations at 

http://thesaurus.com/browse/criterion
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onset. The authors concluded that either a stationary instability or an oscillatory instability can 

occur as the first bifurcation depending on the sign and the magnitude of the Soret coefficient.  

 

Table 4.1: Thermal and solutal Rayleigh numbers for fluid and porous layers for 10% 

isopropanol and 90 % water 

 

 

 

 

 

 

 

 

Charrier-Mojtabi et al. [49] found that for a cell heated from above, the equilibrium solution is 

linearly stable if q > 0, while a stationary or an oscillatory bifurcation occurs if q < 0. Also, 

Shevtsova et al [50] conducted a numerical modeling of Soret-driven convection in a cubic cell 

filled with 10% isopropanol and 90% water and observed that there is an instability that occurs in 

the binary mixture with a negative separation ratio while heating from above because of the large 

differences between viscous, thermal, and diffusion times. In addition, they found that for a 

relatively low applied temperature difference (∆T), the lighter and colder liquid is drawn up in 

the central part of the cell and the heavier liquid flows down along the walls. For finite size 

systems the situation is reversed at higher ∆T. Figure 4.7 shows the time step sequence for the 

separation process at ∆T = 20 K. It is apparent that the separation of the species increases with 

increased processing time, and a larger amount of the lighter component of the mixture migrates 

 ∆T = 5 K ∆T =  0 K ∆T =  0 K 

Top Fluid Layer: 

RaTL 

RaSL 

 

4327.44 

21.61 

 

8695.75 

31.26 

 

17396.75 

43.21 

Porous Layer: 

RaTP 

RaSP 

 

16 

4.08 

 

31.6 

2.40 

 

63.1 

0.700 

Bottom Fluid Layer: 

RaTL 

RaSL 

 

4331.8 

748.34 

 

8698.4 

1021.35 

 

17396.75 

1459.36 
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towards the colder side and  more of the heavier component migrates toward the hotter side with 

an increase in time as well. The instability of the system increases with the increasing of the time 

steps. 

 

(a)                                  (b)                                   (c)                                  (d)                                                                                            

Figure 4.7: Contours of the concentration of isopropanol in a mixture of 10% isopropanol and 

90% water at ΔT=20 K at various time steps; (a) 1.25 hr., (b) 12.5 hr., (c) 36.3 hr. and (d) 72 hr. 

 

It is clear from Figure 4.8 that increasing the temperature difference (∆T) between the top and 

bottom surfaces of the cavity enhances the process of species separation. This is due to the 

enhancement of the density gradient from the increased temperature difference in addition to the 

thermal diffusion flux, which is proportional to the gradient of temperature (equation (4.2)). 
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Figure 4.8 Influence of temperature difference on the separation process for 10% isopropanol and 90% 

water mixture 

 

4.3.2 Thermodiffusion in Water-Alcohol Mixture with Positive ST 

The second part of our study was to investigate the separation process and the direction of the 

component movement when the Soret coefficient of the binary mixture was positive. For this 

purpose, the mixture of 50% isopropanol and 50% water was selected and modeled in a cavity 

with a configuration and boundary conditions similar to the system shown in Figure 4.2. With 

this type of fluid having a positive Soret coefficient, we still found that there was no major 

difference from the previous case of that with a negative Soret coefficient, except for the 

direction of the component separation. As seen in Figure 4.9, the direction of the component 

separation was opposite to the direction that occurred in the previous case when we modeled a 

fluid with a negative Soret coefficient. Here, the lighter component of the mixture (isopropanol) 
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migrated towards the hotter side while the heavier component (water) migrated in the direction 

of the colder side. This opposition of the migration direction is due to the opposite sign of the 

Soret coefficient.  

 

 

 
 

 
Figure 4.9 Concentration distribution for 50% isopropanol and 50% water mixture (at ∆T=20K) at 

various time steps 
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4.4 Summary 

A numerical study has been performed to investigate the thermodiffusion (Soret effect) in a 

cavity consisting of a porous layer sandwiched between two layers of the same water-alcohol 

binary mixture. The cavity is subjected to heating conditions from the top surface. Three 

different models have been simulated with a temperature difference between the top and bottom 

horizontal surfaces of 5, 10 and 20 K. The results obtained from this part of the study can be 

summarized as follows: 

 The first case, performed using a binary mixture of 10% isopropanol and 90% water, was 

a system with a negative Soret coefficient. The lighter species migrated in the direction of 

the colder surface while the denser species migrated in the direction of the hotter surface. 

 Increasing the temperature difference in the system enhances the separation process. This 

is due to the greater density gradient caused by the larger temperature difference and the 

thermal diffusion flux, which is proportional to the gradient of temperature.  

 There were some increases in the values of horizontal velocity and streamlines in the 

bottom fluid layer compared to their values in the case of natural convection. This is an 

indication for motion in the bottom fluid layer due to the separation process and the 

migration of the mixture components. 

 In the second study case, the binary mixture was changed to a mixture of 50% 

isopropanol and 50% water, which is a system that has a positive Soret coefficient. The 

lighter species migrated in the direction of the hotter surface while the denser species 

migrated in the direction of the colder surface.  
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CHAPTER 5 

Thermodiffusion in Hydrocarbon Binary Fluids 

5.1 Introduction 

Hydrocarbon fluids are natural compounds composed of hydrogen and carbon. Normal hexane 

(n-hexane / C6H14) is one of the hydrocarbon fluids. It is a naturally occurring alkane, and it can 

be extracted from crude oil and natural gas. Hexanes have a wide range of industrial applications 

and usages, such as textile manufacturing, glues, roofing, extraction of the cooking oils from 

plants seeds, and many other extracting processes of oils and grease from various items. Another 

hydrocarbon fluid is toluene (C7H8) which is also a naturally occurring chemical, and it is 

produced with the extraction of crude oil. In the crude oil extraction industry, it is common to 

find a mixture consisting of these two fluids together. In order to implement our study to the 

industrial field, it would be useful study a hydrocarbon mixture consisting of 50% n-hexane and 

50% toluene and simulate the phenomenon of thermal diffusion in this mixture. A numerical 

study on this mixture was performed as part of the collaboration between Ryerson University 

