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Abstract

Inspired by recent work in human pose metric learning this thesis explores

a family of pose-aware embedding networks designed for the purpose of image

similarity retrieval. Circumventing the need for direct human joint localiza-

tion, a series of CNN embedding networks are trained to respect a variety

of Euclidean and language-primitive metric spaces. Querying with imagery

alone presents certain limitations and thus this thesis proposes a multi-modal

image-language embedding space, extending the current model to allow for

language-primitive queries. This additional language mode provides the ben-

efit of improving retrieval quality by 3% to 14% under the hit@k metric. Fi-

nally, two approaches are constructed to address the issues of conducting par-

tial language-primitive queries, with the former generating maximally likely

descriptors and the latter exploiting the network’s tendency to factorize the

embedding space into (mostly) linearly separable sub-spaces. These two ap-

proaches improve upon recall by 13% and 17% over the provided baselines.
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Chapter 1

Introduction

From web searches of recipes, to restaurant recommendations, ranking, sorting,

and retrieving relevant information has become a cornerstone of digital society.

This thesis conducts an exploration of fine-grained human pose retrieval across

a variety of metrics, and provides a mechanism for retrieving relevant entries

with both image, and language-primitive queries.

The most common approach to understanding human pose involves locat-

ing limbs or joints. While largely successful, direct joint localization from

image data may fail due to occlusion or low visual quality. More so, even with

correctly located joints, this framing does not immediately lend itself to the

desired retrieval task. Alternatively, this thesis follows the approach outlined

in [44] and [62], which learns an embedding space that respects an underlying

pose-similarity metric.

An embedding space is a high-dimensional Euclidean space which approx-

imates a desired metric by preserving its semantic ordering. This approach

maps data to vectors of real numbers (each of which is called an embedding

vector), with the distance between any pair of vectors implying relative sim-
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(a) (b)

Figure 1.1: A depiction of two possible similarity embedding spaces defined over

discrete and continuous metrics. Left: An embedding space of which similarity is

defined solely by class identity. Depicted here is the two class categories, birds and

mammals. While the platypus is certainly a mammal, it shares visual similarity

with both a duck and a beaver, and thus will locate somewhere in between both

entries. Right: An embedding space of which similarity is defined by a combination

of continuous factors, including speed and intelligence.

ilarity as defined by the metric. The usefulness of embedding spaces stems

from their co-location of related entries, reducing similarity retrieval to a sim-

ple Nearest Neighbours search. Figure 1.1 provides two examples of possible

embeddings spaces, with the first being defined by similarity in class identity,

and the second being defined by similarity over a variety of factors including

intelligence and speed. Each example embedding space provides a mechanism

for either predicting the class, or providing a loose understanding of the traits

of unseen instances.

The goal of most models is to correctly disentangle input data into a useful

and concise representation. For example, the express goal of action recognition

is to transform an entire video volume into a one-hot representation over the
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entire set of possible action classes; object boundary detection renders a bi-

nary decision as to whether a pixel marks the separation between two distinct

surfaces; and optical flow generation regresses a per-pixel motion vector for

the purpose of understanding scene dynamics. Similarly, embedding networks

condense the provided input into a concise and meaningful vector. However,

unlike the extant nature of action recognition, object boundary detection, or

optical flow regression representations, the meaning of any one embedding

vector exists solely in relation to its neighbours.

Building on top of [44] and [62], this thesis presents a family of pose-

aware embedding spaces, across a variety of Euclidean and language-primitive

metrics, for images of people in a variety of poses using convolutional neural

networks (CNNs).

While human joint localization provides extremely accurate positioning of

an actor’s pose, describing pose in terms of pixel coordinates may be overly

pedantic, especially for the purpose of similarity retrieval. For example, one

is likely far more interested in retrieving images of an actor whose hands are

above her head, rather than the exact spatial location or relative head-hand

distance. To this end, this thesis proposes a multi-modal image-language em-

bedding space, which accommodates human friendly language-primitive pose

descriptor queries, for the retrieval of semantically similar images.

The set of language-primitives of each human pose is defined by a Posebyte

[72]. A Posebyte is a set of binary values (called Posebits) each of which maps

to a natural language Boolean statement. Posebits are defined in one of three

ways: a joint is bent beyond a threshold angle, a pair of joints are closer

than a threshold distance, or a joint is further from the torso than another

joint. Example Posebit angle, distance, and relative-distance natural language

statements include “Left knee is bent,” “Left ankle is not near right ankle,” and

3



“Right wrist is above head.” The amalgamation of Posebits into a Posebyte

provides a natural language descriptor which captures the loose geometric

configuration of a pose.

Much like human pose similarity over a set of joint locations in Euclidean

space, similarity over the set of language-primitives is defined holistically us-

ing the Hamming distance. Given that these metric spaces are defined by a

similarity over the entirety of the pose descriptors, queries are limited to fully

defined pose-descriptor sets, i.e., the entirety of the pose must be defined.

Having to define the state of each language-primitive is cumbersome and

usually undesirable. One is more likely interested in querying with a subset of

conditions, such as “right hand is above head; left hand is above head,” with

little concern for the remainder of the pose. To address this concern, this the-

sis proposes two approaches for querying with a subset of language-primitives:

Conditional Posebytes, and Query-Aware Masks. Conditional Posebytes, in-

spired by [82], are high quality artificial queries generated using maximum

likelihood to complete a Posebyte given a subset of Posebits. Alternatively,

Query-Aware Masks, inspired by [88], takes advantage of the embedding net-

work’s tendency to linearly factorize the embedding space, and thus alters the

embedding space by collapsing the relevant subspace to the origin to provide

a high quality location from which to start a Nearest Neighbours search.

Inspired by the success of neural networks across a variety of tasks, this

work builds on top of the convolutional neural network [48, 43, 11, 80, 83, 34].

The neural network is a feed forward model, which progressively transforms

the input data into a form which is useful for some final task, and is trained

using the backpropagation algorithm [74]. The convolutional neural network

is a neural network designed specifically for image processing, swapping out

the fully-connected layers with convolutional layers.
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Each layer of the network transforms its input into a more “useful” inter-

mediate representation, such that each subsequent representation should ease

the challenge of addressing the final goal of the network. Deep neural networks

are termed “deep” because they are composed of a hierarchy of layers. As the

network grows deeper, as to does the richness of each subsequent intermediate

representation. Each layer has the opportunity to learn more abstract con-

cepts [5, 105, 77, 28, 39, 19, 56, 78, 65, 2] with the earlier layers capturing

edges, and corners [43, 102, 24, 81], and the later layers learning shapes, parts,

and objects [55, 102, 27, 103].

Taking advantage of modern advancements in neural network architectures

and metric learning, this thesis explores the retrieval of semantically similar hu-

man pose images, over a variety of Euclidean and language-primitive metrics,

and provides a means of querying using complete or partial language-primitive

pose descriptors.

1.1 Motivation

For the purpose of motivating the use of pose-aware embedding networks for

human pose retrieval tasks, consider a common alternative approach: joint

localization.

Pose similarity, between any two images of people in a dataset, can be

determined by first regressing the position of a predefined subset of rough

skeletal joint locations, followed by a post-processing similarity computation

composed of calculating the average distance between the respective joint loca-

tions, across the combination of each dataset entry pair. While this approach

will likely be effective, a pose-aware embedding space, defined under the same

metric, circumvents the need for both the direct joint localization and post-

5



processing similarity computation steps.

Further, the minutiae of near-perfect joint localization isn’t necessarily

preferable. Having the knowledge that an actor’s right hand is 0.1 meters

above her head does not necessarily contain more meaning than the same

actor’s right hand being 0.2 meters above their head. In the case of natural

language, the only point of interest is likely that the actor can be described as

having her right hand above her head.

1.2 Contributions

This thesis provides the following contributions:

1. A family of pose-aware embedding networks which approximate a vari-

ety of human pose similarity metric spaces. These embedding networks

provide a way to co-locate semantically similar images, for the purpose

of retrieval.

2. A common pose-aware image-language multi-modal embedding space

which serves as a tool for the retrieval of semantically similar images,

for both image or language-primitive queries.

3. Two approaches for circumventing the limitations of holistically defined

pose-aware image-language embedding spaces, for the purpose of query-

ing with language-primitive subsets.

4. A dataset of approximately 24,000 standardized human pose images with

2D and 3D joint locations, as well as a set of language-primitive Posebyte

descriptors [72], used to facilitate the training of pose-aware embedding

networks.
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1.3 Outline of Thesis

This thesis is organized as follows:

• Chapter 2 provides background knowledge for neural networks, convolu-

tional neural networks, and embedding spaces.

• Chapter 3 presents a literature review, providing a comparison of the

work conducted in this thesis with existing metric learning, pose de-

scriptors, and multi-modal image-language research.

• Chapter 4 outlines how pose-aware embedding network architectures are

defined and implemented.

• Chapter 5 introduces a pose similarity dataset, and presents a quantita-

tive and qualitative empirical evaluation into the capacity of embedding

networks to approximate the semantic ordering of a variety of metric

spaces. Further, this chapter explores the two proposed approaches for

circumventing the limitations of holistically defined embedding spaces

for the retrieval of images with queries composed of language-primitive

subsets.

• Chapter 6 provides a summary of the proposed contributions and dis-

cusses potential future paths for this work.
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Chapter 2

Background

The following subsection provides an overview of learning in the context of

neural networks, a summary of Convolutional Neural Networks, and an expla-

nation of embedding spaces.

2.1 The Neural Network and Learning

The neural network is a feed forward algorithm composed of layers of small

modules (neurons), which progressively manipulate the output of the previous

layer and forward it to the following layer. The origin of the neural network

began in the late 1950s with the invention of the Perceptron [73], receiving

renewed interest [97, 46, 74] in the late 1980s due to the rediscovery of the

backpropagation algorithm [75], and finally rose to prominence with a demon-

stration of efficacy [43] in 2012.

Neural networks are composed of small modules named neurons, a biolog-

ically inspired unit which loosely imitates the neurons of the human brain.
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Figure 2.1: Left: An abstract representation of a linear neuron. The linear neuron

performs a weighted summation
∑

of the inputn values with weights wn, to produce

activation output. Right: a depiction of a non-linear neuron, where the weighted

summation
∑

is followed by a non-linear function σ.

Neurons perform a weighted summation of the input data,

o =
∑

widi + b, (2.1)

where wi and di is the neuron’s ith weight and corresponding ith input feature,

and b is the bias. The output of a neuron o is called an activation, termed so

because a neuron produces a larger output for data which strongly correlates

with its weights. More commonly, neurons applying a non-linear function,

indicated here as σ,

o = σ(
∑

widi + b). (2.2)

Figure 2.1 illustrates two neurons, with the former being a simple linear neu-

ron, and the latter being non-linear.

Neural networks combine neurons into layers, with each layer processing

the previous layer’s output. Figure 2.2 illustrates a simple two layer net-

work which processes its input, forwarding two activations to the second layer,

which in turn process its input to generate the final activation. Consecutive

linear operations can be restated as a single linear transformation and thus

multi-layer networks are generally composed of non-linear neurons to allow for

9



Figure 2.2: A depiction of a simple two-layer network. The first layer accepts a

two-feature input, forwarding two activations to the second layer. The second layer

takes the non-linear combination of its inputs to produce the final activation.

greater model expressiveness and the capacity to handle non-linearly separable

problems.

Single layer networks are limited in their capacity to separate non-linear

data. Consider the example presented in the top row of Figure 2.3. The left

image depicts the non-linear two-class input data, with the positive class 5 re-

siding in-between the bi-modal negative class l. Using the network presented

in the right image, two possible weight configurations and their activations are

plotted in the middle row. Neither model is successful in separating the data

according to the desired threshold. However, a simple two layer model, such

as the one presented in the bottom row, can take the non-linear combination

of both proposed models to correctly separate each class.

Until the rediscovery and application of the backpropagation algorithm for

neural networks, it remained unclear how to efficiently select neural network

parameters (weights). Backpropagation [46, 74] is the process of efficiently

calculating the partial derivative error gradient of each neuron, backwards

through the network, using the chain rule.

10



Figure 2.3: A comparison of the capacity of single and multi-layer neural networks.

Top: a set of input data, their logistic activation, the desired separation threshold,

and a single layer network. The x-axis and y-axis depicts the input values and their

activation outputs, respectively. This classifier predicts any input as being part

of the positive 5 or negative l class if its activation is greater or less than 0.5,

respectively. Middle: two possible weight configurations of the single layer network.

Neither model is capable of correctly separating the multi-modal input data due to

the monotonic nature of the logistic activation function. Bottom: using the weight

configurations from the previous two networks as the first layer and computing a

non-linear combination with the second, the presented two layer network is able to

correctly separate the positive and negative classes.
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Training a neural network involves three steps: the forward pass, a per-

weight error gradient calculation, and finally a weight update.

Figure 2.2 illustrates a simple two layer network, which results in a single

output given two inputs. On the forward pass, the input data is sequentially

transformed by each neuron, until the final output is produced. The per-weight

error gradient is calculated using the chain rule. For example, the final output

error gradient of w1 is calculated as,

δE

δw1

=
δE

δo2

δo2
δw5

δw5

δo1,1

δo1,1
δw1

, (2.3)

where E is the model error given some input, wk is a weight parameter, and

olayer,index is the output of the ith neuron at a specific layer. The use of the

backpropagation algorithm assumes that each module represents a smooth (or

piece-wise smooth) function in order to calculate the error gradient.

