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Abstract

MULTIFRACTAL CORRELATION USING WAVELET TRANSFORM
MODULUS MAXIMA

Asif Hasan Sharif
Master of Applied Science
Graduate Program in Mechanical Engineering
Ryerson University
2006

The wavelet transform modulus maxima method (WTMM) for a single time series is generalized
to multiple time series. The new method, which is called the joint WTMM analysis in this work,
allows analyses of multifractal correlation between simultaneously measured data. Dependent,
partly dependent and independent binomial cascades are used to test the joint WTMM formulism
and the degree of correlation assessed qualitatively is found to agree well with the theoretical
predictions. Finally, the technique is applied to simultaneously measured surface scalp potential
and heart rate data taken from two healthy human subjects. Via this new method, it is shown that
there is multifractal correlation between the fractal dynamics in the cortex and the autonomic

regulation of the heart rate.
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Chapter 1 Introduction

CHAPTER 1 Introduction

Many physical systems exhibit data fluctuation that is neither completely random nor regular. In
between, the ‘object” now known as fractal was discovered to fit the characteristics of data
fluctuation in almost all natural and artificial systems, ranging from the structure of the universe

[1] to equity pricing [2], internet traffic [3] and DNA sequences [4].

Fractal objects are best described by the notion of self-similarity [5]. In terms of data fluctuation
in physical systems, fractal is interpreted as the property of the (probability) measure [5, 6]. It is
thus not too surprising that the machinery developed applies equally well to functions. Indeed,
armed with the powerful tool of the wavelet, Hwang and Mallat [7], Bacry et. al. [8] and Ivanov
et al. [9] have successfully characterized the fractality of functions. One important outcome of
these advancements is the discovery of the highly non-uniform structure known as multifractal:
an interwoven set of fractal objects. It is now accepted that most natural and artificial systems

exhibit the multifractal property [7,8,9].

Multifractal objects have traditionally been studied using the so-called wavelet transform
modulus maxima (WTMM) method. It is aimed at extracting the singularity spectrum that
characterizes the distribution of the size of the degree of fluctuation. However, this method has
only been developed for a single time series. The goal of this thesis is to extend the application
of the WTMM method from the single time series case to the multiple time series case. The
immediate advantage of a WTMM formulism for multiple time series is the opportunity to
extract multifractal correlation from simultaneously measured signals, a generalization of the

classical linear correlation analysis.

One of the main applications of multifractal correlation analysis is to characterize fluctuation
patterns in biological systems. In particular, this allows one to analyze the ‘connection’ of fractal
fluctuations that are known to exist in many physiological data taken from humans, such as the
heart rate and brain wave fluctuation. In this work, the fractal fluctuations between the beat-to-

beat heart rate and the surface scalp potential are studied. It was shown that such a correlation
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does exist. It thus provides, the evidence of a ‘fractal link’ to the so-called heart rate variability

problem in the higher centers of the brain.

In the next section, the notion of fractal is introduced in more specific terms. The fractal nature
of heart rate variability and brain wave are reviewed in section 1.1 and the summary of the thesis

is given in section 1.2.

1.1 Fractals

In connection to the idea of fractal, the mind typically conjures up images of static objects such
as trees, a picture of the sky on a cloudy day or a flower. While this is true, one should be aware
that the view does not reflect the evolution or generation of the structure of the fractal object.
Furthermore, for complex dynamics of natural and artificial systems, the setting of such a
geometrical framework is normally not possible. More commonly available is only the measured
data. Therefore, it is necessary to extend the view of a geometric fractal to a probabilistic view of
a fractal applied to signal fluctuation. Although the basis of such an extension is still covered in
the realm of self-similarity, it is best described using the general notion of scale invariance
symmetry. In this section, the construction and measure of geometrical fractal objects are first
introduced using the basic example of a Cantor set. Its extension, based on the idea of scale

invariance, follows to describe the fractal fluctuation of signals.

A

1.1.1 Construction and Measurement of Geometrical Fractal Objects

The Cantor set was proposed by the German mathematician G. Cantor in 1883 [10]. Itis a
classical example of a fractal and is often used to illustrate the properties of fractals. Its

construction is quite simple and is outlined below.

Suppose that there is a unit interval [0,1] at stage 0. At stage 1, the middle 1/3 of this line is

removed. There are now two pieces of the interval left in stage 1: [0,1/3]and[2/3,1]. At stage 2,

the middle 1/3 of each of these two remaining intervals are again removed. Fig. 1 illustrates the

construction.
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Stage 0 NG
Stage 1 IR I
Stage2 1 W Il

0 1

Figure 1 Construction of the Cantor set in stages

If the intervals [0,1/3]and[2/3,1] in stage 1 are multiplied by 1/3, we get [0,1/9] and
[279,1/3], which are the two intervals starting from the left at stage 2. If the intervals
[0,1/3]and[2/3,1] in stage 1 are multiplied by 1/3, and translated by 2/3 we get [2/3,7/9]and

[8/ 9, l], which are the two intervals starting from the right at stage 2. It is thus possible to create

stage 2 of the Cantor set by a sequence of magnification and translation of stage 1. This captures
exactly the mechanism of building the Cantor set in particular and other fractal objects in
general. It also implies that the objects constructed from one stage to the next are only different
in scale and location. This is the characteristic of scale invariance and is a fundamental feature of

all fractal objects.

As this process continues ad infinitum, it is clear that the Cantor set becomes a point set. The size
of the set has traditionally been the quantity of great interest. This can be measured from the
notion of dimension. Dimension is related to how the target (fractal) object can be covered by a
second (covering) object. Technically, it measures how the number of covering object scales
with the size of the target object in the form of a power law. For example, the number N of line,
plane and volume elements of size ¢ that are needed to cover any given line, plane and volume
objects, respectively, scales as N(&) ~ g, N(e) ~ g% and N(e) ~ &>, This is because, from common
sense, these are one, two and three dimensional objects. Specifically, this is described as

D, = lim 22 (2)

0 log(1/¢) (1
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The subscript ‘B’ in the notation means ‘box counting’ and refers to the nature of the process. By
the same idea, one can cover the Cantor set with small line segments of size(1/ 3)i . It would then
require N (s) =2'of such line segments to cover the Cantor set at each stage of the construction.

Therefore, the (box-counting) dimension for the Cantor set is [10]

log?2'

31

Dy =lim
i—o Iog

~ 0.6309 (1.2)
Fractals in nature are more complex objects than the Cantor set in that (1.1) no longer holds
uniformly over the whole fractal set. As a result, one must discuss the spatial dependence of
(1.1). Intuitively, the fractal set may be considered as consisting of interwoven pieces of Cantor
sets of different dimensions. Associated with such a ‘dimension spectrum’ is the ‘degree of
clustering’ of the set. This is, in essence, the characterization of multifractal objects. The
application of the multifractal concept in time series modeling will be discussed at length in

Chapter 2. In the next section, a review of generalization of the geometrical fractal concept to

time series analysis is given.

