
WEB SERVICE REPLICA SELECTION

ANALYSIS USING A

MULTIAGENT–BASED SIMULATOR

by

Khashayar Habibi

Bachelor of Science, Sharif University of Technology, Tehran, Iran, 1989

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2010

c©Khashayar Habibi 2010

Declaration

I hereby declare that I am the sole author of this thesis.

I authorize Ryerson University to lend this thesis to other institutions or individuals for

the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by

other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

ii

WEB SERVICE REPLICA SELECTION ANALYSIS USING

A MULTIAGENT–BASED SIMULATOR

Master of Science 2010

Khashayar Habibi

Computer Science

Ryerson University

Abstract

A Distributed system always runs on top of a computer network and cannot be separated

from it. In many cases this network consists of hundreds or thousands of computers

and processing nodes. An effective distributed system simulator needs to simulate the

underlying network. Unfortunately a great majority of existing simulation tools are pure

network simulators. Even though they are very effective for designing, and evaluating

computer networks, they could not be used to simulate a distributed application like a

web service based application. Many components in a distributed system are complex

servers and software applications running on top of all network layers. Network simulators

cannot simulate them. A higher-level simulator is required to simulate their behavior.

This work introduces an agent-based simulation model that integrates the simula-

tion of a computer network and higher-level components of a distributed application.

The distributed nature of agents makes them suitable to model and simulate distributed

architectures including computer networks and distributed systems. To evaluate this ap-

proach the behavior of a replicated web service application will be simulated to show how

effectively multi- agent-systems could be used to simulate the behavior of a distributed

system.

iii

Acknowledgements

This thesis could not have be done without help and support of my supervisor, Dr.

Abdolreza Abhari, whose expertise, encouragement, and guidance helped me to achieve

this task.

I am greatly thankful to Dr. Alexander Ferworn whose lectures, and advice, during my

masters studies, helped me to overcome many challenges and obstacles that I encountered

in my research.

I am very thankful to Dr. Cherie Ding whose profound knowledge of software engi-

neering and Service Oriented Architectures gave me enough insight to the concepts that

contributed substantially to my work.

I would like to thank Dr. Alireza Sadeghian for his continuos support and for in-

troducing me to the field of machine intelligence, which gave me great motivation and

energy to pursue my thesis in this very attractive field.

I am also very thankful to Dr. Marcus Santos whose excellent method of teaching

and practical case studies gave me a deep and broad knowledge of genetic programming.

My parents thought me how to walk and gave me reasons why not to stop but I was

not in this position without unlimited support of my beloved wife, Pardis and my two

little angels Mojan and Kiana whose family times were sacrificed on many occasions in

the past two years. This work is dedicated to all of my family.