Finally, each weight is updated. While there are commonly used alternative

optimization methods [3, 84, 42, 21], for simplicity consider gradient descent,

wk ←− wk − µ
δE

δwk

, (2.4)

where wk is the network’s kth weight, µ is the learning rate, and E is the total

network error. The hyperparameter µ scales the rate at which each weight is

updated. While gradient descent is a greedy algorithm, prone to local minima

of the non-convex error surface, recent work has set out to understand why

the local minima are almost always of high quality [13, 66, 52, 67].

2.2 Convolutional Neural Networks

A fully-connected neural network layer connects each neuron to each input,

ignoring the potentially helpful structure of the data. For example, images

12



Figure 2.4: A depiction of convolution as a special case of a fully-connected layer.

Top: A fully-connected layer, such that each neuron’s weights are arranged in such a

way as to apply convolution. Bottom: A 1D convolutional operation with a window

size of three. Convolution runs a single neuron over the input data. While the

output will be identical in both cases, the convolutional operation requires far fewer

parameters (one quarter, in this particular case) when compared to a regular neural

network layer. This difference in parameter count is due to the fact that regular

neurons are fully-connected to their input. One obvious drawback is that, since the

dotted-line weights have a value of zero, there is no value gained for a large part of

the computation.

13



Figure 2.5: An example of a convolutional kernel (middle) being evaluated on a

feature map (right), resulting in a new feature map (left), at three time-steps. Con-

volution runs a sliding window over the input feature map, producing an activation

at each step. The top, middle, and bottom row depict the first, 19th, and 64th time-

step. The colour is merely to help distinguish between input, kernel and output

features, however a larger intensity (brighter value) describes a stronger template

match.
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commonly exhibit a repetition of localized patterns, which are in general spa-

tially invariant. Consider the case of the eye, which is a relatively small, white

ovular shape with a dark round circle in the center. Being able to successfully

“learn” to detect eyes may be useful for tasks, such as classification; humans

have eyes, cars do not. Learning to detect an eye in a spatially invariant way

is likely a difficult task for any one layer in a regular neural network. One

highly common and largely successful solution is the convolutional operator.

The convolutional layer Convolution is the process of sliding a window

over the spatial component of the input data, generating an activation at

each step. Convolution extends over the spatial domain, with the discrete

formulation being

(f ∗ g)[n] =
∞∑

i=−∞

f [i]g[n− i], (2.5)

where the filter g is centered at point (n) of data f , computing a single output

as the summation of the point-wise multiplication between the two.

As depicted in Figure 2.4, a single convolution can be considered a special

case of a fully-connected layer. While it is in the fully-connected layer’s ca-

pacity to learn convolution, by tying the weights of each neuron in the correct

configuration, it would require far more parameters, most of which will be

zero, and is thus computationally more expensive and memory intensive.

The output activation structure of a convolution depends upon the induced

semantic structure of the input data. For images, convolution is performed as

a sliding window over the spatial extent of the data, as depicted in Figure 2.5.

Convolution of an image is similarly formulated as Equation 2.5,

(f ∗ g)[n,m] =
∞∑

i=−∞

∞∑
j=−∞

f [i, j]g[m− i, n− j], (2.6)

where the filter g is centered at pixel (m,n) of image f . The final output of

15



Figure 2.6: The convolution model (above) and its’ output (below) performed on

(a) an image, and (b) a concatenation of feature maps with a filter that extends

across the entire feature channel extent, both of which result in a single 2D feature

map.

convolution at any one pixel is calculated by taking the point-wise multiplica-

tion across the entire spatial domain, however in practice the extent considered

is usually over a finite window.

For the purpose of simplicity, most depictions of image convolution merely

show the spatial extent of the data. That is, convolution is illustrated as a 2D

window, when in fact it is truly 3D. For example, colour images are composed

of multiple (usually three) colour channel pixels, and thus to preserve the

inherit cross-channel relationship, convolution generates a single activation

16



for each discrete location in only the spatial domain, as depicted in Figure

2.6a. The possible input features to the convolutional operator are not limited

to multi-channel colour images. For example, a subset of video frames may

be concatenated into a volume with the network observing the sequence as

a whole [20], and multiple concatenated optical flow feature maps provide

a supplementary perspective of the original frame sequence [79, 93]. These

alternative input formats are processed in the exact same way as image data,

with the values laying under each spatial position being treated as an extended

colour channel, with convolution producing a single activation at each pixel

center, as depicted in Figure 2.6b.

Convolutional neural networks This family of neural networks replace

almost every fully-connected layer with a convolutional layer. By taking advan-

tage of the inherent structure of image data, Convolutional Neural Networks

(CNNs) significantly reduce the number of model parameters, and have thus

significantly outpaced conventional approaches on a variety of visual tasks,

such as human pose estimation [86, 9], semantic segmentation [53], and object

recognition [43, 34]. For example, on the prominent ILSVRC ImageNet [17]

classification challenge, the AlexNet [43] model was able to outperform the

next top contender by a striking 9.8%, with a top-5 error of 16.4%. The Ima-

geNet classification challenge measures a model’s ability to correctly predict,

within five attempts, the contents of each test set image.

These networks are preferable for tasks where the desired output is image-

like, such as object boundary detection [99] or semantic segmentation [53],

as convolution and thus CNNs, are invariant to input size and approximately

preserve the spatial structure of the data. Alternatively, CNNs may be used

as a feature extractor for tasks which take images as input but require that

the output be of a different shape. For example, k-way classification [43, 80]
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structures class predictions as a flat vector representation from which the final

class is determined using the argmax operation.

While there has been steady research into model alternatives and configu-

rations, a few notable architectures have emerged, which include: LeNet [48],

an early network with two convolutional layers evaluated on a contemporane-

ously large dataset of small hand written digits; AlexNet [43] received praise

for demonstrating the efficacy of CNNs, on the large and diverse ILSVRC [17]

(ImageNet) challenge, with an architecture three layers deeper and with far

more convolutional filters per layer than LeNet; VGGNet outlines a deep and

highly uniform network with many spatially small 3x3 filters; GoogLeNet [83]

which seeks to reduce parameter size of the model with 1x1 dimensionality

reduction convolutions; and finally, ResNet [34] which addresses the vanishing

gradient problem [31, 35, 70] by having subsequent blocks of convolutional

layers merely learn a residual change, resulting in easier gradient flow and

allowing for an enormous 152 layer deep network architecture.

2.3 Embedding Spaces

An embedding space is a high dimensional Euclidean space, where the distance

between any pair of points alludes to their latent relationship. Embedding

spaces tend to emerge naturally as intermediate implicitly learned network

representations, or can be explicitly enforced as a final representation.

Neural Networks, at each layer, mutate the input data into a form which

is helpful for the final upstream task. More specifically, each CNN layer learns

a set of filters which disentangle the image information by smoothly parti-

tioning the input space into visually salient intermediate representations. For

example, while these intermediate representations do not directly solve some
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final classification task, partitioning ‘round’ and ‘angled’ things, and ‘red’ and

‘blue’ things, will certainly assist in determining whether the input image con-

tains an apple or a Lego brick. Implicit embedding spaces are commonly used

for exploring how neural networks learn [43, 55, 39], or for the purpose of

similarity retrieval [58].

One downside to learning an embedding space as a second-order task, is

that any desired similarity may be difficult to recover as it is buried within the

high dimensionality of the intermediate representation. Alternatively, there

has been a modest amount of work exploring the capacity of neural networks

to approximate metric spaces [76, 88, 44, 30, 91]. A metric space is a set for

which the distance, defined by a distance function (or a metric), can be defined

between each possible pair. The desired approximation may be formulated as

||f(a)− f(p)||22 < ||f(a)− f(n)||22
∀a, p, n ∈ D s.t. δ(a, p) < δ(a, n),

(2.7)

where δ specifies the similarity between any two examples. a defines an anchor

example, and p, and n define examples which are similar and dissimilar to

the anchor, respectively. For the model f to correctly respect the semantic

ordering of the desired metric δ, the transformed positive pair f(a) and f(p)

must be closer than the transformed negative pair f(a) and f(n).

Embedding space similarity metric functions are commonly defined by ei-

ther a discrete or a continuous metric. Discrete metrics generally come in the

form of finite annotations for tasks, such as image classification [76, 69] or

zero/one shot learning [30, 36]. Figure 1.1a illustrates an example embedding

space defined by hierarchical class labels. While the unseen “duck-billed platy-

pus” provides visual cues consistent with both “duck”-like and “beaver”-like

features, an ideal mapping would produce an embedding which both respects
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Figure 2.7: An example of the spaces defined by the final activation of (a) softmax

for classification, and (b) a two dimensional class-similarity embedding space. Both

activations express a relationship grounded in localization. Classification enforces

that all points lie at the extremity of the sum-one positive hyper-plane where any

straying is an indication of error. While classification designates a desired final

location for each class, embedding spaces merely enforce that more similar entries

lay closest to each other, with the distance between any two points alluding to some

underlying similarity. In (b) both baseball players are relatively co-located, however

because the baseball player swinging a bat and the tennis player swinging a racket

are both holding elongated objects the distance between the two is closer than any

mutually exclusive class label might suggest that they be. Instead, for (a) this

similarity is completely disregarded.
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these visually salient qualities and correctly co-locates it nearest to its fel-

low class embedding vectors. On the other hand, continuous metrics provide a

relative similarity, commonly used for retrieval tasks [91, 44]. Figure 1.1b illus-

trates an example embedding space defined by behavioural and physiological

biometrics.

The goal of learning embedding spaces is merely to preserve the semantic

ordering of the defining metric, and thus the exact spatial distance between any

set of embeddings does not directly correlate with their underlying features.

For example, an embedding residing exactly in between two others does not

necessarily mean that it is the average of its neighbours, but rather that it is

merely within their upper and lower bounds.

The final embedding space representation is sometimes unbounded [30, 36],

but far more often is projected onto a unit hyper-sphere [62, 69, 76, 91, 88,

89, 32]. The main benefit of unit-normalizing embedding vectors is that the

similarity between any two embeddings becomes a simple angular distance.

Metric learning often takes a semi-supervised approach employing triplet

rank loss [44, 76]. Unlike regression or classification for which the exact output

is known, the location for any one embedding vector is arbitrary and whose

meaning can only be derived from its neighbours. Classification explicitly

enforces objective meaning in the output, as the final softmax activation vector

is expected to hold a one in the correct index and zeros elsewhere. Figure

2.7 illustrates the geometric difference between the spaces defined by (a) the

softmax activation for three-way classification and (b) a similarity embedding

space. While both the batter and the tennis player are of different sport

classes, they are both swinging elongated objects with the intention of hitting

a ball. In the case of three-way classification, the network is expected to ignore

this semantic similarity and instead enforce the maximum geometric distance
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between these two images, where a network trained to respect visual similarity

is permitted to accommodate unanticipated cross-class commonalities.

One major benefit of embedding spaces is that they allow for the re-framing

of class prediction, estimation, and similarity retrieval as a simple Nearest

Neighbours search.
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Chapter 3

Related Work

This subsection focuses on three research areas closely related to the work

presented in this thesis: Metric Learning, Pose Descriptors, and Multi-modal

Learning.

3.1 Metric Learning

Metric learning is the process of training a model to respect some desired un-

derlying data similarity. The model learns a mapping from raw input data

to an approximated metric space, of which the co-location between every em-

bedding vector pair reflects an equivalent ordering under the desired metric.

Metric learning is commonly used for tasks, such as classification, zero-shot

learning, and similarity retrieval by ranking. In contrast to traditional classifi-

cation or regression approaches, metric learning is considered semi-supervised

as only the similarity between data points is provided rather than a concrete

category label or a desired output value. While traditional approaches en-

force a desired final spatial representation, such as the one-hot classification
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approach which enforces that each data point map to its expected corner in

the hyper-plane of sum-one, learned metric spaces are free to arbitrarily locate

data if it is decided that there exists some useful inter-class similarity.

While a variety of metrics have been explored, they usually come in one of

two varieties: similarity by discrete labels, and similarity by continuous values.

Discrete classes and categories With the plethora of classification and

category labeled datasets, a variety of approaches have used embedding spaces

to take advantage of cross-class similarity to address problems like zero-shot

learning, face recognition, and class prediction. Under a discrete metric, a pair

of entries is either identically similar or not.

Embedding spaces learned under a person-identity similarity metric, using

CNNs have been shown to be effective for face recognition [76, 69]. Existing vo-

cabulary embedding spaces [59, 60] have been used to map each image closest

to its prototype (class category) [30], for unseen class prediction. Similarity

under the WordNet [61] defined ontological ordering, has been explored for

both images and image-captions simultaneously [89]. Each of the previously

described metrics are defined on a single condition: the face belonging to the

same person, the image mapping closest to its prototype, and the image or

caption being correctly ontologically ordered. In contrast, the pose-aware em-

bedding networks, proposed in this thesis, are defined by a family of continuous

Euclidean and language-primitive similarity metrics.

As opposed to approximating a single metric, Conditional Similarity Net-

works [88] simultaneously enforces a variety of mutually exclusive discrete

class category metrics over the same data. For example, the relationship of

the entries in a font dataset can be considered over letter identity or typeface.

