
CONCEPTUAL DESIGN OF AN ATTACHMENT BASED

RECONFIGURABLE MACHINE TOOL USING DESIGN

STRUCTURE MATRIX

by

Ambrish Gupta

B.Technology, R.E.C. Jalandhar, India

Toronto, Canada, 2004

A thesis

presented to Ryerson University

in partial fulfillment of the requirement for the degree of

Master^ of Applied Science

in the program of

Mechanical Engineering

Toronto, Ontario, Canada, 2004

© (Ambrish Gupta) 2004

fiVEHSOW

UMI Number: E C 53410

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI*
UMI Microform E C 5 3 4 1 0

Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

11

Borrower’s Page

Ryerson University requires the signatures of all persons using or photoeopying this

thesis. Please sign below, and give address and date.

Ill

Abstract

CONCEPTUAL DESIGN OF AN ATTACHMENT BASED RECONFIGURABLE

MACHINE TOOL USING DESIGN STRUCTURE MATRIX

MASc 2004, Ambrish Gupta, Mechanical Engineering, Ryerson University, Toronto.

There has been very little researeh in the field of Reconfigurable machine Tools (RMTs).

None of the past research developed a method to design a set of RMT configurations

required to maehine a part-family.

This thesis presents a novel method to determine the functional specifications of the

RMT configurations required to machine a part-family. The method is developed by

firstly designing the RMT required to machine a single part. Thereafter, this method is

extrapolated to suit the problem of a part-family.

To design the RMTs for a single part, firstly, the part is decomposed into manufacturing

features. Next, a novel method is developed to cluster the features. Each of these feature-

elusters corresponds to a single RMT configuration. Based on the maehining

requirements of these RMT configurations, the modules are designed. These modules are

assembled to form the final RMTs. The method is demonstrated by applying it to an

example part.

Keywords: Reconfigurable Machine Tool, Design Structure Matrix.

IV

Acknowledgements

Firstly, I would like to quote the following Shloka {versé) from Rig Veda’ (the oldest

Hindu Scripture):

Samh'it: “Prano dev: saraswathi vajebhir vajinavathi dhinamavidrayavathu”

Enslish Translation: “Salutations to Mother Saraswathi (the Goddess of Knowledge)

who is the creator of all vibrations and who removes the ignorance of the mind”.

I want to quote the following Shloka {verse) from ‘Rig Veda’:

Sanskrit: “G urur brahmaa gurur vlshnuh, gurur devo maheshvarah, gurur

saakshaat parabrahma, tasmai shree gurave namah.”

Enslish Translation: “Know the Guru {Teacher) to be Brahma {The Creator) himself. He

is Vishnu {The Presei-ver). He is also Shiva {The Destroyer). Know Him to be the

Supreme Brahman {the Supreme Transcendental God), and offer thy adorations unto that

peerless Guru.”

I was privileged to have worked under the supervision of Dr.F.Salustri and Dr.F.Xi. They

are “Alchemists” in true sense.

I consider myself as a high enthalpy, high entropy system and at times I was tempted to

go in many wrong directions. These superior mortals steered my ‘free energy’ without

suffocating my creative and wandering spirit. I sincerely appreciate their omniscience,

foresight, and compassion.

I would also like to express gratitude to Dr.F.Sharifi for laying my foundations in the

field of robotics. He kindled my interest in the field and gave me a vision. All my work,

this and future, dwell on the foundations he laid.

The first person I would like to thank on a personal note is my Godfather, Shri.S.Chand,

who nurtured me and gave dimensions to my thought. He was a teacher, and friend and a

perennial source of strength. His spirit and teachings always guide me. I credit all my

achievements to him.

A quote once again, “Feelings of worth can flourish only in an atmosphere where

individual differences are appreciated, mistakes are tolerated, communication is

open, and rules are flexible- the kind of atmosphere that is found in a nurturing

family” -Virginia Satir

I was blessed to have a supporting family. Without their multi-dimensional support, I

would never have accomplished anything substantial. I especially thank my parents for

being a constant source of inspiration.

I would like to express my gratitude to ‘Ryerson University’ for its SGS scholarship.

VI

Dedication

To my Parents.

VII

Table of Contents

Declaration__________________ //

Borrower's Page____________ ______ ____________________________________ ni

Abstract_______________ iv

A cknowledgements________________ v

Dedication______ vii

Table o f Contents __ viii

List o f Figures___ xi

List o f Tables___ xiii

Nomenclature__xiv

1. Introduction___ 1

1.1. Background__ 1

1.2 Problem Statement__ 7

1.3. Scope__ 7

1.4. Design Approach__8

1.5. Thesis Outline__9

1.6 Summary___ 9

2. Literature Survey__ 10

2.1. Survey on Reconfigurable Robots___ 10

2.2 Survey on Reconfigurable Machine Tools (RMTs)______________________________ 13

2.3 Survey on other applications of the Reconfigurability___________________________15

2.4. Survey on ‘Setup Planning’ m ethods___16

2.5. Summary___ 20

3. Design Structure M atrix__ 21

v i i i

3.1. Introduction__ 21

3.2. Past research and applications__ 21

3.3. DSM construction and representation_______________________________________25

3.4. Types of DSMs__ 26

3.4.1. Time-based (Dynamic) DSMs__26

3.4.1.1. Activity-Based (or Schedule) DSM___ 28

3.4.1.2. Parameter-Based (or Low-Level Schedule) DSM_____________________________ 28

3.4.2 Static DSM __ 29

3.4.2.1. Component-Based (or Architecture) DSM ___________________________________29

3.4.2.2. Team-Based (or Organization) DSM__ 30

3.5. Detailed Exam ple___ 30

3. 6. Limitations of D SM __33

3.7. Summary__ 33

4. The Method for designing RMTs for machining a part-family______________ 34

4.1 Introduction__ 34

4.2 The Method for designing RMTs for machining a single part____________________34

4.2.1. Introduction___ 34

4.2.2. Approach___ 34

4.2.3. The method for ‘Feature-clustering’ ___ 36

4.2.3.1. Introduction___ 36

4.2.3.2. Approach__36

4.2.3.3. Pre-Processing___ 37

4.2.3.4. Step 1 : Identify the TADs for each feature_______________________________________37

4.2.3.5. Step2: Determine the optimal TADs for each feature_____________________________ 38

4.2.3.6. Step 3: Determine rotation attribute for each feature______________________________ 42

4.2.3.T. Step 4: Identify, and quantify the manufacturing precedence_______________________43

4.2.3.8. Step5: Cluster features___ 46

4.2.3.9. Application o f the method to the example part to yield feature-clusters______________ 54

4.2.3.10. Discussion and Comments__ 69

4.2.3.11. Summary__ 71

4.2.4. The Method for determining the specifications of modules_____________________________ 72

4.2.4.1. Introduction__72

4.2.4.2. Approach__75

IX

42 .4 3 , Step 1: Identify the Motion Requirements for each Feature-Cluster_________________ 76

4.2.4.4. Step2: Normalize the Functional Requirements to yield Atomic Modules____________ 79

4.2.4.5. Step3: Cluster the Atomic Motions to yield meta-modules_________________________80

4.2.4.6. Application of the method to the example part to yield functionally defined modules 85

4.2.4.7. Step 4: Identify the ‘Interfacing requirements’ __________________________________ 92

4.2.4.8. Step 5: Design modules __94

4.2.4.9. Step 6: Form RMT configurations. ___ 100

4.2.4.10. Application of the method to the example part to yield the final RMT configurations 101

4.2.4.11. Discussion__ 105

4.2.4.12. Summary___ 106

4.3. The Method for designing RMTs for machining a Part-family_________________ 108

4.3.1. Approach___ 108

4.3.2. The Method___108

4.3.3. Discussion__ 110

4.3.4. Summary___ 111

5. Conclusions__ 112

5.1. Summary of Assumptions__ 112

5.2. Contributions___114

5.3. Future W ork___ 115

Appendix-1__ 118

Glossary__ 121

References__ 130

X

List of Figures
Figure 1.1: Performance vs. Flexibility o f Machining Systems (Koren and Ulsoy [4 1])________________ 4

Figure 1.2: The main research objective____________________________________ 7

Figure 1.3: The approach for solving the stated problem__8

Figure 2.1: Pictures o f surveyed reconfigurable robots [23, 63, 68, 82, 51, 100]____________________ 12

Figure 2.2: Pictures o f suiyeyed RMTs [35, 40, 4 2]__13

Figure 2.3: Moon s Method__ _

Figure 3.1 Network o f activities shown as a graph [3]___26

Figure 3.2: (Right) Dual of the original DSM; (Left) Dual o f the torn D SM _________________________32

Figure 4.1: The approach for determining the RMT configurations for a single p a r t_________________ 35

Figure 4.2: The Approach for determining the feature-clusters___________________________________ 36

Figure 4.3: An example part, with cycles existing at the feature level [6 9]__________________________45

Figure 4.4 : The feature graph corresponding to the part presented in Figure 4.3 [6 9]_______________ 46

Figure 4.5: A hypothetical feature graph__47

Figure 4.6 : Hyper-graph corresponding to the graph presented in Figure 4.5______________________ 48

Figure 4.7: The P a rt___54

Figure 4.8: The Raw Stock___ 55

Figure 4.9: Features___56

Figure 4.10: After machining feature-cluster-1 __ 63

Figure 4.11: After machining feature-cluster-2__ 64

Figure 4.12: After machining feature-cluster-3 __ 65

Figure 4.13: After machining feature-cluster-4 __ 66

Figure 4.14: After machining featur e-cluster-5 __ 67

Figure 4.15.: After machining featur e-cluster-6__ 68

Figure 4.16: After machiningfeature-cluster-7__ 69

Figure 4.17: A different representation o f Figure 1.1__ 74

Figure 4.18: The approach for this section___75

Figure 4.19: The class hierarchy__ 83

Figure 4.20: Class Diagram for a General Motion Module(Abstract Class)_________________________83

Figure 4.21: The class diagram o f the Interfaces *__ 84

Figure 4.22: The motions requiredfor machining feature-cluster 6 are shown______________________ 85

Figure 4.23: Class Diagram for a 2-D sequential Motion Module_________________________________ 90

Figure 4.24: Class Diagram for a 2-D coordinated Motion M odule_______________________________ 91

Figure 4.25: ID Motion Module___ 92

Figure 4.26: Configuration Diagram (for Feature-cluster 4)_____________________________________ 93

Figure 4.27: RMT Configuration for machining feature-cluster 1,2_______________________________ 101

Figure 4.28: RMT Configuration for machining feature-cluster 3 ________________________________ 102

x i

Figure 4.29: RMT Configuration for machining feature-cluster 4 ________________________________ 103

Figure 4.30: RMT Configuration for machining feature-cluster 5, 6 ______________________________ 104

Figure 4.31: RMT Configuration for machining feature-cluster 7 ________________________________ 105

Figure 4.32: Flowchart for designing RMTs for a part-family____________________________________109

Figure A: 2-D Coordinated Module___ 119

Figure B: 2-D Sequential Module___ 120

Xll

List of Tables
Table 1-1: Comparison ofDMS, RMS and FMS [41]___ 6

Table 2-1: Comparison o f the sin'veyed Reconfigiirable-Robots [3 0]______________________________ 12

Table 3-1 DSM corresponding to the graph presented in Figure 3,1 [3] ____________________________ 26

Table 3-2: The original DSM: representing the flow o f information_______________________________ 30

Table 3-3: DSM 2. The Torn D SM ___ 31

Table 4-1 :The Quantification scheme for Precedence relations___________________________________ 43

Table 4-2: Features, their corresponding TADs, and Rotation characteristics (Y=YES)_______________ 57

Table 4-3: Feature Precedence__ 58

Table 4-4: DSM 1. The Original DSM for the Features Vs, features_______________________________ 59

Table 4-5: DSM2, The Partitioned precedence matrix___ 60

Table 4-6: DSM 3, The initial feature-clusters___ 61

Table 4-7:DSM4, Clusters Vs Clusters (shows a cycle with critical relations)________________________61

Table 4-8: DSM 5, The final feature-clusters__ 62

Table 4-9: The residts from the FR determination step for feature-cluster 6_________________________85

Table 4-10: List o f the motions reqxnrements for Feature-Cluster_________________________________ 86

Table 4-11: The list o f FRs for all the feature-clusters___ 86

Table 4-12: Listing all the class *s requirements together___ 87

Table 4-13: Normalization o f the motions__87

Table 4-14: DSM showing all the setups___ 88

Table 4-15:DSM o f AMs vj. A M s__ 89

Table 4-16: Final lists o f Motion Modules__ 89

Table 4-17: Final modules used in each setu p__ 96

Table 4-18: Partitioned DSM, The different partitions are shown_________________________________ 96

Table 4-19: The torn D S M __ _ 97

Table 4-20: Comparison ofDMS, RMS & FMS: in terms o f number ofDOFs_______________________106

X lll

Nomenclature

Table A: Symbols used in this thesis

Symbol M eaning
V For all
V Logical OR
A Logical A N D
O Null Set

A ssignm ent

Table B: Acronyms used in this thesis

Acronym Expansion
AD Axiomatic Design.
AM Atomic Modules (a motion in a single direction).
API Application Protocol Interface.

ASIC Application Specific Integrated Circuit.
Ci Feature Cluster# i.

CA Cellular Automata.
CAP? Computer Aided Process Planning.
CBR Case Based Reasoning.

F(0)KC Flexible (Quasi) Kinematic Coupling.
DGF Degree O f Freedom.
DM Design Matrix.

DMS Dedicated Manufacturing System.
DSM Design Structure Matrix.

/ Manufacturing Feature.
FMEA Failure Mode and Effect Analysis.
FMS Flexible Manufacturing System.
FPGA Field Programmable Gate Array.
FKC Flexible Kinematic Coupling
FR Functional Requirements.

FSM Finite State Machine
GA Genetic Algorithm.

MHS Material Handling S ystem
OS Operation Space.
PI Prime Implicant.

PSM32 DSM tool used in this thesis, <www.problematics.com>
RMS Reconfigurable Manufacturing System
RMT Reconfigurable Machine Tool.
ROI Return On Investment.
RR Reconfigurable Robot.

SOM S elf Organising Map.
STEP STandard for the Exchange o f Product Data.

STEP-AP STEP-Application Protocol
TAD Tool Approach Direction.
UML Unified Modeling Language.
VLSI Very Large Scale Integration.
vv.r.t. With Respect To.

WWW World Wide Web.

XIV

http://www.problematics.com

1. Introduction

This chapter firstly introduces the evolution of machining systems. This is followed by a

comparison between the different machining systems. Next, the problem-statement, and

the scope of the thesis are presented. This is followed by presenting the approach, and

finally, the organization of this thesis.

1.1. Background

Increasing the ‘Return on Investment’ (ROI) has been the paramount objective of the

business community. For manufacturing companies, the main investment is in machines.

Better returns can be reaped by increasing the production capacity of the machines, or by

extending their life. This section explains briefly the evolution of machining systems as

an effort to fulfill this objective.

Products developed in the previous decades were characterized by monopolies and

having long technological lives. Therefore, ‘Dedicated Machining Systems’ (DMS) were

designed. They were part-centred machines, using fixed transfer lines, and yielding good

quality and high production rates. Moreover, their technological lives were also long

because of the fixed variety of products to manufacture. Therefore, using DMS was

economically promising.

On the other hand, today’s dynamic markets are characterized by a huge variety of

products and quick obsolescence. This implies that manufacturing enterprises must adapt

more quickly and more frequently. Using DMS would be unviable because any change to

the task-set would imply a major change to the machining system. Thus, the ROI would

fall sharply. To meet this challenge, researchers developed ‘Flexible Machining Systems’

(FMS). These machining systems were equipped with all the functionality that they may

ever have to manifest. Although they met the challenge of being versatile, they do not

yield the best ROI. The prime reason being that according to the Pareto Principle, 80% of

manufacturing tasks require 20% of functionality. This implies that most of the

functionality is highly under-utilized and so is the invested capital. Similar efforts of

equipping systems with all the possible functionalities have been observed in many of the

current word-processing software. As in the FMS, the majority of the ‘features’ remains

highly under-utilized. Such an overstuffing of products with functionality is called

“Feature Creep,” and leads to “Cost Creep.” [39, 99]

Considering the benefits and shortcomings ofDMS and FMS, it has been concluded that

neither of these assures the best ROI for a typical manufacturing company (which is

characterized by a limited variation production portfolio). Similar situations have been

observed in robotics and computing hardware. This problem was solved there by

applying modular reconfigurability to design systems. Brief examples are presented

below to give a flavor of this.

1) Exploration robots are terrain specific e.g., rovers are best for plain terrain, crawlers

for rugged ones, swimmers for under-water exploration etc. Therefore, for a generic

exploratory task, no single-fimction robot is optimal. To meet this challenge, the

robot should allow itself to be configured into different task-specific-configurations,

which are characterized by a particular set o f ‘physical’ and ‘control system’ features.

The robot configures such that, the resulting configuration best suits the specific

terrain/environment. These kinds of robots are called, ‘Reconfigurable Robots’ (RRs).

They are analogous to cold-blooded animals in the sense that the RRs change their

topologies and controls based on the external environment, just as these animals

change their internal temperature (within a certain range) to suit the environment. For

example, TetroBot, a parallel-reconfigurable robot, [23] can configure itself into a

crawler, a meteorological station, and a drilling station.

Space transportation is very expensive (at least until the space elevator [2] is made),

and RRs reduce the weight to be transported because many application specific robots

can be reduced to a fewer number of RRs.

2) Robots participating in RoboCup' are typically required to change their behavior in

accordance with the situation. Although using microprocessor-based control hardware

fulfills this requirement, they do not exhibit real-time response. On the other hand, an

‘Application Specific Integrated Circuit’ (ASIC)-based controller guarantees real

time response but does not offer flexibility. Therefore, the ideal hardware is neither

* Ref: <www.robocup.org>

http://www.robocup.org

flexible, nor dedicated, but ‘Reconfigurable’. Such hardware would allow the ‘brain’

of the robot to assume different behaviors e.g., center-forward, defenseman etc.

Another benefit of using reconfigurable hardware is the possibility of learning while

in operation.

3) Machining a flat-bottom pocket on a metal slab, requires a 2.5 DOF vertical milling

machine. For another task of machining a pocket, on the flat surface a long shaft, a

2.5 DOF horizontal milling machine is needed. Therefore, a manufacturer producing

these two parts would require two dedicated machines, viz., 2.5 DOF horizontal

milling machine, and a 2.5 DOF vertical milling machine. A 5 DOF flexible machine

could replace these two independent machines. The shortcoming of using a flexible

machine is that for machining either part, the machine is utilizing only half of its

fiinctionality. To solve this problem, reconfigurable machines were developed. A

reconfigurable machine can be configured into the dedicated configurations of 2.5

horizontal/vertical milling machine. Such a machine is flexible to be dedicated. This

characteristic leads to both high utilization and good performance.

The successful development of RRs led researchers to apply modular reconfigurability to

machining systems. This paradigm was called ‘Reconfigurable Machining System’

(RMS).

RMS is defined as a rapid-response machining system characterized by convertibility and

customization to meet changes in the production-portfolio. It can respond to changes in

the production-portfolio by changing its topology as well as its controls. In other words,

the RMS is ‘flexible to be dedicated’, i.e., it can be ‘configured’ to have part(s)-specific

functionality, and once configured, it yields a performance comparable to that of a DMS.

These characteristics of the RMS are attributable to modularity of the system and its

components to varying degrees of granularity (level of modularization). Moreover,

modularity also helps easy updating of the system components. Thus, RMSs are not

vulnerable to obsolescence and enjoy a potentially infinite life span.

Unlike FMS, RMS is typically designed around a part-family. The different

configurations of the RMS correspond to a subset of the tasks posed by the machining

requirements of the part-family. Although a RMS is designed around a part-family, it

offers a fair level of re-use of system components if a new part extraneous to the part-

family, around which the RMS is designed, arrives. The degree of re-use generally

depends on the granularity of the modularization of the RMS components.

As shown in Figure 1.1, and Table 1-1, RMS embodies the advantages of both DMS, and

FMS; thus, making RMSs technologically and economically viable.

The main machining component of a RMS is the ‘Reconfigurable Machine Tool’ (RMT).

A RMT is a machine tool characterized by modular construction. It can reconfigure in

terms of construction as well as control strategy to assume roles of different dedicated

machines. The RMT is configured for a specific task-set in order to manifest the tasks by

having minimum redundancy.

Flexible

ReconfigurableFlexibility

Dedicated

Performance

Figure 1.1: Performance vs. Flexibility of Machining Systems (Koren and Ulsoy [41])

Reconfigurable systems must satisfy the essential requirement of being modular. These

modules are functionally independent components of the system. When assembled in a

configuration, they cooperate to manifest the assigned tasks. Drawing an analogy to

swarm intelligence exhibited by insects, each module is equivalent to an ant and the

system configurations to the ant-colony. The scope of this thesis is limited to defining the

modules in terms of the motions they provide. Therefore, in this thesis, the modules that

form the RMTs are referred to as motion-modules.

The concept of reconfigurability is an extension of the concept of modularity from the

domain of design and manufacturing to the domain on operation. The basic goal of

modularity is to control complexity, improve manufacturability, lower cost etc. The goal

of reconfigurability is to have multiple fiinctional-modes, i.e., be able to exhibit multiple

configurations, each of which is tailored to a particular set of tasks.

For example, Canada-Arm2 is modular. It is formed by assembling ‘Orbital Replacement

Units’ [8,49]. However, it does not belong to the category of ‘reconfigurable robots’

because it exhibits only a single functional mode. On the other hand, TetroBot allows

numerous configurations, each formed by assembling tetrahedral/octahedral modules.

RMTs are being accepted by industry. ‘̂Tri-JVay Mainifacturmg Technologies Corp

believes that employing RMS gave it a competitive advantage. Olympia machine tools,

design RMTs, which are making their way into mainstream manufacturing.” [14]

Table 1-1: Comparison ofDMS, RMS and FMS [41]

Dedicated Machining System Reconfigurable Machining System Flexible Machining System

Definition

A machining system using transfer line
technology with fixed tooling and automation

to cost-eflectively produce one specific part at
high volumes and at the required quality.

A machining system characterized by iTiodular
hardware and software. It can cost-effectively

manufacture part-families, at the required
volume and quality.

A machining system using a fixed hardware
and fixed, but programmable software to cost-
effectively manufacture a wide variety o f parts

in small volumes, at a medium quality grade.

Benefits
High productivity & quality. Best fora part

with a very long life
Best ROI. Easy troubleshooting, updating.

Less susceptible to obsolesence.

Can machine all manufacturable parts that
require motions within the machine’s

workspace.

Shortcomings

If the part to be produced changes, the
machining system itself would require a major

change to it; in some cases, a complete
replacement. Therefore, it yields a veiy poor

ROI fora company with a ‘dynamic’
production-portfolio.

High upfront cost. Therefore, break-even is
achieved late.

Medium productivity & quality. Poor ROI
because most o f the products require very little

o f the available functionality.

Use w.r.t.
Process
planning

Based on the available machines, the part's
features are grouped into setups. These setups
are then machined by the dedicated machines.
The part travels between these machines, on a

fixed transfer line.

Machines configured for the part or a set o f its
features.

There is no choosing o f the machine. All the
different parts can be machine one the

machine. The machine is programmed for
different parts.

Notes

There exist ‘attachments’ to render DMS
conponents for potential re-use (in case, the

part to be produced changes). However, a
DMS with attachments is not ‘Dedicated’,

because the attachments are
‘generic’.Moreover, appending attaehments
usually adds redundancy; a typical example

would be to add a ‘Live-spindle’ to a
conventional-milling machine.

Although, the Flexible machine has all the
(perceivable) functionality, yet it possibly

cannot machine the complete part in a single
setup. This is because the fixturing does not
allow approach to all the faces. Therefore, in
this case too, the manufacturing features (o f

the part) are extracted and grouped into
setups.

O n

1.2 Problem Statement

As shown in Fig. 1.2, the problem addressed in this thesis is to design a set of RMT

configurations that can machine a given part-family. This design task consists of

designing the motion-modules and configuring the RMTs.

Motion
Modules

RMT
Configurations

AssemblesPart family

RMT Design

Figure 1.2: The main research objective

1.3. Scope

This thesis focuses on giving a functional description of the motion-modules and the

RMTs configurations. The functional description is with respect to motions only. A

design method is laid out, supported with a general, non-detailed design of the physical-

modules embodying all the assigned functions. The step to perform a detailed design of

modules and RMTs is beyond the scope of this thesis.

The research documented in this thesis belongs to the ‘proof of concept’ category. The

method developed here lays out ‘black box’ tasks to design RMTs. Each of these black

boxes implements a method to fulfill a particular task. To show the feasibility of the

method, a reasonable method was chosen for each black box. The methods have been

chosen such that the input and output formats are STEP (STandard for Exchange of

Product data) compliant. However, no particular STEP-Application Protocol was

implemented.

These black boxes could feasibly implement any other method without affecting the

methods used in other black boxes. This research does not make any commitment to the

optimality of the methods chosen for any particular task.

The motion-modules determined by this method could be modularized further, i.e., at a

lower level of modularization. This would add more versatility to the system, but increase

the cost.

1.4. Design Approach

As shown in Figure 1.3, this thesis firstly scales down the problem of designing a set of

RMT configurations for a part-family to that of designing the RMT configurations for a

single part. Having developed a solution for the scaled-down problem, the solution is

scaled-up to solve the original problem.

Starting with the process for a single part allowed the author to focus on the development

and explanation of the process itself, unburdened by the complexity and detail of treating

a whole part-family. Scaling the single-part process up to treat a part-family is then done

to show the feasibility of the process in ‘real’ cases.

Reconfigurable systems must be designed with due consideration to the large scale

system in which they will be used, i.e., they must be designed in response to the expected

purpose of the whole reconfigurable machine. Using ‘bottom-up’ design strategy does not

design with respect to the overall purpose of the machine; hence, it cannot reliably result

in a good reconfigurable machine. Therefore, ‘top-down’ strategy is employed.

Problem of designing RMTs for a The method, to design RMTs for a
part family. part femily.

Î Part Family-Level

Problem of designing RMTs for a
single part. Method Development. Method developed for designing the

RMTs for a single part.

Single Part-Level

Figure 1.3: The approach for solving the stated problem

1.5. Thesis Outline

Chapter 2 presents the Literature review of the applications of the ‘Reconfigurable

concept’ and ‘Setup Planning’. Chapter 3 gives an introduction to the ‘Design Structure

Matrix’ (DSM), which was a key tool used in this thesis. Chapter 4 presents the method

for designing the RMT configurations required to machine a part-family.

Results, discussion, and future work are presented in Chapter 5.

This research considers separate modules for those manifesting coordinated motions and

sequential motions. Appendix I presents the rationale for the modeling these two types

separately.

The appendix is followed by glossary and references.