1.1.2 Fractal Analysis of Signal Fluctuation

Letx(t) be a discrete-time, real-value process. This mimics most experimental situations, where

the dynamics of the physical system of interest are measured with a fixed sampling time. The

fluctuation is analyzed in the time domain based on the idea of scale-invariance symmetry. The

process x(t) is said to possess continuous scale invariance symmetry, if its probability

distribution is preserved after the change of variables, — At,x — x/ s, where A and ,u(/l) are

real numbers, i.e.,
1
x(t) =, ——x(A1) (1.3)
" u(4)

where =, means ‘equal in probability.” There is also a discrete version of the scale invariance

which can give rise to log-periodic oscillation of the fractal property [11].
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Assume x(f*) = 0. Equation (1.3) impliesx() in time interval [#*,¢*+At] has a similar
appearance as in[r*,*+AAt] after rescaling of amplitude by the factor1/ z. Hence, the idea of

analyzing fractal fluctuation is similar to the idea of self-similarity used in the study of

geometrical fractal objects. If the probability distribution of x (t)can be found, it is possible to

characterize the strength of fluctuation as a function of time and estimate the dimension of the
interval occupied by the specific strength of fluctuation. Therefore, the notions of strength of
fluctuation and the dimension of the corresponding intervals, are the counterparts of clustering
and dimension of geometrical multifractal objects. As is mostly the case, the probability function
of experimental data is unknown and one relies on the estimate of moments to achieve the same
goal. These abstract settings can be made precise with the specific tool used to characterize the

relationship (1.3). They will be discussed in detail in the following chapters.

1.2 Summary of Thesis

This thesis is divided into five chapters. Chapter two first details the existing method of
obtaining multifractal spectra using WTMM, and subsequently applies it to the binomial cascade
and fractional Brownian motion. Chapter three constructs the joint multifractal spectra using
WTMM, and then three sets of time-series are created: completely dependent, partly dependent
and completely independent by modifying the binomial cascade. Next, the joint multifractal
spectra of the time-series are compared. In chapter four, surface scalp potential and beat-to-beat
heart rate are obtained from human subjects and are studied using the newly defined method.
Chapter five summarizes the conclusions of the thesis and identifies possible areas of future

research.
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CHAPTER 2 Multifractal Spectra using Wavelet Transform

2.1 Multifractal Formalism
Random fluctuation in many natural and artificial systems can be quantified via the notion of

singularity. Letx(t) be the data of interest. Treated as a function, its singular property can be
measured by the so-called local Holder exponent. It is defined as the greatest exponent & such
that, for some &, > 0, C(¢) > 0and an n'" order polynomial 7, (f) with n < e, the following
inequality holds

|x(¢+6)- P, ()| < Clo[" @.1)
V& <8,. If x(t) is n times continuously differentiable at?, P, () can be selected as the ordern

Taylor expansion of x at ¢and therefore, @ < n. This also means that the larger the exponenta,
the more regularx is atz. It is also important to note that (2.1) is a point-wise definition. This
allows the singular property to be studied as a function of scale. The natural tool to accomplish

this is by the wavelet transform:
1% (1—t
w(x](t,a)=— t')dt' 2.2
[x]“aj(a}‘() 22)

where W [x](t,a) is the wavelet coefficient and y (¢) is the analyzing wavelet that is designed to

be well localized atf =0 [12]. On account of the need to delete the polynomial trend, analyzing

wavelets that are orthogonal to polynomials are considered. This means that the wavelet

satisfies It'"t//(t)dt =0 for some0 < m < n,, wheren, is the order of the polynomial. The

derivatives of the Gaussian function, known as the Gaussian wavelets, are used in this work to

fulfill this condition.

For a well localized y at ¢ = 0 that is orthogonal to all polynomials up to the ordern, >« (t) , one
can integrate both sides of (2.1) against l//((t'—-t)/ a) and find, asa—> 0",

wix1(t,a) ~ a*® (2.3)
[8]. Thus, in principle, by choosingy with a large enoughn, , the entire set {a} can be obtained.

Let the plane spanned by tand a be called the time-scale plane. Hwang and Mallat [7] identified



Chapter 2 Multifractal Spectra using Wavelet Transform

the geometrical object associated with (2.3) in the time-scale plane, namely, there exists a

maxima line {(£,a)} originating ats where (2.3) holds. Here, the maxima line is defined by the

points in the time-scale plane where the wavelet modulus is a local maximum:

{(La) 7 [x](e.a)| <[ [x](t. a)|.¢' e[ 1-&,(r.a).1 +&, (na)]} (2.4)
Using the maxima line to study the singular property of a function has been known as the method

of wavelet transform modulus maxima (WTMM).

Based on WTMM, the deeper structure of {a} can be established by considering a statistical
physics analogy of the partition function. The idea is to use W[x] ~ a""as a measure of the
singularity of x(¢)in the time-scale plane. From the definition of the partition function in
statistical mechanical systems, the partition function analogue of WTMM can be given by
Z(a,q)= ﬂW[x](t,a)lq dt,geR (2.5)
In this analogy, ]W[x]l may be compared to the exponential of the energy state and g to the
inverse of temperature of the canonical ensemble, see [13]. Assuming the probability density
function (PDF) p(a) , the a distribution in scale acan be given by p(a) a’® where f (a) is the
Hausdorff dimension of the support{h(t) = a} . Introducing (2.3) into (2.5), one can approximate
the integral in small a as
Z(a,q)~a" (2.6)
Asaresult, 7(g)and f(a) can be shown to be a Legendre transform pair (Appendix A) [14]:
7(q)= min (g —f(a)) 2.7
G.iven £ (c), the probability of finding an interval in the real line x(¢) can also be found as a

power law function ofa:

number of intervals with —f(a)

Pla,a)= - -
( ) number of intervals of width a

(2.8)

In the current literature, f () is known as the singularity spectrum of x(¢). Unfortunately,

calculating (2.5) in practice can be problematic since it can diverge for negative g when
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W[x](t, a) =0. To overcome this problem, Arneodo et al. pointed out the novel idea of scale-

adaptive partitioning of the time-scale plane to estimate Z [4]:

Z(aq)= ), ( sup IW [x](z, a’)lq] (2.9)

leL(a) (l.a’)el
where L(a)denotes the set of all maxima lines at scalea. The adaptivity of the method derives

from the sup norm in (2.9). Hence, the contribution to the scaling relation of the partition

function comes from the supremum of the maxima line.

The Gaussian wavelet family used in this work is derived by taking derivatives of the Gaussian
]

functiony,; = f (x) =e 2 . All results are based on the third derivative unless otherwise

specified.

IZ

v ()=(3t-1)e ? (2.10)
The singularity is studied based on the partition function (2.8), and r(q) is estimated from the
slope of the log-log plot of Z(a;q) versusa. Finally, f () is found by taking the Legendre

transform of 7(q).

