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Abstract

This thesis is primarily focused on the information combination at different levels of a

statistical pattern classification framework for image annotation and retrieval. Based

on the previous study within the fields of image annotation and retrieval, it has been

well-recognized that the low-level visual features, such as color and texture, and high-

level features, such as textual description and context, are distinct yet complementary in

terms of their distributions and the corresponding discriminative powers for dealing with

machine-based recognition and retrieval tasks. Therefore, effective feature combination

for image annotation and retrieval has become a desirable and promising perspective from

which the semantic gap can be further bridged. Motivated by this fact, the combination

of the visual and context modalities and that of different features in the visual domain

are tackled by developing two statistical pattern classification approaches considering

that the features of the visual modality and those across different modalities exhibit dif-

ferent degrees of heterogeneities, and thus, should be treated differently. Regarding the

cross-modality feature combination, a Bayesian framework is proposed to integrate visual

content and context, which has been applied to various image annotation and retrieval
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frameworks. In terms of the combination of different low-level features in the visual

domain, the problem is tackled with a novel method that combines texture and color

features via a mixture model of their joint distribution. To evaluate the proposed frame-

works, many different datasets are employed in the experiments, including the COREL

database for image retrieval and the MSRC, LabelMe, PASCAL VOC2009, and an ani-

mal image database collected by ourselves for image annotation. Using various evaluation

criteria, the first framework is shown to be more effective than the methods purely based

on the low-level features or high-level context. As for the second, the experimental result-

s demonstrate not only its superior performance to other feature combination methods

but also its ability to discover visual clusters using texture and color simultaneously.

Moreover, a demo search engine based on the Bayesian framework is implemented and

available online.
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Chapter 1

Introduction

1.1 Background

The ever-lasting growth of multimedia information has been witnessed and experienced

by human beings since the beginning of the information age. An immediate challenge

resulting from the information explosion is how to intelligently manage and enjoy the

multimedia databases. Among the technologies developed in response to this challenge,

multimedia information retrieval (MIR) has emerged as a critical tool for the access to

the multimedia content relevant to a user’s information need from a large scale source of

information, which is commonly considered to be the Internet nowadays. The applica-

tions of MIR can be related to many different aspects of our life, such as searching for

travel information, quick access of library catalog and other educational resources, and

building online social network, just to name a few.

By far, most of the commercial search engines, such as GoogleTM, Microsoft BingTM,

YahooTM, and BaiduTM, rely on textual information to index and search for the available

multimedia content. Being completely indexed and searched with textual information

1



1.1. BACKGROUND

has several limitations.

• First, unless manually annotated by professionals or very conscientious amateur

multimedia producers, the textual information is usually very unreliable and un-

structured, which may cause a great number of errors during the subsequent in-

dexing and search processes. Even if such annotation is securable, different people

still can use different words and phrases to describe the same semantic content.

Besides, the description from one person may differ from that of another because of

the subject’s knowledge background, interest and attention, etc. Although machine

translation can be employed to convert the annotation in one language to that in

another, many techniques of this kind might not work well because the annotation

of multimedia content is normally composed of isolated keywords or phrases rather

than complete sentences.

• Second, there are three types of queries summarized in [1], which are browsing,

category search and target search. The first type of query starts with no specific

information need, i.e. a user just wants to browse the database to see if there

is anything interesting to look into with more details. The second type of query

aims at finding the objects or scene belonging to the same semantic category, e.g.

finding all images of cars. The last kind of query requires the system to find images

of the same object or exactly a copy of the query. Other types of queries can also

be found in [2, 3]. Clearly, not all kinds of queries can be efficiently formulated

using keywords or a phrase. For example, target search and category search can

be best solved by means of directly expressing the information need using images

and using keywords, respectively. In addition, if visual content analysis can embed

some semantic structure into the unstructured image data, browsing can be made

2



1.2. CHALLENGES AND RELEVANT TECHNOLOGIES

much more efficient.

1.2 Challenges and Relevant Technologies

To compensate for the afore-mentioned drawbacks of the text-based search engines, there

has been much research effort devoted to the development of search technologies without

utilizing text as well as automatically assigning relevant textual description to images.

In the course of the technological development of MIR, various approaches have been

proposed with the ultimate goal of enabling semantic-based search and browsing.

1.2.1 Content-Based Image Retrieval

Among those intensively explored topics, content-based image retrieval (CBIR), born at

the crossroad of computer vision, machine learning and database technologies, has been

studied for more than a decade, yet still remaining difficult [1, 4]. In a nutshell, the

content-based approaches to image retrieval primarily rely on the pictorial information,

a.k.a. low level visual features such as color, texture, shape and layout, which can be au-

tomatically extracted from images for similarity measure. Two well-recognized extremely

challenging issues associated with CBIR are the sensory gap and semantic gap, as illus-

trated in Fig. 1.1. The sensory gap refers to the difference between the appearance of

an object in a real scene and its numerical representation extracted from the informa-

tion captured with sensors. Information can be lost during both the capturing process

and the feature extraction stage. The semantic gap means the disparity between the

numerical representation extracted from the recorded information and the interpretation

of the recorded data. In terms of the semantic gap, low-level visual features accurately

characterizing the semantic meaning of images are difficult to discover, which is coupled
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Figure 1.1: The illustration of the sensory and semantic gap.

with the imperfection of the conventional distance functions embedded in the Euclidean

space. These two problems lead to the observation that semantically relevant images

may be located far away from each other in the space of the low-level visual features.

According to [1], the sensory and semantic gaps are very wide when the problem domain

encompasses a large number of object categories, highly variable illumination conditions

and viewing angles. As a result, various photometric and geometric changes lead to quite

complex distribution of the numerical representation of image data, typically in a very

high dimensional space.

From the perspective of machine learning, if images are represented using numerical

descriptors in a feature space where a distance metric is defined, searching for similar

images inevitably boils down to the problem of measuring the distance between images or

how well a candidate image is aligned with the model characterizing the information need

represented by a query. Early retrieval paradigm for content-based search engine design

is query-by-example, i.e. a user initializes a query session by providing the system with

an image containing the semantic meaning relevant to the his/her information need. The

selected distance function measures the similarity between the example image and each

of candidate images in the database. The output of the distance function is used to rank

the candidate images, of which the most similar (in the sense of being closest to the query

in the feature space) ones are returned to the user. This rudimentary procedure describes

the minimal workload for retrieving images based on the visual content similarity and
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generally can not satisfy the users unless the image domain is narrow and the distance

function is designed properly based on the domain knowledge. To be specific, the user’s

query may be very complex and hence difficult to be represented using a single image.

More often than not, the visual content of an image is either insufficient or excessive

for expressing the semantic meaning of the actual information need. As an example of

having too much irrelevant visual content, if an image of a car in a cluttered scene is

used as the query image for a category search, the visual information of the objects other

than the car in the image will make negative contribution to the query formulation. As a

result, it reduces the discriminative power of the image representation and the similarity

measure function employed in a search engine. Moreover, it is worth noting that CBIR,

as a pattern classification problem, is rather different from others in that a semantic

class of interest to a user (what to search for) during the system operation time is not

pre-defined and remains unknown until a user submits queries for them.

To deal with this issue, an online learning approach called relevance feedback (RF) was

borrowed from the domain of document retrieval. Through human machine interaction

(HMI), candidate images labeled by the users during the RF process can be used to

refine the query formulation, i.e. recalculating the feature representation of the query

or the parameters of the model distinguishing the relevant images from irrelevant ones.

Although RF is capable of alleviating the semantic gap to some extent, the amount of time

needed for learning the semantic meaning in a previously unseen query/semantic class

online is fairly limited because users normally expect an efficient search engine requiring

little HMI. This is the most difficult problem associated with the RF techniques in that

very few labeled data can be obtained for subsequent online learning within a short

period.

To tackle the challenges which still remain after incorporating RF techniques, we
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propose a framework which integrates learning from the information accumulated through

a long-term period with the conventional CBIR approaches. This leads to an image

retrieval framework utilizing both low-level visual content and high-level context, with

the latter estimated using the past search results.

1.2.2 Automatic Image Annotation

Another promising key technology for more effective search engine design is the con-

struction of a mapping from visual content to high-level semantics, i.e. automatic image

annotation. The significance of this technology lies in its usefulness of enriching the

multimedia databases labeled with textual descriptions. This will considerably improve

the efficiency and effectiveness of the development and deployment of the state-of-the-

art keyword-based search technologies. The problems to be handled by this technology

constitute a super set of the problems collectively known as object recognition. Accord-

ing to the research in the field of psychology and computer vision, scene perception can

be rapidly performed without analyzing the details of individual objects. However, the

detailed description on the semantic meaning still largely relies on detecting and recogniz-

ing the objects present in a scene. A number of generative machine learning frameworks

have been developed to model the visual feature representation of images and leveraged

to assign semantic labels to them. Such frameworks can formulate the parametric form

of a model by simulating a conceptual data generation process, which results in much

insight into the discovery of meaningful structure of complicated image data.
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Figure 1.2: The general overview of the thesis.

1.3 Overview and Contributions of the Thesis

In accordance with the above-mentioned background and challenges, some exploratory

research tackling the major issues with respect to the research topics related to MIR

is presented in this thesis, with the ultimate goal of developing technologies to enable

semantic-based image search and browsing. Illustrated in Fig. 1.2 is the general overview

of the thesis. Throughout years of intensive study on visual recognition, it has been well-

recognized within the research community that utilizing the information from multiple

modalities and multiple types of features in each modality results in performance improve-

ment [5]. Intuitively, as long as different modalities and descriptors contain complemen-

tary discriminative information, the more of them are combined into the classification

process, the more semantic gap may be bridged. Nonetheless, how much improvement

can be acquired still depends on how appropriately the various sources of information

are jointly exploited. Based on this line of thought, we have taken the perspective of
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combining multiple sources of information to solve the technical problems of image re-

trieval and annotation. In terms of the specific methodology, we have proposed statistical

frameworks to combine 1) multiple modalities, i.e. visual content and context, and 2)

different features belonging to the visual feature modality. The proposed approaches are

intended to handle the feature combination at different levels of a pattern recognition

process. To be specific, the combination across different modalities can be regarded as

a high level fusion because the input of the fusion scheme consists of the output of the

model of each individual modality. For this kind of task, a general Bayesian framework

is developed, where the features of different modalities are modeled separately yet used

jointly through the Bayes’ theorem. On the contrary, because of the stronger correlation

among different visual features compared with that of different modalities, the combina-

tion of various features in the visual modality is solved through low-level fusion, where a

single statistical model is utilized for jointly modeling all the features. It is also notewor-

thy that the low-level fusion can be further integrated with the high-level one in a more

general pattern classification system. In this case, the low-level fusion plays the role of

content analysis in the overall framework.

The technical contribution of the thesis is summarized as follows.

• A general Bayesian framework is proposed. It integrates the content analysis for

the likelihood evaluation and the context analysis for estimating the a priori prob-

abilities. The latter is based on the maximum entropy estimation of the statistical

dependence across multiple entities, either an image or a semantic class, which is

defined as the context in the presented study.

• The Bayesian framework is applied to the image annotation problem, where the

content analysis and context analysis are complementary to each other, result-
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ing in the performance that is superior to both content-based and context-based

approaches. Experimental results show when one component, either content or con-

text, failed to assign a label to the image, the other component will help correct the

mistake. By further incorporating a content-based search module to the Bayesian

image annotation framework, users are not involved in the annotation process to

provide feedback on the list of relevant semantic classes ranked using the output of

the content-base component. Hence, the Bayesian image annotation framework is

fully automatic.

• The Bayesian framework is also applied to the image retrieval problem. Consid-

ering the limited period for learning semantics from users’ queries and RF steps,

the statistical correlation across candidate images is learned through a long-term

process, and used as the contextual information to boost the performance of the

content-based search. Results demonstrate that the retrieval performance reach the

same level of accuracy as that of purely content-based approaches at a considerably

higher speed. This also implies the possibility of letting past users help prospec-

tive users using such a statistical framework, i.e. a collaborative search engine. A

prototype image retrieval system has been implemented for subjective evaluation

of the retrieval framework.

• Taking into consideration the fact that there are objects which can produce charac-

teristic sound, the audio feature is utilized as another type of contextual information

to solve the semantic gap problem of image retrieval. Here, the sound is considered

as the holistic background context, as opposed to the statistical relation between

different object categories or images. As an additional application of the Bayesian

framework, it is employed to integrate the visual and audio modalities.
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• Targeting more effective content analysis for automatic image annotation using

multiple low-level visual features, a general statistical model, called multi-feature

probabilistic latent semantic analysis (MF-pLSA), is proposed. It jointly charac-

terizes the distributions of color and texture and decomposes them into a mixtures

of topic distributions in the color and texture feature domains, respectively. This

also leads to the joint clustering of the image data based on the distributions in

the two feature spaces. An EM-based learning algorithm is derived for estimating

the parameters of the MF-pLSA with a given training set. A maximum likelihood

classification framework is designed to annotate objects in images using the MF-

pLSA. Extensive experimental study on the MF-pLSA and the comparison with

other methods of combining low-level visual features show that for most of the ob-

ject categories under our consideration, the MF-pLSA outperforms others in terms

of both recall and and precision.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, a detailed review on the

existing works related to CBIR and automatic image annotation are discussed. In Chap-

ter 3, we first introduce the general Bayesian framework for combining the content and

context modalities. Then, its application to CBIR and image annotation are elaborated.

Furthermore, by considering the audio modality as the background context, a Bayesian

image retrieval framework using both visual and audio features is presented in Chapter

4. In Chapter 5, we move into a lower-level of feature combination, which aims at the

combination of color and texture for automatic image annotation. Finally, the general

conclusion and future research directions are provided in Chapter 6.
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Chapter 2

Literature Review on Related Works

2.1 Introduction

In this chapter, a review on the existing approaches to the general domain image annota-

tion and retrieval is presented. There is no doubt that the existing works regarding image

retrieval and annotation are rather diversified in terms of their methodology because the

subject matter of interest is born at the cross road of many research fields, such machine

learning, computer vision and database technologies, just to name a few. Taking into

account that the major theme of this thesis is the integration of multiple sources of infor-

mation, i.e. (1) low level visual content and high level context and (2) different kinds of

low level visual features, the primary criterion of the taxonomy of the methods covered

in this chapter is the perspective through which they deal with the semantic gap. At

the top level, existing works are divided into those explicitly solving image retrieval and

those addressing image annotation. As to image retrieval, existing RF and multi-modal

approaches are discussed. Regarding image annotation, previously developed methods

are further categorized based on the consideration of context and the specific modeling
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schemes.

2.2 Image Retrieval

Conventional CBIR systems exploiting low-level visual features, such as color, texture

and shape, to represent images in a feature space. Early systems which successfully

exploited these features include QBIC [6, 7], VisualSEEk [8], Photobook [9] and Virage

[10]. These low-level feature-based systems have proven effective to the extent of pre-

attentive similarity, which is largely due to the well-known sensory and semantic gaps.

In recent years, these challenges have been addressed through the RF and multi-modal

approaches.

2.2.1 Relevance Feedback

Noticing the critical role that human beings play in recognizing and comparing semantic

content in multimedia objects, the human-supervised retrieval process was introduced,

with the landmark being the application of RF to CBIR. The RF was originally de-

veloped for document retrieval. It aims at assisting users in formulating queries more

accurately and comprehensively by integrating the relevant retrieved items with the ini-

tial query during the first few search iterations or retraining the model characterizing

the information need iteratively. Various RF techniques proposed hitherto focused on

three major aspects, i.e. the query point movement approaches [11], [12], the weighted

distance methods [13,14], and model-based similarity measure strategies. Regarding the

last aspect, which is essentially the approximation of a function consistent with human

visual perception, existing works can be divided into two categories. The first category

is the nearest neighbor CBIR (NN-CBIR), in which the distance function is either lin-
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ear [15, 16] or non-linear [17, 18]. In [17], an interactive neural network-based learning

framework was developed, in which the most informative images are used to refine the

query model. Based on a similar neural network approach, the method in [17] was gen-

eralized such that the system can accept multiple degrees of relevance in the RF stage,

a.k.a a soft RF [18] scheme. The second category of approaches formulate image retrieval

as a pattern classification problem, either a two-category classification [19] or a multi-

category one [20]. In [19], the methodology of active learning was employed for acquiring

training samples during RF. Specifically, instead of informing the system of the positive

and negative images, users are asked to classify the most ambiguous one into either the

relevant or the irrelevant category. The model of the query is then retrained with these

samples that can not be confidently classified yet. We refer to the above RF techniques

based on each individual user’s feedback as short term relevance feedback (STRF) as

the learning only continues until the end of a single search request. The approaches in

this category alleviate the semantic gap by incorporating human users’ knowledge into

the process of labeling training samples yet still suffering from the problem of sample

sparseness, as average users are normally willing to select only a few relevant and irrele-

vant images. In addition, as irrelevant images may be distinct from the relevant ones in

many different ways, training samples of the two categories in the context of RF are very

likely imbalanced. It should also be noted that the afore-mentioned RF techniques are

complementary to each other rather than being alternative, in the sense that they can

be integrated to achieve better performance, examples of which can be found in [12,21].

Having recognized that learning the semantics of images is a long-term task, long ter-

m relevance feedback (LTRF) based on users’ feedback across multiple queries has been

proposed. In terms of the methods for extracting the information from retrieval history,

singular value decomposition (SVD) was employed to construct a hidden semantic space
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(HSS) [22], in which the retrieval history is recorded in a hidden semantic matrix and the

classification is performed using support vector machine (SVM) in the dimensionality-

reduced HSS. As another example, content-free image retrieval (CFIR) [23] directly ex-

ploiting statistical dependence across the images in a database was proposed, where

semantically similar images identified by human users in the past retrieval sessions are

connected to one another using a maximum entropy model. An inherent limitation of

CFIR is the cold start problem, resulting from deficient or even unavailable training data.

In [24], a new RF framework was proposed to facilitate continuously accumulating past

retrieval results and in turn incrementally learning the high-level knowledge for CFIR.

2.2.2 Multi-modal Image Retrieval

Towards the goal of bridging the semantic gap, researchers have endeavored to explore

multi-modal image retrieval employing both textual and visual information. For example,

the difference between [25] and [26] is that they perform image-level and region-level

keyword assignment, respectively. While [25] is essentially keyword-based retrieval with

the content-based module playing a role of translating the query into keywords (on-

line annotation), a linear late fusion was employed in [26] to combine the similarity

measured in the textual and visual domains. It should be noted that the determination

of the coefficients for the linear fusion is usually heuristic. As an image is inherently

a 2-dimensional information carrier, little effort has been put on incorporating audio

information into image retrieval when compared with video retrieval until recently [27,28].

It is because of the rocketing popularity of camera-integrated mobile phones and demands

of users for on-the-go information retrieval that the audio-visual image retrieval has

become a new research frontier. As an example, the fusion scheme employed in [27] is
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similar to that in [26]. In addition, the system in [28] enables queries expressed using

different individual modality.

2.3 Image Annotation

As mentioned earlier, query formulation based on the low-level visual content may be

burdensome for human beings, especially when the images related to some high-level

semantics are expected in a search result. Unlike low-level visual features, human lan-

guage was created to record human knowledge and to express ourselves. Hence, textual

information expressed using natural language lends itself to characterizing the seman-

tics in images. Feng [29] proposed a multi-modal image retrieval, which enables both

query-by-keyword and query-by-example with the measured similarity linearly combined

at a subsequent step. Nonetheless, existing behind the performance improvement of the

multi-modal retrieval is the lack of textual annotation with sufficient semantic richness.

Considering the unreliability of the text surrounding the images on the Internet and

the infeasibility of manually annotating large scale image databases, automatic image

annotation intended to facilitate semantic-based search and browsing has been studied

for years. Essentially, the technique underlying automatic image annotation is machine-

based visual recognition, the goal of which is to automatically classify the input visual

information into several predefined semantic categories. Based on the level of abstrac-

tion of the predefined semantic categories and the target of annotation, there are, in a

coarse-to-fine order, three major tasks which can be considered as particular instances of

automatic image annotation.

1. Scene Classification
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This task involves the most abstract predefined categories, including locations and

events. Early works, such as [30] and [31], use global features and hence only prove

effective with respect to general semantic categories, such as indoor versus outdoor

and city view versus natural scene. Advanced approaches developed recently, such

as [32] and [33], are capable of handling the classification into more specific scene

categories, e.g. inside of cities, streets, forest, coast, open country, bedroom, living

room, etc. In addition, there are also approaches recognizing the events going on

behind the visual scene when an image is taken. As an example, the method in [34]

can distinguish between events such as badminton, rock climbing and snowboard-

ing, etc.

2. Image-based Object Annotation

Simply put, the goal of the second task is to answer if one or more instances of a

certain type of objects exists in an image. The location and area of the objects are

usually not considered. Methods falling into this category include, but not limited

to, [35], [36], [37], [38], [39], [40]. While using global and/or local visual descriptors,

these approaches associate words with an entire image by keeping the words on the

top portion of a list ranked based on their a posteriori probabilities given the visual

information.

3. Region-based Object Annotation

Distinct from the above two tasks, region-based annotation with keywords cor-

responding to objects is the task aiming at generating the most specific corre-

spondence between words and image structures. Examples of this category in-

clude [41], [42] and [43]. The latent variable models proposed in [44], [45] and [34]

16



2.3. IMAGE ANNOTATION

are capable of dealing with the association of words with both images and their

regions.

Having stated the tasks for automatic image annotation, an in-depth review on the

existing approaches is provided in what follows. As a high-level machine vision problem,

methods for image annotation can be classified based on many different aspects, including

feature extraction, feature modeling, specific tasks to solve, etc. The methods reviewed

here are organized in two parts, one of which covers the approaches which consider

observed samples as independently and identically distributed (i.i.d.) data, and the

other of which encompasses the methods taking into account the statistical dependency

across observed samples. Within each part, the approaches are compared in terms of

the other aspects of the methodology. Using the terminology of pattern recognition, the

second category of approaches adopt the paradigm of context-aware classification. In

accordance with our domain knowledge on visual recognition and as demonstrated in

some research works, the second kind of approaches outperform those of the first kind by

taking into account the cross-sample dependency. However, both of these two kinds of

approaches have pros and cons, which can be better explained with Fig. 2.1. The directed

graphical model on the left-hand side is a particular example of a hierarchical structure

for modeling i.i.d samples. It can be used to capture the semantic structure of an image

collection by modeling scene, object, part and visual descriptor using the nodes from top

to bottom. In addition, the hierarchically structured model can be employed to solve all

of the three afore-mentioned tasks of image annotation. The example of context-aware

model shown on the right-hand side compensates for the disregard of the hierarchical

model with respect to the cross-sample dependency. Nonetheless, this is achieved at the

cost of higher computational complexity due to top-layer nodes’ nature of being hidden
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Figure 2.1: The comparison between an i.i.d. data model and a context-aware classifica-
tion model. The i.i.d. data model shows the data generation process of a single sample
of a generative model. On the right-hand side, the connection between the nodes on top
layer of the context-aware model indicates their correlation.

variables and their marginalization during learning. Moreover, the optimal inference on

the states of the top-layer nodes involves the enumeration over NK possible cases, where

N andK are the numbers of samples and category labels, respectively. Although there are

efficient algorithms such as dynamic programming and more generally the sum-product

algorithm [46] for factor graphs, they are only optimized for tree-structured graphs. It

should be noted that the examples illustrated in Fig. 2.1 are only for comparing the

merits and drawbacks of the two modeling strategy. In the literature, many variants of

them have been proposed, with the major difference lying in the dependency among the

variable nodes and the distribution they follow.