(Toronto, Canada) with Université de Pau et des Pays de l'Adour (Pau, France). Figure 5.1 shows 

the model configuration that was used for this part of the study. The same porous material in 

previous chapters was used in this study, which are glass beads with diameter of 3.25 mm 

stacked vertically to make a height (d3) of 32.2 mm and 10 mm diameter (D’) as the total height 

and width of the porous layer. The porous layer has been vertically sandwiched between two 

layers of hydrocarbon fluids. The dimensions of each fluid layer are 21.50 mm in diameter (D) 

and 6.40 mm as a height (d1 & d2) making the total cavity height (L) to be 45.0 mm. 
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Figure 5.1: Model configuration used for the study of thermal diffusion in hydrocarbon fluids. 
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5.2 Prediction of Thermodynamic and Transport Properties of the 

Mixture 

 

Some of the physical properties for the hydrocarbon mixture consisting of 50% toluene and 50% 

n-hexane are shown in Appendix C. Most of these properties have been predicted and calculated 

with the assistance of the commercial software NIST SUPERTRAPP, which is a computer 

database for the prediction of thermodynamic and transport properties of fluid mixtures. NIST 

SUPERTRAPP performs phase equilibrium calculations and provides the thermo-physical 

properties of all phases and the feed. These results include both equilibrium properties (density, 

compressibility factor, enthalpy, entropy, Cp, Cp/Cv) and transport properties (viscosity and 

thermal conductivity) [51]. To calculate the thermal and concentration expansion coefficients for 

the mixture in this investigation, we needed to calculate the terms (∂ρ/∂T) and (∂ρ/∂C), then 

substitute them in the following equations: 

      
 

  

  

 𝑇
                                                                                                                                                 

and 

      
 

  

  

 𝐶
                                                                                                                                                 

To calculate the term (∂ρ/∂T), we predicted the density values at different temperatures by 

utilizing NIST SUPERTRAPP. The obtained results have been plotted, as shown in Figure 5.2, 

to obtain the values of the linear trend line the slope of which is the term (∂ρ/∂T) as per the 

following equation: 

      𝑜𝑝         𝑜                                                                                                                     (5.3) 
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The calculated value of the slope was -0.9414. Substituting this value in equation (5.1) resulted 

in βT for the mixture to be 0.001261 K
-1

. The same procedure was followed to predict the term 

(∂ρ/∂C), but this time the density gradient of the mixture with changing the concentration of the 

toluene was calculated.  

 

Figure 5.2: Relationship between mixture density as a function of the temperature 

 

Figure 5.3 shows the relationship between density and concentration of the toluene. The value of 

the slope at this case was 209.66 and when that value was substituted it in equation (5.2) the 

result provided a value of -0.2881 for βC. 

 

Figure 5.3: Relation between mixture density as a function of the concentration of toluene 

y = -0.9414x + 1028.2 

742

744

746

748

750

752

754

292 294 296 298 300 302 304

M
ix

tu
re

's
 D

en
si

ty
 

(K
g
/m

3
) 

Temperature (K) 

y = 209.66x + 646.25 

735

740

745

750

755

760

0.45 0.5 0.55

M
ix

tu
re

's
 D

en
si

ty
 

(K
g
/m

3
) 

Concentration of toluene % 



76 
 

5.3 Multi-Dimension Numerical Analysis 

5.3.1 Two-Dimensional (2D) Analysis 

A two-dimensional simulation analysis was performed as a first step to study the thermodiffusion 

of a hydrocarbon mixture consisting of 50% toluene and 50% n-hexane. The Soret coefficient of 

this mixture was positive 0.004915 1/K, the dimensionless Prandtl number was Pr = 5.74, and 

the dimensionless Schmidt number was Sc = 185. Three different cases were conducted for this 

part of study. These cases differed in the temperature difference applied between the horizontal 

surfaces (top and bottom) of the model, but all of them had the heating from the top horizontal 

surface. 

A temperature difference of 5 K was applied for the first case. Contours of isotherms, 

streamlines, U, and species separation of n-hexane are shown in Figures 5.4 to Figure 5.7. No 

major differences are evident from the previous study of the thermal diffusion in a binary alcohol 

mixture with a positive Soret coefficient. Some minor differences are little disturbances in the 

temperature contours in the fluid zones, and small increases in the values of the stream functions 

and U with the appearance of more convection patterns. We believe that these minor differences 

are due to the special geometry of the model, especially in the fluid zones where there is a 

diameter reduction from 21.5 mm to 10.0 mm with some sharp edges. The same numerical 

analysis was performedfor the model twice more, but using a temperature difference of  ∆T = 10 

K and then ∆T = 20 K. When the temperature was increased, there was a noticeable increase in 

the species separation of the n-hexane in the direction of the hotter horizontal surface (top), as 

shown in Figures 5.8 and 5.9. 
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Figure 5.4: Contours of temperature at ∆T=5 K   

 

Figure 5.5: Contours of streamlines at ∆T=5 K 
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                                             Figure 5.6: Contours of U at ∆T=5 K 

 

Figure 5.7: Contours of the concentration of n-hexane at ∆T=5 K 
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Figure 5.8 Contours of the concentration of n-hexane at ∆T=10 K 

 

Figure 5.9 Contours of the concentration of n-hexane at ∆T=20 K 
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Figure 5.10 shows the concentration difference of n-hexane at various temperature differences 

between the top and bottom horizontal surfaces. Increasing the temperature difference leads to a 

greater concentration difference of the lighter n-hexane species ( density of n-hexane is= 0.655 

g/ml and of toluene = 0.87 g/mol) near the hotter surface. The migration of the lighter species to 

the hotter surface is due to the positive Soret coefficient of this binary hydrocarbon mixture. The 

effect of increasing the temperature difference on the separation ratio of n-hexane has been 

plotted in Figure 5.11. It is clear that increasing the temperature difference (∆T) enhaces the 

seperation of the species.  

 

 

Figure 5.10: Concentration of n-hexane vs. the cavity height at various temperature differences 

between the top and bottom surfaces 
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Figure 5.11:  Separation ratios (q) of n-hexane vs. ΔT between the top and bottom horizontal 

surfaces 

 

5.3.2 Three-Dimensional (3D) Analysis 

In order to obtain a simulation with more accuracy, and to better understand of the phenomenon 

under study, a three-dimensional simulation has been conducted on the case of this chapter. To 
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part of the CFD (computational fluid dynamics) problem, commercial software called GAMBIT 

has been utilized. GAMBIT is a commercial software package designed to build and mesh 

models for computational fluid dynamics and other scientific applications. It receives user input 

by means of its graphical user interface (GUI) [52]. Over fifteen thousand nodes have been 

utilized for the three-dimensional model in this study, and I chose to use triangular meshes which 
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called FLUENT 6.1. FLUENT is a computer programme designed to model incompressible and 

compressible fluid flow and heat transfer in complex geometries. It provides complete mesh 

flexibility, solving flow problems with unstructured meshes that can be generated about complex 

geometries with relative ease. All flow operations such as defining material properties, setting 

boundary conditions, refining the grids, executing the solution, and viewing and post-processing 

the results can be performed in FLUENT within a solver [53]. Figure 5.12 illustrates the three-

dimensional model configuration and triangular meshes used in this study. 