1.6 Summary

RMS is a new technology developed to suit today’s typical manufacturer. RMT is the

main machining component of RMS. This thesis focuses on determining the functional

specification of the RMTs required to machine a part-family. According to the approach,

the original problem is scaled down to determine the specification for the RMTs required

to machine a single part. The solution developed for this scaled-down problem is then

extended to determine the specification for the RMTs required to machine a part-family.

2. Literature Survey

This chapter surveys the past research in two main domains: (a) Reconfigurable robots,

machine tools, computing hardware and fixturing, and (b) ‘Setup planning’.

2.1. Survey on Reconfigurable Robots

This section surveys recent research in the field of reconfigurable robots (RRs). Research

in this area is investigated with an anticipation of extrapolating pertinent concepts to meet

the problem statement.

Hamlin and Sanderson [23] developed ‘Tetrobot’. This robot belongs to the class of

‘reconfigurable parallel robotic systems’. Tetrobot uses a novel joint mechanism called

the, ‘Concentric Multi-link Spherical (CMS) joint’. The CMS joint allows an arbitrary

number of struts to be connected together and to share a common center of rotation.

Thus, Tetrobot can have any statically determinate configuration such as a double

octahedral platform, a tetrahedral arm, a six-legged walker etc.

PARC [63] developed ‘Polypod’ and its successor, ‘PolyBot’. These robots belong to the

class of ‘chain reconfigurable robots’. Moreover, they have only one type of module, i.e.,

the robot is ‘unit-modular’. The module has a single Degree Of Freedom (DOF) and has

hermaphroditic (genderless) connection plates.

Yim et al [108] presented a few interesting space applications of PolyBot. PARC [63]

also developed ‘Proteo’. The Proteo is a series of simulations o f ‘Quasi Fluid Crystalloid

Robots’, using rhombic dodecahedron shaped modules.

Rus and Vona [68] developed the ‘ Crystalline-robot’. Their robot belongs to the category

of ‘Lattice Robots’. This robot is a unit modular self-reconfigurable robot. Each unit is a

2-Dimensional square module, and has connectors at the faces. These modules were

called, ‘ crystalline-atoms ’. An atom has two centrally placed, orthogonal-prismatic

DOFs. These DOFs give ‘Atoms’ the ability to contract by a factor of two in the X and Y

dimensions. The robot reconfigures by a coordinated contraction/expansion of ‘Atoms’.

Butler et al [7] developed a Cellular automata based reconfiguration planning for their

crystalline robot. Their research was an extension of Vona’s [86] ‘melt and grow

10

algorithm’. Suh et al [77] developed ‘TeleCubes’, which was an extension o f ‘crystalline

robot’ into the third-dimension.

Unsal [82] developed the ‘I-Cubes’, a self reconfigurable robot. This robot’s

configurations are formed by assembling two types of modules viz. ‘links’, and ‘cubes’.

‘Links’ are the active elements. They are embedded with 3-DOF mechanisms. ‘Cubes’

are the passive elements and act as connectors. “Using actuation and attachment

properties of ‘links’ and ‘cubes’, the system can self- reconfigure” [30]. In another work,

Unsal and Khosla [81] presented the mechatronic design of these robots.

Conro [9, 80] is a unit-modular self-reconfigurable robot. Each module has 2-DOFs.

Instead of having hermaphroditic connection plates, Conro’s modules have three male

connectors at one end, and three female connectors at the other. The modules use a

‘Shape Memory Alloy’ based locking mechanism to connect the modules. “Such a design

would easily form tree-like structures (like those of limbed animals) as well as structures

with single loops, but none with more than one loop” [30].

Michael [51] developed “Fractal robot,” a unit-modular polymorphic robot. The module

has screw and groove mechanisms at each cubic face. This allows the robot to perform

the assigned tasks as well as reconfigure itself.

None of the afore-mentioned researches followed a systematic method to design the

modules. Xi et al [100] developed a systematic method for designing modules. They

developed a parallel reconfigurable robot for space applications. The modules were

designed with an objective to maximize the number of possible configurations, while

minimizing the number of modules.

Yang and Chen [101] gave a systematic method for designing the robot configurations.

Configuration design determines the topology, which best fulfils the assigned tasks. “A

lower number of DOFs assures relatively simpler configurations, higher load carrying

capacity, and low power consumption” [101]. Considering this fact, they aimed to

generate a task-based-robot with a minimum number of DOFs. Since the search space

was discrete, they chose Genetic Algorithm (GA), as the optimization algorithm. The task

constraints of reachability, manipulability, and mechanical constructability were

integrated into the optimization criteria.

11

I I

Figure 2.1: Pictures of surveyed reconfigurable robots [23, 63, 68, 82, 51, 100]

Figure 2.1 shows: (1) Octahedral configurations of TetroBot (2) Spider configuration of

Polybot (3)5 legged spider configuration of Polypod (4) Proteo Molecule (5) Crystalline

robot Module (6) Telecube Module (7) I-Cubes Module (8) Configuration of CONRO

Robot (9) Fractal Robot (10) Reconfigurable parallel robot.

In Table 2-1, ‘Y’, and ‘N’ correspond to ‘Yes’, and ‘No’ respectively. No data was found

regarding the “load carrying capacity” of RRs except for Tetrobot [23]. Therefore, the

different RRs could not be compared in this aspect.

Table 2-1: Comparison of the surveyed Reconfigurable-Robots |30|

1 - 1
0 Z)
1 I
=3
z:

3-oo

’£

Qm

OX)c
"C

o (4=
C

i

Tetrobot 3 to 5 Y Y N
Polypod 2 N Y N
PolyBot 1 Y Y Y
Proteo 0 Y Y Y

Crystalline 2 Y N Y
TeleCubes 3 Y Y Y

I-Cubes 3 N Y Y
Conro 2 Y Y Y

Fractal Robot 6 Y Y Y
Parallel Reconfigurable

Robot(Xi et a / [100])
2 to 5 N Y Y

12

Since, the main application for RRs has been in extra-terrestrial explorations, RRs were

developed to have an infinite number of useful configurations and be fault-tolerant. Both

these objectives require the RRs to be hyper-redundant.

2.2 Survey on Reconfigurable Machine Tools (RMTs)

This section covers recent research in the field of RMT design. These works are surveyed

to understand the methodologies used and search for the methods that can be applied or

extended to solve the stated problem.

Recall that the objective of a RMT is to be easily convertible and to yield good

performance. The applications for RMTs are quite different from those of RRs. RMTs

have more stringent stiffness requirements and require only a relatively fewer

configurations.

Katz and Moon [35] developed a prototype of a virtual-arch-RMT (Figure 2.2 (i)) and

conducted studies on its different configurations. Koren and Kota [40] were the pioneers

of the RMT. The RMT, for which they hold a patent, is shown in Figure 2.2(ii). Landers

and Min [42] developed a 2, and 3 axis orthogonal RMTs (Figure 2.2 (iii, iv)) for

machining V6 and V8 engine’s cylinder heads. All these works were novel, yet none of

these gave a systematic methodology for RMT design.

(i) (ii) (iii) (iv)

Figure 2.2: Pictures of surveyed RMTs | 35, 40, 42|

Moon [55] developed a systematic methodology for the configuration design of RMTs.

The RMT configurations were formed by assembling both active and passive modules.

Active modules were used to manifest machining and positioning motions. The passive

modules acted as connectors or were embedded with actuators, which are actuated only to

13

manifest reconfiguration. This research was a major step towards the configuration

design of RMTs. However, it was also not clear as how his methodology handled

sculpted manufacturing features.

Similar to Yang and Chen [101], Moon followed the bottom-up strategy (shown in

Figure 2.3). However, Moon’s work differed from that of Yang and Chen, in the

following aspects:

• Moon chose from a large set of modules, while Yang and Chen had only three types

of modules.

• Moon considered stiffness as a major design criterion, while Yang and Chen did not.

• Yang and Chen used GA to find the optimal configuration. On the other hand. Moon

evaluated each of the feasible configurations and chose the one that best satisfied the

criteria considered.

• Yang and Chen did not consider passive DOFs, while Moon did.

Module Library

Configuration
Design

Configuration
EvaluationTask Set Function

Strcuture RMT

Figure 2.3: Moon’s Method

Moon and Kota [57] also developed a ‘reconfigurable power spindle % which can machine

multiple features simultaneously.

Li et al [44] investigated various coupling methods for assembling modules and

concluded that using “Flexible kinematic coupling,” for connecting modules results in the

least errors. However, their research did not consider “Quasi-Kinematic Coupling

(QKC)” [12], which can potentially yield a better performance than FKC.

14

Moon et al [54] developed a method for error estimation of RMT configurations.

Dabling, and Chase [13] presented a method for tolerance analysis of a machine. In

addition to giving a systematic method, they also automated their scheme using

MSG. AD AMS. There is a potential of merging Moon et aVs scheme with that of Dabling

and Chase to analyze the error characteristics of the RMT configurations.

There have also been good research efforts in controls design for RMTs [36,47, 79] and

the economics of RMTs [11,41], but these are only peripheral to the scope of this thesis.

Based on the survey on RRs and RMTs, it has been observed that the main difference

between RRs and RMTs is the design intent. RRs are intended to be hyper-redundant and

ideally have an infinite number of configurations, while the design intent for a RMT is to

have minimum redundancy and a limited number of configurations. As a corollary RMTs

are not fault-tolerant in the way RRs are.

None of the surveyed work gave a method to design both, the modules and the

configurations for RMTs required to manufacture a part-family. This thesis aims to

address this problem.

2.3 Survey on other applications of the Reconfigurability

If a machining system is to be truly reconfigurable, it should be reconfigurable in all

aspects. Fixturing is an important component of a manufacturing system. Therefore,

researchers have applied reconfigurability to fixture design.

Sela et al [70] developed a novel ‘reconfigurable fixturing system’ for thin-walled,

flexible objects subject to a discrete number of point forces. The design objective

followed was to assemble the pre-designed fixturing modules to minimize surface

deflections due to external forces.

Shirinizadeh [72] presented a system for computer-aided design and analysis of

reconfigurable fixtures. This research uses a set of pre-designed fixturing modules. They

developed a software program, which uses the information retrieved from a CAD

database to perform kinematic analysis of the fixture configuration. This research did not

give a design strategy. Moreover, it required human assistance for designing fixturing

configurations.

15

Reconfigurability has also been applied to the field of ‘Computing hardware’. Even

though the research most pertinent to RMT design has been surveyed and reported in the

previous sections, ‘Reconfigurable Computing hardware’ is surveyed to gain more

insight into reconfigurability and appreciate the breadth of the field.

Reconfigurable computing hardware uses the reconfigurable aspects o f ‘Field

Programmable Gate Arrays’ (FPGAs) to implement algorithms. The main motivation for

their development was to achieve both the performance of an ‘Application Specific

Integrated Circuit’ (ASIC), and the flexibility of a microprocessor [15]. As stated in

Chapter 1, reconfigurable computing is very promising for applications requiring

flexibility as well as real-time response such as robots used in Robo-Cup. These robots

require a fast response, and frequent ‘personality’ changes., i.e., they require the circuitry

to be hard-wired, yet be changeable dynamically.

Pantapolous [62] developed an ‘Optically programmable Gate Array’ (OPGA). This

device integrates electronic and optics to result in more rapid reconfiguration. “The

ability to quickly reconfigure allows reconfiguration to be a part of the computation”

[62].

Reconfigurable computing hardware has a potential use in RMTs and RMSs. It would

allow quick reconfiguration of the control system.

2.4. Survey on ‘Setup Planning’ methods

A ‘Setup’ is an instance of the ‘machine-workpiece pair’. It gives information on the pose

of the workpiece (relative to the machine), fixturing, tooling, manufacturing sequence of

features, and machining parameters.

Setup planning is the process wherein decisions are made for:

• Features to be machined in each setup.

• Machining datum(s), fixturing and tooling for each setup.

• Sequence of setups.

• Sequence of operations within setups.

16

Changing setups incurs cost. Thus, these decisions are made with a goal of minimizing

the number of setups, while considering the design and manufacturing constraints.

This thesis focuses on feature-clustering aspect of the ‘setup planning’ only. Therefore, in

this section, research in this area is reviewed.

For feature-clustering, the following criteria/constraints are generally used [16, 27, 52,

61,69, 93,110]:

• Tool approach direction (TAD): This is defined as the direction in which the tool

can approach the feature. Features with same TAD are assigned to the same cluster.

• Tolerance: This is defined as the tolerance between the geometric features of the

part. Features having tight tolerance are preferably machined in the same setup. This

helps ensure better tolerance attributes.

• Machining precedence: This is defined as the relations, which dictate the relative

machining sequence. Features and setups are sequenced according to the precedence

constraints. In addition, cycles may be formed between features or setups. “The

presence of cycles yields an infeasible setup plan” [69]. Therefore, for the part to

have a feasible process plan, these cycles need to be eliminated. The cycles can be

eliminated either by ignoring precedence relations or by splitting feature-clusters.

Ling [45] developed a feature-clustering method. Her method searched for patterns of

features, within the part and over the part-family. These feature-pattems were then

mapped onto ‘gang-spindles-tool head’ designs. Her research was an extension of the

RMTs to simultaneously machine multiple features.

Ming and Mak [52] developed a method for setup planning. This research proposed to

first cluster the features using Kohonen’s ‘Self-Organizing Map’ (SOM). This was

followed by sequencing the feature-clusters, and finally, sequencing the machining

operations within each feature-cluster. They considered both the sequencing problems as

a ‘Traveling Salesman Problem’ (TSF) and solved them using ‘Hopfield neural

networks’.

Past research with ‘Hopfield neural networks’ stated a few general drawbacks of using a

Hopfield net to solve the TSP, viz., sub-optimal convergence, convergence on infeasible

17

solutions, and the variable sensitivity of results to the tuning of the network’s

parameters[l]. However, Ming and Mak did not report as how their method overcame

these limitations.

The neural network would have to be mned for each part. Their research does not provide

any information/ heuristic/ rules of thumb, to determine/ guess the network’s parameters.

To aggravate this problem, there is no information on how to decide the goodness of the

tuning, i.e., the designer cannot judge whether a set of parameters suits the particular part

well. Therefore, even ‘trial and error’ is unlikely to work.

It is also not clear, as how the SOM reacts to cyclic feature-data like f|-> f|. If not

eliminated, such cycles render the process plan infeasible [69]. Their research does not

mention about the possibility of cycles between setups. It is unclear whether using the

SOM precludes the existence of cycles between setups. If SOM does not preclude cycles,

a cycle implies the same setup needs to be visited more than once. This is in direct

contradiction with TSP, which is formulated to cover each city only once. Therefore, the

correspondence between the sequencing problem and the TSP is imperfect.

There have been reported uses of SOM for solving the TSP [1, 84]. Therefore, a SOM

could have feasibly replaced a Hopfield neural network. Using SOM alone to perform the

complete method would have been a cheaper proposition. Their motivation to choose

Hopfield networks over SOM is unclear.

They represented the feature’s manufacturing attributes as vectors (1-D array). These

vectors were modeled as a collection of absolute attributes of features and the relative

attributes of the different features. These vectors were then clustered using SOM. The

SOM algorithm works by computing the distances between the vectors. The part of the

vector constituting the ‘relative relation’ is analogous to distance itself. From the survey

[39, 83] no SOM application has been encountered, which takes such a combined input.

It is not clear from their research as how they pre-process the data to render the input

suitable for the SOM algorithm.

The motivation for using a 6-dimensional vector to represent the TAD is also unclear.

The TAD could be represented as a 3-D unit vector. This would reduce the

dimensionality of the input space, thus reducing computational costs.

18

In general SOM applications, the input data is normalized in the period [-1,1] before

implementing the SOM algorithm. This avoids convergence at sub-optimal solutions

[39]. Their research did not normalize the input vectors. Considering the input

representation scheme, sub-optimal convergence is suspected. Moreover, their research

did not provide the parameters of their neural-networks. Therefore, the convergence

characteristics of their neural-network cannot be verified.

Wu et al [93] performed setup planning in 4 phases: (1) grouping according to tolerance

and precision factor; (2) sub-grouping according to TAD (3) assignment of multi-TAD

features to one of the groups according to tolerance; and (4) sequencing,

splitting/merging clusters according to TADs, tolerance, and precedence. Their research

performs “cycle breaking,” but the method is naive. The method presented in their

research is mainly ‘tolerance oriented’.

Sarma and Wright [69] gave a setup planning method for milled parts. The intent of the

method developed was to minimize the number of setups and number of tool changes.

The precedence relations between features were classified into levels and a graph-

theoretic model was used to group features into semps. They used Mc-Cluskey’s

algorithm [21] to assist assign unique TADs to the features, which have more than one

possible TADs.

Their research did not consider the case where the min-cover [21] has more than one

implicant. Min-cover is defined as the smallest set of prime implicants [21], which cover

the boolean function. If any one of these prime implicants evaluates to true, then all the

features can be machined using only the directions constituting that implicant. Therefore,

there is no need to compute, and store the complete min-cover. Any prime implicant

would suffice. Therefore, their research proposes to generate redundant information. It

also asserts the necessity of eliminating cycles caused by the existence of precedence

relationships between the features. Their method of cycle-elimination was naïve and

hence resulted in a greater number of relations being ignored than those with a more

intelligent method.

Zhang and Lin [110] used graph theory and matrix theory based methods for setup

planning. Their research considered tolerance relations as ‘critical’ constraints. They

19

modeled geometric-faces of the manufacturing features as nodes of the graph, and

tolerance relations as edges of the graph. Based on TADs and tolerance relations, faces

are grouped with an aim to minimize the number of setups. For each setup, a datum

surface was selected. In the next step, the setups were sequenced by heuristics. These

heuristics maintained the precedence constraints posed by tolerance and natural

manufacturing order. Their research performs cycle killing but using a naïve method.

Huang [27] gave a setup planning method for turned components. They identified

locating features. Based on these locating features, TAD and tolerances, features were

grouped. These setups were then sequenced according to heuristics. Their research did

not mention the possible existence of cycles.

Ong, and Nee [61] proposed to use fuzzy logic for determining setups. Their research

required the generation of a fuzzy rule-base. The fuzzy inference system would determine

the appropriate setups by using fuzzy operations.

Review of research in the field of setup planning revealed that all of the surveyed

researches determined the setups for a pre-determined set of machines. On the other

hand, the intent of this thesis is to design the machines for the feature-clusters.

2.5. Summary

This chapter reviewed research in the fields of reconfigurability and ‘setup planning’.

From the review, it has been concluded that there is no existent method to design the

RMTs for a part-family. Moreover, in the domain of setup planning, none of the reviewed

methods determined the setups with the aim of tailoring a machine for them. This thesis

addresses these two problems.

2
Ref: <www.alicebot.org>

2 0

http://www.alicebot.org

3. Design Structure Matrix

3.1. Introduction

For system/product design, qualitative matrix-based methods like the ‘house of quality’

have been used traditionally. Advancement of matrix-based methods to include

quantitative aspects resulted in a new and effective set of matrix-based methods. For

example, ‘Design of Experiments’ generates a ‘sensitivity matrix’, ‘Axiomatic Design’

uses a ‘design matrix’. Design Structure Matrix (DSM), etc. Of these advanced matrix-

based methods, the DSM has been typically used for modularization and information

streamlining [48]. This thesis poses similar requirements. Therefore, the author decided

to use DSM.

DSM is mainly used in two domains:

• Svstem analvsis and (reMesign: - The typical applications include modularization,

interface design, ‘Failure Mode and Effect Analysis’ (FMEA), value-analysis, and

reliability-analysis.

• Proiect-management: - The typical applications include scheduling of

activities/resources, team design, cost/time estimation, and information streamlining.

Section 3.2 presents a review of the past research and application of the DSM. In sections

3.3 and 3.4, details about the DSM are presented. As an example presented in Section

3.5, the research documented in this thesis itself is modeled as a design-project and re

structured using the DSM. Finally, in section 3.6, limitations of the DSM are listed,

followed by the summary on the chapter in section 3.7.

3.2. Past research and applications

Steward [75] invented the DSM. He developed the DSM representation and the concepts

of principal-circuits, shunts, partitioning, and tearing. As an example, he represented a

design-process as a DSM, and then manipulated the DSM with algorithms to suggest the

restructuring of the process. He also developed a software tool, PSM32 for modeling and

manipulating DSMs.

21

Rogers [66] developed a new tool, ‘DEMAID/GA’. This was a major advancement to the

DSM operations presented by Steward. This tool uses a two-phased approach. In this first

phase, the DSM was partitioned using an expert system developed with CLIPS [59]. The

next phase used a genetic algorithm (GA) to minimize the process-cost by re-sequencing

the activities within the blocks.

Bradley [3] used the DSM to analyze a few NASA projects viz. Pathfinder, NEAR,

S AMPEX etc. for technological-readiness, and potential failure points and their effects.

He tailored the DSM to represent component technology risk factors and called it

‘Technology DSM.’ This DSM was used to help identify the patterns of system level risk.

To represent component dependencies, he again customized the DSM, and called it

‘Interface DSM.’ This DSM was used to identify the impact of component criticality on

the mission operations. Mohan [53] also used the DSM to manage an unmanned flight

project.

Dong and Whitney [17] highlighted the unsuitability of DSM for a new design. They

proposed to deduce the DSM from the ‘Design Matrix’ (DM). The DM is constructed by

applying the ‘Axiomatic Design’ (AD) method to a design problem. Their research was a

major step towards unifying AD and DSM methods.

Yassine et al [106] used DSM to assess rework probabilities. These probabilities were

used to simulate the design process. Based on the simulation results, the average cost of

production was estimated. In another research, Yassine, and Browning [102] used a DSM

for planning simultaneous development of multiple products. Another novel feature of

this research was the consideration of resource constraints.

Smith and Eppinger [73] presented the concept that the eigenvalue of the DSM represent

the convergence characteristics of the DSM. They concluded that if the spectral radius of

the DSM were greater than one, the DSM would not converge. Yassine and Braha [103]

reported ‘convergence’ to be among the four major problems for a design-project, and

emphasized that the eigen-characteristics of the DSM reflect the convergence

characteristics of the DSM. Based on this fact, the concept of eigenvalues can also be

used to evaluate the robustness of the DSM to changes in the external

inputs/environment. If the frequency of change to the inputs/environment is greater than

2 2

the minimum eigenvalue, the system would never converge. Thus, by analyzing the

eigen-characteristics of the DSM, a system can be designed with both system’s

convergence and its robustness as the design objectives.

Yassine et al [105] presented the concept of ‘Do it right the first time.’ This concept

proposed that the designer analyze the partitioned DSM and rewire the process ,i.e., re

engineer the process by adding/ merging/ splitting processes, and/ or redesign the

interface/ interaction/ dependencies between the sub-processes to optimize the process

design. In a rather weak way, this research binds AD and DSM methods. This is evident

especially when an entity is split, because according to the information axiom of AD, the

split sub-entities should be minimally coupled. As a shortcoming, this research did not

give systematic judgment criteria forjudging the potential candidates for re-engineering.

Since the eigenvalues of the DSM reflect the convergence properties of the DSM, the

eigenvalues can potentially assist the designer to identify the critical entities, which if re

engineered would lead to quicker convergence.

Lockledge and Salustri [46] developed a variant of DSM to represent communication

transactions between designers. This is the only application that used a rectangular DSM.

Hilmolla et al [26] used the ‘Ashby’s theory of variation’ to re-engineer the sub-systems

by adding variations to them. “Ashby’s theory states that, a system model or controller

can only model or control something to the extent that it has sufficient internal variety to

represent” [65].

Their research considered the subsystem to process the current content of the

information, while ignored its history. The current author proposes to alleviate this

problem partially, by using a system model wherein each subsystem is modeled as a

neural network, i.e., the system would be a network of neural-networks (a meta-neural-

network). Such a model would be dynamic and learn while in operation. Thus, the flow

of information would constantly train the system, i.e., the history of the information flow

is implicitly embedded in the network. Adding variation to such a model is equivalent to

adding neurons to them. The system would train itself for the variations. Moreover, the

asynchronous nature of the model would realistically model ‘ information-hiding’ [104].

This model would also exhibit non-linearity. These characteristics help to identify the

23

possibility of emergent-chaos [32]. Moreover, such a model would be more realistic, thus

leading to better experimentation and ultimately, better systems.

In a very recent research, Yu et al [109] used GA for clustering the DSM. The clustering

problem was mapped onto an optimization problem. They chose the ‘description length’

as the objeetive-function. This objective function was optimized to find the optimal

granularity of the system. The ‘description length’ is analogous to the measure of

‘Kolmogorov’s complexity’ [85]. In other words, their method firstly quantified the

Kolmogorov’s complexity of the system, and then used a GA to minimize the complexity

by re-organizing the system. The results provided by their method were much better than

previously developed methods.

It has been observed that none of the surveyed works used DSM to assist in appraising

information. DSM helps to identify the criticality of the design activities mainly by

analyzing their effect on the convergence characteristics. If correct information about a

critical design activity is available beforehand, the process can converge much sooner.

The anticipated reduction in cost resulting from availability of this information would

help assign a price to that information.

DSM is used to create design teams and communication interfaces [48]. The scope of this

application of the DSM can be extended to (re)configure the Management Information

System (MIS) for a design-project. In this scheme, an automated software-agent would

first convert the information-model provided by the information manager into a DSM.

Next, it would analyze the DSM by applying appropriate algorithms. Further, it would

determine the optimal information-structure, and finally, (re)configure the MIS to

implement this information-structure.

Reportedly, DSM has been used in the domain of software design. Using DSM yielded

faster and more efficient software, which lend themselves to easier integration and

debugging [78].

24

3.3. DSM construction and representation

Products, processes, and organizations all lie in the domain o f ‘complex systems.’ The

classie approach to (re)designing a complex system is to execute the following steps [5]:

• Decompose the system/process into simpler, more familiar entities/activities.

• Identify the local interfaces/interdependencies/interactions between the

entities/activities. These inter-relations between the entities/activities result in the

overall system behavior.

• Note the impact of external environment on the system, and the sensitivity of the

system to the inputs and outputs.

• (Re)integrate sub-systems using algorithms/human expertise.

Attributes of the DSM:

• A DSM is a matrix representation of a directed graph, i.e., directed graph and DSM

are duals of each other. To illustrate this. Figure 3.1 and Table 3-1 present the

directed graph and its corresponding DSM respectively.

• Typically (with an exception of the DSM variant used in [46]), a DSM is a square

matrix with identical row and column labels.

• The diagonal elements represent the entities/activities.

• Off-diagonal marks represent the dependency/interaction of one entity on another.

Cellij of the DSM holds information on the dependency of entityi on entityj.