iv

Contents

Acronyms xiii

1 Objectives, Motivation, Contributions, and Scope 1

1.1 Objectives . 2

1.2 Motivation . 2

1.3 Contributions . 5

1.4 Scope . 6

1.5 Thesis Outline . 7

2 Background Information and Related Works 8

2.1 Background Information . 8

2.1.1 Web Service Availability . 8

2.1.2 Web Service Replication . 9

2.1.3 Web Service Communities . 9

2.1.4 Agents and Multi agent Systems 10

2.1.4.1 Agent Definition . 11

2.1.4.2 Agent Environment . 13

2.1.4.3 Agent Classification . 14

2.1.4.4 Agent Design and Architecture 15

v

2.1.4.5 Multi–Agent Systems 18

2.1.4.6 Applications of Agents and MAS 18

2.2 Related Works . 19

3 Modelling 23

3.1 Conventional Web Service Model . 24

3.2 Revised Web Service Architecture . 25

3.3 Development of the Model Using MAS 28

3.4 Static and Dynamic Attributes . 32

3.5 Modelling of Processing Time . 33

3.6 Initializer Agent . 34

3.7 Tester Agent . 35

3.8 Client Agent . 36

3.9 Web Server Agent . 37

3.10 Web Service . 37

3.11 Proxy Agent . 39

3.12 Router Agent . 40

3.13 Link Agent . 40

3.14 Message Protocol Format . 41

4 Results and Evaluation 46

4.1 Configuration and Initialization Phase 46

4.2 Testing Phase . 49

4.3 Random Selection . 50

4.4 Best Last Selection . 51

4.5 Best Median Selection . 53

vi

4.6 Parallel Selection . 56

4.7 Simulator Evaluation . 58

4.8 Effect of More than One Client . 66

5 Conclusion and Future Work 69

5.1 Conclusion . 69

5.2 Future Work . 72

Appendices 75

Bibliography 102

vii

List of Tables

2.1 Properties of Agents . 14

3.1 Components Categorization in the Simulation Model 29

3.2 Components in Simulator Application . 30

3.3 Client Agent Attributes . 36

3.4 Web Server Agent Attributes . 38

3.5 Proxy Agent Attributes . 39

3.6 Router Agent Attributes . 40

3.7 Link Agent Attributes . 41

3.8 Details of segments that are created and consumed by agents 44

4.1 Routing Table of Router Agent Number 11 48

4.2 Route Paths and Costs from Proxy Agent to all Web Server Agents . . . 48

4.3 Choosing Algorithm Tested in the Experiment 49

A.1 Test Scenarios Executed in the Experiment 76

A.2 Meaning of Collected Attributes in each Test Scenario 77

A.3 Random Replica Selection with Dynamic Processing Behavior OFF . . . 78

A.4 Random Selection with Dynamic Processing Behavior ON 79

viii

A.5 Best Last Replica Selection with Dynamic Processing Behavior OFF . . . 80

A.6 Best Replica Selection with Dynamic Processing Behavior ON 81

A.7 Best Last Replica Selection with Dynamic Processing Behavior ON and

Different Web Server Processing Speeds 82

A.8 Best Last Replica Selection with Dynamic Processing Behavior ON and

Router Response Time Changes - Response Time of R4, R7, and R8 in-

creased from 2 to 10 . 83

A.9 Best Last Replica Selection with Dynamic Processing Behavior ON and a

Spike of 20ms in WS1 - Spike happens at Request# 20 in Test 1, Request#

40 in Test 2, and Request# 100 in Test 3 84

A.10 Best Median Replica Selection with Dynamic Processing Behavior ON

value of k equal to 1, 3, 5, 7, and 9 . 85

A.11 Parallel Selection with Dynamic Processing Behavior OFF 86

A.12 Parallel Selection with Dynamic Processing Behavior ON 87

A.13 Random Selection with Two Clients and Dynamic Processing Behavior ON 88

A.14 Best Last Selection with Two Clients and Dynamic Processing Behavior ON 89

A.15 Best Median Selection with Two Clients, Dynamic Processing Behavior

ON, and k=3 . 90

A.16 Parallel Selection with Two Clients and Dynamic Processing Behavior ON 91

B.1 Simulator Configuration Setup - Table 1 of 5 93

B.2 Simulator Configuration Setup - Table 2 of 5 94

B.3 Simulator Configuration Setup - Table 3 of 5 95

B.4 Simulator Configuration Setup - Table 4 of 5 96

B.5 Simulator Configuration Setup - Table 5 of 5 97

ix

List of Figures

2.1 Simple Agent Functional Diagram . 13

2.2 Web Service Replication Classification 19

3.1 Web Service Conventional Architecture 24

3.2 Revised Web Service Model . 26

3.3 General Distributed System . 27

3.4 Sample Simulator Network Topology: P =Proxy Agent, C=Client Agent,

R=Router Agent, and WS=Web Server Agent 31

3.5 Simulator Main Class Diagram . 32

3.6 Initialization phase started by operator and executed by Initializer Agent 35

3.7 Class relationship between Web Server Agent and Web Service 38

3.8 Simulator Message Protocol . 43

