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ABSTRACT 

 

 

 

The thermal conductivities of materials (km) are important in many fields such as agriculture, 

mining and biomedical engineering. For example, better knowing the km values of biomaterials 

can be useful in radiofrequency ablation (RFA) to treat and/or cure tumor and cancer cells (Liu et 

al. [3]). Thermal conductivity probes (TCPs) have proven to be very attractive in obtaining 

relatively accurate km values due to their inline measurements, inexpensiveness, portability, and 

versatility. 

However, due to the vast number of designs and applications of TCPs, sources of errors with 

using the probes are diverse. As a result, in this thesis, possible sources of errors in TCPs (single 

needle) were investigated. The sources include probe sizes, heating powers, sampling media, 

selection of TCP materials, location of the thermocouple, axial heat conduction, thermal contact 

resistance, initiating time t0, decision to use heating or cooling period for km calculations and 

tolerance in the thermal properties of epoxy. 
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CHAPTER 1 - INTRODUCTION  

1.1 - Background 

According to Canadian Cancer Society [1], about 2 in 5 Canadians will develop cancer during 

their lifetime and about 1 in 4 Canadians will die of cancer. Also, 29.8% of the total deaths in 

Canada in 2009 was because of cancer. And radiofrequency ablation (RFA) is one method that 

can be used to treat certain types of cancers in the liver, bone, kidney, lung and other locations 

(Mayo Clinic [2]). In addition, Liu et al. [3] found that the thermal conductivity of biological 

tissues was important in understanding the performance of RFA on hepatic tumors. 

Furthermore, energy loss due to underground transmission lines can be severe. The losses can 

result from the thermal conductivity of the ground where the transmission lines are buried. When 

electricity passes through the lines, heat is generated. If the thermal conductivity of the 

surrounding ground is too low to dissipate the heat, the insulating layers of the cables will be 

damaged and water from the surrounding ground can penetrate through the insulating layers of 

the cables. As indicated by Aras et al. [4], water getting into the cables is the major factor that 

damages the transmission lines in the long run. Therefore, there are shorter lifespans for the 

transmission lines, it is more costly to maintain for the owner, and electricity is more expensive 

for the normal and frequent electricity consumers. 

Moreover, the thermal conductivity of the ground is important in designing the ground source 

heat pump (GSHP) systems. According to Lee et al. [5], GHSP systems can save 44% of energy 

consumption and corresponding greenhouse gas emissions from the air-source heat pumps and 

72% of those from the electric resistance heating with standard air-conditioning equipment. And 

the more accurately the thermal conductivity of the surrounding ground can be estimated, the 

better the GHSP system can be designed. 

Therefore, in order to obtain thermal conductivity of a material, there are many techniques to 

apply. Two of the most commonly used techniques are the guarded hot plate apparatus and 

needle probes as discussed below. 
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1.2 - Measuring techniques 

1.2.1 - Guarded Hot Plate Apparatus (GHPA) 

In 1910, the American Society of Refrigerating Engineers (currently known as American Society 

of Heating, Refrigerating, and Air-conditioning Engineers or ASHRAE) needed to understand 

more about heat transmission in insulation for designing purposes, so the quest to have a reliable 

method to measure thermal properties of insulating materials became popular. As a result, in 

1910, Hobart Cutler Dickinson from the National Institute of  Standards and Technology (NIST) 

of the U.S. Department of Commerce came up with the first GHPA for that purpose. Prior to the 

development of the GHPA, scientists and engineers used panels of insulation and passed warm 

air on one side and hot air on the other side of the panels, which exhibited many inconsistencies 

and errors. With the newly developed GHPA, Dickinson and Van Dusen in 1916 published the 

first important paper in the heat transmission field; the paper showed more accurate calculations 

of heat flow through air spaces and through 30 insulating materials [6]. In 1929, Van Dusen 

made the final version of the GHPA. In 1945, ASHRAE formally applied the GHPA as a 

standard testing technique. From the development of GHPA, data on thermal conductivities of 

insulating and building materials have significantly been more accurate in technical journals and 

handbooks, resulting in much better designs and reductions of operating costs of buildings and 

houses. Under the operating temperature range to which typical building insulation is exposed, 

inter-laboratory comparisons (which are measured from GHPA) agree to within ±3% of the 

values of thermal conductivity and thermal resistance of the insulating materials [7]. 

A GHPA is a measuring instrument that applies steady state conditions to obtain materials' 

thermal properties such as thermal conductivity and thermal resistance. This measuring method 

is known to be most accurate among other methods when very low thermal conductivity is to be 

measured [8]. There are many designs for a GHPA with different standards. One design of 

GHPA is shown in Fig. 1.1 below. 
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Figure 1.1. A GHPA design. (Adopted from [9]) 

In Fig. 1.1, the design follows the standards of ISO 8990:1994, EN 12939:2000, and EN 

12664:2001. The specimens are covered by hot, cold, and guard plates. The hot plate in the 

middle of the figure is a flat plate that is heated by external electrical wires and heat source. 

Specimens to be measured and experimented are placed next to the hot plate. Two flat plates 

(cold plates) that are not heated are put adjacent to the specimens. Four more flat plates are used 

to completely cover the specimens and are made of insulating materials to provide adiabatic 

conditions for the GPHA during the experiment. 

Thermocouples are placed on top of the hot and cold plates' surfaces that contact the specimens. 

Heat flows from hot to cold places. Under the conditions shown in Fig. 1.1, one dimensional heat 

flow is achieved. With known heat input Q (from the external energy source through the 

electrical wires), the exact thickness Δx and surface area As of the specimen, temperature change 

ΔT across the specimen (measured from the thermocouples), the thermal conductivity km of the 

specimen can be obtained from the following relationship from Fourier's law (p. 18 of Cengel 

[10]) for bi-directional heat conduction: 

                                                                        
Δx

ΔT
k

A

Q
m

s


2

                                                   (1.1) 
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Fig. 1.2 shows another GHPA design. Similar to the design shown in Fig. 1.1, the specimen is 

positioned between the hot and cold plates while the insulating guard plates provide adiabatic 

conditions during the experiment. Thermocouples are placed on the surfaces where the hot and 

cold plates contact the specimen. However, instead of bi-directional heat flow as in Fig. 1.1, the 

design in Fig. 1.2 makes one directional heat flow. This design is not well-balanced because the 

heat at the interface between the guard plate and the hot plate can accumulate after the 

experiment has been run for a long time. 

 
Figure 1.2. Another GHPA design. 

With known heat input ΔQ (from the external energy source through the electrical wires), exact 

thickness Δx and surface area As of the specimen, temperature change ΔT across the specimen 

(measured from the thermocouples), the thermal conductivity km of the specimen can be obtained 

from the following relationship from Fourier's law (p. 18 of Cengel [10]): 
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However, as indicated by Tarnawski et al. [11], the GHPA experiment is very time-consuming 

(to reach steady-state conditions) and requires a higher temperature difference between the 

surfaces of the hot and cold plates. In addition, the GHPA cannot be used on the field where soil 

samples are about to be measured in-situ because of its relatively long size. 
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1.2.2 - Thermal Conductivity Probe (TCP) 

Thermal conductivity probes, derived from an idealized transient heat transfer model as shown in 

Appendix A, are also called needle probes, resulting from the probes' sizes being relatively 

negligible compared to the size of the material the probes are used to measure. This transient 

method, as stated by Nagasaka et al. [12] and Xie et al. [13], can experimentally eliminate 

convective error of the fluid flowing around the probe and the data obtained can be more reliable 

than those from the GHPA using steady-state conditions. 

The TCP for measuring the thermal conductivity of materials was originated by Stalhane and 

Pyk in 1931 [14]. This method was further used by Van der Held and Van Drunen to obtain the 

thermal conductivities of many liquids. Generally, this method (as schematically shown in Fig. 

1.3) contains a very small heating wire which is heated by passing electricity through it and acts 

as the central heating source. The heat from the wire is assumed to dissipate radially and is then 

sensed by thermocouples. 

                         
Figure 1.3. Schematic drawing of a TCP experiment. 

Although the idea of the TCP appeared in 1931, the first relatively small probe (made of 

aluminum with dimensions of Ø3/16" × 19") started in 1953 by Hooper and Chang [15] with 

reproducibility within ±0.5%. After that, in 1959, Carslaw and Jaeger [16] developed a classical 
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mathematical solution to obtain the thermal conductivity of the sample being measured as 

follows: 
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For a chosen temperature T(r,t) at time t0, the thermal conductivity of the sampling medium can 

be calculated from: 
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where slope is the slope of linear portion that is typically as shown in Fig. 1.4. 

Typically, the experimental results obtained from a TCP can be shown as in Fig. 1.4 where 

   0,, trTtrTT   and  0/ln tt , which are from readings of the thermocouple, make a 

relatively straight line. From the slope of the line, km can be calculated. 

                                   
Figure 1.4. Typical graph (from TCP measurement) of temperature difference vs. natural 

logarithmic time ratio for line heat source theory. 

Since the appearance of Eq. 1.3, many researchers have continued to further develop the concept 

of TCP to many different TCP designs. 
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1.2.2.1 -Single-Needle Probe 

One design of the TCP by De Vries and Peck [17] is shown in Fig 1.5. A heating wire is covered 

by capillary glass. The glass is embedded in a paraffin wax. One side of the wax contains the 

constantan wire and copper wire. The wax is embedded in a Monel gauge. At one end of the 

gauge lie an insulating cover and a plastic socket to hold the gauge. 

 
Figure 1.5. Radial and longitudinal cross sections of a TCP. 1, Monel gauze (filled with paraffin 
wax); 2, glass capillary; 3, paraffin wax; 4, thermojunction; 5, heating wire; 6, constantan wire; 

7, copper wire; 8, insulating cover; 9, plastic socket. (Adopted from [17]) 

Another TCP design is shown in Fig. 1.6. Eletrical heating coils are used. The coils surround a 

rod made by silicon and rubber. The coils are then sealed as shown in Fig 1.6. A thermistor 

temperature sensor is inserted in the middle of the silicon rubber rod. The rod is about 20 cm 

long. 

 
Figure 1.6. Another TCP design. [18] 

In Fig. 1.7, a line heat source made of a heating wire is embedded in epoxy and steel. The 

heating wire has various heating powers and is about 5 cm long. The thermocouples are inserted 

in the epoxy layer. 
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Figure 1.7. TCP used in this thesis. 

1.2.2.2 - Multi-Needle Probe 

A multi-needle probe is the probe mentioned in Section 1.2.1 but has more than one needle 

altogether as shown in Fig. 1.8 as an example. According to Bristow et al. [19], this type of TCP 

employs heat-pulse technology to obtain the thermal properties and water content. as well as the 

electrical conductivity of the sampling porous medium. 

 
Figure 1.8. A multi-needle TCP design.(Adopted from [19]) 

In Fig. 1.8, there are four needles in the TCP. Two needles are used for measuring the medium's 

thermal properties and water content while the other needles are for measurements of the 
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electrical conductivity of the sampling porous medium. The sampling porous medium's thermal 

conductivity, thermal diffusivity, and heat capacity are obtained as in the case of single-needle 

probes. The water content of the sampling porous medium can be calculated from Eq. 1.5, 

assuming that the thermal properties and amount of the other constituents of the porous medium 

are known. 

                                ..... mineralsmineralspwaterwaterpairairpmp cccc                            (1.5) 

The TCP construction in Fig. 1.8 provides an equivalent 4-electrode Wenner array as shown Fig. 

1.9. The bulk electrical conductivity of the sampling porous medium is can also be obtained [19].  

 

Figure 1.9. Schematic outline of Wenner array of TCP design in Fig. 1.8. [19] 

Being cheaper and more portable than GHPA and able to measure granular/liquid materials in-

situ, TCPs are selected. And the single-needle TCP shown in Fig. 1.7 is focused because it is 

cheaper to manufacture and more convenient to use and carry. Also mathematical models can be 

made to compare with the experimental data from Dr. Tarnawski and research staff in St. Mary's 

University in Halifax, Canada. 

 

1.3 Objectives 

The objectives of this research are: 
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1. To develop two new and improved equations to enhance the accuracy of Eq. 1.3a. 

2. To theoretically study many possible sources of errors when a single-needle probe is 

used, such as probe sizes, the heating power, the TCP materials, the location of the 

thermocouple pair inside the TCP, and the sampling medium being measured. 

3. To experimentally explore how t0 can affect the calculated thermal conductivities and 

whether the heating or cooling period of TCP produces more accurate thermal 

conductivity values of the sampling media. Also, a method is developed to estimate the 

thermal contact resistance (TCR) between the TCP and the sampling medium. 

Eq. 1.3 (or the classical solution by Carslaw and Jaeger [16]) has been reported as erroneous by 

many researchers. This thesis aims to improve the solution by removing many of the 

assumptions and simplifications that are used to derive Eq. 1.3. 

There are many possible situations or designs that one can come up with for TCP measurements. 

First of all, the TCP can be made of many possible sizes as desired. Secondly, any material can 

be used to manufacture TCPs. Thirdly, the location of the thermocouple to sense the temperature 

rise of the probe can be put anywhere as wanted. Last but not least, any material (soft, granular, 

or liquid) can be taken to measure its thermal conductivity. All of the situations mentioned can 

have errors that the measurer may or may not be aware of. Due to the time, effort, and funding 

constraints of this research, the situations can only be studied theoretically and numerically to 

analyze possible errors that lie within each situation. As a result, this thesis explores possibilities 

that can improve the accuracy of TCPs using numerical analysis. 

Traditionally, researchers have been applying Eq. 1.3 heavily by randomly picking a value of t0 

for their thermal conductivity calculations. The random selection of t0 can cause errors without 

the knowledge of the researcher(s). In addition, researchers have had controversies over which 

period (heating or cooling of TCP) should be used to obtain more accurate km. This research will 

work on and help clarify the controversies. Moreover, the thermal contact resistance (TCR) has 

not been popularly studied yet. The literature has a limited amount of works on the TCR, so this 

research will add to literature more insights into the TCR. 
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1.4 - Thesis Outline 

Chapter 2 provides insights to the possible errors that researchers have discovered. The errors 

include the assumption of isotropic materials, the neglect of the size and construction of the TCP, 

the lack of knowledge about bulk flow, radiation effect, and thermal contact resistance, and the 

approximation from Eq. 1.3a to Eq. 1.3b. 

Chapter 3 shows the necessary equations that are used for possible errors mentioned in Section 

1.3. The equations are the classical solution using line heat source theory, the inclusion of TCP 

materials but with perfect contact between TCP and sampling medium, and the equation that 

considers the TCP materials and the contact resistance layer. The first main important equation is 

the classical solution while the other two main equations are developed to improve the accuracy 

of the classical solution. As there are many equations in this research, the three main equations 

are grouped at the end of chapter 3 so that they can be referred to in subsequent chapters. 

Chapter 4 contains numerical comparisons between the classical solution and the perfect contact 

equation with finite element heat transfer software packages such as FEHT and COMSOL. 

Simulations of the heating period of TCP are run in the software packages and the two equations 

are used to compute numbers. The results from simulations and the numbers are compared. The 

comparisons can become guidelines for future productions of TCPs or can be verified for better 

development of TCPs. This chapter explores the second objective in Section 1.3. 

Chapter 5 lists the experimental apparatus and procedures that are used to produce data to be 

studied in chapter 6, which shows the third objective in Section 1.3. 

Chapter 6 analyzes the experimental data which are used to experimentally study the errors and 

variations of the calculated km. Also, theoretical km errors are included. 

Chapter 7 summarizes the contribution of this thesis, provides concluding remarks, and makes 

recommendations for future enhancements of TCP designs. 
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CHAPTER 2 - LITERATURE REVIEW 

Thermal conductivity probes (TCPs) are currently very popular in many fields such as 

agriculture, mining and ground source heat pump systems in buildings. Much research has been 

undertaken to investigate as well as to improve TCPs. Because of the vast amount of information 

available, one may feel overwhelmed and find it difficult to start using or developing TCPs. 

Also, the applications of TCPs are so various that one may not realize that using TCPs can 

produce relatively more accurate results in many cases such as inline measurements. However, 

because designing and applying the TCPs are highly subjective and extensive, errors from the 

designs and applications of TCPs are numerous but not all reviewed and studied. Therefore, in 

this chapter, the major characteristics of TCPs are reviewed first. Secondly, the significance and 

importance of thermal conductivities of materials are briefly described. Thirdly, typical works 

from other researchers are mentioned. Fourthly, possible errors in TCP measurements from other 

researchers are reviewed. Finally, studies in the literatures that are found missing are mentioned. 

 

2.1 - TCP Major Characteristics 

As already briefly described in Subsection 1.2.2, a TCP is a transient method that has a hot-wire 

in the middle and has been widely used for determining the thermal conductivities of fluids with 

a relatively good accuracy [12], [13]. Because the probe generally does not produce high 

temperature differences during measurements, the convective error is eliminated and the 

experimental data obtained are more reliable than those from the steady-state GHPA (mentioned 

in Subsection 1.2.1) as Nagasaka et al. [12]  and Rahman [20] realized.  

The main characteristic of a TCP is from the thermocouple that is embedded inside the TCP and 

used to measure the temperature response of the probe as it is heated or cooled. Moreover, the 

heating time of a TCP can be varied as desired. Tarnawski et al. [21] heated their TCPs (whose 

outer diameter was ~1.06 mm) for 120 s while ASTM [22] indicates that heating small TCPs 

(whose outer diameters are < 2.5 mm) for 30 to 60 s is sufficient to accurately measure the 

thermal conductivity of the sampling medium. The discrepancies in the heating time of the TCP 
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will be later investigated whether it is better to use shorter or longer heating time. In addition, the 

temperature responses from the heating and cooling periods can produce different thermal 

conductivity values. Hence, it is worth finding out why they are different and which one gives 

more accurate values of the thermal conductivities. 

 

2.2 - TCP Applications 

Due to its versatility, simplicity, and the fact that a TCP generally eliminates moisture loss and 

migration within the material, the TCP has gained much popularity in food and biomedical 

engineering applications (Murakami et al. [23] and Lund et al. [24]). Knowledge of the thermal 

conductivities of biological materials such as biotissues and foods is of great importance. In the 

food industry, the thermal conductivity of food is important to predict and control the heat flux 

during the processing of the food, such as cooking, frying, or drying, for higher qualities (Chaves 

and de Almeida [25]). In the biomedical field, the thermal conductivity of biological tissues is of 

great importance in treating and curing diseases such as tumors and cancers (Liu et al. [3]).  

As a result, Yi et al. [26] applied the TCP method and measured the thermal conductivities of pig 

livers. The researchers first simulated the temperature rise of a TCP using COMSOL and 

calculated the theoretical thermal conductivity. They then bought two pig livers from a local 

slaughter house and measured their thermal conductivities with a TCP based on the line heat 

source theory (i.e. Eq. 1.3). A radio frequency (RF) ablation system, Cool-tip RF applicator 

(Valleylab, Boulder, CO), was applied to provide RF treatment to the biomaterials for 12 

minutes. The thermal conductivities of the pig livers were re-measured to examine the influence 

of RF ablation on biomaterials. Yi et al. found that RF ablation slightly increased the thermal 

conductivities of the biomaterials, which means that RF ablation causes animal tissues to conduct 

more heat and warm up faster. Thus, the tissues can die because of excessive heat if the 

researchers provide a certain amount of RF ablation;  an excellent technique to treat tumor and 

cancer cells in human bodies. 
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Furthermore, Liang et al. [27] applied the TCP method to get the thermal conductivities of fresh 

pig meat, pig liver, pig kidney, and snake heads before and after refrigeration. Again, the line 

heat source (or Eq. 1.3) was used to obtain the thermal conductivities of the biomaterials. Liang 

et al. noted that different structures of meat gave different thermal conductivities because of 

inconsistent lean/fat ratios. Also, the researchers realized that thermal conductivities of the 

materials at room temperature are not influenced by the refrigeration processes. In other words, 

freezing the materials and defrosting them to room temperature do not affect the biomaterials' 

thermal conductivities. In addition, the water content was found to be important for the thermal 

conductivities of the biological tissues, which, together with Yi et al.'s results [26], lead to better 

knowledge of how much RF ablation should be used on the individual basis. 