• The cells in DSM can hold boolean values, i.e., ‘0’ = “having a relation” and ‘null’

(empty cell) = “no relation” or crisp numbers. These crisp numbers are metrics

deduced from the type and strength of the dependencies/ interactions, evaluated

according to certain scheme. For the DSMs holding crisp numbers, the scheme

consolidates all the different interactions between the two entities into a single

number. Usually the strongest dependency/ interaction is represented by ‘O’, and

weaker ones by higher numbers (the highest one being nine - a typical Saaty’s 9-point

scale [70]).

25

There are three basic building blocks for describing the relationship among system

elements: parallel, sequential, and coupled. The coupled subsystems result in

“information cycles”, i.e., design iterations. The main reasons for iterative

information cycles are: (i) changes in information input and (ii) update of shared

information.

Figure 3.1 Network of activities shown as a graph [3]

Table 3-1 DSM corresponding to the graph presented in Figure 3.1 [3]

1 2 3 4 5 6
1! A *

2 !B *

31 C 0 0 *

4 !D 0 *

5!E 0 * 0
6! F 0 0 *

3.4. Types of DSMs

There are mainly two types of DSMs viz. ‘Time based DSM’ and ‘Static DSM’. These

are briefly explained in the following sections.

3.4.1. Tim e-based (Dynamic) DSMs : In this type of DSM, the ordering of the rows

and columns indicates the flow in time. “Upstream activities in a process precede

downstream activities” [5]. These DSMs are operated upon by sequencing algorithms.

This category of DSM is further divided into ‘Activity based DSMs’ and ‘Parameter

based DMSs’. These sub-types of DSMs are presented in sections 3.4.1.1 and 3.4.1.2

respectively.

26

Definitions pertinent to Time-Based DSMs

Feed-back (-forward) mark: The mark/number above (below) the diagonal

corresponding to information sent to a preceding (succeeding) task.

Block: “A Block is the largest set of tasks/activities in which there is a path from every

entity to every other in that block and then back again” [75].

Circuit: A circuit is a closed path of activities.

Principal circuit: “A Principal Circuit is the largest closed circuit of activities/tasks in a

partitioned block” [75].

Shunt (in context to Block): A shunt is a chain of activities running between entities

such that, no link of this chain is coincident with an edge of the Principal circuit.

Operations pertinent to Time-based DSMs

Partitioning: “It is the process of finding ‘Blocks’ and ordering them such that the

predecessor of the block appears before that block” [75].

Tearing: Tearing is the process of choosing certain dependencies, which need to be

ignored or assumed, in order to allow the process to proceed. These ignored/assumed

dependencies are referred to as tears. Tears are represented either by removing the

mark/numher corresponding to the assumed dependency or by assigning the dependency

a number proportional to the degree of doubt about that assumption. The goal of tearing

is to proceed with the process forward by ignoring/assuming a minimum number of

dependencies, as late as possible, i.e., the assumption be made just in time, and based on

all the previous, although insubstantially information. Generally, the DSM is tom and

repartitioned iteratively until the DSM is lower triangular. The assumptions have to be

made to allow the process to proceed.

The tearing process involves the following steps:

• Seek tearing advice from designer/lieuristics. For details on the heuristics. Ref: [75].

• Consider the advice, and make tears based on engineering knowledge. Tearing is

manifested by deleting the dependency mark, or assigning it a number proportional to

the degree of doubt about the assumption.

27

• Re-partition. When partitioning, firstly partition the DSM treating it as a binary DSM,

then repartition the blocks formed by temporarily removing the highest numbered

marks so on. After complete re-partitioning, repeat the ‘tearing process’. Iterative

tearing and repartitioning is done until the DSM is rendered lower-triangular. “This

usually results in smaller blocks within larger blocks” [75].

Aggregation: It is the process of merging two or more entities into a single entity to

eliminate/reduce feedback marks and simplify the DSM. This makes the model less

detailed, i.e., the problem is looked upon with a higher level of abstraction.

Decomposition: Typically, the designer chooses a reasonable degree of granularity for

representing the entities of a process. Based on the DSM, the designer might choose to

un-wrap the sub-entities bundled in an entity and reveal ways to assist the (re)design of

the lower-level activities/their interfaces to eliminate/reduce feedback. Representing the

system at a lower degree of abstraction is termed, ‘decomposition’.

Subtypes of Time-Based DSMs:

3.4.1.1. Activity-Based (or Schedule) DSM: These DSMs are mainly used to improve

process structure.

One constructs the DSM by first decomposing the system to the desired granularity,

followed by identifying and quantifying the interactions between the entities. The DSM

represents the information structure in a compact way. This enhances understanding of

the process, which promotes improvement. The main scope of improvement lies in

streamlining information and resources, resulting in reduced costs and better utilization.

Unwrapping of the process into entities and analyzing the local interactions helps the

designer to understand the process better. It assists in establishing the link between the

local information flow, the resulting characteristics, and performance of the process

overall. Thus, re-engineering the local interactions has the maximum potential to

optimize the overall process.

3.4.1.2. Parameter-Based (or Low-Level Schedule) DSM: These DSMs are used for

modeling low-level relationships between design-decisions/ design-parameters/ systems

of equations/ subroutine parameter exchanges, etc.

28

The parameter-based DSM is equivalent to an activity-based DSM representing the

system at a lower level of abstraction.

This DSM helps determine the sequence of determining design parameters, the sources of

iterations, the best start points for the iterative design processes. The main use of these

DSMs lies in developing the evolution scheme for detailed design of subsystems or their

parameters.

3.4.2 Static DSM

These DSMs represent system elements existing simultaneously, such as components of

product architecture or groups in an organization. They are typically operated upon by

clustering algorithms. This category of DSM is further divided into ‘Component based

DMSs,’ and ‘Team based DSMs’. These sub-types of DSMs are presented in sections

3.4.2.1 and 3.4.2.2 respectively.

Operations pertinent to Static DSMs:

Clustering: It is the processes of clustering entities such that, the entities belonging to

the same cluster have maximum interaction between themselves and minimum

interaction with elements foreign to its cluster. The DSM clustering is different from the

traditional clustering algorithms in only one aspect; the DSM does not require the number

of clusters to be input to the clustering algorithm.

Subtypes of Static DSMs:

3.4.2.1. Component-Based (or Architecture) DSM: These DSMs are used for

modeling system architectures based on subsystems and their relationships. The local

interactions between the interfacing components result in a complex emergent system

behavior. Thus, the DSM helps the designer understand the local interactions, and their

effects on the system overall. “The DSM is equivalent to the system’s genome” [6].

Therefore, re-engineering the system using the DSM is extremely effective, as is its

biological counterpart, genetic engineering.

Moreover, a component-based DSM helps approach the problem of modularizing these

complex systems by clustering their components systematically. This DSM facilitates

29

modularization of the system. Modularization reduces the complexity of the system, and

the interfaces, thus promoting innovation.

3.4.2.2. Team-Based (or Organization) DSM: These DSMs are used for modeling

organization structure based on people and/or groups and their interactions/

communications/ dependencies. Better understanding of organizations enables innovation

and improvement in organization design by (re)designing teams and their interfaces.

The DSM is analyzed with the primary intent of restructuring the organization structure.

The restructuring is performed by clustering the maximally interacting entities.

3.5. Detailed Example

The research documented in this thesis is design research. The DSM technique is

demonstrated by structuring this work. This DSM example assisted to determine the

sequence of design activities and the assumptions to be made for the design process to

proceed.

Since the construction of a DSM requires detailed knowledge of the process, the DSM

shown in Table 3-2 was constructed in retrospect. The author had no prior knowledge

about the tasks and information flow before performing the research. Even though the

DSM was not useful for structuring the research itself, it is a suitable example to present

both a demonstration of the DSM and an early insight into the research.

Table 3-2: The original DSM: representing the flow of information

1 2 3 4 5 6 7 8 9 10 11 12
1! Part Model *

2! Features 0 *

3! Operation Type 0 * 0 0
4! Optimal TAD 0 * 0 0
51 Precedence 0 0 *

6! Feature Clustering 0 0 0 *

7! FR generation 0 *

81 FR Normalization 0 *
91 FR clusters 0 0 *

101 Configuration Generation 0 0 *
111 Module Design 0 0 *

121 RMT 0 *

30

NB: All the DSMs in this thesis are made and manipulated using Steward’s software

tool^ (PSM32).

Considering tearing advice and engineering fundamentals, feedback marks are tom

iteratively to result in DSM.2 shown in Table 3-3. The tears correspond to the

assumptions made. The tom relations are represented by a number corresponding to the

degree of doubt about the underlying assumption, or the degree to which the relation can

be ignored. These numbers are chosen by the author based on his perspective of the

design task.

Table 3-3: DSM 2. The Torn DSM

1 2 3 4 5 6 7 8 9 10 11 12
1! Part Model *
2! Features 0 *

3! Operation Type 0 * 2 4
4! Optimal TAD 0 * 2 4
5! Precedence 0 0 *

6! Feature Clustering 0 0 0 *
7! FR generation 0 *

8! FR Normalization 0 *
9! FR clusters 0 0 *

10! Configuration Generation 0 0 *
11! Module Design 0 0 *

12! RMT 0 *

The DSM was used to identify iterations. It also suggested an optimal sequence of design

tasks. Most importantly, it suggested making the following assumptions (corresponding

to tears):

• The designed RMT is optimal for the chosen set of TADs and operation types.

• The feature-clustering is optimal for the chosen set of TADs and operation types.

The result from the DSM can be extrapolated to: (a) make design teams and (b) export

the tom DSM to Microsoft-Project® and generate a detailed schedule, while considering

resource constraints etc.

PSM32-Version 3.1j - Ref: <www.Problematics.org>

31

http://www.Problematics.org

A digraph equivalent of the original DSM and the tom DSM are presented in Figure 3.2.

The tom relations are shown as dashed lines.

Ï

1

r
y

I I

N . 0

/

n ̂̂

/

II-
X

y

?

X
3

► B
1

T
w

I I
M ---

= i

X

î i
M---

f

Figure 3.2: (Right) Dual of the original DSM; (Left) Dual of the torn DSM

32

3. 6. Limitations of DSM

The DSM poses the following limitations.

• A DSM is two-dimensional. It can handle only one metric in a cell. This metric

represents a consolidated measure of interdependencies between two entities, instead

of representing individual interactions and their corresponding strengths. To represent

such a scenario, a 3-D DSM is needed. Higher dimension DSMs are quite complex

and have not been developed/investigated in past research efforts.

• A DSM does not show processes overlapping in time [103]. However, a completely

tom DSM can be converted into a “Gantt chart,” which has the capability to represent

overlapping activities. It is mandatory for the DSM to be completely tom before

representing the information as a Gantt chart, because a Gantt chart cannot represent

iterations.

3.7. Summary

DSM is a strong and versatile matrix tool. It is typically used in system engineering and

project management. “DSM is analogous to the genome of the system. [6]” Thus,

designing/re-engineering the system by analyzing the DSM is an effective strategy. This

chapter surveyed past research in this area and presented a brief tutorial on the DSM.

33

4. The Method for designing RMTs for machining a part-

family

4.1 Introduction

In this chapter, a method to determine the specifications of a set of RMTs for a part-

family is developed. As per the approach stated in section 1.4., first a method is

developed to determine the specifications of modules and RMTs for manufacturing a

single part. Having developed the method for this scaled-down problem, the method is

extrapolated to suit the original problem of determining the specifications of a set of

RMTs for a part-family. This approach allowed the author to focus on the method itself

and not on the eomplexities arising from ‘real-world’ problems involving part families.

Section 4.2 presents the development of the method for a single part. This is followed by

the extension of this method to address the original problem of determining the functional

specification of the RMTs required to machine a part-family. In section 4.3, this extended

method is presented.

4.2 The Method for designing RMTs for machining a single part

4.2.1. Introduction

This section develops a method for determining the functional specifications of the RMTs

required to machine a single part. The approach for accomplishing this task is presented

in section 4.2.2. In the subsequent sections, this approach is followed to develop the

method. The resulting method is demonstrated by applying it to an example part.

4.2.2. Approach

Recall that the problem addressed in this section is to determine the specifications of the

RMTs required to machine a single part. As stated in section 1.2, this problem

decomposes into following sub-problems:

• Determining the specifications for the set of modules, which assemble to form RMT

configurations.

34

• Determining the assembly instructions required to assemble the modules to form the

RMTs.

The author approaches the first sub-problem by clustering the manufacturing features of

the part, and determining the specifications of the RMT configuration required to

machine this feature-cluster. This approach implied that the machining requirements

posed by each of these feature-clusters correspond to the functional specification of the

respective RMT configurations.

Recall that a RMT has a modular structure. The modules cooperate to fulfill the

designated tasks. Therefore, the function requirements (FRs) of the RMTs are equivalent

to the ‘emergent-behavior’ [64] of the assembly of modules. In general, the modules are

functionally coupled; therefore, it is very difficult to determine the functional

specifications for each individual module. To simplify, it has been assumed that the

modules are functionally independent. Having made this simplifying assumption, the

process for determining the functional specifications of the modules is developed. This

process yields a set of modules. The RMTs required to machine each of the feature-

clusters is formed by drawing modules from this ‘set of modules’ and assembling the

modules, into suitable machine configurations.

Having determined the functional definitions for the modules, the interfaeing

requirements are then identified. These interfacing requirements specify the adjacency of

modules.

Based on the functional specification of the modules and their interfacing requirements,

they can be assigned physical detail. Although the physical design is beyond the scope of

this thesis, yet a detailed proposal on developing an elegant design scheme is presented.

The approach is diagrammatically presented in Figure-4.1.

Part / Part’s ^
Specifications /CAD Mod?l

Section 4.3:
Feature

Clustering.

Section 4.4: Design
Feature ^ of modules and
Clusters I RMTs for each

Feature cluster.

RMT
configurations.

Figure 4.1: The approach for determining the RMT configurations for a single part

35

4.2.3. The method for ‘Feature-clustering’

4.2.3.1. Introduction

From the literature-review, it has been observed that all of the pre-established feature-

clustering methods assumed prior knowledge of machining resources. However, in this

thesis, the objective is to design a RMT configuration for each of the feature-clusters. The

unavailability of a suitable feature-clustering method motivated the author to develop a

novel method for feature-clustering.

This section presents a novel feature-clustering method. Brief discussions have also been

presented after each step. Having presented the method, it is demonstrated by applying it

to an example part.

4.2.5.2. Approach

The part’s geometric specifications are converted into manufacturing features.

Similar to the research by Wu et al [93], and Sarma and Wright [69], this thesis adopted a

two-phased approach for feature-clustering. In the first phase, the features were clustered

based on their tool approach directions (TADs), tolerance relations, and machining

precedence relations. The precedence relations between the features might result in the

existence of a cycle which runs between these initial set of feature-clusters. “Cycles

render the process plan infeasible” [69]. Therefore, in the second phase, these cycles are

eliminated to result in the final set of feature-clusters.

Feature
ClustersPart Model Initial ClusteringPre-Processing

Final Clustering:
Refining the initial

clustering-
removing cycles.

Figure 4.2: The Approach for determining the feature-clusters

36

4.2.3.3. Pre-Processing

In this pre-processing step, the part’s geometric model is converted into a feature-based

representation. This task is typically manifested by a ‘feature recognition software-agent’

like FeatureWorks®'*.

However, this pre-processing step incurs a significant cost. In case the part is designed

using feature-based CAD software (like SolidWorks, Catia etc.), pre-processing would

not be required. Thus, the method would take the input in the same format as the designer

designs it. This renders the method more feasible.

In an attempt to simplify, it has been assumed that the part’s feature-model is available.

This preprocessing step lists the features constituting the part as a set of manufacturing

features.

Whereyj is a manufacturing feature.

The feature representation is intuitive, and encapsulates geometry and machining

information. It also has the advantage of being STEP compliant. Most importantly, this

representation has the benefit of being free from the part’s context.

4.2.3.4. Stepl: Identify the TADs for each feature

Step I Introduction: This step requires human assistance to identify the possible TADs for

each feature. As reported in Chapter 2, TAD is one of the basic machining criteria used

for clustering features. TAD determines the fixtured pose of the part. For a particular

RMT configuration to be able to machine all the features of the cluster, the TAD has to

be the same for all the features belonging to the cluster. Therefore, this machining

attribute is chosen to be a criterion for clustering features.

Steplinput: The part’s manufacturing features.

4
Trademark of Geometric Software Solutions Co. Limited.

37

Stcplprocess»
• Vy e f , identify all the possible TADs.

• Generate a new variable fad and assign it the set: {Dj, D2..., Dp}, where Dj is a TAD

for the feature,

• Augment each feature object with this new variable fad, i.e., the TAD information is

augmented to the information model of the “feature object.”

Steploutput: "f": the updated set of the feature objects with the information about their

corresponding TAD appended to it.

Stepl Discussion! TADs arc not represented as unit vectors as in [134]. Instead, each TAD is

considered separately and is given a different name (identifier). The motivation for

assigning a unique name to each TAD will explained in the next step.

4.2.3.5. Stepl: Determine the optimal TADs for each feature

Steplintroduction! Sarma and Wright [69] wrote, “A first step in generating the process plan

is the selection of an access direction for each feature. Clearly, the choice of TAD affects

the setup in which the feature will be machined, and an important consideration in

assigning these TADs is the minimization of number of setups. Unformnately, however,

minimization cannot be performed until after precedence constraints have been

generated, and the precedence constraints cannot be generated until TADs have been

determined for each feature. Thus, there is a need for iteration.”

In this research, the method used for assigning optimal TADs was inspired by Sarma and

Wright research [69]. The TADs determined in this step yield a near-minimal solution

without iterating. Similar to their approach, this step uses Boolean algebra to determine

the minimum set of directions that allow all the features to be machined.

Step2|nput* Steploutput (-̂)•

Steplprocessi : Establish a boolean function for each feature.

For each feature, a ‘boolean function’ is constructed such that it is Tnie (in context to

Boolean Logic) for any feasible TAD. This boolean-function has no direct implications

and serves only as an input to the following step.

38

V f e F, establish a Boolean function 'Yboo” as the ‘Boolean OR’ of all the directions

(D j) representing the TADs of that feature, i.e.,

fbool - V y fiad, 4.1
I

Where v means ‘Boolean OR’.

Physically, corresponds to the fact that feature ‘f can be approached in any of its

possible TADs. For example, = D, vD^ is interpreted as: f j can be approached in

direction D, or Da.

Step2 process2 î Construct the boolean equation to represent the machining of the complete

part.

The previous process gives the conditions for ‘approaching’ (in context to machining)

each feature. In this step, these boolean functions are combined into an equation to

represent the condition for ‘approaching’ all the features. A solution to this equation

would be a set of directions that allow ‘approach’ to all the features. The minimum sized

solution is the smallest number of approach directions that allow the whole part to be

machined. The goal of this process is to find a minimal set of directions ensuring the

machining of the complete part.

Construct the following equation to represent approach to all the features.

1

Where a is defined as ‘Boolean AND’.

Physically, ‘4.2’ represents the condition that all the features be approached.

Step2 process3 î Find the set of optimal TADs.

The goal of this step is to find the TADs for the features, such that the total number of

feature-clusters is minimized. In principle, feature-clusters cannot be formed until the

precedence constraints have been identified. However, precedence constraints cannot be

identified until the approach direction has been identified. Therefore, to determine the

optimal feature-clusters, iteration is required. To avoid this caveat, the optimal TADs are

39

referred to those TADs, which minimize the number of feature-clusters, while ignoring

the dependence of precedence constraints on the TAD. NB: The optimal TADs do not

refer to TADs, which ensure optimality of machining.

This step requires finding the minimum sized solution for Equation 4.2.

As is evident, this is a boolean equation. Thus, boolean algebra techniques are applied.

The Left Hand Side (LHS) is in the form of Product of Sums (POS).

The LHS is simplified into a sum of Prime implicants (PI). Prime implicants are a set of

product terms involving the minimum number of boolean variable, which if all true result

the whole function to be true. The prime implicants of the LHS are generated by using

the Espresso software package to simplify the LHS. Espresso is a 2-phase heuristic based

boolean minimizer [2 1] .

Logically, if any of the Pis were ‘true’. Equation 4.2 would be satisfied, i.e., the complete

part can be feasibly machined. For a PI to be ‘true’, all the literals composing the PI

should be ‘true’, i.e., the part requires approach in all the directions composing the PI in

order to machine all the features.

Generally, the Pis are all of the same size, i.e., each involves the same number of

variables. In case the Pis are of different sizes, the PI with the minimum number of

literals is chosen as the solution. In the event of ambiguity, choose any one PI arbitrarily.

The set of literals constituting the chosen solution corresponds to the minimum-sized set

of TADs that permit the machining of the complete part.

E.g., Say the output from Espresso is; - PI, = Z), vD ^, and PI^ = v

Therefore, 4.2. D, v 4- v =1

This implies that all the features can be approached with (Dj and D2) or {D2 and D3).

Therefore, the minimal set of TADs that cover the part {Tad_min) = {Dj, D2} (PIi was

chosen arbitrarily).

Against general intuition, it is not possible to consider the approach direction as sets of

complementary directions like D ^= X andD, = - X . This is because a PI cannot have

both a boolean variable and its compliment. In this research, the co-existence of

40

complementary directions in the minimal set of TADs is allowed, thus the variables are

considered individually.

Step2 process4 : Find the optimal TAD for each feature.

This step requires the designer to identify the optimal TAD for each feature, based on the

Tad_min set.

fdirec= any one of {f,ad s Tad_min).

The optimal TAD for a feature can be any one of the TADs, which also belongs to the

Tadjnin set.

Step2output: "F". Each feature object had been augmented with fdirec (information on its

optimal TAD) and “F” holds these augmented feature objects.

Step2Discussion: The main objective of this complete step was to assign TADs to features

with more than one possible TAD, such that the total number of feature clusters is

minimized. This objective can be achieved in a comparatively simple way as

demonstrated by Wu et al [93]. The main reason to use a boolean logic based method in

this research is to support the possibility of extending the method to implement fuzzy-

logic, which is a superset of Boolean logic dealing with the concept of partial truth, i.e.,

truth values between ‘completely true’ and ‘completely false’. A fuzzy-logic based

method would not just consider TADs as feasible or infeasible but give a degree of

feasibility (of approach) to each direction. This feasibility measure could include the

degree of machining optimality offered by each TAD. Thus, the optimal TADs would

ensure good manufacturability as opposed to the mere possibility of manufacturing.

The main differences between this step and the method used by Sarma and Wright [69]

are;

• This research realizes that only one PI is needed to determine the minimal set of

TADs while Sarma and Wright did not mention the course of action in case, the min-

cover has more than one Pis. Even though this step proposes to choose any arbitrary

PI, it well realizes the redundancy of using the complete min-cover.

• This research uses Espresso instead of Quine-McCluskey as used by Sarma and

Wright. Espresso is chosen because Espresso guarantees to solve for the minimum

41

number of product terms (minimum number of possible TAD sets). It also minimizes

the number of literals (minimum sized TAD sets) by using heuristics. Moreover,

unlike Quine-McCluskey algorithm, Espresso does not require computational time

and memory to be exponentially proportional to the number of inputs.

4.2.3.6. Step 3: Determine rotation attribute for each feature

Step3introduction: This step requires human assistance to identify the rotation requirement:

what needs to be rotated to machine each feature: Tool or Work.

Rotation is one of the criteria chosen for feature-clustering. The RMT configuration can

have either the work or the tool rotating, but not both because that would cause

redundancy, which is undesirable. This step is equivalent to that used by Moon’s

doctorate [55] wherein, a template is used to determine each feature’s ‘flmctional-

structure’.

Step3i„put: " f ”

Step3Process: Identify the rotation attribute for each feature.

V f 6 F, the designer identifies whether the tool or the work-piece needs to be rotated in

order to machine that feature. Rotation of tool corresponds to milling machining function,

and rotation of work corresponds to turning machining function.

fro(= ‘T’ or ‘W’ depending on whether ‘Tool’ or ‘Work’ rotates.

Sfep3output: “F”. The feature class has been augmented with frot and “F” holds these

augmented features.

Step3Discussion: All the machining features can be machined by either rotating tool or

work. According to STEP-NC (also known as ISO-I0303-AP:238) [17], operations

requiring the tool to rotate correspond to milling, and those requiring the work to rotate

correspond to turning machining functions.

Human intelligence is required to decide about the choice of the rotation attribute of the
feature.

42

4.2.3.7. Step 4: Identify, and quantify the manufacturing precedence

StepSintroductionî This Step requires human assistance to identify and quantify precedence

relations. Precedence is inferred from feature modeling, tolerance requirements, natural

operation order, and machining best practices.

Precedence relations might lead to cycles. Sarma and Wright stated, “Essentially, the

presence of cycles indicates that the current assignment of precedence relations and

setups will not yield a feasible process plan” [69]. Thus, cycles have to be eliminated

both at the feature level and at the feature-cluster level.

The step uses DSM to eliminate cycles firstly at the feature level and then at the feature-

cluster level.

Step4i„p„t: “F”

Step4processi: Identify and quantify the machining precedence between the feamres.

Identify the precedence between features and store the information in matrix fP] such that

if// precedes fj then Py/= ‘precedence value’. The precedence value is a representative of

the eriticality of the precedence relation. The precedence value is determined by the

quantification scheme presented in Table 4-1. The table is described in detail later.

V pair, where f / j s F, identify and quantify the precedence relation according to

the scheme given in Table 4-1.

Table 4-l:The Quantification scheme for Precedence relations

Precedence relation Value
Critical 0

For Quality 1

For Optimality 2

This research assumes the precedence relations to be categorized as Critical, Quality, and

Optimality. In the following paragraphs, the criteria to categorize precedence relations are

presented.

• ‘'Criticar relations are the precedence relations required:

• For approach to the succeeding feature e.g., if the succeeding feature was

made on the bottom face of the preceding one then there is a critical

43

precedence between them. This precedence type is dependent on the way

features are modeled/recognized.

OR

To maintain the definition of the feature at all times e.g., a blind hole can

be made into a thru hole if material is removed from the other end. The

requirement to maintain the feature definition asserts a critical precedence

constraint.

OR

For maintaining the explicitly defined inter-feature tolerance relations it is

assumed in this research to machine the Datum feature first (if the TADs of

the feamre and the datum feature are different; else there is no precedence

relation).

• Relations supporting “Quality," are the precedence relations required: To

maintain the feature’s internal tolerances. E.g., if a feature has a tight flatness

constraint of one of its faces, the machining strategy is to machine that feature as

late as possible, without adding a new feature-cluster.

• Relations supporting “Optimality," are the precedence relations required to

fulfill ‘best-machining practices,’ which are also based on minimizing machining

time, tool wear etc.

The more critical the precedence relation, the higher is the cost of ignoring it. Moreover,

it has been assumed that the ‘critical’ precedence relations cannot be ignored. The

objective of this step is to eliminate cycles by ignoring the least number of non-critical

relations.

In this thesis, the criteria for categorizing precedence relations and the constraints on the

cycle elimination step are chosen as the first reasonable scheme. The designer may decide

to use a completely different set of criteria and constraints without affecting this process.