It demonstrates that embedding networks have the capacity to learn how to

factorize concepts shared by multiple goals, by allowing the network to learn
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a set of per-concept partitioning masks. Allowing the network to learn and

partition multiple concepts simultaneously, the final embedding space can be

transformed by any one of the partitioning masks to allow for the rearrange-

ment of entries, with a simple point-wise multiplication. The Query-Aware

Mask model, proposed in this thesis, was largely inspired by Conditional Sim-

ilarity Networks and thus follows a similar process of learning a set of masks

to alter the final embedding space. However, where [88] may be inducing a

factorization by enforcing that the model simultaneously respect multiple met-

rics, Query-Aware Masks demonstrate that pose-aware embedding networks

exhibit a similar factorization, while being trained under a single continu-

ous language-primitive Hamming distance metric, as demonstrated in (Section

6.2.2). Further, Query-Aware Masks demonstrate that these models have an

inherent tendency to factorize concepts at a much more granular level, than

demonstrated in [88], such that language-primitives appear to reside on their

own linear subspace within the final embedding space representation.

Differences in continuity Continuous similarity describes the degree to

which a pair of entities are related, usually defined over a continuous value.

Labeling images with fine-grained annotations is a tedious task and thus

the vast majority of image datasets often contain a single concept describing

the entire image. For example, the large scale ImageNet [17] dataset provides

a single object category label per image. While discrete datasets have been

used to construct retrieval systems, there is no guarantee that the network will

truly learn cross-class fine-grained similarity. This concern has been addressed

by producing a “golden feature” [91] [12], which is a set of off-the-shelf image

descriptor generation algorithms, such as Scale-Invariant Feature Transform

(SIFT) [54], Histograms of Oriented Gradients (HOG) [15], and colour his-

tograms. More specifically, they construct a dataset from many hundreds of
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thousands of text queries, the results of which are then evaluated for simi-

larity using a “golden feature,” with independent queries assumed to have no

relation. These two approaches differ in that [12] operates directly on the

“golden feature,” where [91] trains a fine-grained similarity retrieval network

from raw image data, relating entries by their “golden feature” similarity. Fur-

ther, they also propose to first learn a course image similarity by pre-training

on the ImageNet [17] dataset, followed by a fine-grained network fine-tuning.

While using a class label may not guarantee visual similarity, the bias found

within datasets is likely helpful. For example, cows are often photographed

while grazing in a lush, open field, and rarely have their picture taken while

loitering on rooftop patios. In contrast, this thesis strictly explores human

pose similarity over a family of Euclidean and language-primitive metrics, and

thus unlike similarity defined by a “golden feature,” similarity between any

two images is strictly defined by human pose and is thus robust to foreground

objects, background scenery and overall image colour.

Pose annotation datasets have been used to construct pose-aware retrieval

models [44, 62]. The first approach [44] enforces image-pair similarity over

the mean per-joint distance of any two poses. Similarly, [62] operates over the

same metric, but performs a torso alignment prior to computing the metric

distance, whereas [44] merely centres the two poses. This thesis can be thought

of as an extension to both [44] and [62], with a wider exploration into a variety

of Euclidean and language-primitive metrics.

3.2 Pose Descriptors

A variety of tasks benefit from (or even depend on) understanding the under-

lying human pose. For example, an action recognition model might perform
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fairly well by merely observing background cues, such as a green open field

and a baseball, but will certainly become confused if said cues are present for

multiple classes, such as throwing or catching a baseball. Endowing the model

with the understanding of human actors would likely help in discerning which

action is occurring. To aid in a model’s understanding, knowledge about hu-

man pose is commonly induced in one of three ways: geometrically, implicitly,

and through natural language representations.

Geometric representations Likely due to their intuitive nature, these

representations are the most common way of inducing explicit knowledge of

human pose into a model. Geometric representations of human pose usually

come in the form of human joint locations in 2D pixel coordinates [86, 9, 96, 64]

or 3D metric coordinates [49, 50, 106]. In contrast to explicit joint localization,

this thesis instead proposes a family of pose-aware embedding networks which

learn to understand pose implicitly. That is, rather than provide the network

with precise coordinates of a predefined set of joints, the models are trained

with triplets composed of similar and dissimilar entries where similarity is

defined by a Euclidean or language-primitive metric distance.

Implicit representations Prior to the development of the neural net-

work, these representations were the most common way of making ground in

human pose related tasks. Implicit representations of the human pose come

in two varieties: intermediate hand-crafted pose-aware features, or interme-

diate hand-crafted generic features tuned in such a way that the final model

is pose-aware. Both varieties operate in approximately the same manner, in-

volving an offline selection of a set of features, processing the image or video

with said feature set to generate a new representation, and finally classifying

the new representation using a discriminator model, such as a Support Vector

Machine (SVM) [14]. The intent of generating a new representation is to pro-
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vide the discriminator with a verbose descriptor of the input, which is easier

to disentangle than the original imagery.

Two popular implicit pose-aware features are Poselets [8, 6] and Actemes

[104]. A Poselet is a part detector that is aware of a single subsection of the

human body. While geometric interpretations often consider a single part or

joint, Poselets may arbitrarily span multiple joints. For example, a Poselet can

simply be a head-and-right-shoulder detector. Similarly, an Acteme is a human

pose video template that is also not limited to a single part or joint, and instead

captures a spatiotemporal window that overlaps a person in motion. A set of

Poselets (or Actemes) generate a pose-aware feature representation of the input

data. The embedding networks, presented in this thesis, similarly generates

a pose-aware feature representation but with a major distinction being that

the Poselet and Acteme feature generator is hand-crafted and therefore the

resulting feature is well understood. In contrast, the final embedding features

generated by the models proposed in this thesis remain latent.

Alternatively, a model can be composed of generic features, each of which

is not inherently pose-aware. Each of these models can learn to be pose-aware

with a tuning towards pose-centric tasks, such as pose estimation or action

recognition. Some generic feature models include [18] which generates a fixed

set of spatiotemporal energy filters, [38] an early feed forward convolutional

network which selects filters in a data driven approach, [22] which computes

an optical flow based motion descriptor, and more contemporaneously, CNNs

[79, 93, 92, 94, 44, 86, 9] which are composed of a set of generically initialized

filters which are then made relevant using the backpropagation algorithm [74].

While each feature on its own does not describe human pose, together they

do indeed comprise a model which can be seen as a pose-aware. Similarly, the

pose-aware embedding networks, proposed in this thesis, are constructed using
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CNNs and are thus generic feature models which have been made pose-aware.

Natural language representations A far less common approach to com-

prehending imagery, likely due to the difficulty in annotation collection, nat-

ural language representations describe the contents of a scene in a human-

readable way. In contrast to an object or action class label, which describe the

main focus or dynamics of a scene, natural language representations generally

decompose the scene into its constituent parts.

Language-primitives, each of which describes a component of the human

pose, have been outlined in [72], [63], and [51]. More specifically, [51] presents a

set of action primitives which decompose the entire body’s motion into smaller

components, like “arms moving in a pendulum motion” or “torso twist”. Simi-

larly, [72] and [63] define a set of pose primitives which describe the relationship

between joints, such as “left wrist is near right hip” or “right ankle is near

head.” This thesis proposes to use the natural language-primitives outlined

in [72] for the purpose of producing an image descriptor from which a lan-

guage based similarity metric may be defined, and to extend the proposed

pose-aware image embedding space to accept an additional language-primitive

mode, allowing for a more natural way of conducting queries.

While not describing human pose, there has been some effort towards de-

scribing the actors themselves. One approach proposes to decompose entities

into a set of common inter-class concepts [95], such as “has eye,” or “has leg”.

Similarly, [7] decomposes people into concise descriptions, such as “has hat” or

“is male”. Alternatively, [82] learns a mapping between language-primitives

and a set of human-mesh basis vectors to generate an avatar (a computer

generated character) or invert the process to provide a language-primitive de-

scription of an avatar. In contrast, pose-aware embedding spaces are strictly

pose-centric and are thus invariant of articles of clothing, gender, and body
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shape.

Some alternative natural language representations include image caption-

ing and action class labels. Image captioning describes imagery in a concise

natural language sentence. While a class label or action category point out the

main scene contents or dynamics, image captioning is far more versatile. Gen-

erated captions [40, 90, 100] usually depict abstract overarching themes within

the scene, and rarely describe human pose in a nuanced way. For example,

a model may produce the caption “Baseball players standing on a field” for

a corresponding image. This level of caption abstraction is likely due to the

desired task of general scene descriptions. Similarly, action classes [57, 101] are

largely abstract as they capture a wide range of possible pose configurations

for a single class. For example, in the case of “sitting,” are the actor’s legs

crossed? Are her arms relaxed on an armrest or are they folded in her lap? Is

she sitting upright or is she lounging in a relaxed position? For the purpose of

training fine-grained pose-aware embedding networks, neither of these natural

language representations provide the required fine-grained detail.

3.3 Multi-modal learning

The actualization of a concept lends itself to a variety of potential repre-

sentations. For example, “A father and son playing catch,” can be modeled

linguistically (as stated), can be depicted as a photograph, painting, sketch, or

video, and can be decomposed into a set of constituent parts {‘man’, ‘child’,

‘ball’, ‘outdoors’}. Multi-modal learning attempts to understand and model

various forms of the same entity into a concise and identical cross-mode rep-

resentation. It is primarily used as an alternative to traditional classification

approaches, zero-shot learning tasks, and image captioning tasks, and provides
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a mechanism for retrieving or ranking data that may take on a variety of forms.

The most common approach to forming a cross-modal representation is

by learning a common embedding space between various input streams. The

process generally involves enforcing that the features generated for a single

entity, across all modes, map to highly similar spatial locations within the

embedding space.

Producing an embedding space defined by class similarity has been shown

to be beneficial for cross-modal retrieval. This is achieved by initially learn-

ing one mode, followed by fine-tuning the remaining modes while freezing the

(deeper) shared layers [10]. This thesis proposes to follow the outlined ap-

proach to create an image-language embedding space, defined initially by pose

similarity in imagery, followed by a mapping from a language-primitive mode

to the defined embedding space.

Preexisting word co-occurrence embedding spaces [59, 60] have been pro-

posed to solve classification and zero-shot learning challenges by mapping im-

ages to their prototype (class labels) [30, 68, 29]. Alternatively, [26, 45] pro-

pose to unify multiple modes by learning to predict hand-crafted intermediate

cross-class extant descriptors, and [90, 100, 89] create a common embedding

space for natural language sentences and images, using an LSTM and a CNN,

respectively. For the purpose of training pose-aware image-language embed-

ding networks, this thesis avoids the use of word co-occurrence embedding

spaces as they extend beyond pose-language, allows the network to learn a

rich embedding spaces as opposed to a hand crafted one, and avoids natural

language sentence captioning due to the largely generic (non-pose specific)

image caption datasets.
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Chapter 4

Technical Approach

This chapter outlines the proposed pose-aware embedding and multi-modal

image-language network architectures.

4.1 Pose-Aware Embedding Networks

This section defines the family of explored metric spaces, and explains the

objective functions for learning pose-aware and multi-modal image-language

embedding networks.

4.1.1 Pose Similarity Metric Spaces

A metric space is a set for which the distance between all elements, defined

over a distance metric, is known. Metric distance functions are commonly used

for the evaluation of human pose estimation [37]. For example, the quality of

predicted human joint locations is assessed by the mean per-joint error (a

distance measure) with respect to the ground truth.

This thesis proposes a family of pose-aware embedding spaces which respect
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the semantic ordering of their corresponding metric space. While the defined

metrics are similar to those used for quantitative evaluations, the proposed

embedding spaces instead learn to approximate these metrics as a measure

of similarity, co-locating semantically similar entries and thus simplifying the

retrieval process to a Nearest Neighbours search. The explored human pose

similarity metric spaces include 2D, 3D, and Procrustes Euclidean distance, as

well as the Hamming distance over a set of language-primitive pose descriptors,

i.e., Posebits [72].

2D pixel Euclidean distance 2D pose similarity, between any two dataset

entries, is measured as the centered mean per-joint pixel distance:

δ2D(Ja, Jb) =
1

N

N∑
i=1

√
|J i

a − J i
b|2, (4.1)

where Ja and Jb are pixel joint pose annotations, with the superscript i indi-

cating the joint annotation index.

Each dataset entry is derived from a spatially square per-centered image

crop which has been re-sized such that the longest side is 144 pixels wide, thus

each set of joint annotations is standardized such that the largest width or

height is about 115 pixels. Following the motivation provided by [44] (that

modern person detectors provide a person-encapsulated bounding box), the

provided joints are not standardized beyond being centered within the image.

3D Euclidean distance 3D pose similarity between any two dataset en-

tries is measured as the volume centred mean per-joint distance. The 3D joints

are normalized such that each person is 6-feet tall, from head-to-ankle, and

each limb (connected joint-pair) is re-sized such that it conforms to the rele-

vant mean limb length of the entire dataset. This can be similarly formulated
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as Equation 4.1,

δ3D(Ka, Kb) =
1

N

N∑
i=1

√
|Ki

a −Ki
b|2, (4.2)

where Ka and Kb are 3D metric joint pose annotations, with the superscript

i indicating the joint annotation index.

Procrustes distance The Procrustes Transform pose similarity between

any two 3D dataset entries is measured as the volume centred mean per-joint

distance, after a Procrustes Transformation:

δprocrustes(Ka, Kb) =
N∑
i=1

√
|Ki

a − P (Ki
b;K

i
a)|2, (4.3)

where Ka and Kb are metric joint annotations, with the superscript i indi-

cating the joint annotation index, and P (Ki
b;Ka)

i indicating the Procrustes

Transform applied to Ki
b given Ki

a.