2.2 Numerical Examples

Two examples are shown to illustrate the WTMM approach outlined above. The first is the
binomial cascade with continuous division and redistribution of mass in the unit interval. The
binomial cascade is known to exhibit fluctuation characterized by a range of Holder exponents.
The second example is the so-called fractional Brownian motion which has a degenerate

singularity spectrum characterized by a single Holder exponent.
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2.2.1 Binomial Cascade

The binomial cascade is constructed iteratively according to the following steps. Consider an
initial cascade value 4, =1in the unit interval Ip = [0,1]. The unit interval will go through -
divisions into smaller intervals by a factor of 2; e.g., [; = {[0,1/2], (1/2,1]}, I> = {[0,1/4],
(1/4,172), (172, 3/4], 3/4, 11}, ..., L. = {[0,2™], 2",2"™"],..., ((2" - 1)27,1]}. During each
division, the cascade value is modified by multiplication of weight factors my, m; to the value of
the previous interval. For example, the two intervals in I; [0,1/2] and (1/2, 1] will carry,
respectively, m; and m, = 1 — m portions of 1z, = 1 of the unit mass in [0,1]. Similarly, the 2"
intervals in I, have the values n,", m"~ "'y, ooy ma", following the order of appearance of the
intervals in I,. The name binomial cascade is thus evident as these cascade values are nothing but

the binomial expansion of the powers of the sum of two variables m, and m, .

Fig. 2 depicts the first three steps of the construction of a binomial cascade withm, =0.8,

andm, =0.2.
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Figure 2 Construction of the binomial cascade

The partition function can be derived for the binomial cascade as [10]:
22+, q) = (mf +mi)’ @.11)
where k is the number of iterations. Using (2.6) and (2.7), one can find:

7(q) =-log, (m;’ +mf )' (2.12)

The Legendre transform of (2.12) gives @ and f (a)

g m{ log, (m,)+m{ log, (m,)
(m," +m] )

(2.13)

gm{ log, (m,)+qm{ log, (m,)-log, (m{’ +m;’)m;' —log, (m;’ + m;’)m;’

(m{’ + m;’)

Sfl@)=

Note that the maximum of f() is located atg =0 and the & value usually denoted as ¢, is given
by:

a, = —% log, m,m, =1.32 (2.14)

For the binomial cascade, one can also find the maximum and minimum of @ at f(a) =0:

10
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., =—log, m =032 2.15)
a,., =-—log,m,=2.32 '

Fig. 3a shows the generated cascade. It was integrated before WTMM was applied (Fig. 3b).
Poor statistics in large gq,, g,, values are seen to cause difficulty in estimating the power law;

thus, the range of g used in the partition function was limited from -4 to +4 with increments of
0.5. Fig. 4 shows the r(q) curve of the binomial cascade. The characteristic concavity of the

function is typical for a multifractal signal. Fig. 5 shows the comparison between numerically

estimated f (a) and the analytical result (2.12). It is evident that they are in good agreement.

a) 0.05 T — : T T T x T
0.04F .
0.03} .
0.02 - 4
0.01 J
UMLL_L_LLLL ! Ln 1l .Lu Ll o !

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0.8
0.6

0.4+t

0.2

0 L 1 1 1 1 1 1
0 2000 4000 6000 S000 10000 12000 14000 16000 18000

Figure 3 The binomial cascade a) The cascade after 16 iterations. b) The integrated binomial cascade.

11



Chapter 2 Multifractal Spectra using Wavelet Transform

Yq)

Figured gqvs 7 (q) for the binomial cascade. The curve is clearly non-linear.

N
0:8 / i

o1} 71‘ i

0
0 %in0.6 1 o 1.5 2 Cnax 2.5

Figure 5 Numerical f (a) (crosses) and theoretical f (a) (solid line) for the binomial cascade. In this example, the

first derivative of the Gaussian function was used.
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2.2.2 Fractional Brownian Motion

Let B, (t) denote fractional Brownian Motion (fBm), where the subscript H is called the Hurst
exponent of fBm. It is known for three distinct properties: (a) its increment is Gaussian
distributed, (b) its increment is correlated and (c) it is self-similar in that B, (at)=, |a|" B (¢),

where =, means equal in probability. Due to its self-similarity, it can be shown almost surely

that B, (t) is nowhere differentiable. Furthermore, fBm is ‘mono-fractal’ in that its singular

spectrum is degenerate to a singleton & = H, the Hurst exponent of fBM. The derivation of these
important characteristics is beyond the scope of this thesis and interested readers are referred to

the reference [15].

In the numerical experiment, By, () of 16384 points with Hurst exponent 0.3 and 0.8 were

generated using the Levinson method [16]. Figs. 6a and 6b demonstrate the difference between
the two cases. Fig. 6a is an example of anti-persistent motion, i.e., an upward ‘spike’ of the
signal is likely to be followed by a downward ‘spike’ of the signal. Fig. 6b is an example of
persistent motion which has a trend converse to the antipersistent case; i.e., an upward ‘spike’ of

the signal is likely to be followed by an upward ‘spike’ and vice versa. The range g for the
partition function was taken from -3 to +3 with an increment of 0.2 as evident from the 7 curves

of Figs 6¢ and 6d. In Fig 6e and 6f, the numerical «, for the curves are approximately 0.29 and
0.82 respectively and the dark vertical line represents the theoretical Hurst exponent of 0.3 and

0.8 respectively. Theoretically, thef(a) curves of Figs. 6e and 6f should be a point, but due to

numerical approximations a small range is observed instead.

13
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Figure 6 Analysis of Brownian Motion using WTMM a) and b) fractional Brownian motion with Hurst exponent

0.3 and 0.8 respectively. c) and d) z curves of the respective fBm. ¢) and f) f (a) spectrum.
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CHAPTER 3 Joint Multifractal Correlation using Wavelet
Transform Modulus Maxima

For multiple signals measured simultaneously, the issue of multifractal correlation arises
naturally. For example, multifractality is observed in both the velocity and temperature fields of
hydrodynamic turbulence [17]. Since the laws of momentum and energy balance govern the
dynamics of these field variables, multifractality between them are likely correlated. Indeed,
Meneveau et al. [18] showed the existence of such multifractal correlation. The purpose of this
chapter is to formulate the joint WTMM approach to tackle the multifractal correlation problem
from simultaneously measured temporal signals. In what follows, the WTMM analysis discussed
above will be referred to as the ID WTMM analysis, and the joint WTMM approach introduced
below as the 2D WTMM analysis.

