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Abstract

A Computational Study of Structure Development and Texture Formation in 

Carbonaceous Mesophase Fibers

Master of Applied Science

2004 Shujuan Hong

Chemical Engineering 

Ryerson University

In this thesis, thermal relaxation phenomena after the melt-extrusion of a rigid discotic 

uniaxial nematic mesophase pitch were studied using mathematical modeling and 

computer simulation. The Ericksen and Landau-de Gennes continuum theories were used 

to investigate the structure development and texture formation across mesophase pitch 

based carbon fibers.

It is found that during the thermal relaxation, discotic nematic molecules stored elastic 

fine energy decays. The distorted nematic molecular profile reoriented to release the 

stored elastic free energy. The difference in time scales for molecular reorientation and 

thermal relaxation resulted in different transverse textures. The rate at which the fibers 

are cooled is the main factor in controlling the structure development. A slow cooling 

rate would permit nematic discotic molecules to reorient to a well developed (radial or 

onion) texture. The random texture is a result o f rapid quenching. The numerical results 

are consistent with published experimental observations.

IV
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Chapter 1

General Introduction

In this chapter, carbon fibers formation, structure and specific properties are briefly 

introduced. This is followed by a description of the thesis objectives, thesis outline and 

methodology of the thesis development.

1.1 Introduction to Carbon Fibers

Carbon fiber is a new class o f advanced engineering material, which consists o f 90 to 100 

percent carbon content, with imperfect graphite crystalline or amorphous structure 

arranged along the fiber axis [1]. Because of their lightweight, high strength, high 

modulus and stiffness, carbon fibers are used in many high demand applications ranging 

from the aerospace industry to sporting goods. The excellent mechanical and transport 

properties of carbon fibers originate from the molecular structure.

The three most commonly used precursors to produce carbon fibers are viscous rayon, 

polyacrylonitrile (PAN) and petroleum or coal tar pitch [1,2]. The first commercialized 

rayon-based carbon fibers have been phased out due to the low yield and high cost of 

stabilization and high temperature heat treatment under high tension. Presently, the 

majority o f carbon fiber is produced from PAN or mesophase pitch (MP) through 

filament spinning and post treatment processes.

PAN-based carbon fibers contain folded and interlinked fibril structure with no regular 

tliree-dimensional order [3]. The fibrillar structure gives this kind of carbon fiber high 

tensile and compressional strength. High strength PAN-based carbon fibers are usually 

used as hybrid composite with other materials, such as polymers, plastics, metals, and
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even cement. PAN-based carbon fiber reinforced composites are widely used in the main 

structure o f military combat aircrafts, missiles, spacecraft and passenger airplanes.

In contrast, mesophase pitch based carbon fibers possess high degree o f order both in the 

longitudinal and transverse directions of the fiber axis. The ordered structure gives 

mesophase pitch based carbon fibers high modulus and excellent transport properties 

such as thermal and electrical conductivities. High performance carbon fibers made fiom 

mesophase pitch have modulus up to 1000 GPa and thermal conductivity 3 times that of 

copper [4]. High modulus mesophase pitch based carbon fibers are mainly used in 

engineering applications, such as the aerospace industry. Because of the high thermal 

conductivity and low thermal expansion, this class of carbon fibers is also being 

developed for applications where heat transfer is critical, such as brakes and engine 

rotating blades [5]. To provide some comparative information. Table 1.1 compares the 

properties of PAN based and mesophase pitch based carbon fibers, and Table 1.2 shows 

applications and characteristics o f carbon fibers.

Table 1.1 Property comparisons between PAN and MP-based carbon fibers [3]

Property PAN-based carbon 
fibers

Mesophase pitch-based carbon 
fibers

Tensile modulus, GPa 290 690-965

Tensile strength, MPa 5650 2410

Elongation at break, % 1.8 0.4-0.27

Electrical resistance, pG cm 14.5 10

Thermal conductivity, W/m-K 15 400-1100

Density, g/cm^ 1.81 2.2

Carbon content, % 97 99

Filament diameter, 10'^ m 11 10

Manufacturers BP Amoco BP Amoco
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Table 1.2 Applications and characteristics of carbon fiber composites [3]

Characteristics Applications

High strength, specific toughness, 
light weight

High dimensional stability, low 
coefficient o f thermal expansion and 
low abrasion.

Good vibrational damping, strength, 
and toughness

Electrical conductivity

Biological inertness and x-ray 
permeability

Fatigue resistance, self-lubrication, 
high damping

Aerospace, road, train, and marine 
transport, sporting goods

Missiles, aircraft brakes, and aerospace 
antenna

Audio equipment, speakers o f Hi-Fi 
equipment, robotic arms

Automobile hoods, casting and bases for 
electronic equipment

Surgery and x-ray equipment, implants, 
medical applications in prostheses

Textile machinery, general engineering

Chemical inertness, high corrosion Chemical industry, nuclear field valves,
resistance 

Electromagnetic properties

seals

Large generator retaining rings, 
radiological equipment________

R e o r o d u c e d  with D e rm iss io n  o f  t h e  c o o v r io h t  o w n e r .  F u r th e r  ren rod iio t ion  n rn h ih i ted  w ith o u t  n e rm ic c in n



1.2 Mesophase Pitch Based Carbon Fibers

Nowadays researchers and industry are more interested in the mesophase pitch based 

carbon fibers. Compared with PAN-based carbon fiber, mesophase pitch based carbon 

fibers have the following advantages: (1) Lower cost of raw materials ($0.25/kg 

comp ured to $0.90/kg for PAN) [6]; (2) Higher yield (80% compared to 40-45% for 

PAN) [2]; (3) Superior mechanical, thermal and electrical properties if  produced

properly [2]; and (4) The most important characteristic of the mesophase pitch material is 

its structure can be controlled by manipulating the material properties and melt spinning 

parameters. The process o f producing mesophase pitch based carbon fibers begins with 

pitch being converted into liquid crystalline state through thermal treatment, then 

extruded using a melt spinning process followed by a series of post treatment specifically 

named as stabilization, carbonization and graphitization.

1.3 Mesophase Pitch Based Carbon Fibers Structure 

Formation

High performance mesophase pitch based carbon fibers consist of nematic discotic 

molecules that can be aligned in certain directions to form an ordered structure. Studies 

show that fiber structure is generated during the melt spinning process. Successful 

manufacturing o f high performance carbon fiber from mesophase pitch depends on the 

control of texture formation, i.e., molecular orientation. The different orientations of the 

discotic molecules give rise to various ordered cross-sectional textures. The most 

commonly observed are random, zigzagged radial, radial, quasi-onion, and onion textures 

[1-3]. The structure formation is a comprehensive process involving mode (radial or 

onion) selection and the degree of molecule orientation evolution.

R o n m r l i  i n p r l  w i t h  n p r m i c . c i n n  n f  t h o  n n n w r i n h t  n w n o r  F i i r t h o r  r p n r n H i  m t i n n  n r n h i h i t o H  w i t h m i t  n o r m l c e i n n



1.3.1 Mode Selection

The mesophase pitch based carbon fibers structure formation results from the application 

o f a series of extremely complex stress and thermal fields on a textured anisotropic 

viscoelastic material. Previous work [7-9] indicated that the mode selection between 

radial and onion is controlled by the spinning temperature, pitch structure and its 

anchoring behaviours, and the dimensions of the spinnerets. Mochida et al [10] and 

Ogale et a/ [11] observed that higher spinning temperature tend to form an onion texture; 

lower spinning temperature favors a radial texture. An intermediate temperature would 

produce fibers with a random texture. Matsumoto [12] and Hamada et a/ [13] formed the 

onion concentric texture by stirring the upstream pitch melt and using a capillary with 

large diameter.

1.3.2 Structure Development

Melt spinning is a complex non-isothermal process involving uniaxial flow, cooling and 

solidification. After leaving the spinneret, the melt pitch is cooled and solidified to form 

a fiber. This thermal relaxation involves heat transfer from the melt pitch to the cooling 

medium, which creates a radial temperature gradient across the fiber. Moreover, it is also 

during this theimal relaxation that the flow-induced structure starts to relax from a 

stressed high-energy to a low-energy state. The orientation o f the molecules evolves 

from a random to an ordered structure during the thermal relaxation period. The 

reorientation process is sensitive to the melt viscosity and the cooling rate. High 

viscosity and fast quenching hinder the order development, causing a random texture. 

Lower viscosity and slow cooling impart the molecule reorientation and lead to an 

ordered structure [14].

1.3.3 Structure and Properties Correlation

It is the well-defined structures that give the mesophase pitch based carbon fibers 

excellent mechanical and transport properties. Studies [4] show that the high-degree of
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molecular orientation develop higher modulus, and the strengths can be increased by 

controlling the molecular orientation during fiber formation. It is also found that 

linearizing molecular orientation during fiber formation can yield carbon fibers with 

enhanced thermal conductivities [15,16]. Although considerable progress has been made 

over the past four decades, the origin and development o f structure development and 

texture formation is still not completely understood for mesophase pitch based carbon 

fibers. Currently research work is being made to control the molecule orientation of 

fibers in order to optimize preferred properties, such as thermal conductivity.

1.4 Thesis Objectives

The overall goal o f this thesis is to study the carbon fibers transverse texture formation 

and structure development for mesophase pitch based carbon fiber during the melt 

spinning process in a nonhomogenous temperature field. The aim is to investigate the 

effects of the process variables and material properties on the texture evolutions. The 

objectives of this thesis are as follows:

(1) To develop a mathematical model that describes the thermodynamic behaviour of 

liquid crystalline molecules under thermal relaxation process after steady extensional 

flow for a model incompressible uniaxial nematic pitch phase composed of rigid disc-like 

molecules using the Ericksen and Landau-de Gennes nematic continuum theories.

(2) To implement, solve and validate a one-dimensional model as specified and 

developed. To characterize the structure development and texture formation during 

thermal relaxation after cessation of extensional flow. An emphasis is placed on the 

understanding o f the effect o f process variables and material properties on the texture 

evolution.

(3) To implement, solve and validate a two-dimensional model as specified and 

developed. An emphasis is placed on the analysis o f the structural morphology 

development fiom random to well-defined textures. To examine the effects of
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mesophase pitch material properties and process conditions on the texture formation and 

evolution,

(4) To explain the experimental observations reported in the literature on texture formed 

after cessation of extensional flow.

1.5 Thesis Outline

This thesis consists o f six chapters. Chapters 1-3 provide necessary background 

knowledge. Chapters 4 and 5 show the one-dimension and two-dimension mathematical 

model development, and present the computer simulation results, respectively. The last 

chapter summarizes the conclusions drawn from the study and provides recommendations 

for future work. The contents of each chapter are described below:

Chapter 1 is a general introduction to this thesis study. It provides the motivation, 

objectives, and method of study and organization o f the thesis.

Chapter 2 presents the theoretical background that is required for the mathematical model 

development in the study. It includes the liquid crystal basic concepts, the Frank elastic 

free energy theory, the Leslie-Ericksen theory, and Landau de-Gennes free energy theory.

Chapter 3 summarizes the literature review for the study, it provides reviews on the 

formation o f mesophase pitch, and the process effects on the texture formation and 

properties o f the mesophase pitch based carbon fibers. The exiting models that describe 

such process are also analyzed.

Chapter 4 presents the development of one-dimensional mathematical model and 

numerical method that is used for the thesis. The numerical solution techniques for 

solving these equations are also presented. Furthermore the chapter presents the 

numerical modeling and simulation results for texture formation and structure
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development at the thermal (i.e., cooling) relaxation process. The process parameters and 

mesophase pitch properties effects on texture evolution are also discussed.

Chapter 5 presents the two-dimensional numerical modeling development and results lor 

structure development and texture formation. It also includes the governing auxiliary 

equations that are used for achieving the objectives o f the model. The process parameters 

such as cooling rate and mesophase pitch properties (such as the melt texture, anchoring 

behaviour) effects on texture selection and evolutions are discussed.

Chapter 6 presents the conclusions for the presented work. Simulation results from one- 

dimension and two-dimension model are compared. The contributions to current study 

and the recommendations for future studies are presented.

1.6 Methodology

In this thesis the following steps were followed in the computational modeling of 

structure formation of mesophase pitch based carbon fibers.

Stepl: Specify the system under observation, the independent variables (time and space 

dimensions), and the dependent variable of the model. The dependent variables are the 

fibers temperature profile, the scalar order parameter, and the planar director orientation

angle.

Step 2; Derive the governing time-dependent partial differential equations to describe the 

structure formation process using the Ericksen and Landau-de Gennes nematic continuum 

theories [17,18].

Step 3: Determine the arbitrary initial and boundary conditions to solve the governing 

equations. The initial condition represent the melt texture formed before the thermal 

relaxation process, and the boundary conditions mimic the anchoring behaviours of 

nematic liquid crystalline molecules.
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Step 4: Nondimensionlize the governing equations, the initial and boundary conditions 
obtained in above steps.