The Procrustes Transform is computed on one of the two poses, such that

the transformed pose maximally aligns with its comparator. The major dis-

tinction between the Procrustes distance metric, and the 2D pixel and 3D

Euclidean distance metrics is that the Procrustes distance metric is camera

invariant. For example, the same person simultaneously captured by two cam-

eras would result in a Procrustes distance of zero, where the 3D distance for

any two non-identical cameras would be larger than zero.

The Procrustes Transform is composed of three transformations: a scaling,

a center of mass realignment, and a rotation. Given that each actor is assumed

to be 6-feet tall from head to ankle, the scaling transformation is not applied

when determining the distance between any two poses.

Posebit Hamming Distance Posebits [72] are a set of language-primitives

expressed as a vector of binary values (a Posebyte). Each bit maps to a

language-primitive statement, with a value of one or zero indicating whether
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the condition is true or false, respectively. For example, the pose of an actor

brushing her teeth may be described by a Posebyte with bits “right elbow

bent,” “left foot far from right foot,” and “right hand above head” as [1, 0, 0],

as only the first of the three conditions is true. Posebyte similarity between

any two poses is measured as the Hamming distance between their descriptors:

δhamming(La, Lb) =
1

P

∑
La ⊕ Lb, (4.4)

where La and Lb are Posebytes, P is the number of bits in a Posebyte vector,

and ⊕ indicates an exclusive-or operation. Posebyte similarity, like Procrustes

similarity, is camera invariant; “right shoulder is bent” is true independent

of camera position and orientation. More so, Posebits are also invariant to

certain kinds of joint articulation. For example, the Posebit that activates

when “right hand above head” is invariant to how far above the head the right

hand is, and only changes in the case where the condition is no longer true.

4.1.2 Learning Pose-Aware Embeddings

A pose-aware embedding network attempts to approximate the semantic or-

dering of a desired metric space:

||f(a)− f(p)||22 < ||f(a)− f(n)||22
∀a, p, n ∈ D s.t. δ(apose, ppose) < δ(apose, npose),

(4.5)

where δ specifies the similarity between any two examples. a defines an anchor

example, and p, and n define examples which are similar and dissimilar to the

anchor, respectively. For the relationship to hold, the positive pair f(a) and

f(p) must be closer than the negative pair f(a) and f(n).

This relationship is enforced using the triple rank hinge loss function:

Ltriplet = [||f(a)− f(p)||22 − ||f(a)− f(n)||22 +m
]
+
, (4.6)
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where the margin m enforces a minimum acceptable distance.

4.1.3 Learning Multi-modal Pose-Aware Embeddings

The proposed pose-aware embedding networks approximate the semantic or-

dering of a metric, condensing an image into a concise vector representation

who’s meaning is merely implied by its location in relation to neighbouring

embedding vectors. When embedded, each dataset entry pair should share a

proximity strongly resembling that of their underlying pose-descriptors, under

the defined metric. However the underlying pose descriptors are not directly

accessible from the embedding space, as the learned transformation operates

strictly on image data. Querying solely with imagery presents certain limi-

tations. For example, one might desire a set of images of actors who best

match the descriptor: “left foot and right foot far apart; right hand above

head; left hand not above head,” but may not have an image containing this

exact criteria to use as a query.

Natural language-primitives provide a clear way of defining a query, avoid-

ing the pedantry of having to define an actor’s exact joint positions or the

need of having an image which roughly matches the desired criteria. To this

end, this thesis explores a multi-modal image-language embedding space for

the purpose of image retrieval.

Taking advantage of the previously learned pose-aware image embedding

space, defined by the Hamming distance over the language-primitive Posebyte

descriptors, a new mapping is learned from epose to f(eimage), where eimage

and epose are the image and language-primitive descriptor pair, respectively,

and f(eimage) is the embedding generated by the pose-aware image embedding

network.
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Given that the embedding space is regularized to be a unit hyper-sphere, a

new mapping, g, can be learned such that the cosine distance between f(eimage)

and g(epose) is enforced to be zero by:

Lc = 1− f(eimage) · g(epose). (4.7)

Note that the parameters of f are fixed, thus the model error is strictly a

function of the parameters of g.

Equation 4.6 and Equation 4.7 provide a common mapping to a unified

embedding space such that both images and language-primitives can be se-

mantically co-located, allowing for a more natural way of retrieving images

with a simple natural language query.

4.2 Implementation Details

This section provides details for the practicality of training pose-aware em-

bedding networks. The following sections delve into the network architectures

for both the uni-modal and multi-modal embedding networks, and provides

two approaches for querying holistically defined embedding spaces with partial

language-primitive queries.

4.2.1 Similarity Embedding Network Architecture

To realize the desired family of similarity metrics, the VGG-S CNN architec-

ture is considered.

CNN architecture Following the work of [44], a family of pose-aware em-

bedding networks are constructed using the VGG-S Network architecture [11]

(as seen in Figure 4.1). This network is composed of two major components:

a fully convolutional feature extractor, and a fully-connected classifier.
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Figure 4.1: The VGG-S Network as described in [11].
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Figure 4.2: The pose-aware embedding network as described in [44], with the one

exception being that the input size is halved to accommodate the spatial dimen-

sionality of the dataset images. This network is a repurposed VGG-S Network [11]

with the fully-connected layers having been replaced.
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The former part of the network is composed of five convolutional layers.

The first, second and fifth are followed by a max pooling layer which performs

a down-sampling, by dividing the feature into equal window sizes and selecting

the maximum activation, to produce a smaller feature map. Following the first

convolution a local response normalization (LRN) layer, biologically inspired

by lateral inhibition [43], normalizes cross-channel activations. This module

can be interpreted as creating competition between neighbouring neurons, ef-

fectively encouraging specialization.

The latter part of the network, immediately following the convolutional

component, is composed of three fully-connected layers. The first two are

followed by dropout layers, which randomly suppress 50% of the neuron ac-

tivations, i.e., “dropping” them. This encourages the model to use its full

capacity and thereby increases generalization. The final fully-connected layer

is followed by a softmax activation, providing a normalized per-class probabil-

ity score.

Each convolutional and fully-connected layer in the network is followed by

a ReLU activation, injecting non-linearity into the model and thus allowing

the network to learn non-linear distributions.

The VGG-S Network is repurposed to create a pose-aware embedding

network. The fully-connected component is supplanted with two new fully-

connected layers (as seen in Figure 4.2). The new fully-connected layers are

1024 and 128 neurons wide, with the former being followed by a ReLU and

Dropout component, and the latter being followed by an l2 normalization such

that the final activation exists on a unit hyper-sphere.

Loss calculation Triplet rank loss considers the relative proximity over a

triplet, enforcing that the positive pair embed closer than the negative pair,

within a desired margin. This loss calculation acts in a semi-supervised fashion
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in that no direct ground truth pose annotations are provided.

As suggested in [44], triplets are selected such that one anchor, five similar,

and 105 dissimilar entries are randomly selected from the dataset. With a

batch size of 111, this approach provides 525 unique triplet combinations.

The total network error is calculated across the entire mini-batch

Ltriplet =
1

I + J

I∑
i=1

J∑
j=1

[
||f(a)− f(pi)||22 − ||f(a)− f(nj)||22 +m

]
+
, (4.8)

where a, p, and n are the anchor, positive, and negative entries. I and J are

the number of sampled positive and negative examples. m acts as a margin

ensuring that the positive pair is at least m closer than the negative pair, in

the embedding space.

Curriculum learning One possible approach for selecting a triplet, for

a given anchor, could be to divide the dataset into two parts with the former

being composed of entries which closely resemble the anchor, and the latter

containing the remainder of the dataset. Triplets can then be composed by

randomly selecting positive and negative examples from the respective subsets.

This approach may be successful to some degree, but could result in early

sub-optimal convergence as the network is unlikely to see challenging triplets.

Consider two illustrative example anchors, with the first being a yoga pose,

and the second being a camera-facing neutral stance. People are far more

often found standing, sitting or walking, and thus yoga poses are uncommon.

Allowing for the random selection of positive and negative examples would

yield very easy triplets, posing no challenge to the network. In contrast, the

camera-facing neutral stance is a very common pose. Thus, triplets composed

of randomly selected positive and negative examples would not necessarily

yield triplets which could inform the network of fine-grained similarity. To deal

with this concern, the approach outlined in [44] proposes to use a curriculum
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learning scheme to provide the network with progressively more challenging

triplets over the training process.

Curriculum learning [4, 23] is a regimented training scheme where the net-

work is progressively given more challenging examples. Similar to how a stu-

dent graduates through school grades, the network builds a foundation from

simpler examples from which it can use to adapt to greater challenges.

This approach is realized through the selection of triplets, as outlined in

[44]. For each triplet, the dataset is sorted by similarity to the anchor and

divided into two parts. The former is composed of the 30 most similar dataset

entries, and the latter is composed of the remainder of the dataset. To com-

pose a triplet, a positive example and negative example is selected from their

respective parts. To ease the network into the difficult challenge of learning

fine-grained pose similarity from imagery alone, after every epoch (once the

model has seen every image as an anchor) the most dissimilar 3,000 entries

are excluded from the selection process, until there are at most 1,000 remain-

ing. Removing these easy negative examples, over time, forces the network to

consider more fine-grained pose details.

4.2.2 Multi-modal Embedding Network Architecture

The previously defined pose-aware embedding networks define a mechanism

to co-locate similar images based on an underlying pose similarity metric,

simplifying similarity retrieval to conducting a Nearest Neighbour search.

To allow for a more natural way to retrieve images, the pose-aware image

embedding network trained to respect the Hamming distance similarity metric

is extended to permit queries composed of a set of language-primitives.

Image-language mapping For the purpose of learning a mapping from
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Figure 4.3: The proposed image-language multi-modal embedding network. 1)

The network’s image stream. 2) The network’s language stream. 3) The common

embedding space. The process of learning the proposed image-language multi-modal

embedding network involves training 1+3 using triplet rank loss with similarity being

defined by the Hamming distance over language-primitives, freezing the weights of

both 1 and 3 (indicated in blue), and finally training 2+3 using cosine-similarity

between the corresponding image and language-primitive embedding vectors.

the Posebyte [72] language-primitives to their corresponding image embed-

dings, a new language-primitive network is constructed to respect the cosine

similarity, as state in Equation 4.7, between the embeddings generated for the

two modes of the same dataset entry. The network architecture is outlined in

Figure 4.3. The weights of the latter two fully-connected layers are borrowed

from the pre-trained Hamming distance pose-aware image embedding network,

such that the final desired representation exists within the same space as their

image equivalent. To ensure a consistent mapping between both input modes,

only the language stream’s first layer’s weights are free to change.
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Loss calculation To learn the desired image-language mapping, Equation

4.7 is computed across each mini-batch:

Lc =
1

N

N∑
i=1

1− f(eimage) · g(epose), (4.9)

where N is the size of the batch, f(eimage) is the image embedding vector

generated by the image stream, and g(epose) is the corresponding language-

primitive embedding vector generated by the language stream.

4.2.3 Language Subset Queries

The proposed multi-modal language-image embedding network provides a mech-

anism to conduct both image and language-primitive queries within a common

embedding space. Any one location, on the unit hyper-sphere embedding

space, alludes to a specific pose, with its neighbouring locations alluding to

highly similar poses. This is a natural consequence of defining the similar-

ity metric over the entire pose, i.e., two poses are deemed similar, and thus

co-locate, only if a relative majority of their language-primitives agree.

Querying with a Posebyte describing an actor who is standing in a neutral

position with their left elbow bent would, by definition, retrieve images of other

actors standing is similar neutral stances, with their left elbows bent. This

presents a limitation in that one may not be interested in the configuration of

the entire pose, but instead may want to retrieve images of actors in a variety

of poses but whose left elbows are bent. That is, one may wish to query with

a subset of language-primitives regardless of how the remaining descriptor is

defined.

Presented here are two distinct solutions for circumventing the limitations

of holistically defined embedding spaces: Conditional Posebytes and Query-
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Aware Masks.

Conditional Posebytes The proposed multi-modal language-image em-

bedding network provides a mechanism for conducting language queries using

a set of bits (a Posebyte) which are either a one or a zero, describing whether

a pose based condition is true or false. One consequence of this approach

is that the entire Posebyte must be defined prior to embedding. To address

this problem, proposed here is a maximum likelihood approach to complete a

Posebyte when given a subset of desired Posebits.

While each bit is either a one or zero, for mathematical convenience Pose-

bytes are assumed to be defined by a Normal Distribution [82]. This assump-

tion allows for a simple way of conditioning a Posebyte on a set of known

Posebits.

The Normal Distribution Np is defined by the mean Posebyte µ, and co-

variance matrix Σ,

Σ = P ′TP ′, (4.10)

where P ′ is defined as the mean centred Posebyte dataset

P ′ = P − µ, (4.11)

of the original Posebyte dataset P .

Generating a Conditional Posebyte from a subset of bits involves condi-

tioning Np on the known bits’ states. Expectation Maximization [16] on the

new conditional distribution N ′p, a simple matter of taking the per-dimension

mean over the new distribution, produces the most likely Posebyte. Finally,

the values are rounded and clipped to be either a one or zero, representing

true or false, respectively.