Moreover, Chaves and de Almeida [25] obtained the thermal conductivities of cream milk, 

ketchup and condensed milk with a TCP which was a hypodermic needle with dimensions of 

Ø1.50 mm × 100 mm. The researchers developed a new TCP that was 10 times cheaper than the 

commercial ones in the Brazilian market. Chaves and de Almeida applied the microcontroller 

technology from BASICSTAMP ® for the internal processor of their TCP. The microcontrollers 

processed the temperature readings from the TCP using Eq. 1.3 and output the thermal 

conductivity value to a LCD screen. A piezo speaker was also included to alert the experimenters 

when the thermal conductivity was calculated. The researchers put the microcontrollers, LCD 

screen, and speaker inside a metal box. The whole TCP construction is shown in Fig. 2.1. The 

TCP was then calibrated in glycerin at 25±0.01oC and found to be in excellent agreement (from 

+1.4% to -2.1%) with the published data by a Brazilian certified lab. 
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Figure 2.1. A TCP constructed by Chaves and de Almedia. (a): Device view, (b): Probe details, 
(c): Probe dimensions. (Adopted from [25]). 

Another popular field for TCPs is with granular materials such as soils and sands. In recent 

years, the high consumption rate of non-renewable energy sources such as fossil fuels and 

natural gases has created a huge amount of green house gases and caused quick depletion of non-

renewable energy sources. So renewable energies are being explored as alternative energies to 

reduce the green house gas effects. Ground source heat pump (GSHP) systems are so attractive 

being an alternative energy source of high efficiency that millions of them have been installed 

globally as indicated by Lund et al. [28]. In designing GSHP systems, the thermal conductivity 

of the surrounding ground plays a significant role because the thermal recovery of the ground is 

highly dependent on its k-value (Sufen and Shang [29]). The reason is GSHP systems take heat 

from or to the ground for heating or cooling purposes inside a building, which can create annual 

thermal imbalances in the ground (Trillat-Berdal et al. [30]). For example, drying of the ground 

Switch 
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surrounding the ground heat exchangers may happen if excessive heat is put into the ground, 

leading to low soil thermal conductivity and further deteriorating the performance of the GSHP 

systems. On the contrary, permafrost of the underground may occur if excessive heat is taken 

from the ground. To avoid such failures, appropriate sizing of the ground heat exchanger is 

important, which depends on the thermal conductivity in the ground. As a result, the more 

accurately the thermal conductivity of the ground is known, the better the GSHP system can be 

designed to sustain the surrounding environment.  

Consequently, Tarnawski et al. [21] built TCPs and studied the thermal conductivities of soils 

with a wide range of saturation. The TCPs are Ø1.06 mm × 55.0 mm and were validated against 

agar gel (1% agar and 99% water). Ottawa sands (C190 and C109) and Toyoura sand with 

saturation ratios from 0.0 to 1.0 were measured and their corresponding thermal conductivities 

were calculated using the line heat source theory. The researchers found that the sands at fully 

dry and fully saturated conditions agreed with data from the steady state GHPA while sands in 

the partially saturated region exceeded the steady state data. Tarnawski et al. [21] also believed 

that the thermal conductivities obtained from the TCP measurements are more reliable than those 

from the steady state GHPA because of low heating and relatively much shorter heating time of 

the TCP; hence there is little moisture migration inside the sands. 

Moreover, King et al. [31] with a TCP studied the variation of the thermal conductivities of the 

grounds in Central England on different days. The researchers went to Ecton, Stafforshire and 

Whatstandwell, Derbyshire to make field measurements by inserting a TCP (with different 

heating powers and a handle of 1.5 m long) into the grounds. While in the ground, the TCP was 

rested for 5 minutes and heated for 10 minutes. Because of geological variations of the grounds 

on different days, King et al. recommended using the geometric mean (as defined in Eq. 2.1) of 

the thermal conductivity (from different measurements) as the best estimate for GSHP system 

designs at small sites. 

                                                               n
mnmmmGM kkkkk /1

321 ...                                          (2.1) 

where kGM is the geometric mean thermal conductivity and n is the number of measurements. 
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2.3 - Possible Errors with TCPs 

The majority of thermal conductivity measurements using TCPs in the literatures is calculated 

from Eq. 1.3b and Eq. 1.4 (which has been referred to as the classical solution of TCP) with the 

following assumptions and simplifications (A/S): 

1. Homogeneous material with constant properties. 

2. TCP size is much smaller than the sampling medium's, so the medium can be treated as 

infinite. 

3. TCP's construction is neglected. 

4. No bulk flow in the medium and no radiation effects. 

5. The length-to-diameter ratio of the TCP is greater than 50. 

6. Thermal contact resistance is ignored.  
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With the above assumptions and simplifications in the derivation of Eqs. 1.3b and 1.4, many 

researchers have reported errors and uncertainties. The coming Subsections will elaborate what 

have been reported as errors and uncertainties of using Eqs. 1.3b and 1.4 during TCP 

experiments. 

2.3.1 - Error Associated with Homogeneous Material Assumption 

The properties of a material are mildly to highly dependent on the temperature at which the 

material is. The greatest property changes can be easily observed in gaseous materials such as 

air. However, the properties of solids do not change as sharply as those of gases when the 

surrounding temperature varies. Cengel [10] showed that the thermal conductivity of AISI304 

stainless steel is 12.6 W/m·K at 200 K while it is 16.6 W/m·K at 400 K. Also, Wu et al. [32] 

reported that his team's epoxy composite (Boron-free glass fiber reinforced 

isopropylidenebisphenol bis(2-glycidyyloxy-3n-butoxy)-1-propylether/triglycidyl-p-

aminophenol) had a thermal conductivity of 0.425 W/m·K at 280 K and 0.440 W/m·K at 300 K. 

In addition, the densities and specific heat capacities of the solids do not vary much with 
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temperature (below melting point). As a result, for a temperature change of up to about 4 K 

during TCP experiments, the thermal properties of the TCP materials (stainless steel and epoxy) 

can be assumed constant and A/S #1 (assumption/simplification #1) is almost completely true.  

2.3.2 - Error Associated with Probe Size 

Every TCP has finite dimensions with various sizes that have been used. Yi et al. [26] applied a 

TCP of 1.5 mm in diameter to measure pig livers' thermal conductivities while Teka Inc. [33] 

produced a TCP (Field VLQ) of 6.0 mm in diameter to make measurements of soils. With the use 

of Eqs. 1.3b and 1.4, the size of the TCP is ignored, i.e., the TCP size is assumed to have 

insignificant effects in the measuring processes. However, as Bristow et al. [19] and Cheng  et 

al. [24] indicated, bigger TCPs produce higher errors. Murakami et al. [23] even suggested 

making the TCP as small as the application and fabrication permits, which means making a 

customized probe for a particular measurement. But the suggestion poses high costs for 

manufacturing customized TCPs. Consequently, in the A/S #2 of using Eqs. 1.3b and 1.4, there 

lurks unknown uncertainties from the size of the TCP and may render the thermal conductivity 

of the sampling medium mildly to highly inaccurate. 

Moreover, the diameter ratio of the TCP and the sampling medium (rs/rm) during a TCP 

experiment in a lab can produce edge effects that lower the accuracy of the calculated thermal 

conductivity. Murakami et al. [23] used a potato cylinder to clarify the possible error. Fresh 

potatoes were bought, peeled, and shaped into cylinders with diameter of 7.0 mm and length 

greater than 50 mm. The thermal conductivity of the potato cylinder was found to be 0.56 

W/m·K. The cylinder was then exposed to environments of air (kair = 0.0244 W/m·K) and stirred 

water (k >> 0.6 W/m·K). In the two environments, the heat reached the cylinder wall after 40 s. 

For the case of the air environment, the linear portion of the t-T plot (e.g. Fig. 1.4) shifted up and 

was 0.7oC more than normal, indicating that convection started after 40 s and acted like an 

insulator to reduce the heat flow rate of the cylinder. Consequently, the calculated km would be 

lower than the case of an infinite sampling medium. Meanwhile, in the stirred water environment 

(engaged by a magnetic stirrer), the linear portion of the t-T plot moved downwards, causing 

calculated km to be higher than the case of an infinite sampling medium. 
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2.3.3 - Error Associated with Neglected TCP Construction 

Regardless of which materials are used to make the TCP, Eq. 1.3 still treats them as insignificant 

in A/S #3. In other words, making the TCP from epoxy and steel would be as insignificant as 

from silica gel and copper or from any other combination of materials. This assumption and 

simplification of Eq. 1.3 may lead to inaccurate results. The reason is that when the thermal 

properties of the TCP materials are different from those of the sampling medium, the thermal 

conductivity of the sampling medium can become less accurate  from the following error 

estimation equations (Elustondo et al. [34]): 
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The researchers [34] realized that β can be minimized if the materials to construct the TCP are 

appropriately selected. However, the selection criteria were not clearly mentioned. 

2.3.4 - Error Associated with Bulk Flow and Radiation 

When the thermal conductivities of soils with some degree of saturation (i.e., soils that contain 

some water or liquid) are determined using Eq. 1.3, the water or liquid migration is not 

considered (A/S #4). However, the neglect has been reported problematic even though Hooper 

and Lepper [35] showed the TCP induces less moisture migration within the sampling medium 

than the GHPA. Brandon and Mitchell [36] mentioned that when the pores of the soil are several 

millimeters across (or the sand particles are of gravel size or larger), convection heat transfer can 

occur. The problem of moisture migration in soils and sands was also addressed by many other 

researchers such as Radhakrishma [37] and Adams and Baljet [38]. Nevertheless, because a TCP 

is usually heated up to 5oC more than the ambient (or initial) temperature, the radiation effect can 
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be ignored. Searches in the literatures provide no report on the problems caused by radiation in 

TCPs with low heating powers (10 W/m or less). As a result, A/S #4 may not be completely valid 

for a medium with moisture or convective flow. 

2.3.5 - Error Associated with TCP Length-to-Diameter Ratio 

When a TCP is heated along its axial direction, heat conduction can happen radially and/or 

axially inside the TCP and the sampling medium. So the assumption of sole radial heat 

conduction in deriving Eq. 1.3 may not be accurate. Blackwell [39] thought of the possible error 

with axial thermal conduction and came up with the following equation (where z is the height 

variation along the length of the TCP): 
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Eq. 2.3 shows how the temperature varies along the TCP. The heat conducted axially will appear 

in ∆Y, the relative error due to axial flow, where YY  1 . Blackwell [39] then assumed some 

arbitrary values to estimate how long the TCP should be to have relatively small axial heat 

conduction. It is very unlikely that
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hollow brass probe of rs = 1.25" and rt = 0.125", and LR = 25, σ = 0.4, then the percentage 
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change in the axial heat conduction %7.0Y . If LR = 60, %051.0Y . Because of the 

complexity and many unpredicted variables of Eq. 2.1, researchers, such as Tarnawski et al. [11] 

and Bilskie et al. [40] have believed that the length-to-diameter ratio of 50 of the TCP will 

produce axial heat conduction of less than 0.01%. The ratio is highly probable but not error free 

as in A/S #5. 

2.3.6 - Error Associated with Neglected Thermal Contact Resistance 

In practical situations when inserted into a soil sample, the TCP can make a big to very small gap 

between it and the sampling medium. The gap creates a thermal contact resistance (TCR). 

However, during the derivation of Eq. 1.3, the TCR was ignored. Using numerical simulations 

and theories, researchers have found out that there are differences in the temperature response at 

the thermal sensor location with the TCR being considered. Goto and Matsubayashi [41] 

mentioned the following equation for the inclusion of the TCR: 
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With Eq. 2.4 and by varying the parameters in the equation, Goto and Matsubayashi [41] 

simulated temperature responses. The responses showed that the more the heat capacity of the 

sampling medium decreased, the less the temperature rise was. Also, when h was lowered, the 

temperature rise decreased. The researchers went on to experimentally explore how estimating km 

could affect h. Goto and Matsubayashi [41] found that a ±5.0% estimation error of km could lead 

to a ±100% error predicting h. In other words, the TCR had very little influence on obtaining the 

thermal conductivity of the sampling medium which agrees well with the TCR explored in this 

thesis. 
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Liu et al. [42] experimentally studied the thermal contact resistance of TCP by immersing a TCP 

to agar-water and inserting the TCP to air-dried Great Sand Hill sand. The heating power was 5 

W/m and the following empirical formulas were applied to obtain Hc for very small time              

( msrt /2 ): 

                                                         5.2
321

2
211 tZZZtZZtZtT                                            (2.5) 
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where Z1, Z2 and Z3 are fitting parameters which are obtained by fitting Eq. 2.5 to the 

temperature response of the TCP. 

By using Eq. 2.5 and 2.6 with experimental data and a TCP of Ø1.27 mm, Liu et al. obtained Hc 

= 113 W/m2·K for the sand and Hc = 1056 W/m2·K for the agar. With a TCP of Ø3.175 mm, Hc = 

841 W/m2·K for the sand and Hc = 1196 W/m2·K for the agar. The thermal contact conductance 

values are intuitive. However, when the method used by Liu et al. [42] was applied to the TCP 

experimental data from Tarnawski et al. [21], no unique solution could be obtained. The reason 

can be that only some sampling materials and TCP designs would fit the empirical equations 

(Eqs. 2.5 and 2.6). Also, the TCP designs of Liu et al. [42] and of Tarnawski are quite different. 

In addition, the samples used by the two groups of researchers were not the same.  

Moreover, Murakami et al. [23] showed that the TCR only causes the t-T plot (e.g. Fig. 1.4) to 

shift up but does not change the slope of the plot which is used to calculate km using Eq. 1.3.  

Consequently the km value is not affected or has few disturbances. The result from Murakami et 

al. [23] agrees well with Elustondo et al. [34] (Eq. 2.2a) and this thesis in terms of the TCR. 

2.3.7 - Error Associated with Asymptotic Approximation 

Besides the edge effects mentioned earlier, when approximating the exponential integral function 

to the natural logarithmic function in Eq. 1.4, there could be errors from the selection of "warm-

up" heating time of TCP t0. The parameter t0 is the time where researchers initiate the calculation 

of the thermal conductivity of the sampling medium from the temperature response. This 
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parameter has been subjective. ASTM [22] recommends ignoring the temperature data of the 

first 10 to 30 s with probes of diameters of 2.5 mm or less. No explanation was given to why the 

time interval was selected. Tarnawski et al. [11], [43], [21] started calculating the thermal 

conductivities for their temperature data from 20 s but did not elaborate why they chose the time. 

In addition, searching through the literatures did not provide any research on how choosing the t0 

can affect the accuracy of the calculated thermal conductivity. 

2.3.8 - Other Reported Error Sources 

In addition to the errors from the assumptions and simplifications during the derivation of Eq. 

1.3, there have been many other reported sources of errors during a TCP experiment. Examples 

include the following studies from researchers: 

1. For a larger TCP, longer heating time is suggested to reduce the errors (Strambu [44]). 

2. In the study of Xie and Cheng [13], the thermocouples inside the TCP are error sources 

as they have a thermal mass and cause unavoidable heat loss and asymmetry. In addition, 

systematic errors of the TCP components can cause trouble. Because everything has a 

tolerance during the manufacturing processes, the components of the TCP do not always 

perform consistently. As a result, the TCP can sometimes malfunction. 

3. Liang et al. [27] mentioned that for  tr ms 2 , the surface effect (due to factors such as 

dirt or stain from previous experiments or surface micro-corrosion) would be less than 

0.1%. In addition, the TCR would be eliminated by 0TT  . ∆T0 is the temperature rise 

at time t0 while ∆T is the temperature rise after time t0 as read by the thermocouple. 

4. Yi et al. [26] indicated that ∆T is more sensitive to km than to αm.  

5. Asher et al. [45] found that nonlinear curvature in the t-T plot at early time was due to the 

heat capacity of the TCP while that at late time of the plot was because of the axial end 

effects and maybe convection. Also, lowering the power input and increasing the 

measuring time would make Eq. 1.3 more accurate for experiments with tertiary butyl 

alcohol. 
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2.4 - Summary 

A typical construction of TCPs is shown in Figs 1.3 and 1.7. Basically, a TCP is made of a 

stainless steel hypodermic tube with epoxy filling the inner space. Within the epoxy layer, there 

lie an electrical heating wire and a thermocouple. The steel tube provides inserting strength while 

the epoxy acts as the buffer layer that protects the heating wire and the thermocouple from 

shocks during transportation of the TCP. During a TCP experiment, electricity is passed through 

the heating wire and the thermocouple senses the temperature response. The heating duration and 

strength are subjective. Using the temperature response, the thermal conductivity of the sampling 

medium can be calculated by Eq. 1.4. 

Moreover, typical applications of the TCPs are briefly reviewed. The applications include 

measuring the thermal conductivities of: 

1. Biomaterials such as pig livers and snake heads (Yi et al. [26] and Liang et al. [27]). 

Combining the results of Yi et al. [26] and Liang et al. [27], better treatments of tumors 

and cancers can be made to treat people on an individual basis when the thermal 

conductivities of the biomaterials are known more accurately. 

2. Foods for better processing procedures and higher quality (Chaves and Almeida [25]).  

3. Granular materials such as soils and sands (Tarnawski et al. [11] and King et al. [31]). 

Better knowledge of the thermal conductivity of the ground results in better performance 

of ground source heat pump (GSHP) systems (Sufen and Shang [29]). 

However, most TCP measurements apply the classical solution or line heat source theory        

(Eq. 1.3) to calculate the thermal conductivity. The extensive use of Eq. 1.3 for various TCP 

designs has made many researchers question the accuracy of the equation. From the seven basic 

assumptions and simplifications (A/S) for the derivation of Eq. 1.3, studies have been made to 

verify the validity of the A/S. The studies showed that: 

1. The assumption of constant-property materials may be violated depending on the 

materials being used to construct the TCP. From Cengel [10] and Wu et al. [32], it can be 

seen that the thermal conductivities of AISI 304 stainless steel and an epoxy composite 
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vary weakly with temperature. In addition, because TCP experiments generally do not 

involve high heating power (usually less than 5oC temperature rise), the A/S #1 can be 

safe to apply to stainless steel 304 and epoxy to TCP, according to AS1. 

2. The TCP size may create troubles. Bigger probes produce higher errors (Bristow et al. 

[19], Cheng et al. [24] and Murakami et al. [23]). Also, when the sampling medium is put 

in a container whose radius is not big enough to mimic an infinite medium, edge effect 

can occur (Murakami et al. [23]), resulting in less accurate km measurements. 

3.  When the thermal properties of a TCP are different from those of the sampling medium, 

errors can happen. Elustondo et al. [34] indicated that with the proper selection of the 

TCP materials, the error of the calculated km can be reduced. However, the selection 

criteria were not clearly mentioned. 

4. The assumption of no bulk flow inside the sampling medium may be violated for granular 

materials such as sands and fluids (Brandon and Mitchell [36], Radhakrishma [37], and 

Adams and Baljet [38]). 

5. In reality, when a TCP is heated, there exist radial and axial heat conductions. Blackwell 

[39] realized that for probes with the length-to-diameter ratio greater than 25, the error of 

neglecting the axial heat conduction is less than 0.1%.  

6. The thermal contact resistance (TCR) at the TCP-medium interface was neglected in Eq. 

1.3, which may cause troubles. Fortunately, researchers found that the TCR does not have 

much effect on km (Elustondo et al. [34], Murakami et al. [23], and Liang et al. [27]). The 

results from the researchers agree well with the TCR studied in this thesis. 

7. In order to calculate km with Eqs. 1.3 and 1.7, a starting time t0 is used. The time may 

cause errors but has not been widely studied. 

Other than the problems with the assumptions and simplifications in deriving Eq. 1.3, factors that 

can decrease the accuracy of the calculated km include: 

1. Short heating duration for big TCPs (Strambu [44]), 

2. Inappropriate size and location of the thermocouple (Xie and Cheng [13]), 

3. The surface effects, such as dirt or stain on the outermost surface of the TCP from the 

previous experiment, with tr ms 2  (Liang et al. [27]), and 
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4. High heating power and short measuring duration (Asher et al. [45]). 

Nevertheless, the author of this thesis realized that there was almost no prior study on whether 

measuring different sampling media would produce the same errors. In addition, the material 

selection criteria in A/S #3 were not clear. Also, the tolerance of the thermocouple location could 

not be found in the literatures. Moreover, arbitrary selection of t0 can be subjected to errors. 

Furthermore, only a limited number of studies such as that of Hsieh [46] touch the cooling period 

of TCPs. Theoretically, both heating and cooling periods of TCPs can be used to determine the 

thermal conductivity of the sampling medium. However, there is no clear indication which 

period (cooling or heating) of TCPs can give more accurate km. Also, the wall thickness of the 

stainless steel tube of the TCP may cause errors but was not found in the literatures. In addition, 

searches through the literatures provided no prior study on the effect caused by various heating 

powers of the TCP. 

As a result, this thesis aims to address the missing parts of the studies of TCPs in the literatures. 