Step 5: Develop the Galerkin finite element formulations o f the dimensionless governing 
equations

Step 6: Implement and solve the Galerkin Finite Element formulations obtained in step 5 
by writing a FORTRAN code.

Step 7; Analyze the computer simulation results obtained in step 6 and present them in 

scientific visualization methods using software AXUM and MATLAB.

Step 8: Interpret the simulation results mathematically and physically.

Step 9: Validate the mathematical model using published experimental observations.
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Chapter 2 

Technical Background

This chapter provides the technical background for the mathematical modeling of 

mesophase pitch based carbon fibers structure development and texture formation. As 

mentioned before, mesophase pitch based carbon fibers are made from liquid ciystalline 

materials, where the structure o f the fiber originates from the mesophase pitch molecular 

orientations. Theoretical study of the texture formation in these carbon fibers requires the 

understanding o f the physics of liquid crystal molecules. Therefore this chapter will 

briefly introduce the fundamentals of liquid crystal physics needed to model the

mesophase pitch molecular behavior. This includes the definition o f mesophases, director

and the scalar order parameter, and the continuum theories o f liquid crystals used in the 

mathematical model.

2.1 Liquid Crystal Basic Concepts

2.1.1 Definition of Liquid Crystal Phases (Mesophases)

Liquid crystal (mesophase) is a name for an intermediate phase between solid and liquid 

phases. Like mesophase pitch, many organic materials undergo more than one 

intermediate phase before heated into liquid phase from solid state [17]. These phases, 

also called mesophases, have both liquid-like fluidity and crystalline molecular order. 

The phases flow like a liquid. However, their molecules maintain some degree of 

rotational order. The flow behavior of mesophase is much more complex than that of 

simple fluid flow due to the simultaneous effect o f orientation and fluid flow.

10
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2.1.2 L iquid  C rystal Classification

According to how the phase transition is effected, liquid crystal phases are classified as 

thermotropic or lyotropic [17]. Lyotropic mesophase is obtained by changing solute 

concentration or adding certain components. On the other hand, thermotropic phase 

transition is usually effected by temperature changes. Thermotropic materials can be 

processed by melt spinning or injection molding at temperature range when they are 

liquid crystal melt [18].

Liquid crystal phases are further classified into nematic, cholesteric and smectic 

according to the phase symmetry. The three different phases are shown in Figure 2.1. In 

a nematic phase the molecules tend to align parallel to each other. The preferred average 

molecular orientation is defined as director n, which is a unit vector [19]. Cholesteric 

phase has a similar nematic order on a local scale, i.e., the molecules tend to align with 

the director. However, on the larger scale, the director exhibits a helical pattern. Smectic 

phase has a layered structure and the molecules are aligned parallel within the layer. 

There are several types o f smectic phases. Figure 2.1c depicts the smectic-A phase.

Compared to smectic and cholesteric phases, the nematic phase has the following 

characteristics: (1) nematic has cylindrical symmetry; and (2) nematic phase has long- 

range orientational order but no long-range translational order. Although mesophase 

pitch behaves as either thermotropic or lyotripic, it is usually modeled as a discotic 

nematic thermotropic phase [9].

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/ \ w'\
(a) (b) (c)

Figure 2.1 The liquid crystal phases: (a) Nematic, (b) Cholesteric and (c) Smectic-A.

2,1.3 Orientational Order

In a nematic phase, the molecules tend to align parallel to each other. The orientational 

order has uniaxial symmetry. This preferred direction is defined by the director n. This 

unit vector represents the local mean direction of molecules. As Figure 2.2 shows n is 

parallel to the long axis in a rod-like nematics, and normal to the molecules if the 

molecule is discotic. A second local variable is the scalar order parameter, S, which is a 

measurement of the degree o f molecular alignment along the director.

#
n n

(a) (b)

Figure 2.2 Schematic representation of molecular director 

in (a) rod-like nematic and (b) discotic nematic phases

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without oermission.



The order parameter for a nematic liquid crystal is expressed as [17-22];

S = l ( 3 < c o c : a > - l ) (2 1)

where 6  is the angle between the molecule symmetry axis and the director n, as shown in 

Figure 2.3. For rod-like molecules, 9 is the angle between molecules and director n; 

whereas, for discotic molecules, 9 is the angle between the disc normal and the director 

n. < cos* 9 > represents averages of all the molecules in the nematic phase. When all 

the molecules are randomly distributed in any direction, the value o f the average is 1/3, 

which results in 5  = 0 for the disordered isotropic phase. When all the molecules are 

fully aligned with n, all (9= 0 which results in < cos* ^ > = 1, and 5  = 1 for the 

completely ordered nematic phase.

(a)

iL n

(b)

Figure 2.3 Schematic representation of orientation angle 9 in

(a) rod-like nematic and (b) discotic nematic

13
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A value between, zero and unity describes degrees o f ordering intermediate between 

completely isotropic and totally ordered. The typical value of the scalar order parameter 

for nematic is 0.4 < 5  < 0.8 [17]. Figure 2.4 shows schematically how the scalar order 

parameter varies for the temperature-effected thermotropic and concentration-effected 

lyotropic. 7ni is defined as critical temperature where the first-order transition occurs for 

thermotropic liquid crystal; cni is defined as critical concentration where the first-order 

transition occurs for lyotropic liquid crystal [17].

S

T

S

1

c

(a) (b)

Figure 2.4 Typical variations of the scalar order parameter S  for (a) 

thermotropic liquid crystals with temperature T  and (b) lyotropic liquid crystals 

with concentration c. And 7>n and cni are the first order transition points.

14
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2.2 Frank-Oseen-Zocher Static Elastic Continuum Theory

Wlien we consider a spatial region inside a macroscopic sample of nematic liquid crj'Stal, 

it contains a sufficiently large number of molecules so that the long-range orientational 

order is well defined within that region. In each of the region we have an orientational 

director n. The variations o f n are only important over distance much larger than the 

molecular dimensions. A nematic can still be taken locally uniaxial, and S  can then be 

considered the average degree o f orientation with respect to the local director. In other 

words, the spatial dependence of n and the temperature dependence of S  can be treated 

separately. For a definite value o f S(T), the nematic sample may consists different 

arrangement o f director n(r). This is the basis of the following continuum theory of 

liquid crystals [19].

In an ideal nematic single liquid crystal, the molecules are aligned along one common 

director n. If the system is imposed by external fields, such as magnetic, electric or the 

limiting surface, the orientation of director n will change from point to point. The 

distorted state is described in terms of a vector field n(r). r is defined as the position of 

the single liquid crystal in the uniaxial liquid crystal system. The unit length director n(r) 

varies its orientation slowly and smoothly everywhere.

The spatial gradients o f n increase the elastic free energy density o f the system. If the 

gradient of the director is small enough to ignore the change in n over the length of a 

single molecule, the liquid crystals can be described as a continuous medium with a set of 

elastic constants. Then the increased free energy invoked by the distortion o f n can be 

described by a continuum theory. Oseen [23], Zocher [24] and Frank [25] derived the 

following formula o f the elastic free energy density using the cylindrical symmetry of 

nematic phases:

15
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/d = \  ^ i(V -n)" + l ^ , ( n x V . n y  + l ^ , ( n x V x a ) - (2.2)

where K\, Kj, and are the splay, twist and bend temperature-dependent elastic 

constants, respectively, and are named collectively as the Frank elastic constants. The 

type of liquid crystal elasticity is known as orientation elasticity. Figure 2.5 shows the 

three types of elastic deformation, splay, twist, and bend, and their respective modulus 

A:i,.R:2,andA:3[19].

K 3

Ijlhii

W

K 2

y

y

(b)

Figure. 2.5 Three types o f deformation in nematics; (a) rod-like molecules and

(b) discotic molecules. Æ rsplay deformation, Aj-twist deformation and Aj-hend 

deformation
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The common values o f the set of elastic constants are on the order o f 10"'^ N [19]. For 

rod-like nematic liquid crystals, Kt, is larger than K\ and Kj [19], while for disc-like 

nematic liquid crystals, the twist constant is larger than Ki and [20]. Usually, the one- 

constant approximation is assumed which means that the nematic is elastically isotropic; 

i.e., K= K\= K 2  = Kj and_/d simplified as [19];

y ;= l; i: [ (v .n y + (V x n )" ]  (2.3)

The Frank elastic free energy theory is considered the fundamental of the continuum 

theory for the cylindrical symmetry of nematic liquid crystals. It means the elastic free 

energy density fd comes firom three kinds of direction deformations: splay, twist and 

bend. In another words, the strains of a liquid crystal material are due to the spatial 

orientation gradients, and are analogous to positional displacements in isotropic 

materials. The Frank elastic constants play the role o f Hooke's modulus o f isotropic 

materials.

2,3 Leslie-Ericksen Continuum Theory

The Leslie-Ericksen continuum theory was developed initially for rod-like nematic liquid 

crystals. It considers the orientation of molecule rotation, and thus requires the 

incorporation of the Frank free energy density. Due to the coupling between molecular 

orientation and fluid flow, the flow behaviour o f the nematic liquid crystals is much more 

complex than that of the conventional fluid flow. The following simplified interpretation 

o f the Leslie-Ericksen continuum theory considers the following assumptions:

(a) The nematic is incompressible,

(b) The nematic order parameter S  is spatially homogenous, and

(c) Inertial terms in the equation are negligible.

17 f,
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2.3.1 Mass Balance

By applying the conservation law o f mass, the mass balance in Cartesian tensorial 

notation for an incompressible fluid balance equation is [9,19];

( V V )  = 0 (2.4)

where V is the velocity of the nematic phase. The equation is same as an incompressible 

fluid flow.

2.3.2 Linear Momentum Balance

In Cartesian tensorial notation for an incompressible fluid, the linear momentum balance 

equation is [20]:

p V = F  + V-T (2.5)

where p  is the fluid density, V is the velocity, and F is the external body force per unit 

volume. The superposed dot denotes the material time derivative, x is the viscous stress 

tensor and its constitutive expression is given as [21]:

T = - p ô — ^^-(V n)^ +q;, (nn : A)nn + (Z,nN + <%,Nn+ cr. A +
a v n  '

ctjnn-A  + cXgA-nn (2.6)

where the kinematic quantities are defined as [21]:

A = |[(V V )^+ V V ] (2.7a)

N = n - a - n  (2.7b)
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A = ^ [(V V )^ -V V ] (2.7c)

In equation (2.7a-c), the {aj}, z = 1,..., 6 are known as the viscosity coefficients,p is the 

pressure and ô is the unit tensor. A is the rate of deformation tensor, N is the angular 

velocity of the director relative to that of the fluid, and £î is the vorticity tensor. 

Compared with ordinary isotropic flow, nematic flow has six viscous terms in the stress 

tensor, because the theory accounts the fact that the stress tensor depends not only on the 

velocity gradients, but also on the orientation and rotation of the director. Note that all 

the terms on the right hand side involve the director orientation except the fourth term 

A , which is the same term that for an isotropic fluid = 2tj [9].

2.3.3 Angular Momentum Balance

The tensorial notation of the internal angular momentum balance equations in Cartesian 

coordinate for an incompressible fluid is:

[nXh] = -(cKg -(%2)[nxN]-(<Z; +o:2)[nx[A  n]] (2.8)

where h is the molecular field. The angular momentum balance governs the director 

angular motion. The right hand side of the equation (2.8) defines the elastic torque r  ̂on

the director per unit volume. The molecular internal elastic field arises from the elasticity 

of the nematic material [22]. Differentiation of the equation (2.2) yields the expression 

for the molecular internal elastic field defined as follows [9, 19-21]:

h = h g + h y + h g  (2.9a)

hg =Æ, V( Vn)  (2.9b)

h.r = -^^[(aV X n) + Vx (an)] (2.9c)
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hg = ^ 3 [(b x V x n ) + (V x(nxb)] (2.9d)

a = n • V X n (2.9e)

b = n X V X n (2.9f)

The left hand side o f  equation (2.8) expresses the viscous torque on the director. Viscous 

torque consists o f two components: the first component is pure rotational effect expressed 

as [22]:

X,nxN (2.10)

The other component comes from the coupling to the fluid motion expressed as [22]:

X [A -N] (2.11)

7, is the rotational viscosity and is the irrotational viscosity related to the Leslie 

coefficients by

7, = «3 -  «2 (2.12a)

72 = «fi -  tZs = «3 + «2 (2.12b)

Parodi [20] derived the equality in equation; thus there are only five independent Leslie 

viscosities.

Therefore equation (2.8) is simplified as:

r , + r  V = 0  (2.13)
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2.4 Landau-de Gennes Nematic Continuum Theory

Frank elastic free energy density describes the energy increased in a nematic phase when 

liquid crystal molecules deviate from a uniform phase. At equilibrium, the Helmholtz 

free energy density o f a nematic system can be approximated by the following low order 

polynomial expression in 5  [19];

(2 i4 )
4 4 lo

where j^(7) is the isotropic free energy density at temperature T, and A, B, C, are material 

constants. is a temperature slightly below the clearing temperature where the first 

order transition occurs. It is also expressed as Tc in liquid crystal literatures [17, 19].