Conditional Posebytes provide a means of generating language queries for

a subset of bits, but present a problem: the retrieved results will be holistically
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Figure 4.4: A t-SNE [55] embedding space visualization of the pose-aware em-

bedding network defined by the Hamming distance metric over Posebyte language

descriptors. The red and grey annotations indicate whether an image does or does

not match the condition “right shoulder is bent,” respectively. This condition is

commonly true for pose configurations of (from left to right) standing with your el-

bows bent, standing with feet together and arms spread apart, arms and legs spread

apart, and when in a hunched over position.

similar and thus will lack diversity in pose, as it captures only one mode of

the desired priors. Figure 4.4 illustrates this problem, showing a few locations

on the embedding space for when the “right shoulder is bent” bit is true. This

issue stems from the original definition of the embedding space, i.e., any one

location on the embedding space alludes to a pose defined in its entirety. Thus,

once a Posebyte is embedded (conditioned or not), the Nearest Neighbours in

the embedding space match the query maximally.

This problem is easily mitigated by, instead, sampling the conditional dis-

tribution. Sampling N ′p multiple times produces a set of Posebytes each of

which suffers from the same issue of local holistic similarity, but as a whole
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may produce variety.

While generating sampled Conditional Posebytes is fast, the fact that this

process resides on the data-end of the model makes it cumbersome. Retrieving

a set of images with variety involves the generation of sampled Conditional

Posebytes, forwarding each of them through the network, and finally conduct-

ing a Nearest Neighbours search from their embedding destination.

Query-Aware Masks The pose-aware embedding network produces a

unit hyper-sphere embedding space which co-locates holistically similar poses.

Similar to the motivation of Conditional Posebytes, one may be interested in

retrieving a set of results with a subset of pose conditions. As a consequence

of being defined by a holistic pose metric, the current embedding space does

not provide separation by condition. Inspired by [88], proposed here is a linear

warping which collapses the unit hyper-sphere embedding space such that the

entries of interest will lay nearest to the origin, simplifying the search space

to a single point.

Figure 4.5 presents the proposed architecture for learning Query-Aware

Masks. The embedding space learned by either stream of the image-language

pose-aware embedding network is followed by a point-wise multiplication (a

mask),

e′emb = eembvmask, (4.12)

resulting in a warped embedding vector e′emb, where eemb and vmask define

an embedding vector and a linear warping mask, respectively. Each mask

is specific to a language-primitive conjunction (a chosen subset of language-

primitives and their states), and thus for each desired language-primitive con-

junction a mask must be learned. A mask is represented by a vector with the

same number of dimensions as the original embedding space. Each element of
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Figure 4.5: Conditional masks are used to linearly warp the embedding space such

that the entries of interest lay closest to the origin. One mask is trained per language-

primitive query subset, each of which is learned equally well from the embedding

space generated by either the image or language stream of the image-language pose-

aware embedding network. Each element of the mask vector is initially set to one

to preserve the original embedding space, and is then free to change while training.

a mask is initially set to one to preserve the original embedding space, and is

then free to change during training.

Query-Aware Masks operate directly on the embedding space, and thus the

process of learning Query-Aware Masks does not require the original network.

Instead, only a dataset of pre-computed embedding vectors is required.

Masks are learned using triplet rank loss, with the positive, and negative

entries of a triplet containing, an embedding which matches the desired condi-

tions, and one which does not, respectively. Rather than providing an anchor

embedding, the anchor is instead the origin. That is, embeddings which cor-

rectly match the desired conditions should be re-mapped such that they are
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closer to the origin than those which do not. For example, one may be in-

terested in images of people whose hands are above their head. The dataset

of embedding vectors is then divided into the positive entries of “left hand is

above head; right hand is above head,” and negative entries where neither or

merely one of these conditions are met. Finally, the warping mask is regressed

using triplet rank loss, leaving the original embedding space unaltered.

Warping the embedding space such that the relevant subspace is collapsed

to the origin, simplifies the search process. Thus querying for any language-

primitive subset becomes a matter of warping the embedding space, followed

by conducting a Nearest Neighbours search starting at the origin.

Query-Aware Masks, unlike Conditional Posebytes, have the benefit of op-

erating directly upon the embedding space, avoiding the need to forward any

data through the network. In fact, unless novel instances are to be introduced

into the dataset, the embedding network remains entirely unused. More so,

where sampled Conditional Posebytes provide a set of prototype locations from

where to start multiple queries, Query-Aware Masks simplify the query process

by providing a single search point.

While Query-Aware Masks simplify the query process, generating the masks

themselves presents a new challenge. For each language-primitive subset a new

mask must be learned. For example, consider the set of first and second order

language-primitive conjunctive queries. Covering every possible combination,

the former would require 220 masks, while the latter would require more than

24,000 masks. In fact, as the order of conjunctions grows, the space of possi-

ble masks grows exponentially. More so, unlike Conditional Posebytes which

are generated analytically and therefore almost instantly, Query-Aware Masks

are solved numerically and thus learning a mask requires about one minute of

training time.
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Chapter 5

Experiments

This chapter introduces a novel pose similarity dataset, presents the details

necessary for training pose-aware embedding networks, and concludes with a

set of evaluations to demonstrate their efficacy.

5.1 Overview

This section presents the datasets and metrics used to train and evaluate the

proposed models.

5.1.1 Datasets

For training pose-aware embedding networks only the dataset created for the

purposes of this thesis was directly used. However, the base VGG-S network

was pre-trained with the ImageNet dataset [17].

The proposed dataset This dataset was created for the purpose of train-

ing and evaluating pose-aware embedding networks across a variety of met-

rics. It is composed of approximately 24,000 16-frame image sequences, with
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accompanying annotations for 2D and 3D joint locations, as well as a set of

language-primitives, i.e., Posebyte pose descriptors [72]. Also provided is a

family of distance tables, describing the similarity between each dataset pair,

over 2D and 3D Euclidean, Procrustean, and language-primitive Hamming

metric distances.

ImageNet An in-the-wild dataset (not created from a staged setting) com-

posed of over 14 million images feature 1,000 classes [17], including people,

animals, vehicles, and architecture. It was created for the purpose of training

and evaluating large-scale neural network models for the task of object recog-

nition. This dataset was not used directly, but rather was used to pre-train

the convolutional component of the pose-aware embedding networks.

Kinetics An in-the-wild large scale action recognition video dataset [41]

with over 160,000 video clips, covering 400 unique actions. It was created

for the purpose of training and evaluating large scale spatiotemporal neural

networks for the task of action recognition. This dataset serves as the raw

video data used for the construction of the dataset proposed in this thesis.

5.1.2 Evaluation Metrics

The efficacy of the proposed pose-aware embedding models are evaluated

across two main experiments. First, these networks should learn to co-locate

semantically similar images in the embedding space, and thus should act as

effective similarity retrieval models. Second, two approaches for circumvent-

ing the limitations of holistically defined embedding spaces are demonstrated,

with an evaluation of how the model can be successfully made to allow for

querying with a subset of language-primitives (as opposed to the entire pose

descriptor).
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Similarity Retrieval To demonstrate the proposed models’ efficacy to

co-locate semantically similar images in the embedding space, two standard

metrics are considered: hit@k, and mean distance@k.

Hit@k is a measure of whether the network has correctly learned to ap-

proximate the semantic ordering of the desired metric space. Each query is

considered to be correctly ordered if at least one of its first k retrievals is within

the top-50 ground truth nearest entries, as expressed by,

hitk(X) =

1, if |X ∩ T50| > 0

0, otherwise

, (5.1)

where X is a set of k retrievals, and T50 is the set of ground truth entries which

are most similar to the respective query. Hit@k is measured across the entire

set of queries, and is expressed as,

hit@k =
1

N

N∑
i=1

hitk(Ri
1...k), (5.2)

where N is the number of queries, and Ri
1...k is the first k retrievals for the ith

query.

Distance@k measures the mean pose-descriptor distance between each query

and its k retrieved entries, with a smaller distance implying a closer metric

space approximation. The distance is measured as,

distancek(X) =
1

N

N∑
i=1

δ(Xi, q), (5.3)

with Xi being a retrieved entry, q being the query, and δ being the distance

as defined by the metric of which the network was intended to approximate.

Distance@k is measured across the entire set of queries, and is expressed as,

distance@k =
1

N

N∑
i=1

distancek(Ri
1...k), (5.4)
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where N is the number of queries, and Ri
1...k is the first k retrievals for the ith

query.

Question-subset Queries To demonstrate that the limitations presented

by holistically defined embedding spaces may be circumvented using Condi-

tional Posebytes and Query-Aware Masks, for the purpose of querying with

language-primitive subsets, recall@k is considered. Given that the embedding

space is holistically defined, similarity resides solely at a local level. Any one

particular pose condition likely exist in vastly different overall poses, and thus

each pose condition is spread across the entire embedding space in smaller

holistically similar clusters. To understand this sparse distribution, recall@k

measures model quality at a local level by calculating the percentage of cor-

rectly retrieved entries over the total number of retrievals, as expressed by,

recallk(X) =
|X ∩Xtp|
|X|

, (5.5)

where X is a set of k retrievals, Xtp is the set of true-positives (retrievals

matching the desired condition) in X, and ∩ indicates the intersection be-

tween the two sets. Specifically, this metric measures the number of correctly

retrieved entries over the number of retrievals. Recall@k is measured across

the entire set of queries, and is expressed as,

recall@k =
1

N

N∑
i=1

recallk(R1...k) (5.6)

where N is the number of queries, and Ri
1...k is the first k retrievals for the ith

query.

5.1.3 Training Details

Each pose-aware embedding network is trained using the dataset proposed in

this thesis, and follows the data augmentation strategy and learning curriculum
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as outlined in [44].

Pose-Aware Embedding Networks Training was conducted using the

triplet rank loss objective function, with a global learning rate of 10−2, which

was reduced by 2× 10−1 every epoch for six epochs. The convolutional com-

ponent of each network was initialized with the VGG-S [11] ImageNet [17]

weights, easing the learning process by providing each network with a set of

high quality image processing filters. Due to the modest amount of data, the

learning rate for the convolutional layers were scaled by 10−1. These networks

were trained using the backpropagation algorithm, with Nesterov accelerated

gradient descent [3], a momentum of 0.9 and a weight decay rate of 10−5.

Data Augmentation Neural networks require a large amount of train-

ing data, and thus to artificially increase the number of training examples,

the images were augmented online in such a way as to preserve their seman-

tic meaning while increasing visual variety. They were randomly cropped by

±10%, and the entire batch was horizontally flipped with a probability of 50%.

Batch Selection Rather than having the network attempt to learn fine-

grained pose similarity immediately, a task which may present some difficulties,

the network is progressively given more challenging triplet examples over time,

as previously outlined in (Section 4.2.1). Each iteration (one update step while

training the model), the network is presented with an anchor, five similar

examples, and 105 dissimilar examples. The anchor selection is shuffled such

that the network sees each dataset entry as an anchor once per epoch. The

positive examples are selected from the first 30 similar ground truth dataset

entries, and the negative examples are selected from the remaining set. To

ensure that the network progressively learns to identify more fine-grained pose

similarity over time, after each epoch 3,000 of the most dissimilar examples

are excluded from the selection process, until there are at most 1,000 negative
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entries to select from.

Query-Aware Masks Each mask is modeled by a 128-dimensional point-

wise multiplication layer. Embedding the entire training dataset of images of-

fline, a new Query-Aware Mask is learned for an question-subset using triplet

rank loss. However, instead of operating on images, Query-Aware Masks op-

erate directly on the embedding space, and thus triplets are composed of three

embedding vectors. Each mask is defined by a designated set of question-

subsets and thus for each mask the anchor is a well established point, i.e.,

the origin, with similar and dissimilar embedding vectors being randomly se-

lected. Masks are trained with the intention of collapsing the relevant sub-

space, placing the matching entries closest to the origin, and thus easing the

query process.

The model is composed of a single point-wise multiplication layer and was

trained using the backpropagation algorithm, with Nesterov accelerated gra-

dient descent, a momentum factor of 0.9, a weight decay rate of 10−5, and

a global learning rate of 1.0. Prior to training, the mask is initialized such

that each component of the 128-dimensional vector is set to one, keeping the

original embedding space intact and allowing the network to learn a linear

deformation.

For query subsets beyond a single language-primitive, it was discovered that

it is important to provide a balance of the possible combinations of negative

classes. For example, while training a mask with the intention of collapsing the

subspace responsible for “left knee bent; right knee bent,” the negative class

would include “left knee not bent; right knee bent,” “left knee bent; right knee

not bent” and “left knee not bent; right knee not bent.”

Given that Query-Aware Masks essentially learn a new layer on top of the

multi-modal image-language embedding network, either the image or language
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stream can be used to generate the embeddings, to similar effect.

5.2 Human Pose Similarity Dataset

This section outlines the motivation for creating a new dataset, and describes

the steps taken to construct the proposed human pose annotations.

5.2.1 Motivation

This thesis proposes a new dataset designed for the purpose of training pose-

aware embedding networks. Following the process outlined in [44], proposed

here is a dataset constructed using the Kinetics video dataset [41].

While there is an existing pose similarity dataset [44], this thesis proposes

to construct a new dataset for the purpose of seeding future work into the ex-

ploration of video embedding metrics. This thesis does not explore embedding

spaces outside of image data, however by providing a large amount of in-the-

wild per-frame joint annotations which conform to the common practices of

image [44, 62] and video networks [33, 87], this dataset creates a common

baseline for image and video embedding network architectures.

5.2.2 Pose Descriptor Construction

For the purpose of training pose-aware embedding networks, proposed here is a

process for constructing a large annotation dataset of human pose descriptors.