3.1 Joint Multifractal Spectra using Wavelet Transform Modulus

Maxima

In the joint multifractal analysis, consider simultaneous measurements of x, ()andx, (¢) from the
same physical system. Assume individual sets of Holder exponents{, } and{e, } , respectively.
Let L(a) = {k1(a), .., kv (@)} be the wavelet transform maxima lines of xx(¢), k= 1,2, at scale a,
where N, (a) denotes the number of maxima lines. Note that, in general, N, (a)# N, (a).To

extend the 1D WTMM analysis to the 2D case, these lines must be paired properly. In this work,
it is assumed that, if the singularities of x, (#)and x, (f) are correlated, their respective maxima
lines are also closed in the time-scale plane. Let the locations of any two maxima lines

I, (a),h,,(a) be t,,,(a)and 1, (a) respectively, wheremandm' are integers. Their pairing is

determined by the following condition

N @3.1)
e =, min [, ~ty,| (3.2)
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Given a, let the supremum of [I¥ [x,](#,a")|.a’ < a along the maximum line /;e£i(a) be denoted

as ka, ,| . Following the WTMM analysis described in Chapter 2, a joint partition function may
be defined as:

z(aq) =27 72 (33)
J

]‘lz
where q=(q,,9,)-

However, there is a potential problem with this straightforward implementation. Specifically,

when g, =0 (g, =0), (3.3) is contributed only by the WTMM ofx, (t), X, (t) and should equal

the partition function of the individual time series (see(2.8)). Since Ni(a) # N2(a) in general, (3.1)
and (3.2) are not always satisfied and there will be maxima lines at scale a that are not paired. As

a result, the individual partition function will not be recovered at g;= 0, i = 1,2. In order to
include these un-paired lines, phantom lines of Wﬁp} =0,k =1,2, are introduced to pair with the

lone W ., . The effect is the recovery of individual partition function at q,=0,q,=0as 0°=1is

adopted in the numerical computation. Fig. 7 is a visual illustration of this method. The x-axis
represents the location of a coefficient on the maxima line. The dots at the bottom represent the

location of a coefficient on one time-series 1, (a), and the dots on the top represent the location

of the other ¢, . () . Insertions of zeroes are denoted by empty circles and the dashed line shows

the pairing of the coefficients. Clearly, forg,,q, # 0, the lone W ., has no contribution to the

sum due to the pairing with Wﬁp,) =0. Hereafter, the superscript ( p) of W;fj) =0 will be

dropped.
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Figure 7 Pairing up of the WTMM coefficients.

Generalizing (3.3) in the 2D case reads

Z(a;q) ~a™ (3.4)
Substituting the results by Hwang and Mallat [7]
,,|~a". k=12 (3.5)
into (3.3) yields
Z(a;q)~ Y a"* e ~ [[dayda, P(ay, @, )a" o/ ) (3.6)
J

where P(a,,,) is the joint PDF of (o, a,)and f(e,,a,)is the Hausdorff dimension of the
suéport {(t,t'),a,,az} . By the same argument used in the 1-dimensional case, one has with
3.4):

r(q)= g.]!z? (q,a, +q,a, —f(a,,az)) 3.7

From the minima of (3.7) achieved at

L (3.8)

"%, " oa,
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7(q)and f (e, , ) are seen to form the double Legendre transform pair:
_ or(q)
l oq,
oq,
f(a.2.)=a(a) g, +a(a), - 7(4,4)

In practice, the success of the above approach relies on performing the Legendre transform (3.7)

a2=

using 7(q) estimated from (3.4). However, there are known factors, such as lacunarity [19], that
introduce an oscillatory, scale dependent, prefactor in (3.4). This results in a poor estimate of
r(q) . An alternative approach that is equivalent to the canonical ensemble in statistical physics

can be used to minimize such “effects” in the 1-dimensional case [20]. In 2-dimensions, it is

straightforward to generalize to define a joint canonical measure:

qn

2,j
v(J.a:q (3.10)
( ) Z (a’q)
Using v, consider the following averages [18]
Al(a;q)=Zv(j,a;q)log(ll’_V-l‘,-l) 3.11)
j
4, (a;q) =Y v(ja:q) log([7-) (3.12)
j
and '
F(a,q)=Y,v(j,a;q)log(v(j,2q)). (3.13)
J
With straightforward manipulations, (Appendix C), the following scaling laws can be established
4, (a;q9) ~ o, (q)log(a) (3.14)
fork=1,2,and
F(a;9) ~ f(q,,9;)log(a). (3.15)

3.2.1 Validation
In (2.8), it was shown that the probability of finding an interval with H6lder exponent scales as
~attM, By the same reasoning, a similar result can be obtained in the joint case:

P(a,a,,a,) ~a™/lowa (3.16)
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Equation (3.16) provides a way to construct a marginal relationship between f (a',,az)and

f (al),f (az) - Specifically using the marginal probability,

P(a,)= [P(a,a, M, (3.17)
and substituting (2.8) and (3.16) into the above, one has
fla)= ma?xf(a,,az) (3.18)

by approximating (3.17) by the maximum of the integrand in smalla. Similarly,

f(az)=maaxf(a,,az) (3.19)

3.3 Numerical Examples

To demonstrate the proposed joint WTMM analysis, two random binomial cascades are
generated with built-in correlation in their weights. The idea is, at any level of the construction
(see section 2.2.1), the weights assigned to the offspring intervals of one cascade determine,

depending on the degree of correlation, the weights assigned for the second cascade.

Specifically, assume the weight factors n;, m, and m,’, m,’ are used in the construction of
cascades x1(f) and x,(/), respectively. Let /., I be the newly created left and right intervals k =
1, 2. Let M and T be uniformly distributed random variables in [0,1]. To build the random
cascade, assume probabilities M, 1 — M, respectively, of assigning weights m, ms to I , I; g of
x1(7). The weights assigned to I 1 and I g for x,(f) are related to those for x;(¢) according to the

draw of " in [0,1]: for a fixed y € [0,1],
e my’isassigned to L, and m;’ to Ly, if [ <y

e m’isassigned to I, with probability M; and m, " to I, with probability 1 — M, if T > A

It is clear, depending on the value of y, the weights assigned to x,, x; range from being entirely
dependent (y= 1) to entirely independent x;, x2 (y=0). For 0 < < 1, the cascades are partially

dependent on each other.
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Shown in Fig. 8 are examples of the cascades generated using (m;,m,)=(0.2,0.8),

(m;,m,)=(0.4,0.6) and different y values. It is evident that the larger the difference of the

weight factors, the more intermittent the fluctuation becomes. While different weight factors are
seen to create particular appearances of the cascade, the different fluctuation patterns becomes

visually evident as y approaches 1 (totally independent).

The correlation of the cascades x, , x, can be derived explicitly. Since the weights between
cascade steps are generated independently, one has:

_ . N _ J
Z(a30)= 2oy 11y " ~ @ (g 11| W2y ) ~ <HM'%M§2> (3-20)
i=1 .

~ a_' <MI‘IIM;lz )J
where M denotes the weight factor (n or mz) of x| and M, denotes the weight factor (m;’ or
my ") of x2. With y-dependent, (1 — »)~independent weight factor assignment, one has

Ay '92 At ' 92 Ay 192 Dy 92
(m'm'3+myim' "+ m"'m' >+ my'm’;

4

Ay 192 4t a1
<M;1.Mgz>=},(”’|'m L tmy'm zz)_'_

(1-7) (3:21)

In (3.21), the two terms multiplied by the yare the only weight factor combinations in the fully
dependent case, and the remaining four terms are the combinations in fully independent case.