Prior to the discussion on previous methods, it is worth mentioning that the third

task of automatic image annotation is close to object category recognition. Furthermore,

there are also a great deal of common aspects in terms of the methodology dealing with

these two subject matters. Therefore, previous approaches to object category recognition

are also covered in order to give a comprehensive review upon the advancement of the
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research field of image annotation.

2.3.1 Image Annotation by Modeling Independently and Iden-

tically Distributed Data

Existing approaches falling into this category can be further classified into supervised

and unsupervised models. Using supervised models, some researchers define each key-

word as a class, as in [38, 47], whereas others, as in [39, 48], consider a set of related

keywords as a class, which is also referred to as a concept. For the latter, the keywords

of the top ranked concept categories go through a keyword selection process and those

selected are propagated to an image or a region to be annotated. With unsupervised

models, approaches purely based on image data, e.g. [49, 50], do not pre-define a set of

semantic classes. They rely on the algorithms to automatically discover the significan-

t categories with coherent visual properties, which is essentially similar to a clustering

process. Meanwhile, there has been a substantial amount of research works tackling im-

age annotation through jointly modeling image data and text, e.g. [44, 45]. In this case,

keywords are merely treated as observed samples from the domain of text, rather than

labels corresponding to semantic classes. Therefore, they are referred to as multi-modal

approaches to image annotation in the literature.

Unsupervised Approaches

An early unsupervised approach can be found in [51]. In this work, image patches

obtained by grid-based uniform image partitioning are used as object regions. These

patches are clustered through vector quantization. If a patch is assigned to a cluster, all

of the keywords of the image, to which that patch belongs, are taken to that cluster as
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well. This way, each cluster eventually has its own histogram of frequencies of occurrence

of all the keywords. To annotate a new image, its patches are assigned to the clusters

based on the nearest neighbor rule and the average of the histograms of the selected

clusters are used to rank the keywords.

Motivated by the demand for such applications as efficient browsing of an image col-

lection, query by text and automatic image annotation, a hierarchical model [52] was

proposed to learn the semantic structure of a collection of images with associated textual

labels. In this context, the semantic structure can be interpreted as the summary of the

organization of an image collection based on their semantics. The ultimate goals of this

work are: 1) to associate unlabeled images with textual annotation such that efficient

query by text is enabled, and 2) to expose the semantic structure of an annotated image

collection to users such that efficient browsing is supported. In light of the success of

probabilistic latent semantic analysis (pLSA) in the research area of textual document1

analysis, the hierarchical model in [52] was built based on the principle of pLSA. Each

image segment or annotation keyword is generated by first selecting a cluster, denoted c,

and then selecting a level of generality, denoted l, which together determine the distribu-

tion, denoted P (x|c, l), of the segment or keyword, denoted x, conditional on the above

selected quantities. In the area of machine learning, these conditional probabilities are

referred to as aspects. In the area of document analysis, they are termed topics. Using

the Expectation-Maximization (EM) procedure, the set of topics can be learned, which

represent the semantic structure of an image collection. The probability of an image

having its own keywords and segments, denoted P (x|d), is represented by the product

1In the literature, many statistical models for textual document analysis have been borrowed to solve
the analysis in image domain. Hence, document and image are usually used interchangeably. Instead of
following this style of terminology, in the rest of the thesis, the term document is particularly used to
refer to textual documents in order to distinguish them from images, unless stated otherwise.
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of weighted sums of P (x|c, l), taken into account the assumption of the i.i.d. nature of

the samples. In addition, the weights quantify the decomposition of P (x|d) with respect

to the topics, which are considered as the signature of an image in the topic space. For

the retrieval application, since each candidate image in the database has its own P (x|d),

the similarity between a query and a candidate image can be measured by calculating

the probability that the set of keywords and segments, denoted Xq, of the query are

generated by the P (x|d) of candidate image d, i.e. P (Xq|d). To annotated an image

without any textual labels, the joint probability of a keyword w and all of the segments

of the image, denoted S, can be calculated based on P (x|c, l), which can be considered

as the probability of matching a keyword with the set of segments of an image. The key-

words with high matching probabilities are assigned to the image. In terms of low-level

visual features, size, position, color, texture and shape descriptors are stored in a single

vector. This kind of low-level feature combination is referred to as vector concatenation

of individual descriptor vectors.

The above hierarchical model is a particular example of the unsupervised learning of

the joint distribution of image and text using a pLSA-based topic model. The most fun-

damental principle of this kind of approach is that it learns the distribution of text and

visual features of an image, i.e. P (x|d), by decomposing it into a weighted sum of a set

of topic distributions, represented as P (x|O), where O denotes the set of variables collec-

tively determining a unique topic. Meanwhile, the set of image-specific weights P (O|d),

or topic mixture coefficients, can be thought of as the signature of image d in the space

spanned by the topic distributions. In the case of [52], O = {c, l}. Since the topic mixture

coefficients of all images are parameters of the model in [52], a hierarchical model which

drops the dependence of a topic mixture coefficient on an image was proposed in [53] to

restrict the size of the model. In [45], a hierarchical model which includes image-specific
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but cluster-independent topic mixture coefficients was introduced. It controls the size of

the model yet retaining its ability to generate image signatures for retrieval applications.

In [44], latent Dirichlet allocation (LDA) was employed to jointly modeling images and

associated text. The difference between LDA and pLSA is the former considers the topic

mixture coefficients as random variables of a Dirichlet distribution whereas the latter

considers them as fixed unknown parameters. The selected low-level visual features and

their combination used in [44,45,53] are the same as those in [52].

While topic models such as pLSA have been successfully adapted to solve the image

annotation problem, the work presented in [35] takes one step backward to comparatively

study the performances of latent semantic analysis (LSA) and pLSA. To represent each

image, the bins of a local histogram and the keywords are collectively treated as the ele-

ments of a single vocabulary. For an image to be annotated, the dimensions of its feature

vector corresponding to the keywords are zero. Projecting such a representation into the

latent semantic space also causes problems, such as inaccurate image representation in

the latent semantic space. Regarding the annotation methods for LSA and pLSA, the

former is based on image-wise direct match in latent semantic space followed by keyword

propagation and the latter is based on the a posteriori probability of a keyword given

an image. Although the conclusion indicates that pLSA is inferior to LSA for image

annotation, the performance evaluation scheme actually penalizes the ability of pLSA

to learn the co-occurrence of words, as stated in [35]. In addition, pLSA can be used

to construct hierarchical semantic models of an image collection, whereas LSA does not

bear this ability. In terms of the combination of text and visual features, the image

representation in [35] concatenating keywords and the bins of a local color histogram

assigns equal importance to both modality, which is problematic as shown in [36]. To

handle the inherently unequal contribution of the semantic meaning from the textual
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and visual domains, two pLSA models are learned respectively using keywords and local

visual features in [36], with the visual pLSA using the topic mixture coefficients resulting

from learning the textual pLSA.

The above methods are primarily used for labeling images with keywords, which is

the second task of automatic image annotation. In terms of region-based object anno-

tation, the task was considered as a machine translation problem in [42]. The proposed

approach is based on the language model developed in [54] and aims at learning the cor-

respondence between object regions and keywords associated with the images, which are

only weakly labeled. It is compared to the task of learning a lexicon from aligned bi-text

for machine translation between documents of different languages. Since translation is

inherently between two domains of discrete data, converting image features to discrete

representation is necessary. To this end, the descriptors extracted from image segments

resulting from Normalized-Cut [55] are vector quantized using the kMeans algorithm.

The discrete representation is referred to as blob token. In essence, the statistical mod-

el is a table of conditional distributions P (w|x), where w and x denote keywords and

blob tokens. Given weakly labeled images, the correspondence between blob tokens and

keywords is unobserved. By introducing a hidden variable for this relationship, the con-

ditional probability table is estimated through an EM procedure, which can be directly

used for annotating object regions of new images. A problem of this approach is that the

segmentation is purely based on low-level visual features, which can not guarantee that

all the resulting regions cover exactly meaningful objects, especially for cluttered scene.

Topic models have also been adopted for learning object categories from unlabeled

image collections. In this case, the approaches have to learn high-level semantics of

images completely from low-level visual features. Most of these methods use descriptors

extracted from affine covariant regions [56, 57] or regions around scale-invariant salient

23



2.3. IMAGE ANNOTATION

keypoints [58]. These descriptors are vector quantized with the kMeans algorithm in

most of the existing works and the centers resulting from the clustering procedure are

called visual words and used to form a visual codebook. As such, all the descriptors

extracted from images are represented using elements in the codebook. This discrete

data-based representation of images is normally called bag of visual words (BOVW), in

correspondence to the bag of words representation of documents in the research area of

document analysis. This is also the image representation framework adopted in the work

presented in Chapter 5. The merits and drawbacks of the BOVW representation are:

• Feature vectors of a fixed length can be obtained regardless of the number of de-

tected regions or keypoints;

• Efficient matching of images can be achieved;

• Discriminative power is unstable due to the dependence on the set of descriptors

and the clustering method used to construct the codebook;

• The optimal number of visual words, i.e. the size of the codebook, varies from one

dataset to another and is application-dependent as well.

In [59], pLSA and LDA were applied to discover object categories from unannotated

image datasets. From each image, scale-invariant feature transformation (SIFT) descrip-

tors [58] are calculated within the detected affine covariant regions, which are in turn

used for calculating the BOVW image representation. To learn the topic distributions, an

image is considered as a document which is composed of a set of visual words. The goal

is to let the pLSA and LDA discover the set of topics, of which the distributions of visual

words are consistent with the visual properties of various object categories existing in the

image dataset. With the set of properly learned topics, both of the training images and
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testing image can be classified into the object category with the maximum topic a pos-

teriori probability, i.e. P (O|d), where d denotes an image. Therefore, the second task of

image annotation can be solved using such topic models without using text. Experiments

for evaluating the effectiveness of the methods for this task were conducted progressively

by increasing the number of categories, corresponding to the number of topics. It has

been found that the topic models are able to automatically adapt the topic distribu-

tions of visual words to multiple meaningful object categories given an image dataset.

However, problem arises when images containing different kinds of objects share similar

visually coherent background, which occupies a large portion of each of these images.

In this case, the dominant discriminative information will come from the background,

which actually compromises the discriminative power of the model and the descriptors.

By increasing the number of images of the similar background, the background will be

identified as a separate topic. In addition, misclassification was also found to be related

to cluttered background of images. In this case, an image includes many different sorts of

objects and maybe multiple objects of the same kind. Experimental results showed that

considerably increasing the number of topics will enhance the ability of the topic model

to accommodate more object categories, resulting in restoring the discriminative power

of the model. Like many other unsupervised learning techniques, the determination of

the number of topics of the topic models is just another example of model order selection.

Noticing that the method in [59] regards each image as a document for learning

topics, it is not difficult to understand that it results in the projection of the visual word

distribution of an image into the space spanned by the topic distributions. Different from

this perspective of modeling the image data, the method presented in [50] first segments

each image using more than one segmentation algorithms and then treat the segments of

all images as documents for topic modeling. As a result, this method projects the visual
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word distribution of an image segment into the space spanned by a set of learned topics.

By assuming that using multiple segmentation methods raises the chance of acquiring

accurate extraction of semantically meaningful objects, the Kullback-Leibler divergence

(KLD) between the visual word distribution of a topic and that of each segment is

calculated, for each of the learned topics. Then, the method is claimed to be able to find

not only the object categories using the BOVWs of segments but also the best segments

of them.

Different from the topic models, which decompose the collection distribution or class

distribution into several topic distributions, and the translation model, which directly

estimate the probability of a word conditional on a region, several variants of relevance

models were proposed in [37, 60, 61]. Relevance model was originally proposed as a lan-

guage modeling approach to information retrieval [62,63]. Essentially, a relevance model

is the joint distribution of features from two different domains. When applied to im-

age annotation, the distributions of textual keywords and visual features from image

regions are jointly modeled, i.e. through P (x,w). It can be used to annotate images

and retrieve images from an unannotated database. In [37], a cross-media relevance

model (CMRM) was presented. Image regions are represented as blobs in a similar way

as [42]. Given the blobs {b1, b2, . . . , bm} of an unannotated image, the joint distribution

P (w; b1, b2, . . . , bm) is calcuated through it decomposition into the conditional distribu-

tions of {w; b1, b2, . . . , bm} given each of the images in the annotated training set, i.e.

P (w; b1, b2, . . . , bm|It), where It is the t-th training image. These conditional distribu-

tions are estimated by calculating the relative frequencies of the blobs and words within

the training set. To deal with the sensitivity of CMRM to clustering errors, a continuous

relevance model (CRM) was proposed in [60], where the visual features of regions are

modeled using their PDF rather than PMF over the discrete blob representation. Es-
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sentially, the CRM still decomposes the joint distribution of words and visual features

into their distributions conditional on training images. In [61], it was pointed out that a

multinomial distribution was not suitable for modeling the distribution of words in that

the probability of a word in an image with shorter annotation is higher than that with

longer annotation, which is supposed to be the same. A multiple-Bernoulli relevance

model (MBRM) was introduced to handle this modeling issue with respect to the words.

Supervised Approaches

Most of the supervised approaches to image annotation fall into two categories, which

are binary classification and multi-class classification. Let C denotes the set of classes.

For each class i ∈ C, the methods in the first group consider the samples of all the

other classes j, where j ∈ C and j ̸= i, as being in a single class, denoted ī. A decision

boundary is learned between the classes i and ī. Hence, this type of approaches are

also referred to as one-versus-all approaches. Eventually, a new image will go through

a sequence of classifications using the classifiers for all classes in C and can be assigned

multiple labels. If the problem is defined such that each sample, being an image or a

region, belongs to one and only one class, the label of the binary classifier generating the

greatest values is assigned to the sample. The second category of methods construct a

multi-class model directly to annotate images or image regions. An image or region can

also be assigned to multiple classes by choosing the top-k classes, of which the output

values of the classifiers are greater than those of the others.

A typical example of the early works for supervised image annotation can be found in

[31], where binary classification was employed to deal with scene classification for vacation

images, such as indoor/outdoor, city/landscape, sunset/forrest, etc. These semantic

categories are organized in a hierarchical structure identified by human subjects with

27



2.3. IMAGE ANNOTATION

a small image collection. To be specific, an image is first classified into the category

of outdoor or indoor. Then, if it is outdoor, the image is further classified as a city or

landscape scene. Low-level visual color and texture features are extracted from sub-blocks

of image tessellation, which are concatenated into a single vector representation. For each

pair of scene types to be distinguished, the selection of features depends on the feature

discriminative power with respect to the specific visual properties of the scene. The

hierarchy of the semantic categories is different from that in [52]. In terms of classification,

the distributions of visual features and text of all semantic classes are involved in [52]

and hence is essentially a multi-class problem. It is the topic mixture coefficient, i.e.

the a posteriori probability of topics given an image, determines the specific level of a

concept. Being a multi-modal approach, [52] discover the topics which are salient joint

distributions of visual features and text, which is suitable for a unsupervised learning.

In [47], binary classification was employed for multi-label image annotation. Associ-

ated with each assigned label of an image, there is also a factor indicating the confidence

of annotating the image with the keyword. The vector consisting of the factors is used

to match keyword-based queries for image retrieval. Color and texture descriptors are

concatenated into a single vector to form the low-level visual feature representation of

an image.

In contrast to [31, 47], a multi-class supervised framework based on a hierarchical

mixture model was proposed in [38]. The method deals with weakly labeled data by

taking the perspective of multiple instance learning [64, 65]. In their framework, an

image is represented by a set of low-level visual feature vectors extracted from its regions.

Each feature vector consists of discrete cosine transform coefficients of different color

channels. A hierarchical mixture model is employed to estimate the probability density

function (PDF) of each image, which is in turn used to estimate the PDF of a class. The
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argument underlying the modeling technique is that the feature vectors belonging to a

class of interest will become dominant when pooling together the feature vectors of all

the training images of that class.

In [39,48], with the same problem formulation in terms of the image annotation task,

two different models were proposed to characterize the class-dependent distributions of

visual features. In [48], images are partitioned uniformly into patches, from which the

statistics of the high-pass bands of wavelet transform are calculated. This feature ex-

traction is performed at many different resolutions of an image and a 2-D hidden Markov

model (HMM) was proposed to build the model of each class. As a supervised learning

example incorporating multiple low-level visual descriptors, Li [39] proposed a frame-

work in which an image is represented by two probability mass functions (PMFs), one

for color and the other for texture. The average color and wavelet coefficients constitute

the supports of the two PMFs respectively. Denoting the descriptors of two images by

xi = (Pi1, Pi2) and xj = (Pj1, Pj2), where Pi1, Pi2, Pj1, Pj2 are PMFs, the distance be-

tween the two images, denoted Dij, is defined as
∑2

k=1 d
2(Pik, Pjk), where d(Pik, Pjk) is

the Mallows distance. The model for each class is built within the space of xi, i.e. a set

of PMFs.

Topic models have also been employed to annotate images using supervised learning

framework. In such cases, each semantic class has its own mixture model constructed with

the topic distributions of visual words. A representative piece of work is the hierarchical

framework for scene classification proposed in [33]. Essentially, the scene classification

is tackled by utilizing the LDA to model visual words, where the images belonging to a

certain type of scene is regarded as a visual corpus. To emphasize the supervised nature

of the approach, the distribution of the Dirichlet variable is formulated as a conditional

distribution given the scene class, which is observed during the conceptual data generation
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process. Different scene classes share not only the same visual word vocabulary but also

the topic distributions of these visual words. In other words, various types of scene are

considered to be mixtures of the same set of topics, the so-called themes in [33], with

their own mixing weights. In this work, gray scale images were used for the experiments.

Keypoint-based descriptors and those extracted from image patches were employed for

image representation separately.

In contrast to the application of LDA to scene classification, pLSA has also been

employed for handling the same task of image annotation. The major different between

pLSA-based and LDA-based methods lies in the fact that pLSA can be used as an

indexing method to produce the signature of each image within the latent semantic space

because these signatures, in essence, constitute a subset of the parameters of the model.

On the other hand, LDA is a relatively compact model compared with pLSA in that it

considers the document signatures, i.e. topic mixture coefficients, as random variables,

following a Dirichlet distribution, instead of fixed unknown parameters as in the case of

pLSA. Therefore, LDA does not produce image signatures in the topic space but merely

the parameters of the distribution of them. Taking advantage of this characteristic of

pLSA, the image signatures in the latent semantic space, i.e. topic space, can be used

to build discriminative classifiers therein. This is just the line of thought of the work

presented in [32], where the image signatures were used to learn a set of SVM’s for

recognizing the scene category given a new image. SIFT descriptors were extracted

from different color channels followed by vector concatenation to build a single vector

representation of each keypoint location.
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2.3.2 Image Annotation Using Context-Aware Models

At the same time, studies in the field of psychology [66,67] and neuroscience [68] have been

conducted to investigate the advantage of incorporating contextual information into the

process of scene perception. If available, contextual information can be utilized to refine

the distribution of the object categories because objects do not appear simultaneously in a

random fashion. Each object category has it own frequently co-existing object categories

and they are often present according to a fixed spatial relation. In general, there are

five rules that govern how objects exist in a real world scene, which are: 1) interposition

(background is partially obscured by foreground), 2) support (objects usually stay on

surface), 3) probability (an object may often appear in one scene but not others, 4)

position (an object of a kind has its frequent location or area in a scene), and 5) familiar

size (the size of an object relative to those of other objects in the same scene). In

this thesis, the contextual information refers to the statistical dependence and spatial

relation among different image sub-structures, i.e. regions or patches, and various object

categories. Usually, the dependence across multiple image sub-structures is introduced

by taking into account the dependence among the object categories. Moreover, scene

category, if used as a contextual information, is regarded as the condition to distinguish

the distribution of visual features of one type of scene from that of another. Inter-

dependence among scene categories is rare. The concept of scene in the formulation of

the probability rule can also be defined by the existence of object categories other than

the object category of interest.

A large amount of works on machine-based visual recognition have been proposed

to address the problem of incorporating contextual information into the classification

process. These approaches are different in terms of the specific nature of the contextu-
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al information. The first kind of contextual information is defined as the global visual

property characterizing the category of the scene. Studies in the research field of psychol-

ogy [69–71] has shown that visual perception works in a coarse-to-fine order in processing

complex scene. To recognize the scene category, detection and recognition of individual

objects in a scene are not necessary. In fact, the study also showed that the recognition

of the scene category can actually provide auxiliary information for further recognizing

the categories of individual objects. Following this implication, research in the area of

visual recognition has exploited global visual statistics as the contextual information to

boost the performance of object recognition [41, 72]. The second type of contextual in-

formation is defined as the interaction between object categories, which can be further

divided into two sub-categories, which are statistical dependence, as in [43, 73–75], and

spatial relation among different objects, such as [76], respectively.

In [41], the context in the form global scene visual properties was introduced into

the Bayesian object category recognition, i.e. the contextual features appear as one of

the conditional variables in P (O|x, c), where x and c denote object visual features and

contextual features and O denotes the object category. This a posteriori probability can

be decomposed into two factors, with the second factor being P (O|c). Based on the re-

search in [77], the contextual information refining the object category distribution can be

regarded as a single object category and represented in a low-dimensional space. Accord-

ing to [78, 79], suitable candidates for playing the role of context include: 1) Statistics

of structural elements, i.e. textures, 2) spatial organization, and 3) color distribution.

In this work, spatially localized structural information was extracted by applying a set

of oriented bandpass filters. The output of these filters were further projected into a

lower dimensional space using the principal component analysis (PCA). Based on this

global contextual feature, the graphical model proposed in [80] combines the estimated
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a posteriori object category probability P (O|c) and a bottom-up local object detectors.