However, the efficiency of the method would be sensitive to the change in the

quantification scheme.

44

Step4process2î Rcmove cycles at the feature level.

A DSM is employed to capture cycles and intelligently remove them by deleting the

minimal number of non-critical relations. The DSM does not autonomously perform any

actions to remove the cycles. It suggests to the designer what relations might be deleted.

The tearing advice presented by the software (PSM32) is based on mathematical

heuristics. It has no engineering-analysis capability, and is used as a tool by the designer.

Partition the DSM (JPJ) using PSM32. The partitioning operation detects the principal-

circuits in the blocks formed by the partitioning algorithm.

These principal-circuits need to be broken. For this task, the DSM software is used.

Iteratively tear and re-partition the DSM, without ignoring (tearing) any critical relations.

If the cycles cannot be eliminated, it can be inferred that the part cannot be manufactured.

Therefore, either an alternative ‘feature modeling’ scheme be used or the design be

modified to render the part manufacturable. Figure 4.3 and Figure 4.4 show an example

given by Sarma and Wright [69] to demonstrate the case of a part rendered non-

manufacturable because of a cycle existing at the feature level.

B(apçtiraiç Blhttf Hole
to he bvircd)

(Blind H ok)

Figure 4.3: An example part, with cycles existing at the feature level [69]

45

Angle Hole interaction
C before A. -

lA before B.

B needs to be Bored
and must have a continuous
surface.

C cannot be
created before B.

Figure 4.4 : The feature graph corresponding to the part presented in Figure 4.3 [69]

For this example, Sarma and Wright [69] proposed to make a “seating Step” as a change

to the part’s design. This change avoids ‘Angle-Hole interaction’, and renders the part

manufacturable.

Step4output: This step would output [P], the precedence matrix, with the relations causing

the cycles been deleted, i.e., the precedence relations causing cycles have been ignored.

However, in case the cycle could not he eliminated, this step would lead to a conclusion

that the part is non-manufacturable. Such a situation would require either choosing a

different modeling scheme, or redesigning the part.

4.2.3.8. StepS: Cluster features

This step yields the final set of feature-clusters. Each of these feature-clusters maps to a

RMT configuration.

The clustering process is performed in two phases. In the first phase, features are

clustered based on their TADs and information on whether the tool rotates or the work. In

the next phase, these cycles are removed either by ignoring some precedence relations or

by splitting clusters.

StepSjnput* “F ”

StepSprocessî Clustcr Features.

StepSprocessi: Initial Clustering: group the features with the same TAD and rotation

attributes.

46

To form the initial set of feature-clusters, features with the same TAD and rotation

attribute are grouped together to yield the set of initial clusters.

Form the feature-clusters Q, such that:

• Ci c f

• y /” € C\, fdirec, frot is identical for all the features in the cluster.

• Ci n Cj = ({) (null set) (for i^y) ,i.e., no overlaps between clusters are allowed.

Here, Ci is a cluster of features, for i=l,2 ,...

Based on the initial clustering, construct a hyper-graph (cluster-graph) [69]. In this

cluster-graph, each of the hyper-nodes corresponds to a feature-cluster Ci, and a hyper

edge (between two hyper-nodes) bundles all the parallel edges, which represent the

feature precedence relations between features of two clusters. The hyper-graph is

equivalent to a feature-graph, but at a higher degree of abstraction. To demonstrate the

concept of a hyper-graph. Figure 4.5 presents a hypothetical graph. This graph represents

the initial set of clusters and the precedence relations between the features of the clusters.

Figure 4.6 presents the hyper-graph corresponding to the graph presented in Figure 4.5.

Clusterl

fll
flO

Cluster!
Cluster4

Clusters

Figure 4.5: A hypothetical feature graph

In Figures 4.5 and 4.6, the solid, dotted, and dashed lines correspond to ‘strength-0’,

‘strength-r, and ‘strength-2 ’ relations respectively.

47

Figure 4.6 : Hyper-graph corresponding to the graph presented in Figure 4.5

The hyper-edges encapsulate all the edges (relations) between the clusters. The strength

of the hyper-edge is the strength of the strongest edge it encapsulates , i.e., the one with

the lowest metric (because the lower the metric, the higher the eriticality).

Strength{HyperEdge{C, Cj)) = Min{P[ii, jj]) where e C,, 6 C j, and

[P] is the precedence matrix.

The cluster-graph represents the precedence-graph with a higher degree of abstraction. A

DSM is constructed from the cluster-graph in the next step. This DSM then undergoes the

process of intelligent cycle elimination.

Step5 process2 î Removing cycles from the initial set of clusters

The initial set of clusters is analyzed for cycles. Eliminating these cycles is necessary to

yield a feasible manufacturing plan. The cycles can be broken either by deleting a hyper

edge or by splitting clusters. Deleting a hyper-edge implies that all the precedence

relations bundled in it are ignored. The DSM is used for intelligently suggesting the

edges (which correspond to the precedence relations) to be broken in order to remove

cycles. If the edges were broken, (i.e., the precedence relations were ignored) without any

intelligent method, more number of edges would have to be broken as compared to those

by using an intelligent method.

If a cluster must be split, the resulting clusters should be of similar sizes. Recall that each

of the resulting clusters correspond to a RMT configuration. Balancing the split sub

clusters would ensure that the resulting RMTs be balanced in terms of workload. This

48

would balance the machining system on a whole and would reduce the possibility of

creating bottlenecks.

Due to the nature of the problem, the designer cannot get any information to judge the

potential benefit achieved by splitting any particular cluster. Even the DSM cannot assist

the designer for this task. Therefore, it is proposed to consider splitting clusters in

decreasing order of their sizes. Although this does not guarantee similarly sized clusters,

it does contribute towards this objective.

The method for removing cycles at the feature-cluster level

Pre-Processing: In this phase, the Cluster-Graph from the previous step is converted into

its DSM dual. Recall that the correspondence between a graph and a DSM has been

asserted in Chapter 3.

The resulting DSM is partitioned by PSM-32. Based on the heuristic embedded in it, the

software assigns a metric to each of the edges of the principal-circuit. These metrics

represents the potential benefit of ignoring a relation between two entities. These metrics

are assigned solely on the mathematical basis, and do not reflect any form of engineering

decisions. In other words, these metrics represent the ‘goodness of tears’. The lower the

metric, the higher is the probability of removing the cycle by ignoring that relation.

Phase -1 : Here, the intent is to eliminate cycles by ignoring non-critical precedence

relations. This subroutine looks for potential tears in decreasing order of the ‘goodness of

tears’. The lower the ‘goodness of tearing’, the lower is the probability to eliminate the

cycle by ignoring that relation. Ignoring a relation is equivalent to deleting it from the

precedence matrix, [P].

Pseudo code:

/*Phase 1- Eliminate cycles by cutting edges*/

‘tear_variable':= ‘best tear' /* Hold the cell having the best ‘goodness o f tear’ in

the variable: ‘tear_variable ' */

While {(cycle ^ 0) OR (all cells in the principal-circuit have been covered)}

if (Strength of the ‘tear_variable’9t Critical)

49

then

break that hyper-edge. I*delete a hyper-edge=> ignore all relations

bundled in it. => the corresponding relation in fP] are deleted*!

else

‘tear_variable’ = next-best tear.

end

Qn6./*Phase-l ends*/

Discussion: As has been mentioned earlier, the heuristics embedded in the software

assign a metric to each of the cells, which are a part of the principal-circuit (defined in

Chapter 3). The metric assigned to a cell corresponds to the potential of eliminating the

principal-circuit by ignoring the relation represented by that particular cell. Therefore, the

lower the ‘goodness of tear’, the lower is the chance for the cycle to be eliminated by

ignoring that relation. Ignoring relations with the ‘goodness of tear’ being below a certain

threshold would have a very low probability of eliminating the cycle. This possibility is

not considered in this work.

If (cycle ^ 0) /* //the cycle exists*!

then

terminate

else

execute ‘Phase-2’

Phase -2: The option of eliminating the cycles by ignoring relations has been exhausted

in Phase-1. Therefore, in order to eliminate the cycles, the clusters ought to be split.

However, the clusters can be split with or without ignoring any relations between the

features. In this phase, the clusters are split without ignoring any relations (breaking any

edge).

Pseudo Code:

/*Phase2: Split clusters without cutting any internal edges*/

“cluster variable” := the largest un-considered cluster in the cycle.

While {(“cluster variable” ^ ®) OR (cycle?:: O)}

50

if n { out^} =0)

then

“cluster variable” := the largest un-considered cluster in the cycle.

else

if (({/«}u {in.chil£}) n {out} =([))

then

1®‘ Sub_cluster= ({m}u {in.child})

2"̂ Sub cluster =cluster-1*‘ Sub cluster

goto Pre-Processing

else

continue

end

end

end /*Phase-2 ends*/

Discussion: Recall that each feature-cluster corresponds to a RMT configuration.

Therefore, if the number of clusters increases, the RMT would have to be reconfigured

more times. This phase increases the number of clusters. Hence, this phase is

implemented after the option of ignoring non-critical relations has been exhausted. To

balance the workload on the RMTs, the final set of clusters should be balanced in terms

of size. To partially fulfill this objective, the clusters (to be split) were considered in the

decreasing order of their sizes.

If (cycle^i 0) !*if the cycle exists*!

then

terminate

else

execute ‘Phase-3’

5 Nodes, which have the edges corresponding to the Hyper-edge of the cycle running into them.
 ̂Nodes, which have the edges corresponding to the Hyper-edge of the cycle running out o f them.
 ̂Nodes having an edge running into them from the nodes belonging to the ‘in’ set.

51

Phase -3: In the previous phase, the clusters were split without ignoring any precedence

relations. This phase is an extension of the Phase-2, in that the clusters are split by

ignoring relations. The author proposed to use a constrained-min-cut algorithm [76] for

this task. The constraint being that critical constraints cannot be ignored.

Pseudo Code:

/*Phase3: Split clusters by cutting internal edges*/

While {(Cycle# 0} /*if the cycle exists*/

Pick the largest un-considered cluster (belonging to the cycle).

If ({/«} n {out} =0)

then

consider the cluster as a graph.

Partition the graph using constrained min-cut algorithm such that

{/■«}(= f partition

[out) a 2 "̂ partition

No ‘Strength-0’ edges are cut.

/*done manually single-handedly or with DSM assistance*/

goto Pre-Processing

else

continue

end

end /*Phase-3 ends*/

If (cycle# ®) /*;/the cycle exists*!

then

terminate

else

throw exception (“part is infeasible for process planning”)

end

52

Discussion: In this phase, a constrained min-cut algorithm is used. This algorithm splits

the clusters by ignoring the minimum number of non-critical relations. Moreover, it

balances the resulting sub-clusters in terms of size. This algorithm is used as a black-box.

However, if the cycle remains, it can be concluded that the part leads to an infeasible

process plan [69].

StepSoutput*

The set C={Cj} representing the new set of clusters and an updated set of hyper-edges

connecting them (an updated [P].)

StepSoiscussion •

In this step, the cycles were eliminated intelligently. Using the DSM based scheme

eliminates the cycles by ignoring a lesser number of relations. This method results

significantly better than those by Sarma, and Wright’s method [69]. The comparison

between the two is presented in section 4.2.3.10.

53

4.2.S.9. Application of the method to the example part to yield feature-clusters

la . Input: -The Part Model with all the tolerances and dimensions specified. DjS are the

TADs. All the measurements are in millimeters. Standard geometrie-tolerance symbols

are used.

// B 0.05

// A 0.01

n 0.02

o 0.01

D6 v

D3-

190
150

170

RYERSON UNIVERSITY

111 is is the part for the
IlMTs to design for. 'Hie
D 1,D2...D6 represent TADs.

Ambrish G u p ta

The Part

Dfowlng-I
IE

Figure 4.7: The Part

54

lb . Input:-The Raw Stock. The method implicitly requires the Raw-Stock as the Input.

Figure 4.8 presents the drawing of the Raw-Stock, and specifies its dimensions. The raw-

stock is assumed to be squared, i.e., the end faces are planed.

c

f2 2 0 l

Til is is the Raw-Stock.

RYERSON UNIVERSITY

Ambrish G u p ta

Raw Stock
(squared)

I

Figure 4.8: The Raw Stock

55

2a. Preprocessing: - The features are recognized using an external “feature recognition

software-agent” like FeatureWorks®. The features are presented in Figure 4.9. The

names of the features are compliant with the STEP-AP-224.

FaceFlaM

HoIeThrul

Stepl Gi

Step2a

2/

HoieBlindBIg

HoleThru 2 x series

FaceCurved

■Slotl

Slot la
Stepl

HoleBlindla\

HoleThru lov

HoleBlindl

Slep2

FcceFlat2

/HoleBlindl

/HoIeThrul

1 w
_L_LU

Tlic manufacturing features
shown by superimposing
the Raw-Stock over the
finished part

RYERSON UNIVERSIIY

Ambrish G upta

Features

E : D raw ings
I

Figure 4.9: Features

56

2b.3. Preprocessing, identlfîcatlon of Rotation attribute: - The TADs and rotation

attribute are identified for each feature. This information is presented in Table 4-2. The

table also shows the ftooi^ov each feature. Based on ftool of the features, Equation 4.2 is

constructed. This equation is then simplified using Espresso. The simplification of the

boolean function on the LHS leads to a single resulting Prime implicant. The literals

constituting this prime implicant correspond to the Tad-min set. The intersection of Tad-

ntin, and fbooi for each feature results in fdirec, the optimal TAD.

Table 4-2: Features, their corresponding TADs, and Rotation characteristics

(Y=YES)

Feature
Rotation TAD

b̂ool Eqn-4.2
Eqn-4.2

Simplified
using

d̂irccTool Work D1 D2 D3 D4 D5 D6

1 FaceCurved Y Y Y (DlvD2) D

S

Q

s sF
1<
S<

a
>

;
g

1?ii
l §
s, S-

t l

■ 1
I
1

Dl
2 Facenaii Y Y (Dl) Dl
3 FaceFiai2 Y Y (D2) D2
4 Step 1 Y Y Y Y Y fDlvD3vD4vD6) Dl
5 Step la Y Y Y Y Y (DlvD3vD4vD5) Dl
6 Step 2 Y Y Y Y Y fD2vD3vD4vD6) D2
7 Step 2a Y Y Y Y Y (D2vD3vD4vD5) D2
8 Slot 1 Y Y Y Y fDlvD3vD4) Dl
9 Slot 2 Y Y Y Y (DlvD3vD4) Dl
10 Holey,indBig Y Y Y Y (DlvD3vD4) Dl
11 Holey, jpjl Y Y D5 D5
12 Holey,indla Y Y D5 D5
13 HoIeThrul Y Y D6 D6
14 HoleThru la Y Y D6 D6
15 HoIeihru2.1 Y Y Dl Dl
16 Holê yru2.2 Y Y Dl Dl
17 Holeihru2.3 Y Y Dl Dl
18 Holê hru2.4 Y Y Dl Dl
19 Holê yru2.5 Y Y Dl Dl
20 Holeihru2.6 Y Y Dl Dl

57

3. Precedence Constraints:

Table 4-3 presents the precedence relations between the features. These relations were

quantifies according to the scheme presented in 4.2.3.7.

Table 4-3: Feature Precedence

Predecessor Successor Relation Value Explanation of Relation

F aceflatl Face_flat2 Critical 0

Parallelism defined
e^glicitly for Face_flat2

wrt. Face flatl.
Therefore, F aceflatl
need to be machined

before Face_flat2.

Face flat2 Step 1, Step la. Slot 1, Slot 2 Critical 0 For approach.

Step l,Step la Slot 1, Slot 2: Quality 1
For maintaining flatness

in the slot features.

Slot 1 Slot2, HoleblindBig Critical 0 For approach

Stepl ,Stepla Step2, Step2a Critical 0

Parallelism defined
e;q)licitly for Step 2, Step

2a wrt. Step 1, Step
la.Therefore, Face_flat2

need to be machined
before Step 2, Step 2a.

Slot2 HoleblindBig Optimal 2
Best machining practice:

machine shallow features
before deep.

Step 1, Step 2 HolethruZ 1,2.2,2.3 Critical 0 For definition
Step la. Step 2a Holethru2.4,2.5,2.6: Critical 0 For definition

Stepl Holethrul,la Critical 0 For approach
Slotl,Slot2 Holethrul,la Critical 0 For definition

Step la Holeblindl,la Critical 0 For approach

58

4. Identify cycles

Table 4-3 is translated into the DSM format (presented in Table 4-4). This DSM assists

the designer to identify cycles existing at the feature level, and further at the feature-

cluster level. The numerals in the DSM represent the strength of the precedence relations

between features (0 = Critical; 1 = for Quality; 2 = for Optimality).

Table 4-4: DSM 1. The Original DSM for the Features Vs. features

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1! Facecurved *

2! FaceFlatl *

3! FaceFlat2 0 *

4! Step 1 0 *

5! Step la 0 *

6! Slot 1 0 1 1 *

7! Slot 2 0 1 1 0 *

8! HoleblindBig 0 2 *

9! Holethru2.1 0 * 0
10! Holethru2.2 0 * 0
11! Holethm2.3 0 * 0
12! Holethru2.4 0 * 0
13! Holethru2.5 0 * 0
14! Holethm2.6 0 * 0

15! Step 2 0 0 *

16! Step 2a 0 0 *

17! Holeblindl 0 *

18! Holeblindla 0 *

19! Holethrul 0 0 0 *

20! Holethrula 0 0 0 *

59
pmERn'OF

RYERSSIi! LIBRAAV

This DSM (Table 4-4) is firstly used to identify cycles at the feature level. The DSM is

partitioned using PSM32, resulting in Table 4-5. From this table, it can be observed that

no cycles exist at the feature level.

Table 4-5: DSM2. The Partitioned precedence matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1! Facecurved *
2! Faceflatl *

3! Faceflatl 0 ♦

4! Step 1 0 *

5! Step la 0 *

6! Slot 1 0 1 1 *

17! Holeblindl 0 *

18! Holeblindla 0 *

7! Slot 2 0 1 1 0 *

15! Step 2 0 0 *
16! Step 2a 0 0 *

8! HoleblindBig 0 2 *
9! Holethrul. 1 0 0 *

10! Holethrul.2 0 0 *

11 ! Holethru2.3 0 0 *

12! Holethru2.4 0 0 *

13! Holethrul.5 0 0 *
14! Holethru2.6 0 0 *

19! Holethrul 0 0 0 *
20! Holethrula 0 0 0 *

Having confirmed that there are no cycles at the feature level, the method proceeds to

form the initial set of feature-clusters. These clusters are formed by grouping together the

features with identical frot and fdirec-

60

Table 4-6, represents the initial feature-clusters as a colored block along the diagonal.

This representation helps construct the DSM corresponding to the hyper-graph, which is

used to identify the existence of cycles at the feature-cluster level.

Table 4-6: DSM 3. The initial feature-clusters

P 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ii 17 18 19 20
I! Facecurved Î
2! FaceFIatl
3! FaceFlat2 0

4! Step 1 oTD IM■ ■■■IBmmi
5! Step la 0 1 * I
6! Slot 1 0 1 1 *
7! Slot 2 0 1 1 1 0 *

8! HoleblindBig 0 2 *
9! Holethru2.1 0 * ~
10! Holethru2.2 0 * * 0
11! Holethru2.3 0 * 0
12! Holethru2.4 ♦

g
~

13! Holethru2.5 * 0
14! Holethru2.6 Oj u ■ C j J Q j IÜ _* ; 0

15! Step 2 0 0 ♦
16! Step 2a 0 0 ♦

17! Holeblindl L _ 0 -•
18! Holeblindla 0 ! 1

19! Holethrul 0 ~ ~ □ n ! *
20! Holethrula 0 0 0 □ □ *

Based on Table 4-6, Table 4-7 is constructed. Each cell of Table 4-7 corresponds to a

cluster formed after the initial clustering stage. Partitioning the DSM (Table 4-7),

highlights the cycle: Clusters->Cluster4 “̂ Clusters. To render this part manufacturable,

this cycle needs to be removed.

Table 4-7:DSM4. Clusters Vs Clusters (shows a cycle with critical relations)

1 2 3 4 5 6
1 ! Clusterl *

2! Cluster2 0 *

3! Cluster3 0 T

4! Cluster4 0
5! Cluster5 0 *

6! Cluster6 0 *

61

It can be observed from Table 4-7 that the cycle comprises of ‘Strength-0’ relations

(Critical relations). Since ignoring these relations are not allowed, the feature clusters

need to be split. Following the method (to remove cycles) presented in 4.2.3.8 ., the cycle

is removed, and the resulting feature-clusters are presented in Table 4-8.

Each feature-cluster is presented on the diagonal. Ci = [Face curved, FaceFIatl], C2 =

[FaceFlat2], C3 = [Step 1, Step la. Slot 1, Slot 2, HoleblindBig], C4 = [Step2, Step2a], C5

= [Holeblindl, Holeblindla], Ce = [Holethrul, Holethrula], C? = [Holethru2.x] (x=i,...e).

In Table 4-8, the feature-clusters are presented on the diagonal, and enclosed with

different boundary types.

Table 4-8: DSM 5. The final feature-clusters

1! Face curved *
2! FaceFIatl
3! FaceFlat2

5! Step la
6! Slot 1
7! Slot 2

8! HoleblindBig
15! Step 2

16! Step 2a
17! Holeblindl

18! Holeblindla
19! Holethrul

20! Holethrula
9! Holethru2.1
13! Holethru2.2
14! Holethru2.3
10! Holethru2.4
12! Holethru2.5
11 ! Holethru2.6

62

Feature Cluster Drawings

Figure 4.10-4.16 present the part after the machining of the feature-clusters.

Figure 4.10 presents the part after Cluster-1 (Ci = [Face curved, FaceFIatl]) has been

machined.

§

(2 0 0)

RYERSON UNIVERSITY

111 is is the part artcr
the features in the
first cluster have been
machined.

Ambrish G u p ta

After Cluster-1
Drawl ng-4

Figure 4.10: After machining feature-cIuster-1

63

Figure 4.11 presents the part after Cluster-2 (C2 = [FaceFIatl]). Machining FaceFIatl,

requires shaving off 1 0 mm from the flat face.

C

(200)

RYERSON UNIVERSITY

Tin’s is the part aflcr
the features in the
second cluster have been
machined..

Ambrish G u p ta

After cluster-2
Drawlrtg-5

- > I . .. =

Figure 4.11: After machining feature-cIuster-2

64

Figure 4.12 presents the part after Cluster-3 (C3 = [Step 1, Step la. Slot 1, Slot 2,

HoleblindBig^) has been machined.

190

150

This is the part otter
the features in the
third cluster h ave b een
m achined.

RYERSON UNIVERSITY

Ambrish G u p ta

After cluster-3

A4f ^ ‘ DrawIr^g-6
* I I

Figure 4.12: After machining feature-cluster-3

65

Figure 4.13 presents the part after Cluster-4 (C4 = [Step2, Step2a]) has been machined.

F

150

i
4

170

This is the part otter
the features in the
fourth cluster h ave b een
m achined.

RYERSON UNIVERSITY 1
Ambrish G up ta

After cluster-4

A4 Drowlng-7
> I T

Figure 4.13: After machining feature-cluster-4

66

Figure 4.14 presents the part after Cluster-5 (C5 = [Holeblindl, Holeblindla]) has been

machined.

F

190

150
30

1 0 c 1 9
y 0

§
170

RYERSON UNIVERSITY

'lliis is the part after
the features in the
ftfth cluster ha\c been
machined.

Ambrish G u p ta

After cluster-5
DrawIng-8

Figure 4.14: After machining feature-cluster-5

67

Figure 4.15 presents the part after Cluster- 6 (Cg = [Holethrul, Holethrula],) has been

machined.

Tills is the part a Her
the features in the
sixth cluster have hecn
machined.

RYERSON UNIVERSITY

Ambrish G u p ta

After cluster-6
Dfowlng-9

Figure 4.15: After machining feature-cIuster-6

68

Figure 4.16 presents the part after Cluster-7 (C? = [Holethru2.x] (x=i,..,6)) has been

machined.

190
150

\ 0 ' 30

o c >1 g]y

°1
170

Tills is the part after
the features in the
seventh cluster have Iwen
machined.

RYERSON UNIVERSITY

Ambrish G upta

After cluster-7

Drawing* 10

Figure 4.16: After machining feature-cIuster-7

4.2.3.10. Discussion and Comments

An alternate method for clustering could be to partition a DSM of ‘features vs. features’

and then group features according to the TAD and rotation attribute. The drawback of

this approach is that it gives a higher number of feature-cluster because it does not

support discounting of weaker relations.

All the DSM operations performed by the DSM software (PSM32) are based on

heuristics. Generally, heuristic-methods are a trade-off between the performance of the

method and the computational expense. Thus, they do not guarantee correct results in all

69

conditions. In spite of the software being imprecise in some conditions, it works well for

this research.

According to boolean-logic, any set of TADs resulting in any one of the prime-implicants

be ‘ r , constitutes the feasible TAD set for machining the complete part. On the other

hand, the method given by Sarma and Wright [69], suggests determining the min-cover

of the part (in terms of TADs). However, they do not consider the case where the min-

cover has more than one implicants.

An intelligent method eliminates cycles by breaking a lower number of edges as

compared to that with naive methods. A brief comparison of ‘Intelligent cycle breaking’

with their work, which identifies cycles using ‘Depth-first search’ and breaks the cycles

naively (based solely on edge strength) is presented to demonstrate the benefit of

intelligent cycle breaking.

The scenario represented by hypothetical graph and the corresponding hyper-graph

presented in figures 4.5, and 4.6 respectively, is chosen to compare Sarma and Wright’s

method with the one developed in this thesis.

According to Sarma and Wright’s [69] method;

Conduct depth 1*‘ search for cycle. Cycle = {Cl, C2, C4, Cl}.

The weakest link the cycle: (C2-C4)

Delete that link (because link is not “Critical”).

Conduct depth 1*‘ search for cycle. Cycle = {Cl, C2, C3, C4, Cl}.

The weakest link the cycle= (C1-C2)

Delete that link (because link is not “Critical”).

With the DSM based method (‘intelligent cycle breaking’):

• The principal-circuit is: {Cl, C2 , C3, C4, Cl}.

• When tearing advice is sought, the heuristic suggests breaking (C1-C2).

70

With only one edge being broken to eliminate the cycle as compared to two by using the

Sarma and Wright’s method shows the improvement over ‘naive cycle breaking’. In a

general problem also, by using the DSM method, there is a good possibility to delete a

smaller number of hyper-edges to eliminate cycles.

NB: In Sarma and Wright’s work [69], they had a constraint that no strong relations be

ignored until all the cycle causing weaker relations have been ignored. This constraint did

not allow any room for intelligent cycle killing.