 

 

Figure 5.12: Left: 3-D model configuration and, right: Detail (A) shows the meshes used with 

the 3D model 

 

A 
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5.3.3 Results and Discussion of the 3D Analysis 

A three-dimensional simulation with the option of double precision at ∆T = 20 K between the 

top and bottom surfaces was performed.  The contours of a number of properties such as 

temperature density gradient, mole fractions of the components, and species distribution were 

calculated. To obtain more accurate results for the facet value and to reach a suitable steady-state 

“converged” condition, the number of iteration was selected carefully. We found that 200 

iterations were enough for performing these simulations, since the facet values converged after 

about 110 iterations as shown in Figure 5.13. 

 

Figure 5.13: Convergence history of mass fraction of n-hexane on the top surface 

 

Starting with the mole fraction of the components (as shown in Appendix D), the average molar 

fraction of toluene was 48.34 % and for n-hexane was 51.67 %. The numerical simulations of 

molar fraction for the same components gave same results as shown in Figure 5.14.  
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Figure 5.14: Three-dimensional contours of mole fraction for toluene (top) and n-hexane 

(bottom) 
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The second property that was simulated for this mixture was the distribution of the temperature 

across the entire cavity.  Figure 5.15 shows the temperature gradient along the vertical axis of the 

cavity. There is close agreement between the three-dimensional model and the two-dimensional 

model of the temperature distribution as shown in Figure 5.4.  

 

 

Figure 5.15: Three-dimensional contours of temperature at ∆T=20 K. 

 

The third simulated property was the species concentration. As discussed in Section 5.3.1, and 

due to the positive Soret coefficient of the mixture in this study, the concentration of n-hexane, 

which is the lighter component, is greater near the hot surface (top) while the concentration of 

toluene, which is the denser component, is greater near the cold surface (bottom). The opposite 
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result was seen for the three-dimensional simulation;  the denser component moved towards the 

hot surface and the lighter component moved towards the cold surface, as shown in Figure 5.16.  

 

Figure 5.16 Three-dimensional contours of the concentration of n-hexane at ∆T=20 K 

 

To validate the results of the concentration of n-hexane obtained from both of the two- and three-

dimensional simulations, the concentration of n-hexane at various points along the vertical axes 

(Z) of both simulations were selected and plotted against each other, as shown in Figure 5.17. 

There is good agreement between the results obtained from both simulations. 
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Figure 5.17: The concentration of n-hexane at ∆T=20 K obtained from two- and three-

dimensional simulations 

 

Lastly, the contours of the mixture density were plotted and are shown in Figure 5.18. It is clear 

that the density gradient is opposite to the direction of the gravity force, i.e. the density is greater 

near the bottom surface of the cavity than near the top surface. This density gradient is due to the 

migration of the mixture components towards the hot and cold surfaces, which explains the lack 

of natural convection in the cavity when heated from above. This was discussed in detail in 

chapters 3 and 4 of this thesis. 
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Figure 5.18: Contours of the mixture density at ∆T=20 K. 

 

In Section 4.3.1, RaT and RaS were calculated for all the three layers of the system under study. 

The calculations (Table 4.1) showed that RaT > RaS for the three layers, which means that heat 

diffusion was a more dominant effect than was  mass diffusion. The calculations also showed 

that RaS at the bottom fluid layer is greater than at the top fluid layer, due to the negative Soret 

coefficient of the mixture studied in Section 4.3.1. For the mixture under study in this chapter 

(50% toluene and 50% n-hexane), RaT and RaS were calculated for all the three layers. Again, 

calculations showed that RaT > RaS for the three layers with a major difference which is that RaS 

in the top fluid layer is greater than at the bottom fluid layer due to the positive Soret coefficient 
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of the 50% toluene and 50% n-hexane mixture. Table 5.1 presents the values of RaT and RaS 

calculated for the mixture studied in this chapter. 

 

Table 5.1: Thermal and solutal Rayleigh numbers for fluid and porous layers for 50% toluene 

and 50% n-hexane 

 

 

 

 

 

 

5.4 Effect of Porosity on Thermodiffusion in the Presence of Porous 

Media 

In this section, we study the effect of the porosity of a material on thermodiffusion, which plays 

a crucial role in the study of porous media. Porosity ( ) can be defined as the ratio of volume 

occupied by voids to the total volume of the porous material. Hence, it can be expressed as in the 

following expression: 

  
  

  
                                                                                                                                                               

Mathematically, it can be expressed as a number between (0-1) or as percentage (%). The 

previously mentioned Kozeny-Carmen relation (Section 2.1) directly relates porosity to the 

effective permeability: 
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The value of porosity that was used in all the previous cases studied in this thesis was 0.39 (or 

39%). In order to study the effect of the porosity on the thermodiffusion, another two values of 

porosity have been taken into consideration. The other two values are 0.25 (25 %) and 0.6 (60%). 

Figure 5.19 shows the contours of the concentration of the mixture components for the three 

values of porosity.  

 

(a)                                               (b)                                                   (c)  

Figure 5.19: Contours of the concentration of n-hexane in a mixture of 50% toluene and 50% n-

hexane at ΔT=20 K with porosities of (a)   0.25, (b)   0.39 and (c)    0.6 

 

It is noticeable that increasing the porosity causes more system destabilization . Increasing the 

porosity means that the porous material has more voids, which causes less resistance for the fluid 

to flow and penetrate through the porous layer. Therefore, fluid flow increases and generates a 
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diffusive regime, which causes more flow mixing that decreases the separation of the mixture 

components. Increasing the porosity also leads to a decrease in the thermal conductivity of the 

porous material and reduces the conduction heat transfer, providing greater possibility for 

convection to occur. 