3.9 A sample web service request message travelling from client agent to web

server agent . 45

4.1 Test Sequence Diagram . 50

4.2 Random Replica Selection with Dynamic Processing Behavior Turned Off 51

4.3 Random Replica Selection with Dynamic Processing Behavior Turned On 51

4.4 Best Last Replica Selection with Dynamic Processing Behavior Turned Off 52

x

4.5 Best Last Replica Selection With Dynamic Processing Behavior Turned On 53

4.6 Best Median Replica Selection With Dynamic Processing Behavior Turned

off for values of k equal to 1, 5, and 9 . 54

4.7 Best Median Replica Selection With Dynamic Processing Behavior Turned

ON for values of k equal to 1, 3, 5, 7, and 9 54

4.8 Best Median Replica Selection With Dynamic Processing Behavior Turned

ON for values of k equal to 1, 3, 5, 7, and 9 and different static processing

time . 55

4.9 Parallel Replica Selection With Dynamic Processing Behavior Turned Off 56

4.10 Parallel Replica Selection With Dynamic Processing Behavior Turned ON 57

4.11 Parallel Replica Selection With Dynamic Processing Behavior Turned ON

for different web server speeds . 57

4.12 Best Last Replica Selection With Different Server Response Times and

Dynamic Processing Behavior On . 60

4.13 Changing the Response time of Routers in Best Last Replica Selection . 61

4.14 Effect of Spike in Best Last Selection Algorithm - Spikes happen in WS1

with a jump of 20 ms in predefined request messages 63

4.15 Comparison of Spike in Best Last and Best Median Selections 64

4.16 Comparison of Single Client Response Times when Dynamic Processing

Behavior is Off . 65

4.17 Comparison of Single Client Response Times when Dynamic Processing

Behavior is On . 65

4.18 Random Selection: Two Clients, Dynamic Processing Behavior = Off . . 66

4.19 Random Selection: Two Clients, Dynamic Processing Behavior = On . . 67

4.20 Best Last Selection: Two Clients, Dynamic Processing Behavior = Off . . 67

xi

4.21 Best Last Selection: Two Clients, Dynamic Processing Behavior = On . . 68

4.22 Comparison of Two Client Response Times when Dynamic Processing

Behavior is On . 68

xii

Acronyms

ACL Agent Communication Language

ART Average Response Time

BDI Belief-Desire-Intention

BRT Best Response Time

CA Client Agent

DS Distributed Systems

DPB Dynamic Processing Behavior

IA Initializer Agent

JADE Java Agent Development Environment

LMRT Last Median Response Time

LA Link Agent

LRT Last Response Time

MAS Multi-Agent System

NOH Number of Hits

OSI Open Systems Interconnections

PA Proxy Agent

QoS Quality Of Service

RA Router Agent

xiii

RWS Replica Web Service

SOA Service Oriented Architecture

TA Tester Agent

UDDI Universal Description Discovery and Integration

URL Universal Resource Locator

URT User Response Time

WRT Worst Response Time

WSA Web Server Agent

WSDL Web Service Description Language

WS Web Service

xiv

Chapter 1

Objectives, Motivation,

Contributions, and Scope

This work presents a framework for agent-based simulation of Web Services Replica Selec-

tion. The proposed architecture provides researchers and programmers with a platform

that could be used to improve availability in web services. Availability plays a very

important role in improving the Quality Of Service (QoS) in a distributed environment.

There are different ways to improve the availability of a web service. One of the most

common methods is replication. Replication simply means making copies of an interested

entity (also known as replicas) and distributing those copies in different locations. The

replicated copy could be a piece of data or a computer program like a web service. Another

method to improve the availability of web services is through Web Service Communities.

A web service community is a community of web services (hereafter referred as generic

web services) that are not carbon copies of each other but provide similar functionalities.

A big challenge in either approach is the method of selection or the Selection Algorithm

(also referred here as Choosing Algorithm). The main outcome of this thesis will be

1

a simulator platform or a simulator application (hereafter referred as the simulator),

developed based on Multi-Agent System (MAS) modelling and technology that will be

used to analyze and compare the behavior of the web service selection methods and

algorithms.