Due to the immense possibilities of TCP designs and applications, this research investigates both 

theoretical and experimental errors of calculating km in TCP measurements as follow: 

1. The theoretical studies (in Chapter 4 and Section 6.4) include the errors from: 

a. Probe sizes 

b. Heating powers 

c. Sampling media 

d. Selection for TCP materials 

e. Location of the thermocouple 

f. Boundary conditions of the sampling-medium container 

g. Axial heat conduction of the length-to-diameter ratio of 45 

2. The experimental studies (in Chapter 6) include the errors from: 

a. Thermal contact resistance 

b. Initiating time t0 

c. Decision to use heating or cooling period for km calculations 

d. Tolerance in the thermal properties of epoxy ke and αe within a TCP  
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CHAPTER 3 - THEOREICAL MODELS OF TCP 

In this chapter, the most important equations are introduced. The classical solution from Carslaw 

and Jaeger [16] is shown first. Then two new equations are introduced. Within each equation, the 

heating and cooling periods are given. Due to the complexity and the length, the full derivations 

of the theoretical models are shown in Appendices A.1 - A.5. Also, to reduce the confusion by 

the vast number of equations in this thesis, the second last part of this chapter will gather the 

three most important equations that are often referred to in subsequent chapters. Finally, the main 

equations are non-dimensionalized in the last Section of this chapter. 

 

3.1 - Line Heat Source Model 

According to de Vries [47] and Liu et al. [42], the classical infinite line source model (which is 

illustrated in Fig. 3.1) is: 
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where     isensen TtrTtrT  ,, . The first expression on the right hand side (RHS) (for 0 ≤ t ≤ tc) 

of Eq. 3.1 is for the heating period of the line heat source and derived in Appendix A1. The 

second expression on the RHS (for t > tc) of Eq. 3.1 is the cooling period (i.e., the line heat 

source is off) and can be thought of as the difference between the heating starting from the time 

the line heat source is first heated (to = 0 s) and the heating starting from the time the electricity 

is cut from the line heat source (tc), i.e., 

      ._._._ ,,, classheatcsenclassheatsenclasscoolsen ttrTtrTtrT   for t > tc. 

Theoretically speaking, the Ei(x) function blows up at x = 0. However, in reality, the 

thermocouple location is mostly set to be away from the TCP's axis. As a result, the function 

never blows up in general. 

 

(heat sink model) 
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Figure 3.1. Infinite medium and a line heat source. 

 

3.2 - TCP Model with Perfect Contact at the TCP-Medium Interface 

Fig. 3.2 illustrates the Perfect Contact TCP Model. Refer to Appendix A.2. for the full derivation 

of the model in the heating period (i.e., t < tc) and difference observed in Eq. 3.1 for the cooling 

period (i.e., t > tc): 
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3.3 - TCP Model with TCR at the TCP-Medium Interface 

Referring to Appendices A.3 and A.4 for the full derivation of the model in the heating period: 
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and Rc is the thermal contact resistance. 
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Comparing Eq. 3.4 with Eq. 3.2, the only difference between the two equations is the TCR(t) 

term which is caused by the thermal contact resistance at the TCP-medium interface as shown in 

Fig. 3.3. The same holds true for the comparison between Eq. 3.5 and Eq. 3.3. 

                            
Figure 3.3. Schematic  drawing for TCP model with TCR. (Picture not to scale) 

 
 

3.4 - Grouping Equations 

Since there are many equations in this thesis but only some are important for use in subsequent 

chapters, the following summarizes the most important equations for later analysis: 

 Eq. 3.1 will be called Eq. 1 in subsequent chapters as the line heat source model. 

 Eqs. 3.2 and 3.3 are grouped as Eq. 2 in subsequent chapters as the TCP model with 

perfect contact at the TCP-medium interface. 

 Eqs. 3.4 and 3.5 are grouped as Eq. 3 in future chapters as the TCP model with TCR at 

the TCP-medium interface. 
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In other words, Eqs. 3.7, 3.8 and 3.9 can be written as: 
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TRR: Thermal resistance ratio. 
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CHAPTER 4 - COMPUTER SIMULATION 

Before Eq. 1, Eq. 2, and Eq. 3 are compared, the first two equations (Eq. 1 and Eq. 2) are studied 

in the heating period to explore the differences the two equations make by using Finite Element 

Heat Transfer (FEHT) from F-Chart Software and COMSOL from COMSOL Multiphysics ® 

Software, which apply the general heat transfer equation for cylindrical objects. The reason for 

using FEHT and COMSOL is to reduce the computational time and power. FEHT is faster to 

arrive at the simulation results but has limited numbers of nodes (manually input) for the 

geometry and cells for the computation. Meanwhile, COMSOL can include all the nodes 

required for the geometry and cells for the computation but takes a long time to arrive at the 

simulation results. As a result, FEHT is used for 2D simulations and COMSOL is used for 3D 

simulations in this chapter. In addition, the cooling period is complicated, computer-power 

intensive, and time consuming to simulate using numerical software packages such as COMSOL 

or FEHT. 

The heating period is studied first to see whether it is justifiable to further advance the newly 

developed equation (Eq. 2) to subsequent chapters. The analytical and numerical studies in this 

chapter include 

1. various TCP sizes,  

2. different heating powers of TCP,  

3. diverse thermal conductivity and thermal diffusivity of the sampling medium, 

4. different the thermal conductivities and thermal diffusivities  of construction layers,  

5. different radial and axial locations of the thermocouple inside the epoxy layer,  

6. error analysis of the axial heat conduction for the TCP length-to-diameter ratio of 45.  

COMSOL is used to explore how the radial and axial locations of the thermocouple can affect 

the temperature response of the TCP while FEHT is used for exploring other numerical studies 

mentioned. 

The analytical and numerical studies can become guidelines for future designs of TCPs or 

comparisons with experimental studies. For example, based on the studies of changing probe 

sizes using FEHT, one can decide how large the TCP should be in order to have lower measuring 

errors. Or researchers can make different probe sizes and compare the results . 



33 
 

4.1 - Problem Descriptions and Study Parameters 

Fig. 4.1 shows a typical TCP construction. The design has a piece of heating wire in the middle 

of the probe. The space between the wire and a stainless-steel hypodermic tube is filled in with  

epoxy to serve as a thermal conductor and an electric insulator. 

  

 

 

     
Figure 4.1. TCP design used in this thesis. 

A thermocouple is placed in the epoxy layer. When the heating wire is heated up, the 

thermocouple is used to measure the temperature rise of the "probe". The TCP design in Fig. 4.1 

is used to analyze the theoretical errors that may result from the design. Thermal contact 

resistance is neglected in this chapter but will be considered in Chapter 6. The values of the 

parameters used in the present study are tabulated in Table 4.1.  

Table 4.1. Parameters and values used for the study in this chapter [17], [34], [48], [49], [50]. 
Parameter ke (W/m·K) αe (m

2/s) ks  (W/m·K) αs (m
2/s) km  (W/m·K) αm (m2/s) 

Value 0.682 3.80×10-7 16.2 4.05×10-6 0.502 1.30×10-7

Parameter re (µm) rs (µm) rw (µm) rsen (µm) wq (W/m) Ti (ºC) 

Value 450 550 20.0 275 3.00 15.0 

 Note: km and m of the sampling medium is of saturated organic soil [17]. 

 

4.2 - FEHT Setup 

FEHT is used to produce the numerical solutions under many different conditions to compare the 

accuracies of the classical solution (Eq. 1) and Eq. 2 . The FEHT model is shown in Fig 4.2. 

 
Figure 4.2. An axisymmetric sample FEHT model. Sections (with nodes) from left to right: 

heating wire (red), epoxy (green), steel (yellow), and medium (blue). 

Heating wire  
as line heat source 
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FEHT simulation conditions: 

- Setup:  

o Scale and size: units: SI, grid spacing: 20 µm × 20 µm 

o Cylindrical coordinates and transient condition. 

- Internal generation of the heating wire (red) section: 2.387 × 109 W/m3, simulating 3 W/m 

for the heating power of the actual wire. 

- Model height: 40 μm or two cells high. 

- Minimum radius of the medium (blue) section: 30,000 μm to simulate the infinite 

medium condition. (See Appendix A.5 for more details) 

- Calculation setup: transient condition, start: 0 s, stop: 120 s, step: 0.01 s, solution method: 

Crank-Nicolson. Various small time steps were considered and their results are shown in 

Table 4.2. Although FEHT suggests using a smaller time step than the critical step time 

of 2×10-9 s based on the mesh of the model, it can be seen, from Table 4.2, that even if 

the step time is increased by three orders of magnitude (10-5 s vs. 0.01s), the results are 

within 0.06% difference after 0.10s. Because of limitations of time and computer power, 

the time step of 0.01s is deemed to be a suitable choice with enough accuracy for the 

present study. 

Table 4.2. Simulated temperature rise (ºC) ΔT at the sensor location (rsen = 275µm) by FEHT for 
different time steps at different times 
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The temperature responses in this chapter are taken from a point at a node inside the epoxy layer. 

The schematic of the cross section area where the thermocouple stays is shown in Fig. 4.3. The 

intersections of the white circle (representing the thermocouple) and the dashed line 

(representing a sample temperature profile) can be used to assign to the temperature responses. 

There are some differences at the intersection points. As a result of safety and accuracy, the 

average of the temperatures at the two points is assumed to be the temperature at the center of the 

white circle or the thermocouple. The center of the white circle can be treated as a node in the 

mesh of the FEHT models whose representative is shown in Fig. 4.2. 

 
Figure 4.3. Schematic drawing of the temperature response across the epoxy layer. (Picture not 

to scale). 

 

4.3 - Comparisons of Heat Transfer Models 

In this Section, the following parameters are explored: rsen, re, rs, ke, ks, km, αe, αs, αm in Eqs. 1 

and 2 of Chapter 3. The effects of Fo (Fourier number as defined in Section 3.5) can be seen 

through the simulation time t. Although not shown in dimensionless forms, the figures in this 

Section are illustrated in the equivalent dimensional forms. 
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As shown in Fig. 4.4, when the numerical solution given by FEHT is compared with the 

analytical solutions of Eqs. 1 and 2, it is found that Eq. 2 yields a closer fit. The predicted and 

simulated temperatures at r = rsen are being compared here, and the errors are calculated as: 

                                      100% 






 


FEHT

FEHTEq

T

TT
Error                                                           (4.1) 

 

The error of using the classical solution (Eq. 1) produces about 1.69% error while Eq. 2 is about 
-0.003%. 

 
Figure 4.4. Comparison between the differences of using the classical solution and Eq. 2 with 

respect to FEHT. 

 

Fig. 4.5 shows different diameter ratios (DR = re/rs) of different probe sizes. The rsen = 120 µm is 

used in this part of the study in order to have rsen < re for all cases, especially for the case of rs = 

275 µm with DR = 0.5. The reason for the chosen rsen location is for better comparisons among 

different probe sizes. Changing the location of rsen for different probe sizes does not have a fixed 

point to compare the temperature responses produced by Eq. 1, Eq. 2, and FEHT.  

The results of Fig. 4.5 indicate that the bigger the probe size (rs) becomes, the higher the errors 

appear for the classical solution (Fig. 4.5 a, c, and e). However, the errors can be reduced as 

much as 2.4 times if the DR increases from 0.5 to 0.9 for the same probe size. Eq. 2 also shows 

that smaller probe size gives much lower errors (at least 15 times lower) than those of using the 

classical solution, but the error levels off as the time increases (Fig. 4.5 b, d, and f). 
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Figure 4.5. Comparisons of the classical solution and Eq. 2 with FEHT when different diameter 
ratios (DR = re/rs) (0.5 ≤ DR ≤ 0.9) and different probe sizes (rs) are used. (a) and (b): rs = 275 

µm. (c) and (d): rs = 550 µm. (e) and (f): rs = 825 µm 

For all studied probe sizes in Fig. 4.5, the DRs produce almost the same errors (less than 0.1%) 

at large time (after 100 s) using Eq. 2. Unlike the classical solution, the spread of errors of Eq. 2 

due to different DRs, depending on the probe size. The larger the probe size, the larger spread of 

errors among the DRs before they all level-off at large time. But they are still very small 

compared to the spread of errors of the classical solution. The case of DR = 0.9 appears to 

produce the lowest errors for all of the studied probe sizes. The finding about the increase in 
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errors for a larger probe size agrees with Bristow et al. [19] and Murakami et al. [23]. The reason 

stays in the values of ke and e. The values of ke and e are closer to the values of km and m 

more than the values of ks and s are. As a result, the heat propagation phenomenon are more 

similar to that of the sampling medium if the layer of epoxy is larger and the layer of steel is 

smaller; thus, making the assumption of line heat source in the classical solution becomes more 

accurate, leading to smaller error when larger DR is considered. Therefore, the classical solution 

and Eq. 2 can better estimate the temperature response of the TCP with higher DRs of the TCP. 

In addition, due to the thermal capacitance of the probe, Eq. 2 can predict the temperature 

response much more accurately than the classical solution.  

Further analyzing the errors resulted from the classical solution (Eq. 1) and Eq. 2 leads to the 

results in Fig. 4.6, which shows their errors as compared to the results by FEHT for different 

heating powers. Except for the heating power, the values of other parameters remain the same as 

those tabulated in Table 4.1. The figure indicates that as the heating power increases, the less 

accurate both Eqs. 1 and 2 can predict the temperatures rise simulated by FEHT. For higher 

heating power, the classical solution gives higher errors, which are about 4.65%, 3.04%, 1.69%, 

and 0.94% for 12 W/m, 6.0W/m, 3.0W/m, and 1.5W/m respectively. However, the errors of using 

Eq. 2 for different heating powers are almost the same (about 0.06%) and much lower than those 

of the classical solution (from 0.48% to 4.65%).  

 
Figure 4.6. Comparison of different heating powers. 

Fig. 4.7 illustrates the errors associated with the use of classical solutions and Eq. 2 for different 

values of km while αm remains constant. The figure indicates that as the medium being measured 

is less heat conductive (or behaves more like a thermal insulator), the error increases. The error 

(a) (b) 
↑ wq  
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can range from 21% to less than 0.05% depending on which equation is used and how heat 

conductive the sampling medium is. When km and ke are similar, both equations have small 

errors. Also, the results from Fig. 4.7 further confirm the findings of Elustondo et al. [34] that 

when the differences in thermal conductivities between the TCP and the sampling medium are 

large, the error increases. However, the error for km being smaller than ke is much more 

prominent than that for km being larger than ke. 

 
Figure 4.7. Comparisons of different km while αm is kept constant. Legend shows the thermal 

conductivity of the sampling medium (km) (W/m·K). 

Fig. 4.8 displays the errors of using Eq. 1 and Eq. 2 in comparison with FEHT's temperature 

output. The parameters in Table 4.1 are kept constant except for αm, thermal diffusivity of the 

sampling medium. Also, as time increases, the errors of having different αm converge at large 

time (> 120 s) for both Eqs. 1 and 2. In other words, the thermal diffusivity of the sampling 

medium theoretically does not have strong effects in the temperature output as compared to km in 

Fig. 4.7. Also, using Eq. 2, the errors from different αm are almost zero and much less than those 

using Eq. 1. 

 
Figure 4.8. Percentage error vs time  with different αm values shown in the legend (mm2/s). 

↑ km ↑ km 
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Fig. 4.9 illustrates the errors of Eqs. 1 and 2 in comparison with FEHT when only ke and ks 

change. The legend shows the thermal conductivity ratios (ke/ks). As ks increases within each 

equation, the error becomes bigger. This effect further strengthens the conclusions of Elustondo 

et al. [34] and Fig. 4.5 that errors grow when the k and α of TCP's construction materials are very 

different from those of the sampling medium. Once again, the results of Eq. 2 are closer to the 

results of FEHT than those of Eq. 1. 

 

 

 
Figure 4.9. Errors between the equations and FEHT for different thermal conductivity ratios 

(ke/ks) when the thermal conductivities of the probe’s materials are changed. The thermal 
diffusivities of the probe’s materials remain constant. 
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Figure 4.10.  Errors between the equations and FEHT for different thermal diffusivity ratios (αe/αs) 
when the thermal diffusivities of the probe’s construction materials are changed. (a) and (b): αs = 

4.05 mm2/s. (c) and (d): αs = 8.10 mm2/s. (e) and (f): αs = 16.2 mm2/s. 

Figure 4.10 shows the errors of Eqs. 1 and 2 in comparison with FEHT when the thermal 

diffusivities of the TCP's construction materials are changed but the thermal conductivities of the 

materials remain constant. Other properties of the sampling medium and TCP are in Table 4.1.  

As one  can see from Fig. 4.10, the thermal diffusivity of  the construction materials have small 

effects to the temperature prediction of Eq. 1 when the temperature predictions are compared to 
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those from FEHT, i.e., when the time is sufficiently long enough, the errors from both equations 

remain almost constant regardless how αe and αs change.  

Fig. 4.11 shows the errors of using Eqs. 1 and 2 when different rsen is positioned within the 

epoxy layer. The legend shows the thermocouple location (rsen) while the height level of rsen 

remains constant. Fig. 4.11a shows that as the location of the thermocouple rsen is further away 

from the central axis of the TCP, Eq. 1 becomes more accurate. Combining this result with Fig. 

4.6a shows that when seeing more intense heat from the heating wire (due to either higher 

heating power or closer to the heating wire), the thermocouple will theoretically measureless 

accurately according to Eq. 1. However, according to Eq. 2, the location of the thermocouple has 

theoretically slight dependences on the heating power of the heating wire or the location of the 

thermocouple as shown in Figs. 4.6b and 4.11b. Also, Eq. 1 over estimates the temperature rise 

while Eq. 2 slightly underestimates the thermal response. 

 
Figure 4.11. Errors of using Eqs. 1 and 2 when rsen is varied. Height level of rsen is constant. 

 

4.4 - COMSOL Analysis 

A TCP inserted into a cylindrical sampling medium is modeled using COMSOL, as shown in 

Figs. 4.12 and 4.17 for adiabatic and isothermal boundary conditions respectively. The glowing 

part in the axial center is the TCP heated by a very fine heating wire. The material properties and 

dimensions used for the COMSOL model are from Table 4.1. Also, the cylindrical sampling 

medium is Ø60 mm × 80 mm to ensure that the radial infinite medium condition is achieved 

during the heating period of the TCP whose theoretical dimensions are Ø1.10 mm × 50.0 mm. In 
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this Section, two cases are investigated: adiabatic boundaries and isothermal boundaries. The 

axial heat conduction will be investigated and compared with the results of Blackwell [39]. 

4.4.1 - Adiabatic boundaries  

                 
Figure 4.12. COMSOL model of how TCP is inserted into sampling medium (80mm high). 
Clockwise from left: overall model, closer look at TCP top, and closer look at TCP bottom. 

Because of the drawing limitations in COMSOL, the infinite medium is broken into two 

cylindrical parts bordering the TCP, as shown in Fig. 4.12. Moreover, in order to run simulations 

with the COMSOL model, the following conditions are used: 

1. Mesh: "Extremely fine Predefined" and "Free Triangular" as in Fig. 4.13 

2. Study: time dependent (or transient) 

3. Simulation time: 120 s with 0.01 s time step which is shown to be justifiable by Fig. 4.14 

4. Pure conduction and perfect contact at the TCP-medium interface 

5. Boundary conditions: adiabatic 

The COMSOL study in this Section is "qualitative", i.e., the mesh size and shape are reasonably 

chosen. The reason is that the size of the sampling medium is so much larger than the TCP's, so 

finer and more sophisticated meshes can take a long time to run simulations. 
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The heating powers used are 3 W/m and 10 W/m (or heat sources are 2.387×109 W/m3 and 

7.958×109 W/m3 respectively) to study the temperature rise of rsen when rsen is varied along the 

axial and radial directions of the TCP. The bottom of the TCP is defined as h = 0 mm. The results 

of the temperatures at different heights with the same radial location are shown in Fig. 4.14 (h > 

0 mm). The equation used for the Temperature Difference (TD) axis of  Fig. 4.14 is: 

                                                             mmhrThrTTD senisen 25,,                                    (4.2) 

where hi is the height of the thermocouple at the same radius of 275 µm. 

 

 
Figure 4.13. Mesh used in COMSOL model. Numerical values are in µm. 

 
Figure 4.14. Temperature rise vs. time at rsen = 275 µm with different time steps. 
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Figs. 4.12 and 4.14 indicate that axial heat conduction does exist. The more the TCP is heated 

(i.e., higher heating power), the more different the axial temperatures along the TCP become. 

Figs. 4.14b and 4.14d show very slight variations of temperature differences (up to 0.00065oC) at 

various height levels along the TCP. The variations might have resulted from the "qualitative" 

mesh used. However, it is not until less than 12 mm above the bottom of the TCP that the 

temperature differences become about 0.1oC or greater (Figs. 4.14a, and 4.14c). Consequently, 

the axial position of the thermocouple can be placed within ±5 mm of the TCP's centroid (at h = 

25 mm) so that the temperature difference is practically negligible, i.e., TD < 0.001oC. 