When the scalar order parameter S  is constant across the sample, the nematic is 

characterized by the director field n(r). If there is variation of temperature across the 

sample, the scalar order parameter S  will be defined as S(r). The nematic free energy 

density induced by director gradient is not simply given by Frank expression, but also 

contains terms coming from the gradients of the scalar order parameter «S [17].

Landau [17] made a far-reaching speculation about the functional dependence o f the free- 

energy density on the order parameter and its spatial derivatives near a second-order 

transition point. The theory is intended to express the second-order phase transition, but 

it can be generalized to include the first-order phase transitions [17]. The free energy 

density is expressed as a power series in terms of one or more long-range order 

parameters and their spatial derivatives. Since only the leading terms are important near 

the transition point, the resulting expansion is a low-order polynomial with temperature 

dependent coefficients, de Gennes [19] later applied Landau’s theory to the first order 

phase transition o f nematic phases successfully. For a nematic phase, the order parameter 

is the scalar order parameter defined by equation (2.1).
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The Landau-de Gennes free energy density o f the nematic material is defined as follows

[17]:

4 4 16

VS):

9 1 1
+ -S :[(L , + - l2 X V n ) :  +Z,(n-Vxn): +(2, + ll2 X n x  V xn):]

Z^S(V . n) X (n - VS)+^I^S(nx Vx n) - VS

Equation (2.15) contains four groups o f terms. The first four terms contain only the 

scalar order parameter. The next two terms account for the spatial variations in S. The 

following three terms account for director spatial variation, and is expanded as such to 

resemble the Frank-Oseen-Zocher free energy density, which is expressed as equation 

(2.2). The last two terms in equation (2.15) represent the interaction between spatial 

variations of S and spatial variations of n. In this paper these four group o f terms in 

equation (2.15) are conveniently called the molecular free energy density fs, the 

molecular elastic free energy density the Frank elastic free energy density /a, and the 

coupling elastic free energy densityyfc, respectively [27].

It should be noted that to second order in the Landau expression there are only two 

independent elastic constants, L, and whereas in the Frank-Oseen-Zocher free 

energy density there are three independent elastic constants AT,, and . They may 

be related as follows with the scalar order parameter S  [26]:

(2.16a)
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(2.16b)

Æ = À:i=jg:3 (2.16c)

2.5 Ericksen Continuum Theory for Nonhomogenously 

Ordered Nematic Phases

The Leslie-Ericksen continuum theory describes the dynamic behavior o f the nematic 

directors in an homogenously ordered system and incorporates the Frank elastic free 

energy density. Ericksen [28] later proposed a modified version o f the Leslie-Ericksen 

continuum theory to model the more complex behavior o f nematic directors in a 

nonhomogenously ordered phase. The modified version contains the essential terms in 

the elementary static models used to describe the nematic and its scalar order parameter 

gradient. The most significant changes to the Leslie-Ericksen theory are the addition of 

S, and its spatial and temporal gradients.

The balance equations for n and S  are defined, respectively, as follows [28]:

The superposed dot denotes the material time derivative, and 5 /^  / ô ( * ) denotes the 

functional derivative o f _/[ with respect to (*). The superscript S  denotes that the material 

properties change with order parameter S. The rotational and irrotational viscosities 

given in equation (2.10) and (2.11) as / ,  and now becomes y f andy^ . The two new
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viscosities introduced by the balance equation for S, i.e., f3 ^  and p  f  , are also 

dependent on S. Other terms are already defined in Section 2.3. The constitutive 

equation for the stress tensor is defined as:

oVn oVo (z.lo)
+«2 (S)nN + a l  (iS')Nn + (S') A + a f  (iS)nn • A + a f  (S) A • nn

where now the Leslie viscosities {ai }, / = 1, ..., 6 become z = 1, .... 6 and are

also dependent on S. Ericksen derived expressions in terms o f S for these viscosities, but 

they all contain undetermined coefficients. Beris and Edwards [26] later simplified these 

formulation and obtained new expressions for these viscosities. The relationships are 

listed in the Appendix.

2.6 Nematic Potential and Equilibrium Orientational Order

Doi and Edwards [29] give a special form for the molecular free energy density o f the 

Landau-de Gennes equation using the mean field theory. They assumed all molecules are 

rigid and undergo Brownian motion and obtained:

/s  - i f / S ’ + iü S * ]  (2.19)
2 3 9 6

where is the Boltzmann constant, v  is the disc concentration, and T  is the absolute 

temperature. The nematic potential U is the dimensionless temperature for thermotropic 

or dimentionless concentration for lyotropic system, expressed as [29]:

37’
U = ^  (2.20)

or

%
%
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C/ = ^  (2.21)
c

Doi and Edwards [29] further analyzed equation (2.19) to predict the phase transition 

under static condition and gave a general range of nematic potential for different phases, 

which is depicted in  Figure 2.6.

For U < ^ , the free energy only has one minimum at 5  =  0. The stable phase for this 

range of potential is isotropic.

For %  < £ / < 3 , the free energy profile has two local minima, one is at iS = 0, and the3

other at:

For this range o f potential, there exists equilibrium between nematic and isotropic liquid 

phases.

For U >3 , there is only one minimum. The point 5  = 0 is not a minimum, and the phase 

becomes unstable; the system always approaches the nematic state.
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u,<m
u = 8/3

8/3 < [/ < 3

U > 3

Figure 2.6 Typical dependence of the free energy on the scalar order parameter 

S  [29]. U  < ^ , the stable phase is isotropic, ^ < U  <3, nematic and isotropic

liquid phase coexist, U > 3 ,  the system always approaches the nematic state .

r \
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Chapter 3 

Literature Review

In this chapter, mesophase pitch liquid crystal properties, melt spinning process and 

process variables that affect mesophase pitch based carbon fiber structure and properties 

are introduced. The commonly observed textures from published production and 

experimental observations are also presented. Lastly, the simulation results from previous 

mathematical models are analyzed.

3.1 Introduction to Mesophase Pitch

Brooks and Taylor [30] first found that in a series of heat-treated coking tar pitch there is 

another anisotropic phase coexisting with isotropic phase under optical microscope with 

polarized light. Brooks and Taylor later defined the anisotropic intermediate phase as 

mesophase. The mesophase is formed by anisotropic spheres, which are aromatic 

molecules stacked together through oligomer formation, coalescence and adhesion. The 

optical anisotropy observed is due to the layered stacking of its aromatic sheet as shown in 

Figure 3.1 [2].

Mochida et al [31] later systemically analyzed the mesophase formation mechanism, its 

liquid crystalline properties, and its ordered structure due to molecular orientation utilizing 

optical microscopes, scanning electron microscopes and transmission electron 

microscopes. The planar molecules in the mesophase pitch stack together and form 

clusters due to Van Der Waals force. The clusters gather together to form microdomains.

I ,
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where the clusters are aligned basically iri the same direction, as expressed in Figure 3.1 [2], 

the microdmains form the textural units of domains that define the macroscopic texture.

Coal tar derived mesophase Petroleum derived mesophase

Fig. 3.1 Typical poly-nuclear aromatic hydrocarbons in mesophase produced 

from coal and petroleum [2].

Mesophase pitch has been found exhibiting both thermotropic and lytropic liquid crystal 

nature [32,33]. It remains anisotropic within a certain temperature range below the 

transition temperature. The mesophase existence also depends on the pitch composition. 

It disappears or reappears by adding or removing certain lower molecular weight 

components. Mesophase pitch also exhibits discotic liquid crystal structural properties. 

Despite the variety of formation method, the general molecules are disc shape, and the 

average molecular weight is 400-4000 [31]. The melt flows in a liquid state above its 

soften point and maintains the molecule orientation order in a certain temperature range as 

it flows. The viscosity o f  the mesophase is very dependent on the temperature, shear rate.

28

Reoroduced with oermission of the coovrioht owner. Further reoroduction nrohibited without oermission.



and mesophase structure. Unlike small molecular liquid, mesophase pitch flow has 

non-Newtonian behaviour. Nazem [34] compared the viscosity of mesophase pitch and 

isotropic pitch and other melt spun polymers and found mesophase pitch viscosity is far 

more temperature dependent than typical melt-spun polymer such as nylon-6. This 

comparison is shown in Figure 3.2.

1000

100

I
nylon-6

I
> isotropic pitch

m esophase pitch

1 .4 1.6 1.8 2.0 2.2

1000/Temperature, K"‘

Figure 3.2 Dependency o f viscosity on temperature for mesophase 

pitch, isotropic pitch and nylon-6 [34].

3.2 Melt Spinning and Process Effect on Fibers Structures and 

Properties

Thé methods of mesophase pitch preparation have been investigated since mesophase melt 

from petroleum or coal tar came into production in the 1950s. More recently, Singer [35]
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investigated the mesophase pitch spinnability and rheology, and suggested that it might 

deform at high temperature by shear or eiongational forces before it become an infusible 

coke. With his coworkers they first designed the monofilament spinning apparatus with 

piston feed. The first mesophase pitch based carbon fibers with highly oriented and 

organized structure were produced by Union Carbide in the 1960s. After stabilization, 

carbonization and graphitization the final fibers can achieve extremely high modulus 

approaching the theoretical limit of graphite (10‘̂  Pa) [35]. Ever since the very beginning 

of the mesophase pitch production, the correlation among the oriented structure, the 

properties and the spinning process had become the most interesting subject for 

experimental observation and theoretical studies.

3.2.1 Melt Spinning Process and Process Parameters

Atypical melt spinning process is shown in Figure 3.3 [2]. After some preparational heat 

treatment mesophase pitch is loaded into a set of screw extruder where it is heated and 

mixed to form a viscous melt. Then the viscous melt is forced into the spin pack. Upon 

existing the spin pack, the extruded filaments are simultaneously quenched and drawn 

down by a winding device to form solid fibers. Spinning conditions for melt spinning 

mesophase pitch include; pitch properties (glass transition temperature Tg, density p ,

viscosity y  ), quench air temperature 7c, spinning melt temperature 7g, winder speed V\, 

cross-flow air velocity, spirmeret diameter [36].

By applying energy, mass and force balances, Edie and Dunham [36] showed that the 

mesophase melt-spinning process is extremely sensitive to small changes in process 

conditions. Although the model did not use liquid crystal theories, their results still 

indicate that the spinning temperature and heat-treatment rate are the most important 

process variables among the melt spinning process parameters. This is because the

30

R o n r n r l l i r . o r l  \A/ith m a r m i o - c i n n  n f  t h n  n n n \ / r i n h t  n \A / n o r  F i i r t h n r  r o n r n H i  i n t i n n  n r n h i h i + o H  \A/lthni (t n o r m i c c i n n



mesophase pitch viscosity is extremely temperature sensitive compared to usual fluids. 

The model predicated a small change in process variables would dramatically affect fiber 

properties. However, the model could not predict the process effect on the structure 

formation since the model does not incorporate the physics o f mesophase pitch molecules.

Metering )  
PumpHopper

Nitrogen Zone 1; Zone 2 I Zone 3

Filter
Extruder

Spinnerette

Q uench Air

Variable Speed 
Winder

Figure 3.3 Melt spinning process [2].

3.2.2 Process Variable Dependent Textures

Hamada et al [13] and McHugh and Edie [37] concluded that different orientations of 

discotic molecules give rise to various ordered cross sectional textures. Previous work by 

Hamada et al [13], White and Buechler [14], McHugh and Edie [37] indicated that this
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ordered structure is created during melt spinning process; spinning parameters such as the 

melt spinning temperature, the heat treatment rate, and spinneret geometry all affect the 

structure texture. Hong et al [38] proved the mesophase pitch based carbon fibers texture 

is formed during melt spinning stage; the following post treatments only refine the formed 

texture. They compared the samples taken before and after heat treatment process. The 

transverse cross-sectional surface was observed by a high-resolution scanning electron 

microscope (HR-SEM). The as-spun samples were observed after platinum coating, and 

the heat-treated fibers at 700°C or higher without coating. The as-spun fibers spun at 

300°C, 310°C, and 340°C exhibit radial, random, and onion textures, respectively. The 

heat-treated fiber spun at 300°C, 3 10°C, and 340°C exhibit radial texture with open crack, 

random, and onion with voids in the fiber center, respectively. They concluded high 

temperature induces onion structure, low temperature would yield radial structure, and 

intermediate temperature favors a random structure. White and Buechler [14], however, 

argued that the random texture results from high viscosity and rapid quenching, while the 

radial texture would form at lower viscosity and slow cooling.