Similar to the past feature-clustering methods, current Computer Aided Process Planning

(CAPP) systems also require input information on the manufacturing resources and the

plant layout. However, in this thesis, features were clustered with an intent to design

machine configurations. Therefore, a novel feature-clustering method was developed.

4.2.3.11. Summary

The method developed in this section inputs the part’s feature-based model, and returns a

set of feature-clusters. The clustering process consists of two phases. In the first phase,

features are clustered based on their generic machining attributes. In this thesis, only

TAD, tolerance, and machining precedence are considered. Since the machining

precedence is considered, cycles may exist between the initial set of clusters. In the

second phase, the cycles are removed by using a DSM based method. The output of this

method is a set of feature-clusters. Each of these feature-clusters corresponds to a single

RMT configuration. In the next section, a method is developed to determine the

functional specifications of the RMT configurations required to machine the feature-

clusters.

71

4.2.4. The Method for determining the specifications of modules

4.2.4.1. Introduction

Each of the feature-clusters resulting from the previous section corresponds to a single

RMT configuration. The machining requirements posed by a feature-cluster are

equivalent to the FRs of the corresponding RMT configuration. These FRs are manifested

by the cooperation of the modules assembled into the RMT configuration. In principle,

the FRs consist of motion requirements, velocity requirements, manipulability etc. The

list of pertinent FRs is very large. To simplify, only the motion ranges are considered

pertinent. However, the method developed in this section can be sealed-up to incorporate

any number of independent FRs. Since this thesis considers the modules only in terms of

their motions ranges, the modules are referred to as ‘Motion Modules’.

In this section, a systematic method is developed to determine the functional

specifications of the modules, which assemble to form the RMT configuration. The

resulting RMT configurations are representative of an ‘ideal machine,’ specifically tuned

for just that feature-cluster, i.e.. The RMT is configured to render the machine,

‘dedicated’ or ‘customized’ for a particular feature-cluster (a task-set in general).

The prime intent the method being developed in this section is to determine the functional

specifications of the modules, which can be feasibly assembled to machine the different

feature-clusters. The goal of this method is to aehieve functional feasibility. To achieve

economic feasibility, the following sub-objectives are considered.

Utîlizationi^MHç.))

where RMT^ ̂ is the RMT configuration for the feature-cluster- i

This sub objective means that the total utilization of the RMTs be maximized. Each of

these RMTs is specifically tuned for a speeific feature-cluster. This objective is

equivalent to minimizing the net redundancy for the RMT configurations, i.e., each RMT

configuration embodies the minimal functions, and the net workspaee of the RMT is

72

ideally just enough to manifest the required motions. This sub-objective is also analogous

to maximizing the ROI.

Min(^R.Qconfîguation{RAdTç.))

This sub-objective means that the total cost incurred while reconfiguring the machine to

suit the succeeding feature-clusters be minimized, i.e., the total number of modules

changed or rearranged, in order to reconfigure the machine from one configuration to the

next, and so on is minimized. This sub-objective is equivalent to maximizing the Return

On Change (ROC) from one RMT configuration to another. The best candidate that

fulfils this sub-goal would be a RMT with all the functionality that the different feature-

clusters require. This implies functional redundancy, which is in direct conflict with the

previously stated sub-objective.

From the literature-survey, it was observed that Ye and Salustri [107], successfully

solved a similar problem of simultaneously fulfilling two conflicting objectives.

Therefore, the author chose to follow their approach and construct a consolidated

objective. The objective for designing the RMT configurations was to co-optimize the

stated sub-objectives, i.e.,

Max
f \

W,
+ = - ^

/ Kq configurationRMTc.̂ RMTc,̂ ^
4-3

y

Where U t i l i z a t i o n - is the ‘Utilization’, for the RMT corresponding to the feature-

cluster-i.

Re ̂ - is the ‘Cost of Reconfiguring’, for reconfiguring the RMT

configuration corresponding to the feature-cluster C,, to suit the succeeding feature-

cluster (C i+i).

are scalar weights, which correspond to the relative level-of-importance of the

sub-goals.

73

Figure 4.17 shows the relative comparison of Dedicated, Flexible, and Reconfigurable

machines with regards to the weights (Wa, Wb). IfW a=l, and Wb=0, the objective would

be to design a dedicated machine. If on the other hand, Wa=0, and Wb=l, the objective

would be to design a flexible machine. For designing reconfigurable machine, the

weights should have to chosen somewhere in between.

(^^^^^configurable - ►

^^Dedicated^^

Wa

Figure 4.17: A different representation of Figure 1.1

NB: in this thesis, this objective (4.3) does not have a mathematical form, and is strictly

abstract. Even though it does not serve as a mathematically defined objective-function, it

serves as an abstract design objective, which the designer aims to achieve.

In order to simplify the objective and make it independent of the production-portfolio, the

objective function is transformed into the following simplified objective.

Simplified Objective: Minimize the total number of modules. This contributes to

minimizing the reconfiguration cost. Moreover, the redundancy in each RMT

configuration ought to be minimized. This contributes to minimizing the wasted

functionality or motion ranges.

This section presents a method to determine the specifications of the modules, which

fulfill the afore-stated simplified objective. The method is then demonstrated by applying

it to the example part. Finally, a discussion is presented, followed by a summary.

In reality, the modules could be functionally coupled. This renders the top-down strategy

unsuitable, because it cannot decide which function to allocate to which module.

74

Therefore, as a simplifying assumption, the modules are assumed functionally

independent, i.e., a module is assumed to contribute to a subset of motions in operation

space which is exclusive to it. In mathematical terms, this implies that a module

contributes to a set of rows of the Jacobian exclusive to itself. The Jacobian matrix is

defined as the mapping of the manipulator’s ‘joint space’ to its ‘operation space’.

4.2A.2. Approach

Figure 4.18 presents the approach followed to design the modules, which assemble to

form RMT configuration required to machine a part.

Recall that this thesis follows a top-down design strategy. Inline with this strategy, firstly

the machining requirements for each feature-cluster are identified. These machining

requirements correspond to the FRs of the RMTs. The modules forming the RMTs

cooperate to manifest the machining requirements.

Feature
Clusters(from
Section 4.2.2)

The set o f Modules defined in
terms o f their

function(motion)-specifications.

For each Feature Cluster:
determine the

Motion-Requirements(Moti
ons and Ranges).

Track the 'Meta-modules'
back to the feature-clusters to
identify the Interfacing-FRs.

Track the Atomic Modules
back to the feature-clusters.

Cluster the Atomic Modules
to form 'Meta modules',

defined ONLY in terms of
Motion-FRs

Normalize the
Motion-Requirements to form
Atomic Modules.(Defined later
in the section as well as in the

Glossary)

Figure 4.18: The approach for this section

The FRs are then normalized to form atomic modules. These modules are single DOF

modules. The normalization process eliminates duplicates and contributes to fulfilling the

75

simplified objective stated in the previous sub-section. This process is analogous to

Principal Component Analysis [31].

The resulting atomic modules are then backtracked to the feamre-clusters. Based on this

information, the atomic modules are clustered to form ‘meta-module’. These meta

modules have more than one DOFs embedded. At this stage, the modules are defined

only in terms of the motion-ranges they manifest. To define the module completely, it is

necessary to specify the interfacing requirements.

To determine the interfacing needs, a suitable configuration is chosen for each RMT.

This configuration is represented as a graph diagram. The existence of an edge between

two firnctional-modules represents adjacency. This adjacency of modules dictates the

interface design, i.e., they correspond to the interfacing requirements.

Based on the motion and interfacing requirements, the modules can be assigned physical

detail. This task is highly iterative. In this thesis, it was proposed to use DSM to lay down

the iteration scheme. However, because of time constraint, this scheme was not followed.

Instead, the first reasonable physical design was chosen for each of the modules.

The final RMTs are formed by replacing the functionally defined modules in the

configuration graph, by physically defined modules.

NB: In this thesis, the focus is on determining the functional-specifications (and not

detailed physical specifications) for the modules. The functional-specifications

considered in this thesis are limited to ‘Motion FRs’ (the motions the modules manifest)

and ‘interfacing FRs’ (the adjacency to other modules). In principle, the motion-FRs and

interfacing FRs are coupled. To simplify the design task, the motion-FRs and interfacing-

FRs are assumed un-coupled.

4.2.4.3. Step 1: Identify the Motion Requirements for each Feature-Cluster

The motion requirements for each feature-cluster are identified by analyzing the path the

tool must follow in order to machine the feature-clusters. The first reasonable method to

yield the required toolpath is used.

The toolpath is analyzed for both ranges of motions and coordination between Degrees-

of-Freedom (DOFs). The motions are defined w.r.t. a coordinate-frame assigned to each

76

feature-cluster. This coordinate-frame is assumed to be the basis-frame for defining the

RMT configuration’s operation space.

Step 1 pre-processing: Sequence the features within the feature-clusters according to

precedence. In case of ambiguity, decide arbitrarily. The motivation to sequence the

features is presented in the discussion on this step.

For each feature, choose a start-point. This is the point where the tool-tip is placed before

it approaches the feature. This point is assumed to be on the part’s bounding-box. The

bounding box of a part is defined as the smallest cuboid that the part can fit in. In other

words, it is an orthogonal-convex-hull of the part. The retract point is defined as the point

where the tool-tip is placed after the feature has been machined. For the sake of

simplicity, the start and retract points are assumed to be identical. The machining motions

for a feature would include the motions required for the tool to approach the feature

(from its start point), machine it, and return to the retract-point. Similarly, the positioning

motion would be the motions required to place the tool-tip from the retract-point of one

feature to the start-point of the succeeding one.

Assign a Right-handed coordinate frame to each feature-cluster, with its origin coincident

with the start-point of the first feature of the feature-cluster. The frame’s ‘Z’ axis is

aligned with the TAD. ‘X’ and ‘Y’ are chosen to be an arbitrary pair of orthogonal axes,

in the plane perpendicular to the TAD.

Steplinputt Feature-elusters {Q} (from Clustering Phase).

Steplprocessit Generate the motion requirements for machining the feature-clusters.

V Feature-cluster:

V/Î s feature-cluster:

Identify the operation super-type. If tool is rotating, then the operation type is ‘Milling’ -

which is a superset of Drill; else, it is ‘Turning’. This classification of machining

operations is consistent with STEP-NC (STEP-AP-238).

Generate the motions for tool-tip required to move the tool from the ‘start’ of the feature,

machine the feature, and to return to the ‘retract’ point. Recall that the ‘retract’ point is

77

assumed coincident with the ‘start’ point. The tool-motions are generated by an external

agent - either human or some suitable piece of software. Based on the machining motion,

identify the motions, the kind of coordination between the DOFs, and the ranges of the

motions.

NB: V fi, the machining motions and parameters are specified w.r.t. its individual

coordinate-frame.

After machining a feature, it has to position itself to the start-point of the succeeding

feature. The motion from the ‘retract point’ of one feature to the ‘start point’ of the next

is termed ‘positioning motion’.

Find the positioning motion to move the tool from the ‘retract-point’ of ‘/ ’ to the ‘start-

point’ of ‘yj+y’ (the next feature), w.r.t. the coordinate-frame of the feature ^ ’. This is

done by joining the retract point of fi to the start of f+i by a 3-D line; and if this line

pierces through the bounding-box of the part, project it onto the bounding-box.

Based on the positioning motion, identify the motions, the kind of coordination between

the DOFs and the ranges of the motions.

Transform the complete set of motions (for all the (sub) tasks in the feature-cluster) to

represent it w.r.t. feature-cluster’s coordinate-frame , i.e., the coordinate-frame of the first

feature. This transformation operation is defined as the ‘Union’ of the motions. The

Steploutputî Motions, their coordination, and their corresponding ranges (all specified

w.r.t. the coordinate frame of the cluster’s first feature).

Steploiscussion: Ideally, to determine the toolpath, one needs to assume a conventional

machine and identify/assume the operation(s) and tool. In the author’s view, the best way

to generate motions is to choose: (a) a Hyper-redundant robot (or a “Flexible Machine”)

with a tool mounted on its end-effector, and (b) a tool; and determine the path the Tool

tip needs to trace in order to machine the features. A hyper-redundant manipulator would

have very high dexterity and would be able to reach points, which a non-redundant

manipulator can possibly not reach. Moreover, the toolpath for such a manipulator would

be smoother.

78

The toolpath and its parameters are dependent upon feature geometry, machining

operation, tool’s material, and geometry, part’s material, surface finish, coolant flow and

many other criteria. For simplicity, the motion parameters are calculated based on the

part’s material and the machining operation.

The bounding-box of the part changes after machining each feature-cluster. As a

simplification, the bounding-box of the raw-stock is considered as the bounding-box for

the part(s) at all its manufacturing stages.

Any suitable toolpath generation method can feasibly replace the method used here.

Using commercial CAM software is a viable alternative. Its use has been precluded in

this thesis because it requires considerable pre and post processing to yield the required

motion ranges, and motion coordination. There is a strong potential to automate the CAM

software to perform automatic pre, post processing, and yield the machining requirements

in STEP-NC format.

The sequence of features does not affect the motion coordination or ranges. The main

intent of sequencing features is to systemize the machining plan and to identify the first

feature of the cluster. Recall that the first feature has a coordinate frame, which is the

basis-frame for the RMT’s operation space.

4.2.4.4. Step2: Normalize the Functional Requirements to yield Atomic Modules

In this step, the motion FRs (of the feature-clusters) determined from the previous step

are normalized. Here, the normalization is performed by clustering the motions FRs. This

is analogous to implementing Principal-Component-Analysis (PCA) [31] or Self-

Organizing-Map (SOM) [39, 83] wherein, the dimensionality of the data set is reduced by

clustering.

Step2|nput: The motion FR of the feature-clusters. These motions are defined w.r.t. the

feature-cluster’s coordinate frame.

Step2processi: The motion FRs are clustered using human intellect. To facilitate the

designer, all the directional motion requirements from all the feature-clusters are listed

together. Next, the designer clusters the individual directional motions intuitively.

Finally, the “Union” over each cluster represents the corresponding ‘normalized motion’.

79

The ‘union’ operator in this step is defined as the motion that can subsume all the other

motions in the cluster, i.e., it is the Max of the values in that group.

Step2outputî The set of normalized motions, each of which is manifested by single DOF

modules, referred to as ‘Atomic Modules.’

Steploiscussion: The clustering operation is performed using human intellect. Even if a

standard algorithm like PCA/SOM were used, the designer would still have a significant

role in post-processing, i.e., deciding about the subsumption of one normalized motion

by another. Since, no mathematical function has been developed for deciding upon the

optimality of the module designs, human intellect is required to decide upon the

subsumption of one module over another.

It is also possible that a DSM be tailored (as done by Bradley [3]) to include the effects of

subsumption and perform intelligent clustering. This would eliminate any need for post

processing of information. Therefore, the whole clustering operation can be automated.

The directional motions are grouped separately even though they are physically the same

, i.e., physically, each atomic-module is equivalent to a motor. There is a possibility that

the motions be clustered after removing the directional context. The designer can choose

any alternative without affecting the overall method.

Even though the velocity parameters of the motions are identified, for the sake of

simplicity, they are not considered for the normalizing (clustering) operation. If the

strategy were also to consider the velocities, the method would have to model each FR as

a vector: <Motion range. Machining velocity range. Non-machining velocity range>, and

then cluster these vectors. In this case, the ‘union operator’ would be the max of all the

components such that the representative numbers (elements of the vector) cover all the

entities in the cluster.

4.2.4.5. StepS: Cluster the Atomic Motions to yield meta-modules

This step is done with the intent of clustering the ‘atomic modules’ to form, ‘Meta

modules’. Recall that these Meta-modules are a combination of atomic modules, i.e., they

are multi-DOF modules.

80

Forming meta-modules would reduce the total number of modules required, and

contribute to the fulfillment of the simplified objective stated in 4.2.4.1.

StepS Assumption : bi principle, a module can bave a maximum of 6 -DOFs. Having a 6 -DOF

module would lead to the possibility for the whole machine to be composed of a single

module. This would reduce the granularity of the machine and would require a massive

reconfiguration effort. Therefore, inline with Moon’s assumption [55], it is assumed that

a single module can have a maximum of 3 DOFs.

StepS,nput: (a) Feature-cluster’s FRs and (b) Atomic Modules.

StepSprocessri Cluster AMs to form Meta-Modules.

Backtrack the Atomic Modules (AMs), to the feature-clusters and represent this scenario

as a 2-level DSM. The first level of the DSM is ‘feature-clusters’ versus ‘feature-

clusters’. Within each cluster, the relations between the AMs are ‘Sequential’ or

‘Coordinated’ (represented by ‘5” and ‘C’ respectively); thus, making the second level of

the DSM. A ‘Sequential’ relation between AMs implies that the motions must act one

after another, i.e., not simultaneously. A ‘Coordinated’ relation between AMs implies

that the motions they represent, must act simultaneously.

NB: This 2-level DSM is solely for representation only.

Next, the ‘C’s (coordinated relations) and ‘5” (sequential relations) are extracted

separately from this 2 -level-DSM. New DSMs are made for the ‘C’s and ‘5”s. These

DSMs are AMs vs. AMs and the relations are boolean, i.e., they represent whether or not

the AMs coexist in any feature-cluster. In other words, make a new DSM of “AMs vs.

AMs.” Wherever, two modules are used together in for machining a feature-cluster with

an 'S ’ relation, then there is a ‘0’ , i.e., Cellij= ‘0’ if M, and Mj coexist for machining any

feature-cluster.

A similar DSM is made for ‘C’ relations.

Finally, both these DSMs are clustered (using standard DSM clustering algorithm; for

details. Ref: [48]) to yield Meta-Modules. By definition, meta-modules embody more

than one DOF. These DOFs could be either ‘coordinated’ (actuate simultaneously) or

‘sequential’ (actuate one after another). Although, the ‘coordinated’ module can subsume

81

a ‘sequential’ module, yet they are modeled separately. The rationale for modeling these

two types separately is presented in Appendix-I.

StepSpost-Processing: Some of the resulting meta-modules can possibly be subsumed by

assembling others. However, the assumption made earlier of the modules being

functionally independent leads to a constraint that no two assembling modules contribute

to the same subset of operation space. In this step, the designer checks the resulting set of

modules for subsumption. Having checked for subsumption, and eliminate the redundant

ones to result in a set of modules are referred to as ‘motion-modules’.

StepSoutpnt: Modules, which have been defined in terms of motion functions they need to

perform in their operation space.

Each of these modules is represented as a ‘Class’ [43, 89] (in context to ‘Object-

Oriented-Programming’).

StepS Discussion Î An explicit definition of the subsumption criteria is beyond the scope of

this thesis. Therefore, the author chose to employ human intellect to decide whether to

subsume a module.

The modules are represented as ‘Classes’. This representation gives a structured

information model of the module by explicitly specifying: (a) attributes: motion axes,

motion speeds, mechanism being used etc. and (b) functions/operations: reconfiguration

of channel for sequential modules, control functions, etc.

A class hierarchy is chosen (presented in Figure 4.19), wherein the ‘generic’-module is

modeled as an abstract-class. An abstract-class is defined as a class that cannot be

instantiated to form objects. Rather, it acts as ‘parent’ to the classes that can be

instantiated into an object [8 8]. This abstract class, represents the ‘generic module, and is

called the ‘Module-Class.’ The specific categories of modules derive from this abstract

class. The specific types of modules inherit all the attributes and operations of the parent-

class (the ‘module’ abstract-class). They impose some constraints on these inherited

entities. E.g., the 2-D coordinated module has a specific type of mechanism. Moreover,

some extra attributes or functions can be added to the derived class. Specific modules are

82

instances of these classes. These instances explicitly assign values to the fields of the

corresponding class.

Inheritance

Instantiation

Generic Module
(Abstract Class)

Module
Category- II

Module
Category- I

Module
Category- III

Completely
defined Module-I

Completely
defined Module-II

Figure 4.19: The class hierarchy

Figure 4.20 presents the class diagram of the module class (an abstract class). This class

diagram is made in accordance with conventions recommended by STEP-AP-

233(Systems Engineering). STEP-AP-233 is the extension of Unified Modeling

Language (UML) [43], to represent the system at all the stages.

Class Name: "Module(Abstract Class)"
All the specific module types inherit from

this abstract class.
Attributes:

1. Mechanism
2. Structure.
3. Control h/w.

Operation:
1. Download (Sub)Task from Main
Controller.
2. Give/Take Parameter/Flag values to
neighboring modules.
3. Execute (Sub)Task.
Etc.

Interface

Interface

Figure 4.20: Class Diagram for a General Motion ModuIe(Abstract Class)

83

Like other attributes of the class, the ‘interface’ for the modules is also modeled as a

‘class’. This class has attributes only. STEP-AP-233 (Systems Engineering) recommends

this convention. The class diagram for the interface is presented in figure 4.21.

Class Name: "Interface"

Attributes:
1. Mechanical Interface.
2. Communication/ Controls
Interface.

Figure 4.21: The class diagram of the ‘Interfaces’

The benefits of modeling ‘modules’ as classes are:

• This representation gives a structured functional description of the module; thus,

facilitating the process of detailed design.

• It represents the module as a structured information model, which facilitates its

use through computer-applications. These computer-applications could search the

World Wide Web for appropriate pre-designed modules. Alternatively, a computer-

application could also be developed to design the modules automatically.

• This representation is complaint with STEP-AP-233. Thus, this representation

facilitates the use of STEP-based software applications.

• The class diagrams, the inheritance and implementation models can help

modularize the modules to a higher degree of granularity. E.g., The sequential and

coordinated 2-D modules have everything in common except that the sequential one

has an extra attribute and related functions. Therefore, the class diagram gives a clear

picture that these two classes can be modularized: there be one generic ‘2-D module’

of a particular position and velocity range; it would be made ‘Sequential’ or

‘Coordinated’ by adding an attachment; depending upon the attachment, the module

behaves as Coordinated/Sequential.

NB: In reality, there are a large number of attributes and operations for the modules. This

thesis attempts to present a very limited set of them. However, the scheme developed

here can be extended to incorporate any number of attributes or operations.

84

4.2.4.6. Application of the method to the example part to yield functionally defined

modules

Figure 4.22 presents the toolpath for machining the feature-cluster-6 . The machining

motions, and positioning motions are shown.

Machining motion

Positioning motion

Figure 4.22: The motions required for machining feature-cluster 6 are shown

Machining Operation: Drilling (a subset of milling operations (Step-NC)).

The machining, and positioning motions are analyzed to result in Table 4-9.

Table 4-9: The results from the FR determination step for feature-cluster 6

IMachining Non-IMachining

Serial # Feature
Operation
super type

machining
motion

machining
speeds motor KW positioning motion

1 h o le th r u l m illing z= 8 0 4 25 p o s it io n in g F #1 to F # 2

:y = 1 0 0

2 h o le th r u la m illing 2^ 80 4 25

Feature-cluster- 6 was chosen for the ease of demonstration. The machining speeds are

determined from the machining handbook. Ref: [87]. The length units are ‘mm’ and

speed units are ‘mm/sec’.

85

The unionized motions (all net motion requirements represented in the coordinate-frame

of the cluster’s first feature) for feature-cluster- 6 are presented in Table 4-10.

Table 4-10: List of the motions requirements for Feature-Cluster

Motions Spindle
Motor KWRanges machining vel non-machining vel

Z=80 Vz=4 Vz=8
Y=100 Vy=3 Vy=8 25

Co-ordination = NULL

NB: “Z=80” means that range of motion in the Z direction is 80mm. This means that a

linear motion module, which provides this motion would have the maximum

displacement of 80 mm.

Listing together the unionized motions for every feature-cluster, Table 4-11 is gotten.

Table 4-11: The list of FRs for all the feature-clusters

Clusters
Motions

Spindle KW
ranges machining vel non-machining vel

Clusterl Z=180 Vz=4 Vz=8 18
X=120 W=8

Cluster! Z=20 Vz=4 Vz=8 18
X=120 Vx=3 Vx^8

Clusters

Z=150 Vz=4 Vz=8

30X=210 Vx=3 Vx=8
Y=210 Vy=3 Vy=8

Coordination {X,Y}

Cluster4
Z=60 Vz=4 Vz=8

30X=210 Vx=3 Vx=8
Y=210 Vy=3 Vy=8

Clusters Z=25 Vz=4 Vz=8 25
Y=100 Vy=3 Vy=8

Cluster6 Z=80 Vz=4 Vz=8 25
Y=100 Vy=3 Vy=8

Cluster?
Z=I30 Vz=4 Vz=8

25Y=180 Vy=3 Vy=8
X=180 Vx=3 Vx=8

Listing the motion requirements together (with no reference to the feature clusters) results Table 4-12.

86

Table 4-12: Listing ail the class’s requirements together

Direction Ranges
Z 20 25 60 80 130 1 150 1 180
X 120 180 210 Null
Y 120 180 210

Motor KW 18 25 30 Null

Motions listed in Table 4-12 are normalized, by clustering the motion ranges. The

representative value of each cluster of the motion range is the maximum motion range in

that cluster. The process of identifying the maximum of the motion ranges in a cluster of

motion ranges is referred to as ‘union’.

Table 4-13: Normalization of the motions

Tag Ranges Union
Z1 20 25 60 80 80
Z2 130 150 180

Null
180

XI 120 180 210 210
Y1 120 180 210 210

Spindle-1 18 Null 18
Spindle-2 25 30 Null 30

Taking union over it the result is zi=80; Z2=180; x=210; y=210; Motor KW =18,30;

Therefore, we get (considering only the motions).

AMI -> “z=80”; Vm/cing= 4mm/sec; V non-m/dng= 8 mm/sec;.

AM2 “z=180”; Vm/cing= 4mm/sec; V non-m/dng= 8 mm/sec

AMS -> “x=210”; Vm/dng= 4mm/see; V non-m/dng= 8 mm/sec

AM4 “y=210” ; Vm/cing= 4mm/sec ; V non-m/cing= 8 mm/sec

The atomic motion modules are backtracked to the feature-clusters. The ‘S’ (in the DSM

cells) represents sequential motions of the atomic modules (they act one after another).

The ‘C’ (in the DSM cells) represents coordinated motions of the atomic modules (they

actuate simultaneously).

87

In Table 4-14, V feature-cluster, the Atomic modules used, and the relations between

them are identified and corresponding marks are entered in the cells. ‘S’ = sequential;

‘C’ = coupled.

Table 4-14: DSM showing all the setups

Cl C2 C3 C4 C5 C6 C7
2 3

Cl 2 * s
3 s *

1 3
C2 1 * s ii

■■ I : 3 s *

2 3 4
2 * S 1

3 S * c
4 C *

1 3 4

C4 1 * S
. j 3 S *

4 S *

1 I i 1 4
C5 1 * S

4 S *

1 Î ! 1 4
C6 1 1 r ; 1 * s

4 s *

; i M 2 3 4

C l
2 * S
3 S *

! ! 1 ! i 1 4 S *

There is only one pair of AMs related by the ‘C’ relation. Therefore, there is no need to

make a DSM of AMs with ‘C’ relations. The ‘C’ relations yield an ‘initial-Meta-

Module’, {AM3 , AM4 }̂ .