 

 

Figure 4.15. Adiabatic boundaries: temperature difference between rsen at different heights and 
rsen at the height of 25 mm. Probe length is 50 mm. (a) and (c): for heights of 1 mm - 49 mm with 

wq of 3 W/m and 10 W/m respectively. (b) and (d): for heights of 21 mm - 49 mm with wq of 3 

W/m and 10 W/m respectively. 

(a) 
(b) 

(c) (d) 

wq = 3 W/m wq = 3 W/m 

wq = 10 W/m wq = 10 W/m 
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Figure. 4.16. Temperature Difference vs. time of various heating powers and rsen. (a), (c), (e), 
and (f): for heights from 1 mm - 49 mm. (b), (d), (f), and (h): for heights from 21 mm - 49 mm. 

wq = 10 W/m 

rsen = 320 µm 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

wq = 10 W/m 

rsen = 320 µm 

wq = 10 W/m 

rsen = 400 µm 
wq = 10 W/m 

rsen = 400 µm 

wq = 3 W/m 

rsen = 400 µm wq = 3 W/m 

rsen = 400 µm 

wq = 3 W/m 

rsen = 320 µm wq = 3 W/m 

rsen = 320 µm 
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In order to better learn how the location of the thermocouple can affect the temperature output, 

Fig. 4.16 is made with various heating powers, and radial and axial distances. The temperature 

rises at various heights and heating powers are compared with the corresponding temperature 

rise at h = 25 mm. For example, Fig. 4.16a shows the same wq of 3 W/m and rsen = 320 µm but 

the height of the thermocouple is changed from 1 mm to 49 mm. The vertical axis of Fig. 4.16a is 

the temperature difference (TD) using Eq. 4.2. 

As shown in Fig. 4.16, if the thermocouple is radially further away from the heating wire, TD is 

less. When Figs. 4.15b, 4.16b, and 4.16d are combined together, one can observe that TD is 

reducing. When rsen (or the position of the thermocouple) is radially further away from the 

heating wire, the TDs are lower. The same trends can be seen from Figs. 4.15d, 4.16f, and 4.16h. 

Moreover, from Figs. 4.15 and 4.16, it can be seen that for heights more than 25 mm, their TDs 

are slightly different. This suggests that when a TCP is about to be manufactured, the 

thermocouple should be placed (preferably within 5 mm) above the TCP centroid in the axial 

direction, i.e., further away from the bottom of the TCP if the top of TCP is adiabatic. 

4.4.2 - Isothermal boundaries 

 
Figure 4.17. COMSOL model (isothermal boundaries at 20oC) of how TCP is inserted into 
sampling medium. Clockwise from left: overall model, closer look at TCP top and bottom. 
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In this Subsection, the simulation setups, inputs and steps are the same as those in Subsection 

4.4.1 except for the boundary conditions. The outermost surfaces of the cylinder shown in Fig. 

4.17 are set at the constant temperature of 20oC during the heating duration. Temperature rise 

convergence is shown in Fig. 4.19. 

Fig. 4.18 shows the TD vs. time in the case of isothermal boundaries. At the height of 49 mm, the 

TD is highest for all of the heating powers applied. Also, the higher the heating power is, the 

larger the TD becomes, which is similar to the influence of wq in Fig. 4.15. However, the TDs at 

the heights of 23 mm and 27 mm are very small and significantly less than those at heights 

further away from the TCP centroid. Also, the temperature at the height of 23 mm is closest to 

that at the centroid. Comparing Figs. 4.15 and 4.18, one can note that the TD is least (<0.001oC) 

within ±2 mm height from the TCP centroid (at h = 25 mm) for the case of isothermal 

boundaries. Therefore, to be conservative, the thermocouple should be placed axially within ±2 

mm of the TCP centroid and radially further away from the heating wire. 

 

 
Figure 4.18. Isothermal boundaries: temperature difference between rsen at different heights and 
rsen at the height of 25 mm. Probe length is 50 mm. (a) and (c): for heights of 1 mm - 49 mm with 

wq of 10 W/m and 3 W/m respectively. (b) and (d): for heights of 21 mm - 49 mm with wq of 10 

W/m and 3 W/m respectively. 

wq = 10 W/m 

(a) (b) 

(c) (d) 

Isothermal 
Boundaries 

Isothermal 
Boundaries 

Isothermal 
Boundaries 

Isothermal 
Boundaries 

wq = 10 W/m 

wq = 3 W/m wq = 3 W/m 
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Figure 4.19. Temperature rise vs. time at rsen = 275 µm with different time steps. 

In order to explore the effects of varying the radial location of the thermocouple, Fig. 4.20 is 

plotted against time with heating powers of 3 W/m and 10 W/m. The legend shows the 

thermocouple axial locations. From Fig. 4.20, the temperature variations at the same axial height 

are not much when the thermocouple are radially moved further away from the heating wire. 

However, the temperature differences are much more significant along the TCP axis at the same 

radial position. In other words, being different from the case of adiabatic conditions, the 

temperature response does not vary much when the thermocouple is moved further away from 

the TCP axis. Meanwhile, the temperature difference is almost constant when the thermocouple 

is radially moved further away from the TCP axis. As a result, in the case of isothermal 

boundaries, the thermocouple can be put at any radial location and the temperature differences 

among various radiuses are almost the same. When this result is combined with Fig. 4.11, the 

location of the thermocouple does not cause significant errors to the temperature response in the 

radial direction. On the other hand, in the case of adiabatic boundaries, the further the thermal 

sensor radially goes away from the TCP axis, the less the temperature difference turns various. In 

order to investigate whether the axial heat conduction can cause significant errors, the next 

Subsection is discussed. 
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Figure. 4.20. Temperature Difference vs. time of various of heating powers and rsen. (a), (c), (e), 
and (f): for heights from 1 mm - 49 mm. (b), (d), (f), and (h): for heights from 21 mm - 49 mm. 
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4.4.3 - The effects of axial heat conduction 

In the derivation of Eq. 1, Carslaw and Jaeger [16] ignored the heat conduction in the axial 

direction. However, in reality, the TCP is of cylindrical shape and may exhibit axial heat 

conduction. Blackwell [39] estimated that the axial heat flow error would be less than 0.05% for 

probes with length-to-diameter ratio more than 30, which is in good agreement with the results of 

Fig. 4.21. 

Fig. 4.21 displays the heat flux ratio vs. time with different heating powers in the two cases 

(adiabatic boundaries and isothermal boundaries) at the TCP center (h = 25 mm). The heat flux 

ratio is defined as: 

                                                     
radial

axial

radial

axial
HF T

r

h

T

q

q
ratio








                                         (4.3) 

where HF means heat flux, q is the heat flux in a direction, ∆Taxial and ∆Traial are the temperature 

differences (from COMSOL) between two points in the axial and radial directions respectively, 

∆h is the difference of the heights of the two points, and ∆r is the difference of the radial 

locations of the two points. 

When ∆h = ∆r = 0.1 µm, Eq. 4.3 becomes           

                                                                 
radial

axial
HF T

T
ratio





                    

                                  (4.4) 

As the time is large (greater than 20 s) the heat flux ratio is constant at about 1.63×10-3, which 

means that the axial heat conduction is about 0.163% of the radial one. Also, Fig. 4.21 indicates 

that the heating power and the boundary conditions examined have insignificant influences on 

the heat flux ratio. The ratio in the case of adiabatic boundaries levels off as time becomes larger 

whereas the ratio in the isothermal case gradually decreases as time passes. The reason for the 

difference of the curves is that the TCP is exposed to bi-directional thermal gradients in the axial 

direction for the isothermal boundary case. Meanwhile, for the case of adiabatic boundaries, the 

axial heat conduction has a unidirectional thermal gradient towards the bottom of the TCP. 

Consequently, the axial conduction decreases more in the isothermal case than in the adiabatic 
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case. So the heat flux ratio gradually decreases with isothermal boundaries but levels off with 

adiabatic boundaries. 

 

 
Figure 4.21. Heat flux ratio vs. time with different heating powers in the two case studies. (a) 

and (b): adiabatic boundaries. (c) and (d): isothermal boundaries. 

Moreover, a look at the early time of 0.01 s (a time that most actual TCPs do not sense) shows 

that  the heat flux ratio at that time is about 0.95% for all cases (adiabatic and isothermal) and 

heating powers. However, in most TCP experiments, the temperature response in the first 20 s is 

usually ignored. Therefore, with the length-to-diameter ratio of 45, the axial heat conduction can 

be ignored with an uncertainty of about 0.163%. 
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4.5 - Summary 

This chapter theoretically and numerically compares Eq. 1 and Eq. 2 with numerical software 

packages FEHT and COMSOL using input parameters shown in Table 4.1. The comparisons 

demonstrate that Eq. 2 always agrees more with the numerical results than Eq. 1 does. In 

particular: 

1. Larger TCP diameters produce higher errors. The reason is due to the difference in the 

materials and construction of the TCP. The more different the thermal properties of the 

TCP materials are, the less accurate the TCP can be. For example, when rs = 275 µm, 

diameter ratio (DR = re/ rs) of 0.5 produces about 3.8% error, but DR of 0.9 produces 

about 1.6% error using Eq. 1. With rs = 825 µm and DR of 0.9, the error of using Eq. 1 is 

about 3%.  However, the error of using Eq. 2 is significantly less than that of using Eq. 1. 

Although bigger TCP results in higher errors in Eq. 2, the errors converge to about 0.1% 

after long time (>160 s). 

2. Heating power does affect the temperature prediction of Eq. 1. Higher wq makes Eq. 1 

less accurate theoretically. When the heating power is 0.75 W/m, Eq. 1 gives 0.5% error. 

Meanwhile, wq = 12 W/m gives 4.8% error. On the other hand, by using Eq. 2, the error 

with different heating powers can be reduced to within ±0.1%. 

3. When the sampling material is more heat resistant (lower km and αm), the errors for 

predicting the temperature rise using Eqs. 1 and 2 grow. To be more precise, the thermal 

conductivity of the sampling medium plays an important role in the temperature 

prediction of Eqs. 1 and 2 while the thermal diffusivity of the sampling medium does not 

influence as much. 

4. Changing ke and ks also affects the errors. As pointed out by Elustondo et al. [34], when 

the in-homogeneity among the materials of the TCP and the sampling medium becomes 

bigger, the measuring accuracy decreases. In other words, ignoring the construction of 

the TCP in Eq. 1 can be a big mistake, depending on what materials are used to make the 

TCP. Although Eq. 2 can lower the error by half of Eq. 1, the homogeneity of the TCP 

materials and sampling medium still plays an important role in the accuracy of the 

temperature predictions of both equations. To be more precise, the thermal conductivity 

of the materials are more important than the thermal diffusivity of the materials because 
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the errors are much more sensitive to the values of the thermal conductivity than to the 

values of the thermal diffusivity of the TCP materials, as shown in Figs. 4.9 and 4.10. 

5. The location of the thermocouple can create errors in the temperature response by using 

Eq. 1. The closer to the heating wire the thermocouple is, the higher the error becomes. 

However, by using Eq. 2, the location of the thermocouple has small influences on the 

error as shown in Fig. 4.11. 

6. The location of the thermocouple can affect the temperature readings. Depending on 

where the thermal sensor is placed inside the epoxy layer, the difference in the 

temperatures can vary significantly or slightly. The further away from the heating wire 

the thermocouple is placed, the less the temperature variation is in the axial direction as 

shown in Figs. 4.14 and 4.16. Moreover, by ignoring the axial heat conduction, one 

would get an error ranging from 0.16% to 1.0% with the length-to-diameter ratio of 45, 

which is in good agreement with Blackwell [39]. The researcher estimated that with the 

ratio of 30 or more, the axial heat flow error would be less than 0.05%. Moreover, it 

should be noted that the numerical results from COMSOL were obtained by using the 

parameters shown in Table 4.1. Other parameters may produce different results of the 

axial flow error. 
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CHAPTER 5 - TCP EXPERIMENTAL SETUPS AND PROCEDURES 

 

 

 

In this chapter, the following experimental procedures and apparatus are discussed: 

1. TCP:  

a) Apparatus: What were used during the TCP experiments are listed. 

b) Sand sample preparations: How C109 sand samples of different water contents 

were prepared before the samples were heated. Different moisture contents were 

0.1, 0.2, 0.3, 0.5, 0.7, and 1.0 in terms of saturation ratio  porewater  / . 

c) Manufacturing of  TCP: How a TCP was made is described. 

d) Experimental procedures: How the sand samples and TCPs were put together is 

mentioned. 

2. Epoxy:  

a) Apparatus: What were used during the epoxy experiment are listed. 

b) Epoxy sample preparation: How solid epoxy was made from liquid ingredients is 

described. 

c) Experimental procedures: How epoxy was tested is shown. 
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5.1 - TCP Measurement 

Dr. Vlodek Tarnawski and his research staff at Saint Mary's University in Halifax, Nova Scotia, 

Canada spent a tremendous amount of their time and efforts producing careful experiments and 

useful experimental data which were sent to the author of this thesis to be analyzed. The results 

of the analysis is shown in Chapter 6. Section 5.1 is heavily based on the papers by Tarnawski et 

al. [11], [21], and [43]. 

5.1.1 - Apparatus for TCP measurements 

The following equipment was used: 

1. A forced air-convection oven (Memmert UE-500-AQ). 

2. Manually manufactured TCPs (which are described in Subsection 5.1.5). 

3. Two acrylic soil samplers. 

4. A constant DC power supply (HP E3611A, Hewlett-Packard Development Co.). 

5. Two data acquisition systems: DT-9802 (12 bit) and DT-9822 (24 bit). 

6. DT Foundry 5.0 software package (Data Transition Inc.). 

7. A 1.0 Ω (±0.001 Ω) precision resistor. 

The DC power supply (HP E3611A, Hewlett-Packard Development Co.) provided a constant 

current (I) to the probe heater. Measuring time intervals for data records were set by the DT 

Foundry 5.0 software package (Data Transition Inc.). A 1.0 Ω (±0.001 Ω) precision resistor (Rpr) 

was used to serve as an electricity regulator and measuring tool across which the voltage change  

was usually set at 70±0.3 mV. The heater current (I) was calculated (by using I = Vpr/ Rpr) with an 

uncertainty of 0.4 mA. The data acquisition systems were used to record thermocouple 

electromotive force E (in µV) and to control the heating time. 

5.1.2 - Dry Soil Sample Preparation [11] 

Sand samples (C109 Ottawa sand) were packed into samplers made of an acrylic tube (Ø64 mm 

× 80 mm). The sampler size was chosen from the following relationship by de Vries and Peck 

[51] such that the heat flux through the sample boundaries is negligible when compared with the 

heat flux released by the TCP: 
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                                                      (5.1) 

where r is the radius of a cylindrical soil sample (0.032 m), αm is the thermal diffusivity of dry 

C109 sand (~2.66 × 10-7 m2/s for dry C109), and τ is the heating period (120 s).  

Sand was compacted by repeatedly tapping the sampler's cylindrical surface. The total mass of 

the sand, for a specified volume, was measured. An acrylic plate with a concentric hole to insert 

the TCP handle was used to seal the sampler. During insertion, the TCP could wander off the 

intended position, so a TCP guide was placed on the top of the acrylic plate to ensure proper 

insertion and alignment between the TCP and the soil sampler's central axis (Fig. 5.1). 

5.1.3 - Fully Saturated Soil Sample Preparation [43] 

Woodside et al. [52] stated that preparation of fully saturated sand samples could be very hard 

because water could form layers on top of the specimen and prevent further penetration of water 

into the deeper content of the specimen. Consequently, highly scattered thermal conductivity 

data points were obtained [53]. Therefore, fully saturated sand samples were prepared carefully. 

Compacting and saturating sand were carried out in a primary cylindrical cell with a closed-

bottom acrylic tube (Ø64 mm × 70  mm) and a shorter cylinder of 20 mm length placed on the 

top. The tube and cylinder were joined and sealed along the contact edge using electrical 

pressure sensitive tapes. After that, for a certain volume of the primary cylinder, an estimated 

mass of sand (assumably dry bulk density), was added. Fully saturated sand was also compacted 

in the same way dry sand was. Because not all water was able to percolate down due to the 

presence of trapped air, the combined sample cell, with tested sand and water, was put in a 

laboratory exicator. The air in the exicator was depressurized down to between 1 mmHg to 10 

mmHg. Consequently, trapped air was quickly removed and the water completely infiltrated the 

soil, which, as Baker [54] mentioned, provides an excellent uniformity of water distribution. 

Because water could boil while trapped air was removed from the sand, special care was made to 

prevent boiling by keeping air pressure in the exciator to be above the saturation pressure of 

water. Water was added and monitored after each air-removing process until the inter-particle 

volume (which initially contained air) was very close to the required water volume added. After 
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that, the top cylinder was taken away and an acrylic lid was used to cover and seal the sample 

cell with a rubber splicing tape. Then, for proper vertical insertion of the TCP and alignment 

with the central axis of the sample cell, a TCP handle slide-way guide was attached to the sample 

cell cover plate (Fig. 5.1). 

5.1.4 - Partially Saturated Soil Sample Preparation 

Dry sand was thoroughly mixed with water. The required mass of water was: 

                                                                  Srm cylinderwaterwater                                             (5.2) 

where Sr is the desired saturation that water must be in the sampling sand and mwater is the mass 

of water required to achieve the Sr. 

The sand-water mixture was left to stand for 24 h for more uniform moisture distribution in the 

mixture. Some water was lost during the waiting time, so an additional 0.1 g to 0.2 g of water 

was added. The total mass required for a sand sample was: 

                                           Srm cylinderwatercylinderquartzquartztotal   1                           (5.3) 

After the required total mass was confirmed, the mixture was compacted into a sampling 

cylinder (Fig. 5.1) by tapping or pushing a rod until the mixture completely fits inside the 

cylinder. 
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5.1.5 - Thermal Conductivity Probe 

                
Figure 5.1. (a): Soil sampler assembly (adopted from [11]) and (b): end cross section of TCP. 

Fig. 5.1 illustrates what the TCP had inside (Fig. 5.1b) and how the TCP was used to measure 

samples (Fig. 5.1a). The TCP outer cover was made of a stainless steel hypodermic tube (dTCP = 

1.06 mm and 88.9 µm wall thickness) of 55 mm effective length (L). The inner space of the steel 

tube contained a thermocouple and heating wire. The thermocouple was T-type and was made of 

0.1 mm copper/constantan wires coated with formvar (vinyl acetal). The heating wire (HW) was 

made of 0.1 mm constantan wire coated with a single polyurethane nylon (MSW Wires 

Industries). The thermocouple junction was electrically insulated from the heater and the 

hypodermic sheath and was positioned approximately at the point corresponding to the middle of 

the effective probe length (i.e., L/2). The inner space of the steel tube was filled with ultra-low 

viscosity epoxy resin which was later cured and secured the thermocouple and HW in place. 

The tube was then fixed on a printed circuit board (PCB) having the thermocouples and heater 

terminals (as shown in Fig. 5.2). The wire terminals were coated with a high performance 

polyimide electrical insulation film (Corona) to prevent short circuits. The TCP handle was made 

of an acrylic tube (9 mm outer diameter and 50 mm length) and located in the center of the PCB. 

The remaining space was filled with a five-minute-to-cure epoxy resin. The tip of the stainless 
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steel tube was covered and smoothed to enhance insertion into granular or soft media. A cold 

junction of the thermocouple was put into a reference sample at the same ambient environment 

as the tested sand. The thermocouple and the TCP heater could make measuring errors due to 

induced voltages, so their extension wires were twisted to minimize measuring errors. 

 
Figure 5.2. Printed circuit board assembly. (adopted from [11]) 

The TCP was then calibrated against 1% agar-gelled distilled water of (25, 40, 50, 60, and 70)oC. 

The thermal conductivity obtained from the TCP (kTCP) was compared with the publication of 

Sengers and Watson [55] (kref). The procedure was repeated three times for each of the 

calibrating temperatures and averaged. After the calibration, it was found that the relative error 

of the calibrated probe ranged from 0.3% to 2.7%. 