The resulting model can solve object detection and scene classification at the same time.

To incorporate statistical dependence among the object categories of neighboring

blobs into the annotation process using the machine translation model [42], Markov ran-

dom field (MRF) was employed in [43]. MRF is a generative framework modeling the

joint distribution of an image and its labels, which has been extensively used for low-level

image processing problems [81,82]. In the experiments of [43], image segmentation using

Normalized Cut and uniform image partitioning into non-overlapping grids were consid-

ered. For each image, the hidden state of a blob is constrained to take a value from the

set of keywords in its annotation. Because both blobs and words belong to a finite set in

their respective domains, two tables of potential functions can be defined, characterizing

the possibility of assigning a word to a blob and that of labeling two adjacent blobs with

a particular pair of words, respectively. Given an image, the complete likelihood can be

evaluated using these two tables for learning the model using an EM procedure. The

loopy belief propagation [83] was used to evaluate the a posteriori probability of the hid-

den variables in the E-step. For the M-step, the complete likelihood was decoupled into

pseudo-likelihood as in [84], which was in turn optimized using the iterative scaling [85].

Results showed that the approach is suitable for smoothing the label assignment and has

the potential to grouping over-segmented regions for the purpose of segmentation.

To make the model learning computationally tractable, generative context-aware ap-

proaches, such as MRF, make restrictive assumption that the observations are statistically

independent given the labels. To relax this assumption and make the model capture any

arbitrary dependence across the observations, discriminative frameworks were proposed.

Instead of modeling P (X,Y ) as in generative approaches, where X and Y denote labels

and observations, discriminative models directly characterize P (X|Y ) for the purpose
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of classification. Conditional random field (CRF), originally proposed for labeling 1-D

sequential data [86], is a representative model for context-aware modeling in a discrimi-

native fashion. Due to its superior performance to generative approaches, many variants

of CRFs have been proposed, which were extensively used for modeling 2-D image data

in existing works. These approaches mainly differ from each other in terms of: 1) the

scope of the image over which label interaction is defined [87], 2) the specific definition on

the association potential and interaction potential [74, 88], and 3) The modeling target

of the labels in terms of the level of granularity of the image structure [89].

In [88], a discriminative random field (DRF) model was proposed. Not only the

top level framework, i.e. the CRF, is discriminative in nature, its local potentials, i.e.

the association potential and the interaction potential, are also discriminative models.

Generalized learning models (GLM) are used for defining such potentials followed by

converting the output of these GLMs to probabilities using a logistic function. Using

iterative conditional mode for inference, DRF outperforms MRF in the application to

the detection of man-made structures in images. This binary classification framework

for object detection was generalized in [75] to solve multi-class problems, and hence can

recognize object categories within an image.

In [87], a CRF modeling object category interaction at different scales was proposed.

At each location within an image, where a category label is to be assigned, there are

multiple interaction potentials defined over the labels of neighboring locations. These

potentials are distinguished from one another by the scope of the neighborhood. Three

different selected ranges are pixel, region, and global range. According to the parametric

form of CRF, the information captured at different scales are combined multiplicatively.

Instead of modeling the statistical dependence across multiple image segments or

blobs as in [43], the dependence among the visual features extracted from image regions
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around salient keypoints were taken into consideration using CRF in [89]. These regions

are detected using the keypoint detection algorithm in [58] and considered as parts of

objects. The model was named hidden conditional random field (HCRF) because a

hidden layer of variables are introduced to represent the part labels of an object. Part

labels represent finer details compared with the object categories. In addition to the

observed visual features from regions around keypoints, the object category contained by

an image is also observed. Therefore, it is essentially a supervised classification method

with inter-dependent part labels. In fact, the concept of object part is essentially the

same as that of a topic in topic modeling. The topology of the CRF was defined to be

a tree structure such that exact inference algorithm, such as belief propagation [90], can

be exploited to estimate the parameters.

In [74], without specifying a neighborhood over nearby locations of an image to be

labeled, a fully connected graph was employed for the interaction potential defined over

labels. The estimation of the parameters of this CRF is not performed through the

maximum likelihood of exponential models but via the estimation of the parameters of

another distribution, of which the parameters are the potential functions of the CRF for

the object category recognition task. The model used to learn the parameters is the joint

distribution of a set of binary random variables, each of which corresponds to one object

category and takes on the value of 1 if the image contains the corresponding object and

0 otherwise.

2.4 Summary

Through the literature review presented in this chapter, it is not difficult to realize

the following implications to the methodology for improving the performance of image
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retrieval and annotation systems.

• For image retrieval, the combination of STRF and LTRF is a promising approach

to utilize the knowledge acquired from both on-going HMI and past HMI, which

compose the set of primary information sources to train an effective retrieval system.

To this end, a mathematically justifiable framework is desirable. The system with

both STRF and LTRF enabled should be functional even no knowledge is available

for training the LTRF. In addition, it should be able to gradually accumulate

necessary information in order to incrementally upgrade the system for LTRF in

a way similar to how human memory works. More interestingly, considering the

fact that there are many objects which can generate characteristic sound, this can

also be utilized to compensate for the inefficiency of visual information in terms of

handling the semantic gap.

• For image annotation, much effort has been taken to construct sophisticated sta-

tistical models to improve the classification performance. While being aware of

the importance of utilizing various visual features to represent images, most of

the existing approaches either adopt the vector concatenation of low-level visual

descriptors or the concatenation of the BOVW representation, if the quantization

of visual features is used. Moreover, some statistical models, such as the topic

models, characterize the distributions of multiple features via factorizing their join-

t distribution into topic distributions in respective feature domains; however, this

sort of approaches have only been employed to handle the modeling of text and

visual features. Since different types of low-level visual features have much stronger

correspondence in terms of their spatial locations, a novel modeling technique is

needed to characterize the joint distributions of the visual features.
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In the subsequent chapters, two frameworks, namely a Bayesian framework and a

multi-feature probabilistic semantic analysis (MF-pLSA) framework, are presented. The

former is applied to both image retrieval and annotation problems and the latter is used

to solve image annotation by using multiple visual features more effectively.
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Chapter 3

A Bayesian Framework for Image

Annotation and Retrieval

3.1 Introduction

Based on the background introduction and literature review in previous chapters, the

framework and its related experiments to be presented in this chapter are primarily

focused on the integration of low-level visual content and contextual information. As

mentioned earlier, the contextual information in the presented work refers to the statis-

tical correlation across multiple entities, where the entities are images for the application

to image retrieval and different semantic classes for the application to image annotation.

For image annotation, we are seeking an efficient approach to integrating visual content

and context. For image retrieval, an approach which can utilize both STRF and LTRF

in a unified framework is desired, which are based on content and context as well. Moti-

vated by such goals, a Bayesian framework is developed in which the a priori probability,

learned through a maximum entropy algorithm, represents the contextual information
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and the likelihood evaluation corresponds to the visual content analysis. In addition,

the framework can utilize various models for the purpose of content analysis. In both

application scenarios, these two components refine each others’ evaluation of the simi-

larity between images or an image and a semantic concept. Principally, the underlying

rationale of the integration is that the online observation of visual content refines the a

priori information encoded in the context model, especially when there is not sufficient

high-level knowledge, whereas the contextual information can be used to bridge, to some

extent, the semantic gap associated with the low-level visual features.

3.2 The Framework for Integrating Visual Content

and Context

3.2.1 The Integration of Content and Context

The notation used throughout the elaboration of the Bayesian framework is introduced

first. Assuming the feature of an observation is a vector in a d-dimensional feature

space, it is denoted x, where x ∈ Rd. Let W represent the set of class labels and

W = {1, 2, . . . ,W}, where W is the number of classes. The class label of a particular

observation is denoted ω, where ω ∈ W . Based on the maximum a posteriori probability

(MAP) criterion which minimizes the classification error, the true class label is estimated

with

ω̂ = arg max
ω∈W

P (ω|x, I), (3.1)

where ω̂ is the estimate of ω. In applications such as image retrieval, where no decision

with the notion of the most probable estimate is made, the a posteriori probability can
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be used as a relevance score to rank the classes. In the literature, I is normally referred

to as the background information, which exists with a well-formulated problem. In the

context of the subsequent description, it represents a set of indexes of either semantic

classes or query images, depending on the nature of the application. Therefore, I can be

defined as {Ii|i = 1, 2, . . . , |I|}, where |I| is the number of indexes of I. How to acquire

this piece of information and how it contributes to the accomplishment of a given task

will be elaborated in next section. Using the Bayes’ theorem, the a posteriori probability

can be written as

P (ω|x, I) ∝ p(x|ω, I)P (ω|I), (3.2)

with the equality replaced by the proportionality due to the unimportance of the probabil-

ity density function (PDF) of an observation, i.e. P (x|I), when the theorem is employed

to solve a classification problem. Based on the meaning of the background information

I, we can assume the conditional independence between the observation x and I given

the class label of the observation, i.e. x ⊥ I|ω. Therefore, the a posteriori probability in

(3.2) can be calculated through

P (ω|x, I) ∝ p(x|ω)P (ω|I). (3.3)

The first term on the right-hand side of (3.3) is the PDF of the feature vector of the

class ω, which is considered as the content model characterizing the visual properties of

that class. Given the afore-mentioned definition of I, the second term is essentially a

distribution of one class or candidate image, say ω, conditional on a set of other classes

or query images, collectively represented by I. This is exactly the contextual information

that characterizes the statistical relation between different classes or images. It will be
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shown that such contextual information can be learned from weakly labeled images for

automatic annotation and past user feedback for image retrieval. According to (3.3),

the content and contextual information are integrated through the decision-level fusion

in a multiplicative fashion. Before proceeding to the discussion on the retrieval and

annotation frameworks, the learning algorithms associated with the content and context

components of the Bayesian framework are introduced here.

3.2.2 Learning the Content Model

The visual content model of a certain semantic class, e.g. ω, is the parametric form

of the distribution of the visual features of that class. The parameters of the model

are adapted to a given set of training data of class ω through a supervised learning

procedure. Since a visual content model plays the role of evaluating the likelihood of a

visual feature with respect to a certain class, any parametric or non-parametric model

can be applied, as long as it can quantitatively measure the degree of consistency of a

visual feature with it. We select the support vector machine (SVM) as the key component

of the content model to evaluate the likelihood, considering its high discriminative power

for many applications. In the application to image retrieval, L1-norm is also employed in

addition to SVM for calculating the likelihood using the content model, which shows the

flexibility of the proposed Bayesian framework as mentioned before. At the same time,

it should be noted that the formulation of the Bayesian framework requires that the

output of the visual content model comply with the definition of a PDF. To this end, we

employ the exponential function, i.e. h(s) = exp(s), s ∈ R, to convert the discriminant

function of SVM into a PDF. The selection of the above exponential function is based

on the following consideration. First, it is monotonically increasing, resulting in the
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preservation of the physical interpretation of the algebraic distance between a sample

and the decision boundary. Second, it is positive. Since the total integral of a function

must be equal to unity, appropriate normalization is necessary. Finally, representing the

discriminant function of SVM corresponding to the ω-th class as fω(x) and substituting

it for the variable s in the exponential function followed by normalization, we obtain

p(x|ω) = 1

A
exp(fω(x)), (3.4)

where A =
∫
exp(fω(x))dx. When the likelihood is calculated using the L1-norm, the

corresponding negative distance function should be substituted into the exponential func-

tion because the similarity is a decreasing function of the distance between features. More

details regarding this issue will be revealed in the Section 3.5.

3.2.3 Learning the Context Model

In this part, our objective is to calculate the P (ω|I) in (3.3), which is the contextual

information about ω inferred based on the I. Without I, the probability mass of ω

is uniformly distributed over the class ensemble W without I. Due to the statistical

dependence across different classes, however, the distribution of ω conditional on I will

deviate from the uniform distribution once I is available. As a result, the classes that are

more strongly correlated with I have higher probabilities than the others do. Since the

problem is essentially the estimation of a conditional probability mass function (PMF),

a typical train of thought leads to the conventional approach that calculates the condi-

tional probability through P (ω|I) = P (ω, I)/P (I), for which we need a set of training

samples belonging to the cartesian product of |I|+1 W ’s. Regardless of the approach to

estimating P (ω, I) and P (I), there are two problems with above estimation on P (ω|I).
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First, the background information I may include different numbers of indexes, which

requires separate estimation of the model for different sizes of I. Second, when collect-

ing training data, we can not guarantee enough or even available samples for a certain

configuration of ω and I, where by configuration it means a particular instance of the

number of random variables of ω ∪ I and their values. We propose the following way of

modeling the contextual information.

To deal with the estimation on the context model efficiently, we propose to ap-

proximate the P (ω|I) using a distribution of a set of binary random variables esti-

mated based on the maximum entropy (MaxEnt) principle. In this approach, an im-

age is represented using a W -dimensional vector of binary random variables, denoted

Y = (Y1, Y2, . . . , YW )T , where the value of each variable Yω is defined by

Yω =

 1, if an image is labeled with ω or if image ω is relevant to a query,

0, otheriwse.
(3.5)

Instead of being from the cartesian product of |I| + 1 W ’s, the data utilized by the

proposed context modeling procedure belong to the set of vertices of a W -dimensional

hypercube. Given a set of T training samples, denoted Y 1,Y 2, . . . ,Y T , we can estimate

the P (Y ) and then calculate the conditional probability P (Yω|YI1 , YI2 , . . . , YI|I|), which

is represented as P (Yω|YI ) in what follows. To approximate the P (ω|I) in (3.3), we use

P (ω|I) =
P (Yω|YI )∑W
v=1 P (Yv|YI )

. (3.6)

As the size of the concept ensemble, i.e. W , grows, the computational intensity of the

calculation of P (Yω|YI ) increases exponentially. Therefore, it would be more efficient if we

can directly estimate P (Yω|YI ) based on a set of training samples. To this end, we employ
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the MaxEnt approach proposed in [91], which estimates a conditional distribution by

maximizing its Rényi entropy. Essentially, the MaxEnt principle states that the optimal

model should only respect a certain set of statistics induced from a given training set

and otherwise be as uniform as possible. The MaxEnt approach employed in our study

searches for the conditional distribution P (Yω|YI ), with the maximum entropy, among all

the distributions which are consistent with a set of statistics extracted from the training

samples. Therefore, it can be considered as constrained optimization, which is formulated

as

max
P (Yω |YI )∈[0,1]

−
∑
yω ,yI

P̂ (YI = yI )P (Yω = yω|YI = yI )
2,

subject to:∑
yI

P̂ (YI = yI )P (Yω = yω|YI = yI )fk

P̂ (fk)
= P̂ (fω|fk), k ∈ {0} ∪ I,

where ω ∈ W and ω /∈ I because P (Yω = 1|YI = 1) ≡ 1 for ω ∈ I. In addition, P̂ (·)

represents the empirical probabilities directly estimated from the training samples, fω =

Yω and fk = Yk when k ̸= 0 and fk = 1 otherwise. Using a matrix-based representation,

solving the above optimization leads to the result that

P = M ×N−1 × f , (3.7)

where

P =
(
P (Ya1 |YI ), P (Ya2 |YI ), . . . , P (Ya|W /I | |YI )

)T
, (3.8)
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M =



P̂ (fa1 |f0) P̂ (fa1 |fI1) ... P̂ (fa1 |fI|I |)

P̂ (fa2 |f0) P̂ (fa2 |fI1) ... P̂ (fa2 |fI|I |)

...
...

. . .
...

P̂ (fa|W /I | |f0) P̂ (fa|W /I ||fI1) ... P̂ (fa|W /I ||fI|I |)


,

N =



1 1 . . . 1

P̂ (fI1 |f0) 1 . . . P̂ (fI1 |fI|I |)

...
...

. . .
...

P̂ (fI|I | |f0) P̂ (fI|I | |fI1) . . . 1


,

and

f =
(
f0, fI1 , . . . , fI|I |

)T
, (3.9)

where W /I = {a1, a2, ..., a|W /I |}.

3.3 The Application to Image Annotation

3.3.1 Overview

In terms of improving the performance of annotation, our work is motivated by the

following analysis. Among the information at our disposal, the content and context are

two critical resources. In the presented work, the former refers to the low-level visual

features extracted from image regions obtained through image segmentation and the

latter can be interpreted as the co-occurrence across different real world object categories

in a probabilistic sense or in other words, the statistical dependency across different object

categories. In the rest of this chapter, the term semantic concept, semantic class and
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object category are used interchangeably. In particular, the contextual information plays

a fairly critical role in the sense of incorporating high-level knowledge into the underlying

classification process. To be specific, one aspect of the image annotation task in question

that distinguishes it from conventional pattern classification tasks is that samples are

presented to the system in a batch, typically in the form of a set of regions/segments

constituting an image, in which the states of nature of the samples depend on each

other statistically. For example, suppose we intend to annotate an image containing two

regions, which respectively correspond to an animal and water. Based on our common

knowledge, an intuitive inference with respect to the animal is that its probability of

being an aquatic is higher than that of being a terricolous one. As mentioned earlier,

this inter-dependence across the concepts associated with different regions of an image

can be referred to as contextual information, which can be used as auxiliary information

to acquire performance improvement. This is also a particular example of the results

from the psychological study in [66,67] reviewed in the previous chapter.

The annotation framework was developed through two stages. In the first stage, a

semi-automatic mechanism was designed, in which a limited amount of user-machine

interaction (UMI) is needed to produce the contextual information for the Bayesian inte-

gration of content and context. In the second phase, the framework was upgraded such

that image search was leveraged to discard the necessity of UMI during the annotation

process. The details of the second stage is elaborated in a separate section. With a

set of pre-annotated images, the visual features are used to train an ensemble of prob-

abilistic classifiers, each of which corresponds to a semantic concept, and the textual

annotation is used to generate a probabilistic model encoding the contextual knowledge.

The outputs of the content and context models are combined based on the Bayes’ theo-

rem discussed in the previous section. The underlying rationale is that the context and
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content models make contribution to the final decision before and after examining the vi-

sual appearance of objects, which naturally follows the way the Bayesian decision theory

treats information. Since the context model is estimated through collaborative filtering

based on the maximum entropy (MaxEnt) principle, the proposed method is referred to

as collaborative Bayesian image annotation (CBIA).

Meanwhile, it is worthwhile to mention that the CBIA framework is developed to solve

the third task of automatic image annotation, i.e. the region-based object annotation. We

consider the construction of the association between image regions and a set of pre-defined

concepts, represented using keywords; that is, given an image, a concept is assigned by

a machine to each of the regions resulting from image segmentation. Compared with

the image-oriented annotation, which assigns one or more keywords to an entire image,

the advantage of this region-oriented annotation is two-fold. From the view point of

the system, local features extracted from a certain region are better representations of

the visual property of an object or part of an object, resulting in better performance

of classification. From the perspective of the users, the establishment of the relation

between each region of a new image and a concept generates more useful information

than the image-oriented annotation. For example, the region-oriented annotation figures

out not only the existence of an object but also the location of it, which can be further

exploited for the purpose of either knowledge acquisition from a user’s point of view or

location-dependent classification from a machine’s point of view.

3.3.2 Visual Content and Context Analysis

As illustrated in Fig. 3.1, the framework is composed of a set of modules with different

functionalities, which can be divided into offline and online sub-system. The operation
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Figure 3.1: The system block diagram of the CBIA framework.

of the offline sub-system is primarily responsible for system training. A set of training

images are processed using a two-stage image segmentation, as described in [92]. The

objective of using this two-stage image segmentation is to classify each segment into

foreground or background class in addition to partition an image into several visually

coherent regions. Simply put, the benefit of the two-stage image segmentation lies in the

reduction of the number of candidate semantic classes when a decision needs to be made,

leading to the alleviation of the semantic gap to some extent. Accordingly, the concept

ensemble is divided into two mutually exclusive and exhaustive subsets, one composed

of the foreground concepts and the other made up of the background ones. Denote the

two groups by WF and WB, the decision rule in (3.3) can be re-written as

ω̂ =

 argmaxω∈WF
P (ω|x, I) if x is extracted from a foreground segment

argmaxω∈WB
P (ω|x, I) if x is extracted from a background segment

, (3.10)
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(a) Crocodile (b) Crocodile (c) Duck

(d) Crocodile (e) Hippo (f) Kola bear

Figure 3.2: Examples of segmentation results.

where P (ω|x, I) is obtained using (3.3).

It has been recognized that automatic yet accurate algorithms for extracting mean-

ingful objects from images are difficult to achieve in practice. Usually, unless the visual

properties on the two sides of the boundary of an object are considerably different, the

segmentation results in a few image regions, none of which covers exactly the entire re-

gion of a single object. Another common observation is that several objects belonging

to different semantic categories are grouped into a single image region. On the other

hand, interactive image segmentation may achieve improved segmentation performance

by incorporating human knowledge into the segmentation process. In view of this, the

interactive GrabCut [93] is used to perform foreground and background segmentation in

the first step. To minimize the UMI, Grabcut only needs users to drag a rectangular

box around the desired foreground. Second, an automatic image segmentation method is

used to further partition the background into several homogenous regions (background
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objects). To this end, the mean shift algorithm [94] is employed as the automatic im-

age segmentation method. Nonetheless, precise image segmentation is not required, as

we rely little on the shape of a certain object to recognize its semantic content in the

presented framework. To visualize the results of in the image segmentation step, some

selected examples are shown in Fig. 3.2. After image segmentation, color and texture de-

scriptors are extracted from the regions. Color moments [95] are used as the color feature

by extracting the mean and standard deviation from each channel of LUV color space.

Wavelet moments [96] are used as the texture feature, by applying a three-level wavelet

decomposition on the image followed by extracting the mean and standard deviation of

the transform coefficients. To encode the content information, the set of low-level features

extracted from the image regions are used to train a set of SVMs via supervised learning,

which correspond to the semantic concepts in our pre-defined vocabulary. Meanwhile,

the keywords associated with the annotated images are used to build a statistical model,

characterizing the contextual information.

In the on-line mode, an image undergoes the same procedure of content analysis as

those training images at first. Afterwards, the concepts are ranked for each of the image

regions using the trained SVMs. At this point, a user may check the ranked lists of

concepts and select a correct one appearing in one of the ranked lists, or provide the

concept of a region if none of the regions has a correctly suggested one. It is this input

from the user that is considered as the background information I in the formulation of

the Bayesian framework. The user’s feedback will serve as the input of the context model,

which generates the probability, expressed in (3.6), of the appearance of other concepts

given the one provided by the user. Finally, with the modification of the content model

and the context model elaborated previously, the two types of information are integrated

through the Bayesian framework.
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Figure 3.3: The sample images in the database employed for performance evaluation.