3.2.3 Different Textures Observed from The Experimental Work

In order to explore carbon fibers application, some experimental work is performed to 

obtain different transverse textures. Hamada et al [13] changed transverse structure by 

disrupting the flow profile prior to extrusion. Another important experimental observation 

is the effect of spinneret geometry on the transverse texture formation. Matsumoto [12] 

and Edie et al [16] used extrusion capillaries with noncircular cross-sections to produce 

ribbon shaped carbon. The ribbon shaped fiber has high degree of orientation than the 

commonly produced round-shaped fiber. The experimental results show this ribbon 

shaped fiber has superior thermal and electrical conductivity and require lower 

graphitization temperature than the round-shaped fiber. Fortin et al [39] also reported that
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their thin fiber tape extruded from siit-shaped nozzle exhibits 2% higher degree of 

orientation than the round shaped fiber spun through circular nozzle under the some 

spinning conditions. Edie [2] Anther predicated that this could extend carbon fiber to a 

new field application where thermal transfer is critical. Gallego and Edie [15] suggested if 

the degree of the order o f the structure could be improved during melt spinning process, it 

will greatly reduce the production cost by decreasing the graphitization temperature.

3.2.4 Texture Dependent Properties

Robinson and Edie [40] indicated that different observed textures exhibit different 

mechanical and transport properties. For example, mesophase fibers with random textures 

have higher tensile and compressive strength. By contrast, fibers with ordered transverse 

textures appear to develop better lattice dependent properties, such as thermal conductivity 

and electrical conductivity. Bright and Singer [41] also found that the transverse texture 

could affect the degree o f graphitization. Fibers with radial texture developed large 

crystalline with higher degree of orientation than that of fibers with random texture. The 

properties, the texture formation and the mode of growth have been the subject of 

numerous articles [12-16,39].

Beginning with the work by Matsumoto [12], Hamada et al [13], and McHugh and Edie 

[37], it became apparent that the texture o f mesophase fibers was created and thus could be 

controlled during melt spinning. Since that time numerous researchers have demonstrated 

that flow during melt spinning can be controlled to create mesophase fibers with a variety 

of textures, each with certain advantages.
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3.3 Mathematical Models

Theoretical studies using available liquid crystal continuum theories to model and simulate 

the ordered structure selection process have been performed by McHugh and Edie [9, 37] 

and Singh and Rey [42-46]. McHugh and Edie [9,37] modeled mesophase pitch molecules 

as rigid discotic nematics and studied their molecular orientation during fully developed 

channel flow. Their numerical results were consistent with pitch observed under a 

polarized light microscope. Singh and Rey [42-46] examined continuum theories such as 

Leslie-Ericksen theory developed for rod-like liquid crystals and proposed that the theories 

can be extended to low molecular weight disc-like liquid crystal molecules to describe the 

flow behaviour o f mesophase pitch. Several studies have analyzed the effect o f spinning 

variables on the structure fonnation of mesophase pitch based carbon fibers. Spinning 

temperature and die geometry appear to be the most important variables [47-50].

3.3.1 Wang and Key’s Elastic Model

Wang and Rey [50] approximated the melt pitch to be a nematic discotic liquid crystal and 

assumed the melt spinning process to be an isothermal, incompressible, uniaxial, 

extensional flow. They modeled the dynamic behavior using the Leslie-Ericksen and 

Frank elastic free energy theories and assumed a homogeneous order parameter S. Their 

simulation results concluded that: (1) minimizing the Frank elastic free energy is the 

mechanism of mode selection between radial and onion texture, (2) the onion texture forms 

at high temperature when bend elastic constant is larger than splay elastic constant K\, 

the radial texture forms at low temperature when bend elastic constant K t, is smaller than 

. splay elastic constant K \, and (3) a random texture is created in an intermediate temperature

I range when elastic constants K 3  and Xj are equal. The simulation results are shown in

Figure 3.4.
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Figure 3.4 Temperature variation in elastic constants and transverse textures 

predicted by Wang and Rey. The temperature is scaled by the transition temperature 

Tni at which K  = K 3 = /Ci, and the elastic constants are scaled by K. The model 

predicted that at low temperature the bend elastic constants K j< K i,  leading to a bend 

mode deformation, causing the pitch molecules to orient radially in fibers cross 

section. At high temperature, K^> K\, yielding a concentric, onion arrangement of 

the molecules in fibers cross-section. At an intermediate temperature range, K  = K 3  

= a random texture is created [50].

35

RonrrvHi irtoH \A/i+h n o rm icc in n  nf fho  nnn \/rinh t n\A/nor Pj irthnr m nrnrlim tinn  nrnhiKitnH \A/ifhniit rm rm iccinn



&

fm

I
&

I

I

1

1

3.3.2 McHugh and Edie’s Model

McHugh and Edie [9] modeled mesophase pitch melt flow through circular and rectangular

#  channels to study the spinneret geometry effect on the structure formation for mesophase

#  pitch based carbon fibers. The consistency of the model analytical results and the textures

#  observed from experiments proved that liquid crystal theories such as the Frank elastic and 

Leslie-Ericksen continuum theories, developed initially for rod-like liquid crystals are 

applicable to describe discotic mesophase pitch molecular dynamics.

By applying mass, linear momentum and angular momentum balances using equations 

(2.1), (2.5), and (2.8), McHugh and Edie [9] formulated a set o f equations to govern the 

molecular orientation behaviors in capillary and channel flows. The analytical solution of 

their model is, as displayed in Figure 3.5: (1) round fibers spun through a circular spinneret 

tend to exhibit the radial texture, and (2) ribbon-shaped fibers extruded through a 

rectangular spinneret tend to form line-origin textures. Later studies investigated the 

non-circular fiber structure and indicated that carbon fibers with this kind o f texture 

improved the degree o f liquid crystalline molecular orientation and thus have much better 

thermal and electrical conductivities.

The model results show that melt spinning through non-circular spinnerets offers the 

possibility to improve degree o f orientation o f mesophase pitch based carbon fibers. 

Studies [16, 39] have shown that the high degree of ordered texture is the desired structure 

for materials requiring excellent thermal conductivity.
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Figure 3.5 McHugh and Edie’s model results. It shows that the round shape spinnerets 

generate a radial texture fiber; the non-circular cross sectional shape spinnerets will 

create a fiber with linear texture, which would have higher degree of orientation [16,39].

These experimental and mathematical studies show that the textures o f mesophase pitch 

based carbon fibers will vary with the composition of the mesophase pitch, the spinning 

temperature, the geometry of the orifice, etc.. In order to obtain certain product fiber 

properties, it is necessary to modify the pitch precursor, spinneret structure and spinning 

conditions such as spinning temperatures [3,4]. However, the degree o f molecular 

orientation development during the melt spinning process remains less investigated, but an 

important issue. Since the material properties o f carbon fibers depend on the molecular 

structure, it is crucial to investigate the structure development during the melt spinning 

process in order to capture the fibers degree of orientation evolution. Gallego and Edie [15] 

indicated current commercialized fibers possess poorly optimized molecular orientation.
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which prevents mesophase pitch-based carbon fibers usage in high performance 

applications. To improve the degree o f the molecular orientation, the present production 

method is to apply high temperature graphitization, which accounts for most o f the 

processing cost o f mesophase pitch based carbon fibers. If the molecular orientation c 

optimized during melt spinning, a lower temperature may be used to graphite the cux,̂ l 

fiber and eventually reduce the production cost.
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Chapter 4 

One-Dimensional Model Development, Results and 

Discussion

4.1 Introduction to One-Dimensional Model

This chapter studies the relaxation phenomena and the dynamic of mesophase pitch 

molecules during cooling process after melt extrusion, using the more general Ericksen 

and Landau-de Gennes nematic continuum theories. This thermal relaxation involves 

heat transfer from the melt pitch to the cooling medium, which creates a radial 

temperature gradient across the fiber. Moreover, it is also during this thermal relaxation 

that the flow-induced structure starts to relax from a stressed high-energy to a low-energy 

state. Since the material properties o f carbon fibers depend on the molecular structure, 

it is crucial to understand the time evolution o f  the director and the order parameter 

during the thermal relaxation period.

The aim o f this chapter is to investigate numerically the structure development and 

texture formation during the thermal relaxation after cessation of uniaxial flow for a 

carbonaceous mesophase pitch. Furthermore, this chapter examines specifically the 

effects that the melt spinning process parameters and material properties have on the time 

for structure development and the final texture formation. This information is important 

for producing a specified fiber structure with desired mechanical and transportation 

properties.
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The rest o f the chapter consists of the development o f the partial differential equations 

that govern the relaxation phenomena of nonhomogeneously ordered mesophase melt 

after extrusion flow. It also contains physical and mathematical interpretations o f the 

simulation results, discussions on the solution of these equations under different 

conditions, and a section o f summary and concluding remarks.

The following assumptions are used in this one-dimensional model:

(1) The mesophase pitch is thermotropic, which means that the phase transition o f the 

melt is only affected by temperature changes.

(2) Mesophase is incompressible, i.e., the mesophase pitch density p  are constant.

(3) There are no external body forces, such as the gravitational field. Hence, F = 0.

(4) The director remains within the jc-y plane and there is cylindrical symmetry about 

z-axis (i.e., the fiber axis). Mesophase pitch thermal conductivity is a constant within 

the x-y plane

(5) Backflows are negligible and neglected, and

(6) The inertia o f the director is negligible and neglected.

Figure 4.1 shows a schematic representation of the disc-like molecules within a 

carbonaceous mesophase fiber o f radius R, and defines the director variation angle 0 

within x-y  plane. The director field is defined as:

n = (cos sin (9, 0) (4 .1)

( Ç where the unit length constraint, n • n = 1 is automatically satisfied.

Ü,] É Within the planar one-dimensional approximation, the three unknowns are as follows:

) '

/  I
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(4.2a)

0  = 6{x,t) (4.2b)

:g = g(jC,f) (4.2c)

n

> •  X

y

X

y

Figure 4.1 Schematic representation of the disc-like molecules within a section 

o f a carbonaceou,? mesophase fiber, and the definition o f the Cartesian 

coordinate system. 9  is the planar director orientation angle measured in 

radians, and R is the radius of the fiber.
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Since there are three unknowns, three equations are needed. The absolute temperature 

o f the fiber T  can be determined by using the following unsteady heat conduction from 

the energy balance equation expressed as [38]:

= (4.3)

where Cp is the heat capacity o f the nematic at constant pressure per unit mass, and t̂h is

5 the thermal conductivity of the nematic phase, and p  is the nematic phase density.

f
f Another two balance equations can be derived from the modified Ericksen theories, i.e.,

the z-component internal angular momentum balance equation, and the scalar order 

parameter balance equation.

: 4.2 Balance Equation Formulation

This section consists of the development o f the one-dimensional partial differential 

equations that govern the time evolution of the director, temperature, and the scalar order 

parameter within the carbonaceous mesophase fiber during the cooling process after it is 

pulled out of the spinneret. The set of the partial differential equations then is 

nondimensionalized. Lastly, the auxiliary equations, which include the initial and 

boundary conditions, are presented.

4.2.1 Landau-de Gennes Free Energy

The molecular orientation is governed by the z-component of the internal momentum 

/ balance equation as defined by Ericksen continuum theory (see equation (2.17a)). The

6 static energy term is defined by Landau-de Gennes energy expressed as equation (2.15).

‘à  42
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The coefficients A, B, and C in the Landau-de Gennes free energy density (equation 

(2.15)) are not known for a nematic discotic liquid crystal. It is then convenient to 

replace the terms introduced by these coefficients in the free energy density by the 

expression given by Doi and Edwards (equation (2,19)). Then the Landau-de Gennes 

Free energy density can be expressed as:

/ l = A : ^ u r [ - ( l - - C / ) 5 ' + - C / 5 ^ jVL a g / 9 6

9 1 ^ 1
+ -  ̂  " [(Z, + - 1 , )( V . n) " + Z, (n . V X n) " + (2, + - ! - )(n X V X n) " ]

4 2 2

+|z25(V-n)x(n-V5)+|z2S(nxVxn)-V5

4.2.2 Angular Momentum Balance Equation and Scalar Order Parameter Balance 

Equation

To derive the 2-component o f the internal angular momentum balance equation, 

assumptions given above, and equations (2.7), (2.12), (2.15), (2.17), (A .li), and (A .lj) are 

used. The result of this derivation is;

To derive the scalar order parameter balance equation, assumptions given above, and 

equations (2.12), (2.15), (2.17b), (A.lg), and (A .lh) are used. The result of this 

derivation is:
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i  Using relations derived by Boris and Edwards [26] (see equation (A.l)), the final results

I of these derivations are, respectively, as follows:

U

4

If
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y , f = M n a - \ ) s - ^ - f s ^ + 2 i s > ] ( 3 + 6S=)

In equations (4.7) and (4.8) the elastic functions {tr/), i I . -- .  ». ™

Appendix. It should be noticed that the elastic functions are dependent on director 

orientation angle 0 and the scalar order parameters S. In equation (4.8). T„ is the 

nematic-isotropic transition temperature, and T is the absolute temperature o f the fiber, 

which can be determined by using the energy balance equation (4.3).
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The one-dimensional expression of the energy balance equation (4.3) is:

4.2.3 Dimensionless Equations

The dimensionless equations are obtained by scaling the temperature with Tni, the elastic

yterms with K,  the viscosity terms with , the length with R, and the time w ith—— .
K

By doing this, the elastic functions become k ' = kJ K  . The superscript asterisk

denotes a dimensionless variable. The equations then become the following set of 

dimensionless non-linear partial differential equations:

^  • (4.10a)

■ ^  = /? [ ( r  -  I)S -  S H  2S’](3+ +  K\ ^
at ox ox (4.10c)

Equation (4.10) introduces a dimensionless thermal diffusivity a  and a dimensionless 

characteristic molecular' free energy p  , which are expressed as follow:
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^ = _ & _ A  (4.11)

The dimensionless thermal diffusivity a  depends on both the melt transport properties 

and the liquid crystalline properties. In this study, we use the range 1 < «  < 1 0 \ j3 is 

defined as the ratio o f short-range order elasticity to long-range order elasticity [20] ,  and 

in this study we use /3 = to be consistent with prior published theoretical work 

[20-23]. Furthermore, these values allow us to obtain the objectives of the current 

study.