The {} brackets have a special significance: The atomic-motions enclosed in the brackets are
“Coordinated” i.e. the motions are simultaneous.

88

Making a DSM of AMs vs. AMs, such that Mÿ= ‘0’ if Mj and Mj have ‘S’ relation in any

feature-cluster, Table 4-15 is gotten.

Table 4-15:DSIVI of AMs vs. AMs

Upon clustering, the DSM suggests a meta-module formed from AM3 and AM4 , and AM,

and AM2 each form a single cluster.

Following the clustering from the DSM, the initial set of modules is presented in the

Table 4.16.

Table 4-16: Final lists of Motion Modules

Coupled Sequential Independent
1 {AM3,AM4} (AM3,AM3) AMi
2 AM2

Union MM i={AM3,AM4} MM2=(AM3AM4) MM3=AMi ; MM4=AM2

The modules are not subsumed by other modules and this was the decision of the

designer (in this case, the author). Therefore, the final set of modules is as follows;

FR for Module#!: Coupled motions in 2 orthogonal directions. Ranges of both

orthogonal motions = 210 mm. machining and non-machining speed in both directions

are 4 and 8 mm/s respectively.

FR for Module#2: Sequential motions in 2 orthogonal directions. Ranges of orthogonal

motions = 210 mm. machining and non-machining speed in both directions are 4 and 8

mm/s respectively.

FR for Module#3: Single motions. Range of motion = 80 mm. Machining and non

machining speed are 4 and 8 mm/s respectively.

FR for Module#4: Single motions. Range of motion = 180 mm. Machining and non

machining speed are 4 and 8 mm/s respectively.

89

Figure 4.23,4.24, and 4.25 present the class diagrams for the 2-D sequential module, 2-D

coordinated module, and 1-D module respectively.

Class Name: 2D Sequential Module(derives from the
'Module' class)

Attributes:
1. Constraint on Attribute #1 inherited from
'Module’ CIass’:-The mechanism belongs to a class of
mechanisms that have an "Operation Space" o f 2
Dimensions.
2. Structure..
3. Control h/w.
4. * Extra Attribute* Channel reconfigurator (also can
be said as Transmission or Multiplexer).

Operations:
1. Download (Sub) Task from Main Controller.
2. Give/Take Parameter/Flag values to neighboring
modules.
3. Execute (Sub) Task.
4. * Extra Operation* Channel Reconfiguration i.e.
shift power and control to the next actuator.________

Interface

Interface

Figure 4.23: Class Diagram for a 2-D sequential Motion Module

NB: All the ‘Module’ classes derive from the ‘Module’ abstract class. The derived

classes inherit the attributes and operations of the base class. The constraints, additional

attributes, or operations in the derived classes are mentioned.

For example, the 2-D sequential module derives from the Module-Class and has the

following attributes in addition to those inherited from the base-class:

• Specification that the mechanism should have a 2-DOF operation space.

• An extra attribute to act as a “Channel Reconfigurator,” which essentially is a

multiplexer/transmission.

• An extra operation to govern the action of the “Channel Reconfigurator.”

90

Class Name: 2D Coordinated Module(derives from the
’Module’ class)

Attributes:
1. Constraint on Attribute #1 inherited from ’Module’
Class’:-The mechanism belongs to a class of mechanisms
that have an "Operation Space" of 2 Dimensions.
2. Stnictinv.
3. Control h/w.

Operations:
1. Download (Sub) Task from Main Controller.
2. Give/Take Parameter/Flag values to neighboring
modules.
3. Execute (Sub)Task.

Interface

Interface

Figure 4.24: Class Diagram for a 2-D coordinated Motion Module

When considering coupled motion manifested by ‘Coordinated motion modules’, the

degree of interdependence (communication) between the motions may potentially affect

the clock frequency of the microprocessor, the bandwidth requirements of the internal

and external communication bus etc.

There is a strong possibility to use a non-Cartesian mechanism, because the DOFs actuate

simultaneously. Using such a mechanism would complicate the mechanics and controls.

However, as compared to cartesian mechanisms, they typically require actuators of

smaller capacities because typically non-cartesian mechanisms have high amplification

ratios.

91

Class Name: ID Module(derives from the 'Module' class)

Attributes:
1. Constraint on Attribute #1 inherited from ’Module’
Class:-The mechanism belongs to a class o f mechanisms
that have an "Operation Space" of 1 Dimension.
2. Structure.
3. Control h/w.

Operations:
1. Download (Sub)Task from Main Controller.
2. Give/Take Parameter/Flag values to neighboring
modules.
3. Execute (Sub)Task.

Interface

Interface,

Figure 4.25: ID Motion Module

NB: These Class diagrams are strictly conceptual representations of module categories.

Moreover, they have not yet been embedded with the motion and velocity information.

These module classes are instantiated to form objects. These objects would encapsulate

the motion and velocity information, and be the final information module of the modules.

Based on this information model the detailed design can be performed.

4.2.4.7. step 4: Identify the ‘Interfacing requirements’

In the previous section, the motion FRs for the modules were determined. However, to

have a complete functional specification of the modules, it is necessary to identify their

interfacing requirements. In this section, the interfacing FRs are identified.

Assembling the physical modules (which have not yet been developed in this thesis) to

yield appropriate RMT configurations is usually referred to as ‘configuration design’ [55].

The modules have to be designed so that they can be arranged in suitable configurations,

and the configurations must be designed so that the modules can be feasibly assembled to

fulfill the designated tasks. Therefore, the ‘module-design task’ and the ‘configuration-

design task’ are coupled. The ideal solution would be to design both the modules and the

configurations simultaneously. To simplify this, the functional description of the modules

is determined first; next, a feasible configuration is chosen out of the many possible ones.

The configuration is represented as a graph, and this graph specifies the interfacing-FRs

92

of the modules. The interfacing-FRs considered in this thesis are limited to only to the

adjacency of modules. The adjacency requirements are required as an input to the

detailed design step. In the detailed design process, modules are assigned physical detail.

A machine is analogous to a pair of cooperating robotic-manipulators. Extrapolating this

fact into the RMT domain leads to two chains of modules: (a) base to tool and (b) base to

work-piece. Defining the fiinctional-configuration is analogous to assigning modules to

these chains. “To minimize the errors, the total number of DOFs are distributed equally to

these chains,” [55]. Therefore, the modules are assigned to the two chains such that the

total number of DOFs are distributed evenly.

Step4|npu(: The feature-clusters and modules defined in terms of the motions FRs.

Step4processî Assign motion modules to the two chains, such that the total number of

DOFs is distributed evenly on the arms.

Figure 4.26 shows the configuration diagram of the RMT configuration. The

configuration is analogous to two chains of modules. The links between the modules can

be populated with structural modules, which provide stiffness to the RMT. At this stage,

the structural modules have not been designed. A detailed discussion on the design of

structural-modules is presented in section 4.2.4.S.

*Base to TooV chain
o f modules / Base to Work* chain

o f modulesBase

1-D module
•X’

2-D Module

Spindle Work-Support

Stnictural modules

Figure 4.26: Configuration Diagram (for Feature-cluster 4)

93

Step4outputî The interfacing requirements of the motion modules. At the end of this step,

the modules have a complete functional description, and can proceed to the step of

detailed design.

Step4Discussion: The toolpath gives the relative motion between the tool and the work

piece, i.e., the toolpath does not give any information about the ‘individual motions’ of

the tool or work, i.e., the toolpath does not suggest anything about the DOFs assigned on

the chains. Therefore, minimization of error is chosen to be the only significant criterion.

Distributing the DOFs evenly on the two arms reduees the error stack-up, i.e., it

contributes to minimizing the overall error of the RMT configuration. Therefore, this

objective holds a significant importance for choosing a feasible RMT configuration.

The topologies are highly abstract, i.e., they only show the modules on each arm. Even

so, following the criteria of evenly distributing the DOFs to the chains, the number of

possible configurations is more than one. In the ideal case, the different possibilities

should be evaluated based on heuristics. For simplicity, the first reasonable configuration

is chosen.

There may be any number of structural modules embedded between two motion modules.

This is not captured in the configuration diagram. Therefore, the configuration diagram

does not strictly represent the adjacency between modules.

The topologies of RMT configurations affect the detailed design of the modules. A

module is possibly used in many RMT configurations; thus, it should be suitable for all

the eorresponding configurations. The following step of detailed design would involve

iterating over the feature-clusters, where the module is used.

4.2.4.S. Step 5: Design modules

The previous step resulted in the complete functional specifications of the modules. To

demonstrate the feasibility of the method, it was important to assign physical detail to

these functionally defined modules. The modules participate in more than one RMT

configurations. Therefore, for the modules to feasibly assemble in all the required RMT

configurations there is an inherent need for iteration. This is a very complicated process.

However, considering the timeframe for this thesis, the detailed design of the modules

94

and the RMTs was chosen to be beyond the scope. Therefore, the first reasonable

physical-design was chosen for these functionally defined modules.

StepSinput: Feature-clusters, functional modules, and the configuration diagrams.

StepSprocesŝ Choosc the first reasonable physical design for the modules (defined in

terms of their FRs) such that the resulting modules feasibly assemble in the required

RMT configurations. Moreover, the implicit function requirements of the resulting RMTs

in terms of error, manipulability, reach etc. should be fulfilled by the assembly of the

resulting RMT configurations.

StepSoutputî Completely defined physical modules.

StepSoiscussion: The task is to choose the designs for the modules, such that each module

satisfies its corresponding motion-FRs and interfacing-FRs. Since the modules have to be

feasibly assembled in all the required RMT configurations, the detailed design of the

modules would be an iterative process. Moreover, the RMT configurations thus formed

should have adequate manipulability, error characteristics, structural stiffness, thermal

compensation, etc. This further strengthens the need for iterations.

In addition to the motion modules, the RMT configurations also require structural

modules. These modules contribute to the RMT’s stiffness. Designs of the structural

modules are coupled with the designs of the motion-modules. The same argument applies

to the design of material-handling system (MHS). The MHS performs the task of

fixturing the part in the proper pose (w.r.t. the RMT). Since their designs are coupled,

designing them implies iterating until convergence. From the review on DSM (presented

in Chapter 4), it was observed that DSM has been successful application in a range of

similar design problems [53,48]. Therefore, DSM was used to lay the iteration-scheme.

Design of each module is analogous to assigning values to a parameter lump. Modeling

the functional modules as classes makes this analogy even more reasonable.

This DSM shows the dependence of the modules on each other. The modules depend on

others only if they participate in the same RMT configuration. The participation of the

motion modules in different RMT configurations is presented in Table 4-17. In this table,

Celljj=0, if RMT for feature-cluster- i, requires Motion-Modulej.

95

Table 4-17 also gives a quick view of the motion modules used in each RMT

configuration. The information presented in this table, also helps the designer to construct

the DSM presented in Table 4-18. Recall that the design of a particular module affects

that of another only if the two modules coexist in a RMT configuration. Therefore, in this

DSM, Cellij =0, if Modulci and Modulcj coexist in a RMT configuration.

Table 4-17: Final modules used in each setup

MMi M M 2 M M 3 M M 4

RMTci 0

R M T c 2 0

R M T c 3 0 0

R M T c 4 0 0

R M T c 5 0

R M T c 6 0

R M T c 7 0 0

Table 4-18: Partitioned DSM. The different partitions are shown

Motion Modules Structural
Modules

Material
Handling
system.

MMI MM3 MM2 MM4 S MHS

»
MMI * 0 1 0 0
MM3 O ' ! * : 0 0 0
MM2

1 0 * 0 0 0
MM4

0

0 * 0 0

II S 0 0 0 * 0

III MHS 0 0 0 0 0 *

Upon partitioning, this DSM (Table 4-18) suggests three interlinked partitions ([MM,,

MM3], [MM], MM2], [MM2 , MM4]) and an integration partition ([S, MHS]). The

structural modules, and the material-handling system act as the integrating entities, i.e.,

all the motion-modules have a coupling with the structural modules and the material-

handling system. A design change to any module propagates to all the other modules

96

through the integration partition. This DSM demonstrates the complexity of the design

task.

To reduce the iterations, the DSM is tom. It is assumed that firstly, the designs for the

motion modules evolve. Once they converge, the structural modules and the material

handling (sub) systems are designed iteratively, while considering the design of the

motion modules ‘Frozen’. The structural modules and the material handling system are

designed to result in a RMT configuration such that it: (a) allows the part to be mounted

(by the material-handling system) in the aligned position and (b) does not fall apart under

the machining loads generated while manifesting the assigned motions (all of which are

defined w.r.t. the feature-cluster’s origin).

In Table 4-19, the partitions are shown in different colors and are enclosed by different

border types. The torn DSM can be interpreted in a variety of ways. The following

paragraph presents one of the possible interpretations.

Table 4-19: The torn DSM

Motion Modules Structural
Modules

Material
Handling
system.

MMI MM3 MM2 MM4 S MHS

II
MMI * 0 2 2
MM3 0 * 0 1 ! 2: 2
MM2 0 * 0 i 2 2
MM4 0 * ' 2 2

11 S 2 ■ 2 2 2 * 2

i l l MHS 2 2 2 2 2 *

The design scheme resulting from the DSM is presented as follows:

• Design M2 .

• Based on it, design M3 and M4 .

• Based on M4 ’s design, design Ml.

97

• Considering the current design, and Mi and M2 frozen, re-design M4 .

• The new design of M* and M3 affect the design of M2. Thus, based on the current

designs of M3 and M4 , M2 is re-designed.

• Until the designs converge, goto step #2.

• With the design of the motion module ‘frozen’, iteratively design the structural

modules, and the material-handling system until their designs converge.

Once the designs for the motion modules have matured, the structure and the material

handling systems are designed, while considering the converged designs of the motion

modules ‘frozen’.

To design the structural modules, firstly, motion-modules are placed in ffee-space such

that they can manifest all the required motions. Next, a structure is made as a ‘harness’ to

hold the motion-modules in place. This process is executed for all the RMT

configurations. The harnesses for all the different RMT configurations are modularized.

However, the main problem posed by this approach is that one can have infinite number

of possible shapes for the harnesses. In this thesis, the first reasonable structure is used.

The DSMs presented in Tables 4.17, and 4.18 were developed with an intent to lay down

the design scheme. However, inline with Helo’s work [24], a DSM can be used to lay

down a scheme to choose a set of pre-designed modules, which fulfill the functional

definitions of the modules. This DSM would be a DSM of ‘Decisions’ for module

designs , i.e., decisions v. decisions.

Considering the fact that designing modules requires multi-disciplinary specialization,

automating the design process would increase the feasibility of the overall method

developed in this thesis. The class representation being a structured information model

supports its use by an autonomous software agent. This agent would assign physical

details to the functionally defined modules. The agent can even be configured to search

the knowledge repository from the WWW for appropriate pre-designed, off-the shelf

modules or components. The following paragraphs present a proposal for developing an

‘autonomous design agent’. This agent would integrate a whole range of virtual product

98

development tools via an Active-X application. Active-X is a set of “strategic” object-

oriented programming technologies and tools.

The motion module could be objectified as follows:

• The ‘mechanism sub-class’ could be an empty MSC.ADAMS^ command file, or

an empty SimMechanics'” model.

• The communication and control system could be an empty Simulink' ' model.

This model would encapsulate the control elements (both continuous and finite state),

and the communication system.

• The ‘physical-structure’ would be represented as an empty string of ‘Shape

Alphabets’ [4, 19]. This approach is proposed to be implemented by using

SolidWorks.

All these sub-classes can be integrated using Application Protocol Interface (API) of the

software-packages into a single class representing the module.

The autonomous design agents would fill in the empty files/models/strings (possibly by

using an evolutionary algorithm) to define the subsystems making the module, hence the

module.

The design agent follows the evolution scheme and conducts incremental iterations, i.e.,

the design for all a module updates on the basis of its current design state, and the current

design stated of its adjacent modules.

As an alternate to DSM based incremental iteration, it is possible to update all the module

designs in parallel. This scenario is similar to a ‘ Cellular-Automata’ (CA). Typically, the

cells of the CA are ‘Finite State Machines’ (FSMs). Although, in this case, the

architecmre is similar to a CA, yet the cell should have computation power, memory, and

communication interfaces. Some researchers refer such kind of cells as ‘X-Machines’.

“The X-machines are more expressive and flexible than FSMs” [37]. Thus, the author

9
Ref: < mvav.mscsoftvvare.com/adams>
Ref: < \v\v\v.mathworks.com/simmechanics>

 ̂ ̂ Ref: < www.mathworks.com/simuHnk>

99

http://www.mathworks.com/simuHnk

proposes a CA based network, with each of the cells being an X-Machine. Using a CA

based design process, requires large computational resources. Therefore, the author

recommends using parallel processing. With the advent of ‘Hyper-Threading’ enabled

processor, it is possible to implement parallel processing on a single computer.

4.2A.9. Step 6: Form RMT configurations.

In this step, the functional modules in the configuration diagram of the RMTs are

replaced by the corresponding physical modules.

Step6 input: Configuration diagram and the Physical modules.

Step6 processî Rcplacc the functional modules in the configuration diagram of the RMTs

with the corresponding physical modules.

Stepôoutputî The RMT configurations for each feature-cluster.

100

4.2.4.10. Application of the method to the example part to yield the final RMT

configurations

The method was applied to the example part (Figure 4.7), and the resulting RMTs are

presented in the Figures 4.27 -4.31. In these figures, the motion-modules and the

structural modules are labeled.

NB: The following figures (RMT diagrams) do not show the couplings.

Figure 4.27 shows the RMT configuration required to machine feature-cluster-1 and

feature-cluster-2. This RMT configuration is suitable for turning machining function, i.e.,

the work rotates. This configuration has 2-DOFs; however only one of these is active at a

time.

Column (Structural module)

Spindle#!. Rotates ttie Work.

MM2:(2-D Sequential module),
th e Tool-post Is a ttached to It.

Bose (Structural m odule)

RMT Configuration for
Cl &C2.

RYERSON UNIVERSITY

Ambrish G u p ta

RMT C onfig l

Figure 4.27: RMT Configuration for machining feature-cluster 1,2

101

Figure 4.28 presents the RMT configuration required to machine feature-cluster 3. This

RMT configuration has 3-DOFs; however, maximum of two of these DOFs are active at

a time. The RMT configuration requires the tool to rotate, thus it performs the milling

machining function.

Knee(Structural Module)

>Column(Structural Module)

AAM4(1-D Module)

Spindle#2. Rotates ttie Tool.

Base(Structural Module)

MMI (2-D Coordinated Module).
The Work support Is a ttached to It.

RMT Configuration
for C3.

Ambrish G u p ta

RMT Config2

RYERSON UNIVERSITY

Figure 4.28: RMT Configuration for machining feature-cluster 3

102

Figure 4.29 presents the RMT configuration required to machine feature-cluster 4. This

RMT configuration has 3-DOFs; however, only one of these DOFs is active at a time.

The RMT configuration requires the tool to rotate, thus it performs the milling machining

function. This RMT configuration is different from that presented in Figure 4.28 in that

this one uses a smaller range 1 -DOF module.

Knee(Structurcl Module)

'O ’ -------------------1

Column (Structural Module)

MM3(1-D Module)

Spindle#2. Rotates ttie Tool.

Base(Structurol Module)

MM2(2-D Sequential Module).
Ttie Work support Is attactied to It.

RMT Configuration
for CA.

RYCRSON UNIVERSITY

Ambrisfi G upta

RMT ConfigS

Figure 4.29-RlVlT Configuration for machining feature-cluster 4

103

Figure 4.30 presents the RMT configuration required to machine feature-cluster 5, and

feature-cluster 6 . This RMT configuration has 2-DOFs; however, only one of these DOFs

are active at a time. The RMT configuration requires the tool to rotate, thus it performs

the milling machining function.

4

tr i|

Column(Structural Module)

MM2(2-D Sequential Module).

Knee(Structural Module)

Spindle#2. Rotates the Tool.

Bose(Structural Module)

RMT Configuration
for C5.C6.

RYERSON UNIVERSITY

Ambrish G u p ta

RMT Config4

Figure 4-30: RMT Configuration for machining feature-cluster 5, 6

104

Figure 4.31 presents the RMT configuration required to machine feature-cluster 7. This

RMT configuration has 3-DOFs; however, only one of these DOFs is active at a time.

The RMT configuration requires the tool to rotate, thus it performs the milling machining

function.

Knee(Structural Module)

n

Column(Structurai Module)

AAM4(1-D Module)

Spindle#2. Rotates the Tool.

Base(Structural Module)

MM2(2-D Sequential Module).
The Work support Is attach ed to It.

RMT Configuration
for C7.

RYERSON UNIVERSITY

Ambrish G u p ta

RMT ConfigS

I a t: ;

Figure 4.31: RMT Configuration for machining feature-cluster 7

4.2.4.11. Discussion

Expression 4.3 includes the sub-goals of maximizing utilization and minimizing

reconfiguration effort. In addition to these sub-goals, the design objective could be

extended to consider the following sub-goals:

• Minimize the weight of the modules (this calls for the mechanism to be designed

elegantly so that the actuator sizes are minimum).

• Maximize the strength of the machine configurations. This indirectly means that

the coupling is designed to get the maximum strength for the machine configuration.

105

Recall that this thesis considers only motion FRs and interfacing FRs to constitute the

functional description of the motion modules. The method developed in this thesis can be

extended to consider other independent FRs also, without requiring any change to the

method.

Table 4-20 presents a comparison of the number of DOFs in comparable machining

systems. From Table 4-20, it can be observed that the number of DOFs used as a result of

applying the author’s RMT approach is considerably less than that for conventional CNC

machines or flexible machines.

Recall that the detailed design is beyond the scope of this thesis. Therefore, many

important criteria like stiffness, production-rate etc. of the RMTs are not compared with

those of the dedicated machine tools or the flexible machines.

Table 4-20: Comparison of DMS, RMS & FMS: In terms of number of DOFs

Conventional CNC RMT Flexible Machines
Total
DOFs

DOFs at a
time

Total
DOFs

Max DOFs
at a time

Total
DOFs

DOFs at a
time

Clusterl 2 2 2 1 5 5
Clusterl 2 2 2 1 5 5
Clusters 3 3 3 2 5 5
Cluster4 3 3 3 1 5 5
Clusters 3 3 2 1 5 5
Clusterô 3 3 2 1 5 5
Cluster? 3 3 3 1 5 5

19 19 17 8 35 35

4.2.4.12. Summary

The method for designing RMTs for machining a single part is summarized as follows:

1) Part input (as features)

2) Feature-clustering (Setup planning):

a) V mfg. feature:

Identify TAD(s) - done by designer

ii) Identify rotation requirement (tool/work rotates) - done by designer.

Hi) Determine the minimal set of TADs required for machining the part in full. -

Subroutine (automated)

106

b) Vmfg. feature pair: identify machining precedence relation and assign it a metric

(The precedence relation between features is quantified: 0 = critical, 1 = for

quality, 2 = for optimality.) - done by designer

c) Eliminate cycles existing between features in the precedence graph- Semi-

Automated (PSM32 detects cycles and gives hints to repair cycles. Cycles

repaired by designer.)

d) Cluster features on basis of TADs and Rotation requirement (features with

identical TAD and rotation characteristic are grouped into one cluster). -

Subroutine (automated).

e) Eliminate cycles existing between clusters (precedence relations). - Semi-

Automated {DSM tool (PSM32) detects cycles and gives hints to repair cycles.

Cycles repaired by designer.) . Eliminating cycles is necessary to yield a feasible

production plan.

3) RMT design:

a) V feature-cluster:

i) The toolpaths are generated - Subroutine.

ii) Toolpaths analyzed for the Motion requirements - done by designer.

b) Motion requirements are listed - done by designer.

c) Normalize the FRs from the list of the feature-clusters- done by designer.

d) Make the abstract modules:

i) The Normalized FRs are mapped back to the feature-clusters. (to see what

FRs are employed by what feature-cluster) - done by designer.

ii) The Normalized FRs are clustered into meta-modules.

e) Choose a suitable configuration- Done by Designer.

J) Based on the motion, and interfacing requirements assign physical detail to the

functional modules. The physical design should be such that the modules suit all

the configurations they take involving them. - Done by Designer.

g) The physical modules are assembled into RMT Configurations (chosen in step

‘e’). These completely designed modules are assembled back in the

configurations chosen for each feature-cluster. - Done by Designer.

107

4.3. The Method for designing RMTs for machining a Part-family

In the previous section, the author developed a method to determine the functional

specification of the RMTs required to machine a single part. This method was

extrapolated to design RMTs for a part-family, and is presented in this section.

4.3.1. Approach

Each of the parts of the part-family can be processed according to the method developed

for a single part. Then the processes can be merged once the information is free from the

context of individual parts. This would be the most logical extension of the method for a

single part to suit the problem of designing RMTs for a part-family.

4.3.2. The Method

The flowchart for the method (for a part-family) is presented in Figure 4.32 followed by

details of the method.

Figure 4.32 presents the extrapolation of the method developed in Chapter 4 to design

RMTs for a part-family. The input to the method are the parts (Part 1.x, where x=a, b, c,

d), which are the members of the part-family.

As can be seen, the method for a part-family is very similar to that for a single part. Each

part is processed by an individual process-thread [91], which implements the method for

a single part. These threads merge after the FRs for all the feature-clusters for all the parts

have been determined, i.e., each member of the part-family undergoes the process (as that

for a single part), and after the motion-FRs for each of its feature-clusters have been

determined, these individual processes merge.

108

Operation
Type

Feature
Clustering

FRs for each
Cluster

Manufacturing
Features

PrecedenceParti.a

Operation
Type

FRs for each
Cluster

Feature
Clustering

Manufacturing Precedence

FR
Normalization

FR Clustering Configuration
Generation

Module
Design

Operation

Feature
Clustering

FRs for each
Cluster

Manufacturing
Features

PrecedenceP a r tie

Operation
Type

Feature
Clustering

FRs for each
Cluster

Manufacturmg
Features

Part I d

E
«2
t
S.
au
a
H
Ib£
c

t
13u
,o

a

I
2

0\o

4.3.3. Discussion

Recall that each feature-cluster corresponds to a RMT configuration. Each of these

feature-clusters translates into motion requirements (referred to as motion FRs). These

sets of motions FRs (from each part), are merged to form a hyper-set. As shown in Figure

4.32, this hyper-set is fed into the subsequent steps of normalization, clustering, and

module and configuration design. Once this hyper-set has been formed, the subsequent

part of the method cannot differentiate whether the set of feature-clusters came from a

single part or two parts or a hundred parts. Therefore, the case for part-family degenerates

to that for a single part. This implies that the example presented in Chapter 4, for a single

part, is equivalent for that of a part-family. Each feature-cluster resulting from the part

considered in the example is analogous to an individual part, with the previous stage of

the part, as the corresponding raw-stock. For example, raw-Stock-^Ci"^ 0 2 ^ 0 3 - ^ 0 4

(where each C, is a feature-cluster), each of the CiS are equivalent to an individual part,

with the part at the previous stage (with all the previous feature-clusters machined), as the

corresponding raw-stock.