1.1 Objectives

The outcome of this thesis is to provide a software platform that will help to analyze,

evaluate, compare, and enhance the web service selection methods and algorithms. The

platform provides an experimental environment that helps researchers to host and test

different web service selection methods to improve the availability of services. The soft-

ware platform as mentioned previously is a simulation application. It simulates a web

service running environment consisting of many software and hardware components and

entities, like the web service hosting servers, proxy server(s), client machines, proxy soft-

ware, interconnecting network, and web services. Conducting this research will open more

opportunities to use MAS based simulation to simulate all sort of distributed systems

and computer networks.

1.2 Motivation

This thesis uses a simulation platform to evaluate, compare, and examine replica selection

algorithms. The platform is not using any of well tested, and widely used simulators. It

has been built from the scratch by using agent based software development tools. The

rationale of building a simulation platform based on MAS is as follows:

1: Using real runtime environment is not feasible: This experiment is about

2

web service replica selection. In real scenario each web service replica is hosted by

a separate server, capable of handling web service requests. The servers could be

geographically located far from each other in the network. It is easy to find internet

service providers that host web sites but it is not that easy to find the ones that

provides public web service hosting. A Lot of time and resources are required to

develop a web service and have it deployed by a service hosting company. Many

steps should be passed including developing a service, finding the right hosting

companies, finalizing service contract agreements, and more importantly paying

for the required expenses. On the client side several hardware equipments are

required to build and host clients and host proxy server(s). The bottom line is that

the building of a real runtime environment is time consuming, and is not logistically

and financially feasible. On the other hand using a local runtime environment like

the campus network also does not provide an experimental platform that resembles

the complexity of a real web service distributed system.

2: Existing network simulators could not be utilized to simulate the nature

of problems dealing with distributed systems: A web service application

is considered a complex distributed system [1, p545-552]. A replicated web ser-

vice environment is an even more complex distributed system. Existing simulation

tools in industry and academic environments like ns–2/ns–3, OPNET, GloMoSim,

and NetSim do not address the complexity of a distributed application like a Web

Service (WS) application. A different simulation platform is needed to simulate

layers above application layer and software components that constitutes the dis-

tributed application. A distributed system could be perceived as a complex ap-

plication that runs on multiple processing nodes and handles a specific business

3

transaction from clients perspective. Existing simulators are suitable for simulat-

ing computer networks, not distributed systems like a WS application where client

applications, web services, and web servers run on top of all layers of Open Systems

Interconnections (OSI) reference model [2, p48-56].

3: MAS architectural model makes it very suitable to simulate a Dis-

tributed Systems (DS): Agents and MAS could be used in many types of ap-

plications, especially in environments where the computation is decentralized and

distributed. Distributed Data Mining, Distributed Information Retrieval, Sensor

Networks, Social Sciences, Artificial Life, Computer Games, and Soccer Robots are

very few examples of Agent and Malti-Agent System (MAS) applications [3, p3-4].

Multi Agent Systems, because of their distributed based architecture, are ideal plat-

forms to simulate distributed systems. The architecture model of a Multi-Agent

System is very similar to architecture model of a distributed system. Distributed

systems and applications include many distributed computing nodes and programs

that run in a large united group and execute a unified task. Each node in a dis-

tributed system is responsible for execution of a portion of this task. Each node

does a specific job that is not necessarily the same job of the other computing

nodes. Agents in MAS could be easily designed to have the same characteristic and

behavior of processing nodes in a distributed system. Each agent has behaviours to

help them to achieve their goals. The behaviour of an agent could be implemented

in such a way to imitate the behaviour of a processing node in a distributed sys-

tem or a network. Processing nodes in a distributed system are connected to each

other in a network topology that is designed and imposed by its designers. Simi-

larly each agent could be connected and communicate with other agents in MAS

4

environment. Processing nodes in a distributed systems send messages to other

nodes and respond to requests coming from other processing nodes. They do these

actions based on the logics that have been designed and programmed for them.