 

 

Figure 5.20: Concentration of n-hexane vs. the cavity height (y) at various values of porosity 
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5.5 Summary 

Two- and three-dimensional numerical studies have been performed to investigate the 

thermodiffusion (Soret effect) in a cavity that consists of a porous layer sandwiched between two 

layers of a hydrocarbon binary mixture consisting of 50% toluene and 50% n-hexane. The cavity 

was subjected to a heat flux from the top horizontal surface. Three different models have been 

simulated with temperature differences between the top and bottom horizontal surfaces of 5, 10, 

and 20 K. The results obtained from this part of the study can be summarized as follows: 

 When the binary mixture has a positive Soret coefficient, the lighter species migrates in 

the direction of the hotter surface, while the denser species migrates in the direction of 

the colder surface.  

 Increasing the temperature difference in the system enhances the separation process due 

to the larger density gradient caused by the increase in the temperature difference and the 

thermal diffusion flux, which is proportional to the gradient of temperature.  

 Increasing the porosity of the porous material causes a noticeable reduction in the 

separation of the mixture components. This is owing to the lesser resistance of the porous 

material against the fluid flow. Therefore, more fluid mixing occurs in the pore (void) 

areas. 
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CHAPTER 6 

Conclusions, Contributions, and Future Work 

6.1 Conclusions 

For the study of natural convection, we found that no motion was noticed when the system was 

heated from the top surface. The system in this case was stable, with a stratified temperature 

profile. Therefore, natural convection will not occur when a system consisting of fluid and 

porous media is heated from above.  

For the investigation of thermodiffusion, we found that when the binary mixture has a negative 

Soret coefficient, the lighter species migrates in the direction of the colder surface while the 

denser species migrate in the direction of the hotter surface. However, when the binary mixture 

has a positive Soret coefficient, the lighter species migrates in the direction of the hotter surface 

while the denser species migrates in the direction of the colder surface. In addition, we consider 

the following findings major results from the numerical analyses that were conducted in this 

research: 

 Increasing the temperature difference in the system enhances the separation process due 

to the enhancement of the density gradient with an increase in the temperature difference 

and the thermal diffusion flux, which is proportional to the gradient of temperature.  

 Increasing the porosity of the porous material causes a noticeable reduction in the 

separation of the mixture components. This is owing to the lesser resistance of the porous 

material against the fluid flow. Therefore, more fluid mixing occurs in the pore (void) 

areas. 
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6.2 Contributions 

The main goal of this research was to perform a numerical study to investigate the natural 

convection and thermodiffusion in a porous layer sandwiched between two liquid layers of 

water-alcohol mixtures at different concentrations of water. The study was repeated with another 

model saturated with a binary hydrocarbon mixture. The phenomenon of mass flux in a mixture 

due to a temperature gradient is called the thermo-solutal, thermodiffusion or Soret effect. This 

phenomenon has gained the attention of scientists, researchers, and engineers in the last few 

decades due to its crucial role in many engineering and geophysical applications, such as: 

mineral migration and mass transfer in living matters, analysis and study of compositional 

variation in hydrocarbon reservoirs, disposal of nuclear waste material, the migration of a 

contaminant in saturated soil, isotope separation in gaseous and liquid mixtures. The following 

are the main contributions of this research: 

 We conducted several numerical studies that showed the effect and the importance of 

heating orientation on the onset of natural convection. 

 We conducted numerical analyses to investigate the phenomena of natural convection 

and themodiffusion in a multi-layered system consisting of a porous medium sandwiched 

between two layers of binary mixtures. The model configurations used in this study are 

suitable to many natural and industrial applications. One of these applications is the 

extraction of oil from deep reservoirs. 

 We studied the thermodiffusion in a wider range of associating and hydrocarbon fluids 

with different signs of the Soret coefficient and different physical properties. 

 We investigated the effect of various parameters such as temperature difference, sign of 

the Soret effect, and porosity on the separation process of the mixture components. 
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6.3 Future Works 

Due to the importance of thermodiffusion (Soret effect) in the presence of porous media, future 

work may be recommended to address the following issues: 

 Repeat the study of the natural convection and thermodiffusion phenomena in a 

hydrocarbon binary mixture in a high pressure environment to investigate the behaviour 

of hydrocarbon mixtures in the oil reservoir,      

 Further develop the three-dimensional model, 

 Extend the present study to investigate  the thermodiffusion phenomenon with ternary 

mixtures and compare the results with this study, 

 Study and analyse thermodiffusion with a similar system configuration consisting of a 

porous medium sandwiched between two layers of binary or ternary mixtures in a 

microgravity environment, 

 Investigate the effect of more parameters on the thermodiffusion in the system 

configuration that was used in this study. These parameters may include pressure, 

permeability, and thickness of fluid and porous layers, variable porosity, and aspect ratio.  
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APPENDIX (A) 

 

Non-Dimensional Analysis of Governing Equations 

 
The following dimensionless variables are substituted into the dimensional equations in order to 

render them non-dimensional: 

  
𝑢

𝑢 
   

𝑇  𝑇 

 𝑇
   

 𝑢 

𝐿
 

  
𝑣
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 𝐶  

𝐶  𝐶 

 𝐶
    

     𝐶

    𝑇
 

  
 

𝐿
    

  𝑢 𝐿

 
      

     𝑇    
 

 𝛼
 

  
 

𝐿
    

 

𝛼
      

     𝑇    

 𝛼
 

  
 𝑝𝐿

 𝑢 
 𝐷  

 

𝐿 
      

     𝐶    
 

 𝛼
 

𝑢  √    𝑇𝐿    
 

𝐷 
      

    𝐶    

 𝛼
 

(A.1) 

A.1 Liquid Layer  

 

A.1.1 Continuity Equation 

 𝑢

  
  

 𝑣
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Substitute the non-dimensional terms 

  

  
  

  

  
                                                                                                                                                   

 

A.1.2 X-direction Momentum Balance equation 

  [
  

  
   

  

  
    

  

  
]     

  

  
    [

   

   
  
   

   
]                                                                                          

 

Substitute the non-dimensional terms: 

 

  [
    𝑢  

  
  𝐿
𝑢 

 
    𝑢  

    𝑢  

      
     𝑢  

    𝑢  

      
]   

 

  
  

  𝜇 𝑢 

𝐿  

      
    [

 

      
  
    𝑢  

      
  

 

      
  
    𝑢  

      
] 

 

Multiply both sides by the factor of   
  

    
  and simplify it to: 

 

  [
  

  
  

  

  
   

  

  
]   

  

  
 [

   

   
  

   

   
]                                                                             

 

A.1.3 Y-direction Momentum Balance equation 

  [
 𝑣

  
 𝑢 

 𝑣

  
  𝑣 

 𝑣

  
]   

 𝑝

  
 𝜇 [

  𝑣

   
  