The material physical properties and the melt spirming process parameters used in this 

model are tabulated in Tables 4.1 to 4.3. The values for K, K 5 , and ifgare obtained by

assuming a dimensionless ratio of L\  = — . The rotational viscosity o f the mesophase

pitch melt is assumed as 7 , = 1.0 Pa S [48]. The values o f L\ and 7, are in the same

range as published theoretical work [20-23,48], since no experimentally determined 

values can be found for them. The three elastic constants are of the order o f magnitude 

of 10'’̂  N  [24]. Furthermore, the elastic constants fulfill the constitutive hypothesis set 

by the following conditions [34]:

T, > 0  and Z,+-^Z2 > 0  (4.13a, b)

Lastly, according to equation (2.16b, c), L ^ k O is required for discotic liquid crystals.
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Table 4.1 Elastic constants

K  =91, + - L

Table 4.2 Melt spinning parameters

Ts (fiber spinning temperature) 600 K [1]

7c (cooling air temperature) 373 K[ l ]

Tni (nematic-isotropic transition temperature) 725 K [10]

Table 4.3 Physical properties for carbon fibers

R (fiber radius) 5.5x10'^ m [ l ]

P (mesophase pitch density) 2000 kg/m^ [1]

Cp (heat capacity) 1000 J/(kg-K) [3]

/fth (thermal conductivity) 7.5 W/(nvK) [4]

X, (rotational viscosity) 1.0 Pa-S [48]
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4.2.4 Auxiliary Equations

In this one-dimensional study, the initial conditions are as follows;

at / = 0 ,  0 < x < R  (4.14a)

at t = 0, 0 < X < R  (4.14b)

1 at r = 0, Q<x<R  (4.14c)

where Ts is the fiber spinning temperature, Tq is the cooling air temperature, and T^i is 

the nematic-isotropic phase transition temperature. Values for these temperatures are 

listed in Table 4.2.

The initial director field is assumed to be random as given by equation (4.14b), even 

though during the uniaxial elongation flow tlie spinnerate is supposed to align the discotic 

molecules along the flow direction. In equation (4.14b), e is a random number 

determined using a standard random number generator and is within the range 0 < e <1, 

and 7 is a factor that controls the magnitude of the fluctuation. In this study, t] = \ . 0  is 

used. The choice of the algebraic operation + is determined randomly by using a 

random number generator with a different seed than that used to generate e. I f  the 

random number generated is less than 0.5, the sign is negative; otherwise, it is positive.

The boundary conditions are as follows;
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•^^==0 at ^>0 ,  x = 0 (4.14d)
dx

r  = at t > 0 ,  x  = R (4.14e)

■ ^  = 0 at t >0 ,  x  = 0 (4.14f)
dx

0 = 0 at t >0 ,  x  = R (4-14g)

—  = 0 at t > 0 ,  x = 0 (4.14h)
dx

5  = 0.25 + 0.75 1 - - ^  at f >0 ,  x = R (4.141)
V 97;,

The above initial and boundary conditions can be expressed in dimensionless form as 

follows:

at / = 0 ,  0 < % ' < 1  (4.15a)

0. =0^+T]s at t ' =0, 0 <  x" < 1 (4.15b)

5, =0.25 + 0.75 t — ^  at f ' = 0 ,  0 < x" < 1 (4.15c)
V 9T,NI
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— — = 0 at t  > 0 ,  x' = 0  (4.15d)
dx

T ' = T c/ T ^ ,  at t ' > 0 ,  X =1 (4.15e)

^  = 0 at / > 0 ,  x ' = 0  (4.15f)
dx

0 = 0 at t ‘ > 0 ,  x * = l  (4.15g)

■̂—  = 0 at t ' > 0 ,  x *=0  (4.15h)
dx

5  = 0.25 + 0.75 1 - ^  at / ’ > 0 ,  x‘ = l  (4.151)

4.3 Method of Solutions

In summary, in the one-dimension model the dependent variables are dimensionless 

temperature T*, the scalar order parameter S  and director orientation 0. The independent 

variables are the dimensionless length x* and dimensionless time t*. Equations 

(4.10a-c) are solved numerically with the dimensionless initial and boundary conditions 

given by equations (4.15a-i). The Galerkin finite element method is used with 20 linear 

elements. The time integrator is the first order Euler predicator-corrector method, and 

the Newton-Raphson method is used for solving the system o f non-linear algebraic 

equations. Convergence is assumed when the length o f the vector is less than 10‘®.
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4.4 Results and Discussion

This section presents and discusses representative numerical solutions to equations 

(4.1 Oa-c) and (4.15a-i). It begins by showing the time evolution of the molecular field, 

and temperature and the scalar order parameter spatial profiles for a  = 10^ and JS = lO'*. 

This is followed by a discussion on the effect o f the dimensionless thermal diffusivity a  

on the thermal relaxation phenomenon. This section concludes with a discussion on 

how the dimensionless thermal diffusivity a. affects the order development and texture 

formation in carbon fibers.

Figure 4.2 shows the one-dimensional relaxation phenomena of the molecular field for 

the case when a =  10  ̂and p  = 10"* at the following dimensionless times t*: (a) 0.0, (b) 

0.001, (c) 0.002, (d) 0.006, and (e) 0.05. The short line segments represent the edges of 

the discotic molecules, and are obtained by noting that a director is normal to the 

disc-like molecule. The plot shows that the molecules go from a randomly aligned state 

obtained using a random number generator to a partially aligned state, and finally evolve 

into a perfect aligned structure with minimal distortion Frank elastic free energy F^ .  

This is shown in Figure 4.3.
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Figure 4.2 Typical relaxation phenomena for molecular orientation for the case 

a  = 10  ̂and yg = 10\  in fiber radial direction at the following dimensionless 

times / :  (a) 0.0, (b) 0.001, (c) 0.002, (d) 0.006, and (e) 0.05.
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Figure 4.3 is a plot o f the stored Frank elastic free energy Fi  versus dimensionless time 

t*. The one -dimensional dimensionless form Fd may be obtained using equation (2.2) 

and is expressed as:

In order to characterize the time evolution of the molecular reorientation from the totally 

random oriented state to the aligned state, in this one-dimension model, the time id and 

To is defined as the time required for the molecules to reorient such that the Frank elastic 

free energy Fd decreases by 86.5% and 98%, respectively. For this case, = 0.002

and = 0.006. This figure shows that Frank elastic free energy Fd evolution goes

through three stages: fast, intermediate, and weak relaxation. The three relaxation 

stages are consistent with the texture development exhibited in Figure 4.2. In the fast 

relaxation stage, corresponding to t < 0.002 (or in Figure 4.2, the molecules are

randomly oriented leading to a strained texture. This initial texture stores the 

greatest-level distortion free energy, which is the driving force for the fast relaxation rate 

for t* < Id. In stage 2, corresponding to 0.002 (or r ^ ) < t  < 0.006 (or %) in Figure 4.2,

the Frank free energy Fd* decreases to 2% of its initial value, and the molecules in this 

period are almost perfectly aligned. In the final weak relaxation stage, corresponding to 

r*> 0.006 (or To) in Figure 4.2, the residue o f the Frank elastic free energy Fd* is the 

smaller driving force to reorient the molecules into a perfectly aligned structure.

In summary, the director relaxation phenomena can be well explained using the Frank 

elastic free energy theory. Discotic nematics are elastic materials, where energy is 

stored by orientation strains. The driving force for the texture developing from a 

randomly aligned texture to a perfectly aligned texture is the minimization of the stored
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Frank elastic free energy. The fastest route to minimize the stored elastic free energy is 

to reorient the molecules to a uniform direction.

0 0.002 0.004 0.006 0.008 0.01

Figure 4.3 Time evolution of the dimensionless Frank elastic free energy for 

the case o; = 10^and = 10". and are defined as the time required for

the molecules to reorient such that the Frank elastic free energy F /  decreases by 

86.5% and 98%, respectively
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Figure 4.4 shows the one-dimensional relaxation phenomena of the temperature and the 

scalar order parameter for the case when « = 10  ̂ and y? = lO'* at the following 

dimensionless times t*: 0.0001 (diamond), 0.001 (square), 0.005 (triangle), and 0.05 

(circle). Figure 4.4a shows typical thermal diffusion phenomena along the fiber radial 

direction. The fiber exists the spinneret at spinning temperature Ts = 600 K, and is 

suddenly exposed to cooling air temperature o f Fc=  373 K. It is assumed that there is 

perfect thermal contact between the cooling air and the mesophase pitch. As expected, 

the temperature profile and the scalar order parameter evolution become uniform at long 

time (i.e., steady state).

Figure 4.4b shows that the scalar order parameter S  evolution is consistent with that of 

the temperature profile. This may be explained using the following temperature 

dependency of the scalar order parameter at homogeneous equilibrium:

S .,= 0 .2 5  + 0 . 7 5 j l - | ^  (4.17)

where U — 3 % /  T. As mentioned in Chapter 2, for an isotropic phase U < 8/3, while 

for a nematic phase U > 3 [35]. For this model, nematic potential U  = 37n i /  T is 

inhomogeneous due to the temperature gradient across the fiber radius. The scalar order 

parameter S  is generally increasing reciprocally with temperature.
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Figure 4.4 Typical relaxation phenomena for (a) the temperature profile and (b) 

the scalar order parameter profile in fiber radial direction for the case

a  = 10  ̂ and = 10'* at die following dimensionless times t*: 0.0001

(diamond), 0.001 (square), 0.005 (triangle), and 0.05 (circle).
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Figure 4.5 is a plot o f the time evolution of the molecular free energy Fs for the case 

when a =  10^ and P = lO"*, which was calculated by integrating equation (2.19) over the 

fiber radius. Figure 4.5 indicates that Fs* decreases with time, and reaches steady state 

at the same time as the spatial profiles of temperature and the scalar order parameter (see 

Figure 4.4). The time when Fs* decreases to the equilibrium value is denoted as the

thermal relaxation process steady state time For this case, the plot shows = 0.05,

and is consistent with the time required for temperature T  and the scalar order parameter 

S  reach steady state in figure 4.4.

00

-500

-1500

-2500

0.00 0.02 0.04 0.06 0.08 0.10
*

t

Figure 4.5 Time evolution of the dimensionless molecular free energy F^ 

for the case a  = 10  ̂and /? = 10'’ . is the time for the molecular free 

energy to reach steady state.
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U  Figure 4.6 is a plot o f the dimensionless process time tà, % and Ta versus thermal

diffusivity a. This figure is used to discuss the effect o f the dimensionless thermal 

diffusivity a  on mesophase pitch based carbon fiber texture formation and ordered 

structure development The slanted dashed line indicates that the thermal relaxation 

process steady state time ta decreases monotonically with dimensionless thermal 

diffusivity a. This means that the time for S  and T to reach steady state decreases as a  

increases. The reason for this phenomenon is that the dimensionless thermal diffusivity 

is the factor that controls the rate o f the heat transfer between the mesophase pitch and 

the cooling air (see equation (4.10a)), i.e., the rate of heat transfer increases with a. It 

should be noticed that this dimensionless thermal diffusivity is also a criteria of the 

mesophase viscosity and elastic property. Consequently, the pitch viscoelastic property 

and the thermal transport property are both the important factor that controls the thermal
I
I  relaxation time evolution phenomena. The two solid near-horizontal lines represent the

I  dependencies o f the dimensionless director reorientation times % and % versus the
*I  dimensionless thermal diffusivity a. The nearly flat lines show that the dimensionless

I  thermal diffusivity a  has little effect on the director field relaxation. The reason for this
*

I  fact is that the relaxation rate of is a function o f elastic constants and not a function of
$1 a. The dynamic behaviour of the director reorientation is governed by equation (4.10b).
$
I  The right side o f equation (4.10b) has three terms, which are obtained, respectively, from
BI yè*, /d*, and fc . The simulation results indicated that compared with Frank elastic free
§ * *•f energy, je and^c induced by interaction between S  and n spatial gradients are negligible.
$ Consequently, the time evolution of the director field in one-dimension can be expressed
&

as:

. /  -I

(4.18)
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Equation (4.18) shows that the relaxation of director field is not affected by the thermal 

diffusivity because the dimensionless elastic function /cj is related only to Landau

elastic constants (see equation (A.2b)). The other two terms o f equation (4.10b) have 

little effect on the director time evolution. This leads to the director reorientation 

behaviour being nearly independent of the field of the scalar order parameter S  and 

temperature T.