As an example a web sever knows what sort of messages it should expect from its

client and how it should react to them. Similarly agents could be programmed to

imitate the same behavior.

Each agent in MAS is executed in its own execution thread; therefore each com-

ponent or processing node in a distributed environment could be represented and

simulated by an agent. As an example an agent that simulates a web server instance

is running as a separate thread. The hosting server is another agent running in its

own execution thread. The relation of the web server agent to client agents could

copy the relation of a web server application to its clients. With the exception of

web service itself, every other entity in this simulator platform is an agent, even the

components in the interconnecting network. More details about agents and why

they are suitable candidates for simulation of a distributed systems will be given

in next chapter.

1.3 Contributions

The simulation platform that was designed and implemented for this thesis has the

following contributions:

I: As a stand alone application it simulates the behaviour of a web service appli-

cation including the underlying network components like routers, and communi-

cation links. The simulation platform is easy to use and configure. Developers

5

and researchers could design, create, and evaluate new selection algorithms or even

combine existing ones to create more complex selection algorithms with less effort,

something they could hardly achieve in the real environments.

II: Its architectural model could be reused as the foundation of a more general purpose

simulation platform based on MAS to simulate more complex distributed systems.

III: The implemented router and link agents in this simulation platform could be used

as a general purpose MAS–based network simulator package.

IV: The developed code in Proxy Agent (PA), the replica selection engine of platform,

could be reused in real scenarios. Furthermore the internal behavior of PA, with a

slight change, could be used to provide a generic resource selector.

1.4 Scope

Life cycle of web service consists of many stages. First it should be designed, implemented

and deployed by its Web Service Provider. Then the web service API, its location, and its

access information should become available and disclosed to its potential users, a stage

called Web Service Publishing. The access information in many cases is put in a central

location called Web Service Registry. A web service then is ready to be used as soon as

the clients find the access information about the web service. This is the phase that is

called Web Service Selection. This experiment is concentrated on web service selection

phase. It is presumed that web service replicas are already discovered and their access

functions are already known to their clients. The stages of web service publishing, and

discovery will not be discussed in this document.

6

Simulation of network nodes has been done up to certain levels needed to estab-

lish a valid network behavior. Router agents simulates the high level functionality of real

routers. To avoid too much details in the simulation, the dynamic routing, packet switch-

ing, and packet re-sending behaviors were not implemented by Router agents. These

complex router behaviors will be left for future releases of the simulation framework.

Router agents in this experiment use static routing methods based one preconfigured

static routing tables. Router agents encapsulate the high level behavior of Network lay-

ers and Link agents simulate the behavior of Link and Physical layers in OSI reference

model or Internet Protocol stack(see [2, 51])

1.5 Thesis Outline

Chapter 2 introduces background information and related works done on multi-agent

systems and web service selection. Chapter 3 discusses the architectural model and

implementation details of the simulation platform. Chapter 4 presents and analyzes the

testing results, and finally Chapter 5 draws the conclusions, reiterate the contributions,

and discusses about potential future works.

7

Chapter 2

Background Information and

Related Works

This chapter consists of two major sections. The first section is background information

that includes a brief explanation of concepts, terms, tools, and frameworks that will be

used throughout this thesis. The second section exemplifies the related works that have

been done by other fellow researchers.

2.1 Background Information

Before getting to details it is necessary to make ourselves familiar with some terminolo-

gies, definitions, and concepts that will be used frequently throughout this document.

2.1.1 Web Service Availability

A system is said to be available if it promptly delivers its service. What exactly this

means should be clarified in the context of the requirements. For instance, a specification

8

for a web service could clarify that it can reply to the client request within 2 seconds.