5.1.6 - TCP Experimental Procedures 

Sand samplers of different compactions (i.e., porosity of 0.32 and 0.38) were put in a force-air 

oven (Memmert UE-500-AQ) at 20-25oC. The sampling sand was left in the oven for 

approximately four hours in order to have uniform initial temperature everywhere inside the 
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sampling sand. Electricity was passed through the heating wire (HW) of the TCP such that the 

heating power of the HW ranged from 5 W/m to 1 W/m. The length-to-diameter ratio of the probe 

(L/dTCP) was about 50 because Blackwell [39] and Xie et al. [13] suggested the length-to-

diameter ratio to be larger than 25 in order to minimize the heat flux along the probe's axis. With 

the L/dTCP > 50, the TCP acts as a perfect line heat source [56]. The time heating the TCP was 

120 s so that the heat from the TCP could not reach the lateral walls of the sampler containing 

the sand sample at the end of the experiment (240 s), i.e., the infinite medium size was still 

maintained. After each experiment (i.e., one cycle of heating and cooling the TCP for 240 s), the 

TCP was left in the sampler for about 6 h so that the sand had sufficient time to come back to the 

oven temperature. Then many more trials were repeated. Since three samples were tested for 

each trial, there would be a total of nine measurements for each set of conditions. 

 

 

Figure 5.3. Schematic diagram of experimental setup. (adopted from [11]) 

Moreover, the epoxy thermal conductivity (ke) was found to play a significant role in the 

temperature response of the TCP based on the studies in Chapter 4 (for Eq. 2 and Eq. 3). Dr. 

Tarnawski was contacted for the ke value in his TCPs but he reported that ke was unknown as the 

manufacturer did not provide the ke value to him. The manufacturer was also consulted for the ke 

but did not find the answer as they were only interested in the viscosity of the Ultra Low 

Viscosity Kit that Dr. Tarnawski purchased. In addition, there are many reported ke values of 
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epoxies, depending on the grades and the constituents. However, there is no value for ultra-low 

viscosity epoxies. 

As a result, one Ultra Low Viscosity Kit from SPI Supplies [57] was purchased to find out the ke 

value used in Dr. Tarnawski’s TCPs.  

 

5.2 - Testing Epoxy 

5.2.1 - Epoxy Apparatus 

The experiment was set up with the following components: 

1. Ultra Low Viscosity Kit from SPI Supplies with the following mixing portions: 66mL n-

OSA, 33mL ERL 4221, 8.25mL BDE, and 9.9mL DMAE. 

2. One 5cm-long and 76.2µm-round constantan wire (covered in single polyurethane nylon) 

from MSW Wire with the Lot number: 75334-02. The wire’s resistance is 0.10004 Ω/m. 

3. Insulated constantan wire: five 15cm-long and two 8cm long wires, 76.2µm -round, 

Omega Engineering Inc. (PN: TFCC-003-50-FT). 

4. Insulated copper wire: five 15cm-long and two 8cm long wires, 0.003”-round, Omega 

Engineering Inc. (PN: TFCP-003-50-FT). 

5. Magnetic spice jar [58]  as shown in Fig 5.5. 

6. Daytronic System 10 data acquisition system from Daytronic. 

7. Z-Up 10-20 power supply from Lambda Inc.: 10V and 20A max. 

8. Resistor: 1Ω, 1% tolerance, liquid metal through hole. 

9. A computer system for automating the experiment. 

10. Insulation taken from the lab room. 

11. Two 0.03”-thick and 2.3”-round plastic sheets. 
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6 holes were drilled into The spice jar (#5) as in Fig. 5.4. The plastic sheets (#11) were glued 

using carpenter glue to the bottom of the spice jar and the inside of the lid of the spice jar. Ten 

15cm-long #3 and #4 wires were soldered to make thermocouples. Four 8cm-long copper wires 

(#4) were soldered to the two ends of the wire (#2) to make an effective 38.1mm heating wire. 

The pairs and the heating wire (#2) were then inserted into the holes of the spice jar as in Fig. 

5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

The thermocouple and the heating wire were later connected to the Daytronic data acquisition 

system (#6) to measure the temperatures of the thermocouples and the voltage drop across the 

heating wire. One copper wire soldered to one end of the heating wire was then soldered to the 

resistor (#8) which was connected to the Z-Up power supply (#7). 

After that, liquid epoxy (#1) was mixed and poured into the spice jar and air-solidified for two 

weeks. While the liquid epoxy was solidifying, a Microsoft Visual Basic 6.0 program was 

written so that the data acquisition system could import the temperature readings to Microsoft 

Excel to make further analysis. 

Hole for heating wire 

 
Figure 5.5. Jar and thermocouples. 
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After the liquid epoxy solidified, the temperature readings from the data acquisition system were 

calibrated with a thermometer that measured the room’s temperature when no power was passed 

through the heating wire. Then temperature readings were started and recorded. 

5.2.2 - Experimental Procedures for Testing Epoxies 

The spice jar was covered with insulation to reduce thermal disturbances from the surrounding 

environment. It was noted that the thermocouple numbered 5 in Fig. 5.4 was best to deal with 

because it was closest to the center (or the heating wire) and had enough data to do further 

analysis in the coming parts of this research. However, thermocouples at locations 1 and 6 were 

also used to obtain the final ke and αe. 

With the Visual Basic 6 program, many trials were done to obtain more accurate results under 

different heating powers (from 1 W/m to 17 W/m) and heating times (from 4 minutes to 1 hour). 

There were five thermocouples capable of taking measurements. The heating power was constant 

for each trial, but different trials had different heating powers and heating durations. 
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CHAPTER 6 - RESULTS AND DISCUSSION 

 

 

 

 

In this chapter, the TCP data obtained from experiments are applied to Eqs. 1, 2, and 3 (from 

Chapter 3) for both the heating and cooling periods. Comparisons and differences among the 

three equations will be heavily focused on. This chapter includes: 

1. the expressions for km, αm, thermal contact resistance (TCR),  

2. ke  and αe measured from the epoxy experiment, and 

3. the graphs and results in conjunction with the TCP data. 

For point #3, the graphs of the thermal contact resistance (TCR) will be shown and discussed 

first. Secondly, from the TCR, plots of km values are illustrated and analyzed. Values of kagar in 

the heating and cooling periods are investigated. Then, ksoil in both periods are studied. Lastly, 

the uncertainty from the epoxy experiment is explored to find out the relationship between its 

uncertainties and the calculated km values. 

Moreover, experimental limitations are described and analyzed. The content of this chapter can 

help researchers refine and further improve TCPs by comparing and/or verifying the results. 
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6.1 - Calculating Methods 

6.1.1 - Thermal Conductivity of the Sampling Medium 

For more thorough comprehension of the slope of a MxTerm , Fig. 6.1 is plotted. 

 
Figure 6.1. Illustration of slopes for Eqs. 1, 2 and 3. 
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where 1_ Eqheatslope  is the slope of    0,, trTtrT   vs. TermM1 as shown in Fig. 6.1, 











0
1 ln

t

t
TermM and  trT ,  and  0,trT  are from experiments. 

Applying similar concepts to Eq. 3.2, we have:        
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where 2_ Eqheatslope  is the slope of    0,, trTtrT   vs.TermM2 as shown in Fig. 6.1,  
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Term1(t) and Term2(t) are defined in Eq. 3.2; and  01 tTerm  and  02 tTerm  are Term1 and Term2 

in terms of t0 (at a fixed time). 

Also, applying similar concepts to Eq. 3.4: 
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Term1(t) and Term2(t) are defined in Eq. 3.2; TCR(t) is defined in Eq. 3.4; Term1(t0), Term2(t0), 

and TCR(t0)  are Term1, Term2, and TCR in terms of t0 (at a fixed time). 

For the cooling period (t > tc), the thermal conductivity of the sampling medium can also be 

calculated following the same procedures for the second expression of Eq. 3.1, and Eq. 3.3 and 
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Eq. 3.5. Also, re-arranging the three equations yields km_cool_Eq1, km_cool_Eq2, and km_cool_Eq3 in Eq. 

6.4, Eq. 6.5, and Eq. 6.6 respectively as follow: 
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where 1_ Eqcoolslope , 2_ Eqcoolslope , and 3_ Eqcoolslope  are the slopes of    coolcool trTtrT 0,,   

vs.    cMM ttTermtTerm  11 ,    cMM ttTermtTerm  22 , and    cMM ttTermtTerm  33  

respectively, and  cooltrT ,  and  cooltrT 0,  are from experimental data. 

The initiating time t0 is the time after the start of each period. Some examples of t0 and the 

corresponding temperature responses are shown in Table 6.1. tc = 120 s.  tTermMx  and 

 cMx ttTerm   follow the same trend. 

Table 6.1. Examples of t0 values and the corresponding temperature responses. 

  

 
Since km is unknown, an iterative method is applied to obtain the value of km for Eqs. 6.2 and 6.3. 

First of all, km is assigned a value within a reasonable range (which could be km obtained by Eq. 

6.1) and αm is then calculated as  pm ck /  where pc is defined in Eq. 6.7 in order to determine 

the 2_ Eqheatslope  in Eqs. 6.2 and 6.3. Later, a new value of km is from Eqs. 6.2 and 6.3. The new 

value of km is used to calculate a new value of αm as before. With the new values of km and αm, 

the cycle repeats until the new value of km converges to within 0.1% of the previous value. The 

same iterative method is used for Eqs. 6.5 and 6.6 to obtain km_cool_PC, and km_cool_TCR. 
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The iteration procedures for calculating Eq. 6.3 can only work if αm and Rc are known. As a 

result, in calculating km using Eqs. 6.3 and 6.6 in this thesis, the following steps were applied: 

a. Obtain km and am with Eqs. 6.2 and 6.5 by the iteration procedure already described. 

b. Obtain Rc using the method described in Subsection 6.1.3. 

c. Obtain km and αm with Eqs. 6.3 and 6.6 by the iteration procedure already described. 

6.1.2 - Thermal Diffusivity of the Sampling Medium  

Ottawa sand C109 was used as the sampling medium by Tarnawski et al. [11], [43], and [21]. 

The sand consists of air, water, and quartz, whose densities and specific heat capacities  are 

known and listed in Table 6.2. 

Table 6.2. Thermal properties at 25ºC of air, water, and quartz (Appendix 1 of Cengel [10]) 

 
 

Air Water Quartz 

ρ (kg/m3) 1.20 997.5 2650 
cp (J/kg·K) 1000 4181 745.0 

 

The porosity of C109 is defined as 
volumetotal

spaceofvolume
 . Volume of space is the non-solid 

volume, which can contain air or water or both, inside the sand sample. 

The saturation ratio of C109 is defined as 
spaceofvolume

waterofvolume
Sr  . 

There are seven experimental saturation ratios for C109 sand samples: 0.0, 0.1, 0.2, 0.3, 0.5, 0.7, 

and 1.0. Sr = 0.0 is for completely dry sand and Sr = 1.0 is for fully saturated sand. Other Sr's are 

for unsaturated (or partially saturated) sands. 

The overall volumetric heat capacity (VHC) of a C109 sample using the weighted average 

method is defined as (Bristow et al. [19]): 

                                        
quartzpwaterpairpp cccc                                   (6.7) 
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where     Sr
volumetotal

airofvolume
air 1 ,           Sr

volumetotal

waterofvolume
water ,        and 

  1
volumetotal

quartzofvolume
quartz  

Applying Eq. 6.7, the thermal diffusivity of a C109 sand sample can be calculated as: 
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where km is the thermal conductivity of C109.  

6.1.3 - Thermal Contact Resistance - Rc value 

The method to obtain Rc suggested by Blackwell [59] and shown in Appendix A.4 does not 

produce unique solutions for the TCP data from Dr. Tarnawski. As a result, in order to obtain Rc, 

km from Eq. 6.2 and volumetric heat capacity of the sampling medium from Eq. 6.7 are used for 

Eq. 3. The root mean square error (RMSE) for each period (heating or cooling) is defined as: 
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where TI stands for time increment (= 0.0667 s) as used in the experiment, i is the ith experiment 

of TCP, and n is the number of time increments within 120 s. 

The value of Rc is systematically varied over a reasonable range (10-6 ≤ Rc ≤ 3×10-3 m2·K/W) 

until the RMSE during a period (heating or cooling) of a TCP experiment in Eq. 6.9 is smallest. 

When RMSE is smallest, the corresponding Rc is reported as the Rc value for that particular 

period of TCP measurement. 
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6.2 - Epoxy Data 

Typical samples of the temperature response from the thermocouples of an epoxy test are shown 

in Fig. 6.2. Because the temperature was measured during the heating period, the first part of Eq. 

1 can be calculated as follows: 
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where 1_ Eqheatslope  is the slope of    0,, trTtrT   vs.  0ln tt  as shown in Fig. 6.1. 

 
Figure 6.2. Sample T-t plot from thermocouples of an epoxy test. 

Eq. 6.10 can only be applied when elethermocoupr 4 where rthermocouple is the radial location of 

the thermocouple away from the heating wire and τ is the heating period. Because αe is unknown 

and can cause large errors if the t0 is not properly selected (which will be explained in Section 

6.3), the first expression of Eq. 1 is used to fit the experimental temperature responses at 

thermocouple locations 1, 5 and 6. The least square (or minimum root mean square error) 

method is used to obtain the best fit with the following steps: 

1. Assume  ke = 0.68 W/m·K and αe = 3.8×10-7 m2/s (from Table 4.1). 
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2. Calculate 
 







iHD

TIt

ierimentEq
i n

TT
RMSE

2
_exp1  where TI is the time increment of 

temperature readings (1 s), HD is the heating duration, i is a particular experiment, n is 

the number of seconds within a HD, and T is the temperature. 

3. Calculate average RMSEi  as: 



120

1 120i

i
avg

RMSE
RMSE  where i is the experiment number. 

In total, there were 120 experiments in the epoxy test. 

4. Re-assume the values of ke and αe and re-calculate RMSEavg  until RMSEavg is smallest. 

The smallest RMSEavg ( X ) was found to be 0.058ºC  with ke = 0.205 W/m·K and αe = 1.14×10-7  

m2/s. The RMSE values for the 120 experiments are plotted in Fig. 6.3. The legend shows the 

thermocouple numbers. Other statistics of the RMSE are CS o
X

0035.0 , 

980.1 ondistributit student , and CP o
X

007.0  (refer to Appendix A7 for more information). 

Since ke and αe are obtained by curve-fitting the experimental data with Eq. 1, the random error 

of the epoxy experiment is from 
XP .  

Applying Eq. A.7.2 for Eq. A.7.1 (in Appendix A.7) with Vhw, VSR, ke, Shunt_R, and LHW as the 

variables with errors, the relative random error of the experiment is 12.07% by Eq. 6.11a. 
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The systematic relative error (
ekB ) is 1.31% by using Eq. 6.11b.  

Therefore, the relative overall uncertainty of ke at the 95% confidence level is 

  %14.1231.107.12 22

95.0


ekU . 

Applying similar procedures, the relative random and systematic errors of αe are 17.07% and 

3.59% respectively by using Eq. 6.12.  
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where %3
r

Br : the relative systematic error of a thermocouple's location, and 0
r

Sr : the 

relative random error of a thermocouple's location. 

Therefore, the relative overall uncertainty of αe is %44.1759.307.17 22  . 

 
Figure 6.3. Calculated RMSEi at minimum RMSEavg of 0.058ºC. 
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The uncertainties came from many sources. The first source was the built-in accuracies of the 

experimental equipment that came from the tolerances during their manufacturing processes. The 

second source was from the thermal disturbances of the surrounding environment of the 

experiment such as the temperature fluctuations inside the lab room when another student was 

working on another experiment generating a lot heat, the HVAC setup of the lab room, and so 

on. Last but not least was from the mathematical manipulation of the experimental data such as 

the round-off errors of the mathematical functions and numbers used.  

 

6.3 - TCP Data 

6.3.1 - Approximation of rsen 

Table 6.3 lists the properties of the TCP used for Section 6.3. 

Table 6.3. List of TCP properties from experiment at 25ºC. 

Parameter ke (W/m·K) αe (m
2/s) ks  (W/m·K) αs (m

2/s) kwater (W/m·K) 
Value 0.205 1.14×10-7 14.90 3.95×10-6 0.607 

Parameter re (µm) rs (µm) rw (µm) ρagar (kg/m3) cp water (J/kg.K) 
Value 444.5 533.0 38.10 997.5 4181 

 
  

The actual TCP construction has a U-shaped heating wire and a thermocouple within the epoxy 

layer as shown in Fig. 5.1b. The exact locations of the heating wire and thermocouple are 

unknown. So, in order to use Eqs. 1, 2, and 3, the TCP experimental data of agar are used to 

approximate (or calibrate) the location of the thermocouple with the assumption of a line heating 

wire at the center of the epoxy layer. 

First of all, the root mean square error (RMSE) of the heating period, defined in Eq. 6.13, was 

applied as: 

                                           

i

s

TIt

erimentorEq

ncalibratioi n

TT
RMSE











 

 


120 2
exp21                             (6.13) 

where TI stands for time increment (= 0.0667 s) as used in the experiment, i is the ith experiment 

of TCP, n is the number of time increments during the heating or cooling period (120 s)and agar 
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is used to calibrate the location of the thermocouple of each TCP because the thermal properties 

of agar (i.e., water) are known. 

Secondly, rsen in Eq. 2 was varied such that   ncalibratioiRMSE  was minimum.  

Lastly, different values of rsen in different measurements with the same TCP were averaged to 

represent the rsen of the TCP in future studies. The averaged rsen values for the TCPs examined 

are shown in Table 6.4. 

Table 6.4. Averaged values of calculated rsen for different TCPs using Eq. 2. 

TCP # 02 16 17 29 32 
rsen (µm) 308.2 325.4 305.0 324.0 367.1 

 

6.3.2 - Thermal Contact Resistance 

The Rc for measurements of the same probe and same sampling medium were averaged as shown 

in Figs. 6.4 and 6.5. The legends in Figs.  6.4b and 6.5b display the TCP number and saturation 

ratio, e.g., 16-0.1 means TCP16 and Sr = 0.1. 

The general trend in Figs. 6.4 and 6.5 is that increasing water content (i.e., higher saturation 

ratio) will decrease the thermal contact resistance. There are values that do not follow the general 

trend because during the actual experiments, the water could have migrated to another site away 

from the TCP's outermost surface due to the TCP's heat. Also, different probes produced 

different contact resistances due to the manual manufacturing and experimenting processes of 

each probe. 

Because Rc is calculated (using Eq. 6.9) based on the km obtained by Eq. 2 with subjectively 

chosen initiating time t0, the time is varied from 10 to 60 s to explore the influence of the time on 

the TCR. As shown in Figs. 6.4 and 6.5, the value of Rc levels off as higher initiating times are 

chosen. The reason is from the transient nature of the TCP. When the TCP was first heated up, it 

took some "warm-up" time for the TCP due to the thermal capacitance of the TCP. 
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In addition, Rc in the cooling period is usually higher than that in the heating period, indicating 

that even after electricity was turned off, the residual heat transfer from the TCP was still 

probably causing water movement away from the TCP-medium interface due to the temperature 

gradient. Also, some water, after having migrated to another site, did not move back immediately 

because of many factors such a temperature gradients and water's high viscosity, and capillary 

forces in the porous medium. In the case of agar, air bubbles could have formed on the surfaces 

of the TCPs during heating or inserting of the TCPs. For saturated sand, there may have been 

some dissolved air being released from the water when being heated by the TCP due to relatively 

high heating power (about 10 W/m) of the TCP and water migration in the sand. As a result, the 

Rc obtained from the cooling period is almost always twice the value of that from the heating 

period. 

Further examination of the graphs in Appendix A.6 shows that after each experiment, water 

could have moved back to the TCP-sand interface, hence lower Rc values for partially saturated 

C109 sand. In contrast, there are cases where water did not move back to the interface because of 

many factors such as geometry and distribution of pores and temperature gradients, thus higher 

Rc values. 

Moreover, comparing the Rc values from Figs. 6.4 and 6.5 with those from Liu et al. [42], the Rc 

value of dry sand was one order of magnitude (or about 10 times) higher than that of agar. Liu et 

al. calculated Hc values (Hc = 1/Rc) with their Ø1.27 mm TCP to be 113 W/m2·K (or Rc = 

8.85×10-3 m2·K/W) for air-dried Great Sand Hill sand and 1056±60 W/m2·K (or Rc = 9.47×10-4 

m2·K/W) for agar. The Rc values in this thesis are obtained to be 1.71×10-3 m2·K/W for dry C109 

sand and 1.74×10-4 m2·K/W for 1% agar from TCPs of Ø1.06 mm which are about 5 time smaller 

than the values of Liu et al [42]. Liu et al [42] did not specify the amount of agar-to-water ratio 

they used. Also, the TCP construction of Liu et al. was not clearly described. 

After Rc was obtained, km from Eq. 3 can be calculated with the steps shown in Subsection 6.1.1. 