10" '

1 0
-2

-3
1 0

10'

10' 10“

n

%  .

i  ..

. V ...........

(X q

,.L_ . ^

1 0 ' 10 “

a

Figure 4.6 Thermal diffusivity a  effect on the thermal relaxation. The dashed 

line represents the thermal relaxation time scale versus a . The two solid lines

represent the molecule reorientation time scales versus a .  is defined as the 

cross point between r^and , and is the cross point between and .
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To characterize the thermal diffusivity effect on the structure development and texture 

formation, this model defines %  as the value of a  at the cross over point between Ta 

and To, and the value at the cross over point between ta and % is denoted as As 

discussed above, Ta may be taken as the time for the temperature T  and the scalar order 

parameter profile to reach steady state. Furthermore, % and % may be taken as the time 

for the liquid crystal molecule spatial profile to reorient to within 13.5% and 2%, 

respectively, of its steady state profile. High value o f a  indicates higher viscosity, lower 

elasticity and fast cooling rate; low value o f a  represents lower viscosity, higher elasticity 

and slow cooling process.

For a >  czd, the plot shows process time Ta is less than reorientation time % and %. This 

means there is little time available for discotic molecules to rotate. This leads to a 

partially aligned texture depicted in Figure (4.2b). For % <  a  < %, Figure 4.6 indicates 

Td < Ta < To. When a  is between these values, the molecules will have some time to 

reorient into a highly aligned texture exhibited in Figure (4.2c). For a  <  the plot 

shows Ta > Td and This means the reorientation time provided by the thermal 

relaxation process for molecules to rotate is longer than the molecules need to reorient to 

a perfect order structure. When the thermal diffusivity is smaller than cCq, the molecules 

will reorient into a perfectly ordered structure as exhibited in Figure (4.2e).

4.5 Summary

The Ericksen and Landau-de Gennes continuum theories were used in this 

one-dimensional model to study numerically the structure development and texture 

formation in a discotic uniaxial nematic mesophase pitch based carbon fiber after 

cessation of extensional flow. The results indicate that the cooling step involves the 

relaxation o f Frank elastic free energy Fd* (taking into account director distortion) and the
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relaxation of molecular free energy Fs* expressed as a function of temperature and scalar 

order parameter. High, thermal diffusivity’ caused by higher viscosity and fast cooling 

inhibits the liquid crystal molecular reorientation and limits the texture development. 

Lower viscosity and slow cooling provides more time for liquid crystal molecular 

reorientation and allows fiber cross sectional structure to develop into a well-defined 

texture.

The simulation results are consistent with White and Buechler’s prediction [14]. That is 

the radial texture is formed at low viscosity and slow cooling, the random texture results 

from high viscosity and rapid quenching, and intermediate textures result from partial 

annihilation of declinations. These simulation results provide additional information on 

molecular orientation during post melt spinning process, which helps to improve the 

product properties and to reduce the post treatment process cost.
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Chapter 5

Two-Dimensional Model Development, Results and 

Discussion

Chapter 4 presents the one-dimensional modeling and simulation of the texture formation 

for mesophase pitch based carbon fibers. It is capable o f capturing the structure 

development in a nonisothermal system where the scalar order parameter and temperature 

is nonhomogeneous across the fiber radius. The transverse texture formation, however, is 

better to describe in a two-dimensional space. This chapter is dedicated to developing 

and simulation of texture formation for mesophase pitch based carbon fibers using the 

Erickesen and Landau-de Gennes continuum theories in a two-dimension space. In 

addition, this chapter also examines specifically the effects that the melt spinning process 

parameters and material properties, such as liquid crystal surface anchoring behavior and 

pitch melt textures, on the structure evolution and the final texture formation. This 

information is important for producing a specified fiber structure with desired mechanical 

and transportation properties.

The rest o f the chapter consists of the development of the partial differential equations 

I  that govern the relaxation phenomena of noniiomogeneously ordered mesophase melt

I  after extrusion flow in a two-dimensional space. It also contains physical and

g: mathematical interpretations of the results, discussions on the solutions of these equations,
%
#  comparison marks with one-dimensional results, and a section of summary.

The following assumptions are used in this two-dimensional study;

(1) The mesophase pitch is thermotropic. The phase transition is only effected by 

teinperatuie changes.
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(2) Mesophase is incompressible, i.e., the mesophase pitch density p is  a constant.

(3) There are no external body forces, such as the gravitational field. Hence, F  = 0.

(4) The director remains within the x-y plane. Mesophase pitch thermal conductivity fcth 

is a constant within the x-y plane.

(5) Backflows are negligible.

(6) The inertia of the director is negligible and neglected.

5.1 Introduction to Two-Dimensional Model

Figure 5.1 shows a schematic representation of the disc-like molecules within a section of 

a carbonaceous mesophase fiber of radius R, and the definition of the coordinate systems.

The polar coordinates r-cp are expressed by dashed lines. The Cartesian coordinates x-y 

are expressed by solid lines. Ô is the planar director orientation angle measured in 

radians, which is the angle between director n and polar r at point (x, y).

In Cartesian system, 9 is within x-y plane. The director field is defined as: 

n = (cos6*, sini9, 0) (5.1)

i
where the unit length constraint, n - n = 1 is satisfied.

Within the planar two-dimensional approximation, the three unknowns are as follows: |

T = T{x,y , t )  (5.2a)

0 = 0{x,y, t )  (5.2b) I

S  = S{x,y, t )  (5.2c) \

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



z

- V " " '

Figure 5.1 Schematic representation of the disc-like molecules within a section of 

a carbonaceous mesophase fiber of radius R, and the definition o f the coordinate 

systems. The polar coordinates r-ç) are expressed by dashed lines. The Cartesian 

coordinates x-y are expressed by solid lines. 0 is the planar director orientation 

angle measured in radians, which is the angle between director n and polar r at 

point (x, y).

Since there are three unknowns, three balance equations are needed. The three equations 

that govern the behaviour of temperature T, director 0 , and the scalar order parameter S 

are the energy balance equation of the system, the z-component internal angular 

momentum balance equation, and the scalar order parameter balance equation, 

respectively.
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5.2 Balance Equation Formulation

This section consists of the development o f the two-dimensional partial differential 

equations that govern the time evolution of temperature, director, and the scalar order 

parameter within the carbonaceous mesophase fiber during the cooling process after it is 

pulled out o f the spinneret. First, the Landau-de Germes energy term in the Ericksen 

continuum theory is defined in the two-dimensional space. Then the balance equations 

for director and the scalar order parameter are derived according to the modified version 

o f the Leslie-Ericksen continuum theory. Lastly, the set of partial differential equations is 

nondimensionalized.

5.2.1 Landau-de Gennes Free Energy

In the Ericksen continuum theory, the static energy term is defined by Landau-de Gennes 

energy density expressed by equation (2.15). The coefficients A, B, and C in the Landau- 

de Gennes free energy density (eqution (2.15)) are not known for a mesophase pitch. It is 

then convenient to replace the terms introduced by these coefficients in the free energy 

density by the Doi and Edwards [29] approximation expressed by equation (2.19). The 

Landau-de Gennes free energy density o f the system then can be expressed as:

/ l = i , u n f  ( l - f  A us‘]

)^ -i-sin(26’)-— — + sin^<9(^)^] (5.3)
8 ox ox oy oy

+ -  A:9(l + cos" _  2  2 2 2 2
4 '
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5.2.2 Energy Balance Equation

The temperature variation is derived using the energy balance equation of the system (see 

equation (4.3)). The two-dimensional expression of this derivation is:

5.2.3 Angular Momentum and Scalar Order Parameter Balance Equations

To derive the z-component o f the internal angular momentum balance equation, the 

assumptions given above, and equations (2.7), (2.12), (2.15), (2.17a), (A .li), and (A .lj) 

are used. The result of tliis derivation is:

-^i,0 + cos" 9) A ’ +^I,(l + sin’ 0)(^Ÿ 
4 ox 4 oy
o ao ac '1 3̂  c

+ —^2 cos(20) ------------- i j5 ( l  + cos^ 6'- s in ^ c o s 0)

(5.5)

dx dy A ÔX

- l2 ^ ( l  + s m ' g - s i n g c o s ^ ) ^ - H ^ f , S s i n ( 2 0 ( ^ - ^ ) ( ^ - ^ :
4 dy A dx oy ox oy

To derive the scalar order parameter balance equation, the assumptions given above, and 

equations (2.12), (2.15), (2.17b), (2.18), (A .lg), and (A .lh) are used. The result of this 

derivation is:
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-j3 ^  k ^ o T [ i l - ^ ) S +  2 ^ S ^ ]  
dt T  T  T

+ | s ( i .  +

+ —Z ,(s in 6*cos^ + sin^ O') —  —Z, (sin 6>cos d  + cos ̂  0 ) ^ ^
4  ̂ &c ok 4 ' ^  ^

- —Z, (sin (9 cos ̂  + cos ̂  6)  -^ -f -- —Z. (sin 6* cos 6* + sin ̂  9) (5.6)

+ —ZjiS(1 + sin 6  cos ̂  + sin ̂  6) ^  f  - —Z. 6"(1 + sin 0 cos 9  + cos^ 0)  -^-f-

+ -  Z ,5[sin(2^) + cos(2^)](— ) ̂  + -  Z,6'[sin(2^) -  cos(2^)](— ) ̂
4 dx 4 dy

Using relations derived by Beris and Edwards [26] (see equations (A .la-n)), the final 

results o f these derivations are, respectively, as follows:

a ? ,

89 89 ,8 9 ,2  /a ^,2

a^g a^.9

,a ^  a ^ „ 8 9  8 9 ,
dx dy dx ^

- y  —  = ̂ ^r[(i_Zk_)5 _Znl^2 + 2^5 '](3  + 6S') 
a/ ° T T 2'

(5.7)

a^ 89 86189 8̂ :9 8̂ :9
ck a% cy ^  a%"

8"^ 8^^ ,8<9,2 , 8^,2
+ + + k A - ^ )
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In equations (5.7) and (5.8) the elastic functions {/c/}, i = 10, ... , 27, are given in the 

Appendix. It is should be noticed that they are also dependency o f director orientation 

angle 6  and the scalar order parameters S.

5.2.4 Dimensionless Form Equations

The following scaling relations are used to nondimensionlize the resulting governing 

equations:

TT* = —  (for dimensionless temperature) (5.9a)
N̂1

K* = —  (for dimensionless elasticity) (5.9b)
K

(for dimensionless space in x-direction) (5.9c)

y ’ (for dimensionless space iny-direction) (5.9d)

Kt’ =  (for dimensionless time) (5.9e)

By doing this, equations (5.4), (5.7) and (5.8) become the following dimensionless form:

ot dx dy
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+ 4  (5.iOb)
O X  oy ox oy

. a"g . a"g .,a^  ag,^as as.

f̂ C
= /? [ ( r ‘ - l ) 5 - 5 V 2 5 '] ( 3  + 6 5 ')

^  a% ^

dt

(5.10c)
. a  ̂ as . a  ̂ â  . a'g . â g

a%' cbc' & "

. a^^ . a^a . /96»,2
+ ^ 2 4  'T T r  +  /^25 T T ^ T  +  ><26 ( ^ )  +  ^ 27  ( % r )  dx dy ox dy

Equation (5.10) introduces a dimensionless thermal diffusivity a  and a dimensionless 

characteristic molecular free energy P , which are expressed as follow:

a  (5.11)

^  = (5.12)
K

As mentioned in Chapter 4, the dimensionless thermal diffusivity a  depends on both the 

melt transport properties and the liquid crystalline properties. J3 is defined as the ratio of 

short-range order elasticity to long-range order elasticity [20] , and in this study 10^ |

is used to be consistent with prior published theoretical work. To be consistent with the j

one-dimensional study, in this two-dimensional model, the same range l < a < 10  ̂ is |

used. [
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The material physical properties and the melt spinning process parameters used in this 

chapter are also same as those that aie used in Chapter 4 and are tabulated in Tables 4.1 

to 4.3. The values for K, Ks, and K(, are obtained by assuming the same ratio of Za / L\, as 

defined in Chapter 4, which is in the same range as published theoretical work [20-23]. 

The absolute values o f the three elastic constants are of the order o f 10'^  ̂N  [24]. 

Furthermore, the elastic constants satisfy the constitutive hypothesis set by the following 

conditions [34]:

Z, > 0  and Z , + | Z 2 > 0  (5.13a, b)

Lastly, according to equation (2.16b,c), Ẑ  < 0  is required.