3.3.3 Experiments

Database and Concept Vocabulary

To evaluate the performance of the proposed framework and compare it with several other

alternative approaches, we used an image database consisting of 5000 images featuring

50 different categories of animals, which were collected from FlickrTM and GoogleTM.

In each category, there are 100 images. It covers a wide variety of species of animals,

with some examples shown in Fig. 3.3. Based on the scope of the semantic content of

the database, we defined a concept vocabulary including 65 keywords. In addition to

the concept corresponding to the 50 kinds of animals, there are 15 concepts representing

the real-world objects that possibly appear in the environment where the animals live.

Therefore, W = 65. The specific keywords can be found in Table. 3.1.
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(a) The number of samples for training the SVMs and the number of testing samples in
each semantic class.
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Figure 3.4: The information on the training and testing sets in terms of the number of
image segments.
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Table 3.1: The foreground and background concepts considered in the presented study.

Foreground concept
1. bear 2. black panther 3. camel 4. cat 5. chimpanzee
6. cow 7. crocodile 8. deer 9. dog 10. dolphin
11. duck 12. eagle 13. elephant 14. fish 15. flamingo
16. fox 17. frog 18. giraffe 19. goat 20. gorilla
21. guinea pig 22. hippo 23. horse 24. hyena 25. iguana
26. kangaroo 27. koala bear 28. leopard 29. lion 30. mongoose
31. monkey 32. orangutan 33. ostrich 34. owl 35. panda
36. parrot 37. peacock 38. pelican 39. penguin 40. polar bear
41. porcupine 42. puma 43. rabbit 44. rhinoceros 45. seal
46. snake 47. squirrel 48. tiger 49. tortoise 50. zebra
Background concept
51. branch 52. cage 53. dry grass 54. fabric 55. flower
56. grass 57. ground 58. plant 59. sand 60. sky
61. snow 62. stone 63. tree 64. underwater 65. water

Table 3.2: The information on the training and testing sets in terms of the number of
images.

Data set Number of images
Training set for content model 750
Training set for context model 534

Testing set 2855

Training and Testing Sets

After the preprocessing, each region of an image is manually assigned a keyword, selected

from the concept vocabulary. With no special consideration, we selected 750 images,

with 15 from each of the 50 animal categories, to train a set of SVMs for the pre-defined

concepts. For each semantic category, the training set is composed of the visual features of

the image segments containing the objects of the semantic category. Since the essential
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notion of context in the presented work is the possibility of the co-occurrence of the

objects of different semantic categories, to model the contextual information and test the

proposed framework, only images containing more than one semantic concepts can be

used. According to this requirement, only 534 of 750 images used to train the SVMs are

useful for training the context model. In addition, other than the images for training the

SVMs and the context model, there are 2855 images available for performance evaluation

and comparison in the database. The above usage of the images for training and testing

purposes is summarized in Table. 3.2. Since the annotation is considered as a pattern

classification problem in which each sample, for either training or testing, is the feature

vector of an image segment, it is more informative to look into the sizes of training and

testing sets in terms of the number of image segments. To this end, the number of image

segments belonging to each semantic category is shown in Fig. 3.4(a). In addition, it has

been calculated that there are in total 7927 segments used as testing samples with 2.78

segments per image on average. It is due to the fact that images containing different kinds

of animals may include the same type of background objects that there are significantly

more segments of background concepts than those of foreground concepts. It should also

be noted that, unlike the case of training SVMs, the concept-to-segment alignment is not

needed for learning the context model. The co-occurrence of different semantic concepts

within the 534 images for training the concept network is illustrated in Fig. 3.4(b).

Performance Evaluation Criteria

First, as a general criterion for evaluating all statistical pattern classification systems,

the average classification accuracy can be employed to measure the overall performance

of the proposed annotation framework. In the context of the presented work, the average

classification accuracy, denoted Pavg, is defined as, given an image segment, regardless
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of what the true semantic category is, the probability of assigning a keyword that is

consistent with the ground truth. To approximate Pavg, the ratio of NCS, the number of

correctly classified segments, to NTS, the total number of testing segments is evaluated,

i.e. Pavg ≃ NCS/NTS, where NTS = 7927. The above measure is also extended in the

following way, corresponding to the second case mentioned earlier. When there is a large

concept vocabulary, if a machine can suggest a relatively small set of relevant keywords

containing the correct one and leave the final decision to human users, it is still helpful

in terms of annotation efficiency. To study the performance under such a circumstance,

we employ Pavg(k) ≃ NCS(k)/NGS, where NCS(k) is the number of correctly classified

segments by examining the top k concepts on the ranked list. In this case, a segment is

correctly annotated as long as the actual semantic concept appears within the top k ones

ranked using various methods. It can be seen that, when k = 1, it is just the performance

of the machine-based decision.

Second, as the most effective visual features for characterizing different semantic

content are different as well, with the same low-level representation applied to all images

in our study, the severity of the semantic gap associate with each category is variable.

Hence, the knowledge that which semantic class has the lowest accuracy is valuable.

In addition, considering that the annotation task under consideration is a multi-class

classification problem, in which there are W − 1 types of error for each class, further

investigation on the probability of different errors also discover suggestive information

on how to bridge the semantic gap. To study the performance of the proposed system

from these perspectives, we employ the confusion matrix. Denoted by R, the element on

the i-th row and j-th column is defined as Ri,j = Ni,j/Nj, i.e. the ratio of the number of

segments belonging to category j and classified into category i, to the total number of

segments belonging to category j, where i, j ∈ {1, 2, ...,W}. This ratio can be interpreted
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as the approximation of the classification accuracy of each category, when i = j, and the

probabilities of different types of classification errors within the j-th category, when

i ̸= j. It facilitates the investigation of the semantic gap specific to each pair of concepts,

provided that the number of testing samples is sufficiently large. It should be noted that,

as long as being measured using conditional classification error rate, the semantic gap

between two classes, say i and j, is not symmetric, i.e. Ri,j ̸= Rj,i. This is due to the

fact that the error rate approximated using Ri,j depends on the shape of the model of

the j-th class.

Thirdly, considering that the goal of developing annotation techniques is to enable

semantic-based retrieval and browsing, it is worthwhile to study to what extent the

annotation framework affects retrieval and how effective it is compared with retriev-

ing the images annotated using other methods. For this evaluation, we only study the

performance with respect to those foreground concepts because the employed database

is intended to provide users with images relevant to some type of animal. Since each

foreground only appears once in an image, if there is any, we do not have a suitable

distance function to measure the degree of similarity to rank the images, which is better

than keyword matching. Therefore, we consider the following retrieval method. Giv-

en a keyword representing a foreground concept, all of the images annotated with the

same keyword will be considered as the relevant ones. This results in the fact that we

can not test the ranking performance of the retrieval approach, and hence can not ob-

tain the precision and recall curve. For category ω, the precision and recall, defined

as Pω = NC,ω/NR,ω and Rω = NC,ω/NG,ω, are employed to evaluate the performance,

where NC,ω denotes the numbers of images correctly annotated by the system and thus

relevant to the query ω, NG,ω is the number of images belonging to the class ω according

to the ground truth, and NR,ω is the number of images annotated by the system with
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the concept ω, regardless of being correct or wrong. Finally, the average precision and

recall, defined as Pavg = 1
W

∑W
ω=1Pω and Ravg = 1

W

∑W
ω=1Rω, are compared among all

approaches considered in our simulation.

Numerical Results

To demonstrate the advantage of the Bayesian framework over others, we compare in

total three cases, including content-based annotation using SVMs (SVMA), context-based

annotation (CTXA), and CBIA. Since the two-stage image segmentation brings about

the availability of the information showing whether a segment contains a foreground

or background concept, we consider two types of classification/annotation for each of

the above three approaches to justify the improvement resulting from the two-stage

image segmentation. The first type does not utilize the information obtained via the

two-stage image segmentation and hence the state of nature of a to-be-classified sample

may be any of the concepts in the vocabulary shown in Table. 3.1. This is referred

to as all classification and ALL for short. On the other hand, the second type takes

advantage of the information so that only foreground/background concepts are considered

when annotating a foreground/background segment. We referred to this as separate

classification and SEP for short. Therefore, six approaches are compared with each other

in our study, i.e. SVMA ALL, SVMA SEP, CTXA ALL, CTXA SEP, CBIA ALL, CBIA

SEP. In terms of the Pavg(k), we also take CMRM into account in the comparative study.

Before discussing the annotation performance evaluated using the afore-mentioned

criteria, the results shown in Fig. 3.5 and Fig. 3.6 are used to illustrate the underlying

rationale of the proposed framework. For both examples, the results are obtained us-

ing the CBIA SEP approach because this is the most comprehensive one among all the

considered ones. The first example indicates a situation in which the contextual infor-
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(a) The segmentation and ground truth.
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(b) The a priori probabilities of the image segments.
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(c) The likelihood and a posteriori probabilities of the image segments.

Figure 3.5: Illustration of the rationale of the Bayesian framework, in which contextual
information helps correct the content information.
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(a) The segmentation and ground truth.
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(b) The a priori probabilities of the image segments.
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(c) The likelihood and a posteriori probabilities of the image segments.

Figure 3.6: Illustration of the rationale of the Bayesian framework, in which contextual
information helps correct the content information.
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mation corrects the content information, using the example of annotating an image of a

lion. Shown in Fig. 3.5(a) is the segmentation results. The a priori probabilities P (ω|I)

of the foreground and background concepts calculated based on the context model are

separately shown in Fig. 3.5(b). The likelihood P (x|ω) of the foreground segment with

respect to each foreground class ω and the a posteriori probability P (ω|x, I) of each of

them are displayed in Fig. 3.5(c). It can be observed based on the curve of likelihood that

the camel is recognized as the concept assigned to the foreground segment by SVM. With

the information captured by the context model, however, this value is down-weighted,

while the value corresponding to lion is raised. Therefore, the Bayesian framework selects

the lion as the concept for the foreground segment because its a posteriori probability is

the highest. In contrast to the first example, the second one illustrates a case in which

the content information corrects the contextual information using the annotation of an

image of a bear. Given water as the background concept, a priori information naturally

results in higher probabilities of the aquatic animals or amphibians listed in Table 3.1,

such as dolphin and seal1, which leads to a wrong decision in this example. However,

the observation on the visual property of the segment refines the a priori knowledge in

a way such that the a posteriori probability of bear becomes the highest.

Shown in Fig. 3.7 is the comparison among the six approaches in terms of Pavg(k).

Based on the observation that the sizes of training and testing sets for foreground and

background are considerably different, as shown in Fig. 3.4(a), and the intended usage of

the image database, not only do we evaluate the overall performance, we also study the

performance of annotating foreground and background individually. It can be observed

that, as the most comprehensive framework in question, the CBIA SEP outperforms all

others regardless of how many concepts on the ranked list are examined by users, which

1We define underwater as the keyword to describe the living environment of fish.
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(a) All concepts.
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(b) Foreground concepts.
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(c) Background concepts.

Figure 3.7: The performance evaluated using the average classification accuracy.

includes the case of machine-based decision making, i.e. k = 1. The overall performance

comparison also shows that, when k ≥ 5, SVMA SEP exhibits better performance than

CBIA ALL. With respect to this observation, a closer inspection on the separate evalua-

tion on the foreground and background shown in Fig. 3.7(b) and Fig. 3.7(c) reveals the

reason. It can be seen from Fig. 3.7(c) that the performance of SVMA SEP increases

much faster than CBIA ALL as the examined portion of the ranked list of concepts be-

comes larger, whereas this is not the case in 3.7(b). This observation itself can further

be explained as follows. Based on the SEP type classification, the information of being
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a background segment obtained using the two-stage image segmentation reduces the size

of the set of semantic labels from 65 to 15, which almost accounts for 77% of the concept

vocabulary. On the other hand, if a segment contains a foreground object, the semantic

label set only shrinks by 23%. Among the remaining 50 foreground concepts, semantic

gap is still very severe, whereas the gap within the 15 background concept is not. How-

ever, the above explanation only makes sense when the final decision is left to users. As

long as machine-based decision is employed, the proposed CBIA framework still has best

performance, for both ALL and SEP type classification. In general, the comparison in-

dicates that the CBIA framework compensates for the drawbacks of both content-based

and context-based methods, especially when the two-stage image segmentation is em-

ployed to enable SEP type classification. Moreover, the performance of annotation using

CMRM is also considered in the comparison, which also indicates better performance of

the proposed framework.

Due to the size of the concept vocabulary, we can only show the confusion matrices

resulting from the six approaches and compare them using graphical illustration. In Fig.

3.8, the matrices are rendered in the way such that the brighter a block is the higher the

value of the element is, at the position corresponding to that of the block. A characteristic

result identifiable based on the comparison among Fig. 3.8(a) through Fig. 3.8(f) is that

there are more bright blocks on the diagonal of the matrix of CBIA SEP than on those of

the other approaches, which indicates higher classification accuracy resulting from this

framework. In particular, the performance of annotating the background segments is

improved considerably, which is consistent with the comparison shown in Fig. 3.7(c). It

should be noted that the confusion matrices show more detailed information on the results

corresponding to the case of k = 1. Moreover, the entropy values of the classification

results of each semantic category using different methods are compared in Fig. 3.9.
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Although the entropy values of context-based methods are lower than that of other

approaches, it does not means context-based methods are better because entropy does

not inform us to which semantic category the samples of the actual category are classified.

Having a large subset of the samples classified into a wrong category can also lead to

very low entropy. Along with Fig. 3.8, the meaningful information observed from Fig.

3.9 is that, for most of the concepts, the CBIA framework can bridge the semantic gap

to some extent compared with the content-based methods, i.e. it assigns the samples to

a smaller subset of the entire set of semantic classes.

The comparison in terms of precision and recall is shown in Fig. 3.10. It is worth

mentioning that the difference in terms of the recall values stems from the distinct a-

bilities of various approaches to successfully annotate the foreground segments of the

images. At the first glance, it seems that the performance of SVMA SEP is better than

that of CBIA ALL, which is inconsistent with the analysis based on the Pavg(k), where

k = 1. In fact, although each image has one and only one foreground segment resulting

in the fact that the number of foreground segments is the same as the number of images,

the above conclusion is not true, which can be explained as follows. The average recal-

l Ravg is defined as the arithmetic average of the class-specific recall Rω, whereas the

average classification accuracy Pavg is defined as the expected mean of the class-specific

accuracy. In other words, the evaluation of the average recall does not involve any in-

formation on the sample distribution over the semantic classes, which, if considered, will

give rise to another conclusion that the Ravg’s of the SVMA SEP and CBIA ALL are

respectively 21.37% and 22.17%. However, the comparison shown in Fig. 3.10(b) still

demonstrates effectiveness and advantage of the proposed Bayesian framework in terms

of the way it affects the retrieval. When it comes to the comparison based on precision,

retrieval based on the annotation using ALL type classification exhibits better perfor-
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(a) SVMA ALL.
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(b) SVMA SEP.
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(c) CBIA ALL.
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(d) CBIA SEP.
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Figure 3.8: The performance evaluated using the confusion matrix.
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Figure 3.9: The entropy of the classification results.

mance, which is somewhat contradictory to the way it affects the annotation. Since both

of the class-specific precision and recall are defined based on NC,ω, if the Pavg related to

ALL classification is higher than that related to SEP classification and the relation in

terms of Ravg is reversed, then it is very likely that NR,ω related to ALL classification

is lower than that related to SEP classification. We evaluate the ratio of NR,ω using

ALL classification to NR,ω using SEP classification and the result shown in Fig. 3.11

verifies our analysis. Considering the observation one step further, we find that it can be

explained as follows. When ALL classification is employed, there are in total 65 seman-

tic categories into which the 2855 images/foreground segments are classified. However,

there are only 50 classes if SEP classification is used but the total number of images is

unchanged. Therefore, on average, the number of images classified into each class using

ALL classification tends to be lower than that of SEP classification. In other words, in

the case of ALL classification, there are many foreground segments that are classified

into the semantic classes corresponding to background concepts. Nonetheless, it is worth

noting that the comparison based on precision and recall justifies the advantage of the
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Figure 3.10: The performance evaluated using precision and recall. It is the performance
of a simple retrieval approach based on keyword matching. Also note that the recall of
CTXA ALL is not zero but a very small value; otherwise the precision would be zero as
well.

proposed CBIA framework over the content- and context-based approaches, especially

when the most comprehensive framework CBIA SEP is considered.
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Figure 3.11: The ratio of NR,ω using ALL classification to NR,ω using SEP classification.
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3.3.4 Summary

Driven by the technical value of effective and efficient image annotation in terms of fa-

cilitating semantic-based image retrieval and browsing, we develop an image annotation

framework, which takes into account both content and contextual information. The two

sources of information are integrated based on the Bayes’s theorem. The low-level fea-

tures of different semantic classes are represented using a set of SVMs obtained through

supervised training. The contextual information is obtained using the maximum entropy

estimation of a statistical model based on a set of annotated images. Appropriate mod-

ifications of the above content and context models are designed in a way such that the

output of the models can be used as the likelihood and a priori probability, which are

the fundamental components of a Bayesian framework. Experimental results based on

a database featuring a variety of animals demonstrate the effectiveness of the proposed

framework and its advantages over the content- and context-based approaches. In ad-

dition, the two-stage image segmentation further boosts the performance by reducing

the size of the set of potential semantic classes. The proposed framework is evaluated

and compared with several other approaches from many different perspective using dif-

ferent performance measures. The numerical results demonstrate the effectiveness of the

proposed framework and its advantages over other methods. It should be noted that,

in principle, the applicability of the proposed method is not limited to the database

employed in our experiments, which may be considered as part of the future work.
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3.4 Image Annotation Integrating Content, Context

and Search

3.4.1 Overview

To remove the UMI during the annotation process, image search is incorporated into

the context component of the CBIA framework. Still, the goal is to tackle the problem

of region-based annotation with keyword corresponding to objects (the third task men-

tioned above) by integrating content-based search and machine-based visual recognition

into a unified framework, where visual recognition is formulated as a Bayesian classifica-

tion problem utilizing both visual information and contextual information derived from

the probabilistic co-occurrence between object categories. The contribution of this work

is the novel method for incorporating content-based search into the context-aware anno-

tation process, featuring simple yet effective learning and inference. It utilizes a weighted

keyword ranking to seek the most representative keywords characterizing the semantics

of a to-be-annotated image. These keywords are used to refine the distribution over the

object categories. The contextual information and the visual properties are utilized for

Bayesian classification.

As shown in Fig. 3.12, the framework is composed of four components. First, there is

a component for automatic representative keywords selection, which in turn consists of

a nearest neighbor CBIR (NN-CBIR) module and a keyword ranking module. It should

be noted that it is the to-be-annotated image that is used as the query of the NN-CBIR

within this module. Second, a content-based module is used to evaluate the relevance

of a semantic concept to the segments of the to-be-annotated image based on their own

low-level visual features. Third, a context-based module evaluates the relevance of a
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semantic concept to the same image based on the statistical dependence of the concept

on the selected representative keywords predicted by the first component. Finally, the

annotation of the image segments is considered as a Bayesian classification problem, in

which the output scores of the second and third components serve as the likelihood and

a priori probability, respectively. The details of individual components are elaborated in

the following sections.

To evaluated the performance of the proposed framework, experiments are conduct-

ed using two databases, i.e. a database featuring 50 kind of animals, downloaded from

FlickrTM, and the widely used benchmark database for object recognition released by

MicrosoftTM [97]. Comparative study was conducted among the visual content-based an-

notation, the context-based annotation, and the annotation based on both. Experimental

results demonstrated the effectiveness of the proposed framework and its advantage over

others based on the annotation accuracy, the annotation precision, as well as the confu-

sion matrix.

3.4.2 The Representative Keyword Selection Component

The essential reason for incorporating a keyword selection component is to produce some

information which is needed by the context-based module, which infers the probabilities

of the semantic concepts conditional on the selected ones. To focus on the discussion on

the keyword selection, we defer the description on the context-based module until the next

section. The proposed approach to the keyword selection is based on the following simple

observation. Recall that a typical search result of CBIR using global low-level visual

features usually include both relevant and irrelevant results, in which the semantic content

of an irrelevant image is different from not only that of the relevant images (including
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Figure 3.12: The block diagram of the proposed system. The thick arrows show the
procedure of the annotation of a new image, whereas the thin arrows illustrate the training
process of the framework.

the query) but also that of the other irrelevant images. This observation suggests that,

if the keywords associated with all the retrieved images are pooled together, those that

are most relevant to the query will stand out based on their frequency of occurrence.

In other words, those irrelevant images make contribution to different sets of keywords

whereas the relevant images’ contribution in terms of the semantic meaning is relatively

focused. Based on the above consideration, a keyword selection approach is proposed,

which includes two steps, i.e. NN-CBIR using global low-level visual features followed

by weighted keyword ranking. The proposed strategy for keyword ranking weights the

keywords according to the dissimilarity measure between the query and the images they

are respectively associated with, resulting in a more comprehensive evaluation.
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Denote a keyword as ωi, where ωi ∈ W and W = {ω0, ω2, . . . , ωM−1} is a vocabulary

with M concepts. For each of the labeled images in the training set, denoted as It, t ∈

{0, 1, . . . , T − 1}, a keyword association function ft(ωi) can be defined such that it takes

on the value of 1 if image It is labeled with ωi and 0 otherwise. After the step of NN-

CBIR, the top T̃ images on the ranked list are used for ranking the keywords. To this

end, a relevance score for each ωi, denoted as R(ωi), is calculated by

R(ωi) =
T̃−1∑
t=0

exp(−d(It, Q)

r
)ft(ωi), (3.11)

where Q represents a query image, d(It, Q) is the dissimilarity measure between It and

Q, which is L1-Norm in the presented work, and r is a parameter that can be adjusted

for a dataset containing a certain set of semantic concepts. By the weighted keyword

ranking, the M keywords end up being in such an order that their relevance scores satisfy

R(ωi0) ≥ R(ωi1) ≥ . . . ≥ R(ωiM−1
), where ik ∈ {0, 1, . . . ,M − 1} is the index of the k-th

concept on the ranked list. In our present study, only the top 2 concepts are considered

during the subsequent steps of the annotation process and an adaptive determination of

the cut-off number is left as our future study.