Substituting (3.21) into (3.20) and factor out the power law exponent of a = 27 yields
(-

7(q,,9,) = log, (y(m,‘"m'f‘+ mim'®) +—27l(m:" m'#+ m;"'m","+ m?m'®+mim 'gz)] (3.22)

From (3.22), exact results of a,(g,,4,), @, (4:,9,) and f(@,,a,) are obtained via (Appendix
B).
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Figure 8 Studied binomial cascades. a) y = 1,m, =0.2b) y =1,m; =0.4 c) y =0.8,m, =0.2d) y = 0.8,m; =0.4
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Figure 9 Canonical ensemble of partition function and r obtained from the completely dependent binomial cascade.

Figs. 9a, b and c shows the typical results for the estimated A, 42 and F. The thick lines are the
estimated slopes. In Figs 9a and 9b, from top to bottom, (ql,qz) =(3,-2),(4,0),(0,0),(-2, 4).
In Fig 9c, from top to bottom (g;,4,)=(4,0),(3,-2)(~2,4),(0,0). Most remarkable is the
predicted power law dependence in scale; see (3.14) and (3.15). This implies the validity of the
scaling law Z(a;q,,q,) ~ a"™* postulated in (3.4). From (3.14) and (3.15), the scaling

exponents of these power law relationship yield the joint exponents, &, , @, and the multifractal
spectrum f (a,,@,). The range of q,, g, is limited to —4 to +4 with every increment of 0.5 in the
numerical experiments. Froma, ,a,and f(a,,,), the 7(g,,q,) is obtained according to (3.9).

This is shown as a contour plot in Fig. 9d.
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3.3.1 Completely Dependent Case

When y =1, the weight factors assigned to the two binomial cascades are completely dependent
and results in a one-to-one relationship between the joint exponents: ' = a'(e) . Furthermore,
this implies f (e, e, )is a topological one dimensional curve in the, —, — f space which is

confirmed in Fig. 10a. In comparison with the theoretical prediction (B2), (B3), (B4), shown in

(Fig. 10b), the numerical results are remarkably accurate. Comparisons with the individual

multifractal spectra f () and f (@, ) can be conducted based on (3.18) and (3.19). In Fig. 10c,

the crosses represent max f(,,a,) and the curve is the expected f(e,). In Fig. 10d the crosses
2
represent max f(a,a,) and the curve is the expected f(c,). Again, they compare satisfactorily
1

with the theoretical spectra. Deviation is seen to grow away from the maximum of the spectrum.

This is mainly attributed to poor statistics as the regions correspond to large g,,q, values.
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Figure 10 Completely dependent binomial cascades.
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3.3.2 Partly Dependent Case
Partly dependent cascades are generated using y = 0.3 and 0.8. When the weight factor
assignment is not entirely dependent, a singularity in a certain part of x, (t) can be entirely

independent of that of x, (f) . As a result, a range ofe, values are admissible for any

givena, value. Hence, f(a,,q,)is in general a 2D surface in the &, —a, — f space. This

characteristic is clearly captured in the joint analysis and depicted by contour lines (Figs. 11a and
11c). In addition, the details compare favorably with the theoretical predictions using (B2), (B3),
(B4) shown in Figs. 11b and 11d. It should be noted that ,,a, and f are derived as functions of
g,and g,. Figs. 11b and 11d are surface interpolations based on these functions and the

discontinuous segments are attributed to a dearth of values in those regions. The more-elongated
contour patterns of the y = 0.8 case is evident and is a result of the stronger correlation of the

weights of the cascades.
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Figure 11 Contour plots for partly dependent binomial cascades
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In Fig. 12, comparisons are made with the individual multifractal spectra f (¢, ) and f(@,). In

Figs. 12a and 12c the crosses represent numerically obtained max f(«,,,) and the curves
a

represent the expected f (a’l). In Figs. 12b and 12d the crosses represent numerically obtained

max f(@,@,) and the curves represent the expected f (a,). Again the numerically obtained
1

results compare satisfactorily with the theoretical spectra.
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Figure 12 Validation of partly dependent binomial cascades.
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3.3.3 Completely Independent Case
When y =0, the weights assigned tox, (¢), x, (¢) are completely independent to each other. This

is manifested in the least elongated f(,,,)in the &, —ca, — f space. This characteristic is also

captured in the joint analysis (Fig. 13). Fig. 13a is the numerically obtained contour plot of

f(a,a,) and Fig. 13b is the theoretically predicted contour plot. In Figs. 13c and 13d, the

crosses represent max f(a,,,) andmax f(a,,a,) respectively, and the curves represent the
a, a

expected f () and f(a, ) respectively.
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Figure 13 Completely independent binomial cascades.
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CHAPTER 4 Joint WTMM Analysis of Physiological Signals
of Healthy Humans

4.1 Introduction

The human body is without doubt one of the most complex dynamical systems in the physical
world. For healthy humans, fractal characteristics were found in the fluctuation of almost all
physiological data [21]. Thus, it is of great interest to examine the possibility of fractal
correlation among any group of such simultaneously measured data sets. The goal of this chapter
is to apply the joint WTMM analysis to heart rate and brain wave data from healthy young adults
at rest. The motivation of choosing these two physiological data sets is to explore the potential

origin of heart rate variability (HRV) of humans in the central nervous system (CNS).

The subject of HRV has been extensively studied in the past decade [22, 23, 24]. While there are
strong peripheral influences on the beat-to-beat human heart rate, its origin remains largely
unknown. From the nervous system point of view, it is known that the cardiovascular center in
the medulla oblongata region is connected to the hypothalamus with further networking into the
limbic system and the cortical structure of the brain [25]. It is therefore plausible that the central
nervous system plays a part in HRV. The degree of such coupling that plays out in heart rate

fluctuation is the subject that may be addressed by using the current approach.

Since a heartbeat is a field phenomenon carried out by millions of heart muscle cells, it is in
principle not possible to define a unique instant for its completion. Fortunately, the majority of
heart muscle cells carry out the necessary process associated with the heartbeat at roughly the
same time. In practice, this is manifested in the sharp peak, known as the R-wave, in the
electrocardiogram (ECG) measurement. As a result, HRV is typically characterized by the
fluctuation of a beat-to-beat time interval between the R waves, known as the RR interval (RRi).
This time interval measures, to a good approximation, the physiological events of the ventricular

contraction.
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Without invasive means, the cardiovascular center at the brainstem cannot be reached. But it is
almost never explored due to its delicate structure and serious implication from any potential
damage in the area. As an alternative, the surface scalp potential fluctuation of the brain was
taken as the second signal to be used in the joint WTMM analysis. This is carried out by the
standard procedure known as the electroencephalogram (EEG) [26]. For completeness, the
backgrounds of EEG and ECG are given in section 4.2. The experimental setting is explained in

section 4.3 and results are shown in section 4.4

4.2 Measuring Electrical Activities of the Brain and Heart

4.2.1 Surface Scalp Potential Measurement Based on

Electroencephalogram

The smallest functional unit of the brain is the neuron. Movement of ions in and out of neuronal
membrane produces electrical impulses and is the means of communication for neurons. Large
numbers of neurons generating and conducting electrical impulses are responsible for the scalp
potential fluctuation that is picked up by electrodes. In Fig. 14 the dark bar directly beneath the
central electrode depicts a group of neurons which synchronously produce an impulse as
depicted. However, the fluctuation picked up by the electrode itself is reduced in amplitude due
to obstruction by the skull and scalp. If the cortical surface area involved in synchronous activity
is small, the amplitude is reduced further as depicted by the electrode on the left. EEG recorded
using electrodes is an average of cortical neuronal activity of small zones directly beneath the
electrode [26].