The three types of pose descriptors considered are 2D pixel and 3D metric joint

locations, as well as a set of language-primitives [72]. Figure 5.1 demonstrates

a selection of example images, and the various kinds of provided annotations.
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Figure 5.1: A depiction of the proposed dataset. It is composed of a mapping

between images, 2D, 3D, and language-primitive (Posebyte [72]) descriptors.

2D Skeletal Pose Descriptors

Framing human pose as a set of 2D joint annotations is by far the most common

approach to addressing human pose estimation [86, 9, 96]. These annotations

generally come in the form of pixel coordinates, such as the head, hands, and

knees. 2D human pose estimation has been shown to be a relatively well ad-

dressed problem, with modern CNN approaches performing strongly on a vari-

ety of community benchmarks. Taking advantage of the high quality nature of

contemporary pose estimators, OpenPose [9, 96] is used to generate per-frame

multi-person annotations for the Kinetics dataset, although any number of

modern pose estimators would likely have worked equally well. Proposed here

is a process to temporally link and rectify per-frame joint annotations across
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a set of video sequences.

Joint production Taking advantage of the abundance of raw video data

provided by the Kinetics action recognition video dataset, OpenPose was used

to generate a large scale dataset of per-frame joint annotations. For each

joint location OpenPose provides a confidence value, and thus to ensure that

low quality predictions are suppressed, only poses which have an acceptable

confidence level, of at least 12 of the 13 relevant joints, are retained. Any

joint was considered acceptably confident if the estimator reported a value of

at least 10%, as there did not appear to be any empirical difference in joint

quality beyond this suggested value.

Temporal linking Although OpenPose does not directly provide an inter-

frame pose relationship, the generated poses were remarkably consistent be-

tween neighbouring frames. Leveraging the relatively high frame rates of the

video, a simple Intersection over Union (IoU) [25],

IoU(A,B) =
A ∩B
A ∪B

, (5.7)

of the minimum pose-encapsulating bounding boxes A and B, between neigh-

bouring frames, was used to determine whether any two poses were derived

from the same actor. Any two poses between neighbouring frames were con-

sidered to be the same actor if their bounding box overlapping IoU score was

larger than 70%, an empirically determined value. In the case that there was

a conflict between multiple poses, the largest IoU was determined to be the

same actor.

While this process worked well, it relies on consistent per-frame pose pre-

dictions, a lack of large occlusions, and actors remaining in the scene for the

duration of the clip. Tracking actors across a scene is a challenging prob-

lem in-and-of-itself, and thus following common practice [47], these artificial
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separated sequences are treated as distinct actors.

The following rectification process takes advantage of the temporal com-

ponent to ensure a strong consistency between inter-frame joints, and thus a

minimum number of each joint is required to be present, as well as additional

padding frames (two before and two after) to avoid having to handle the first

and last frame edge-case. While this thesis does not conduct video based

experiments, sequences with less than 16 frames (20 when padding is consid-

ered) were discarded. Maintaining sequences of at least 16 frames, a common

choice for spatiotemporal convolutional neural networks [33, 87, 62], allows for

potential future work into video based pose-aware embedding networks.

Pose canonicalization Following the process outlined in [44], each image

is padded with an additional 20% of image space to allow for augmentation by

random spatial cropping, during the training process. The human pose falls

directly in the middle of a square region, within the padded area. The final

product is a set of video clips that are relative to the actor.

Often enough the pose estimator produces errors, such as joints which tend

to oscillate between two locations. To reduce noise in the final square-cropped

video sequences, each frame’s bounding square is averaged over its two left and

right temporal neighbours. This smoothing produces video sequences which

are more stable.

Finally, each cropped video clip is spatially resized to 144x144 pixels, with

the relevant poses being scaled proportionally with the video.

Joint hysteresis While OpenPose is relatively consistent across frames,

in some cases the per-joint confidence values tend to fluctuate, especially in

situations of large motion, noisy video, and partial occlusions. Proposed here

is an approach to increase the per-joint confidence values by leveraging the

temporal component of the video data.
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Figure 5.2: An example of joint hysteresis. The top and bottom row show the

same raw and rectified annotation sequence, respectively. In the top row, the middle

frame contains a low confidence “left wrist” joint, marked in red. The bottom row

indicates that this same joint is indeed valid, as it falls within a close proximity to

the same joint within a neighbouring frame, as marked by the blue circle.

For any joint with a confidence value lower than 10%, its first and second

order temporal-neighbours are considered. If any one neighbour exists within

a 10 pixel Euclidean distance from the current joint, then the current joint is

marked as confident, as depicted in Figure 5.2.

The choice of 10 pixels, as well as considering only the first and second

order neighbours was empirically determined. Any joint whose confidence

value could not be rectified was discarded.

Joint denoising While OpenPose’s estimations are mostly consistent be-

tween frames, they can sometimes suffer from noisy localization, mainly in the

form of joints bouncing back and forth between multiple spatial locations. This
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Figure 5.3: The top and bottom row show the original and rectified annotation

sequence, respectively. The top row presents an example of a spurious limb. Given

that the remaining joints have built a consensus on acceptable joint locations, the

spurious limb is replaced with its neighbour’s.

is likely a consequence of OpenPose having to make a hard decision between

multiple noisy, yet relatively high-confidence probability regions. Proposed

here is a consensus based approach to replace noisy joints.

To identify and replace noisy joints, a window of size four is run forward

and backward across the frame sequence, as depicted in Figure 5.3.

In the case that the current frame’s two previous and one following neigh-

bours’ relevant joints maintain a certain amount of spatial consistency, i.e.,

come to a consensus, then the current frame’s joint may be assessed to de-

termine if it is behaving spuriously. A consensus is formed if the designated

neighbour frames spatially agree on a joint location, within 10 pixels of the

earliest considered frame. If the current frame’s joint is not also within this 10

pixel threshold, then the relevant limb is replaced with its earliest neighbour’s
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Figure 5.4: Missing joints are replaced by their nearest temporal neighbour or are

interpolated between its two nearest neighbours. The top row contains three frames

from the original sequence, where there is a missing “left wrist” joint. The bottom

row contains the rectified sequence, with the missing joint being interpolated by its

neighbouring frames.

limb. In the case that no consensus is formed, the frame is skipped as there is

no way to confirm if the joint is indeed spurious.

Joint hallucination During joint production and hysteresis, joints may

have either not been discovered by OpenPose, or discarded due to low confi-

dence values. To complete each pose annotation, the missing joints are hallu-

cinated.

Missing joints are replaced by their nearest existing temporal neighbour.

In the case that there are two temporally equidistant joints, i.e., a valid joint

exists at both +t and −t frames, then the new joint is simply the average

between the two source joints.
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This process produces approximately 49,000, relatively clean, and fully

annotated human joint video sequences. While it would be tempting to use

the entire 49,000 joint annotated video clips it is the case the same person

may have artificially been split into multiple clips, due to noise, occlusion, or

exiting and re-entering the frame. To ensure visual variety, approximately half

of the video clips are removed. In a round robin fashion, a clip from each video

was randomly discarded, until the final clip count was approximately 24,000.

Example produced 2D joint annotations are presented in Figure 5.1.

3D Skeletal Pose Descriptors

Constructing an in-the-wild 3D joint annotation dataset presents a signifi-

cantly more difficult challenge when compared to its 2D counterpart, due to

the innate inability of human annotators to correctly judge accurate spatial

distances, thus 3D joint annotation datasets are far less common. Much like

how 2D joint annotations provide pixel coordinates, 3D joint annotations pro-

vide metric coordinates for each joint. The two most successful approaches to

estimate 3D joint locations are: direct 3D joint inference [49, 50] from raw pixel

data, and 3D joint inference from 2D joint annotations, referred to as “lifting”

[106, 85]. Taking advantage of the previously generated 2D joint annotations,

and an off-the-shelf state-of-the-art lifting model [106], an equivalent 3D joint

annotation dataset is generated. One major distinction from the 2D joint an-

notation generation process is that [106] operates spatiotemporally, and thus

inherently takes advantage of the temporal component of the pose data.

Joint production The 3D human joint annotations are produced by “lift-

ing” the existing 2D joints. Lifting involves estimating the most likely 3D joint

configuration, given a set of 2D annotations.
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Figure 5.5: A depiction of 3D pose ambiguity when lifting 2D pose annotations.

There are two common methods for generating 3D pose annotations: direct 3D joint

regression, and lifting 2D joints to 3D. Lifting operates on 2D joint annotations,

independent of the original image from which the 2D joints were derived. Top:

an example of 2D joint annotations. Left and Right: two contrasting human pose

images that closely match the 2D joint annotations, illustrating one possible source

of 3D lifting ambiguity.

Treating each 3D pose in the Human3.6 MoCap (motion capture) [37]

annotation dataset as an over-complete set of basis poses, [106] computes a

linear combination to produce a new pose. Block coordinate descent, is used to

update either the pose-coefficients, rotation, or translation. Coefficient hyper-

parameters α and β are set to 0.5 and 20.0, enforcing small model parameters

and temporally smooth pose-coefficients, respectively. γ is set to 2.0 and en-

forces rotational temporal smoothness. Each pose is regressed for a maximum

of 10 iterations or until it has converged to an error of at least 10−4.

Much like 2D pose estimation, 3D pose estimation is error prone. The most

common error involves poses being flipped about their joint depth positions,

with respect to the direction perpendicular to the image plane. That is, where
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Figure 5.6: A depiction of the three kinds of Posebits, originally described in [72].

A Posebit is a language-primitive pose descriptor that indicates if a particular pose

condition is true or false. Left: A joint is considered bent if its angle is beyond

the relevant threshold angle. Middle: A pair of joints are considered far if they are

further apart than their relevant distance threshold. Right: A joint is considered to

be beyond another if the distance between said joint and the torso is further than a

relative joint and the torso.

the left wrist joint should be closer to the camera than the right, under this

effect the generated pose will suggest the opposite. To illustrate this kind of

error, Figure 5.5 demonstrates the many-to-one ambiguity inherit to 3D pose

lifting. Further, the lifted 3D joints also inherit any localization error produced

during the 2D pose estimation step. While there is bound to be some error, the

dataset was clean enough for the purpose of training 3D pose-aware embedding

networks.
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Language-primitive Pose Descriptors

Language provides a natural way of communicating the configuration of a

human’s pose, yet is severely under explored with few exceptions [72, 63, 51].

While joint localization has been largely successful, given the desired goal of

describing an actor’s pose, joint localization is certainly overly pedantic. Pose

is rarely communicated in terms of pixel locations or metric coordinates, but

rather in terms of relative conditions. For example, a bank robber is unlikely

to demand of his victims to “Put your hands 0.5 meters above your head!”

As a more natural alternative, this work explores the use of binary language-

primitives in the form of Posebits [72]. Each Posebit describes a single con-

dition, which translates to a simple natural language Boolean statement. For

example, the bank robber, with the advent of Posebit language-primitives,

may renew his demand of his victims, “Put your left hand above your head!

Put your right hand above your head!” In the same way that a set of joints

define an entire pose skeleton, a set of Posebits define an entire Posebyte pose

descriptor. Posebits are easily derived by either asking annotators [72] to in-

dicate if a specific pose condition is true or false when provided an image

containing a human pose, or automatically from 3D joint annotation datasets

[72]. Thus this thesis proposes to exploit the previously generated 3D joint

annotation dataset to construct a Posebyte pose descriptor dataset.

There are three kinds of Posebits: joint angle bits, which specify whether

a joint is bent; joint distance bits, which specify whether a pair of joints are

far apart; and joint relative-distance bits, which specify, for a pair of joints,

whether the first is further away from the torso-center than the second.

Joint angle bits These bits indicate whether a joint is bent beyond some

threshold, as illustrated in Figure 5.6. For example, a joint angle bit set to
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one may describe “right knee is bent,” and set to zero would then describe

“right knee is not bent.” The threshold angle for which a bit is set is defined

empirically, on a bit-by-bit basis.

Joint distance bits These bits indicate whether a pair of joints are far

away from each other beyond some threshold, as illustrated in Figure 5.6. For

example, a distance bit set to one may describe “left wrist is far from right

wrist,” and set to zero would then describe “left wrist is not far from right

wrist.” The threshold distance for which a bit is set is defined empirically, on

a bit-by-bit basis.

Joint relative-distance bits These bits indicate whether a joint is beyond

its pair relative to the torso-center, as illustrated in Figure 5.6. Determining

the bit’s state is a simple matter of calculating whether a joint is in front

of the plane defined by the vector extending from the torso-center to the

relative-joint. An example relative-distance bit set to one may describe “right

hand is above head,” and set to zero would then describe “right hand is not

above head.” However, the term “above” is misleading as Posebits are camera

invariant, giving little meaning to relative positioning terms, such as “above,”

“below,” “in-front,” and “behind.” The alternative terminology, suggested for

the purpose of this thesis, is to consolidate the set of relative positioning terms

with the single statement “beyond.” For example, “right hand is above head”

will be restated as “right hand is beyond head,” which concisely describes all

scenarios, independent of their orientation with respect to both the ground

plane and the camera. In contrast to the other Posebit types, joint relative-

distance bits do not require a threshold, as the joint is either in front of or

behind the normal plane.

Posebits are derived from the 3D joint annotations, which were lifted from

the 2D joint annotations, which themselves were estimated from image data,
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and thus any error in either the 2D or 3D joint annotations are likely inherited.