The basic NN-CBIR is employed based on the following consideration. First, as re-

trieval is only used as one step of the annotation process, it is expected to be efficient from

the practical point of view. Second, although more sophisticated (dis)similarity measure

can improve the retrieval performance and in turn the automatic keyword selection, re-

search on object recognition and scene understanding based on large scale database [98]

showed the effectiveness of the k nearest neighbors methods. Last but not least, the

keyword selection only relies on weakly labeled training images and nowadays the acqui-

sition of a considerably large amout of such images is feasible due to the popularity of
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the online photo sharing web sites, e.g. FlickrTM.

3.4.3 The Visual Content and Context Analysis

The functionality of this component is relatively independent of that of the keyword

selection component. Its major task is to produce a score which characterizes the rele-

vance of a semantic concept to an input feature vector, which is extracted from an image

segment. Therefore, the content-based module consists of a set of models, each of which

corresponds to a certain semantic concept in the vocabulary. SVMs are employed as

described in the section of content model of the Bayesian framework. As a result, each of

these SVMs is used to calculate the distance between the testing sample and the decision

hyperplane of of the SVM, followed by the conversion of this distance to the value of

a PDF expressed in (3.4). The context-based component utilizes the statistical depen-

dence between different semantic concepts to infer the relevance of one semantic concept

given another. To be specific, the objective of using this component is to calculate the

conditional probability P (ωi|ωs), where ωs ∈ W is a set of keywords selected by the

keyword selection component and can be considered as the background information I of

the Bayesian framework. Hence, replacing I with ωs in (3.6), we obtain

P (ωi|ωs) =
P (Yωi

= 1|Ys = 1)∑M−1
j=0 P (Yωj

= 1|Ys = 1)
. (3.12)

Finally, the content and context are integrated through (3.3) and the decision is made

according to (3.10).
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3.4.4 Experiments

Databases, Performance Measure, and Experimental Setup

To evaluate the performance of the proposed framework, we employed two databases,

which are described as follows.

• Animal5k. This database consists of 5000 images collected from the Internet,

featuring 50 categories of animals, with each category containing 100 images. A

semantic concept vocabulary of 65 concepts are defined, including those corre-

sponding to the 50 kinds of animals as well as those for the background in common

natural scene. From the 100 images of each animal category, 60% are randomly

selected as the training images, and the rest are testing images. The images are

segmented using normalized cut [55].

• MSRC. It is a benchmark database for object recognition released by the Microsoft

Research Cambridge [97]. It includes 591 images and 23 semantic concepts. Since

this database is relatively small, only 50% of the images containing each concept

are randomly chosen as training images and the rest are used as testing images.

More details on the image usage of the two databases are given in Table. 3.3 and Fig.

3.13. In addition, the co-occurrence patterns of the training data are shown in Fig. 3.14.

For the content-based search, the 102-dimensional global image features include color

histogram, color layout, Fourier descriptors, and Gabor wavelets. For the visual content

component, region features include color moment and texture moment, resulting in a

26-dimensional vector.

We employed annotation accuracy and average precision to evaluate the effectiveness

of the proposed framework. The former is defined as the ratio of the number of correctly
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Table 3.3: Image usage of the two databases.

Data set Animal5k MSRC
Training set for content model 3000 296
Training set for context model 2046 228

Testing set 1343 233

classified image segments to the total number of image segments in the testing set. For

the latter, the precision of classifying the segments of each concept category is evaluated

followed by taking the arithmetic average, where the precision is defined as the ratio

of the number of correctly classified image segments of a certain concept to the total

number of segments classified into that category. As shown in Fig. 3.13, the distribu-

tions of the testing samples of both databases exhibits serious imbalance. This directly

results in the fact that the performance measurements of different concept classes have

different confidence levels. Therefore, the annotation accuracy rather than average recall

is chosen. In fact, the theoretical formulation of the average classification error which

is minimized by the maximum a posteriori probability (MAP) rule is the class-specific

error rate averaged based on the distribution of the classes. The annotation accuracy is

based on exactly the same idea, although the class distribution is empirical. To further

inspect the performance on each specific semantic concept, we also consider the confu-

sion matrix, in which the diagonal elements are the concept-specific recall values. In

total, three annotation approaches are compared in our experimental study, which are

content-based annotation (CTNA), context-based annotation (CTXA), and the proposed

Bayesian annotation (BA). For each annotation approach, two scenarios are considered.

In the first one, no object of interest is specified by a user and hence all the segments

are treated in the same way. We refer to this as ALL for short. The second scenario
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Figure 3.13: The segment distribution over classes of the two databases.

assumes that a user selects an object of interested, which will be annotated using one

of the keywords belonging to the subset of semantic concepts characterizing foreground

objects. This is referred to as SEP for short.

Experimental Results

Shown in Fig. 3.15(a) and Fig. 3.15(b) are the annotation accuracy and average an-

notation precision. It can be observed that for both databases and both scenarios the

proposed Bayesian approaches outperform both of the content-based approach and the

context-based approach. To save space, the results for both scenarios are shown in the

same figure for each database; however, it should be noted that the performance should

be compared among different approaches within each individual scenario. There is not

as much improvement on the MSRC database as there is on the Animal5K database.
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Figure 3.14: The co-occurrence patter of the training data.

The reason is that so far only feature functions defined over a single variable have been

considered. According to the comparison based on the confusion matrix shown in Fig.

3.16, it can be seen that, using the Bayesian approaches, there are more elements on the

diagonals, of which the colors are red or closer to red, indicating the better performance

with respect to those classes in terms of recall. To visually inspect the annotation results,

we selected a few examples from those of the Animal5k database, which are shown in

Fig.3.17.

3.4.5 Summary

In this section, CBIR is incorporated into the CBIA framework to select salient keywords

which can be used to generate the contextual information without human users being

involved in the annotation process. With the representative keywords selected by the

search component, the a priori distribution of the object categories can be calculated

through the maximum entropy approach. This a priori information is integrated with

the likelihood evaluated using visual content models adapted from SVMs through the
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Figure 3.15: Annotation accuracy and average precision.

Bayesian classification. Experimental results demonstrated the advantages of fully auto-

matic Bayesian framework over the visual content-based and context-based approaches.

3.5 The Application to Image Retrieval

3.5.1 Overview

The Bayesian framework is also applied to tackle the semantic gap of image retrieval

by integrating short-term relevance feedback (STRF) and long-term relevance feedback

(LTRF). The STRF refers to the user interaction during a retrieval session consisting of

a number of feedback iterations, such as the query movement and the query feature re-

weighting. On the other hand, the LTRF is the estimation of a user history model from

the past retrieval results approved by previous users. Experiments with the proposed

framework has demonstrated that the LTRF plays a key role of refining the degree of

relevance of the candidate images in a database to a query. In the proposed image

retrieval framework, the STRF and LTRF play the roles of refining the likelihood and
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the a priori information, respectively, and the images are ranked according to the a

posteriori probability. Since the estimation of the user history model is based on the

principle of collaborative filtering, the system is referred to as a collaborative Bayesian

image retrieval (CLBIR) framework. By exploiting the past retrieval results, it can be

considered as a CBIR system with memory, which incrementally learn the high level

knowledge provided by human users.

The underlying rationale of applying the Bayesian framework to image retrieval can

be illustrated using Fig. 3.18, of which the gist is to boost the retrieval performance using

some information extracted from the retrieval history (In the rest of this section, past re-

trieval results, retrieval history, and user data are terms that are used interchangeably.).

As mentioned earlier, the two types of similarity measure are complementary to each

other. Specifically, the similarity measure by the content-based component illustrated

by the low-level feature space in Fig. 3.18(a) suffers from the semantic gap which can

be alleviated using the contextual information. The links between relevant images in

Fig. 3.18(b) are estimated by utilizing the co-occurrence of relevant images in the past

retrieval results. At the same time, the contextual information can only be acquired by

learning from the knowledge accumulated through the content-based component. There-

fore, the goal of the proposed framework is to utilize these two types of information

jointly and effectively. The CLBIR framework, illustrated in Fig. 3.19, seamlessly

integrates the content-based and the context-based methods into a mathematically jus-

tifiable framework. In the beginning, there is no available retrieval history to learn the

context model but the system can still work using the content-based component and

incrementally accumulate the retrieval results. When past retrieval results are available,

the context component of the system performs LTRF by extracting information from the

data gradually, which can be considered as a knowledge accumulation process. When a
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Figure 3.18: The similarity measure in the content and context domains.
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Figure 3.19: The block diagram of the CLBIR framework. The solid and dashed di-
rected lines indicate the information flow and the human-controlled components in the
framework, respectively.

user presents a query, the content component of the system learns the user’s information

need from the query through similarity measure and STRF. If the context component has
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been trained by the time a user queries the database, the system is capable of integrating

the useful information predicted using the context component and that learned using the

content component. The a posteriori probability evaluated using the CLBIR framework

is used to rank the images in the database.

3.5.2 The Content and Context Components

The NN-CBIR Content Component

As mentioned before, the goal of the content analysis is to obtain the likelihood that a

certain candidate image is relevant to the query. To this end, we adopt two different

approaches to CBIR, i.e. NN-CBIR based on L1-Norm and SVM. In terms of the ap-

proaches to STRF associated with these two types of content components, query point

movement and active learning are employed, respectively. Hence, the second is referred

to as SVMAL-CBIR in what follows for short.

The mechanism of NN-CBIR is to return the topK images on the list, which is ranked

based on the similarity measure between the feature of the query and that of each of the

candidate images, where K≪N . In our framework, the L1-Norm is used as a distance

function, which is defined as

d(xq,xω) = |xq − xω| =
d∑

j=1

|xq,j − xω,j|, (3.13)

where xq and xω denote the desciptor vector of a query image and a candidate image.

The likelihood of the query image with respect to each of the candidate images can be

evaluated by substituting (3.13) into (3.4). For STRF, the refined query based on query
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point movement can be expressed as

xt
q = αxt−1

q + β

(
1

NP

NP∑
u=1

xt−1
u

)
− γ

(
1

NN

NN∑
v=1

xt−1
v

)
, (3.14)

where α, β, and γ are pre-selected parameters, and NP and NN are the numbers of

positive and negative examples within the retrieved set of images after the (t − 1)th

iteration, t ≥ 2, and the superscript of the feature vectors indicates the number of

retrieval iterations.

The SVMAL Content Component

In order to demonstrate the flexibility of the CLBIR framework to use different types

of similarity measure for the content component, SVM is selected, in addition to the

nearest neighbor method, due to its theoretical and practical value. Theoretically, a

learning machine, defined as a set of parameterized functions and trained based on the

maximal margin principle results in a decision function which can be expressed as the

linear combination of the support vectors, which are the training samples closest to

the decision hyperplane. By maximizing the margin, the trained SVMs minimize the

generalization error, while maintaining the minimum empirical error. In addition, due to

the linear non-separability of most of the practical problems, the advantage of SVMs lies

with the transformation from a low-dimension space to an arbitrarily high-dimensional

space introduced by a properly selected kernel function. A comprehensive tutorial on

SVM can be found in [99].

Given a set of training samples, denoted as {(x1, y1), (x2, y2), . . . , (xT , yT )}, where

xi ∈ Rd, yi ∈ {−1, 1} is the ground-truth label of xi, and i ∈ {1, 2, . . . , T}. The

searching for the optimal hyperplane in the weight space Ψ can be accomplished by
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solving either the primal optimization problem or the dual optimization problem. When

the kernel function is involved, the optimal hyperplane can be represented as

f(x) =
T∑
i=1

αiyiK(xi,x) + b (3.15)

=
T∑
i=1

αiyiΦ(xi)
TΦ(x) + b

= wTΦ(x) + b

where K(xi,x) is the kernel function, αi is the Lagrangian multiplier which can deter-

mined by solving the dual optimization problem, b is the bias which can be determined

using the KKT complementarity condition, Φ(x) :Rd 7→ Rp, d ≪ p, is the transforma-

tion, and w is the weight vector. Since a properly selected kernel function satisfies the

Mercer’s condition, it is not necessary to know the specific form of Φ(x) because both

the optimal hyperplane and the objective function depend only on the inner product of

two feature vectors in the transformed space Ω. In our study, the radial basis function

(RBF) is chosen to be the kernel function. Due to the sparse sample problem of the

relevance feedback in general CBIR, the methodology of active learning was introduced

into the human-machine interaction for STRF, where the most informative images are

shown to request user-provided labeling, resulting in the SVMAL-CBIR [19]. These im-

ages are those reside closet to the present optimal hyperplane. The underlying idea of

active learning with SVM is to choose the unlabeled samples to reduce the version space

as fast as possible, where the version space is defined as the region in Ψ corresponding to

the hyperplane capable of perfectly classify the training samples in Ω. This is realized by

selecting, in Ω, the unlabeled samples that are closest to the current learned hyperplane,

i.e. the samples with minimum |w ·Φ(x)|. Such samples will be included in the training
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set for the next iteration of the SVM learning, which is the STRF scheme for SVMAL-

CBIR. The evaluation of the likelihood of a query image with respect to a candidate

image is performed through (3.4).

3.5.3 Experiments

Experimental Setup

To guarantee the diversified image content, which is a typical situation of image retrieval

in a large general domain, we randomly selected 200 classes from the COREL image col-

lection, with 50 images in each class. The resultant 10000 images and the vendor-defined

categories were used as the database and the ground truth for evaluating the perfor-

mance. From the database, 10 queries are selected from each of the 200 classes, resulting

in 2000 queries are selected, each of which is composed of two different images. Under

the query-by-example retrieval paradigm, the average of the features of the two images

is used as the feature of an exemplar image. To facilitate the subsequent elaboration,

the query subsets which consist of the first five queries, the sixth through the eighth, and

the ninth and the tenth in each class, are denoted TA, TB,1, and TB,2, where |TA| = 1000,

|TB,1| = 400, and |TB,2| = 600. Such a query set selection guarantees that the system

trained using the LTRF will be tested based on previously unseen samples. TA was used

when there is no accumulated high-level knowledge, i.e. before LTRF happens. In such a

case, only STRF is involved, and the NN-CLBIR and the SVMAL-CLBIR are essentially

the same as the NN-CBIR and SVMAL-CBIR because the a priori distribution of the

candidate images is uniform. After the initial LTRF, the CLBIR systems are expected

to present better performance in general thanks to the accumulated knowledge, while

the STRF still improves the results with respect to each specific query. TB,1 ∪ TB,2, in-
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Table 3.4: Summarization of the feature extraction.

Color Feature

Color
16, 4, 4 bins in H, S, V channels

Histogram

Color An image is partitioned into 8× 8 blocks,
Layout 6, 3, 3 coefficients in Y, Cb, Cr channels

Texture Feature

Gabor Wavelet 4 scales and 6 orientations

cluding 1000 image, was used to verify the improvement after the initial LTRF. During

the operation of the CLBIR systems, the new retrieval results after the initial LTRF are

gradually accumulated, and a second LTRF can be carried out upon a certain point. The

retrieval results corresponding to TB,1 were used to perform an incremental update of the

system, i.e. the second LTRF, after which the performance was evaluated using TB,2.

To capture various visual properties of the images, three types of low-level descriptors

are selected, including global color histogram in Hue-Saturation-Value (HSV) space, color

layout in YCbCr space [100], as well as Gabor wavelet [101]. The detailed information

on the feature extraction is outlined in Table 4.1.

Numerical Results

Shown in Fig. 3.20(a) is the comparison between NN-CBIR and NN-CLBIR in terms of

the average precision Pavg as a function of the number of iterations of STRF, where the

precision is defined as P = NC

NR
, where NC and NR are the numbers of relevance images

and retrieved images, respectively. We adopted NR = 48 in this case. Using query set

TB,1, the improvement due to the LTRF based on the past retrieval results with respect

to the query set TA is obvious, and the effect of STRF can also be observed. After the

second LTRF, the performance of NN-CLBIR using query set TB,2 is further enhanced
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Figure 3.20: Objective evaluation on the performance improvement resulting from the
proposed approach. a) and c) Comparison in terms of the PRC after the first retrieval
iteration. b) and d) Comparison in terms of the precision as a function of the number of
RF iterations.

resulting from more accumulated knowledge through the LTRF. Based on the same query

set, the performance of NN-CBIR remains unchanged. To test the performance in terms

of ranking ability, we employed the precision-versus-recall curve (PRC), where the recall
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is defined as R = NC

NG
, where NG is the number of images in the same semantic class as

that of the query. The precision is averaged over all queries at each different recall value.

The PRC after the initial retrieval was shown in Fig. 3.20(b). Higher precision value at

a certain recall indicates more relevant images being ranked ahead of irrelevant ones, i.e.

to reach the recall value, a smaller set of retrieved images has to be gone through. Based

on this fact, the advantage of the integration of user history as high-level knowledge with

the content analysis can be demonstrated based on the comparison in Fig. 3.20.

The comparison shown in Fig. 3.20(c) and Fig. 3.20(d) is for the same purpose of

performance evaluation as that described above, and the difference lies with the approach

to the content analysis for the likelihood computation, which is based on the output of the

SVM employed for the active learning-based STRF. In this case, we adopted NR = 20 for

the evaluation of precision as a function of the number of STRF iteration, andNC = 50 for

the evaluation of PRC. Since the initial retrieval is just random ranking, the precision was

evaluated starting from the first STRF iteration. Still, we can observe the improvement

resulting from the integration through the Bayesian framework.

Subjective Evaluation

An interface with the NN-CLBIR enabled has been implemented to demonstrate the

effectiveness of the proposed framework in terms of performance improvement by the

accumulation of user history. Illustrated in Fig. 3.21(a) and Fig. 3.21(b) are the top 20

retrieved images using NN-CLBIR. Shown in the figure on the left is the result obtained

using a system, whose a priori knowledge was extracted from 1000 user data, while on

the right, the result is based on the a priori knowledge learned from 1400 user data. The

query is selected from the semantic class of the theme soldier, and the last 4 images do

not belong to this class in Fig. 3.21(a). Nonetheless, all of the top 20 images are relevant
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(a) Based on the user history model trained using 2000 past retrieval results.

(b) Based on the user history model trained using 3200 past retrieval results.

Figure 3.21: Retrieval results for subjective evaluation on the performance improvement
resulting from more user history.
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to the query.

3.5.4 A Prototype System of the Search Engine based on CLBIR

Beyond the experiment-based study of the CLBIR framework, a prototype system of

the CLBIR has been implemented. The image database is composed of 40000 images

obtained from the Corel image collection. There are in total 400 semantic classes, each

of which has 100 images. For similarity measure using the visual content component of

the framework, we implemented global color histogram, color layout, Fourier descriptors,

and Gabor wavelets, which are used as the low-level visual features for image represen-

tation in the feature space. The four descriptors of an image are cascaded into a single

vector of 102 dimensions. L1-Norm is employed as the distance function. To enable the

context component, we need past retrieval results which are obtained using the visual

content component. To this end, we collected 8000 retrieval results using the content

component, for which 20 query images are randomly selected from each of the 400 se-

mantic classes. The context model is theoretically a 40000 × 40000 matrix. The sparse

matrix representation was employed because there are many zero-valued entries due to

the limited number of retrieval results. The demo was implemented as a web application

using ASP.NET with C# programming language. The application is hosted by a ma-

chine with a 2.4GHz Intel Core 2 Quad CPU and 4GB RAM, and the operating system

is Windows Server 2003 R2. There are 21 images on a page of the ranked list of im-

ages, organized in a layout of 3 rows by 7 columns. The file name of an image displayed

on the web page is shown on top of the image. If the background color of the title of

an image is green/red, it means that contextual information is available/unavailable for

that image. A user can choose to use the context information or not. The URL of the
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application is http://clbir.rml.ryerson.ca/main.htm. A video demo is also available at

http://www.youtube.com/watch?v=SEsT9c3kzLw. An example of the search results is

illustrated in Fig. 3.22.

3.5.5 Summary

The STRF and LTRF are integrated through the proposed CLBIR framework. To be

specific, the content and context, obtained via STRF and LTRF, are combined through

a Bayesian framework. The CLBIR framework can be considered as a CBIR system with

memory, which can incrementally accumulate high-level semantic knowledge assisting in

bridging the semantic gap in the future retrieval performed by prospective users. Two

particular instances of the proposed framework has been implemented for experimental

evaluation, which are SVMAL CLBIR and NN-CLBIR. Simulation results demonstrat-

ed the effectiveness of the combination of the content-based and content-independent

information, which include the improvement resulting from learning a user history mod-

el based on more accumulated knowledge, i.e. LTRF, and that by STRF during each

retrieval session. Future work will be focused on seeking a more accurate approach to

estimating the user history model.
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(a) Result of CBIR.

(b) Result of CLBIR.

Figure 3.22: An example of the comparison between the search results of CBIR and
CLBIR using the prototype system.
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Chapter 4

Image Retrieval by Integrating

Audio and Visual Information

4.1 Introduction

In this chapter, we propose a new framework of multi-modal image retrieval, which u-

tilizes the information in both audio and visual domains. By considering the audio

information as a kind of holistic background context, the problem can again be tackled

from the angle of the integration of content and context. Therefore, the general Bayesian

framework presented in the last chapter is employed, which the contextual information is

induced from the characteristic audio features of different objects, while their visual fea-

tures are the input of the content analysis. A database of 4400 images featuring 50 kinds

of animals is employed in our experiments. Based on comparative experimental evalua-

tion, the numerical results demonstrate better performance resulting from the proposed

fusion of audio and visual information. A guideline for further study on the framework

is also discussed based on the experimental results.
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4.2. THE PROPOSED MULTI-MODAL IMAGE RETRIEVAL FRAMEWORKAudio feature extraction Audio model trainingVisual feature extraction
Visual feature extraction

Database images
Query image On-line Processing

Off-line ProcessingVisual model trainingAudio databaseVisual database
Audio feature extraction Semantic class weighting and audio relevance feedback

Visual classifi-cation
Image a priori probability assignmentImage likelihood evaluation and visual relevance feedback Bayesian information fusion and image ranking Retrieved images

Figure 4.1: The block diagram of the proposed framework.

4.2 The Proposed Multi-modal Image Retrieval Frame-

work

To illustrate the mechanism of the proposed framework, the diagram is divided into two

parts, i.e. offline and online processing, as shown in Fig. 5.4. Both of these two parts

involve visual and audio processing, which are explained with detail in what follows.

4.2.1 Processing in the Audio Domain

To effectively exploit the information in the audio domain, we borrow the popular tech-

niques for speech recognition and speaker identification. In terms of feature selection, we

employ MFCC, which has been successfully used for both speech recognition and speaker

identification due to its effectiveness for characterizing the response of human auditory

system. The MFCC feature of an audio clip is a sequence of vectors, where each vector is

extracted from an excerpt of the clip, a.k.a. a frame. For details on the specific procedure
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of the feature extraction, readers are referred to [102].