  𝑣 

   
]         𝑇 𝑇  𝑇𝑜 –  𝐶 𝐶  𝐶               

Substitute the non-dimensional terms and take out the common variables to get: 
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𝑢 

 

𝐿
[
  

  
   

  

  
    

  

  
]   

𝜇 𝑢 

𝐿 

  

  
 

𝜇 𝑢 

𝐿 
[
   

   
  

    

   
]       [ 𝑇 𝑇 – 𝐶 𝐶 𝐶] 

Where, (T – T0) = ∆T.θ and (c-c0) = ∆c.C 

Multiply the both sides of the previous equation by the factor of: 
  

    
 and simplify it to: 

  [
  

  
  

  

  
   

  

  
]    

  

  
 [

   

   
  

   

   
]   

    

𝜇 𝑢 

    𝑇 –   𝐶 𝐶                            

        (Ɛ1) 

Term  (Ɛ1) : 

    𝐿    𝑇 

𝜇 𝑢 
 

    𝐿    𝐶 𝐶

𝜇 𝑢 
 

Multiply term (Ɛ1) by the factor of   
  / 

  / 
and simplify the same term to be: 

   

  
      𝐶  

Substituting term (Ɛ1) in Eq. (A.7) to get: 

  [
  

  
  

  

  
   

  

  
]    

  

  
 [

   

   
  

   

   
]   

   

  
     𝐶                                   

 

A.1.4 Energy balance equation 

 ρ p   [
  

  
    

  

  
     

  

  
]     [

   

    
   

   ]                                                                            

Substitute the non-dimensional parameters to obtain: 

 ρ     [
  ∆  θ 

  
  𝐿
𝑢 

 
     𝑢  

  ∆  θ 

      
     𝑢  

  ∆  θ 

      ]      [
   ∆  θ 

       
 
   ∆  θ 

       
] 
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 ρ   f 
 ∆T.𝑢  

 
[
 θ

 τ
   

 θ

  
   

 θ

  
]= 

    𝑇

𝐿 
[
 
 
θ

   
 
 
 
θ

   
] 

Multiply both sides by the factor of  
  

      
 and simplify it to: 

 

 ρ   f 
  .𝑢  

   

𝐿 

    𝑇 
[
 θ

 τ
   

 θ

  
   

 θ

  
]= [

 
 
θ

  
 
 
 
 
θ

  
 
] 

Multiply L.H.S by the factor of  
 

  
 and simplify it to: 

 

     [
  

  
  

  

  
    

  

  
]   [

   

   
 

   

   
]                                                                                     

 

A.1.5 Mass balance equation 

  [
 c

  
  𝑢 

  

  
   𝑣 

  

  
]     𝐷  [

   

   
 

   

   
]    𝐷  [

  𝑇

   
 

  𝑇

   
]                                        

Substitute the non-dimensional parameters to obtain: 

  [
  c.c 

  
  𝐿
𝑢 

 
    .𝑢  

  ∆c.c 

   .  
    .𝑢  

  ∆c.c 

   .  
]   

  𝐷  [
 

    𝐿 

  ∆c.c 

    𝐿 
 

 

    𝐿 

  ∆c.c 

    𝐿 
]    𝐷  [

 

    𝐿 

  ∆T.θ 

   .  
 

 

    𝐿 

  ∆T.θ 

   .  
] 

Extract the common variables from both sides of the above equation: 

  

   𝑢 

𝐿
[
∂C

∂ 
   .

∂C

∂ 
   

∂C

∂ 
]        

  

𝐿 
[
  𝐶

   
 

  𝐶

   
]       

 𝑇

𝐿 
[
   

   
 

   

   
] 

Multiply both sides of the above equation by the factor of  
 

        

 to obtain:  
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[
  

 τ
   .

  

  
   

  

  
]   

𝐷  

𝐿 𝑢 
[
  𝐶

   
 

  𝐶

   
]  

𝐷   𝑇

𝐿 𝑢  𝐶
[
   

   
 

   

   
]                                          

                                        (Ɛ2)                                  (Ɛ3) 

Now, we need to take the following two steps: 

(1) Multiply term (Ɛ2) by 
 

 
 , then the same term becomes 

 

     
 

(2) Term (Ɛ3) which used at the presence of thermodiffusion convection: 

     

      
  

       

      
 = 

    

       
   

 

 
 

 

     
 

Substitute (Ɛ2) and (Ɛ3) in equation (A.12), we will obtain: 

 

[
  

  
    

  

  
     

  

  
]   
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]  

𝛼

     
[
   

   
 

   

   
]                                         

Or 

[
 C

  
    

  

  
     

  

  
]   

 

  
 
 

  
[
   

   
 

   

   
]  

𝐿 

        
[
   

   
 

   

   
]                                  

 

A.2 Porous Layer  

 

A.2.1 Continuity Equation 

 𝑢

  
  

 𝑣

  
                                                                                                                                                   

 

Substitute the non-dimensional terms 
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A.2.2 X-direction Momentum Balance equation 

  

 
[
  

  
] 

𝜇

 
. =   

  

  
    [

   

   
  

   

   
]                                                                                                     

Substitute the non-dimensional terms: 

 

  

 
[
∂( .𝑢  

∂(
  𝐿
𝑢 

 
]  

𝜇

 
( .𝑢  =   

∂(
  𝜇 𝑢 

𝐿
 

∂( .L)
    [

∂

∂( .L)
. 
∂( .𝑢  

∂( .L)
  

∂

∂( .L)
. 
∂( .𝑢  

∂( .L)
] 

 

Multiply both sides by the factor of   
  

    
  and simplify it to: 

 

  

 
[
  

  
]  

 

𝐷 
  

  

  
 [

   

   
  

   

   
]                                                                                                

A.2.3 Y-direction Momentum Balance equation 

  

 
[
 𝑣

  
]   

𝜇

 
𝑣   

 𝑝

  
 𝜇 [

  𝑣

   
  

  𝑣 

   
]         𝑇 𝑇  𝑇𝑜 – 𝐶                                   

Substitute the non-dimensional terms and take out the common variables to get: 

   
𝑢 

 

𝐿
[
  

  
]   

𝜇

 
  𝑢   

𝜇 𝑢 

𝐿 

  

  
 

𝜇 𝑢 

𝐿 
[
   

   
  

    

   
]           𝑇 –   𝐶 𝐶  

Where, (T – T0) = ∆T.θ and (c-c0) = ∆c.C 

Multiply the both sides of the previous equation by the factor of: 
  

    
 and simplify it to: 