5.3 Auxiliary Equations

5.3.1 Initial Conditions

The initial molecular orientation are formed during melt spinning extrusion flow and 

aligned along the flow direction with some thermal fluctuation [9,13,37]. The fluctuation 

is assumed to be random, which generated by a build-in random number generator. Then 

the initial director field can be expressed as:

(5.14)

where do represent director field initial average orientation angle, e is a random number 

determined using a standard random number generator and is within the range 0 < e < 1, 

and ?/ is a factor that controls the magnitude of the fluctuation. In this study, rj = 0.5 is 

used. The choice o f the algebraic operation ±  is determined randomly by using a random 

number generator with a different seed than that used to generate e. If  the random

I  number generated is less than 0.5, the sign is negative; otherwise, it is positive.
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Initial temperatures take as the spinning temperature at everywhere of the fiber cross 

section, and the initial scalar order parameters are assumed as at the equilibrium value. 

According to above assumptions, the initial conditions can be expressed in the following 

equations:

at t  = 0, - R < x < R ,  - R <  y  <R  (5.15a)

01 =Û^+T]£ at t = 0, - R < x < R ,  - R < y < R  (5.15b)

6",=0.25 + 0.75 jl—^ a t f  = 0, (5.15c)

5.3.2 Boundary Conditions

The realistic boundary conditions for molecular orientation used in this study represent 

two typical surface anchoring behaviours of mesophase pitch molecules during the 

fabrication o f carbon fibers. One boundary condition represents the case where the 

discotic liquid crystalline molecules are oriented with the aromatic rings perpendicular to 

the spinneret. This is obtained by setting the directors, which are perpendicular to the 

discotic molecules at = 0. Another possible boundary condition for the director field

is where the discotic liquid crystalline molecules are aligned parallel (i.e., tangential) to 

the spinneret surface. This is represented in the model by setting the director orientation 

angles at the spirmeret surface to be 90°, i.e., 6^= tv 12 radians.

Boundary conditions for temperature and the scalar order parameter fields are assumed 

as Dirichlet conditions. For temperature field, the surface of fiber takes the cooling air 

temperature; the scalar order parameters take the equilibrium value at the surface 

temperature.

The boundary conditions are expressed as follows:
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r  = Te a t / > 0 ,  (5.15d)

0 ^ û . a t t > O , x ^ + y ^ = R ^  (5.15e)

5  = 0.25 + 0.75 1 - &  a t t > 0 ,  x ^ + / ^ R ^  (5.15f)

Using the same scaling method defined in Section 5.2.4, the dimensionless initial and 

boundary conditions can be expressed as follows;

T ; ^ T J T ^ ,  at r  = 0, - l < x  < 1, (S.lOa)

Q.=6^+t]S at t" =0,  ~ l < x * < l ,  —1 < y  < 1 (5.16b)

5, =0.25 + 0.75 1 - —  at t *=0,  - l < x < l ,  - ! < / < !  (5.16c)

r  =Tc/ T^  at r  > 0, % * ' + / '  =1 (5.16d)

0 = 0 ^ a t t * > O,  x * ^ + y * ^ = l  (5.16e)

5  = 0.25 + 0.75j l - - ^ ^  at t* > 0 , x ’^ + y ^ = l  (5.16f)
9?;.

In equations (5.15) and (5.16), 7s is the fiber spinning temperature, 7c is the cooling air 

temperature, and Tni is the nematic-isotropic phase transition temperature. Values for 

these temperatures are listed in Table 4.2.

72

Repioduced with permission of the copyright owner. Further reproduction prohibited without permission.



The initial average angles and boundary director orientations 9o and 6^ used in the 

simulation for this model are listed in Table 5.1. These values enable us to achieve the 

objectives stated earlier.

Table 5.1 Auxiliary conditions

Case 1 Case 2

Initial director average orientations, K
= — (radians) = 0 (radians)

Boundary director orientations.
6^ = y  (radians) 6*1, -  0 (radians)

5.4 Method of Solutions

The governing equations derived in this study are three coupled non-linear partial 

differential equations, and require numerical method for solution. The Galerkin finite 

element method (GFEM) and the first order Euler predictor-corrector time integrator are 

used in the study to solve the set of equations. Detailed description o f the GFEM can be 

found elsewhere [53-55]. The GFEM are used to discrete the space to generate a set of 

non-linear ordinary differential equations. The integration was performed using the 

Gaussian Quadrature method. The set o f equations ztre solved simultaneously with a 

Newton-Raphason iteration method. Convergence is assumed as the difference of the 

length of the solution vectors between two successive computed solution vectors is less 

than 10'®. A mesh o f 300 quadrilateral elements with 321 nodes is used in this study. 

The source code is written using Fortran 77. The computational solutions are obtained 

by running the source code on a SunUltra 60 Workstation. The CPU time required for 

the two-dimensional model is about 6 days.
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5.5 Results and Discussion

The results and discussion are presented in the following parts. First it shows the 

representative results for the molecular orientations, which are plotted through 

simulations for the two cases using the initial and boundary conditions listed in Table 5.1. 

The followed presentation and discussion on the free energy, temperature and the scalar 

order parameter fields are typical and applicable to both cases in Table 5.1. In this 

chapter, the representative case chosen is when a  = 10  ̂and ^  = 10''. The section begins 

by showing the time evolution of the molecular field, and temperature and the scalar 

order parameter spatial profiles for a  = 10  ̂and 15= 10''. This is followed by a discussion 

on the effect of the dimensionless thermal diffusivity a  on the thermal relaxation 

phenomenon. This section concludes with a discussion on how the dimensionless 

thermal diffusivity a  affects the order development and texture formation in carbon 

fibers.

5.5.1 Mode Selection

Figure 5.2 shows the two-dimensional relaxation phenomena of the molecular field when 

« = 10  ̂and for case 1 (first column), and case 2 (second column) at the following

dimensionless times t :  (a) 0.0, (b) 0.01, (c) 0.016, (d) 0.05. The short line segments 

represent the edges o f the discotic molecules, and are obtained by noting that a director is 

normal to the disc-like molecule. The first column shows that, under the initial and 

boundary conditions restricted by case 1, the molecules go from a randomly aligned state 

to a quasi-onion state, and finally evolving into a perfectly concentric (i.e., onion) texture. 

In contrast, the second column shows that, under the initial and boundary conditions 

restricted by case 2, the molecules go from a randomly aligned state to a zigzagged state, 

and eventually evolving into a perfectly radial texture. This is consistent with the 

experimental observations reported in the literatures [12,13]. Matsumoto [12] reported 

that extrusion tlirough a  large diameter capillary could yield fibers with concentric 

textures. Hamada et al [13] formed onion fibers by stirring the pitch upstream. Wang
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and Ray [50] predicted that at low temperature the bend elastic constant X3 < K\, leading 

to a bend mode deformation, causing the pitch molecules to orient radially in fibers cross 

section; at high temperature, Æ3 > Ki, yielding a concentric, onion arrangement o f the 

molecules in fibers cross-section [50]. In this study, due to the assumption K\ — K-i, the 

model could not predict the elastic constant effect on the texture selection. Nevertheless, 

the results show tliat the texture selection is dependency of multivariable, such as the 

initial texture, surface-anchoring effect, and consistent with prior published theoretical 

work [37,56].

5.5.2 S tructure Development

Figure 5.2 also shows the fiber transverse structure development during the thermal 

relaxation period. It shows that the fiber textures evolve from stressed high-energy states 

to structures with minimal distortion Frank elastic free energy at steady state. The 

driving force for the structure development is the minimization of the stored Frank elastic 

free energy F ^ ,  as shown in Figure 5.3.

In summary, the scientific visualizations of the fiber cross-sectional textures plotted from 

the computer simulations indicate that the mesophase pitch based carbon fiber texture 

formation is a combination of mode (radial or onion) selection and structure 

development. The mode selection between radial and onion textures depends on the 

mesophase pitch textures inherited from upstream and surface anchoring behaviours of 

mesophase pitch molecules. The stiucture development can be well explained using the 

Frank elastic free energy theory. Discotic nematics are elastic materials, where energy is 

stored by orientation strains. The driving force for the texture developing from a 

randomly aligned texture to a perfectly organized texture is the minimization of the 

stored Frank elastic free energy.
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Figure 5.2 (continued on next page) Typical relaxation phenomena for molecular 

orientation for the case or = 10  ̂ and y5 = 10'’ , across fiber cross section at the 

following dimensionless times t :  (a) 0.0, (b) 0.01, (c) 0.016, and (d) 0.05.
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Figure 5.2 (continued)
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5.5.3 Time Evolution of Frank Elastic Free Energy

Figure 5.3 is a plot of the stored Frank elastic free energy Fi versus dimensionless time 

t*. The two-dimensional dimensionless form Fà* may be obtained using equation (2.2) 

and is expressed as:

(5.17)

In order to characterize the time evolution of the molecular reorientation from the totally 

random oriented state to the well-defined structure at steady state, and are defined

(in the same way as in Chapter 4) as the time required for the molecules to reorient such 

that the Frank elastic free energy Fd decreases by 86.5% and 98%, respectively. For this 

case, Tj = 0.016 and = 0.05. This figure shows that the Frank elastic free energy Fd 

evolution goes through three stages; fast, intermediate, and weak relaxation. The three 

relaxation stages are consistent with the texture development exhibited in Figure 5.2. In 

the fast relaxation stage, corresponding to t* <0.016 (or Td) in Figure 5.2, the molecules 

are initially randomly oriented which leads to a strained texture. This initial texture 

stores the greatest-level distortion free energy, which is the driving force for the fast 

relaxation rate for t* < %. In stage 2, corresponding to 0.016 (or %) < t* < 0.05 (or Tq) in 

Figure 5.2, the Frank free energy Fd" decreases from 13.5% to 2% of its initial value; the 

molecules fomr well-defined structures at the end of this time period. In the final weak 

relaxation stage, corresponding to t"> 0.05 (or %) in Figure 5.2, the residue o f the Frank 

elastic free energy Fd* is the small driving force to reorient the molecules into the onion 

or radial textures. This is consistent with the time evolution of the Frank elastic free 

energy Fd* obtained from the one-dimensional model in Chapter 4. However, the total 

amount o f the Frank elastic free energy Fd" in this model is less than that of the one­

dimensional model calculated in Chapter 4, because this model used a smaller random 

number and generated a less randomly oriented initial structure.
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Figure 5.3 Time evolution of the dimensionless Frank elastic free energy 

for the case a  = 10  ̂and /? = 10''. and are defined as the time required

for the molecules to reorient such that the Frank elastic free energy F^* 

decreases by 86.5% and 98%, respectively.
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5.5.4 Temperature and The Scalar Order Parameter Profiles

Figure 5.4 shows the two-dimensional relaxation phenomena of the temperature profile 

for the case when a =  10  ̂and /? = 10'* at the following dimensionless times t*\ (a) 0 .02, 

(b) 0.03, (c) 0.04, and (d) 0.32. Figure 5.4 shows the typical thermal diffusion 

phenomena across the fiber transverse section. The fiber exits the spinneret at spiiming 

temperature Ts = 600 K, and is suddenly exposed to cooling air temperature o f Tq — 373 

K. It is assumed that there is perfect thermal contact between the cooling air and the 

mesophase pitch. Therefore, when the two-dimensional temperature profile becomes 

uniform at steady state, the temperature of the entire fiber cross-section decreases to the 

cooling air temperature Zc-

Figure 5.5 shows the two-dimensional relaxation phenomena o f the scalar order 

parameter profiles for the case when a =  10  ̂and /? = 10“' at the following dimensionless 

times t*'. (a) 0.02, (b) 0.03, (c) 0.04, and (d) 0.32. Figure 5.5 shows that the scalar order 

parameter S  evolution is consistent with that of the temperature profile. This is consistent 

with Doi and Edwards’s approximation for the scalar order parameter at homogeneous 

equilibrium [35];

S'çq = 0 .25+  0.75J 1 - —  (5.18)

where U = 3Tni/ T. For an isotropic phase U < 8/3, for a nematic phase U  >3 [35]. For 

this model, nematic potential U = 3Tni /  T is inhomogeneous due to the temperature 

gradient across the fiber radius. The scalar order parameter S  is generally increasing 

reciprocally with temperature. 3 he simulation results indicate that Doi and Edwards 

expression is a reasonable approximation of the scalar order parameter for a low- 

molecular weight nematic phase with small fluctuation.
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(a)

(b )

Figure 5.4 (continued on next page) Typical relaxation phenomena of the 

temperature profile for the case a  = 10  ̂ and ^  = 10'' at the following 

dimensionless times t \  (a) 0.02, (b) 0.03, (c) 0.04, and (d) 0.32.
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(c)

(d)

Figure 5.4 (continued)
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(a)

(b)
C O

Figure 5.5 (continued on next page) Typical relaxation phenomena ot the scalar 

Older parameter profile for the case a  =10^ and P = at the following 

dimensionless times t*: (a) 0.02, (b) 0.03, (c) 0.04, and (d) 0.32.
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(d)

Figure 5.5 (continued)
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5.5.5 Time Evolution of Molecular Free Energy Fs

Figure 5.6 is a plot of the time evolution of the molecular free energy Fs* for the case 

when a =  10  ̂and ft = 1 0 \ which was calculated by integrating equation (5.19) over the 

fiber cross-section area, and is expressed as:

^  r  f!