Ideally, we have an audio file for each image in the database. As an initial study, we

have only an audio file for each semantic class. Suppose there are K classes, an MFCC

feature sequence of length T , denoted U k=[uk
1,u

k
2, . . . ,u

k
T ], of the k-th class is used to

train an N -state HMM, represented using λk = {πk, Ak, Bk}, where πk = [πk
1 , π

k
2 , . . . , π

k
N ]

are the initial state probabilities, Ak = [akij]N×N is the state transition probability ma-

trix, Bk = [pk1(u), p
k
2(u), . . . , p

k
N(u)] are the probability density functions (PDF’s) of an

observation conditional on different states, and k ∈ {1, 2, . . . , K}. The parameters can

be estimated through the standard expectation maximization (EM) procedure. Once

the HMM’s are trained, the a posteriori probability of a semantic class given the audio

features of a query can be calculated through the Bayes’ theorem, i.e.

P (ωa
k |U q) =

p(U q|ωa
k)P (ωa

k)∑K
m=1 p(U q|ωa

m)P (ωa
m)

, (4.1)

where ωa
k denotes a class label and p(U q|ωa

k) = p(U q|λk). These probabilities are used as

the a priori probabilities after proper normalization, which is elaborated in the section

of information fusion.

In terms of relevance feedback, we propose the following scheme. After calculating

the P (ωa
k |U q) for each class, a user plays and listens to the audio of the top L ones on

the ranked list of the classes based on their a posteriori probabilities. If the relevant

class appears within the examined portion of the list, the a posteriori probabilities given

a query are recalculated for all k using the training feature of the relevant class, i.e.

P (ωa
k |U q)=P (ωa

k |UTR), where UTR∈{U 1,U 2, . . . ,UK} denotes the training feature of

the relevant class.
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4.2.2 Processing in the Visual Domain

To effectively combine the information obtained in different domains, the images are first

classified based on the visual features during the offline phase. The necessity of this

step can be explained as follows. Due to the fact that we only have an audio file for

each semantic class, we can not directly calculate the a posteriori probability of each

candidate image. To circumvent this problem, we choose to propagate the a posteriori

probability of each class to the images belonging to it. To this end, the offline visual

domain classification is introduced into the framework. Considering the complexity of

the distribution of the visual features due to the high dimensionality, we employ a non-

parametric technique for the supervised classification of images, which is known as Parzen

Windows. The Bayesian decision rule is applied, which can be formulated as

ω̂v
c = argmax

ωv
k

P (ωv
k|vc), (4.2)

where ωv
k is a class label and ω̂v

c is the class label assigned to the image, of which the

visual feature is represented using vc. The P (ωv
k|vc) is evaluated through the same way

as in (4.1), with the audio feature replaced with the visual feature.

Before proceeding to the disucssion on the integration of the afore-mentioned in-

formation, the on-line similarity measure in the visual domain between a query and a

candidate image is introduced. To this end, we employ the conventional nearest-neighbor

content-based image retrieval (NN-CBIR), with the L1-norm as the distance function.

In terms of relevance feedback, the query is refined based on the linear combination of

the visual features of the original query, the relevant images, and the irrelevant images,

a.k.a. query movement.
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4.2.3 Information Fusion for Bayesian Image Audio-Visual Re-

trieval

As briefly introduced earlier, the overall similarity measure of the framework is based on

the a posteriori probability of a candidate image given both the audio and visual features

of a query, which can be expressed as

P (Ic|U q,vq) ∝ p(vq|Ic)P (Ic|U q), (4.3)

where Ic is simply the index of a candidate image.

The a priori probability is obtained through

P (Ic|U q) =
P (ω̂v

c |U q)∑
i P (ω̂v

i |U q)
, (4.4)

where

P (ω̂v
c |U q) =

 P (ωa
k |U q), pR→q > L

P (ωa
k |URT ), pR→q ≤ L

, (4.5)

where ωa
k = ω̂v

c and pR→q the is the position of the class relevant to the query on the list

ranked for audio relevance feedback. The above seemingly redundant equations can be

explained as follows. The conditional probability in (4.4) can not be calculated directly

in that we do not have the audio information for each image in the database. Therefore,

we use the a posteriori probability, evaluated in the audio domain, of the semantic class

to which the candidate image is classified in the visual domain, as the a priori probability

of the candidate image in the overall framework.

In terms of the likelihood, an exponential function is used to convert the distance to
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Table 4.1: Summarization of Feature Extraction.

Color Feature

Color Histogram 8, 4, 2 bins in H, S, V channels

Color An image is partitioned into 8× 8 blocks,
Layout 6, 3, 3 coefficients in Y, Cb, Cr channels

Texture Feature

Gabor Wavelet 4 scales and 6 orientations

Shape Feature

Fourier Descriptors 4 scales and 6 orientations

a value of a probability density function, i.e.

p(vq|Ic) =
1

A
e−|vq−vc|, (4.6)

where A =
∫
e−|v−vc| is the normalizing constant.

4.3 Experiments

4.3.1 Experimental Setup

In our experimental evaluation, a collection of 4400 images featuring 44 different kinds of

animals is employed as the dataset. Therefore, each animal is considered as a semantic

class. The low-level feature selection is summarized in Table. 4.1. In terms of audio

feature extraction, the window size (frame length) is 256 samples. In addition, the

number of state N is set to 3 for the HMM’s of all classes, and a Gaussian mixture with

3 components is chosen as the observation PDF given a state for each HMM. It should be

noted that the parameter value selection for modeling the audio information is heuristic.

In real applications, these parameters can be adjusted based on the given dataset. For

experimental study, we only focus on examining the performance improvement resulting
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from audio-visual information fusion. 20 images are taken from each semantic class for

training the statistical model for each class in the visual domain. Another 10 images are

selected from each class as the queries. We perform retrieval with no replacement since

relevant images selected by the users during relevance feedback are essentially used as the

training images to refine the query formulation. Regarding the evaluation criterion, we

adopt two standard performance indexes, i.e. the average precision versus the number of

retrieval iterations (PRI) and the precision versus recall curve (PRC). In terms of PRI,

three systems are compared, including a unimodal retrieval system merely using visual

features, a multimodal retrieval system employing relevance feedback only in the visual

domain, and a multimodal retrieval system enabling relevance feedback in both visual

and audio domain. In addition, the unimodal retrieval and multimodal retrieval with

audio relevance feedback are compared based on the PRC. To facilitate the subjective

evaluation, a prototype system has also been implemented.

4.3.2 Experimental Results and Analysis

Shown in Fig. 4.2 is the comparison in terms of PRI for the three systems. Users are

assumed to perform relevance feedback through the inspection of top 15 classes on the

ranked list in the audio domain and top 20 images on the ranked list in the visual domain.

The precision is evaluated based on the top 20 images on the ranked list after each

retrieval iteration. It demonstrates the improvement resulting from the integration of the

information in the audio and visual domains. Meanwhile, the advantage of employing

the audio relevance feedback can be observed according to the further improvement

in the same figure. In Fig. 4.3, the results are shown to evaluate and compare the

quality of different systems in terms of ranking the retrieved images using PRC. To
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Figure 4.2: The comparison of three systems in terms of the average precision versus the
number of retrieval iterations.
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Figure 4.3: The comparison in terms of PRC between the unimodal retrieval and multi-
modal retrieval. Upper: result of the 5-th iteration. Lower: result of the 8-th iteration.
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Figure 4.4: The relation between the performance of classification in visual domain and
that of the retrieval.

further demonstrate the effectiveness of the proposed framework, the retrieval results of

a particular query using different retrieval schemes are shown in Fig. 4.5. It can be

observed that the result of the multimodal framework includes both visually similar and

semantically similar images of the same class.

Apart from the above numerical evaluation, we also analyze the major performance

bottleneck of the proposed system, which can be considered as a guideline for further

study. As discussed earlier, the audio information can not be utilized unless it is propa-

gated to the images in the database. The fact that the system relies on the classification

in visual domain to fill this gap leads to the conjecture about the relation between the

classification accuracy and the retrieval precision. To effectively demonstrate this rela-

tion, we compare the class-specific classification accuracy and the class-specific retrieval

precision, and the results are shown in Fig. 4.4. The similarity between the patterns
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of the fluctuation of the above two performance indexes indicates that the visual classi-

fication plays an important role in the system. The necessity of visual classification is

easy to justify because currently the vast majority of the image databases do not have

available audio information for each image.

4.4 Summary

Based on the Bayes’ theorem, the integration of visual and audio information with the ap-

plication to content-based image retrieval is studied in this work. The difference between

the proposed framework and other existing ones lies in the perspective from which the

information is viewed and harnessed. In addition, relevance feedback is enabled in both

domains. Experimental results demonstrate the effectiveness of the developed frame-

work in terms of both accuracy and ranking of the retrieved images. As indicated by

the results, better classification approach in the visual domain is desirable in the future

work.
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(a) The initial retrieval result of multi-modal retrieval.

(b) The initial retrieval result of unimodal retrieval.

Figure 4.5: Subjective evaluation of the retrieval results. The filenames of the relevant
images are highlighted in green. 105





Chapter 5

Image Annotation by Integrating

Color and Texture

5.1 Introduction

To address the problem of combining low-level visual descriptors for image annotation, a

new generative framework is proposed and used with the supervised classification paradig-

m. It combines different visual features by jointly modeling the descriptors extracted from

the same salient point location of an image yet with their conditional distributions con-

strained via a single latent variable. In other words, to generate a set of visual words of

different types of visual descriptors, the same latent visual topic is sampled and used for

all of them. The input and output of the learning component are a set of image regions

encompassing the particular instances of an object category and the set of parameters of

the model which optimally fits the visual descriptors in the maximum likelihood sense.

The input and output of the classification component are a previously unseen image re-

gion and its optimal category label in the sense of minimum probability of error. We
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consider the texture and color information for inducing visual descriptors because they

have proven informative and complementary for representing images capturing the se-

mantics of general scope of real life, which are actually the targeting media content in

our study. In principle, the proposed model scalable in the sense that it is capable of

incorporating other kinds of visual features, such as spatial location. Details upon the

selection of visual descriptors and their extraction are elaborated in a subsequent section.

In terms of the specific structure of the model, it can be considered as an extension to the

pLSA. Therefore, the proposed model is referred to as multi-feature pLSA (MF-pLSA)

throughout the rest of the paper.

To distinguish the MF-pLSA from existing works, it can be noted first of all that such

a structure avoids the vector concatenation of different visual descriptors, allowing the

BOVW representations to be constructed respectively in the original descriptor spaces.

Second, by assuming the statistical independence of different visual descriptors given

a visual topic, their distributions are characterized using separate models yet learned

jointly with the training data. Thus, it circumvents the increased dimension of the

intermediate representation space, such as the case in [103]. Third, the structure of

the MF-pLSA serves the purpose of modeling different types of visual descriptors more

effectively than [104] in that, in our study, every descriptor of one kind has its counterpart

of the other kind extracted from the region around the same key point. Moreover,

compared with [34], the mixture components of the MF-pLSA is capable of dealing

with intra-class variation of visual appearance. Hence, the mixture components can be

referred to as visual topics as well. The contribution of the presented work is summarized

as follows.

• A generative model termed MF-pLSA is proposed, which jointly models the dis-
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tribution of two kinds of visual descriptor. Its advantages has been outlined as

above.

• The learning algorithm of the MF-pLSA is derived based on the expectation-

maximization (EM) procedure.

• As a model for supervised learning, its classification scheme is derived based on the

criterion of minimum probability of classification error.

• Two databases are employed in our experimental study, i.e. VOC2009 and LabelMe.

The former is a standard benchmark dataset and the latter is a dataset with a higher

degree of photometric and geometric changes. The experimental study includes

the comparison with histogram-based and pLSA-based approaches using vector

concatenation applied at the levels of both descriptor and BOVW representation.

Several performance evaluation criteria are employed, such as recall, precision, and

confusion matrix.

5.2 Key Point and Visual Descriptors

Prior to the elaboration of the proposed framework for descriptor integration, we present

a brief description to the visual descriptors employed in our study, which are SIFT

and local transformed color histogram (LTCH). These descriptors are extracted from

local regions surrounding salient points and have proven more robust against geometric

change of objects, partial occlusion as well as cluttered background. The extraction

of such descriptors essentially consists of two steps, which are key point detection and

descriptor calculation. Given an image, a set of key points are first detected, which

correspond to the locations of local image structures around which the visual information
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is valuable for subsequent processing, such as object recognition, image matching and

view point detection. Second, within a region around each key point, a visual descriptor

is calculated based on the pixel intensity or its derivative. During this two-step process,

the detection is desired to be invariant to affine transformation to local image structures

and the descriptor is expected to be invariant to affine transformation of pixel colors,

resulting from various kinds of illumination condition changes.

In terms of the key point detection, Mikolajczyk [56] proposed the Harris-Laplace key

point detector, which is based on the Harris corner detector but improved by introducing

the scale adaptiveness so as to be scale invariant. Compared with the key point detec-

tion based on difference of Gaussian proposed by Lowe [58], the Harris-Laplace detector

identifies more stable key points by using the second moment matrix. It was further

extended to the Harris-Affine detector, which is invariant to affine transformations of

local image structures by normalizing the key point neighborhood using an estimated

affine shape matrix [56]. In our present work, we only exploit the Harris-Laplace key

point detector and the affine invariance is not utilized since, at the current stage, the

proposed statistical modeling is by and large independent of the invariance properties

of key point detection. Therefore, the evaluation and comparison among the statistical

models considered in our experiments are unbiased and can be sufficiently handled by

the selected detector.

The visual descriptor selection is based on the following consideration. It should be

noted first that, if we consider image color or intensity as a function of pixel location,

histogram-based color and SIFT descriptors are derived from the function and its first

order derivative because the former and the latter characterize the information on the

distributions of the intensity and the gradient of an image respectively. Hence, these

two types of descriptors contain different information on the visual properties of images,
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of which the proper integration may lead to some performance improvement. As for

the color descriptor, since the databases used in our study include images taken under

different illumination conditions, LTCH is selected due to the fact that it is invariant

to light color change and shift (see [105] for the definition). This invariance property is

achieved through shifting the pixel intensities in the RGB space to zero mean followed

by normalizing them to unit variance. Among various histogram-based color descrip-

tors evaluated with image and video data in [105], the LTCH produces the best results

in terms of mean average precision. The SIFT descriptor is defined as the histogram of

weighted gradient magnitude according to the gradient orientation. Beside the invariance

property acquired by the Harris-Laplace detector, the descriptor is rotation invariant by

taking the relative angle of gradient orientation with respect to the dominant gradient

orientation of a key point. Moreover, it is partially invariant to light intensity change

and shift because the descriptor is normalized to unit length and the gradient is based

on the difference between pixel intensities. In our experiments, the Harris-Laplace de-

tector and visual descriptor extraction implemented by Sande [105] is used (available at:

http://koen.me/research/colordescriptors/).

5.3 The Proposed Framework

5.3.1 Data Generation and Representation

To view the generation of the data based on a real image, an example is shown in Fig.

5.1, where the green circles within the yellow bounding box of the boat represent the

detected key points. As indicated by the highlighted circle, a descriptor can be extracted

from a certain region surrounding the corresponding key point. Such descriptors from
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A Color visual word

A SIFT visual word

Figure 5.1: Illustration of the data obtained from an image. The yellow bounding box
represents the boundary of the object, which is boat in this example. The green circles
are located where there are key points detected. From each of these locations, two types
of descriptors, i.e. SIFT and LTCH, are calculated.

the object regions of training images are pooled together, based on which a visual code

book is built using the k-Means algorithm. As a result, the descriptor extracted at the

location of each key point can be indexed using one of the code words of the visual code

book, the procedure of which is referred to as visual word indexing throughout the rest

of the paper. Shown in Fig. 5.1 are the output of the visual word indexing of two types

of descriptors, i.e. a SIFT visual word and a LTCH visual word.

Through the above-mentioned visual word indexing procedure, we end up with a set

of 3-tuples, denoted as (wn, vn, dn), where n = 1, 2, . . . , N , wn ∈ {1, 2, . . . , C}, vn ∈

{1, 2, . . . , S}, dn ∈ {1, 2, . . . , D}, given that there are N detected key points, C color

visual words, S SIFT visual words, and D object regions. Such kind of data is defined

as co-occurrence data (COD) [106] and can be summarized in a table as illustrated in

Fig. 5.2, where each entry is the frequency of co-occurrence of a certain pair of SIFT

and LTCH visual words and an object. By doing so, we can represent the frequency
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N(4,3,5)

N(2,5,5)

Figure 5.2: Illustration of the COD table. Slices, such as the one indicated using green
color, correspond to the COD of one object region in an image. Colored blocks within
the slide shown on the right-hand side represent the observed instances of COD.

of co-occurrence of the LTCH visual word w, the SIFT visual word v and the object

region d as the entry of the COD table denoted by N (w, v, d), where w ∈ {1, 2, . . . , C},

v ∈ {1, 2, . . . , S}, d ∈ {1, 2, . . . , D}. For example, the green slice shown in Fig. 5.2 can

be thought of as the object region 4, in which only three instances of COD are observed,

for N (1, 1, 5), N (4, 3, 5), N (2, 5, 5) times, respectively.

5.3.2 MF-pLSA for Combining SIFT and Color

The MF-pLSA is essentially a generative model, which can be illustrated using a directed

graphical model shown in Fig. 5.3. The variable z is a hidden variable, of which the

values are not observed along with those of (w, v, d). Compared with pLSA, there are

two random variables that depend on z. In the domain of document analysis using pLSA,

z is interpreted as a topic variable, which corresponds to different distributions of words

when taking on different values. In the context of following discussion, we still refer to z

as a topic variable but consider different values of z in the domain of visual recognition

as being correspondent to a set of visual topics, which characterize the intra-class visual
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d z

w

v

Figure 5.3: The graphical representation of the multi-feature pLSA model for combining
SIFT and color descriptors.

appearance variation. From the general perspective of machine learning, it acts as a

bottleneck variable which can be used to significantly reduce the number of parameters

of the joint distribution of COD. Therefore, by means of linking individual components

of COD with the bottleneck variable as illustrated in Fig. 5.3, over-fitting can be avoided

to some extent, which is a critical feature due to the common sparsity of COD tables.

Moreover, the specification of the graph structure implies the conditional independence

property that the object region, the SIFT visual word and the LTCH visual word are

statistically independent given z.

Based on the generative model in Fig. 5.3, the COD can also be thought of as being

generated in the following process. First, to produce a tuple (w, v, d), an object region d

is drawn from the distribution P (d) in the first step. Second, a value of z is generated

following the distribution of P (z|d). Third, a SIFT visual word and a LTCH visual word

are generated based on the distributions of P (v|z) and P (w|z), of which the order is

not considered in the procedure. According to this data generation process, the joint

probability mass function P (w, v, d) modeled using MF-pLSA can be formulated in the
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Figure 5.4: The block diagram of the proposed framework for image annotation by
integrating color and SIFT descriptors.

parametric form of

P (w, v, d) = P (d)P (w, v|d) (5.1)

= P (d)
∑
z

P (w|z)P (v|z)P (z|d),

which is a mixture of the distributions of visual words conditional on the topic vari-

able. The MF-pLSA is used in a framework of supervised classification, where a joint

distribution of SIFT and LTCH visual words is learned for each class using the training

samples belonging to that class. To keep the notation uncluttered, the elaboration of the

learning algorithms of the MF-pLSA is made independent of the class identity because

the training algorithm remains identical for all classes.

115



5.3. THE PROPOSED FRAMEWORK

5.3.3 The Learning Algorithm of MF-pLSA

In view of clarity, we denote the set of parameters of the model as Θ, where Θ = Θw,v|d∪Θd

and

Θw,v|d , {P (w|z)|(w, z) ∈ {1, 2, . . . , S} × {1, 2, . . . , Z}} (5.2)

∪ {P (v|z)|(v, z) ∈ {1, 2, . . . , S} × {1, 2, . . . , Z}}

∪ {P (z|d)|(z, d) ∈ {1, 2, . . . , Z} × {1, 2, . . . , D}},

where Z is the number of mixture components, and Θd , {P (d)|d ∈ {1, 2, . . . , D}}.

Defining the training data as T = {(wn, vn, dn)|n = 1, 2, . . . , N}, the goal of learning

the MF-pLSA is to find the set of parameters Θ such that the model can account for

T most appropriately based on a chosen criterion. To this end, we adopt the maximum

likelihood principle for learning the MF-pLSA model. Based on (5.1), the log likelihood

of T with respect to the model Θ can be written as

L(T|Θ) =
D∑

d=1

W∑
w=1

V∑
v=1

N (w, v, d) logP (w, v, d) (5.3)

= N

D∑
d=1

P̃ (d) logP (d) +
D∑

d=1

W∑
w=1

V∑
v=1

N (w, v, d) log
Z∑

z=1

P (w|z)P (v|z)P (z|d).

Since Θw,v|d and Θd are separately involved with the two terms in (5.3) and Θw,v|d
∩
Θd =

ϕ, the two terms can be maximized independently.
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Based on the definitions of entropy H(·) and relative entropy D(·||·), we have

D(P̃ (d)||P (d)) =
D∑

d=1

P̃ (d) log
P̃ (d)

P (d)
(5.4)

= −
D∑

d=1

P̃ (d) logP (d)−H
(
P̃ (d)

)
.

It can be observed that the maximization of the first term in (5.3) amounts to the

minimization of D(P̃ (d)||P (d)). Since D(P̃ (d)||P (d)) = 0 if and only if P̃ (d) = P (d),

the distribution of the object region is its empirical distribution.

In terms of the second term in (5.3), as the hidden variable z is not observed, the

model is learned using incomplete data. Therefore, the expectation-maximization (EM)

procedure is one ideal tool to estimate the parameters Θw,v|d associated with the second

term. Let z = {zn|n = 1, 2, . . . , N} be a set of random variables and assume they are

observed, the complete log likelihood of T
∪

z with respect to the model Θw,v|d, denoted

L(T,z|Θw,v|d), can be formulated as

L(T,z|Θw,v|d) =
N∑

n=1

logP (wn, vn, zn, dn) (5.5)

=
N∑

n=1

logP (wn|zn)P (vn|zn)P (zn|dn),

which is a function of z and hence a random variable as well. The expectation of this ran-

dom variable is calculated in the E-step followed by the maximization of this expectation

in the M-step.
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E-Step

As usual, the objective of the E-Step is to derive the expectation of L(T,z|Θw,v|d) with

respect to the a posteriori probability P (z|T,Θ<i−1>
w,v|d )1, where Θ<i−1>

w,v|d is the set of pa-

rameters resulting from the (i − 1)-th iteration of the EM procedure. According to the

assumption on the structure of the model, we have

P (z|T,Θ<i−1>
w,v|d ) =

N∏
n=1

P<i−1>(wn|zn)P<i−1>(vn|zn)P<i−1>(zn|dn)∑Z
zn=1 P

<i−1>(wn|zn)P<i−1>(vn|zn)P<i−1>(zn|dn)
. (5.6)

The expectation, a.k.a. the Q-function, can be calculated by

Q(Θ<i>
w,v|d,Θ

<i−1>
w,v|d ) =

∑
z

N∑
n=1

logP (wn|zn)P (vn|zn)P (zn|dn)P (z|T,Θ<i−1>
w,v|d ) (5.7)

=
Z∑

z=1

D∑
d=1

W∑
w=1

V∑
v=1

N (w, v, d)P (z|w, v, d,Θ<i−1>
w,v|d ) logP (w|z)P (v|z)P (z|d).