 

  [
  

  
]   

 

𝐷 
   

  

  
 [

   

   
  

   

   
]   

    

𝜇 𝑢 

    𝑇 –   𝐶 𝐶                                              

   (Ɛ1) 
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Simplifying Term (Ɛ1): 

    𝐿    𝑇 

𝜇 𝑢 
 

    𝐿    𝐶 𝐶

𝜇 𝑢 
 

Multiply term (Ɛ1) by the factor of   
  / 

  / 
  and simplify the same term to be: 

  𝑇

  
      𝐶  

Substituting term (Ɛ1) in Eq. (A.19) to get: 

  [
  

  
  

  

  
   

  

  
]    

  

  
 [

   

   
  

   

   
]   

   

  
     𝐶                                            

 

A.2.4 Energy balance equation 

 ρ     [
  

  
    

  

  
     

  

  
]      [

   

   
 
   

   
]                                                                                         

Substitute the non-dimensional parameters to obtain: 

 ρ     [
  ∆  θ 

  
  𝐿
𝑢 

 
     𝑢  

  ∆  θ 

      
     𝑢  

  ∆  θ 

      ]      [
   ∆  θ 

       
 
   ∆  θ 

       
] 

 ρ     
 ∆  𝑢  

 
[
 θ

  
   

 θ

  
   

 θ

  
]   

    𝑇

𝐿 
[
  θ

   
 
  θ

   
] 

Multiply both sides by the factor of  
  

      
 and simplify it to: 

 

 ρ     
   𝑢  

  

[
 θ

  
   

 θ

  
   

 θ

  
]   

   

  
[
  θ

   
 
  θ

   
] 
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Multiply L.H.S by the factor of  
 

  
 and simplify it to: 

 

     [
  

  
  

  

  
    

  

  
]    [

   

   
 

   

   
]                                                                                 

Where G is the non-dimensional thermal conductivity =  

   

  
  

            

  
 

A.1.4 Mass balance equation 

  [
  

  
  𝑢 

  

  
   𝑣 

  

  
]     𝐷  [

   

   
 

   

   
]    𝐷  [

  𝑇

   
 

  𝑇

   
]                                        

Substitute the non-dimensional parameters to obtain: 

  [
  ∆    

  
  𝐿
𝑢 

 
     𝑢  

  ∆    

      
     𝑢  

  ∆    

      
]   

  𝐷  [
 

    𝐿 

  ∆    

    𝐿 
 

 

    𝐿 

  ∆    

    𝐿 
]    𝐷  [

 

    𝐿 

  ∆  θ 

      
 

 

    𝐿 

  ∆  θ 

      
] 

Extract the common variables from both sides of the above equation: 

  

 𝐶 𝑢 

𝐿
[
  

  
    

  

  
   

  

  
]     𝐷  

 𝐶

𝐿 
[
  𝐶

   
 

  𝐶

   
]    𝐷  

 𝑇

𝐿 
[
   

   
 

   

   
] 

Multiply both sides of the above equation by the factor of  
 

        

 to obtain:  

[
  

  
    

  

  
   

  

  
]   

𝐷  

𝐿 𝑢 
[
  𝐶

   
 

  𝐶

   
]  

𝐷   𝑇

𝐿 𝑢  𝐶
[
   

   
 

   

   
]                                                 

                                        (Ɛ2)                                  (Ɛ3) 

Now, we need to take the following two steps: 
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(1) Multiply term (Ɛ2) by 
 

 
 , then the same term becomes 

 

     
 

(2) Term (Ɛ3) which used at the presence of thermodiffusion convection: 

     

      
  

       

      
 = 

    

       
   

 

 
 

 

     
 

Substitute (Ɛ2) and (Ɛ3) in equation (A.12), we will obtain: 

 

[
  

  
    

 𝐶

  
     

 𝐶

  
]   

 

  
 
 

  
[
  𝐶

   
 

  𝐶

   
]  

𝛼

     
[
   

   
 

   

   
]                                     

Or 

[
  

  
    

 𝐶

  
     

 𝐶

  
]   

 

  
 
 

  
[
  𝐶

   
 

  𝐶

   
]  

𝐿 

        
[
   

   
 

   

   
]                                
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APPENDIX (B) 

List of Dimensionless Parameters 

 

        Group Definition Interpretation 

Grashof number (Gr)    𝑇  𝑇   𝐿 

𝜇 
 

                

               
 

 

 

Lewis number (Le) 

 

                   α / DM 

 

 

thermal diffusivity 

mass diffusivity 
 

 

Nusselt number (Nu) 

 

  𝐿

 
 

 

                          

                        
 

 

Prandtl number (Pr) 𝜈/𝛼                       

                   
 

 

Rayleigh number (Ra) 
 .β

T
.∆T.𝐿 

𝑣α
 

 

buoyancy 

viscous × rate of heat diffusion 
 

 

Reynolds number (Re) 

 

   𝑢  𝐿

𝜇
 

 

inertial force 

viscous force 

 

Schmidt number (Sc) 

 

 /𝐷𝑀 = Le.Pr 

 

 

 

 

 

 

momentum diffusivity 

mass diffusivity 
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APPENDIX (C) 

Physical Properties of Binary Fluids 

C.1 Physical Properties of Water-Isopropanol for Two Different 

compositions
*
 

 

 
(*) Abdur Rahman, Md. (2008), “Thermo-Solutal Convection with Soret Effect”, MSc thesis, 

Ryerson University. 

         Property Symbol 10%isopropanol 

+90% Water 

50%Isopropanol 

+50% Water 

Kinematic Viscosity (m
2
/s)    1.41E-06 4.18E-06 

Thermal diffusivity (m
2
/s)  a 1.30E-07 8.50E-08 

Diffusion coefficient (m
2
/s)  DM 8.70E-10 1.80E-10 

Density (kg/m3)  ρ 984 905 

Soret coefficient (1/K)  ST -1.06E-02 5.45E-03 

Thermal expansion (1/K)  βT 3.10E-04 7.70E-04 

Solutal expansion  βC 0.14 -0.25 

Prandtl number Pr 10.846 49.165 

Schmidt number Sc 1620.690 23216.667 

thermal characteristic time (s)   th 15577 23823.53 

Diffusive characteristic time (s)   D 2.328E06 11.25E06 

Thermal conductivity (W/m.K) k 0.522 0.2866 

Lewis number Le 149.3 472.22 
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C.2 Physical properties of %50 Toluene and 50% n-Hexane mixture  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Property Symbol Value 