Common sense suggests that the parts could be merged to form a single meta-part, and

RMTs could be designed for this meta-part (using the method for designing RMTs for a

single part). However, merging the parts at this stage would be incorrect because the

precedence constraints are defined strictly in context of the part. Merging the parts at any

stage before the information is free from the part’s context would lead to an undesired

loss of some precedence constraints. Therefore, the processes (executing the ‘method for

designing RMTs for a single part’, on each part of the part-family) had to be merged after

the processes carry information, which was free from the part’s context. Since, after the

feature-clustering step, the information is free of the part’s context, the processes can be

merged here. However, to reduce the computational complexity of the method (which

varies as the square of the number of variables/parameters/operations [58]), this thesis

contended to merge the process threads after the FRs for each feature-cluster have been

identified.

If a part, which has not been considered while designing RMTs, is added into the

production portfolio, the whole process needs to be redone with that part included. In

110

other words, the new part would have to be merged into the part-family for which, the

RMTs are to be designed, and the whole process redone.

4.3.4. Summary

In this section, the method developed for a single part (section 4.2), was extrapolated to

suit the original problem statement. The individual members of the part-family were

operated upon by the method for designing RMTs for a single part. After the FRs for the

feature-clusters have been determined, these processes are merged to finally yield the

RMT configurations required to machine the part-family.

i l l

5. Conclusions

5.1. Summary of Assumptions

The intent of this thesis is to develop a method for mapping a part-family onto a set of

RMTs. This is a very complicated task. To simplify it, the author has made a few

assumptions. These assumptions are listed below.

1) The method developed in this thesis is based on the manufacturing features. Thus, the

part’s geometry model needs to be converted into a feature model. This step is called

feature-recognition. In the feature-recognition step, the part’s model is decomposed

into manufacturing features. Typically, a software agent is used to perform this task.

However, due to the complexity of this task, even the most recent commercial feature

recognition software like Feature Works® requires some human assistance. Therefore,

the author assumes that the part is modeled as a ‘feature model’. This simplifies the

overall problem, and allows the author to focus on the main problem instead of the

complexities of feature recognition. Moreover, modeling the part as a ‘feature model’

is quite practical because most contemporary CAD software models parts with

features (i.e., ‘design-with-features’). Modeling of parts with features is also

compliant with STEP-AP-224. For cases where a part model is not available, the

physical model can be scanned to yield a virtual model. This virtual model can then

undergo the process of human assisted feature recognition. Once the features of the

parts have been identified, they can be used by the method developed in this thesis.

2) This thesis uses the top-down design strategy. This strategy ensures that the system is

designed specifically for the given task-set. However, this strategy is not applicable

for a system with coupled components because the method would not be able to

identify what functionality is manifested by which component. Therefore, the author

assumes that the modules are functionally decoupled.

3) The designed RMTs may affect the choice of the machining operations or TADs for

the features. Similarly, the clustering of the features may affect the choice of the

machining operations or TADs for the features. This can cause iteration. Although

112

iterating complicates the process, it yields better RMTs. For the sake of simplicity,

iterations are ignored.

4) In the feature-clustering step, manufacturing precedence is an important criterion. The

author quantified the precedence relations based on their criticality. The

quantification scheme used in this thesis could be replaced by any other scheme,

without affecting the validity of the method developed. However, the scheme does

affect the method’s efficiency. The author did not consider efficiency in this work.

5) Although, a ‘coordinated’ module can functionally subsume a ‘sequential’ module, in

this thesis, ‘sequential’ and ‘coordinated’ modules are considered separately. A

detailed rationale for making this assumption is presented in Appendix I.

6) It is assumed that the ‘material-handling system’ places the part into the machine

such that it is aligned with the RMT’s home position. This assumption simplifies the

determination of the required motions.

7) In principle, the designs of the structural modules and the material-handling system

are coupled with those of the motion modules. Therefore, the task of designing the

motion modules is very complex. To avoid this complication, the designs of the

structural modules and the material-handling system are assumed to be decoupled

from those of the motion modules. This implies that the motion modules be designed

iteratively until they converge. Once the designs converge, the structural modules and

the material-handling system are designed based on the converged designs of the

motion modules.

8) The tool path depends on the choice of the bounding box of the part (for details, refer

to section 4.3). The bounding box of the part changes as the part undergoes

machining. Therefore, the bounding box needs to be updated after every machining

operation. To simplify this, the bounding box of the raw-stock is assumed constant

throughout all machining operations.

9) Li et al [44] concluded that “Flexible Kinematic Coupling” (FKC) was the best

method to connect modules. Although no detailed design was performed in this thesis

113

(because it is beyond the scope of this thesis), it was assumed that the modules were

connected by FKCs or something similar.

Relaxing these assumptions would add significant complexity to the overall problem, but

render it more realistic. This thesis focused on developing a feasible method. Relaxing

these assumptions is future work.

5.2. Contributions

This thesis developed a novel method to design a set of RMTs for a part-family. The

method was developed by firstly scaling-down the problem, next, developing a method

for the scaled-down problem, and finally extrapolating this solution to suit the original

problem of designing RMTs for a part-family.

The method developed is STEP compliant throughout. For example, the parts are

represented as manufacturing features; STEP-AP-224 also represents part’s design data

using manufacturing features. As another example, the final modules are represented as

classes (in context of Object Oriented Programming); STEP-AP-233 also represents

(sub)-systems as classes. Even though the detailed representation of entities does not

follow any specific STEP-AP, at a conceptual level, the method is STEP compliant. As a

secondary benefit, using a STEP compliant method allows it to piggyback on established

STEP based computer applications. Moreover, this method can be unified with other

STEP applications, and information system applications to develop an autonomous E-

RMS. Such a machining system would be a reconfigurable E-Factory. That is, it would

take orders from the customers via the WWW, and autonomously reconfigure, depending

on the customer’s demands. This grants even more feasibility to the method.

In this thesis, the author gave a novel framework of black-boxes, each containing a

component of the overall design process for RMTs. A reasonable method was chosen for

each of the black boxes. However, there was no pre-existing method found for clustering

features, which had been developed with an intent to design the required machines.

Rather, all of the surveyed feature-clustering methods assumed the availability of a pre

designed machine. Therefore, the author developed a novel feature-clustering method

with an objective of designing a machining resource to machine these feature-clusters.

114

Moreover, DSM is used in this method. None of the surveyed works has ever used the

DSM for this task.

As mentioned in the section 1.3, this thesis is limited to the functional design of the

modules and the RMTs. A comprehensive functional design would require the method to

consider all the functions like motions, motion-rates, manipulability, power, tribology,

convertibility etc. The list is very long. In the timeframe of this thesis, considering all

these functional requirements was not possible. Thus, the author’s method considered

‘motion’ requirements only. However, the method developed in this thesis, scales up to

include as many independent functions as the designer wishes to include.

5.3. Future Work

Optimize: In the previous section, it has been asserted that reasonable methods were

used for the different black boxes, with no commitment to optimality. Thus, determining

a set of optimal methods (for the black boxes to implement) is very important future

work.

The author developed a novel design objective for designing RMTs. This abstract

objective lacks mathematical details. Working out the fine details of this objective to

result in a mathematical objective function is complicated. This would potentially require

numerous simulation analyses. Once expression 4.3 is given mathematical detail, a

variety of discrete optimization algorithms could be used to automatically design the

modules and the RMTs. Constructing a mathematical objective function and deciding the

optimization algorithm for automatically designing the modules and the RMTs is future

work. Such an objective function also has a potential use in developing a resource

planning/scheduling algorithm. As another secondary benefit, it could also control the

level of granularity of the RMTs.

Automate: The most important future development for this method would be to automate

it. In the method developed, there are numerous steps, which require human assistance,

e.g., clustering individual motions to result in Atomic Modules. Therefore, automating

the method would require a software agent to replace at least some of the human

involvement. Moreover, since the method offers STEP compliance, developing a

115

software using appropriate STEP-APs would add even more feasibility to the method

developed in this thesis.

Design in detail: The scope of this thesis is limited to the functional design of the motion

modules and the RMTs. The most important future work is to extend this work to

consider all the pertinent functional requirements and to perform the detailed design. The

detailed physical designs can then be analyzed and compared with others.

Incremental design: If a new part is added to a set of parts for which the RMTs have

been designed, the method needs to be re-executed with the updated set of parts. This is

similar to most of the research surveyed in the field of setup planning. If a new feature is

added to the part, for which setups have already been determined, the whole process has

to be re-executed with the updated set of features , i.e., there is no technique for the

incremental planning. An item for future work could be to do incremental planning by

using a hybrid design strategy combining both ‘bottom-up’ and ‘top-down’ design

strategies. In such a strategy, the existing modules are first assembled according to the

bottom-up strategy to generate RMT configurations to best fulfill the tasks posed by the

new part. Next, the remaining functionality is added by using the ‘top-down’ strategy, to

customize the RMTs completely for the new part.

Miscellaneous:

The configuration diagram used in this thesis (section 4.2.4.7.) is a weak representation,

mainly because it only shows the functional modules assigned to the two arms (‘base to

tool’ and ‘base to workpiece’) of the modules. Although it shows the functional structure

of the machine, it bears no direct congruence with the physical model of the machine, i.e.,

it does not show the exact arrangement/sequence of modules, the interfacing, the

structural modules attached between two motion modules, etc. The author proposes to

extend this representation such that it is represents the RMT configuration more

realistically.

In section 4.2.4.S, the author asserted the shortcomings of a 2-D DSM for the task.

Although DSMs of higher dimensions have been proposed in past articles, no research

has been done on them. Thus, the author proposes the development of methods and

operations for 3-D DSMs.

116

Li et al [44] asserted that ‘Flexible Kinematic Couplings’ was the best candidate for

connecting modules. In a research contemporary to Li et aVs study, Culpepper [12]

developed ‘Quasi Kinematic Coupling’ (QKC). The author anticipates that QKC would

give a performance superior to that of FKC. A detailed investigation would be required to

determine the validity of this anticipation. Therefore, it is proposed to compare FKC and

QKC in regard to the coupling of modules in a RMT.

Having a reconfigurable controller for a RMT is an enticing concept. FPGA based

controllers would open the possibility of evolving automatically and calibrate themselves.

They can also be coupled with an inspection agent for them to adjust their parameters

continually (in order to compensate for errors). A detailed investigation of their potential

use in RMTs is future work.

The method developed in this thesis does not apply to sculpted features. This is a serious

drawback. The author proposes to extend the method such that it is applicable to sculpted

features also.

Zhong [111] presented a method for comparing different machining systems. As a future

work, the author proposes to compare the RMTs resulting from this method with other

contemporary machining systems and quantify the economic advantage.

117

Appendix-I

This appendix describes the sequential and coordinated modules, with an intent to present

the rationale for modeling them separately. Finally, a summary is presented.

I. Coordinated Motion Module

In this section, the author presents the definition, the attributes of this category of

modules and finally the internal schematics of a 2-D coordinated module.

I.i. Definition: For this category of modules, all the joints embedded in the module

acmate simultaneously to manifest the designated task-set.

l.ii. Attributes:

1) It has a motor for each actuated joint. If a uni-drive mechanism [33] is used, this

category of modules requires simultaneous transfer of mechanical power to all the

joints.

2) This category of modules preferably uses non-cartesian mechanisms, because all the

joints are required to actuate simultaneously.

3) A non-cartesian mechanism typically yields higher velocity-amplification-ratios. This

implies that the actuators can be of lesser capacity as compared to those in a Cartesian

mechanism. However, using such mechanisms has a drawback of complicating the

actuator-design process, because the motor designs are coupled.

4) The controller used in this category of motion modules is complicated, because it has

to control all the joints simultaneously. Moreover, since a non-cartesian mechanism is

typically used, the control strategy is more intricate. Since the control system needs to

handle different actuators simultaneously, the size of the communication and control

buses [96] and the clock-frequency of the controller are also critical to the module’s

design.

I.iil. Internal Schematic:

Figure A shows the internals schematics of the 2-D coordinated module.

118

Downloads the
task to the

Module controller /

Master
Controller

Control
Command

Joint-1 Joint-2

Motor-2M otor-1

Module
Controller

- :=.* ^ v<

Figure A: 2-D Coordinated Module

II. Sequential Motion Module

In this section, the author presents the definition, the attributes of this category of

modules and finally the internal schematics of a 2-D sequential module.

Il.i. Definition: For this category of modules, only one of the joints actuates at a time to

fulfill a subset of the designated task.

Il.ii. Attributes:

1) It has a single motor. The mechanical power from the motor is routed via a

multiplexer/channel-reconfigurator to one of the joints. In the case of a uni-drive

mechanism, these modules demand a sequential power transfer to the joints.

2) These modules typically use a cartesian mechanism. The main reason being that, for

cartesian mechanisms, each of the joints corresponds to a single operation space

DOF.

3) Since the jacobian matrix for a cartesian mechanism is diagonal, the motor designs

are not coupled. This further implies that determining one motor’s capacities is

isolated from that of others.

4) The controller needs to control only a single joint at a time. However, it also has to

control the multiplexer/channel-reconfigurator, which routes the flow of mechanical

119

power from the motor to one of the joints. Therefore, the function requirements of the

controller are different from those a coordinated module.

Il.iii. Internal Schematic:

Figure B shows the diagram for the internals of the 2-D sequential module. The module’s

controller commands the motor, and the multiplexer/channel-multiplexer.

loads the task
onto the Module

controller

Master
Controller

II I
•1 s i

Control
Commands

Switehing
CommandsMotor

Multiplexer/Channel
reeonfigurator

Motion

Joint-1

Module
Controller

Joint-2

c . LL «

Figure B: 2-D Sequential Module

6.3. Summary

As demonstrated in this appendix, there is a considerable difference between the

coordinated and sequential modules. Therefore, the author chose not to subsume the

sequential module with the coordinated module. In this thesis, the method resulted in 2-D

sequential and 2-D coordinated modules.

120

Glossary

This chapter presents the definitions of the terms used in the thesis.

Definitions:

Abstract Class (in context of Object-Oriented programming): - Abstract-classes are used

to represent abstract concepts or entities. “The incomplete features of the abstract class

are then shared by a group of sibling sub-classes which add different variations of the

missing pieces. Abstract classes are superclasses which contain abstract methods and are

defined such that subclasses are to extend them by implementing the methods. The

behaviors defined by such a class are ‘generic ’ and much of the class will be undefined

and unimplemented. Before a class derived from an abstract class can be instantiated, it

must implement particular methods for all the abstract methods of its parent classes.” [8 8]

NB: In this thesis, the ‘module’ class is modeled as the abstract-class. All the specific

types of modules derive from this ‘generic’ class. These module types add specific

functions to the general fields and operations of the ‘module’ abstract-class.

Agent: - An agent is an autonomous system, which could be a computer program, or a

robot, or a human. It is designed/trained to perform a task without any external

assistance. An agent is typically sensitive to its operational environment. The agents are

functionally independent, and in context to a multi-agent system, they can collaborate

with other agents to produce complex system behaviors.

Ashby’s theory of variation: “A system-model or a control-system can model or control

something to the extent that it has sufficient internal variety to represent.” [65]. It is

analogous to adding knowledge a model/controller. If the model/control-system uses

fuzzy logic, adding variation is analogous to adding new rules or adding more

membership functions. Please note that adding more membership functions would imply

addition of more rules. If the model/control-system implements a neural-network,

variation can be added by appending neurons. These neurons can be added into pre

existing layers or may form an altogether new layer of neurons.

121

Bounding Box: - It is a 3-dimensional-orthogonal figure, which completely encloses the

‘convex-huir.

BUS: - “One of the sets of conductors (wires, PCB tracks, or connections in an integrated

circuit) connecting the various functional units in an electronic system. There are buses

both within the CPU and with connecting it to external memory and peripheral devices.

The data bus, address bus and control signals, despite their names, really constitute a

single bus since each is useless without the others.” [96]

NB: This thesis considers sequential and coordinated modules separately. As mentioned

in ‘Appendix T, the controller of a coordinated motion-module is more complex. The

functional requirements of the control-system pose some requirements on the bus-width.

This is an important parameter while designing the control-system for the coordinated

modules.

Case Based Reasoning: “It is a technique which looks for previous examples which are

similar to the current problem. This is useful where heuristic knowledge is not available.

This technique analyzes the knowledge available in the form of examples to find a

solution to the problem. A few of the key research areas are efficient indexing, how to

define ‘similarity’ between cases, and how to use temporal information.” [97]

Cellular Antomata(CA): - “Cellular automata are mathematical models which represent

complex natural systems containing large numbers of simple identical components, with

local interactions. They typically have ‘finite state machines’ (FSMs) as their

components, i.e., CA is equivalent to a lattice of FSMs. The states of these FSMs are

synchronously updated according to certain rules. These rules map the previous state of a

particular FSM, and its neighboring ones, to its current state.” [92]

Chain reconfignrable robots: - “These robots make themselves by attaching and

detaching chains of modules to and from themselves. Each chain is always attached to the

rest of the modules at one or more points. Nothing ever moves off on its own. The chains

may be used as arms for manipulating objects, legs for locomoting, or short tentacles for

both manipulation and locomotion. E.g., PolyBot. A chain robot has already

demonstrated locomotion by rolling like a tank tread, climbing stairs, slithering like a

snake, climbing like a caterpillar, and walking like a spider.” [63]

122

Class: - (in context to Object-Oriented programming) “A class is a template that

describes the underlying structure of a group of objects. A class specifies the data items

each object of the class contains and the operations or methods that can be performed on

each object belonging to the class.” [89]

CLIPS: - This is an acronym for “C Language Integrated Production System.” NASA

developed this software. It provides a complete environment for developing expert

systems. The knowledge base is fed into the expert system in the form of predicate logic,

if-then rules, templates, and objects. “CLIPS’s inference-engine implements the standard

forward-chaining pattern-matching algorithm.” [59]

CLUTO: - “CLUTO is a software package for clustering data. It provides three different

classes of clustering algorithms that operate either directly in the object’s feature space or

in the object’s similarity space. These algorithms are based on the

partltional, agglomerative, and graph-partitioning approaches.” [34]

Cover- (in the context of Boolean algebra) “Cover of a function is defined as a collection

of implicants that account for the valuations for which a given function is equals 1. More

than one cover may exist for a function. The set of minterms (of a boolean function) is a

cover (of the boolean function)” [21,28].

Espresso: - A 2-staged heuristic boolean minimization algorithm. “In practice, espresso

finds an answer very close to the minimum using dramatically shorter execution times

than exact techniques such as Quine-McCluskey.” Espresso offers the following

advantages over ‘Quine-Mc-Cluskey algorithm.

1) It guarantees to solve for the minimum number of product terms and heuristically

minimize the number of literals.

2) “It does not require an exponential amount of computational time and memory as a

function of number of inputs as required by Mc-Cluskey algorithm.” [21]

FPGA: -“An FPGA consists of an array of logic elements, either gates or lookup table

RAMs, flip-flops and programmable interconnect wiring. Alternatively, an FPGA is

defined as a generic array of logic gates (transistors), instantly “wired” to model an

123

‘application personality’, i.e., a chip with a fixed array of logic gates eonnected by

programmable soft links; the links are programmed for the FPGA to execute a particular

behavior.” [98]

GA (Genetic Algorithm): - “A discrete optimization technique with operators inspired

by organic evolution. GA works by creation of an electronic organism as a binary string

(“chromosome”) and then using genetic and evolutionary principles of fitness-

proportionate selection for reproduction (including random crossover and mutation). This

gives it the capability to search enormous solution spaces efficiently. ” [90] Although

they seem robust to the choice of the parameters and the intitial population set, yet they

have the potential to be decieved and converge at sup-opitmal points. For more details on

the ‘Minimally Deceptive Problem’(MDP) and other limitations of G As, the reader can

refer to [2 0].

Impllcant: - “A product term that indicates the input valuation, for which a given

boolean function equals 1. Minterms are implicants” [21].

Jacobian matrix: - The mapping of the joint velocities to end effector’s velocities. It is a

function of the joint variables; thus, it depends on the instantaneous joint values.

Joint (Actuator) Space: - an ‘N’ dimensional space (where ‘N’= number of actuators in

the mechanism) constituted of the joint/actuator variables.

Lattice Robots: - “Robots that can change shape by moving into positions on a virtual

grid or lattice. All the modules remain attached to the robot, at all times. Planning and

control issues become less complex because the modules can move only to neighboring

positions within a lattice instead of to any arbitrary position”.[63]

Literal: - “A literal is either a boolean variable or its negation” [21].

Manipulability (also called ‘Dexterity’, ‘Velocity Amplification Factor’): - It is defined

as the measure of the volume of the Velocity ellipsoid for a particular set of joint values.

Points/regions in the workspace corresponding to a ‘manipulability’ being ‘zero’

correspond to singularities.

Manipulability is a critical criterion for mechanism design. It affects the mechanism’s

topology and the actuator’s size.

124

In this thesis, this criterion is not considered because the detailed design is beyond the

scope.

Manufacturing Feature; - Volume of material to be removed by a machining operation.

Every feature has a corresponding set of possible machining operations. The mapping of

feature onto the set of operations depends on various factors and parameters like the

part’s material, feature’s geometry, and tolerance relations with other features.

Manufacturing operation: - An operation involving active motions of the machine tool

and the fixtured work-piece. The relative motions between the tool and the work-piece,

machine the feature. The operation also contains information about the rate and ranges

for active motions etc.

Maxterm:- “A maxterm of k variables is a disjunction (Boolean OR) of k literals, where

each variable shows up exactly once” [2 1].

Min-Cover:- “The cover consisting of the smallest subset of prime implicants” [28].

Min-Cut algorithm: - This is a graph-partitioning algorithm. It implements a heuristic to

minimize the cost of partitioning a graph into a specified number of sub-graphs. The cost

of partitioning is a function of the number of links cut and the difference in the sizes of

the sub-graphs [76].

Minterm:- “A minterm of k variables is a conjunction (Boolean AND) of k literals,

where each variable shows up exactly once”[28].

Module: - This is defined as a functionally independent, electro-mechanical assembly.

The modules are assembled to yield RMTs. The modules cooperate with others to

manifest the required tasks. In this thesis, the modules are only considered in context of

the motion they provide. Therefore, in this thesis, they are referred to as Motion

Modules.

Object: - (in context to Object-Oriented programming) “An instance of a class is an

object. It could be said that a class is a blueprint, and an object is a house. As another

example, if humanity were a class, then {the author} would be an instance of the class

{humanity}” [89].

125

Operation Space (OS): -The space of the end-effeetor (of a mechanism). It can be a

maximum 6 -Dimesional.

Part-family: - This is defined as a set of parts having similar manufacturing features. It is

also defined as parts with a specified predicate of variation [55].

Prime Implicant: - “An implicant (a minterm) is called ‘prime’ if it cannot be combined

into another implicant that has fewer literals. It is impossible to delete any literal in a

prime implicant and still have a valid implicant” [21]. A boolean function can be reduced

to a sum of product terms called prime implicants of the function.

Principal component analysis (PCA): - “This involves a mathematical procedure that

transforms a number of (possibly) correlated variables into a (smaller) number of

uncorrelated variables called principal components. The first principal component

accounts for as much of the variability in the data as possible, and each succeeding

component accounts for as much of the remaining variability as possible.”[31]

Material handling system/agent: - It performs the activities of (un)fixturing the part into

the RMT configuration. The fixturing aspect of this system could also be reconfigurable.

Quine Mc-Cluskey’s minimization method:- A 2-stepped algorithm based, boolean

minimization method. It is used when the number of variables is high, because using

Karnaugh maps would be infeasible. For more details, refer to [21].

Self-Organizing Map (SOM): - “The SOM is a special neural network that transforms a

model of arbitrary dimensionality into the responses of one or two-dimensional (2-D)

arrays of neurons, and to execute the result in a topological order.” [39]

Space Elevator: - This is a system for transporting a payload from a point (in the sky) to

another (in outer space). It includes a first structure, located at a first relatively fixed,

non-zero orbital distance from the surface of the earth, for receiving payloads. Its second

structure is located at a second relatively fixed orbital distance from the surface of the

earth and receives payloads, where the second distance is greater than the first distance.

The third structure located near the center of gravity of the combined apparatus provides

a platform for storing and/or processing payloads. A payload transporting apparatus is

126

disposed between and interconnecting the first and third and second and third structural

means. [2]

Statically determinate structure: - A statically determinate stmcture is defined as a

structure for which the internal forces and reactions can be determined by considering

nothing more than equations of equilibrium.

STEP: - STEP is an acronym for STandard for the Exchange of Product data. Its official

name is ISO-10303. It provides a platform independent representation of product data

throughout its life cycle. This representation is suitable for file exchange.[95]

Moreover, it serves as a basis for implementing product databases and for archiving data.

“This standard is implemented within computer software associated with particular

engineering applications and so its use and function will be transparent to a designer. ISO

10303 descriptions are information models that capture the semantics of an industrial

requirement and provide standardized structures within which data values can be

understood by a computer implementation. The exchange of data is one of the uses for a

standardized representation, but it is not the only use. STEP Application Protocols (APs)

specify the requirements for data for a specific engineering application in a standardized

representation derived from the Integrated Generic Resources. Specific Application

Protocols are implemented for use with relevant engineering application software” [60].

The following table presents the different APs and the objects they represent.

Table: STEP APs and brief introduction (95, 60]

A P# N am e D escrip tio n
203 Configuration

controlled design
A P203 is designed for the exchange between application system s o f
configuration controlled 3D designs o f mechanical parts and assemblies.

214 Core Data for
Autom otive
Mechanical Design

A P 214 is for mechanical design processes. It is a super set o f A P 203, including
color and layer inform ation

224 Mechanical product
definition for process
plans using machining

T he AP specifies the information requirements for the representation and
exchange o f information needed to define product data necessary for
manufacturing single piece mechanical parts

233 Systems Engineering
data representation

T he AP specifies the system engineering aspect and is an adaptation o f UML
for a generic represent ion o f mechanical systems. T he AP is com pletely Object-
oriented.

238 STEP-NC It specifies the machining aspect o f the part in terms o f machines, operations,
too ls etc. The main benefit o f this AP is its platform independence. It is an
objectified representation and carries information on W HATs and not HOWs.

127

Structural modules: - These are defined as the modules that add rigidity to the machine

but do not provide any motions.

Subsumption: - This is defined as the superceding of a module (in this thesis

specifically, in the aspect of ‘motion ranges’) by another single module or an assembly of

other modules.

Tearing Advice: - The PSM-32 software, uses embedded heuristics to identify the

potential benefit of ignoring a particular relation between a pair of (sub)systems. The

relations between the (sub)systems are analogous to edges of the graph-dual of the DSM.