More so, angle and distance Posebits are defined by hard thresholds, any noisy

joints residing near the threshold may be prone to bit inversion. Similarly,

any noisy joint near the relative-distance normal plane may also be incorrectly

labeled. Defining hard thresholds may also present visual ambiguity. For

example, if the threshold for when an elbow joint is considered bent is defined

as 150◦, then an elbow bent 149◦ and 151◦ are likely visually indistinguishable

yet have contrasting bit values.

5.3 Evaluation

This section presents an empirical evaluation of pose-aware embedding net-

works. Specifically, these networks are assessed on their ability to: co-localize

similar poses over a variety of metric spaces, and their capacity to inherently

factorize the embedding space such that question-subset queries are made pos-

sible.

5.3.1 Retrieval

To determine if the pose-aware embedding networks have successfully approx-

imated the semantic ordering of their respective metric spaces, each model is

evaluated on its ability to correctly retrieve semantically similar entries. To

put the retrieval quality into context, two baselines are provided: the base

VGG-S network’s fc7 feature [11], and random chance.

The proposed pose-aware embedding networks are a modification of the

VGG-S Network [11]. To demonstrate that these models learn something

distinct from their predecessor, the penultimate fc7 feature of the VGG-S
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Figure 5.7: A quantitative evaluation of the 2D pose-aware embedding network

(PoseEmb) defined by the mean-per joint Euclidean pixel distance metric. Three

baselines are provided: the VGG-S network’s fc7 feature, random chance, and an

oracle. The oracle baseline indicates the best possible answer for any query.
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Figure 5.8: A quantitative evaluation of the 3D pose-aware embedding network

(PoseEmb-3D) defined by the mean-per joint Euclidean metric distance. Three

baselines are provided: the VGG-S network’s fc7 feature, random chance, and an

oracle. The oracle baseline indicates the best possible answer for any query.
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Figure 5.9: A quantitative evaluation of the Procrustes pose-aware embedding

network (PoseEmb-Pro) defined by the mean-per joint Euclidean Procrustes metric

distance. Three baselines are provided: the VGG-S network’s fc7 feature, random

chance, and an oracle. The oracle baseline indicates the best possible answer for

any query.
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Figure 5.10: A contrasting quantitative evaluation of both the PoseEmb-3D and

PoseEmb-Pro pose-aware embedding networks. Both PoseEmb-Pro and PoseEmb-

3D operate within a metric distance space, and thus, provided here is a comparison

between the PoseEmb-Pro and its camera-variant PoseEmb-3D counter part. To

provide a common benchmark, both model’s distance@k is measured using the Pro-

crustes distance metric.
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Figure 5.11: A quantitative evaluation of the Posebyte pose-aware embedding

network (PoseEmb-Pb) defined by the mean Posebyte Hamming distance metric.

Three baselines are provided: the VGG-S network’s fc7 feature, random chance,

and an oracle. The oracle baseline indicates the best possible answer for any query.
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Figure 5.12: A quantitative evaluation of the language stream of the image-

language pose-aware embedding network (LangEmb-Pb). The embedding space was

filled with test set image embeddings, and the queries were composed of validation

set Posebyte embeddings. Three baselines are provided: the image stream of the

same network (PoseEmb-Pb), random chance, and an oracle. The oracle baseline

indicates the best possible answer for any query.
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Network is used as a baseline.

Finally, random chance is used to demonstrate that the proposed models

have learned something beyond any bias which may be present within the

dataset.

PoseEmb Figure 5.7 presents a quantitative evaluation for hit@k and

mean distance@k. The PoseEmbedding Network (PoseEmb), trained over the

2D pixel distance metric, vastly improves over its base network. Trained for

the purpose of object recognition [11], the VGG-S Network learns a set of

filters useful for predicting the class of the main object present within an

image. These networks show a tendency to cluster images by similarity, as

demonstrated by their intermediate representations [1, 98, 58, 105, 2, 55].

Fine-grained pose similarity may be a more challenging task for this model,

as a VGG-S network not specifically fine-tuned for pose may tend to focus on

concepts which are helpful for the original task of object recognition.

PoseEmb-3D Figure 5.8 presents a quantitative evaluation for hit@k and

mean distance@k, for the pose-aware embedding network defined by 3D joint

similarity. One might expect the 3D data to allow for more discrimination in

pose, resulting in a hit@k superior to that of 2D, yet the opposite is observed.

One possible interpretation is that 3D human pose localization is challenging,

both explicitly and implicitly, and thus the model is susceptible to depth am-

biguities and strong projective geometry side effects, such as foreshortening.

One other possible source of concern may be that the ground truth data is a

lifted estimation of 2D joint annotations (which themselves are estimates).

PoseEmb-Pro Figure 5.9 presents a quantitative evaluation for hit@k and

mean distance@k, for the pose-aware embedding network defined by Procrustes

Transform aligned 3D joint similarity. While it appears that PoseEmb-Pro is

a significantly less effective retrieval model, when compared to PoseEmb-3D,
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Figure 5.13: An example image query across all four networks. Each network

was trained to respect a desired metric, including (from top to bottom) 2D mean

per-joint pixel distance, 3D mean per-joint metric distance, 3D mean per-joint Pro-

crustes aligned metric distance, and Posebyte Hamming distance. It should be noted

that unlike the 2D and 3D networks, the Procrustes and Hamming distance networks

are camera invariant.
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Figure 5.10 demonstrates that when evaluated under the Procrustes distance

metric, PoseEmb-Pro is able to retrieve entries which are more similar, by

approximately 3mm on average. The PoseEmb-3D performs fairly well under

the Procrustes distance metric, but is inherently restricted to similar poses

which also roughly match the respective camera position and orientation. On

the other hand, PoseEmb-Pro is not bound to any constrains outside of human

pose, and thus has access to a wider variety of poses from which to retrieve.

The lower hit@k values can therefore be attributed to the fact that PoseEmb-

Pro is expected to find more fine-grained poses for each query, than is required

of PoseEmb-3D.

PoseEmb-Pb Figure 5.11 presents a quantitative evaluation for hit@k

and mean distance@k, for the pose-aware embedding network defined by the

Hamming distance over Posebyte vectors. Similar to PoseEmb-Pro, PoseEmb-

Pb is camera invariant, and is therefore expected to find more fine-grained

poses for each query than that of camera variant models, explaining its lower

hit@k.

LangEmb-Pb Providing a second mode for querying, the language stream

of the image-language pose-aware embedding network is evaluated quantita-

tively in Figure 5.12. Interestingly, querying with Posebytes improves over

images by 3% to 14% under the hit@k metric, and is 2% more similar on av-

erage under the distance@k metric. One possible reason for this improvement

could be the extant nature of Posebytes. Unlike images, which obfuscate the

underlying pose with pixel values, Posebytes clearly state the pose configura-

tion.

Retrieval examples, for all four image embedding networks, are illustrated

in Figure 5.13.
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5.3.2 Question Subset Queries

The proposed pose-aware embedding networks are regressed such that holisti-

cally similar poses are co-located in the embedding space. For example, given a

location on the embedding surface where an actor is standing in a Y-shape (up-

right with their arms stretched over their head), a Nearest Neighbours search

would yield images of actors which are almost entirely in the same posture.

This means that any Posebyte language-primitive query (or image query)

will retrieve results with little variety. This may not be desirable, as one may

want to search for a subset of language-primitives, such as “right elbow bent;

left elbow bent,” with little care for how the remainder of the pose is arranged.

To allow for queries composed of a subset of the original language-primitives,

two approaches are proposed: Conditional Posebytes and Query-Aware Masks.

Both approaches are non-intrusive, in that the parameters of the model remain

unaltered. While two distinct approaches are presented, they address the prob-

lem from the opposite ends of the model: the data side, and the embedding

side, respectively.

Conditional Posebytes A Conditional Posebyte is an artificially gen-

erated language-descriptor. Assuming that Posebytes are defined under a

multinomial Gaussian distribution, generating a Conditional Posebyte be-

comes a simple matter of conditioning the Gaussian for any subset of language-

primitive priors. The remaining bits can be resolved by either maximum likeli-

hood estimation [16] (taking the per-feature mean over the new distribution),

or can be sampled directly from the new conditional Gaussian distribution.

Figure 5.14 (top) outlines a comparison between Conditional Posebytes

and querying using the validation set (Mean Query) Posebytes. Each query

was evaluated against its nearest k neighbours, with a retrieved entry being
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Figure 5.14: A quantitative evaluation of single-question queries (top) and two-

question queries (bottom). As illustrated, Query-Aware Masks and Conditional

Posebytes significantly outperform queries of the existing Posebyte validation set

(Mean Query).
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considered a match if it contains the correct value at the corresponding Posebit.

Conditional Posebytes significantly outperform querying with the Posebyte

validation set (Mean Query) by 11% to 15%. With the understanding that

the embedding space is defined holistically over the entire pose, one possible

reason for this stark quantitative difference may be that Conditional Pose-

bytes contain a combination of bit-values which are maximally likely for the

desired bit and its condition, and thus when embedded would most likely be

co-located with types of poses where the bit-of-interest is generally in the de-

sired state. On the other hand, the validation set Posebytes will contain less

likely Posebit configurations. This means that when they are embedded, the

bit-of-interest does not necessarily have to be in the correct state so long as

the Posebyte generally matches its neighbours overall. Similarly, Figure 5.14

(bottom) demonstrates that two-question Conditional Posebytes maintain a

large margin over a two-question Mean Query.

Maximum likelihood estimation of Conditional Posebytes limits the poten-

tial variety of retrieved entries, as each Posebyte is mapped to a single location

on the embedding surface retrieving only holistically similar entries. Sampling

the conditional Gaussian distribution provides a mechanism for selecting mul-

tiple sub-optimal (yet highly-likely) bit configurations, each of which will map

to a unique location on the embedding surface. While Figure 5.15 illustrates

the benefits of sampling Conditional Posebytes for new-found visual variety,

Table 5.1 outlines the consequences, as any excursion away from the maxi-

mum likely Posebyte leads to a decrease in accuracy. This is to be expected,

as sampled Conditional Posebytes may end up mapping to locations on the

embedding surface where they maximally match their surroundings without

the bit of interest being present.
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Mahalanobis distance mean recall@1

0.1 73.1

1.0 71.1

10.0 64.7

Baselines mean recall@1

Conditional Pb 76.2

Mean Query 66.1

Table 5.1: Outward sampling of conditional Gaussian distributions leads to a

decrease in accuracy. The Mahalanobis distance is the multinomial equivalent of

the standard deviation. Each distribution was sampled 25 times at the designated

Mahalanobis distance, with a successful match being considered true if the retrieved

entry’s corresponding Posebit is set to the desired state.
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Figure 5.15: The first five retrievals for a Conditional Posebyte query generated

using both maximum likelihood and sampling. A green and red box indicates a

match and error, respectively. Top: The query results of a Posebyte completed using

Maximum Likelihood, given the prior “right shoulder is bent.” Bottom: Four queries

generated by sampling the conditional Gaussian distribution, given the same priors,

and the first five retrieval of each query, organized by row. Maximum likelihood

produces Posebytes well suited for semantically similar retrieval, but is limited to

retrieving entries surrounding a single location on the embedding surface, resulting

in holistically similar images. On the other hand, an aggregate of sampled Posebytes

provide increased visual variety, but at the expense of retrieval quality.
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Query-Aware Masks Querying the original holistically defined embed-

ding space presents the limitation that any one subset of conditions will not

lie at a singular location. For example, while “left knee is bent” is true for

someone curled up in a ball to avoid the aggression of an angry bear, or

someone standing mostly upright while ascending a set of stairs, these two

pose embedding vectors will be found at significantly different locations on

the embedding surface. As opposed to Conditional Posebytes which attempt

to deduce input examples which embed to locations optimal for a conditional

match, Query-Aware Masks instead propose a simple point-wise warping to

alter the embedding space such that the entries-of-interest lay closest to the

origin.

Figure 5.14 (top) outlines a comparison between Query-Aware Masks, Con-

ditional Posebytes and querying with the validation set (Mean Query) Pose-

bytes. Much like Conditional Posebytes, Query-Aware Masks outperform a

Mean Query by 13% to 21%, and display an improvement over Conditional

Posebytes by 2% to 6%. While Conditional Posebytes improve upon the Mean

Query by identifying optimal bit configurations for conditional matching in the

embedding space, Query-Aware Masks top Conditional Posebytes by avoiding

the holistically defined embedding space problem entirely. As illustrated in

Figure 5.14 (bottom), two-question Query-Aware Masks maintain a large im-

provement over both two-question Conditional Posebytes and a two-question

Mean Query.

The efficacy of Query-Aware Masks speaks to the natural tendency of pose-

aware embedding networks (and possibly neural networks as a whole) to inher-

ently factorize the embedding space, without explicit enforcement. Example

masks are illustrated in Figure 5.16, demonstrating that the positive and neg-

ative state of each query subset lives on a mutually exclusive, and possibly
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(a) (b)

(c) (d)

Figure 5.16: The Query-Aware Mask model learns a set of point-wise multiplica-

tions, for the purpose of warping the embedding space such that the desired entries

lay closest to the origin. The four examples of learned Query-Aware Masks included

here are (a) “is right shoulder bent?,” (b) “is left wrist near head,” (c) “is left knee

near right knee?,”and (d) “is left wrist beyond pelvis?,” with the top and bottom

rows indicating the “no” and “yes” condition, respectively. Each mask dimension

with a scalar of less than 0.3 is marked in red, to indicate the approximate subspace

of which the particular condition resides on. Note that the mask dimensions between

the “no” and “yes”” conditions appear to be almost entirely mutually exclusive. The

model was never trained to explicitly linearly factorize these concepts, and thus this

observation implies that the network implicitly learns to perform something akin to

a linear separation.
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Figure 5.17: The results of querying with the three types of language-primitives:

joint angle, joint distance, and joint relative-distance. The top and bottom row of

the retrieved images presents queries of Conditional Posebytes and Query Masks,

respectively. Some error cases are presented here, indicated in red, and are caused by

(from top to bottom) a joint angle near the threshold, occlusion, and foreshortening.