The calculated km values using Eqs. 1, 2 and 3 will be compared in Subsection 6.3.3. The 

calculating methods to obtain km values with different equations for Subsection 6.3.3 were 

described in Subsection 6.1.1. 
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Figure 6.4. Average Rc values vs. t0 for different TCPs and sampling media based on heating period. 
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Figure 6.5. Average Rc values vs. t0 for different TCPs and sampling media based on cooling period. 
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6.3.3 - km in Heating and Cooling Periods 

Fig. 6.6 shows the calculated kagar using Eqs. 6.1, 6.2 and 6.3 vs. the initiating time t0 during the heating 

period, i.e., all the temperature data (t0 ≤ t ≤ 120 s) in the heating zone from the experiment are used to 

obtain the graphs. As one can note that when t0 is higher, kagar appears to level off. The reason is from the 

transient nature of the TCP and is similar to the Rc values discussed in Subsection 6.3.2. In addition, 

except for TCP2, the kagar obtained from Eq. 6.3 is not much different than that from Eq. 6.2. 

Consequently, Rc has slight influences on the thermal conductivity of the sampling medium.  

 

 

 
Figure 6.6. kagar estimated by Eqs. 6.1, 6.2, and 6.3 during the heating period. 
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This Rc result agrees well with those of Murakami et al. [23] and Elustondo et al. [34]. The researchers 

explained that Rc only shifted the T-t plot (the plot of temperature T vs. time t) but did not change the 

slope of the T-t plot. With using Eq. 6.1, the calculation of km is influenced by how much the slope 

changes but not how much the T-t plot is shifted. Also, the kagar values calculated are not the same for all 

but vary among the probes because each probe was made manually and has slight variations with each 

other. 

In order to better study how accurately Eqs. 6.1, 6.2 and 6.3 are, the reference k-value (kref) of agar was 

assumed that of water at 25ºC, i.e., 0.607 W/m·K (p.854 Cengel [10]). The experiments of Tarnawski et 

al. [11], [21], [43] were at around 25ºC. The reference k-value was then used to calculate the errors of 

kagar obtained by Eqs. 6.1, 6.2 and 6.3 by the following equation: 

                                                        %100% . 



ref

refEq

k

kk
Error                                             (6.14) 

where kEq. is the kagar obtained from a particular equation and kref is the reference thermal 

conductivity of water at 25oC from Cengel [10]. 

The values of %Error are plotted in Fig. 6.7. As shown in Fig. 6.7, Eq. 6.1 seems more accurate 

than Eqs. 6.2 and 6.3 in estimating the thermal conductivity of agar. However, thermal 

conductivity measurements on other materials may prove differently. As shown in Fig. 4.6 in 

Chapter 4, making measurements on different materials theoretically produces different errors in 

temperature responses. Meanwhile, in the literature, the km values from TCP measurements have 

been mostly calculated by using Eq. 6.1 and the asymptotic approximation.  Therefore, in order 

to make more accurate comparisons, a GHPA or equivalent should be used to obtain the km 

values which are then compared with those calculated using Eqs. 6.1, 6.2 and 6.3. 

So far, the heating period has been extensively studied but the cooling period is rarely reported. 

As a result, Fig. 6.8 is plotted to show the kagar obtained using the experimental temperature data 

from the cooling period. 

From Fig. 6.8, one can see that the thermal contact resistance (TCR) does make a difference in 

the calculation of kagar. However, by comparing the results from Eq. 6.2 with those from Eq. 6.3, 

the difference is relatively small. The difference is further studied in comparison with kref as 

shown in Fig. 6.9. The calculation steps in Fig. 6.9 are the same as those in Fig. 6.7. 
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Figure 6.7. Percent error of calculated kagar during the heating period. 
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Figure 6.8. kagar estimated by Eqs. 6.4, 6.5, and 6.6 based the cooling period. 
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Figure 6.9. Percent error of calculated kagar based on the cooling period. 
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TCP was first inserted during the heating period of the TCP. As a result, the TCR and Rc value 

could not be held constant while Eq. 3 assumes Rc is a fixed and constant value. Consequently, 

the errors associated with km values obtained using Eq. 6.6 in the cooling period are higher than 

those in the heating period. 

To better compare the heating and cooling periods, Fig. 6.10 is plotted. The figure shows the 

average values of kagar from different measurements. With the same probe and t0, the kagar values 

are averaged. Then, with the same probe, the average kagar values are averaged among different t0 

values (overall average). The horizontal axis of Fig. 6.10 shows the equation number while the 

vertical axis displays the overall averages of TCPs. The legend indicates the TCP number. As 

one can notice, the kagar values obtained from the heating period using Eqs. 1, 2 and 3 are more 

accurate than those from the cooling period. Also, using Eq. 1 produces slightly lower errors than 

those of Eqs. 2 and 3, depending on the particular TCP. However, whether Eq. 1 is always more 

accurate than Eqs. 2 and 3 is still too early to conclude since more media should be tested from 

and compared with other measuring techniques such as a GHPA. 

 
Figure 6.10. Average error of kagar values for different TCPs using Eqs. 1, 2 and 3. 
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there are some differences in the curves calculated using Eq. 1 from the heating and cooling 

periods. The reason comes from the neglected TCP construction and the TCR. Moreover, by 

comparing Fig. 6.11a and Fig. 6.7, the particular construction of the TCP2 creates the difference 

in the km value predicted by Eq. 2 and by Eq. 3. 

   
Figure 6.11. k-value of dry C109 Ottawa sand vs. t0. 

Fig. 6.12 illustrates the thermal conductivity values of partially saturated C109 sands vs. 

initiating time t0 by using Eqs. 1, 2 and 3 in both heating and cooling periods. The legend shows 

the saturation ratios. Within a period (heating or cooling), the km-values from Eq. 2 are higher 

than those from Eq. 1 but lower than those from Eq. 3. Also, similar to the trend of Rc and kagar, 

kPS_C109 values also level off as t0 is sufficiently large enough. In addition, by using Eq. 1 for both 

periods, the k-values obtained are more similar to each other for higher Sr. However, with the 

application of Eq. 2, the km values for the partially saturated C109 sands are higher than those 

calculated by Eq. 1 in both periods. The reason can be explained by the neglected TCP 

construction of Eq. 1 (Nusieh and Abu-Hamdeh [60] and Abu-Hamdeh [61]). By looking at 

Table 6.3, the ke is smaller than the ksoil of partially saturated conditions. With the same 

temperature values and less conduction through the epoxy layer, Eq. 1 underestimates the km 

values. In other words, when the line heat source theory is applied to the TCP, the thermal 

properties of the TCP materials are ignored. However, because the thermal properties of the 

epoxy layer are less than those of the soils, the thermocouple in the TCP reads higher 

temperature values; hence the calculated ksoil values are less. 
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Figure 6.12. kPS_C109 vs. time for TCP 16 using Eqs. 1, 2 and 3 in heating and cooling periods. 

Moreover, since the value of ks is much higher than those of epoxy and soils and the steel layer is 

relatively small in thickness, the layer acts as a "perfect" conductor that do not prevent heat 

(which is determined by the heating power) easily moving from the TCP to the soil. Therefore, 

Fig. 6.12 agrees well with Fig. 4.9 that the thermal conductivity of the steel layer has little effects 

on the error. 
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Furthermore, the km values obtained by Eq. 3 are similar to those by Eq. 2 in both periods if the 

initiating time t0 is large enough. This result agrees with those of Murakami et al. [23], Goto and 

Matsubayashi [41], and Cull [62] that the TCR has small effects on determining km. 

Similarly, the km values from TCPs numbered 17, 29 and 32 are plotted in Figs. 6.13-6.15. The 

trends in the plots and those in Fig. 6.13 are very alike. The only odd exception in Figs. 6.13-614 

is the case of the cooling period for TCP 29 in Fig. 6.14. The reason could be from the particular 

construction of the TCP 29 and/or the setup of the experiments. Also, by comparing Figs. 6.7, 

6.9, 6.11, 6.12, 6.13, 6.14, and 6.15 with Fig. 6.10, the cooling period may or may not produce 

worse km values than the heating period does. In other words, one should consider the particular 

construction of each TCP and the measurement setup to judge whether the heating or cooling 

period can produce more accurate km values. With the construction methods from Tarnawski et 

al. [11], the heating period mostly gives more accurate km results than the cooling period does. 

Other construction  methods of TCPs may have different results.  

The reason for the difference in the periods lies in the heat sink model (HSM) for the cooling 

period. Basically, the model considers the temperature response in the cooling period as the 

difference between the heat rise at 0 s and at the time the electricity of the heating wire is cut off 

(de Vries [47] and Liu et al. [42]), i.e.,    cttrTtrT  ,, . During the derivation of Eq. 3.1a, 

Carslaw and Jaeger [16] assume that the initial temperature at every point of the sampling 

medium is the same. However, the initial temperature Ti at the beginning of the cooling period is 

not same for every point in the sampling medium as in the heating period. 
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Figure 6.13. kPS_C109 vs. time for TCP 17 using Eqs. 1, 2 and 3 in heating and cooling periods. 

By looking at the km values shown in Fig. 6.7, 6.10 and 6.12-6.15, the Rc value has small effects 

on the values of km. This result agrees well with Murakami et al. [23], Goto and Matsubayashi 

[41], Cull [62], and Liang et al. [27]. 
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Figure 6.14. kFS_C109 vs. time for TCP 29 using Eqs. 1, 2 and 3 in heating and cooling periods. 

 

 
Figure 6.15. kFS_C109 vs. time for TCP 32 using Eqs. 1, 2 and 3 in heating and cooling periods. 

Kersten [63] published km data of C109 sands obtained by a GHPA. Farouki [64] tested sands of 

similar grain size distribution and compaction with the TCP method and reported disagreement 

with the data from Kersten. In addition to the moisture migration problems from the GHPA, 

choosing an inappropriate t0 may also cause additional errors since the values of km level off as t0 

increases. 

Because the uncertainties of ke and αe are relatively high (±12.14% and ±17.44% respectively), 

one may question how km is affected by the changing values of ke and αe. As a result, Figs. 6.16-

6.19 are plotted to investigate the sensitivity of km to ke and αe. The changing values of ke and αe 

used are shown in Table 6.5, which shows the ±20% of the values of ke and αe that are shown in 

Table 6.3. 

3.00

3.20

3.40

3.60

3.80

4.00

4.20

0 10 20 30 40 50 60

T
h

er
m

al
 C

on
d

u
ct

iv
it

y 
(W

/m
.K

)

t0 (s)

Eq. 1 Eq. 2 Eq. 3

HeatingSr = 1.0

3.00

3.20

3.40

3.60

3.80

4.00

4.20

0 10 20 30 40 50 60

T
h

er
m

al
 C

on
d

u
ct

iv
it

y 
(W

/m
.K

)

t0 (s)

Eq. 1 Eq. 2 Eq. 3

CoolingSr = 1.0

3.00

3.20

3.40

3.60

3.80

4.00

4.20

0 10 20 30 40 50 60

T
h

er
m

al
 C

on
d

u
ct

iv
it

y 
(W

/m
.K

)

t0 (s)

Eq. 1 Eq. 2 Eq. 3

HeatingSr = 1.0

3.00

3.20

3.40

3.60

3.80

4.00

4.20

0 10 20 30 40 50 60

T
h

er
m

al
 C

on
d

u
ct

iv
it

y 
(W

/m
.K

)

t0 (s)

Eq. 1 Eq. 2 Eq. 3

CoolingSr = 1.0



90 
 

 

 

 

   

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

1 2 3

E
rr

or
 (

fo
r 

te
st

in
g 

w
it

h
 a

ga
r)

Equation

TCP2

TCP16

TCP17

TCP29

TCP32

Heating

αe = 1.37×10-7 m2/ske = 0.246 W/m·K

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

1 2 3

E
rr

or
 (

fo
r 

te
st

in
g 

w
it

h
 a

ga
r)

Equation

TCP2

TCP16

TCP17

TCP29

TCP32

Cooling

ke = 0.246 W/m·K αe = 1.37×10-7 m2/s

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

1 2 3

E
rr

or
 (

fo
r 

te
st

in
g 

w
it

h
 a

ga
r)

Equation

TCP2

TCP16

TCP17

TCP29

TCP32

ke = 0.246 W/m·K αe = 1.14×10-7 m2/s

Heating

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

1 2 3

E
rr

or
 (

fo
r 

te
st

in
g 

w
it

h
 a

ga
r)

Equation

TCP2

TCP16

TCP17

TCP29

TCP32

αe = 1.14×10-7 m2/ske = 0.246 W/m·K

Cooling

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

1 2 3

E
rr

or
 (

fo
r 

te
st

in
g 

w
it

h
 a

ga
r)

Equation

TCP2

TCP16

TCP17

TCP29

TCP32

ke = 0.164 W/m·K αe = 9.12×10-8 m2/s

Heating

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

1 2 3

E
rr

or
 (

fo
r 

te
st

in
g 

w
it

h
 a

ga
r)

Equation

TCP2

TCP16

TCP17

TCP29

TCP32

ke = 0.164 W/m·K αe = 9.12×10-8 m2/s

Cooling

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

1 2 3

E
rr

or
 (

fo
r 

te
st

in
g 

w
it

h
 a

ga
r)

Equation

TCP2

TCP16

TCP17

TCP29

TCP32

Heating

ke = 0.164 W/m·K αe = 1.14×10-7 m2/s

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

1 2 3

E
rr

or
 (

fo
r 

te
st

in
g 

w
it

h
 a

ga
r)

Equation

TCP2

TCP16

TCP17

TCP29

TCP32

αe = 1.14×10-7 m2/ske = 0.164 W/m·K

Cooling

Figure 6.16. Error of average kagar for using Eqs. 1, 2 and 3 with different values of ke and αe. 



91 
 

Table 6.5. List of investigated sets of values for ke and αe. 

Parameter Case 1 Case 2 Case 3 Case 4 Unit 
ke  0.246 0.246 0.164 0.164 W/m·K 
αe  1.37×10-7 1.14×10-7 9.12×10-8 1.14×10-7 m2/s 

 

  

Fig. 6.16 shows the errors of kagar obtained by using Eqs. 1, 2 and 3 in both heating and cooling 

periods. Basically, the difference between Fig. 6.16 and Fig. 6.10 is the set of values of ke and αe. 

From Fig. 6.16, the error of kagar is sensitive to the values of ke and αe. Also, the error is more 

sensitive to αe than to ke. For example, for TCP17 with Eq. 2 and Eq. 3, increasing ke by 20% 

will decrease the error by 0.2% whereas raising αe by the same percentage only reduces the error 

by 1.0%. Therefore, the more accurately αe is known, the more confidently the experimenter can 

report the measured kagar. This result for confidence does not contradict the results of Figs. 4.8 

and 4.9. In fact, they enhance each other. From Figs. 4.8 and 4.9, the experimenter can decide 

which materials to use for the TCP construction to have low errors. After the right materials are 

selected from a manufacturer's catalogue, the experimenter can ask the manufacturer to provide 

the materials with properties of higher accuracies. If the manufacturer does not have good 

enough materials, the experimenter can look for other manufacturers who produce the desired 

materials. Also, the more accurate the properties are, the more expensive the materials become. 

So knowing which property requires a higher accuracy from the manufacture can save the cost of 

the finished TCP. However, the experimenter needs to balance between the cost and the error. 

Fig. 6.17 shows the km values of dry C109 sands as a function of t0. Various sets of values of ke 

and αe are included. By comparing Fig. 6.16 with Fig. 6.11, km of dry C109 sand is more 

sensitive to αe than to ke. Therefore, if the value of αe is more accurately known, km of dry C109 

reported may be closer to each other. 

Figs. 6.18-6.21 show the thermal conductivities of partially saturated C109 sands vs. t0 by using 

Eq. 1, 2 and 3. The difference between the group of Figs. 6.18-6.21 and Fig. 6.12 is the sets of 

values of ke and αe.  
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Figure 6.17. Error of kdry_C109 for using Eqs. 1, 2 and 3 with different values of ke and αe. 
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To better understand how the uncertainties of ke and αe affect the calculated km, Fig. 6.21 is 

plotted to display the differences of km for the cases shown in Table 6.5. The equation to 

calculate % difference of km is: 

                                        
   

  %100%
2.6

2.6 



Tablem

TablemiCasem

k

kk
Difference                                  (6.15) 

where   2.6Tablemk  is the thermal conductivity value that is calculated using the experimental data 

and the parameters shown in Table 6.3, and 

             iCasemk is the km value that is obtained using the experimental data and the parameters in 

Table 6.3 whose values of ke and αe are replaced by those of Case i shown in Table 6.5. 

 

 
Figure 6.18. Percent Difference of thermal conductivities values vs. initiating time t0 for the four 

cases shown in Table 6.5. TCP2 is applied. 
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One horizontal increment of the Fig. 6.18 represents 5 s. The legend indicates the sampling 

medium from which the % Difference is calculated and the case number tabulated in Table 6.5. 

For example, Agar-1 refers to the curve for the % difference that is from agar and the values of 

ke and αe of Case 1 in Table 6.5. Also, C00-3 means dry C109 sand (Sr = 0.0) and the Case 3 in 

Table 6.5. 

 

 
Figure 6.19. Percent Difference of thermal conductivities values vs. initiating time t0 for the four 

cases shown in Table 6.5. TCP17 is applied. 
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of C109 sand (Sr = 0.5), the km can have ±5% with short initiating time t0 due to a ±20% change 

in αe. However, the changing percentages of ke and αe can be from the dependencies on 

temperature of the two parameters. In other words, the material properties of the two parameters 

can vary with temperature during the measurement, so the reported km of the sampling medium 

has errors that the experimenter may not be aware of. Fortunately, the differences from varying 

ke and αe are relatively low and decreasing with higher initiating time t0. 

Nevertheless, the relatively low percentage difference of km values reported in this Section only 

applies to the particular TCP construction from Tarnawski et al. [11]. Other TCP construction 

methods may not produce the same percentage difference. The experimenter is recommended to 

verify his/her results by varying the thermal properties of the TCP materials.  

 

6.4 - Design Parameters for TCP 

In this Section, the errors of the km values are obtained by using the temperature responses from 

FEHT under different simulation conditions which are various t0, heating powers, TCP materials, 

diameter ratios, TCP sizes, and thermocouple locations. The materials, of TCP and of sampling 

medium, with their thermal properties are listed in Tables 6.6 and 6.7. In addition, due to 

simulation and time restraints, Eqs. 1 and 2 are used to calculate, from FEHT temperature 

responses, the km values which are then compared with the km values that are input into the FEHT 

models. However, the effects of t0 will be studied using both experimental and simulation data. 

Table 6.6. Possible TCP materials with their corresponding thermal conductivities and thermal 
diffusivities ([65], [66],  [34], [48], [50]). 

TCP Material Silicon Rubber Epoxy Macor Steel Aluminum Copper 
Shortened name SR E M S A C 

k (W/m·K) 0.170 0.682 1.470 16.20 204.0 385.9 
α (m2/s) 2.00×10-7 3.80×10-7 7.23×10-7 4.05×10-6 8.41×10-5 1.12×10-4

 

Table 6.7. Sampling media with their corresponding thermal conductivities and thermal 
diffusivities ([65], [66],  [17], [67], [10]). 

TCP Material Stoneware Clay Soil Water 
Shortened name SC SL WR 

k (W/m·K) 0.388 0.502 0.607 
α (m2/s) 2.00×10-7 3.80×10-7 1.45×10-7 
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The values for the parameters shown in Tables 6.6 and 6.7 are for present analysis only. The 

manufacturing processes of the TCP using such materials may or may not be possible or 

practical in reality. The errors of km values in Subsections 6.4.2 - 6.4.5 are defined as follows: 

                                                    
   

 FEHTm

FEHTmEqm

k

kk
Error


 .100%                                      (6.16) 

6.4.1. Varying t0 

To better study the effect of t0 on the calculate km, Fig. 6.20 is plotted and shows the percentage 

error of kagar versus t0 for different probes using TCP experimental data. As it can be seen, the 

lowest errors happen for t0 in the range of 70 - 100 s. In addition, to better investigate the t0 range 

in sand samples, Fig. 6.21 is plotted to illustrate the km values of dry and fully saturated C109 

sand samples using TCP2 and TCP29. The calculated km values reach an extreme and then 

fluctuate. The extreme for all the calculated km values is generally in the range of 70 - 100 s of t0. 

Before the reason for the unusual behaviors of the calculated km values is mentioned, it is 

important to first have a look at the FEHT numerical simulations to examine other parameters 

described at the beginning of Section 6.4 in Subsections 6.4.2 - 6.4.5. The errors in Subsection 

6.4.1 are defined as follows: 
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Figure 6.20. Percent error of calculated kagar during the heating period from 0 - 120 s. 