Kinematic Viscosity (m
2
/s)   5.15E-07 

Thermal diffusivity (m
2
/s) a 8.963E-08 

Diffusion coefficient (m
2
/s) DM 2.78E-09 

Density (kg/m3) ρ 751.19 

Soret coefficient (1/K) ST 4.92E-03 

Thermal expansion (1/K) βT 1.26E-03 

Solutal expansion βC -2.88E-01 

Prandtl number Pr 5.74 

Schmidt number Sc 185 

thermal characteristic time (s)  th 1115.7 

Diffusive characteristic time (s)  D 3.6E04 

Thermal conductivity (W/m.K) k 0.128851 

Lewis number Le 32.24 

Specific heat ( J/Kg.K) Cp 1923 
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APPENDIX (D) 

Calculations of Mass Fraction for the Mixture of 50% Toluene and 

50% n-Hexane 
 

 

MWtoluene = 92.14 g/mol 

MWn-hexane = 86.18 g/mol 

  
   

𝑀 

𝑀  
 

        
   

     

     
 

 𝑜 

       𝑜  

         
   

     

     
 

 𝑜 

       𝑜  

        
  ∑

𝑀 

𝑀  
 

 

        
   (

     

     
 

 𝑜 

)   (
     

     
 

 𝑜 

)         𝑜  

  
   

  
 

        
  

        
   

    

     
         

         
   

    

     
         

 

 

 



109 
 

APPENDIX (E) 

 

Input Files 

  E.1 Natural Convection  

 

Title 

Thermodiffusion Convection in Fluid/Porous/Fluid top heated Cavity/top 

heating Diffusiion case 

fimesh (2-d, imax=3, jmax=7) 

expi 

/1  2  3 

1  0  31 

expj 

/1  2  3  4  5  6  7 

1  0  51  0  85  0  135 

/ 

point 

/n i j k x y z 

 1 1 1 1 0 0 0  

 2 3 1 1 0.222 0 0  

 3 1 3 1 0 0.142 0 

 4 3 3 1 0.222 0.142 0 

 5 1 5 1 0 0.858 0 

 6 3 5 1 0.222 0.858 0 

 7 1 7 1 0 1 0 

 8 3 7 1 0.222 1 0 

line 

/1st plane 

1 2 

3 4 

5 6 

7 8 

1 3 

3 5 

5 7 

2 4  

4 6 

6 8 

surface 

1 4 

3 6 

5 8 

elements (continuum, quad, node=9, entity="porous") 

3 6 

elements (continuum, quad, node=9, entity="fluidT") 

5 8 

elements (continuum, quad, node=9, entity="fluidB") 

1 4 
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elements(boundary,edge,nodes=3,entity="Top") 

7 8 

elements(boundary,edge,nodes=3,entity="Bottom") 

1 2 

bcnode (temperature, constant) 

7 8 1 

1 2 0 

bcnode (velocity, constant) 

2 4 0 0 

6 8 0 0 

1 2 0 0 

7 8 0 0 

1 3 0 0 

5 7 0 0 

bcnode (ux, constant) 

4 6 0 0 

3 5 0 0 

/ 

/ 

end 

fiprep 

problem (nonlinear, 2-D, buoyancy, buoyancy=1, transient) 

timeint (back, dt=0.00006, nofix=5, nsteps=1500, tend=300000, species=1) 

pressure (mixed=1.0e-8, disc) 

execution (newjob) 

solution (segr=2000, velcon=0.001, normal=40) 

option (stress-divergence) 

relax 

0.12  0.12  0.12  0.0  0.01  0.6 

gravity (magn=1) 

/ 

$por=0.39 

$perm=4.1e-6 

/ 

cond (set=3, constant=2.1) 

permeability (acoef, constant=1, x=$perm, y=$perm, porosity=$por) 

/ 

/physical parameters 

/ 

dens (set=1, constant=1669.7, TYP2, temperature, spec=1) 

spec (set=1, constant=10.846) 

visc (set=1, constant=1) 

cond (set=1, constant=1) 

volu (set=1, constant=1, temperature) 

volu (set=2, constant=23.36, spec=1) 

diff (set=2, constant=3.7e-7, species=1) 

/ther (set=1, constant) 

/7.84e-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

renumber (profile) 

icnode (temperature, constant=0.5, entity="porous") 

icnode (temperature, constant=0.5, entity="fluidT") 

icnode (temperature, constant=0.5, entity="fluidB") 

icnode (species=1, constant=0.1, entity="porous") 

icnode (species=1, constant=0.1, entity="fluidT") 
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icnode (species=1, constant=0.1, entity="fluidB") 

entity (name="porous", porous, property="1", mdiff=2, sore, species=1, 

mexp=2, maper=1, mscond=3) 

entity (name="fluidT", fluid, property="1", mdiff=2, sore, species=1, 

mexp=2) 

entity (name="fluidB", fluid, property="1", mdiff=2, sore, species=1, 

mexp=2) 

entity(name="Top",plot) 

entity(name="Bottom",plot) 

print (none) 

data (control) 

end 

create (FISOLV) 
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E.2 Thermodiffusion Convection (Water-Alcohol Binary Mixture): 

 

 
Title 

Thermodiffusion Convection in Fluid/Porous/Fluid top heated Cavity/top 

heating Diffusiion case 

fimesh (2-d, imax=3, jmax=7) 

expi 

/1  2  3 

1  0  31 

expj 

/1  2  3  4  5  6  7 

1  0  51  0  85  0  135 

/ 

point 

/n i j k x y z 

 1 1 1 1 0 0 0  

 2 3 1 1 0.222 0 0  

 3 1 3 1 0 0.142 0 

 4 3 3 1 0.222 0.142 0 

 5 1 5 1 0 0.858 0 

 6 3 5 1 0.222 0.858 0 

 7 1 7 1 0 1 0 

 8 3 7 1 0.222 1 0 

line 

/1st plane 

1 2 

3 4 

5 6 

7 8 

1 3 

3 5 

5 7 

2 4  

4 6 

6 8 

surface 

1 4 

3 6 

5 8 

elements (continuum, quad, node=9, entity="porous") 

3 6 

elements (continuum, quad, node=9, entity="fluidT") 

5 8 

elements (continuum, quad, node=9, entity="fluidB") 

1 4 

bcnode (temperature, constant) 

7 8 1 

1 2 0 

bcnode (velocity, constant) 

2 4 0 0 

6 8 0 0 

1 2 0 0 
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7 8 0 0 

1 3 0 0 

5 7 0 0 

bcnode (ux, constant) 