While it could be argued that perceptually these three images meet the question

criteria, the fact that a hard threshold must be defined, paired with the noise of the

underlying data, the occasional false negative is bound to occur.
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linear, sub-space.

Example single-question queries for both Conditional Posebytes (top row)

and Query-Aware Masks (bottom row) are presented in Figure 5.17, with both

success and failure cases.

Surprisingly, Query-Aware Masks do not arbitrarily order the dataset em-

bedding vector entries. While it should be possible for the model to place

embedding vectors on either side of some implicitly defined threshold, the net-

work instead appears to be sorting each entry by its degree of visual saliency.

Some example queries and their respective uniformly sampled entries are pre-

sented in Figure 5.18. One possible reason for this emergent phenomenon is

that the extreme cases, of any one state, are far less likely to be confused, as

opposed to those which reside closer to the defining threshold. For example, if

the threshold for “left elbow is bent” is defined as any angle greater than 115◦

then one should expect that an elbow bent at 180◦ is more visually apparent

and therefore easier to correctly identify than an elbow bent at 116◦.

5.4 Discussion

Pose-aware embedding networks have demonstrated their ability to inherently

learn pose, without an explicit joint localization signal. Their ability to accept

queries of either image or language for semantic similarity retrieval, and their

tendency to factorize pose-related concepts, speaks to the capacity of these

models to successfully disentangle pose information.

The proposed models, in a semi-supervised fashion, learn to disentangle

pose features from pose-invariant features, such as background, foreground ob-

jects, articles of clothing, and gender. Further, between PoseEmb, PoseEmb-

3D, and PoseEmb-Pro and PoseEmb-Pb, this architecture also demonstrates
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Figure 5.18: Query-Aware Masks appear to be taking advantage of the degree of

visual saliency present within each image. The embedding space is warped using

the appropriate mask and the embedding vectors are ordered by their distance from

the origin. For visualization purposes (avoiding the strong bias of certain bits) the

first three presented images, in each row, are uniformly sampled from the ordered

embedding vectors within the count of matching ground-truth entries, and the latter

two are uniformly sampled from the remaining sorted embeddings. That is, given

a 1:3 positive-negative ratio from a 1,000 sorted embedding vector dataset, three

are uniformly selected from the first 250, and two are uniformly selected from the

remaining entries.
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the ability to learn pose which is completely invariant to camera position and

orientation.

Finally, as demonstrated by Query-Aware Masks, pose-aware embedding

networks have an inherent tendency to factorize pose into smaller pose-related

components. Recall, the pose-aware embedding space is defined holistically

on a language-primitive pose descriptor with no enforcement of explicit fac-

torization. Yet, pose-aware embedding networks must be learning something

akin to a linear factorization, otherwise Query-Aware Masks, a simple linear

operation, would not work.

Given the stated evidence, this evaluation concludes that pose-aware em-

bedding networks do indeed learn to represent human pose.

88



Chapter 6

Conclusion

6.1 Thesis Summary

This thesis explored a family of pose-aware embedding networks defined over

a variety of metrics, providing the following four contributions.

First, pose-aware embedding networks have demonstrated their capacity

to disentangle human pose from raw pixel data. These models learn to be

invariant to background scenery, foreground objects, articles of clothing, and

gender, and with the correct metric can even learn to be invariant to camera

position and orientation. Further, the camera invariant Procrustes similarity

model demonstrates that removing the inherent camera perspective allows the

model to retrieve entries with pose descriptors more similar to the query, by

a modest 3mm on average.

Second, a multi-modal image-language embedding space was presented,

providing a mechanism for a more natural means of conducting queries. That

is, one may want to query for images using language, and thus with a language-

primitive pose descriptor query, semantically relevant images may be retrieved.
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Providing this additional language mode allows for a query approach which

outperforms its image counterpart, under the hit@k metric, by 3% to 14%.

Third, two approaches for circumventing the limitations of holistically

defined embedding spaces are presented: Conditional Posebytes and Query-

Aware Masks. Given that pose-aware embedding networks are learned using a

metric defined over the entirety of the pose descriptor, the learned embedding

space is definitionally holistic. That is, any query will return results which are

maximally similar to the query, overall. These two approaches circumvent this

problem from both the data-end and embedding-end of the model, by gen-

erating maximally likely language-primitive queries, and by learning a linear

subspace warping such that the desired entries lay closest to the origin, respec-

tively. Conditional Posebytes and Query-Aware Masks improve recall by 13%

and 17%, respectively, when compared to querying with existing Posebytes.

Fourth, a dataset specifically designed for training and evaluating pose-

aware embedding networks was constructed, featuring over 24,000 2D joint,

3D joint, and language-primitive annotated images.

These contributions were implemented, using the PyTorch [71] neural net-

work framework.

6.2 Future Work

There are three clear directions in which this work can be taken. First, extend-

ing the exploration of metric spaces to include video. Second, exploring po-

tential video based language-primitives, possibly as an extension to Posebytes

[72]. Third, determining if the tendency to linearly factorize relevant features

is a universal phenomenon, inherent to all similarity embedding spaces.

The proposed embedding networks were defined over a mean per-joint dis-
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tance and language-primitive Hamming distance. These metrics can easily be

extended into the spatiotemporal domain by simply averaging across the en-

tirety of provided frames. More so, poses in motion may be better understood

by considering a distance metric which accounts for joint dynamics. An early

exploration of video based pose embedding networks was conducted, however

time was a limiting factor. Thus, while the dataset proposed in this thesis

does provide a set of video clips from which video embedding networks may

potentially be trained, this thesis refrained from moving beyond images.

This thesis presented a multi-modal image-language network, capable of

retrieving images for queries of both images and language. The language was

defined as Posebyte [72] language-primitive descriptors, cataloging the inter-

joint relationship of an actor in an image. The logical next step would be to

expand the language set to account for human pose dynamics, a study which

has received little traction. Two approaches have previously been explored,

with [51] defining a set of language-primitives, some of which concisely de-

scribe motion for an entire video clip, such as “torso twist,” and [63], a set

of primitive-language descriptors remarkably similar to Posebytes [72], each of

which describes a part of an actor’s pose for a single still image. One possible

approach would be to consider the conjunction of joint-states. For example,

the spatiotemporal counterpart of “left elbow is (not) bent” could be “left el-

bow bends,” “left elbow straightens,” “left elbow stays bent,” and “left elbow

stays straight.”

This thesis observed that pose-aware embedding networks inherently learn

to linearly factorize pose-related concepts, without explicit enforcement. Query-

Aware Masks presented an approach, strongly inspired by conditional similar-

ity networks [88] and prototype learning [30], which collapses the relevant

embedding subspace such that the entries of interest lay closest to the origin.
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This was achieved using a simple linear transformation, implying that pose-

aware embedding networks not only learn to distinguish between pose-related

concepts, but also neatly factorize them, without explicit enforcement. One

obvious direction of exploration would be to determine if this emergent prop-

erty is universal. If it is the case that embedding spaces inherently learn to

linearly factorize the concepts which define their latent metric similarity, then

a “Query-Aware Masks”-style prototype learning approach may be applied

beyond pose-aware embedding networks.
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[63] M. Müller, T. Röder, and M. Clausen. Efficient content-based retrieval of

motion capture data. In ACM Transactions on Graphics, volume 24, pages

677–685. ACM, 2005.

[64] A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose

estimation. In European Conference on Computer Vision, pages 483–499.

Springer, 2016.

[65] A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature visualization:

Uncovering the different types of features learned by each neuron in deep

neural networks. Visualization for Deep Learning Workshop, International

Conference in Machine Learning, 2016. arXiv preprint arXiv:1602.03616.

[66] Q. Nguyen and M. Hein. The loss surface of deep and wide neural networks.

arXiv preprint arXiv:1704.08045, 2017.

[67] Q. Nguyen and M. Hein. Optimization landscape and expressivity of deep

cnns. In International Conference on Machine Learning, pages 3727–3736,

2018.

[68] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. Cor-

rado, and J. Dean. Zero-shot learning by convex combination of semantic

embeddings. In International Conference on Learning Representations, 2014.

[69] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face recognition. In

Proceedings of the British Machine Vision Conference, volume 1, page 6, 2015.

[70] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent

neural networks. In International Conference on Machine Learning, pages

1310–1318, 2013.

100



[71] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer. Automatic differentiation in pytorch.

In NIPS-W, 2017.

[72] G. Pons-Moll, D. J. Fleet, and B. Rosenhahn. Posebits for monocular human

pose estimation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2337–2344, 2014.

[73] F. Rosenblatt. The Perceptron, A Perceiving And Recognizing Automaton

(Project Para). Cornell Aeronautical Laboratory, 1957.

[74] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations

by back-propagating errors. Nature, 323(6088):533, 1986.

[75] J. Schmidhuber. Deep learning in neural networks: An overview. Neural

networks, 61:85–117, 2015.

[76] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding

for face recognition and clustering. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 815–823, 2015.

[77] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.

Grad-cam: Visual explanations from deep networks via gradient-based local-

ization. In Proceedings of the IEEE International Conference on Computer

Vision, pages 618–626, 2017.

[78] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional net-

works: Visualising image classification models and saliency maps. arXiv

preprint arXiv:1312.6034, 2013.

[79] K. Simonyan and A. Zisserman. Two-stream convolutional networks for action

recognition in videos. In Advances in Neural Information Processing Systems,

pages 568–576, 2014.

[80] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

101



[81] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for

simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806, 2014.

[82] S. Streuber, M. A. Quiros-Ramirez, M. Q. Hill, C. A. Hahn, S. Zuffi,

A. O’Toole, and M. J. Black. Body talk: Crowdshaping realistic 3d avatars

with words. ACM Transactions on Graphics, 35(4):54, 2016.

[83] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 1–9, 2015.

[84] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for

machine learning, 4(2):26–31, 2012.

[85] D. Tome, C. Russell, and L. Agapito. Lifting from the deep: Convolutional

3d pose estimation from a single image. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2500–2509, 2017.

[86] A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural

networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 1653–1660, 2014.

[87] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-

tiotemporal features with 3d convolutional networks. In Proceedings of the

IEEE International Conference on Computer Vision, pages 4489–4497. IEEE,

2015.

[88] A. Veit, S. Belongie, and T. Karaletsos. Conditional similarity networks.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2017.

[89] I. Vendrov, R. Kiros, S. Fidler, and R. Urtasun. Order-embeddings of images

and language. arXiv preprint arXiv:1511.06361, 2015.

102



[90] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural

image caption generator. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 3156–3164, 2015.

[91] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and

Y. Wu. Learning fine-grained image similarity with deep ranking. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 1386–1393, 2014.

[92] L. Wang, Y. Qiao, and X. Tang. Action recognition with trajectory-pooled

deep-convolutional descriptors. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 4305–4314, 2015.

[93] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards good practices for very

deep two-stream convnets. arXiv preprint arXiv:1507.02159, 2015.

[94] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool.

Temporal segment networks: Towards good practices for deep action recog-

nition. In European Conference on Computer Vision, pages 20–36. Springer,

2016.

[95] Y. Wang and G. Mori. A discriminative latent model of object classes and

attributes. In European Conference on Computer Vision, pages 155–168.

Springer, 2010.

[96] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convolutional pose

machines. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4724–4732, 2016.

[97] P. J. Werbos. Applications of advances in nonlinear sensitivity analysis. In

System Modeling and Optimization, pages 762–770. Springer, 1982.

[98] H. Wu, M. Merler, R. Uceda-Sosa, and J. R. Smith. Learning to make better

mistakes: Semantics-aware visual food recognition. In Proceedings of the ACM

Conference on Multimedia, pages 172–176. ACM, 2016.

103



[99] S. Xie and Z. Tu. Holistically-nested edge detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 1395–

1403, 2015.

[100] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,

and Y. Bengio. Show, attend and tell: Neural image caption generation with

visual attention. In International Conference on Machine Learning, pages

2048–2057, 2015.

[101] B. Yao, X. Jiang, A. Khosla, A. L. Lin, L. Guibas, and L. Fei-Fei. Human

action recognition by learning bases of action attributes and parts. In Pro-

ceedings of the IEEE International Conference on Computer Vision, pages

1331–1338. IEEE, 2011.

[102] J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson. Understanding

neural networks through deep visualization. In Deep Learning Workshop,

International Conference on Machine Learning, 2015.

[103] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-

works. In European Conference on Computer Vision, pages 818–833. Springer,

2014.

[104] W. Zhang, M. Zhu, and K. G. Derpanis. From actemes to action: A strongly-

supervised representation for detailed action understanding. In Proceedings

of the IEEE International Conference on Computer Vision, pages 2248–2255,

2013.

[105] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep

features for discriminative localization. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2921–2929. IEEE, 2016.

[106] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and K. Daniilidis. Sparseness

meets deepness: 3d human pose estimation from monocular video. In Proceed-

104



ings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 4966–4975, 2016.

105