Figure 5.5 indicates that F$* decreases with time, and reaches steady state at the same 

time as the spatial profiles of temperature and the scalar order parameter (see Figures 5.4 

and 5.5). The time when Fs* decreases to the equilibrium value is denoted as the thermal 

relaxation process steady state time Ta- For this case, the plot shows -  0.32, and is

consistent with the time required for temperature T and the scalar order parameter S  reach 

steady state in Figures 5.4 and 5.5. The trend of the time evolution of the molecular free 

energy Fs* for the two-dimensional model is found to be consistent with the simulation 

results of the one-dimensional model showed in Figure 4.5. However, for the same 

values of a  and ft, the specific time for calculated from the two-dimensional model is

much longer than that calculated from the one-dimensional model, and is closer to the 

thennal transport time reported in the literature [3].
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Figure 5.6 Time evolution of the dimensionless molecular free energy for 

the case a  = 10  ̂and /? = lOV is the time for the molecular free energy to 

reach steady state.
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5.5.6 Effect of a  on The Thermal Relaxation

This part study uses the same routine as that used in Chapter 4, the dimensionless process 

time scales % and ta are simulated for different dimensionless thermal diffusivity 

a  and plotted in Figure 5.7. This figure is used to discuss the effect of the dimensionless 

thermal diffusivity a  on mesophase pitch based carbon fiber texture formation and 

ordered structure development. The slanted dashed line indicates that the thermal 

relaxation process steady state time Xa decreases monotonically with dimensionless 

thermal diffusivity a. This means that the time for S  and T  to reach steady state 

decreases as a  increases. The reason for this phenomenon is that the dimensionless 

thermal diffusivity is the factor that controls the rate o f the heat transfer between the 

mesophase pitch and the cooling air (see equation (5.10a)), i.e., the rate of heat transfer 

increases with a. The two solid near-horizontal lines represent the dependencies o f the 

dimensionless director reorientation times % and % versus the dimensionless theimal 

diffusivity a. The nearly flat lines show that the dimensionless thermal diffusivity a  has 

little effect on the director field relaxation. These results are consistent with the one­

dimensional simulation conclusion, and also can be explained by the time evolution of 

molecular orientation equation. The dynamic behaviour of the director reorientation is 

governed by equation (5.10b). The right side of equation (5.10b) has eight terms. The 

first term, the second term and the last six terms are obtained, respectively, from 7̂ *,/à*, 

and 7c'- The simulation results indicated that, compared with Frank elastic free energy, 

and 7c* induced by interaction between S  and n spatial gradients are negligible. 

Therefore, the effect o f the first term and the last six terms on the director reorientation in 

equation (5.10b) can be neglected. Consequently, the time evolution of the director field 

in two-dimensional space can be expressed as:

Equation (5.20) shows that the relaxation of director field is not affected by the thermal
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diffusivity because the dimensionless elastic function at,*, is related only to Landau elastic 

constants (see equation (A.3b)). The other two terms o f equation (5.10b) have little effect 

on the director time evolution. This leads to the director reorientation behaviour being 

nearly independent o f the scalar order parameter S' and temperature T fields.

Using the same way as Chapter 4, to characterize the thermal diffusivity effect on the 

texture formation and the ordered structure development, %  is defined as the value of a  

at the space cross over point of % and and the value at the cross over point between 

Ta and Td is denoted as cxa- As discussed above. Ta may be taken as the time for the 

temperature T and the scalar order parameter profile’s spatial profiles to reach steady 

state. Furthermore, % and % may be taken as the time for the liquid crystal molecule 

spatial profile to reorient to within 86.5% and 98%, respectively, o f its steady state 

profile. It should be noticed that this dimensionless thermal diffusivity a  also counts in 

the ratio of viscosity and elastic properties expressed as /Æ . Consequently, high 

value o f a  indicates higher viscosity, lower elasticity, and fast cooling rate, low value of 

(Z represents lower viscosity, higher elasticity, and slow cooling process.

As Figure 5.7 shows that for a >  Od, the process time Ta is less than reorientation times 

%d and To. This means there is little time available for discotic molecules to rotate, 

leading a partially aligned texture depicted in Figure (5.2b). For Figure 5.7

shows Td < Ta < To. When a  is between this values, the molecules will have more time to 

reorient into the well-defined structures (i.e., radial or onion textures) exhibited in Figure 

(5.2c). For a<Oo, the plot shows Ta > % and This means the reorientation time 

provided by the thermal relaxation process for molecules to rotate is longer than the time 

that the molecules require to reorient to well-defined radial or onion structures as 

exhibited in Figure (5.2d).
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Figure 5.7 The effect o f the thermal diffusivity a  on the thermal relaxation. The 

dashed line represents the thermal relaxation time scale versus a . The two solid 

lines represent the molecule reorientation time scales versus a .  cTq is defined as 

the cross point between and , and is the cross point between Tj and z^ .

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I
I

5.6 Summary

In this chapter, a two-dimensional model that describes the dynamic o f mesophase pitch 

molecules in a nonisothermal system was developed and solved to study the structure 

development and texture formation in a discotic uniaxial nematic mesophase pitch based 

carbon fiber after cessation of extensional flow.

The simulation results are consistent with that obtained from the one-dimensional model. 

The structure development is affected by the cooling rate, pitch melt viscosity and 

elasticity. High thermal diffusivity caused by higher viscosity and fast cooling inhibits 

the liquid crystal molecular reorientation and limits the texture development. Lower 

viscosity and slow cooling provides more time for liquid crystal molecular reorientation 

and allows fiber cross sectional structures to develop into well-defined radial or onion 

textures.

Furthermore, the two-dimensional model is able of capturing five types o f texture 

patterns, which match the commonly observed texture for mesophase pitch based carbon 

fibers. They are random, folded radial, radial, quasi-onion, and onion. These various 

textures represent the various combinations possible from the interplay between texture 

selection and structure development during the fiber spinning process. The mode 

I ■ selection between radial and onion textures are affected by the original texture and the 

I surface anchoring behaviour of mesophase pitch molecules. The numerical results are

I consistent with production and experimental observations [12,13].

II  The two-dimensional model provides a better understanding of mesophase pitch based

I  carbon fibers texture formation. The simulation results may provide additional

I  information on a molecular orientation during melt spinning process and helps to
I
I  decrease the post treatment temperature and to reduce the process cost.
I

I
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Chapter 6

Conclusions and Recommendations for Future Work

6.1 Conclusions

A mathematical model that describes the dynamic behavior of mesophase pitch molecules 

in a nonhomogenous temperature system has been developed, and solved in one­

dimensional and two-dimensional space, respectively. The simulation results from the 

one-dimensional and two-dimensional models are consistent. The results from the 

present work proved that the mesophase pitch based carbon fiber texture formation is a 

combination o f texture selection and structure development during cooling process. The 

textures obtained from the study are similar to that observed through experimental 

studies. They are: random, radial, zigzag radial, onion, and quasi-onion. Several 

important conclusions can be drawn from the understanding o f this study:

(1) The results from the one-dimensional and two-dimensional models both indicate that 

the cooling step involves the relaxation o f Frank elastic free energy taking into 

account director distortion. The transverse stmcture evolves from random to a well- 

developed texture (the radial or onion) to release the Frank elastic free energy .

(2) High dimensionless thermal diffusivity caused by higher viscosity and fast cooling 

inhibits the liquid crystal molecular reorientation and limits the texture development. 

Lower viscosity and slow cooling provides more time for liquid crystal molecular 

reorientation and allows fiber cross sectional structure to develop into a well-ordered 

texture.
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I (3) The results from the two-dimensional model shows that the mode selection between
[|
I radial and onion textures are affected by the original texture and anchoring behaviors of

I mesophase pitch molecules. Wang and Rey’s model indicated the stable texture depends

I on the relative size o f the elastic constants {Ki and K^) related with bend and splay

I deformation o f the mesophase pitch. The Landau-de Gennes free energy used in this

I model assumes elastic constants Ki and are equal, therefore the current model could
iI  not predict elastic constants effect on texture formation.

(4) Compared with one-dimensional model, the two-dimensional model gives better 

insight on the texture formation across mesophase pitch based carbon fibers, although the 

one-dimension model is capable o f capturing the structure development for mesophase 

pitch based carbon fibers. Another advantage of the two-dimensional model is that it 

describes the transportation phenomena more accurately. The process time for heat 

transfer across the carbonaceous mesophase fiber cross section obtained from the two- 

dimension model is much slower than that obtained from the one-dimensional model, and 

is closer to that of the actual thermal transportation in melt spinning process reported by 

the current literature [2]. In addition, the two-dimensional model has fewer assumptions 

and limitations, thus provided a better understanding on the structure development and 

texture formation for mesophase pitch based carbon fibers.

6.2 Contributions

The viscoelastic model, compared to previous mathematical studies, contributes to the 

current texture formation of mesophase pitch based carbon fibers in the following 

aspects;

(1) The model takes into consideration o f temperature gradients, which are present during 

the actual spinning fabrication process.

(2) The model demonstrates the structure development from random to well-defined 

textures.
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(3) The model is capable o f predicting the process effect, such as the cooling rate, on 

texture formation.

(4) The elasticity and viscosity o f mesophase pitch are both taken into account in the 

model.

(5) The effect o f the liquid crystal molecular anchoring behaviour on the texture 

formation is also investigated in the model.

6.3 Recommendations for Future Work

Based on the findings presented in this work, the following recommendations are made 

for fiirther study o f the mesophase pitch carbon fiber texture formation:

(1) The simplifying assumptions that the material properties are constant in different 

directions should be removed.

(2) The effect o f different shape geometry o f the spinneret on the texture formation 

should be investigated.

(3) More realistie boundary conditions should be imposed. If  the glass transition 

temperature T’g were incorporated in the boundary conditions, the results may be more 

realistic.
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A ppendix

The relations for the dependency of the Leslie viscosities on the scalar order parameter S  are 

as follows [26]:

2

(A.ib)

(A .lc)

a f  (A.id)

3 ' .  '

û t j  — (%2

M = f ^  (A.lh)

(A .li)
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where

/Dm A CC-sOC-i
A  =«1+0^2-0^3+ 4 (A. Ik)

« 2  - « 3

fll (A. 11)

A”’ - t ( ^ 2+ ^ 5) + 2 — ( A. l m)
2  <%2 - « 3

A4 -^ 4  (A.In)

The elastic functions { at, }, / — 1, ..., 9, in equations (4.1 Ob,c) are defined as follows:

K
S

(A.2a)

K2 - - —K  (A.2b)

A :3 = ^ '^6 s in (2 ^ ) (A.2c)

^4 = —-^5'(3+ 65^) (A.2d)

ATj = -^ 5  (3+ 65'^) (A.2e)

^6 = ^6 (3 + 65 A sin(26') (A.2f)

^7 = -•^6 (3 + 65^ ) cos^ ^  (A.2g)

98

Reproduced with permission of the copvriflht owner. Further reproduction prohibited without permission.



8̂ = K^S{3 + 6S^) cos(2<9) (A.2h)

1
>Cg——K^S(3 + 6S )sin(2(9) (A.2i)

The elastic functions { i=  10, 27 in equations (5.10b,c) are defined as follows:

K

1

(A.3a)

^ 1! - “ — (A. 3b)

1̂2 -  " - ^ 6 ( 1  + cos^ 6") (A.3c)

^13-" ^ -^ e O  + sin^ (9) (A.3d)

1̂4 -" ^ -^ 6  cos(26*) (A.3e)

,5 Zg(l + cos 9-sin(9cos(9) (A.3f)

AT, 5 — —  (1 + sin^ ^  -  sin ̂  cos (A.3g)

^,7=Y ^gSm (26 ') (A.3h)
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,c„=-À:;(3 + 6g") (A.3j)

/C20 = 3iCg (3 + )(sin dcos& + sin^ û) (A.3k)

K^i ^ -3K ^{3  + 6S^)(sindcos6 + cos^ 9) (A.31)

K2 2  = -K^(3 + 6S^)(sm9COS0 + cos^ 9) (A.3m)

=-À:g (3+65'^ )(sin^ COS ̂  + sin^^) (A.3n)

= KgS(3 +6S^)(} +sin9 COS9 + sin^ 9} (A.3o)

ATjs =-iCg5'(3 + 65^)(l + sm 6'co s6> + cos^ (9) (A.3p)

AT,, = /:,^ (3  + 6g")[sin(26*) + cos(2^)] (A.3q)

AT;? = A:«g(3 + 6g")[sin(2<9) -  cos(2^)] (A.3r)

In equations (A.2) and (A.3) the relations:

K  = 9 1 ,+ 1 4  (A.4a)

Æ, = - 2 , + - 4  (A.4b)
2 4
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(A-4c)

have been used.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