M-Step

The optimization in the M-Step can be formulated as

maximize Q(Θ<i>
w,v|d,Θ

<i−1>
w,v|d ) (5.8)

subject to:
W∑
w=1

P (w|z) = 1, z = 1, 2, . . . , Z

V∑
v=1

P (v|z) = 1, z = 1, 2, . . . , Z

Z∑
z=1

P (z|d) = 1, d = 1, 2, . . . , D

1We use the brackets to distinguish the index of iteration from the exponent.
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We maximize the Q(Θ<i>
w,v|d,Θ

<i−1>
w,v|d ) with respect to Θ<i>

w,v|d by introducing Lagrangian

multipliers µz, νz and λd. Accordingly, the resulting lagrangian function has the form

Λ(Θ<i>
w,v|d,µ,ν,λ) (5.9)

=
Z∑

z=1

D∑
d=1

W∑
w=1

V∑
v=1

N (w, v, d)P (z|w, v, d,Θ<i−1>
w,v|d ) logP (w|z)P (v|z)P (z|d)

+
Z∑

z=1

µz

(
W∑
w=1

P (w|z)− 1

)
+

Z∑
z=1

νz

(
V∑

v=1

P (v|z)− 1

)

+
D∑

d=1

λd

(
Z∑

z=1

P (z|d)− 1

)
,

where µ = {µz|z = 1, 2, . . . , Z}, ν = {νz|z = 1, 2, . . . , Z} and λ = {λd|d = 1, 2, . . . , D}.

Solving the follow equation system for Θ<i>
w,v|d,


∂Q(Θ<i>

w,v|d,Θ
<i−1>
w,v|d )/∂P (w|z) = 0

∂Q(Θ<i>
w,v|d,Θ

<i−1>
w,v|d )/∂P (v|z) = 0

∂Q(Θ<i>
w,v|d,Θ

<i−1>
w,v|d )/∂P (z|d) = 0

,

we end up with the following estimates of the parameters,

P (w|z) =

∑D
d=1

∑V
v=1N (w, v, d)P (z|w, v, d,Θ<i−1>

w,v|d )∑D
d=1

∑W
w=1

∑V
v=1N (w, v, d)P (z|w, v, d,Θ<i−1>

w,v|d )
, (5.10)

P (v|z) =

∑D
d=1

∑W
w=1N (w, v, d)P (z|w, v, d,Θ<i−1>

w,v|d )∑D
d=1

∑W
w=1

∑V
v=1N (w, v, d)P (z|w, v, d,Θ<i−1>

w,v|d )
,

P (z|d) =

∑W
w=1

∑V
v=1N (w, v, d)P (z|w, v, d,Θ<i−1>

w,v|d )

N (d)
,

where N (d) =
∑W

w=1

∑V
v=1N (w, v, d).
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5.3.4 Supervised Classification with MF-pLSA

To annotate object regions of images, we apply supervised classification using MF-pLSA.

Define the set of class labels as Ω = {ω|1, 2, . . . , |Ω|}, where |Ω| is the number of classes.

The joint distribution of SIFT and LTCH visual words for class ω can be calculated by

marginalizing out the region variable d through Pω(w, v) =
∑Dω

d=1 Pω(w, v, d), where Dω

is the number of object regions used to estimate the Pω(w, v, d), the joint distribution of

the visual words and object regions of class ω modeled using MF-pLSA. The maximum

likelihood principle is employed to classify a previously unseen object region, denoted d′.

Let T′ be the set of COD of d′, the log likelihood of T′ with respect to the model of class

ω, denoted Θω, can be calculated via

L(T′|Θω) =
W∑
w=1

V∑
v=1

N (w, v, d′) logPω(w, v) (5.11)

=
W∑
w=1

V∑
v=1

N (w, v, d′) log
Dω∑
d=1

Pω(d)
Z∑

z=1

Pω(w|z)Pω(v|z)Pω(z|d),

where Pω(d), Pω(w|z), Pω(v|z) and Pω(z|d) are the parameters of the MF-pLSA of the

ω-th class. The decision on the class label is made by

ω̂′ = argmax
ω∈Ω

L(T′|Θω). (5.12)

It should be noted that there is generally no a priori knowledge on the distribution of

object categories, which means the uniform distribution is a reasonable assumption. In

this case, the maximum likelihood classification is equivalent to the maximum a posteriori

probability classification. Therefore, the result of the above classification scheme using

the MF-pLSA model is optimal in the sense of minimum probability of error.
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5.4 Experiments

5.4.1 Databases

We employ two databases for studying the performance of the multi-feature pLSA model,

i.e. the VOC2009 [107] and the LabelMe [108] databases. The two databases are sum-

marized as follows and the sizes of training and testing sets of the above two databases

are summarized in Fig. 5.5.

The VOC2009 Database

The database includes 7818 images in total, which are annotated using 20 concepts. All

of the 20 classes are selected for the experiments. The resulting training and testing sets

include 9298 and 9390 object regions, respectively. In this database, the boundaries of

objects are only manually outlined with rectangles.

The LabelMe Database

The content of the LabelMe database depends on when it is downloaded because it is

continuously updated as interested users annotate the images. The version of LabelMe

database we downloaded includes 51285 images and 306005 regions in total, which are

annotated using 210 concepts, where each concept is represented as a keyword and con-

sidered as a class. Only 16 classes are selected for the experiments because they have

significantly more annotated object regions than those unselected do. The images of each

of the 16 classes are randomly split into two disjoint sets to prepare the training and test-

ing data. As a result, the training set and the testing set include 36547 and 58176 regions,

respectively. Moreover, the boundaries of objects have been roughly outlined manually

with polygons in the images of this database.
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Figure 5.5: The numbers of training and testing samples of different classes within the
two employed databases.

5.4.2 Experimental Setup

Approaches Compared with the MF-pLSA

To evaluate the performance of the multi-feature pLSA model, we compare it with seven

types of approaches to the same classification task, including the histogram of SIFT visual

word (S-Hist), the histogram of LTCH visual word (C-Hist), the histogram of visual word

of combined SIFT and LTCH descriptor (SC-Hist), the concatenated S-Hist and C-Hist

(Concat-Hist), the pLSA of SIFT visual word (S-pLSA), the pLSA of LTCH visual word

(C-pLSA) and the pLSA of combined SIFT and color descriptor (SC-pLSA). In fact, the

SC-Hist, Concat-Hist and SC-pLSA integrate the information from the SIFT and LTCH

descriptors by different means. To be specific, the SC-Hist can be considered as a low-level

fusion of the two kinds of descriptors as the two individual descriptor vectors are directly

concatenated to form a longer vector, i.e. the descriptor vector concatenation. On the

other hand, the Concat-Hist combines the S-Hist and C-Hist into a longer histogram,

which can be thought of as the fusion at an intermediate level of image representation,
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i.e. the BOVW vector concatenation. Similarly, the SC-pLSA is based upon the same

sort of descriptor fusion as that of SC-Hist but with a different modeling strategy.

Implementation

The entire framework, from preparing for the datasets, through preprocessing, such as

learning visual codebooks for different descriptors, to learning and classification, is im-

plemented using C++ with the objected-oriented programming paradigm. The imple-

mentation includes a basic I/O static library mainly for accessing the data and results

involved in the experiments, a dynamically linked library for building codebooks consid-

ering its extensive usage in most of the BOVW-based image understanding tasks, and a

static library including the learning and classification algorithms of the proposed model

and all others that are compared. The softwares were built for both MS Windows and

GNU Linux platforms and data parallelization is enabled to speed up the calculation.

The design of this implementation is for the purpose of efficient computing and sustain-

able development of a statistical pattern recognition software toolkit. Training samples,

testing samples as well as the classification results are accessible throught the web site

at http://clbir.rml.ryerson.ca/maindisplay.html.

Parameters of the model, such as the size of a codebook and the number of visual

topics of a pLSA-based model, are set as follows. For the approaches based on mixture

modeling, such pLSA and multi-feature pLSA, we set the number of hidden topics Z to 5,

20 and 50 in order to study the performance variation as the model order changes, which

addresses the characterization of intra-class variation of visual appearance. To test how

the level of finess of descriptor quantization affects the overall performance, we conduct

experiments with 100, 200 and 500 visual words. In all cases of the comparative study,

the numbers of visual words for different descriptors are kept equal.
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Performance Evaluation Criteria

In terms of performance evaluation criterion, we first adopt class-specific recall, denoted

Rω, and precision, denoted Pω, defined respectively as

Rω =
Rcorr

ω

Rω

(5.13)

and

Pω =
Rcorr

ω

Rtarg
ω

, (5.14)

where Rcorr
ω , Rω and Rtarg

ω denote the number of correctly classified regions of the ω-th

class, the number of regions of the ω-th class, and the number of regions categorized into

the ω-th class. Second, we consider the average recall and precision, defined by

Ravg
ω =

1

|Ω|
∑
ω

Rω (5.15)

and

Pavg
ω =

1

|Ω|
∑
ω

Pω. (5.16)

Furthermore, to examine the details of misclassification, we employ confusion matrix.

Finally, to visually inspect the results of annotation, some examples of the classification

using SC-pLSA and MF-pLSA are illustrated in Fig. 5.22. It should be noted that the

purpose of the first two is to compare the proposed approach with others whereas the

last two are intended to find out which classes are difficult to be distinguished from each

other based on numerical results and inspecting the visual appearance of the samples.
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Figure 5.6: 5 visual topics from the bird class of the VOC2009 database. Each row
includes the first 5 region of a certain the visual topic ranked based on the a posteriori
probability of the visual topic given the region , i.e. P (z|d). For better illustration, the
images are independently scaled such that the regions of interest fit the area of display
while maintaining the quality for visually recognizing the objects.

5.4.3 Experimental Results

We first illustrate two examples of the learned visual topics. Shown in Fig. 5.6 and Fig.

5.7 are the 5 visual topics learned using MF-pLSA for the class of tree of the LabelMe

database and the class of bird of the VOC2009 databases, respectively. These topics

are learned with Z = 5. For each of the visual topics, the regions are ranked based

on the P (z|d) in descending order. The first 5 regions on the ranked list of a topic are

selected for visualizing the appearance of the topic. The idea is that for a given topic
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Figure 5.7: 5 visual topics from the tree class of the LabelMe database. Each row
includes the first 5 region of a certain the visual topic ranked based on the a posteriori
probability of the visual topic given the region , i.e. P (z|d). For better illustration, the
images are independently scaled such that the regions of interest fit the area of display
while maintaining the quality for visually recognizing the objects.

z, the higher the P (z|d) of a region is compared with those of the other regions, the

more the region is generated by selecting the topic z. This in turn leads to the fact

that the visual appearance of topic z is more easily observed from such a region as d.

Since each topic corresponds to the distribution of both SIFT and LTCH visual words,

different combinations of color and texture visual patterns are expected to be observed.

In Fig. 5.6, the first three visual topics contain rich texture but their colors are different.

By contrast, the other two visual topics do not have much texture while their colors
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are also different. In Fig. 5.7, the third visual topic corresponds to the visual pattern

of small branches and leaves of a tree, whereas the others primarily characterize trunks

with different color and shape patterns.

In terms of the study on classification performance, the results shown in Table 5.1

and Table 5.2 are the class-specific recall and precision evaluated using the VOC2009

database. The number of visual word is 500. The maximum recall and precision values

of each class are highlighted. In terms of recall, we obtain improved performance for 12

out of 20 classes, whereas, in terms of precision, better performance is observed for 15

of the 20 classes. Shown in Table 5.3 and Table 5.4 are the numerical results of class-

specific recall and precision evaluated using the LabelMe database with 200 visual words.

Out of 16 classes, the recall values of 11 classes and the precision values of 10 classes

get improved using the MF-pLSA model. To efficiently utilize the available space for

presenting the results obtained with different number of visual words and visual topics,

average recall and precision are employed, as shown in Fig. 5.8 and Fig. 5.9. For the

VOC2009 database, according to Fig. 5.8(a) through Fig. 5.8(f), about 3% improvement

in terms of Ravg
ω is obtained compared with the best of the other approaches. In terms of

Pavg
ω , the improvement falls between 1.5% and 2.0%, increasing as the number of visual

words is raised. As shown in Fig. 5.9(a) through Fig. 5.9(f), improvement in terms of

Ravg
ω and Pavg

ω for the LabelMe database range from 4.4% to 6.5% and 3.5% to 5.2%,

respectively. It can be observed that the performance based on the LabelMe database is

better than that based on the VOC2009 database under different experimental settings.

It is also observed from Fig. 5.8 and Fig. 5.9 that, for different numbers of hidden

topics, we end up with very similar results using the pLSA-based approaches, i.e. S-

pLSA, C-pLSA and SC-pLSA. This phenomenon directly results from using the pLSA
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Table 5.1: The class-specific recall of the VOC2009 database using 500 visual words.

S- C- SC- Concat- S- C- SC- MF-pLSA
Hist Hist Hist Hist pLSA pLSA pLSA 5 20 50

Aeroplane 61.94 47.4 5.88 58.82 67.82 61.59 68.86 71.63 69.55 64.01

Bicycle 24.17 12.08 2.08 14.17 41.25 23.33 40.42 37.5 40.00 37.5

Bird 12.62 2.1 1.17 3.5 8.88 3.97 8.88 9.81 8.41 10.05

Boat 20.25 18.04 6.65 18.35 15.51 26.58 12.03 32.59 26.27 23.73

Bottle 29.83 12.17 10.98 23.63 39.86 14.08 37.95 18.14 11.69 8.35

Bus 60.31 14.95 3.61 38.66 61.86 37.63 61.34 58.76 55.67 59.79

Car 39.94 16.67 1.15 35.34 34.63 14.8 37.21 40.95 43.97 43.1

Cat 44.44 77.46 4.13 3.81 36.19 28.25 36.83 36.19 39.37 43.17

Chair 9.49 1.52 1.9 3.42 14.43 4.18 15.57 19.24 19.62 20.38

Cow 4.66 4.15 5.7 4.66 6.22 9.33 6.22 12.95 5.7 5.7

Dining table 2.56 2.56 3.85 4.49 17.95 22.44 16.03 26.92 19.87 19.23

Dog 6.62 4.07 0.25 2.04 23.92 9.16 23.92 30.53 26.21 30.28

Horse 21.03 3.97 3.17 3.97 25.79 14.29 25.00 30.16 28.17 28.97

motorbike 9.05 32.51 2.06 32.1 39.09 23.05 37.86 42.39 43.21 38.27

Person 5.43 0.58 0.27 1.89 26.99 9.48 24.95 34.68 45.2 52.42

Potted plant 7.42 27.89 3.26 32.64 13.06 29.08 12.17 27.00 21.66 20.18

Sheep 14.01 20.77 10.63 72.95 21.74 20.29 26.57 14.01 11.59 9.66

Sofa 3.83 3.28 3.83 5.46 14.21 14.21 15.3 15.3 16.94 15.3

Train 2.06 2.06 2.06 4.64 34.54 16.49 33.51 37.63 43.81 43.3

TV monitor 61.65 19.17 6.77 40.98 42.86 27.44 41.73 36.09 25.56 18.42

Table 5.2: The class-specific precision of the VOC2009 database using 500 visual words.

S- C- SC- Concat- S- C- SC- MF-pLSA
Hist Hist Hist Hist pLSA pLSA pLSA 5 20 50

Aeroplane 18.04 23.66 1.22 30.36 23.39 21.02 25.61 29.57 30.55 31.57

Bicycle 26.13 8.5 3.36 13.71 43.42 9.66 38.96 26.71 27.51 28.04

Bird 13.14 9.78 2.23 17.86 20.99 16.83 22.49 31.34 25.9 25.15

Boat 15.27 16.33 2.43 17.21 27.68 14.76 19.9 25.81 25.3 23.81

Bottle 9.58 17.29 4.33 15.11 13.46 13.23 13.89 20.88 23.22 26.12

Bus 18.28 12.13 1.81 15.92 22.64 12.05 22.5 25 24.83 25.05

Car 34.79 20.9 3.29 42.2 41.27 21.02 40.72 42.99 42.15 42.25

Cat 21.05 7.97 3.28 12.24 24.41 20.18 26.07 31.84 30.02 31.26

Chair 24.51 35.29 4.27 27.84 23.9 13.64 23.7 25.76 30.69 33.75

Cow 6.29 5.16 2.55 2.74 7.1 8.91 7.36 14.79 11.83 13.92

Dining table 5.8 3.51 1.84 8.33 7.29 4.62 6.41 8.24 6.7 7.41

Dog 19.55 5.97 1.28 5.8 23.92 14.81 23.98 19.74 20.6 24.09

Horse 12.47 4.46 4.23 5.38 20 12.59 19.75 17.97 18.93 20.22

Motorbike 11.83 7.72 3.07 14.44 14.77 6.97 14.51 15.01 14.64 13.74

Person 76.72 70.37 60 71.26 71.31 70.36 71.07 74.07 68.26 65.46

Potted plant 14.97 15.21 2.39 15.19 12.05 18.7 9.95 22.81 21.22 23.29

Sheep 2.99 4.91 1.48 4.34 11.72 13.86 11.78 15.85 16.11 19.61

Sofa 11.67 8.00 2.87 8.93 11.35 5.42 11.38 9.79 12.25 12.28

Train 12.5 5.97 1.53 13.43 31.6 9.38 30.95 22.26 21.85 21.71

TV monitor 13.5 12.78 2.72 21.46 35.4 10.64 32.08 36.64 39.53 38.58
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Table 5.3: The class-specific recall of the LabelMe database using 200 visual words.

S- C- SC- Concat- S- C- SC- MF-pLSA
Hist Hist Hist Hist pLSA pLSA pLSA 5 20 50

Person 31.3 4.46 27.58 20.55 70.23 30.4 69.48 70.29 75.49 76.79

Car 53.33 27.24 56.63 49.52 47.8 43.2 48.94 58.95 60.67 60.64

Tree 27.08 47.68 31.7 53.39 29.89 28.59 29.19 32.59 33.7 34.6

Window 39.18 18.44 40.7 38.89 42.97 16.1 41.87 36.88 43.78 43.03

Head 32.76 8.96 31.99 24.99 26.86 15.37 27.03 28.05 25.3 21.1

Building 0.32 0.05 0.11 0.46 12.13 8.6 12.89 22.38 25.02 28.98

Sky 54.63 62.72 62.54 65.29 38.98 57.96 49.6 63.49 66.64 68.12

Wall 2.66 1.27 2.54 6.6 16.37 8.38 16.62 23.22 27.28 27.79

Road 61.09 42.26 58.33 58.33 52.72 37.66 50.79 52.8 52.8 54.56

Sidewalk 33.49 35.34 37.96 40.43 33.18 42.28 37.65 47.53 50.77 47.99

Sign 17.65 5.98 16.94 13.59 28.6 22.92 23.53 28.5 26.98 24.85

Chair 2.74 13.79 2.56 11.05 12.33 13.42 10.96 15.98 14.7 12.51

Door 38.08 1.84 37.15 29.78 30.43 5.14 33.33 38.6 30.3 25.82

Table 2.82 7.91 1.86 9.52 18.48 18 17.68 36.08 36.08 37.05

Plant 8.04 37.47 11.51 34.62 29.23 40.33 34.93 43.48 45.42 46.84

Arm 46.96 7.53 46.07 34.09 31.9 6.96 28.99 16.28 12.23 11.26

Table 5.4: The class-specific precision of the LabelMe database using 200 visual words.

S- C- SC- Concat- S- C- SC- MF-pLSA
Hist Hist Hist Hist pLSA pLSA pLSA 5 20 50

Person 93.96 78.02 95.14 95.2 91.69 87.15 92.13 91.64 91.07 90.78

Car 57.8 28.76 56.08 62.45 57.56 27.12 56.65 61.54 62.34 62.48

Tree 52.09 23.96 50.04 29.71 41.81 43.06 39.98 52.61 52.98 52.9

Window 26.35 31.49 25.13 36.34 40.18 17.59 38.62 45.12 47.39 47.5

Head 24.48 11.21 27.82 20.97 31.46 20.65 30.87 36.77 40.75 42.64

Building 82.35 3.13 50 54.05 42.32 18.35 38.21 31.39 31.7 32.79

Sky 21.55 28.47 27.75 33.03 28.82 32.06 38.78 42.98 44.04 44.56

Wall 6.56 8 6.41 10.22 8 6.33 7.82 7.82 8.87 8.88

Road 21.76 11.35 25.03 22.54 19.35 16.1 20.95 29.12 31.58 31.64

Sidewalk 7.92 3.8 8.54 7.79 15.25 7.18 14.06 16.39 17.04 16.67

Sign 11.13 10.5 9.96 18.03 11.04 5.94 11.61 16.46 19.19 20.45

Chair 12.66 5.84 9.62 18.42 11.07 3.67 10.7 9.82 12.8 12.4

Door 9.24 8.54 8.25 14.05 8.92 2.34 9.19 11.52 14.02 13.26

Table 13.16 13.07 13.37 34.1 15.05 12.81 15.2 23.37 24.51 23.87

Plant 11.52 2.93 11.18 4.84 11.69 9.95 10.63 12.9 13.07 13.12

Arm 4.11 3.35 3.9 4.92 12.11 5.65 12.68 22.58 20.54 24.65
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(b) 100 visual words
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(c) 200 visual words
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(d) 200 visual words
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(e) 500 visual words
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(f) 500 visual words

Figure 5.8: The average recall and precision evaluated with the VOC2009 database. z
denotes hidden topics, following which the number indicates the number of topics for
pLSA-based approaches.
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(f) 500 visual words

Figure 5.9: The average recall and precision evaluated with the LabelMe database. z
denotes hidden topics, following which the number indicates the number of topics for
pLSA-based approaches.
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as a mixture model to characterize Pω(w), which is the distribution of visual words in

each class. This means that each class has their own set of visual topics, which are

the mixture components of Pω(w). This learning and testing protocol keeps the pLSA-

based approaches and the MF-pLSA different only in the aspect of utilizing features

and identical otherwise. Therefore, the advantage resulting from the way MF-pLSA

combines multiple features can be discovered. The underlying mechanism resulting in the

little impact of changing the number of visual topics on the performance of pLSA-based

approaches can be explained by taking three regions as examples shown in Fig. 5.10(a). It

can be observed that, when the number of topics increases, the Pω(w)’s are decomposed

into more topics while the mixture weights are decreased in that they constitute the

distribution of topics over an image region. Furthermore, keeping the number of visual

words equal, we consider the Pω(w)’s of each class estimated with different numbers of

visual topics as vectors and calculate the mean of them. Then, we evaluate the difference

between a Pω(w) and its associated mean based on the L1-Norm. For C-pLSA, S-pLSA

and SC-pLSA, the difference is calculated for all combinations of the numbers of visual

words and topics. The result of the class of person from the LabelMe database is selected

for illustration. It can be observed from Fig. 5.10(b) that the difference among the same

type of pLSA-based models with the same number of visual words but different numbers

of topics is nearly negligible.