Cortex
Figure 14 Electrodes placed on scalp. [26]
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In this work, the bipolar method of EEG recording is used [27]. The idea is to place two
electrodes at a certain given distance from the location of interest on the scalp and record the
potential difference between them. Such readings are internally subtracted in the measuring
device and the difference physically yields the electrical gradient along a straight line between
the electrodes. Fig. 15 shows the schematics of such a setting. In Fig. 15, e represents the
potential difference recorded by electrodes placed at A and B. As mentioned above, the skull and
scalp are largely responsible for the resistance r inside the subject’s head. Additional resistance
R; and R; are encountered in the electrode-scalp interface which is bridged with highly
conductive gel. An additional resistance R, is found inside the amplifier. Surface scalp potential
fluctuations are in the order of 10V, and require amplification for data processing.
Amplification puts limits on the amount of impedance between electrodes that can be tolerated
without a significant loss of signal strength. Since the first EEG recordings by H. Berger, there
have been great improvements in recording equipment, and modern amplifiers can tolerate an

impedance of up to 50kQ [27].

| .
| Patient’s IA’\/\/\/ | | Amplifier |
| Head r I | | |
I | : | l
' ' ‘ | R!n I
| R | |
| [ A [ | '

[

Electrode Connecting
-scalp Leads
interface

Figure 15 Simplified input circuit of EEG recording system. [26]

4.2.2 Heart Rate Monitoring Based on Electrocardiogram

The pattern of ECG depicts the physiological event of de-re-polarization of the heart muscle
cells, starting from the sino-atrial (SA) node to atria, atrial-ventricular (AV) node, conduction

fibers (His-Purkinje) and the ventricles. The schematic of the ECG of a heartbeat is shown in
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Fig. 16. The de-re-polarization process manifests itself in characteristic spikes, known as the P,
Q. R, S, T, waves in the ECG record, that signify the polarization sequence following roughly
the order mentioned above [28]. Microscopically, such polarization is caused by the massive
movements of ions in and out of the membrane of the heart muscle cells. The movements then
result in a potential difference, which in turn can be picked up by the electrodes placed on the

chest. The placement of the electrodes is generally arranged in a triangular shape known as
Einthoven’s triangle [29]. The heart rater(t) is taken as the time interval between successive R

waves. The electrical recordings of the heart are much higher than EEG and are in the order of

10°V. It thus requires less amplification and the recording can tolerate higher impedance.

Time (msec)
9 190 290 SiK) 4?0 5?0 600 700 800 900
' 1 L1 1 1
R < r(t) >R
P T P
o /7 O\ 7\

Figure 16 An ideal cardiac cycle from ECG.

4.3 Experiments and EEG Data Post-Processing

4.3.1 Experimental Protocol

Two subjects, all males, between the ages of 20-35 signed the consent form approved by the
Ryerson University to participate in the experimental study. They were asked to maintain the
normal sleeping and dietary routines and avoid vigorous exercise, alcohol and caffeine
consumption during a two-day period before reporting to the recording session. There was no

monetary compensation for their participation.
The simultaneous EEG and ECG recordings were completed in two stages. In the first stage, the

subjects were asked to close their eyes and relax. The recording for this stage lasted for 15

minutes. In the next stage, subjects were asked to keep their eyes open, be relaxed; and were
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given an art book [30] to arouse visual cortex activity. The recording for this stage lasted for 45
minutes. There was a brief break period between the two data recording stages. No specific time
interval was designated for the break period. It is mainly for preparing the subjects to transit

from the first to the second stage.

4.3.2 Instrumentation and Data Acquisition

Simultaneous recording of electrical activities of the heart and brain were conducted using the
portable biosignal acquisition system (g.MoBllab, Gtec Inc.) shown in Fig. 17a. The resolution
of the Analogue-Digital Converter (ADC) was 16 bit, and the sampling frequency was 256Hz.
The sensitivity range was 0-5V. Cleansing substance (isopropyl alcohol) was first applied to the
scalp of the test subject before five surface scalp electrodes were positioned on specific locations
of the scalp. The impedance was measured, and found to be less than 10kQ in both subjects. The
electrode placement, following the guidelines of the international 10-20 system [31], is shown in
Fig. 17b. Specifically, they measure the neural network activities in left and right occipital areas,
0O1-Cl, 02-C2, respectively. A ground electrode was connected to Fz. The gap between the
electrode and scalp is filled with low-impedance material to facilitate conductivity (SIGNA
Electrode Cream, Parker). The electrodes were first channeled to a pocket-size amplifier before
they are displayed and saved on-line in a portable desktop assistant (Hewlett Packard iPAQ
h5550). The schematic for the EEG acquisition is shown in Fig. 17b.

The g.MOBIlab portable device is capable of measuring the ECG activity as well. Towards that
end, the European 5-lead ECG recording system was followed for the electrode placements on
the chest. The potential difference picked up from the electrodes first passed through a 16-bit
A/D conversion before it was digitally band-pass filtered in the range of 0.01-30 Hz. The signal
was then passed onto the pocket-size amplifier and displayed and stored in the PDA. The

schematic for the ECG acquisition is also shown in Fig. 17b.
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Figure 17 Experimental setup. a) Simplified schematic of experimental setup. B) g.MOBIlab system
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4.3.3 EEG Data Post-Processing Using Heart Beat Interval Aggregation.

By embarking on the joint analysis of EEG and RRi, one must address the fundamental
difference of the continuous-time EEG process and the discrete-time RRi process. Although the
joint analysis is based on the maximum lines, the physiological meanings of EEG and RRi
cannot be interpreted on a sample-to-sample basis. As a result, the EEG needs to be transformed
or reduced on a beat-to-beat basis so as to ‘compare’ with the RRi. An effective way to achieve

such data reduction is by the technique called aggregation [32].

Assume a continuous-time fractal process x(t). The aggregated process is defined as
td

Y= > x(t) (4.1

1'=(1-1)d +1

where d is called the aggregation parameter. If x(¢) is exactly self-similar, aggregation has no

effect on the self-similar structure [32]. During the application of this technique to EEG, it is
necessary to maintain a direct temporal relationship between EEG and RRi. Thus, the constant

aggregation parameter d has to be replaced by the RRi. Let E(t) and r(¢) be the measured EEG
and RRi, respectively. Consider the modified aggregated EEG process

r(nt
E.(= Y, E() 4.2)

r=(-1)r(1)+1

where E, (¢) is the aggregated EEG.

Fig. 18 shows the effect of the aggregation (4.2) on the partition function. The EEG was
aggregated using a constant aggregation parameter d =128 and 64 and plotted along with the raw

EEG (E(r)) and RRi aggregated EEG ( E, (f)). When the moments are close to 0 as in Figs.