The software ranks the different inter-relations according to the potential benefit of

breaking an edge. Breaking an edge is analogous to ignoring the relation between the

(sub)systems connected by the edge. The heuristics are purely mathematical and do not

have engineering decision-making capability. The designer requests tearing advice from

the software and makes decisions based on his engineering knowledge.

Thread : - (in the context of Computer Science) “Threads are similar to processes, in that

both represent a single sequence of instructions executed in parallel with sequences,

either by time slieing or multiprocessing. Threads are distinguished from traditional

multi-tasking processes in that processes are typically independent, carry considerable

state information, and interact only through system-provided inter-process

communication mechanisms. This allows a program to be split into two or more

simultaneously mnning tasks. Multiple threads, on the other hand, typically share the

state information of a single process, share memory and other resources directly.” [91]

An advantage of a multi-threaded program is that it can operate faster on machines that

have multiple CPUs, or across a cluster of machines or a Hyper-Threading enabled

processor [29].

Unidrive mechanism: - A Unidrive mechanism has a motor that drives a flexible shaft

[33]. The joint acmators draw mechanical power from this shaft via a transmission

(clutch and a gear - box). In context to such a mechanism, the difference between the

coordinated and sequential reduces to tapping power simultaneously or sequentially, i.e.,

either the clutches are engaged simultaneously or not. From the design aspect, the

128

‘Sequential’ module would require a motor of lesser capacity. The control system of the

‘coordinated’ module would be more complex.

Velocity ellipsoid: - This is a mapping of a hyper-sphere of joint velocities into the

operation space. The ellipsoid’s dimensions are given by eigenvalues of the Jacobian.

VGT (Variable Geometry Truss): - This is a reconfigurable Parallel robot. TetroBot

[23], and Xi et aVs [100] robot belong to this category.

Web-Crawler: - “An automated software-application that follows links to visit web sites

on behalf of search engines or directories. Crawlers then process and index the code and

content of a web page to be stored in the search engine’s database. E.g., Googlebot is the

crawler that travels the web finding and indexing pages for the Google search engine.”

[94]

129

References

[1] Angeniol B, Vaubois G.C, & Texier J.L. (1988)., “Self-Organizing Feature Maps and

the Traveling Salesman Problem”. Neural Networks, 1: 289-293.

[2] Boyd R.R, & Thomas D.D (2002), “Space Elevator”. US Patent: 6,491,258.

[3] Bradley T.K. (2002), “Utilization of Dependency Structure Matrix Analysis to

Assess Implementation of NASA’s Complex Technical Projects”, Masters Thesis,

Massachusetts Institute o f Technology, Cambridge, MA.

[4] Brown, K. N.(1997), “Grammatical Design”. IEEE Expert, Speciallssue on Artificial

Intelligence in Design 12(2): 27-33.

[5] Browning. T.R.12001T “Applying the Design Structure Matrix to System

Decomposition and Integration Problems: A Review and New Directions”. IEEE

Transactions on Engineering Management, 48(3): 292-306.

[6] Browning, T.R.(2002), “Process Integration Using the Design Structure Matrix”.

Systems Engineering, 5(3): 180-193.

[7] Butler Z., Kotay K., Rus D., & Tomita K. (2002.), “Cellular Automata for

Decentralized Control of Self-Reconfigurable Robots”. Proceedings o f the 2002 IEEE

International Conference on Robotics and Automation, Washington D.C.: 809-816.

[8] Canadian Space Agency, “The Evolution of Canada’s Robot Arms”. Viewed

August’2003,
<http://www.space.gc.ca/asc/eng/csa_sectors/human_pre/iss/canadarm2/evolution.asp>.

[9] Castano A., Behar A., & Will P.M. (2002), “The Conro Modules for Reconfigurable

Robots”. lEEE/ASME Transactions on Mechatronics, 7(4): 403 -409.

[1 0] Castano A., & Will P. (2000), “Mechanical Design of a Module For Reconfigurable

Robots”. Proceedings o f2000 lEEE/RSJ International Conference on Intelligent

Robots and Systems, 3: 2203 -2209.

[1 1] Chick S.E., Olsen T., Sethuraman K., Stecke K., & White C.C. (2000), “A

Descriptive Multi-Attribute Model For Reconfigurable Machine System Selection

Examining Buver-Supplier Relationships”. International Journal o f Agile

Management Systems 2(1): 33-48.

[1 2] Culpepper M.L. (2000), “Design and Application of Compliant Ouasi-Kinematic

Couplings”. Ph.D. Thesis, Massachusetts Institute o f Technology, Cambridge, MA.

130

http://www.space.gc.ca/asc/eng/csa_sectors/human_pre/iss/canadarm2/evolution.asp

[13]Dabling J.G., & Chase K.W. (2002), “Performing Tolerance Analysis o f 3D

Assemblies Using ADAM S”. Mechanical Dynamics User Conference.

[14]DeGaspari J., “All in the Family”. Mechanical Engineering Magazine—Ç eh 2002,

Viewed August-2003:
<http://www.memagazine.org/backissues/feb02/features/allinthe/allinthe.html>.

[15]DeHon A., & Wawrzynek J. (1999), “Reconfigurable Computing: What. Why, and

Implications For Design Automation”. Proceedings o f the 36th ACM/IEEE

conference on Design automation ; 610 - 615.

[16]Demey, H. V., & Derache H. (1996), “Determining Setups for Mechanical

Workpieces”. Robotics and Computer-Integrated Manufacturing, 12(2): 195-205.

[17]Dong Q., & Whitney D.E. (2001), “Designing a Requirement Driven Product

Development Process”. Proceedings ofDETC 2001: ASME 2001 International

Design Engineering Technical Conferences 13th International Conference on Design

Theoiy and Methodology September 9-12, 2001, Pittsburgh, PA.

1181 European STEP-NC Consortium. “STEP-NC: Official Site of STEP-NC”, Viewed

August’ 2 0 0 3 , <http://www.step-nc.org/>.

[19]Fitzhom P.(1992), “Formal Graph Languages of Shape.”. Artificial Intelligence for

Engineering Design, Analysis, and Manufacturing, 4 (3): 151-163.

[2 0] Forrest S., & Mitchell M. (1993), “What Makes a Problem Hard for a Genetic

Algorithm? Some Anomalous Results and Their Explanation”. Machine Learning,

13:285-319.

[2 1]Givone D.D.(2002), “Digital Principles and Design with CD-ROM”. McGraw-Hill

Higher Education, New York.

[2 2] Goldratt E.M.l 19991.“Theorv of Constraints”. North River Press Publishing

Corporation, Great Barrington, MA.

[23] Hamlin G.J , & Sanderson A.C.(1998), “Tetrohot : a Modular Approach to

Reconfigurahle Parallel Robotics”. Kluwer Academic Publishers, Boston.

[24]Helo P.T. (2002), “Feature Based Configuration - Configuration Sequence Analvsis

with DSM.”. Proceedings o f the Fourth MIT DSM International Workshop

(Cambridge, MA).

131

http://www.memagazine.org/backissues/feb02/features/allinthe/allinthe.html
http://www.step-nc.org/

[25]Hilmola O.P.K., & Helo P.(2000), “Improving Product's Time-to-Market - An

Application o f DSM and TOC”. Proceedings o f the Second MIT DSM International

Workshop, Boston, MA.

[26]HiImoIa O.P.K, Manuksela A., & Helo P.(2003), “The Economic Nature o f Feedback

Loops- Some Experiments With Ashby’s ‘Systems Thinking’ and DSM”.

Proceedings o f the fifth MIT DSM International Workshop, Cambridge, UK.

[27] Huang S H. (1998), “Automated Setup Planning for Lathe Machining”. Journal o f

Manufacturing Systems, 17(3): 196-208.

[28]Hugue M. (2002), “Implementing Boolean Functions”. Viewed August’2003
<http://www.cs.umd.edu/class/spring2003/cmsc3 ll/Notes/Comb/func.html>.

[29]Intel Corporation, “Hyper-Threading Technology” , Viewed- August 2003
<http://www.intel.com/technology/hyperthread/>.

[30] Jantapremjit, P., & Austin, D. (2001), “Design of a Modular Self-Reconfigurable

Robot”. Australian Conference on Robotics & Automation, Sydney: 38-43. Viewed-

Jul 2003, <www.araa.asn.au/acra/acra2001/Papers/Jantapre.pdf>.

[31]Jolliffre l.T. (2002), “Principal Component Analysis”. Springer Verlag, Berlin.

[32]Kapitaniak, Tomasz. (1998), “Chaos for Engineers : Theory. Applications, and

Control”. Springer Verlag, Berlin.

[3 3]Karbasi, H., Khajepour, A., & Huissoon, J.P. (2001), “Design and Simulation of a

Uni-Drive Modular Robot MMO workshop on reconfigurable manufacturing,

Hamilton, ON.

[34] Karypis G.(2002), “CLUTO: Clustering Package for High Dimensional Data sets”.

Viewed August’2003, <http://www-users.cs.umn.edu/~karypis/cluto/>.

[35]Katz, R., & Moon, Y.M.(2000), “Virtual Arch type Reconfigurable Machine Tool

Design”. Technical report. University o f Michigan, Ann Arbor. Viewed- July 2003:
<http://eclipse.engin.umich.edu/Publications/PubFiles/TA3/VirtualRMTReport_41.pdP>.

[36] Katz R., Yook J., & Koren Y. (20 0 2), “Control of a Non-orthogonal Reconfigurable

Machine Tool”. Technical repoi't. University o f Michigan, Ann Arbor. Viewed- July

2003:<eclipse.engin.umich.edu/Publications/PubPiles/TA3/CCC%20paper%20as%20Sent%20to%20

joumal.pdf>.

[37]Kefalas P., Eleftherakis G., & Kehris E.(2001), “Modular Modeling o f Large-Scale

Systems using Communicating X-Machines.” 8th Panhellenic Conference on

132

http://www.cs.umd.edu/class/spring2003/cmsc3%20ll/Notes/Comb/func.html
http://www.intel.com/technology/hyperthread/
http://www.araa.asn.au/acra/acra2001/Papers/Jantapre.pdf
http://www-users.cs.umn.edu/~karypis/cluto/
http://eclipse.engin.umich.edu/Publications/PubFiles/TA3/VirtualRMTReport_41.pdP

Informatics, Cyprus. Viewed July’2003:

< http://www.city.academic.gr/material/acadeniic_staff/computer_science/eleftherakis/html/epy8.html>

[38] Kelly T., & Littman J. (2001), “The Art of Innovation”. Doubleday, New-York.

[39]Kohonen T. (2001), “Self-Organizing Maps” 3"̂ ̂Extended Edition, Springer Series in

Information Sciences (30), Berlin.

[40] Koren, Y., & Kota, S. (1999) .“Reconfigurable Machine Tool”. U.S.Patent No.

5,943,750.

[41] Koren, Y., & Ulsoy, A.G.(2002), “Vision. Principles and Impact of Reconfigurable

Manufacturing Systems”. Powertrain International: 14-21.

[42] Landers R.G., Min B.K..(2001L“Development of a Prototype Reconfigurable

Machine Tool”. CIRP Conference on Reconfignrable

Manufacturing, Ann Arbor, Michigan, Viewed- July 2003:
<web.umr.edu/~landersr/PAPERS/CIRPRMO 1 .pdf>.

[43]Larman C. (2001), “Applying UML and Patterns: An Introduction to Object-Oriented

Analvsis and Design and the Unified Process (2nd Edition)” , Prentice Hall PTR,

New-York.

[44] Li H., Landers R., & Kota S.(2000).“A Review of Feasible Joining Methods for

Reconfigurahle Machine Tool Components. Japan-USA Symposium on Flexible

Automation, Viewed- July 2003: <web.umr.edu/~landersr/PAPERS/JUSAOOb.pdf>.

[45]Ling M. (2001), “Patterning Algorithm for Operation clustering for Reconfigurahle

machining systems”. PhD Thesis, University o f Michigan. Ann Arbor, Michigan.

[46] Lockledge C., & Salustri F.A. (2001), “Restructuring Design Communication Using a

Design Structure Matrix”. Proceedings o f the 13th International Conference on

Engineering Design, : 27—34.

[47] Lucas M.R., Endsley E.W., & Tilbury D.M. (2 0 0 0), “Modular Control For

Reconfigurable Machine Tools: Integrating Servo And Logic Control”. Proceedings

o f the Japan-USA Symposium on Flexible Automation July 2000, Ann Arbor,

Michigan, Viewed- July 2003 : <www-personal.engin.umich.edu/~tilbury/

papers/letOOj usfa.pdf>.

[48]Massachusetts Institute of Technology(2001), “The Design Structure Matrix - DSM”.

Viewed- July 2003: <http://www.dsmweb.org/>.

133

http://www.city.academic.gr/material/acadeniic_staff/computer_science/eleftherakis/html/epy8.html
http://www.dsmweb.org/

[49]MD Robotics (2001), “Mobile Servicing System”. Viewed August-2003:
<www.mdrobotics.ca/pdf_files/MSS_DS.pdf:>.

[50]Mehrabi M.G., Ulsoy A.G., & Koren Y. (2000), “Reconfigurable manufacturing

Systems: Key to Future Manufacturing”. Journal o f Intelligent Manufacturing 11(4):

403-419.

[51] Michael J. (1996), “Fractal Robots”. Viewed- July 2003: <http://fractal-robots.com/>.

[52]Ming X. G., & Mak, K. L. (2000), “Intelligent Setup Planning in Manufacturing by

Neural Networks Based Approach”, Journal o f Intelligent Manufacturingl 1:311-

331.

[5 3]Mohan, S.N. (2002) “Managing Unmanned Flight Proiects Using Methods in

Complex Product Deyelopment”. IEEE : Aerospace Conference Proceedings, 7: 3473

-3488.

[54] Moon S.K., Moon Y.M., Kota S., & Landers R.G. (2001), “Screw Theory Based

Metrology for Design and Error Compensation of Machine Tools”. ASME 2001

Design Engineering Technical Conference, Pittsburg, PA.

[5 5]Moon Y.-M. (2000), “Reconfigurable Machine Tool Design: Theory and

Application”. Ph. D. Dissertation, University o f Michigan, Ann Arbor, Michigan.

[56] Moon Y.M., & Kota S. (2002), “Automated Synthesis of Mechanisms Using Dual-

Vector Algebra”. Mechanism and Machine Theory 37(2): 143-166.

[57]Moon Y.-M., & Kota S. (2001), “Reconfigurable Power Spindle”. U.S. Patent :

6,309,319.

[58] Munson J.C. Khoshgoftaar, T.M.(1992), “Measuring Dynamic Program

Complexity”. IEEE Software 9(6): 48-55.

[59]National Aeronautics and Space Agency, “CLIPS, a Tool for Building Expert

Systems”. Viewed August-2003: <http://www.ghg.net/clips/CLIPS.html>.

[60]National Institute of Standards and Technology, “The STEP Project”. Viewed

August’2003 : <http://www.nist.gov/sc4/www/stepdocs.htm>.

[61]0ng S.K., & Nee A.N.Y. (1997), “Automatic Setup Planning in Machining

Operations”. Journal o f materials processing technology 63:151-156.

[62] Pantapolous G., “Holographie Information Systems”. PhD Thesis, 2003, California

Institute o f Technology, Pasadena.

134

http://www.mdrobotics.ca/pdf_files/MSS_DS.pdf:
http://fractal-robots.com/
http://www.ghg.net/clips/CLIPS.html
http://www.nist.gov/sc4/www/stepdocs.htm

[63]PARC (1997), “Modular Reconfigurable Robotics”. Viewed- July 2003:
<http://www2.parc.com/spl/projects/modrobots/>.

[64]Poon J. and Maher M.L. (1996), “Emergent Behaviour in Co-Evolutionary Design”,

Artificial Intelligence in Design, : 703-722.

[65]Principia Cybemetica Web (2001), “The Law of Requisite Variety”. Viewed July -

2003; <http://pespmcl .vub.ac.be/REQVAR.html>.

[6 6]Rogers J. L. (1997), “Reducing Design Cycle Time and Cost through Process

Resequencing.” 11th International Conference on Engineering D e s ig n ,193-198.

[67] Roush W. (2003), “Computers That Sneak Your Language”. Technology Review

106(5): 32-39.

[6 8]Rus D., & Vona M. (2000), “A Basis for Self-Reconfiguring Robots Using Crystal

Modules”. Proceedings of1EEE/RSJInternational Conference on Intelligent Robots

and Systems, 3(31): 2194 -2202.

[69] Sarma S.E., & Wright P. (1996), “Algorithm for Minimization o f Setups and Tool

Change in Simply Fixturable Components for Milling”. Journal o f manufacturing

systems 15(2): 95-112.

[70] Saaty T.L. (1994), “Fundamentals of Decision Making and Priority Theory with the

Analytic Hierarchy Process”. RWS Publications, Pittsburgh, PA.

[71]Sela O.G.,Dombre E., & Benhabih B. (1997), “A Reconfigurable Modular Fixturing

System for Thin-Walled Flexible Objects”. International Journal o f Advance

Manufacturing Technology, 13(9): 611-617, Viewed- July 2003:
<www.mie.utoronto.ca/labs/ciml/projects/ design/Fixturesela.pdf>.

[72] Shirinzadeh B. (1995), “A CAD-hased Hierarchical Interference Detection Among

Fixture Modules in a Reconfigurable Fixturing System” , International Journal o f

Robotics and Computer-Integrated Manufacturing, 12(1): 41-53.

[73] Smith R.P., & Eppinger S.D. (1997), “Identifying Controlling Features of

Engineering Design Iteration”. Management Science, 43: 276-293.

[74] South Carolina Research Authority (2001), “ISO 10303 STEP Application Handbook

Version 2”. Viewed August-2003: <www.isg-scra.org/STEP/files/

STEF_Application_Handbook.pdf>.

[75] Steward D.V. (1991), “Planning and Managing the Design of Systems”. Technology

Management : the New International Language: 189-193.

135

http://www2.parc.com/spl/projects/modrobots/
http://pespmcl%20.vub.ac.be/REQVAR.html
http://www.mie.utoronto.ca/labs/ciml/projects/%20design/Fixturesela.pdf
http://www.isg-scra.org/STEP/files/%e2%80%a8STEF_Application_Handbook.pdf
http://www.isg-scra.org/STEP/files/%e2%80%a8STEF_Application_Handbook.pdf

[76] Stoer M, Wagner F, (1997), “A Simple Min-Cut Algorithm”. Journal o f the A CM,

44(4); 585-591.

[77] Suh J.W., Homans S.B., & Yim M. (2002), “Telecubes: Mechanical Design of a

Module for Self-Reconfigurable Robotics”. IEEE International Conference on

Robotics and Automation 4: 4095 -410.

[78] Sullivan K.J., Griswold W.G., Cai Y., & Hallen B. (2001), “The Structure and Value

of Modularity in Software Design”. ACMSIGSOFT Symposium on the Foundations

o f Software Engineering, Vienna.

[79]Tilbury D.M., & Kota S. (1999), “Integrated Machine and Control Design for

Reconfigurable Machine Tools”. Proceedings o f the lEEE/ASME International

Conference on Advanced Intelligent Mechatronics, Atlanta GA. Viewed- July 2003:
<www-personal.engin.umich.edu/~tilbury/papers/aim99.pdf>.

[80] University of Southern California's Information Sciences Institute (1999), “The

USC/ISI Conro Proiect”. Viewed- July 2003: <http://www.isi.edu/conro/>.

[81] Unsal C ., & Khosla P.K. (2000), “Mechatronic Design of a Modular Self-

Reconfigurable Robotics System”. Proceedings o f the 2000 IEEE International

Conference on Intelligent Robots and Systems, 1742-1747.

[82] Unsal C. (2000), “I-Cubes: A Modular Self-Reconfiguring Bipartite Robotic

System”. Viewed- July 2003: <http://www-2.cs.cmu.edu/~unsal/research/ices/cubes/>.

[83] Vesanto J., & Alhoniemi E.(2000), “Clustering of the Self-Organizing Map”. IEEE

transactions on neural networks, 11(2): 586 -600.

[84] Vieira F.C., Neto A.D.D., & Costa J.A.F.(2000), “An Efficient Approach to the

Traveling Salesman Problem Using Self-Organizing Mans”. InternationalJournal o f

Neural Systems, Viewed-August 2003: <www.dee.ufm.br/alfredo/ijnsVieiraDoriaCosta.pdf>.

[85] Vitanyi P M B, & Li M. (2000), “Minimum Description Length Induction.

Bavesianism. and Kolmogorov complexity”. IEEE transactions on Information

Theoiy 46 (2): 446-464.

[8 6] Vona M. (1999), “The Crystalline Atomic Unit Modular Self-reconfigurable

Robot”. Viewed- July 2003: <http://www.ai.mit.edu/~vona/xtal/>.

[87] Walsh, Ronald A. (1998), “Mcgraw-Hill Machining And Metalworking Handbook”

2" ̂Edition, McGraw-Hill professional, London.

136

http://www.isi.edu/conro/
http://www-2.cs.cmu.edu/~unsal/research/ices/cubes/
http://www.dee.ufm.br/alfredo/ijnsVieiraDoriaCosta.pdf
http://www.ai.mit.edu/~vona/xtal/

[8 8] Wikipedia, the free encyclopedia: “Abstract Class”, Viewed August’2003
<http://www.wikipedia.org/wlki/Abstract_class>.

[89] Wikipedia, the free encyclopedia: “Class lobiect-oriented programming)”. Viewed

August’2003: <http://www.wikipedia.org/wiki/Class_(object-oriented_programming)>.

[90] Wikipedia, the free encyclopedia: “Genetic algorithm”. Viewed August’2003:
<http://www.wikipedia.org/wiki/Genetic_algorithm>.

[91] Wikipedia, the free encyclopedia: “Thread (computer science)”. Viewed

August’2003: <http://www.wikipedia.org/wiki/Thread_(computer_programming)>.

[92] Wolfram S. (2002), “A New Kind of Science”. Wolfram Media, Inc., Champaign,

IL.

[93] Wu Y., Shuming G., & Ziehen C. (2001), “Automatic Setup Planning And

Operation Sequencing For Satisfying Tolerance Requirements”. Proceedings o f

ASME 2001 Design Engineering Technical Conferences, Pittsburgh, PA.

[94] www.about.com, “Crawler”. Viewed August’2003:
<http://websearch.about.com/library/glossary/bldef-crawler.htm>.

[95] www.Diffuse.org, “Product Data Representation and Exchange Standards”. Viewed

August’2003 : <http://www.diffuse.org/products.html#Description>.

[96] www.hyperdictionary.com, “Bus” , Viewed August’2003:
<http://www.hyperdictionary.com/dictionary/bus>.

[97] www.hyperdictionary.com, “Case Based Reasoning”. Viewed August’2003:
<www.hyperdictionary.com/computing/case+based+reasoning>.

[98] www.hyperdictionary.com .’’Field-Programmable Gate Array”. Viewed

August’2003: <http://www.hyperdictionary.com/dictionary/Field-Programmable+Gate+Array>.

[99] www.softwarerecommendations.com, “Feature Creep”. Viewed- August 2003:
<http://www.softwarerecommendations.com/feature-creep.html>.

[1 0 0] Xi F., Ross A., & Lang S. (2001) “Exploring a Re-configurable Parallel Robot for

Space Applications”. 6th International Symposium on Artificial Intelligence, Robotics

and Automation in Space, 2001, Montreal, Canada.

[1 0 1] Yang G., & Chen l.M (2000), “Task-based Optimization of Modular Robot

Configurations: Minimized Degree-of-Freedom Approach” Mechanism and Machine

Theory 35(4): 517-540.

137

http://www.wikipedia.org/wlki/Abstract_class
http://www.wikipedia.org/wiki/Class_(object-oriented_programming)
http://www.wikipedia.org/wiki/Genetic_algorithm
http://www.wikipedia.org/wiki/Thread_(computer_programming)
http://www.about.com
http://websearch.about.com/library/glossary/bldef-crawler.htm
http://www.Diffuse.org
http://www.diffuse.org/products.html%23Description
http://www.hyperdictionary.com
http://www.hyperdictionary.com/dictionary/bus
http://www.hyperdictionary.com
http://www.hyperdictionary.com/computing/case+based+reasoning
http://www.hyperdictionary.com
http://www.hyperdictionary.com/dictionary/Field-Programmable+Gate+Array
http://www.softwarerecommendations.com
http://www.softwarerecommendations.com/feature-creep.html

[1 0 2] Yassine A.A., & Browning T.R. (2001), “Analyzing Multiple Product

Development Proiects Based On Information and Resource Constraints” Technical

report: Ford-MIT alliance.

[103] Yassine A.A., & Braha D. (2003), “Four Complex Problems in Concurrent

Engineering and the Design Structure Matrix Method.” Concurrent Engineering

Research & Applications, 11(3). Sept. 2003.

[104] Yassine A.A., Joglekar N., Braha D., Eppinger S., & Whitney D.(2002),

“Information Hiding in Product Development: The Design Chum Effect.”. MIT Sloan

School o f Management Working Paper-4333-02.

[105] Yassine A.A., Whitney D.E., Lavine J., & Zambito T.(2000), “Do-it-right-first-time

(DRFTI Approach to DSM Restructuring”. Proceedings o f ASME 2000 International

Design Engineering Technical Conferences September 10-13, 2000, Baltimore, MD.

[106] Yassine A.A., Whitney D., & Zambito T. (2001), “Assessment o f Rework

Probabilities for Design Structure Matrix (DSM) Simulation in Product Development

Management”. Proceedings o f the 13 th International Conference on Design Theory

and Methodology (DTM2001).

[107] Ye B., & Salustri F.A. (2003), “Simultaneous Tolerance Synthesis for

Manufacturing and Quality”. Research in Engineering Design, 14:98-106.

[108] Yim M, Roufas K., D uff D., Zhang Y., & Homans S. (2003), “Modular

Reconfigurable Robots in Space Applications”. Autonomous Robot Journal, special

issue for Robots in Space, Springer Verlag, Berlin, Viewed- July 2003:
<www2.parc.com/spl/proJects/modrobots/ publications/pdf/space.pdf>.

[109] Yu T.L., Yassine A.A., & Goldberg D.E. (2003), "A Genetic Algorithm for

Developing Modular Product Architectures.” Proceedings o f the ASME 2003

International Design Engineering Technical Conferences, 15th International

Conference on Design Theory & Methodology.

[1 1 0] Zhang H C., & Lin E (1999), “A Hvbrid-Graph Approach for Automated Setup

Planning in CAPP” Robotics and Computer-Integrated Manufacturing, 15:89-100.

[111] ZhongW. (20021 “Modeling and Optimization for Quality and Productivity for

Machining Systems with Different Configurations”. PhD thesis. University o f

Michigan, Ann Arbor, Michigan.

138