 
Figure 6.21. Percent error of calculated km during the heating period from 0 - 120 s for various 
TCPs and C109 sand samples. (a): TCP2 and dry sand. (b): TCP29 and fully saturated sand. 
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6.4.2 - Various Heating Powers 

In Table 6.8, with different heating powers (HP), the errors of the km calculated by Eqs. 1 and 2 

are shown. The initiating time t0 is also included in the table. The first column of Table 6.8 

displays the percentage error with different HPs shown in the last row using Eq. 1. The second 

column displays the t0. The last column displays the percentage error with different HPs shown 

in the last row using Eq. 2. From Table 6.8, the errors of km by using Eq. 1 are higher than those 

by using Eq. 2. In addition, the errors decrease with increasing t0 in both equations. However, 

varying HPs does not much affect the errors of the calculated km. Nevertheless, one should be 

careful of too high heating power as it can cause convection and moisture migration in porous 

media such as soils. On average, the error of using Eq. 1 with different HPs is 2.953% while that 

of using Eq. 2 is 0.273%. The high percentage error at small t0 from applying Eq. 1 is due to the 

neglected thermal capacitance of the TCP at the beginning of the heating period. As time 

increases further, the TCP is closer to the steady state and the thermal capacitance of the TCP is 

less important. 

Table 6.8. Percent error of calculated km with different heating powers (HP) using Eqs. 1 and 2. 
TCP materials and sizes are from Table 4.1. 

 

6.4.3 - Various Sampling Media and TCP Materials 

Table 6.9 illustrates the percent errors by measuring different sampling media with different TCP 

material combinations. For example, the second row of the table shows the percent error of 

measuring different sampling media with a TCP constructed from epoxy and steel (E-S). In 
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general, it seems to illustrate that measuring a sampling medium with low km using a TCP tends 

to have a higher error. The third row of the table shows the percent error of measuring different 

sampling media with a TCP constructed from epoxy and aluminum (E-A). From Table 6.9, it can 

be seen that having a less conductive buffering material (i.e., the "epoxy" layer of TCP), the km 

value calculated can have higher errors. Also, having steel at the outermost layer produces lowest 

errors among the three tested metals. The overall average error for using Eq. 1 in the sampling 

media examined is 4.107% while that for using Eq. 2 is 1.291%. 

Table 6.9. Percent error of calculated km with different sampling media, whose shortened names 
are from Table 6.7, using Eqs. 1 and 2. TCP materials and sizes are from Tables 4.1 and 6.6. 

 

6.4.4 - Various TCP Sizes and Materials 

Tables 6.10 - 6.12 shows the percent error of using Eqs. 1 and 2 with a TCP of various sizes,  

diameter ratios (DR), and materials. The sampling medium used to produce Tables 6.10 - 6.12 is 

Soil shown in Table 6.7. For example, the sixth row of Table 6.10 displays the errors of using 

Eqs. 1 and 2 with a TCP made from silicon rubber and aluminum (SR-A) and of Ø0.55 mm with 

various diameter ratios. Similar to Table 6.9, Tables 6.10 - 6.12 indicate that having a less 

conductive material in the buffering layer of the TCP produces higher errors of the calculated km. 

In addition, it is observed that having a larger buffering layer for the TCP makes the TCP less 

accurate in general. Furthermore, having steel at the outermost layer of the TCP produces lower 

errors. The overall average errors for using Eq. 1 with TCPs of Ø0.55 mm, Ø1.10 mm, and Ø1.65 

mm are 1.594%, 3.510% and 6.156% respectively. The overall average errors for using Eq. 2 

with TCPs of Ø0.55 mm, Ø1.10 mm, and Ø1.65 mm are 0.802%, 1.125% and 1.713% 

respectively.  



100 
 

Table 6.10. Percent error of calculated km with different diameter ratios (DR) using Eqs. 1 and 2 
when various TCP materials are used. t0 = 60 s, TCP diameter is 0.55 mm, and Soil as medium. 

 

 

Table 6.11. Percent error of calculated km with different diameter ratios (DR) using Eqs. 1 and 2 
when various TCP materials are used. t0 = 60 s, TCP diameter is 1.10 mm, and Soil as medium. 

 
 

Table 6.12. Percent error of calculated km with different diameter ratios (DR) using Eqs. 1 and 2 
when various TCP materials are used. t0 = 60 s, TCP diameter is 1.65 mm, and Soil as medium. 
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6.4.5 - Various Thermocouple Locations 

Table 6.13 displays the percent error using Eqs. 1 and 2 with different thermocouple locations 

inside the epoxy layer. The TCP materials are shown in Table 4.1. By increasing the distance 

from the axis of the TCP, the calculated km becomes slightly less accurate. The overall average of 

using Eq. 1 for various thermocouple locations is 3.560% while that of using Eq. 2 is 0.335%. 

The reason for the high percentage error at small t0 was explained in Subsection 6.4.2. 

Table 6.13. Percent error of calculated km with different thermocouple (TC) locations using Eqs. 
1 and 2 when various heating powers are used. TCP diameter is 1.10 mm, and Soil as medium. 

 
 

Furthermore, combining Figs. 6.20 and 6.21 and Tables 6.8 and 6.13 show that for a t0 value too 

close to the end of the heating period (tc = 120 s), the calculated km will become strange. The 

reason is from the number of data points of the temperature response available to calculate km 

using the methods in Section 6.1 described earlier. The sampling rate of the experimental TCPs 

was 15 readings per second. As a result, there were less than 300 temperature data points for the 

calculations of km in Figs. 6.20 and 6.21 with 100 s < t0 ≤ 119 s. Similar situations also happened 

to the simulations shown in Tables 6.8 and 6.13. Since the time step was 0.01 s, there were only 

100 temperature data points to calculate km for t0 = 119 s. Consequently, the errors for t0 = 119 s 

in Tables 6.8 and 6.13 sometimes do not follow the norm of higher t0 producing more accurate 

km. The same behaviors of the km calculated in Figs. 6.20 and 6.21 also do not follow the norm 

with too high t0. Therefore, it is recommended that a TCP with higher sampling rates should be 

used so that there are more temperature data points at larger t0 to produce more accurate km. 
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6.5 - Summary 

In this chapter, the following parameters were investigated: 

1. Thermal contact resistance (TCR). By using the temperature responses in the heating 

period, the Rc values were found to be from 5×10-5 to 2.5×10-4 m2·K/W for agar-water, 

from 2×10-3 to 3.1×10-4 m2·K/W for dry C109 sands, and from 2×10-4 to 4.9×10-4 m2·K/W 

for partially saturated C109 sands. The Rc values for the fully saturated C109 sands were 

very similar to those of agar-water. However, the cooling period was found to produce 

higher Rc values because of the reactions to heat of the sampling media. For example, the 

TCP hole in the agar-water gel solution could have enlarged during the measurements. In 

addition, moisture migration of partially saturated C109 Ottawa sands occurred in the 

TCP experiments. Depending on the factors such as geometry of the sampling media and 

the thermal gradients, the moisture migrated away from the TCP and may or may not 

return in the cooling period. In fully saturated C109 sands, the TCP could have attracted 

air bubbles (a possible error from the sample preparation procedures) by the high heating 

power of approximately 10 W/m. The water content of the fully saturated sands may or 

may not return in the cooling period due to the geometry of the sampling media and the 

low thermal gradients. Furthermore, the Rc values show a decreasing trend with 

increasing water content as illustrated in Fig. 6.4. Nevertheless, this parameter has a little 

influence on the calculated km values of the sampling media. Also, Murakami et al. [23], 

Elustondo et al. [34] and Liang et al. [27] reported that the TCR does not greatly affect 

the calculated km values. The reason is the TCR only shifts the T-t plot (e.g., Fig. 6.1) up 

or down but does not change the slope of the plot, on which the km value heavily depends.  

2. Initiating time t0. The parameter t0 is the time where researchers initiate the calculation of 

the thermal conductivity of the sampling medium from the temperature response. As 

shown in Figs. 6.4 - 6.19, the higher the value of the time is, the higher accuracies can be 

reported with Rc and km. This time parameter t0 has been highly subjective and 

unexplained. ASTM [22] recommends ignoring the temperature data of the first 10 to 30 

s with probes of diameter 2.5 mm or less without providing any reasons. Searches in the 

literature also provided no clarification to which value of t0 to use to obtain more accurate 

km. In this thesis, the t0 was found to play an important factor in the levelling off of the 
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calculated km. At small values, the time parameter can lead to highly erroneous km as 

shown in Figs. 6.11, 6.14, 6.15, 6.17, 6.18, and 6.19. As t0 gets larger, the calculated km 

converges. If the experimenter is about to report the km value calculated from insufficient 

(or small) t0, the convergent error could occur. Kersten [63] reported km data of C109 

sands from GHPA measurements. Farouki [64] re-touched the sands with the TCP 

method and observed disagreed data with those of Kersten. Other than the moisture 

migration problems with the GHPA, choosing inappropriate t0 in TCP measurements can 

lead to additional errors that the experimenter may not be aware of. Also, searches in the 

literatures provides no previous work on how t0 affects the calculated km. Furthermore, in 

Section 6.4, by combining experimental results with FEHT simulations, it was found that 

an insufficient number of temperature data points at larger t0 produces unreliable 

calculated km values. It is recommended that there should be at least 300 temperature data 

points to obtain reliable and more accurate km values (at large t0) from TCP experiments. 

3. The thermal conductivity (ke) and thermal diffusivity (αe) of the epoxy. One Ultra Low 

Viscosity Kit from SPI Supplies was bought and tested for the ke and αe. The values of 

the two parameters were found to be 0.205 W/m·K ±12.04% and 1.14×10-7 m2/s ±17.44%. 

Although the parameters have high uncertainties, the km values of the sampling media 

were found to be mostly within ±5.0% with ±20% changes in ke and αe as shown in Figs. 

6.18 and 6.19. Also, the uncertainty of αe affects the changes in km more than ke does. The 

changes in km by varying ke and αe can help the experimenter become more confident in 

the reported km because ke and αe may be sensitive to the temperature. Moreover, the 

experimenter can save manufacturing costs of the TCP by understanding which material 

property is more important to have higher accuracy from the manufacturer. Together with 

the results of Figs. 4.8 and 4.9, the experimenter can better select the desirable materials 

for more accurate and less expensive TCPs. 

4. The comparisons between the heating and cooling periods. In this chapter, the cooling 

period was found to produce less accurate km values. The reason is from the heat sink 

model (HSM),  as follows: 

                                       cheatheatcool ttrTtrTtrT  ,,,  for t > tc                      (6.18) 

where tc is the heating time of the TCP.  
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The right hand side (RHS) of Eq. 6.18 means the difference between the temperature rise 

starting from the heating period and the temperature rise starting from the cooling period 

using Eq. 3.1a. The second term on the RHS of Eq. 6.16 means the heat sink for the 

cooling period. In deriving Eq. 3.1a, Carslaw and Jaeger [16] assumed uniform initial 

temperature for all points in the TCP and the sampling medium. However, the 

assumption is not true in the cooling period. Therefore, applying the HSM to the cooling 

period produces less accurate values of the calculated km. In other words, the cooling 

period produces less accurate results of km values. 

5. In reality, the thermal properties of the TCP materials and sampling media mostly cannot 

be varied individually. In other words, the thermal conductivity and thermal diffusivity 

are related to each other. Also, due to the funding and time restraints of this thesis, errors 

of calculated km by varying the following parameters were investigated numerically: 

 Probe sizes, sampling media, and TCP materials: Different TCP diameters, TCP 

materials, and diameter ratios were studied. It was found that bigger TCPs produces 

less accurate km. Also, more conductive buffering layer (i.e., the "epoxy" layer of 

TCP) should be used to improve the accuracy of km. With the tested theoretical values 

shown in Tables 4.1 and 6.6, the overall average errors of TCPs with diameters of 

0.55 mm, 1.10 mm and 1.65 mm were respectively 1.594%, 3.510% and 6.156% for 

Eq. 1 while those for Eq. 2 are 0.802%, 1.125% and 1.713%. 

 Heating powers: Different heating powers (HPs) were used. It was found that the HPs 

have slight to no effects on the km calculated. The overall average errors of various 

HPs were 3.642% for Eq. 1 and 0.347% for Eq. 2. However, high heating powers in 

TCP experiments can create moisture migration in porous media which was not 

considered in the simulations using FEHT. 

 Thermocouple location: By varying the thermocouple location (rsen), it was found that 

the further away from the central axis the TCP is, the less accurate the calculated km 

becomes. However, increasing rsen insignificantly decreases the accuracy of the 

calculated km. 

 

 



105 
 

CHAPTER 7 - CONCLUSION AND RECOMMENDATIONS 

 

7.1 - Concluding Remarks 

TCPs (e.g., as shown in Fig. 5.1) are very attractive being an excellent technique to obtain the 

thermal conductivities of a variety of materials with relatively better accuracies than other 

measuring methods such as GHPAs. The TCPs are versatile for making inline measurements, i.e. 

the sampling medium is not required to be taken apart to make measurements. The TCPs are also 

very portable and easily carried to the test site. In addition, they are relatively inexpensive. Due 

to its high versatility, simplicity and relatively inexpensiveness, TCPs have been extensively 

applied with various designs. The application fields for TCPs include biomedical engineering, 

food and ground source heat pump systems for buildings. With a better knowledge of the thermal 

conductivities of materials, human lives can be enhanced. For example, Yi et al. [26] found that 

radiofrequency ablation (RFA) causes the thermal conductivities of the biomaterials to increase. 

And Liang et al. [27] realized that the moisture content in biomaterials greatly affect the thermal 

conductivities. Combining the results of Yi et al. and Liang et al., RFA can be better used on the 

individual basis. 

A thermal conductivity probe is usually made of a stainless steel hypodermic tube with epoxy 

filling the inner space. Within the epoxy layer of the TCP, there lie an electrical heating wire and 

a thermocouple. The steel tube is for providing insertion strength into a sampling medium (a 

liquid or a soft or granular solid) while the epoxy acts as a buffer to protect the heating wire and 

the thermocouple. The heating wire is electrically heated and the thermocouple senses the 

temperature rise at a point inside the epoxy layer. The temperature rise is then used to calculate 

the thermal conductivity of the sampling medium. Most thermal conductivities obtained from 

TCP measurements have been calculated by Eq. 1.3 using asymptotic approximation as follows 

(Carslaw and Jaeger [16]): 
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For a chosen temperature T(r,t) at time t0, the thermal conductivity of the sampling medium can 

be calculated from: 
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where slope is the slope of linear portion that is typically as shown in Fig. 1.4. 

However, in deriving Eq. 1.3, Carslaw and Jaeger [16] made several assumptions and 

simplifications that have been studied and reported as errors. The errors are listed as follow. 

7.1.1 - Errors from Probe Sizes 

By looking at Eq. 1.3, regardless of how big the TCP is, the same equation is applied. In other 

words, Carslaw and Jaeger [16] assumed that the probe size is insignificant. As indicated by 

Bristow et al. [23] and Cheng et al. [24], bigger probes produce higher errors. Murakami et al. 

[23] even suggested making a customized probe for a particular measurement, which poses high 

manufacturing costs.  

Nevertheless, the researchers only reported the outermost diameter of the TCPs as one source of 

errors but did not mentioned the wall thickness of the probes as another possible source of errors. 

And due to the high costs and time required to manufacture TCPs with various wall thicknesses 

of the steel tubes, the errors from the wall thickness were theoretically and analytically studied. 

The theoretical and analytical errors in comparisons with FEHT are defined as: 
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From Fig. 4.4, it was found that not only does bigger probe produce higher errors but also does 

the wall thickness of the TCP. With the probe sizes examined, the error range could be from 

1.5% (DR = 0.9) to 3.8% (DR = 0.5) for the smallest probe (Ø0.55 mm) and from 3.0% (DR = 
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0.9) to 5.5% (DR = 0.5) for the biggest probe (Ø1.65 mm) using Eq. 1. On the other hand, by 

using Eq. 2, the error ranged from 0.6% (DR = 0.9) to 0.1% (DR = 0.5) for the smallest probe 

(Ø0.55 mm) and from 0.2% (DR = 0.9) to 0.1% (DR = 0.5) for the biggest probe (Ø1.65 mm).  

The reason is from the inhomogeneous properties of the materials. The values of ke and αe were 

chosen to be closer to those of km and αm than the values of ks and αs are. As a result, with a 

larger steel section, the homogeneous assumption was more violated and higher errors appeared. 

However, the error defined in Eq. 4.1 is for the error of the temperature responses. The error of 

the calculated km is defined as  
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By looking at Tables 6.10 - 6.12, it was shown that bigger DRs and TCP diameters give less 

accurate km values for using both equations. The changes in the error of the calculated km by 

increasing DR and using Eq. 1 are slight while those by increasing DR and using Eq. 2 are more. 

Nevertheless, using Eq. 2 produces more accurate km. In general, with the parameters whose 

values are shown in Tables 4.1 and 6.6, the errors of using Eq. 1 range from 1.174 - 2.011% 

while those of using Eq. 2 are from 0.283 - 1.653%. 

7.1.2 - Errors from Heating Powers (HP) 

Searches in the literatures provided no prior study on the effect of how changing the heating 

power can produce errors in the temperature response. Consequently, it is worth to theoretically 

and analytically explore the situation. As indicated by Fig. 4.6, by using Eq. 1in comparison with 

FEHT in the heating period, the errors ranged from 0.5% to 4.9% for heating powers from 0.75 

W/m to 1.5 W/m respectively. However, by using Eq. 2 in comparison with FEHT, the errors 

were in the interval of 0.0% and 0.1% for heating powers from 0.75 W/m to 1.5 W/m. 

Nevertheless, by using Eq. 6.17 to understand how km is affected by changing HPs, Table 6.8 

shows that HP slightly influences the error of the calculated km with both Eqs. 1 and 2. The 
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values of the errors can range from 2.046 - 5.150% with Eq. 1 and 0.083 - 0.508% with Eq. 2, 

depending on the value of t0. 

7.1.3 - Errors from Sampling Different Media 

The assumption of homogeneous material may be violated with measuring various sampling 

media. As theoretically and analytically shown in Figs. 4.6 and 4.7, when the thermal properties 

of the materials were more different, the absolute values of errors increased. Also, the errors 

were more sensitive to the km value than the αm value. However, the errors preferred more heat 

resistant sampling media, i.e., media with lower km values produced higher errors. By applying 

Eq. 1, the error ranged from 22% (for km = 0.126 W/m·K) to -2.5% (for km = 2.008 W/m·K). 

Meanwhile, by using Eq. 2, the error ranged from 12% (for km = 0.126 W/m·K) to -1.0% (for km = 

2.008 W/m·K). Also, the errors tended to converge at large time at 1.7% for Eq. 1 and 0.0% for 

αm from 0.033 mm2/s to 0.520 mm2/s. 

However, in reality, the thermal conductivity is related to the thermal diffusivity in all materials. 

In other words, the two parameters cannot be studied individually. As a result, different sampling 

media with different thermal properties were chosen to be analyzed numerically. With Tables 4.1 

and 6.9 and Eq. 6.17, it was shown that with different sampling media, the errors of the 

calculated km can vary.  

7.1.4 - Errors from Thermal Properties of TCP Materials 

In the literatures, the thermal properties of the materials used to build TCPs have been 

extensively grouped together as one homogeneous material (e.g., Blackwell [39] and Murakami 

et al. [23]). However, the definition of the grouping has been unclear. And there is a tremendous 

amount of materials that can be used to construct TCPs. Therefore, the thermal properties of the 

TCP materials were theoretically and analytically studied. From Figs. 4.8 and 4.9, the more 

inhomogeneous the TCP materials are to the sampling medium, the more the errors become. By 

using Eq. 1, the error ranged from -10% (for ke = 0.085 W/m·K and ks = 16.20 W/m·K) to +4.0% 

(for ke = 2.728 W/m·K and ks = 16.20 W/m·K) and from 0.0% (for ke = 0.341 W/m·K and ks = 64.8 

W/m·K) to +10% (for ke = 10.91 W/m·K and ks = 64.8 W/m·K). On the other hand, by using Eq. 2, 
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the error ranged from 0.0% (for ke = 0.085 W/m·K and ks = 16.20 W/m·K) to +0.2% (for ke = 

2.728 W/m·K and ks = 16.20 W/m·K) and from 0.0% (for ke = 0.341 W/m·K and ks = 64.8 W/m·K) 

to +7.0% (for ke = 10.91 W/m·K and ks = 64.8 W/m·K). Moreover, changing the thermal 

diffusivities of the TCP construction materials did not much affect the theoretical error defined in 

Eq. 4.1 for both Eqs. 1 and 2 as shown in Fig. 4.9. 

However, with Tables 4.1 and 6.9 and Eq. 6.17, it was found that the buffering layer (or the 

epoxy layer shown in Fig. 41) should be more heat conductive in order to obtain more accurate 

km values. In general, with the tested sampling media, the errors of using low thermal conductive 

"epoxy" range from 2.59% to 6.965% for Eq. 1 and -0.139% to 3.315% for Eq. 2. 