18a, and 18b, the slope does not change significantly when compared to the non-aggregated.

However, for large moments, such as g =2,-2, there are differences in the slope as shown by
Fig. 18c and d. Therefore, it is only practical to keep the moments low. In this work, the g range

is set between -1 and +1.
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Figure 18 Comparison of Aggregated EEG from subject 1.a) q=-1,b)q=+1c)q=-2,d)q=+2.

4.4 Joint WTMM Analysis of Neural Activity of Occipital Cortex and

Heart Rate Variability in Healthy Humans

4.4.1 General Characteristics of the Raw Data

The raw E (t) and r(t) are known to exhibit fractal characteristics [33, 23, 24 ]. Shown in Fig. 19

are the left, right EEG andr (t) for the two subjects in eyes closed and open states.
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Figure 19 Raw EEG. a) Left EEG of subject 1 eyes closed. b) Right EEG of subject 1 eyes closed. c) RRi of subject
1 eyes closed. d) Left EEG of subject 2 eyes closed. e) Right EEG of subject 2 eyes closed. f) RRi of subject 2 eyes
closed. g) Left EEG of subject 1 eyes open. h) Right EEG of subject 1 eyes open. i) RRi of subject 1 eyes open. j)
Left EEG of subject 2 eyes open. k) Right EEG of subject 2 eyes open. I) RRi of subject 2 eyes open.

It is seen that the fluctuation pattern of the left, right EEG are qualitatively similar with more

pronounced differences in the eyes closed than eyes open state (subject 2). In general, the

difference between left and right EEG is known to be not significant due to the extensive neural

pathways between the two hemispheres. At the present time, there is no satisfactory answer for

the difference seen in subject 2. It is also evident that the EEG fluctuation is distinctively

35



Chapter 4 Joint WTMM Analysis of Physiological Signals of Healthy Humans

different between the eyes closed and open states. This is expected as a ‘resting’ and active
visual cortex involves very different neural circuitries in the brain, albeit the details of such
difference remains open. From Fig. 19, it is seen that EEG fluctuation in the eyes open case

covers a wider voltage range than in the eyes closed case.

The RRi was obtained from the R-wave interval of the ECG records. The difference between
theeyes closed and open cases is seen to be qualitatively different. It is reasonable to suggest that
the activity of the visual cortex (in eyes open) may be linked to the fluctuation manifested in
HRV. As shown below, this correlation was indeed picked up in the joint WTMM analysis. In
general, RRi records are seen to compose of ‘patches’ interrupted by intermittent downward
spikes. The ‘patch’ region may be linked to the balance between the parasympathetic and
sympathetic nervous system in the heart rate regulation. Occasional downward spikes are linked
to instances of stronger sympathetic activities (faster heart rate). The extent of these heart rate
increases is seen to be more evident during eyes open than in eyes closed. It is reasonable to
imply that they characterize potential external stimuli exposed to the subject during eyes open.
This is compatible to the qualitative difference of HRV discovered between sleep and

wakefulness in healthy subjects [34].

4.4.2 Results from Joint WTMM Analysis.

Comparison of signals were made using all possible combinations within subjects. Both left and
right EEG were compared between themselves and with HRV. The g range has been set to lie

between —1 and +1 with a 0.1 increment. All results are presented based on the contour plot of

f(a,,a,) (Figs. 20 and 21).

For subject 1 in the eyes closed state (Fig. 20), the elongated contour line pattern compared with
those of the artificial examples, such as Figs 10, 11, 13, suggests multifractal correlation between
EEG and RRi and the left, right EEG. This is a surprising result as the cardiovascular center
located at the brain stem is physically distant from the occipital area of the scalp. The detected
correlation suggests potential interaction between the resting state of the visual cortex and the

autonomic regulation of the heart rate.
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In the eyes open state, the contour line pattern between left, right EEG and RRi is seen to
become more ‘circular,” suggesting a lesser degree of multifractal correlation between an active
visual cortex and HRV. It is important to observe that the contour line pattern between the left,
right EEG of this subject remains elongated in the eyes open state. This implies the correlation
between left, right EEG remains intact even though there is a lack of correlation between EEG
and HRV. This outcome is consistent with the fact that cardiovascular center and the occipital

area of the scalp are separate.

The results for subject 2 are different from subject 1 in several aspects. While EEG and RRi
multifractal correlation can be implied from the elongated contour line pattern, the comparison of
Figs. 20a and 21a shows a different orientation: a negative correlation in both eyes closed and
open states. Interestingly, in the eyes closed state, the contour line pattern of the right EEG and
RRi is reversed from that of the left EEG and RRi (Figs 21a, 21c¢). This change in orientation is
also manifested in the ‘circular’ contour line pattern between the left, right EEG themselves in
the eyes closed state (Fig. 21¢). The lesser degree of multifractal correlation in this case may
suggest the lack of ‘communication’ between the left and right hemispheres of this subject in the
eyes closed. The visible difference of the subject’s left, right EEG records in the eyes closed state
may be related to this outcome (Fig. 21). However, it is not possible to further explain the details

at this time.
In the eyes open state, the reverse of the contour line pattern of EEG and RRi does not occur

(Figs. 21b, 21d). This implies much better correlated left and right EEG activity. As a result, an

elongated contour line pattern of the left, right EEG multifractal correlation (Fig. 21f) is seen.
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Figure 20 Contour plots of f (a',az) for subject 1. a) and b) the left EEG is compared with HRV. c) and d) right

EEG is compared with HRV. e) and f) left EEG is compared with right EEG.
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Figure 21 Contour plots of f (a,,az) for subject 2. a) and b) the left EEG is compared with HRV. c) and d) right
EEG is compared with HRV. e) and f) left EEG is compared with right EEG.
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CHAPTER 5 Discussion and Conclusion

In this work, the WTMM analysis of functions is extended from one time series to two time
series, which is called the 2D WTMM analysis. As a result, one is able to compare the
fluctuation patterns of simultaneously measured time series and begin to explore the subject of

multifractal correlation. In this preliminary study, it was found that such a correlation can be

readily observed by the elongation of contour lines of the joint f (a,,az) . This feature is similar

to the well known linear correlation analysis where strongly correlated random sequences are
strongly oriented in the scatter plot of their individual realizations on a plane. In the present
work, the interpretation of such a feature in 2D WTMM analysis is further supported by the

theoretical prediction of the binomial cascades.

The 2D WTMM analysis also suffers from the same weaknesses prevalent in ID WTMM. The
heavy reliance of the algorithm on various slope estimations, such as (3.14) and (3.15), implies
potential influence from human factors and the need to provide a more objective measure to

gauge the quality of fit. The choice of the analyzing wavelet can also affect the result, although

this is an ‘inherent burden” of wavelet analysis in general.

Fundamentally, the extension to the 2D analysis is based on the assumption that the influence of
singularities on the two time series is ‘short term.” As a result, they contribute to maxima lines
that are close to each other in the time-scale plane. This assumption can of course be relaxed.
However, a more sophisticated ‘pattern recognition’ process appears necessary to achieve the

goal of maxima lines pairing before 2D WTMM analysis can be invoked.