To further compare the proposed MF-pLSA with other approaches, it is worthwhile

to study the degree of the level of confusion across models of different concept classes.

To this end, the confusion matrices of the models studied in our experiments with dif-

ferent experimental settings are shown in Fig. 5.11 through Fig. 5.15 for the VOC2009

database and in Fig. 5.16 and Fig. 5.20 for the LabelMe database. It can be ob-

served from the results that histogram-based approaches can hardly learn discriminative
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models for recognizing the object categories, even when SIFT and LTCH are combined

through descriptor vector concatenation or BOVW vector concatenation. When pLSA-

based approaches, i.e. S-pLSA, C-pLSA and SC-pLSA, are employed, the classification

performance is improved thanks to the ability of pLSA to capture the co-occurrence pat-

tern of data and avoid over-fitting. However, it can also be observed that the descriptor

vector concatenation used with the pLSA-based models results in very limited perfor-

mance improvement. To compare with the performance of MF-pLSA, the SC-pLSA is

selected because, in terms of the Ravg
ω and Pavg

ω , SC-pLSA generally has the second best

performance after the MF-pLSA among all the approaches. As per the conventional

definition of confusion matrix, each column of the matrix corresponds to a ground truth

class and each row is associated with a predicted target class. Taking the comparison

among Fig. 5.15(a), Fig. 5.15(d), Fig. 5.15(i) and Fig. 5.15(j) as an example, it can be

observed that the values of many off-diagonal elements are reduced using the MF-pLSA.

Using SC-pLSA, many samples of the class of person or potted plants are classified into

the class of bottle, whereas the MF-pLSA effectively reduce the confusion between these

classes. Moreover, the number of the regions of cars which are labeled as aeroplane using

the SC-pLSA is also considerably reduced using the MF-pLSA. Although there are still

a number of regions of boats that are categorized into the class of aeroplane, the recall of

the boat class is still improved using MF-pLSA over SC-pLSA. It is also observed from

the third column of Fig. 5.15 that, when the sizes of the SIFT and LTCH code books are

500, samples of different classes are more likely to be classified as person, especially the

classes of bottle, cat, diningtable, dog and sofa. Nonetheless, further inspection on the

confusion matrix reveals that the recall of the classes of cat, diningtable and dog obtained

using MF-pLSA are actually higher than that obtained using SC-pLSA. Regarding La-

belMe database, we find that the proposed feature fusion is capable of alleviating the
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confusion between sidewalk and road. Misclassification, such as mistaking a door for a

window, mistaking a car for road and mistaking a table for a car, is also reduced.

To visually inspect the comparison between the results of MF-pLSA and that of SC-

pLSA, we select a number of samples from the classification results which are illustrated

in Fig. 5.21 and Fig. 5.22. As shown in Fig. 5.21(a) and Fig. 5.21(g), the MF-pLSA

correctly labels the objects of an aeroplane and a sofa although only part of the object of

interest appears in the images. Shown in Fig. 5.21(c) and Fig. 5.21(d) are two different

types of boats, where their scales and visual appearance are also quite different. Using

MF-pLSA, however, both of the two objects of boat are successfully recognized. Another

example of recognizing objects of the same class yet with different appearance can be

observed in Fig. 5.22(g) and Fig. 5.22(h) for the class of building. In addition, the

regions of partially occluded cars in Fig. 5.21(f) and Fig. 5.22(a) can also be successfully

classified using the MF-pLSA.

5.5 Summary

In this chapter, we present a novel framework of integrating texture and color descrip-

tors which is applied to the problem of annotating object regions of images. Having the

image data represented as 3-tuples extracted from key points, the new framework jointly

learns the distributions of these two types of descriptors with a mixture model, termed

MF-pLSA, for each of the object classes. The mixture models are used along with the

supervised classification paradigm to classify previously unseen image regions into one of

several pre-defined object categories. Compared with other approaches which combine

these kinds of descriptors through descriptor level vector concatenation, the MF-pLSA

only needs to learn the visual words in the individual domains of different descriptors

134



5.5. SUMMARY

separately. Compared with the methods integrating descriptors via BOVW level vector

concatenation, the distributions of different descriptors in MF-pLSA are parameterized

independently but learned jointly. Moreover, the mixture distribution accounts for intra-

class variation of the same object category. Through extensive experimental evaluation

using the VOC2009 database and the LabelMe database as well as different experimen-

tal settings regarding the numbers of visual words and topics, the superiority of the

MF-pLSA to seven other approaches is demonstrated, including descriptor level vector

concatenation, i.e. SC-Hist and SC-pLSA, and BOVW level vector concatenation, i.e.

Concat-Hist. Compared with the second best approach, i.e. SC-pLSA, the MF-pLSA

brings about the performance improvement of up to 3% and 6.5% in terms of the average

recall, using the VOC2009 and LabelMe databases. As far as the average precision is

considered, the performance is improved by 2.0% and 5.2% over the SC-pLSA using the

MF-pLSA with the VOC2009 and LabelMe databases. By using the confusion matri-

ces, it can be observed, from the reduced values of the off-diagonal elements, that the

MF-pLSA enhances the discriminative powers of the statistical models of individual ob-

ject categories. There are still some object categories, for which the MF-pLSA does not

lead to the best performance compared with the others in our experiments. We believe

introducing contextual information, which encodes the co-occurrence of different object

categories, or a hierarchical organization of them into the presented framework should

be worth exploring and potentially able to further improve the performance.
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Figure 5.10: The variation of topic mixture P (z|d) after changing the number of visual
topics. The class chosen for this illustration is person from the LabelMe database. (a)
The topic mixture of three sample regions. For each region, the P (z|d) are sorted in
descending order based on the values. (b) The comparison among the pLSA-based models
with different numbers of topics. To see the little impact of changing the number of topics
on the resulting pLSA, select a kind of visual word, e.g. LTCH, and a certain number of
visual words, e.g. 200, as illustrated with the red rectangle in red dashed line.
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(b) S-Hist with 200 visual words
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(c) S-Hist with 500 visual words
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(d) C-Hist with 100 visual words

aeroplane

bicycle

bird
boat

bottle
bus

car
cat

chair
cow

diningtable

dog
horse

m
otorbike

person

pottedplant

sheep

sofa
train

tvm
onitor

aeroplane
bicycle
bird
boat
bottle
bus
car
cat
chair
cow
diningtable
dog
horse
motorbike
person
pottedplant
sheep
sofa
train
tvmonitor

(e) C-Hist with 200 visual words
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(f) C-Hist with 500 visual words
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(g) SC-Hist with 100 visual words
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(h) SC-Hist with 200 visual words
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(i) SC-Hist with 500 visual words
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(j) Concat-Hist with 100 visual
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(k) Concat-Hist with 200 visual
words
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(l) Concat-Hist with 500 visual
words

Figure 5.11: Confusion matrices of the S-Hist, C-Hist, SC-Hist and Concat-Hist evaluated
using the VOC2009 database. Each row includes the results of one of the four approaches.
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(a) S-pLSA with 100 visual words
with 5 topics
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(b) S-pLSA with 200 visual words
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(c) S-pLSA with 500 visual words
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(d) S-pLSA with 100 visual words
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(e) S-pLSA with 200 visual words
with 20 topics
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(f) S-pLSA with 500 visual words
with 20 topics
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(g) S-pLSA with 100 visual words
with 50 topics
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(h) S-pLSA with 200 visual words
with 50 topics
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(i) S-pLSA with 500 visual words
with 50 topics

Figure 5.12: Confusion matrices of the S-pLSA with different numbers of visual words
and visual topics. evaluated using the VOC2009 database.
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(a) C-pLSA with 100 visual words
with 5 topics
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(b) C-pLSA with 200 visual words
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(c) C-pLSA with 500 visual words
with 5 topics
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(d) C-pLSA with 100 visual words
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(e) C-pLSA with 200 visual words
with 20 topics
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(f) C-pLSA with 500 visual words
with 20 topics
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(g) C-pLSA with 100 visual words
with 50 topics
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(h) C-pLSA with 200 visual words
with 50 topics
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(i) C-pLSA with 500 visual words
with 50 topics

Figure 5.13: Confusion matrices of the C-pLSA with different numbers of visual words
and visual topics evaluated using the VOC2009 database.
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(a) SC-pLSA with 100 visual
words with 5 topics
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(b) SC-pLSA with 200 visual
words with 5 topics
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(c) SC-pLSA with 500 visual
words with 5 topics
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(d) SC-pLSA with 100 visual
words with 20 topics
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(e) SC-pLSA with 200 visual
words with 20 topics
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(f) SC-pLSA with 500 visual
words with 20 topics
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(g) SC-pLSA with 100 visual
words with 50 topics
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(h) SC-pLSA with 200 visual
words with 50 topics
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(i) SC-pLSA with 500 visual
words with 50 topics

Figure 5.14: Confusion matrices of the SC-pLSA with different numbers of visual words
and visual topics evaluated using the VOC2009 database.
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(a) MF-pLSA: 100 visual words
and 5 visual topics
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(b) MF-pLSA: 200 visual words
and 5 visual topics
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(c) MF-pLSA: 500 visual words
and 5 visual topics
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(d) MF-pLSA: 100 visual words
and 20 visual topics
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(e) MF-pLSA: 200 visual words
and 20 visual topics
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(f) MF-pLSA: 500 visual words
and 20 visual topics
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(g) MF-pLSA: 100 visual words
and 50 visual topics
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(h) MF-pLSA: 200 visual words
and 50 visual topics
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(i) MF-pLSA: 500 visual words
and 50 visual topics
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(j) SC-pLSA: 100 visual words
and 5 visual topics
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(k) SC-pLSA: 200 visual words
and 5 visual topics
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(l) SC-pLSA: 500 visual words
and 5 visual topics

Figure 5.15: Confusion matrices of the MF-pLSA and SC-pLSA evaluated using the
VOC2009 database. The comparison should be performed across the figures along each
column, which includes the results obtained with the same number of visual words. For
the SC-pLSA, only the results obtained with 5 visual topics are included since the other
numbers of visual words lead to the same classification results as discussed before.
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(a) S-Hist with 100 visual words
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(b) S-Hist with 200 visual words

person

car
tree

window

head
building

sky
wall

road
sidewalk

sign
chair

door
table

plant
arm

person

car

tree

window

head

building

sky

wall

road

sidewalk

sign

chair

door

table

plant

arm

(c) S-Hist with 500 visual words
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(d) C-Hist with 100 visual words
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(e) C-Hist with 200 visual words
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(f) C-Hist with 500 visual words
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(g) SC-Hist with 100 visual words
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(h) SC-Hist with 200 visual words
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(i) SC-Hist with 500 visual words
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(j) Concat-Hist with 100 visual
words
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(k) Concat-Hist with 200 visual
words
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(l) Concat-Hist with 500 visual
words

Figure 5.16: Confusion matrices of the S-Hist, C-Hist, SC-Hist and Concat-Hist evaluated
using the LabelMe database. Each row includes the results of one of the four approaches.
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(a) S-pLSA with 100 visual words
with 5 topics
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(b) S-pLSA with 200 visual words
with 5 topics
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(c) S-pLSA with 500 visual words
with 5 topics
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(d) S-pLSA with 100 visual words
with 20 topics
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(e) S-pLSA with 200 visual words
with 20 topics
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(f) S-pLSA with 500 visual words
with 20 topics
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(g) S-pLSA with 100 visual words
with 50 topics
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(h) S-pLSA with 200 visual words
with 50 topics
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(i) S-pLSA with 500 visual words
with 50 topics

Figure 5.17: Confusion matrices of the S-pLSA with different numbers of visual words
and visual topics. evaluated using the LabelMe database.
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(a) C-pLSA with 100 visual words
with 5 topics
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(b) C-pLSA with 200 visual words
with 5 topics
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(c) C-pLSA with 500 visual words
with 5 topics
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(d) C-pLSA with 100 visual words
with 20 topics
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(e) C-pLSA with 200 visual words
with 20 topics
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(f) C-pLSA with 500 visual words
with 20 topics
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(g) C-pLSA with 100 visual words
with 50 topics
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(h) C-pLSA with 200 visual words
with 50 topics
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(i) C-pLSA with 500 visual words
with 50 topics

Figure 5.18: Confusion matrices of the C-pLSA with different numbers of visual words
and visual topics evaluated using the LabelMe database.
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(a) SC-pLSA with 100 visual
words with 5 topics
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(b) SC-pLSA with 200 visual
words with 5 topics
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(c) SC-pLSA with 500 visual
words with 5 topics
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(d) SC-pLSA with 100 visual
words with 20 topics
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(e) SC-pLSA with 200 visual
words with 20 topics
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(f) SC-pLSA with 500 visual
words with 20 topics
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(g) SC-pLSA with 100 visual
words with 50 topics
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(h) SC-pLSA with 200 visual
words with 50 topics
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(i) SC-pLSA with 500 visual
words with 50 topics

Figure 5.19: Confusion matrices of the SC-pLSA with different numbers of visual words
and visual topics evaluated using the LabelMe database.
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(a) MF-pLSA: 100 visual words
and 5 visual topics
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(b) MF-pLSA: 200 visual words
and 5 visual topics
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(c) MF-pLSA: 500 visual words
and 5 visual topics
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(d) MF-pLSA: 100 visual words
and 20 visual topics
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(e) MF-pLSA: 200 visual words
and 20 visual topics
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(f) MF-pLSA: 500 visual words
and 20 visual topics
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(g) MF-pLSA: 100 visual words
and 50 visual topics
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(h) MF-pLSA: 200 visual words
and 50 visual topics
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(i) MF-pLSA: 500 visual words
and 50 visual topics
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(j) SC-pLSA: 100 visual words
and 5 visual topics
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(k) SC-pLSA: 200 visual words
and 5 visual topics
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(l) SC-pLSA: 500 visual words
and 5 visual topics

Figure 5.20: Confusion matrices of the MF-pLSA and SC-pLSA evaluated using the
LabelMe database. The comparison should be performed across the figures along each
column, which includes the results obtained with the same number of visual words. For
the SC-pLSA, only the results obtained with 5 visual topics are included since the other
numbers of visual words lead to the same classification results as discussed before.
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Figure 5.21: Examples of classification results using the VOC2009 database. The figure
on the left-hand side of each class is the result of MF-pLSA and the one on the right-hand
side is the result of SC-pLSA. In addition, the boundary of a successfully classified object
is shown in green.
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Figure 5.22: Examples of classification results using the LabelMe database. The figure
on the left-hand side of each class is the result of MF-pLSA and the one on the right-hand
side is the result of SC-pLSA. In addition, the boundary of a successfully classified object
is shown in green.
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Chapter 6

Conclusions and Future Work

6.1 Summary

This thesis is primarily focused on the task of integrating available information sources at

different levels of the pattern classification for the applications of image annotation and

retrieval. To be specific, there are two levels considered in the presented works. Based on

the order of information processing within a general pattern classification system, these

two levels are:

• Within the low-level visual domain, where various visual features are available for

representing the image information. Common characteristics of these features are

that each type of features is image-specific and their extraction from a single image

is a relatively short-term process. On the other hand, the difference among them

lies in the fact that they describe distinct aspects of the visual properties of image

data.

• Across the low-level visual and high-level contextual domains, where the available
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pieces of information are heterogeneous compared with the relation of the low-

level visual features. Rather than being image specific, the contextual information

encodes the dependence across different semantic concepts or images, which can be

considered as a database-wide feature of image data. In addition, the acquisition

of the contextual information by means of machine learning is a long-term process

in contrast to the short-term feature extraction in the visual domain.

• Between the audio and visual domains, considering that there is strong correlation

between the visual properties of and the sound made certain types of objects. This

can be considered as the same level as the second one.

Based on the above analysis, two different approaches respectively targeting the two

different levels are proposed and implemented.

In Chapter 3, a method for the joint exploitation of the low-level visual features and

the high-level contextual information is proposed. Considering the different nature of

these two types of information and their distinct roles in the pattern classification pro-

cess, a general Bayesian framework is proposed, which consists of a content and a context

component corresponding to the two different domains. Rather than jointly modeling

the statistical distribution of the visual features and context, the Bayesian framework

utilizes the former for likelihood evaluation and the latter for a priori probability eval-

uation. Within such a framework of information exploitation, the content and context

components refine each others’ results in terms of the degrees of relevance of the visual

feature of a to-be-annotated region with respect to a semantic class.

The first application of the Bayesian framework is image annotation, resulting in the

CBIA framework dealing with the visual recognition task that is region-based, mean-

ing each region is given a specific description upon the semantics. In the case of our
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study, such description is provided in the form of a keyword, representing a concrete

real world object category. To reduce UMI and make the annotation fully automatic, a

content-based search module was added to the annotation framework. The search mod-

ule is responsible for suggesting relevant keywords which are in turn used to infer the

probabilities of other semantic concepts with the context component. Through extensive

experiments with various datasets, the advantage of the CBIA framework was demon-

strated by its performance superior to those content-based and context-based approaches.

However, the CBIA also has limitations. For example, the statistical dependence across

different to-be-annotated regions is not explicitly considered in the CBIA framework. In

this sense, the contextual information utilized in the CBIA framework is similar to the

gist context. Meanwhile, they are also different in that the gist is based on global visual

statistics whereas the contextual information of the CBIA is based on semantic concepts.

The second application of the Bayesian framework is image retrieval, resulting in the

CLBIR framework, where the primary consideration is how to leverage the knowledge

learned within each retrieval session as well as across multiple retrieval sessions. To

facilitate the acquisition of such knowledge, the content and context are learned through

STRF and LTRF. The CLBIR framework has the flexibility that the content component

can be instantiated with various types of approaches to CBIR, i.e. their distance functions

for similarity measure. In our experiments, this flexibility was demonstrated using a L1-

Norm and an SVMAL content component respectively. Meanwhile, the combination of

content and context of the Bayesian framework enables the CLBIR to work even under

the circumstance of no available high-level contextual information. With the ability of

gradually accumulating the past retrieval results and incrementally updating the context

component, the CLBIR framework has the functionality of memorizing learned knowledge

through a long-term process. At the same time, each user still can use the STRF to
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polish the query formulation based on his/her own information need or preferences. On

the other hand, the CLBIR framework still lacks a learning procedure which is capable

of incorporating new images into the database automatically. A possible solution to

this problem is to reformulate the contextual information as the statistical dependence

across different semantic clusters within the database so that new images can be included

without expanding the context model unless a new cluster has to be generated.

Moreover, the Bayesian framework has also been exploited to integrate the informa-

tion from the audio and visual domains. In this application, considering the importance

of the temporal information of audio sequences, HMMs are used to model the feature dis-

tribution within the audio domain, rather than the maximum entropy approach explored

in the second chapter. In addition, non-parametric classification and adapted L1-norm

are employed in the visual domain to propagate class-dependent audio relevance to the

candidate images and measure the similarity between candidate images and a query,

respectively. Along with the audio and visual relevance feedback, the performance of

multi-modal framework is demonstrated superior to the image retrieval employing only

the visual features.

In Chapter 5, the integration of multiple low-level features in the visual domain is

addressed. The major line of thought is to learn the joint distribution of different visual

features. The underlying principle is the more discriminative and informative frequent

patterns induced from multiple visual properties. To this end, a model named MF-

pLSA is proposed and is exploited to integrate two kinds of low-level visual descriptors,

i.e. SIFT and LTCH. A supervised classification algorithm using the MF-pLSA is also

developed. As mentioned earlier, if an image is considered as a function whose domain

and range correspond to pixel location and intensities of different color channels, these

two features essentially based on the function itself and its derivative. Based on the
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BOVW image representation, the MF-pLSA characterizes the joint distribution of SIFT

and LTCH visual words using a mixture model of discrete data. While being able to

distinguish different semantic classes, the MF-pLSA can also discover different visual

topics based on multiple features within each semantic class, which offers the opportunity

to discovering various visual patterns among the objects of the same category. Extensive

experiments were conducted, evaluating the performance of the MF-pLSA based on many

different parameter settings, including the numbers of visual word and visual topics.

Comparison was drawn between MF-pLSA and many different approaches, including

those based on a single visual feature and vector concatenation of low level features. In

addition, MF-pLSA was also compared with other machine learning approaches, such as

nearest neighbor and pLSA for both single feature and multiple features. The superior

performance of MF-pLSA was demonstrated through the criteria of recall and precision.

6.2 Future Work

Despite the intensive research effort within the past two decades, image retrieval and

annotation are still quite challenging because of the difficulty lying in the semantic gap

and sensory gap. Essentially, from the view points of machine learning and pattern

classification, the problems associated with image retrieval and annotation yet to be

solved are the same as those related to visual recognition. In terms of the future research

work, the following directions are worth further exploring.

• There are still problems associated with the combination of information sources for

image annotation and retrieval. For example, a unified learning and classification

framework aiming at information combination at different levels simultaneously is

desirable.
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• A picture is worth a thousand words. This implies the rich semantics of images

and results in the fact that the number of semantic categories involved in the

visual recognition for image annotation and retrieval is very large. A large number

of semantic categories leads to more severe semantic gap. Therefore, the scalability

of statistical models in terms of handling a large number of semantic classes should

be addressed properly.

• The resource on the Internet, such as images, text and their associated hyper-links,

is very useful for multimedia data mining. Machine learning leveraging the web-

scale databases are faced with the scalability issue as well. In this situation, parallel

computing has huge potential to accelerating the computational procedure.
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