7.1.5 - Errors from Thermocouple Locations 

In Eqs. 1 and 2, there exists a parameter for the location of the thermocouple. This parameter can 

create errors. However, in reality, it is hard to position the thermocouple to the desired location 

with a position tolerance of 1 µm or less. Consequently, theoretical and analytical studies were 

made to explore the possible errors from the locations of the thermocouple. As shown in Fig. 

4.10, by using Eq. 1, the radially further away from the central axis the thermocouple was, the 

more accurate the temperature response was. With the examined thermocouple locations, the 

error ranged from +2.6% for rsen = 120 µm to +1.4% for rsen = 350 µm. On the contrary, by using 

Eq. 2, the error stayed almost constant at about -0.05% at large time. 

Furthermore, to study how km varies with changing rsen, Eq. 6.17 should be used. By varying rsen 

with the parameters shown in Table 4.1, Table 6.13 illustrated that higher rsen slightly decreases 

the accuracy of the obtained km with both Eqs. 1 and 2, depending on the t0 value. In general, the 

errors of calculated km range from 2.015% to 5.234% for using Eq. 1 and from 0.174% to 

0.522% for using Eq. 2. 

7.1.6 - Errors from Boundary Conditions of the Sampling-Medium Container 

Two cases of boundary conditions were investigated: adiabatic and isothermal. For both cases, 

when the thermocouple was axially varied within ±2 mm of the centroid (h = 25 mm) of the TCP, 
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the differences in the temperature response of the thermal sensor were almost zero with various 

heating powers. The equation used for the temperature difference (TD) was defined as: 

                                                             mmhrThrTTD senisen 25,,                                     (4.2) 

where hi is the height level of the thermocouple of the same radius. 

Moreover, the TD for the isothermal case was found to be analytically constant among various 

radial locations of the thermocouple. On the contrary, the TD for the adiabatic case analytically 

exhibited a reducing trend as the thermocouple moved radially further away from the central axis 

of the TCP. 

7.1.7 - Errors from Axial Heat Conduction of the Length-to-Diameter Ratio (LDR) of 50 

As theoretically studied by Blackwell [39], the axial flow error of TCPs with LDR of 30 was 

0.051%. With a higher LDR, the error would be less. However, the researcher applied assumed 

and arbitrary values to calculate the error caused by the axial flow. As a result, COMSOL 

simulations were run to verify the result of Blackwell. The input parameters for COMSOL were 

shown in Table 4.1. And two cases of boundary conditions were studied: adiabatic and 

isothermal. The heat flux ratio was defined as  

                                                     radial

axial

radial

axial
HF T

r

h

T

q

q
ratio








                                         (4.3) 

where HF means heat flux, q is the heat flux in a direction, ∆Taxial and ∆Traial are the temperature 

differences (from COMSOL) between two points in the axial and radial directions respectively, 

∆h is the difference of the heights of the two points, and ∆r is the difference of the radial 

locations of the two points.  

When ∆h = ∆r = 0.1 µm, Eq. 4.3 becomes                         

                                                                    
radial

axial
HF T

T
ratio




                                                    (4.4) 

In both cases of the boundary conditions studied, the ratioHF was found to be about 0.163% for t 

> 20 s. Because the temperature response in the first 20 s is mostly ignored in TCP 
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measurements, the error caused by the axial flow is expected to be 0.163%. However, the error 

of 0.163% may not be true when the parameters in Table 4.1 have other values. 

7.1.8 - Errors from Thermal Contact Resistance (TCR) 

In deriving Eq. 1, Carslaw and Jaeger [16] ignored the TCR, which may be a significant source 

of errors. Researchers such as Elustondo et al. [34] and Murakami et al.[23] questioned the 

validity of the neglected TCR and investigated the parameter. The results from the investigations 

revealed that the TCR has few to no effects on the calculated km, which is in good agreement 

with the TCR studies in this thesis. By looking the curves produced by Eq. 2 and Eq. 3 in figures 

such as Fig. 6.6, one can observe that the differences from the two equations were small to very 

small at large time. The reason is at large time, the TCR term in Eq. 3 is almost constant, so the 

difference between two temperature responses cancels the term. 

7.1.9 - Errors from the Initiating Time t0 

Although not being in Eqs. 1, 2 and 3, this parameter is important in the calculation of km. 

Searches through the literatures gave subjective choices of t0, the time where the calculation of 

km is initiated. ASTM [22] recommends t0 from 10 to 30 s with TCPs of diameters of 2.5 mm or 

less without any justification. Tarnawski et al. [21] also applied t0 at 20 s with no clarification. 

As a result, most of the figures in Chapter 6 was calculated based on various t0 values to 

investigate the influence of the parameter on km. As shown in most of the figures in Chapter 6, km 

converges to a certain value when t0 becomes large enough. In other words, arbitrary selection of 

t0 can be a significant source of errors. 

However, choosing t0 of too high values can produce low to high errors. As shown in Figs. 6.20 

and 6.21 and Tables 6.8 and 6.13, the km values calculated from high t0 can be bad to report. In 

the TCP experiments, the sampling rate was 15 readings per second. For 100 s < t0 < 120 s, there 

are at max 300 temperature data points to calculate km and Figs. 6.20 and 6.21 showed that the 

calculated km becomes out of norm, i.e., higher t0 makes the km levels off. In FEHT simulations, 

the time step was 0.01 s. The calculated km also becomes out of norm with t0 ≥ 119 s. Therefore, 

it is recommended to have at least 300 temperature data points in TCP experiments. 
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7.1.10 - Errors from the Decision to Use Heating or Cooling Period for km 

Theoretically, both the heating and cooling periods can be used to obtain km. How to calculate km 

from the heating period is by Eqs. 1.3 and 1.4. The heat sink model (HSM) can be used to obtain 

km from the cooling period as follows (de Vries [47] and Liu et al.[42]):  

                                               cheatheatcool trTtrTtrT ,,,     for t > tc                             (3.1b) 

Basically, the right hand side (RHS) of Eq. 3b means the temperature difference of the 

temperature rises starting at 0 s and at the end of the heating period. The second term on the RHS 

is the heat sink. The definition for each term on the RHS of Eq. 3.1b is defined in Eq. 1.3a. 

However, there are problems with the HSM. First of all, the initial temperature at the beginning 

of the heating period is not the same as that of the cooling period at every point in the TCP and 

the sampling medium. But the HSM assumes the initial temperatures in both periods are the 

same. Secondly, in practical situations, the residual heat of the TCP after the electricity has been 

cut off may or may not last through the measuring time of the cooling period. But the HSM 

assumes the residual heat lasts forever. With the two assumptions, the cooling period is 

suspected to produce less accurate km values. 

7.1.11 - Errors from the Tolerance in the Thermal Properties of the TCP Materials  

From the epoxy measurement, the values of ke and αe were found to be 0.205 W/m·K ±12.04% 

and 1.14×10-7 m2/s ±17.44% respectively. The relatively high uncertainties could produce 

inconsistent km values. As a result, the nominal values of ke and αe were extended by ±20.0% to 

explore the relationship between the extension and the changes in km values. It was found that by 

using Eq. 2 and 3, the extension caused the km values to range in the interval of ±5.0% as shown 

in Figs. 6.18 and 6.19. Also, the changes in km was more sensitive to αe than to ke. Moreover, the 

±20.0% could be from the dependencies of the thermal values on temperature. Furthermore, 

knowing which uncertainty is required to have a better accuracy can save the manufacturing 

costs and improve the TCP quality.  
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7.2 - Recommendations for Future Works 

The following suggestions are recommended for further development of TCPs: 

1. Simulate the cooling period in FEHT and COMSOL and compare the temperature 

responses from Eqs. 1 and 2. 

2. Apply different values for the parameters in Table 4.1 and re-investigate the situations 

studied in Chapter 4. 

3. Theoretically and analytically explore more on the combinational effects of the 

parameters in Eq. 2. In this thesis, the parameters in Chapter 4 were investigated based on 

the individual basis. The combination of the parameters may produce different results 

since the parameters can join and/or interfere with each other as shown in Section 6.4. 

4. Construct a new TCP whose ke and αe values are known with high precision (i.e. the 

values have tolerances of ±5.0% or less). Re-measure the tested sampling media in 

Chapter 6 and study how the tolerances of ks and αs can influence km. 

5. Investigate the heat capacity of the sampling medium  
mpc  in the heating period with 

the following procedures: 

a. Obtain km using Eq. 1. 

b. Obtain αm using Eq.2 with km from step (a). 

c. Obtain km using 2Eqm  with αm from step (b). 2Eqm  is the slope shown in 

Eq. 6.2. 

d. Obtain Rc using Eq. 3 with km from step (c) and αm from step (b). 

e. Obtain   mmmp kc  /  and compare with the  
mpc  defined in Eq. 6.7. 

6. Examine the heat capacity of the sampling medium in the cooling period with the steps 

shown in Recommendation # 5 and compare the results. 

 

7.3 - Practical Implication 

Fig. 7.1 is a schematic presentation of a vertical GSHP system. The total heat transfer is of 

biggest interest and is defined as shown in Eq. 7.1. 
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          VGVG
VG

m LD
r

T
kqAQ 




                      (7.1) 

where VG means vertical GSHP, D: diameter, L: 

length, r: the distance from the central axis of 

GSHP. 

By looking at Figs. 6.7, 6.9, 6.10, 6.20, and 6.21 and 

Tables 6.8 - 6.13, it can be seen that the calculated 

km values from TCP experiments are mostly over 

predicted, i.e., the actual km in Eq. 7.1 is smaller then 

what it is. As a result the LVG or DVG must be 

increased correspondingly. For example, if km is 

found to be 3% bigger than the actual value TCP 

experiments, LVG or DVG must be increased by 3% to 

compensate for the over predicted km. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1. Schematic drawing of a GSHP 
system 
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APPENDIX 

Assumptions: 

- Homogeneous and isotropic materials, so the material properties are the same in all 

directions. 

- The size of the probe is much smaller than that of the medium, so the medium can be 

treated as an infinite medium. 

- No bulk flow in the medium and no radiation effects. 

- The TCP does not have any deflection in its length. 

- The length-to-diameter ratio of the TCP is much greater than 50, so the axial flow error is 

less than 1% as reported by Blackwell [39] and Bilskie [40]. 

- Thermal contact resistances are ignored in the Infinite Line Heat Source (ILHS) model 

and are treated in subsequent sections. 

 

A.1 - Derivation of Line Heat Source Model 

 
Figure A.1.1. Infinite medium and a line heat source. 

Fig. A.1.1 describes a heating wire with constant q  power generating capacity (W/m). The 

temperature variation in the medium is T(x,y,t). Assume that there is no thermal contact 

resistance between the wire and the infinite medium. 

Infinite medium 

Ti [12] 
wq [W/m] 

Line heat 
source
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Heat conduction equation: 
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Boundary conditions: 
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Taking Laplace transformation of:  

- Heat conduction equation: 
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- Boundary conditions: 
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o   0,lim 


tr
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                                                                                                  (A.1.7) 

 

The solution to Eq. A.1.5 is      rBKrAIpr oo  ,                                                      (A.1.8) 

where  /p  and A and B are two arbitrary constants independent of r 

 

From Fig. 12 on p. 42 of [68],   


xIo
x
lim and   0lim 


xKo

x  
and

 
  0,  pr  A = 0 so 

that Eq. A.1.8 has a solution. 
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Using Eq. A.1.6, 
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Also,  
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Figure A.1.2. Plot of xK1(ax) vs. x. As 0x , aaxxK /1)(1  . 
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Therefore, the solution to the transient heat conduction of Eq. A.1.1 is 
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Figure A.1.3. Typical graph of temperature vs. logarithmic time ratio for line heat source. 
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A.2 - Derivation of Perfect Contact TCP Model 
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From Eq. A.1.15 and Eq. A.2.1, it can be deduced that   Dd
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where C and D are two arbitrary constants independent of  . 

 

Since the temperature function of the line heat source does not change form when r expands or 

shrinks, let’s consider the medium in Fig. A.1.1 is surrounded by additional two layers. In other 

words, the line heat source is embedded in three layers: the epoxy, the steel, and the medium to 

be measured by the probe. The situation now becomes the problem as shown in Fig P5 where the 

temperature function in each layer has the form of Eq. A.2.2. The inner layer is considered as the 

line heat source of the outer layer. 

So the temperature functions in the epoxy, steel and medium are:  
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where C’s and D’s are arbitrary constants independent of   
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- For medium: 
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For epoxy:  

- From Eqs. 3.2.3, 3.2.6, and 3.2.9: 
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For steel: 
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- From Eqs. 3.2.4, 3.2.7, and 3.2.9: 
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For medium: 

- From Eq. A.2.5, A.2.8, and A.2.9: 
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If the epoxy and steel are replaced by the medium, we have   se  
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However, because the steel’s surface temperature cannot be measured when the probe is 

contacting the medium, the thermocouples must be placed somewhere in the epoxy layer. So the 

probe cannot produce the temperature values in Eq. A.2.12. The probe can only give the 

temperature values where the thermocouples are placed.  
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Using boundary condition ),(),( trTtrT esee  , we have: 
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From Eq. A.2.12 at rs: i
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Using Eq. A.2.10 at r1 and Eq. A.2.15, we have: 
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Now substituting 
ieT from above to Eq. A.2.10 yields the temperature for epoxy at err  :  
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Comparing Eq. A.1.15 and Eq. A.2.16, we have the following results: 

  21

2

44
),( TermTTerm

t

r
Ei

k

q
trT i

w 












                                                                   (A.2.17) 

where t

r

t

r

t

r

t

r

s

ss

e

e

s

e

eTerm  4444
1

2222



                                                                                           
























































t

r
Ei

t

r
Eie

k

q

t

r
Ei

t

r
Ei

k

q
Term

s

s

s

et

r

t

r

s

w

e

e

ee

w e

e

s

e




444444

22
44

22

2

22



  

(A.2.15) 

i
s

s

s

et

r

t

r

s

w

e

e

ee

wst

r

t

r

t

r

t

r

w
e

T
t

r
Ei

t

r
Eie

k

q

t

r
Ei

t

r
Ei

k

q

t

r
Eie

k

q
trT

e

e

s

e

s

ss

e

e

s

e












































































444

44444
),(

22
44

222
4444

22

2222





 

Note that Eq. A2.17 is only valid when rw < rsen < re. 
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A.3 - Derivation of TCP Model with TCR 

 
Figure A.3.1. Schematic         
drawing for Eq. 3.4.          
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Joining Eqs. A.2.12 and A.3.5, and let 
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Combining Eqs. A.2.10 and A.3.6, we have (for re < r < rs): 
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where Rc is the thermal contact resistance. 
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   (See Eq. A.2.11 for more information of Cs) 

 ( A.3.7) 
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Plugging Eq. A.3.7 back to Eq. A.2.10, we have (for re < r < rs): 

     
im

m

sw
e TtTCRTermTerm

t

r
Ei

k

q
trT 







 
 21

2

44
,




                                                       (A.3.8) 

where   









t

r

t

r

t

r

t

r
tTerm

s

s

m

s

e

e

s

e

 4444
exp

2222

1 , At = TCR(t), and  

            














 








 
















 








 




t

r
Ei

t

r
Eie

k

q

t

r
Ei

t

r
Ei

k

q
tTerm

s

s

s

et

r

t

r

s

w

e

e

e

sen

e

w e

e

s

e




444444

22
44

22

2

22



 

 

 

 

 

 

 

 

 

 

 



126 
 

A.4 - Calculating Method for Rc 

As mentioned by Liu et al. [42], Blackwell [59] and Waite et al. [70], the small time estimated 

temperature solution of the TCP can be expressed as: 

  5.2
321

2
211, tZZZtZZtZtrT     for 

m

srt
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2

                                                                       (A.4.1) 

where Z1, Z2, and Z3 are fitting parameters.  

Hc is (Liu et al., Blackwell, and Waite et al.):      

                                                           
1

21

Z

Z
q

R
H w

c
c                                                          (A.4.2) 

Eq. A.4.1 is then compared with the experimental values up to 
m

srt


2

  such that 
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i
iExpEq TT where N is the total number of measuring increments of the reading from 

the TCP until time t, which called the sum squared method. 
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A.5 - Estimation of Medium's Minimum Radius for FEHT 

When the TCP is inserted into a sampling medium, the ideal condition is the dimensions of the 

medium are infinite. However, that ideal condition is impossible to achieve when the infinity is 

used in finite element softwares such as FEHT (Finite Element Heat Transfer). As a result, there 

is a limit to the "infinite" condition from the assumptions of the classical solution and Eq 32. 

Tarnawski et al. [11] comes up with the following equation to estimate the minimum radius of 

the medium to simulate the infinite medium condition for the TCP:  

                                                           1
4
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                                                           (A.5.1) 

where τ is the heating period, which is set to 120s in this paper. 

As a result, if 6
2

10836.1
4

exp 








r

, Eq. A1 is satisfied. 

Hence, with α = 1.3 × 10-7 m2/s, τ = 120 s, min r is calculated to be 0.03 m which is 30,000 μm. 

 

r > 30,000 μm can be used for FEHT but the time to manually make the grid using FEHT is 

longer while the infinite condition (Eq. 5.1) is already reached. 
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A.6 - Graphs of Thermal Contact Resistance 

 

 

 
Figure A.6.1. Thermal contact resistance value Rc for testing agar during heating. 
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Figure A.6.2. Thermal contact resistance value Rc for testing C109 sand during heating. 
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Figure A.6.2. (Cont.) Thermal contact resistance value Rc for testing C109 sand during heating. 
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Figure A.6.3. Thermal contact resistance value Rc for testing agar during cooling using rsen from 

the heating period during calibration. 
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Figure A.6.4. Thermal contact resistance value Rc for testing C109 sand during cooling using 

rsen from the heating period during calibration. 
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Figure A.6.4. (Cont.) Thermal contact resistance value Rc for testing C109 sand during cooling 

using rsen from the heating period during calibration. 
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A.7 - Uncertainty Analysis from Epoxy Experiment 

Calculations of random errors for ke (pages 24, 25, and 27 of [71]) 
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tSP   where t is the t-distribution of the sample and X

P is the random uncertainty of X . 

The actual equation that was used to obtain ke was: 
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Calculations of systematic errors for ke (pages 49 and 51 of [71]) 

The following equation (Eq. 3.6 of [71]) was used to derive the equations for the relative errors: 
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where 
f

U f  is the relative error for dependent parameter f,   X is an independent parameter in the 

expression of f,   j is the number of independent parameters in the expression of f, and i is the ith 

component. 

Applying Eq. A.7.2 for Eq. A.7.1 with Vhw (voltage across heating wire), VSR (voltage across 

shunt resistor), ke (thermal conductivity of epoxy), Shunt_R (resistance of shunt resistor), and 

LHW (length of heating wire) as the variables with errors, we have: 

where X is the average value of N number of X’s 

where X
S is the standard deviation of a sample with finite 

amount of N measurements
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Calculations of systematic errors for αe: (pages 49 and 51 of [71]) 

The thermal diffusivity of epoxy can be obtained from: 
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Applying equation 3.6 on page 49 of [71] for Eq A.7.4 with Vw, VSR, ke, Shunt_R, LHW, ke, and r 

as the variables with errors, we have: 
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A.8 - kFS_C109 values for different value sets of ke and αe 

 

 

Figure 6.8.1. Error of kPS_C109 for using Eqs. 1, 2 and 3 with values of ke and αe as shown in Case 
1 of Table 6.4. 
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Figure 6.8.2. Error of kPS_C109 for using Eqs. 1, 2 and 3 with values of ke and αe as shown in Case 
2 of Table 6.4. 
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Figure 6.8.3. Error of kPS_C109 for using Eqs. 1, 2 and 3 with values of ke and αe as shown in Case 
3 of Table 6.4. 
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Figure 6.8.4. Error of kPS_C109 for using Eqs. 1, 2 and 3 with values of ke and αe as shown in Case 
4 of Table 6.4. 
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Figure 6.8.5. Thermal conductivities of kFS_C109 for using Eqs. 1, 2 and 3 with values of ke and αe 
as shown in Case 1 of Table 6.4. 
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Figure 6.8.6. Thermal conductivities of kFS_C109 for using Eqs. 1, 2 and 3 with values of ke and αe 
as shown in Case 2 of Table 6.4. 
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Figure 6.8.7. Thermal conductivities of kFS_C109 for using Eqs. 1, 2 and 3 with values of ke and αe 
as shown in Case 3 of Table 6.4. 
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Figure 6.8.8. Thermal conductivities of kFS_C109 for using Eqs. 1, 2 and 3 with values of ke and αe 
as shown in Case 4 of Table 6.4. 
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A.9 - TCP Experimental Graphs 
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