The 2D WTMM analysis is finally applied to simultaneously measured physiological time series
taken from healthy human subjects. The availability of such a tool provides the potential to
answer the open question of the origin of heart rate variability (HRV). While it is clear there is
beat-to-beat modulation of the heart rate from the vascular and respiratory systems, it is believed
that these components cannot fully explain the (massive) low-frequency signal power in heart

rate and the general pattern of HRV. Over the years, a higher control center in the brain has been
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suspected as the ‘first contender’ of the source of HRV. This study provides the first data testing

of such a theory.

To perform the analysis, the idea of random aggregation based on the length of RRi (HRV
aggregation) was used to ‘discretize’ the EEG. Within a small g range, aggregation was found to
be capable of preserving the fractal property of EEG. Based on the orientation of the contour

lines of f (,,a,), the preliminary data indicated that the fractal dynamics of HRV and EEG are

indeed correlated, although there is no consistent type (positive or negative) or level of
correlation. Such a linkage between EEG and HRV has not been demonstrated before and holds

consequences for future analysis of physiological signals.

The range of r values are different between the eyes open and eyes closed state in both subjects.

The maximum f (a,,az) value is located consistently at o > 0.5 in the eyes closed state and

a <0.5 in the eyes open state, which supports existing work [33]. It is inferred that a change in

state affects the multifractal properties of EEG.

In diagnostic EEG, significant differences between hemispheres have been linked with disease
[35]. It is thus initially expected that there will be a high level of correlation in the joint WTMM
for left and right EEG for the healthy subjects who participated in this study. This feature was
generally observed in the data except for subject 2 in the eyes closed state. With only one
contradicting subject in the data pool, it is not possible to conclude with significance the general
nature of this surprising find. If it is correct, it would suggest that a weaker hemispheric fractal
correlation is possible in healthy persons and is more pronounced during the eyes closed state
than the eyes open state. Such a disengagement between the hemispheric EEG fractal dynamics
would inevitably link to the different functional networks that are invoked during the eyes closed

and open states.

A foundation has been laid for further work into multifractal correlation using WTMM. It is

necessary to form a quantitative assessment of the correlation and would be an appropriate
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avenue for further development of the algorithm. In addition, the existing algorithm can also be

extended to compare correlation between multiple time series.
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APPENDICES

Appendix A Legendre Transform

Arnold’s definition of the Legendre Transform is closely followed [36]. Let f (x) be a convex

A
function, d_v{ = 0. The Legendre transform of the function f is a new function g of a new

variable p. Let p be a given number. Consider the straight line y = px. x( p) is defined at the
point that is farthest away from the straight line in the vertical direction, i.e., for each p the

function px— f(x)=F(p,x)has a maximum with respect to x at the point x(p) (see Fig. 22).

X~

y=pX

a(p)

x(p)
X

Figure 22 Legendre Transform

The Legendre transform is defined by g(p) = F(p,x(px)) where the pointx(p) is determined

oF _ 0. A classical application of Legendre transform is the famous relationship between

Ox

Lagrange and Hamiltonian formulation of mechanics. Given the Lagrangian L(g,q,t) of the
configuration variables g and its time derivative ¢ of a dynamical system, the corresponding

Hamiltonian is defined via the Legendre transform of L as a function of ¢:

H(p.q,t)=pg—L(q,4,t), and the new variable p = Z—L is the conjugate momentum.
q
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Appendix B Exact results of a,(q,,q,), %,(9,,9,),andf(a,,a,)

Exact results of ¢, (4,,9,), &, (4,,9,) and f (a,,«, ) were obtained using Maple, where al=m,
a2=m,, bl=m;, b2=m,, q=q,, and p=gq,.

> tau:=-log(gamma*(al~q*b 1 p+a2°q*b2 p)+(1-
gamma)*(al*q*bl”p+al~q*b2”p+a2~q*b1 p+a2°q*b2”p)/2)/log(2);
|n§’g(a1" 61P +a2? b2P) + .;. (1-9 (a9 517 +al9b2P +a29 517 + a29 52P)0

t=- 2

In(2
") (B1)

> alphal:=simplify((diff{tau,q)));

al :=- !

(
In(2) (-gal 1617 -ga29 b2 -al9b1P -al 9 b2? - a29b1P - a29 2P + gal 1 2P + ga29 b1P)

-galTIn(al) b1P - ga2?1n(a2) b2 - a1 ¥ In(al) 1% - al T In(al) b2P - a29In(a2) b1? - a2 In(a2) b2° B2)

+gal T In(al) b2P + ga29 In(a2) b17)
> alpha2:=simplify(diff(tau,p));
1

a2 = (g
In@2) (-qal 9617 - ga29b2P -a19 617 -al 962" - a29b17 - a29b2% + gal 1 27 + ga29 b17)

al b1 Inbl)+ga29b2? In(b2) +al 1 61P In(b1) +al T b2P In(b2) + a29 b17 In(b1) (B3)

+a29b2° In(b2) - gal 1 527 In(b2) - ga2? b17 In(b1))
> fi=combine(alphal *q+alpha2*p-tau); .
)=
1

- «
In(2) (-gal 1 617 -ga29 b2? - a1 T b1P - al 1527 - a29 617 - a29 627 + gal T b2P + ga29 b1?)

-gal T in(al) 617 - ga291n(a2) b2° - al T n(al) b1P - a1 9 In(al) b2P - a29 I1n(a2) b17 - a27 In(a2) bzp(

B4)
+gal?In(al) b2 + ga2¥In(a2) b17) q) +
1

(9
In(2) (-gal 7 b1P -ga27b62P -a19b1P - a1 b2? - a29b1P - a29 b2P + gal T 2P + ga29 b1P)

al b1 In(b1) + ga2? b2P In(b2) +al 9 b1 In(b1) + al T 627 In(b2) + a29 617 In(b1)

44



Appendices

+a2?b2P In(b2) - gal 9 b2° In(b2) - ga29 b17 In(b1)) p)
@l gappy ! alqb2p+ a2961” + L 2296278 (1. 9%
g2 2 2 2 )

In(2)

“g 2q(al b1P +a29 b2P) +

Appendix C Canonical Ensemble Formulation of Partition
Function

Equation (3.14) and (3.15) are results from elementary calculus. Considerk =1. By (3.4) and
(3.9), one has

oz r(q) 0T _ (y)
—(a;q)~a*"log(a)—=a""log(a)c,. (B5)
aq‘( ) ( )aql ( ) 1
The average (3.11) can now be written as
= \_0Z/0q
;vlog(lwun_ T (B6)

Equation (3.14) follows after substituting (BS) in (B6). Notice the problematic prefactor in (3.4)

is cancelled out in (B6). For k =2, the derivation is the same.

Based on (B6), the average (3.13) can be written as

aZ/a 0Z /0
> vlog(v) =g, h +q, Zqz-—log(Z). (B7)

Again, using (B5), (3.15) results after substituting (3.9).
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