4 6 0 0 

3 5 0 0 

/ 

/ 

end 

fiprep 

problem (nonlinear, 2-D, buoyancy, buoyancy=1, transient) 

timeint (back, dt=0.00006, nofix=5, nsteps=500, tend=300000, species=1) 

pressure (mixed=1.0e-8, disc) 

execution (newjob) 

solution (segr=2000, velcon=0.001, normal=40) 

option (stress-divergence) 

relax 

0.12  0.12  0.12  0.0  0.01  0.6 

gravity (magn=1) 

/ 

$por=0.39 

$perm=4.1e-6 

/ 

cond (set=3, constant=2.1) 

permeability (acoef, constant=1, x=$perm, y=$perm, porosity=$por) 

/ 

/physical parameters 

/ 

dens (set=1, constant=1669.7, TYP2, temperature, spec=1) 

spec (set=1, constant=10.846) 

visc (set=1, constant=1) 

cond (set=1, constant=1) 

volu (set=1, constant=1, temperature) 

volu (set=2, constant=23.36, spec=1) 

diff (set=2, constant=3.7e-7, species=1) 

ther (set=1, constant) 

7.84e-08 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

renumber (profile) 

icnode (temperature, constant=0.5, entity="porous") 

icnode (temperature, constant=0.5, entity="fluidT") 

icnode (temperature, constant=0.5, entity="fluidB") 

icnode (species=1, constant=0.1, entity="porous") 

icnode (species=1, constant=0.1, entity="fluidT") 

icnode (species=1, constant=0.1, entity="fluidB") 

entity (name="porous", porous, property="1", mdiff=2, sore, species=1, 

mexp=2, maper=1, mscond=3) 

entity (name="fluidT", fluid, property="1", mdiff=2, sore, species=1, 

mexp=2) 

entity (name="fluidB", fluid, property="1", mdiff=2, sore, species=1, 

mexp=2) 

print (none) 

data (control) 

end 

create (FISOLV) 
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E.3 Thermodiffusion Convection (Hydrocarbone Binary Mixture)  

 

Title 

Thermodiffusion Convection in Fluid/Porous/Fluid  

/top heating Diffusion case 

fimesh(2-d, imax=7, jmax=11) 

expi 

/1 2 3 4 5 6 7  

1 0 31 0 61 0 91 

expj 

/1 2 3 4 5 6 7 8 9 10 11 

1 0 31 0 51 0 151 0 171 0 201 

/ 

point 

/n i j k x y z 

 1 1 1 1 0 0 0 

 2 7 1 1 2.15 0 0 

 3 1 3 1 0 0.3.2 0 

 4 3 3 1 0.575 0.32 0 

 5 5 3 1 1.575 0.32 0 

 6 7 3 1 2.15 0.32 0 

 7 3 5 1 0.575 0.64 0 

 8 5 5 1 1.575 0.64 0 

 9 3 7 1 0.575 3.86 0 

10 5 7 1 1.575 3.86 0 

11 1 9 1 0 4.18 0  

12 3 9 1 0.575 4.18 0 

13 5 9 1 1.575 4.18 0  

14 7 9 1 2.15 4.18 0  

15 1 11 1 0 4.5 0 

16 7 11 1 2.15 4.5 0 

line 

/1st Plane 

1 2  

2 6 

6 5 

5 8 

8 7 

7 4 

5 4 

4 3 

3 1 

7 9 

9 10  

10 8 

9 12 
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12 11 

11 15 

15 16 

16 14 

14 13 

13 10 

12 13 

surface 

7 10 

2 3 

4 8 

9 13 

11 16 

elements(continuum,quad,nodes=9,entity="porous") 

7 10 

elements(continuum,quad,nodes=9,entity="fluidT") 

9 13 

11 16 

elements(continuum,quad,nodes=9,entity="fluidB") 

1 6 

4 8 

elements(boundary,edge,nodes=3,entity="Top") 

15 16 

elements(boundary,edge,nodes=3,entity="Bottom") 

1 2 

bcnode(temperature,constant) 

15 16 1 

1 2 0 

bcnode(velocity,constant) 

2 6 0 0 

5 6 0 0 

5 8 0 0 

1 2 0 0 

1 3 0 0 

3 4 0 0 

4 7 0 0 

9 12 0 0 

12 11 0 0 

11 15 0 0  

15 16 0 0 

16 14 0 0 

14 13 0 0 

13 10 0 0 

bcnode(ux, constant) 

8 10 0 0 

7 9 0 0 

/ 
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/ 

end 

fiprep 

problem(nonlinear, 2-D,buoyancy,buoyancy=1,transient) 

timeint(back,dt=0.0006,nofix=5,nsteps=1000,tend=6100000,species=

1) 

pressure(mixed=1.0e-8,disc) 

execution(newjob) 

solution(segr=2000,velconv=0.0001,normal=40) 

option(stress-divergence) 

relax 

0.12  0.12  0.12  0.0  0.01  0.6 

gravity(magn=1) 

/ 

$por=0.39 

$perm=8.3e-9 

/ 

cond(set=3,constant=2.088) 

permeability(acoef,constant=1,x=$perm,y=$perm,porosity=$por) 

/ 

/Physical parameters  

/ 

dens (set=1, constant=967, TYP2, temperature, spec=1) 

spec (set=1, constant=5.74) 

visc (set=1, constant=1) 

cond (set=1, constant=1) 

volu (set=1, constant=1, temperature) 

volu (set=2, constant=11.42, spec=1) 

diff (set=2, constant=5.59e-6, species=1) 

ther (set=1, constant) 

-5.49e-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

renumber(profile) 

icnode(temperature,constant=0.5,entity="porous") 

icnode(temperature,constant=0.5,entity="fluidT") 

icnode(temperature,constant=0.5,entity="fluidB") 

icnode(species=1,constant=0.5,entity="porous") 

icnode(species=1,constant=0.5,entity="fluidT") 

icnode(species=1,constant=0.5,entity="fluidB") 

entity(name="porous",porous,property="1",mdiff=2,sore,species=1,

mexp=2,maperm=1,mscond=3) 

entity(name="fluidT", 

fluid,property="1",mdiff=2,sore,species=1,mexp=2) 

entity(name="fluidB", 

fluid,property="1",mdiff=2,sore,species=1,mexp=2) 

entity(name="Top",plot) 

entity(name="Bottom",plot) 

print(none) 
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data(control) 

end 

create(FISOLV) 
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