Availability for a service means it is reachable regardless of hardware, software or user

fault. Availability is usually shown as a sequence of nine digits. As an example a

notation of 99.999% availability or five-nine-availability means the likelihood that not all

the requests arriving within one minute get serviced is 0.00001. One method to improve

system availability is through Replication. In this approach the system continuously

provides the service because it has been replicated into similar copies (instances) spread

around in different physical locations, so that each one would be able to respond to client

requests even though other instances are busy or not working.

2.1.2 Web Service Replication

Replication simply means having multiple copies of a component so that if one fails or is

busy the other one could handle the request. Access to a replica should stay similar to

access to a single replicated entity and this process, including failover of replicas, should

be transparent to the client. Web Service Replication means having multiple similar

copies of the same web service code that will improve its availability. In this document

a replicated web service is also referred as Replica.

2.1.3 Web Service Communities

Replication is not the only method that could improve the availability QoS. One other

possible solution is through Web Service Communities. Web service communities are

grouping of functionally similar web services that facilitate and speed up the web service

discovery. If a client request fails then the community framework that is controlled

through a master web service could delicate the request to another member of community

9

and because that member is a web service with the same functionality then the client

should get its desired response. All these should be transparent to a user. Web Service

Community could be very beneficial and useful in SOA based architectures for dynamic

service selections during a business process flow [4, 5]. In this document a web service

communities is also referred as Generic Web Services.

2.1.4 Agents and Multi agent Systems

One of the key contributions of this work is introduction of a simulator tool based on

agent and Multi Agent Systems (also known as MAS). Multi-Agent systems have been

a very fast growing field of computer science in last several years. They have been

used in different research and industrial applications and have seen by many scholars

as a breakthrough in the field of machine intelligence and future of intelligent software

development. Agents and MAS could be especially used in environments where the

computation is decentralized and distributed. Distributed Data Mining and Information

Retrieval [6, 7], Sensor Networks [8, 9], Social Sciences, Artificial Life, Computer Games,

Simulation, and Soccer Robots are very few examples of Agents and Malti-Agent System

(MAS) applications.

In this experiment MAS has been used to simulate a replicated web service application

which is considered a distributed system [1, p545-554]. Sections 2.1.4.1 to 2.1.4.6 have

been dedicated to definition, classification, and architecture of agents and MAS because

of their important and fundamental role in this thesis.

10

2.1.4.1 Agent Definition

A simple search for the term Agent will result in a plenty of definitions. In computing

field, this term is usually combined with other terms like Agent Systems, Multi Agent

Systems, Intelligent Agent, and Autonomous Agents. In most of the definitions an agent

is referred to as an Autonomous Entity. It emphasizes that agents actions and behaviour

are autonomous. More search in literature shows that there is not a common agreement

on the definition of (autonomous) agents.

Pattie Maes of MIT Media Lab, defines agents as computational systems that lives

in some complex dynamic environment, and sense and act autonomously in this envi-

ronment, and by doing so they realize a set of goals or tasks for which they have been

designed. This definition recognizes the agents as goal-oriented entities [10].

Michael Coen defines (software) agents as programs that engage in dialogues, ne-

gotiations, and coordinate transfer of information . Michael Coen’s definition is for so

called software agents. It could be inferred from his definition that a category of agents

is software programs [11]

Wooldridge and Jennings [12] describe an agent as a hardware or (more usually)

software-based computer system that is Autonomous, Social, Reactive, and Pro-Active.

They operate without the direct intervention of humans or others so they are Au-

tonomous. They are Social in a sense that could interact with other agents (and possibly

humans) via some kind of agent-communication-language. They perceive their environ-

ment (which may be the physical world, a user via a graphical user interface, a collection

of other agents, the INTERNET, or perhaps all of these combined), and respond in a

timely fashion to changes that occur in them so they are Reactive to their surrounding

environment. They however do not simply act in response to their environment; they are

11

goal-oriented and take initiatives so they are Pro-Active.

Brustoloni [13] define autonomous agents as systems capable of autonomous, pur-

poseful action in the real world . By his definition an agent could only exist in the real

world and so the software agents are not considered as agents.

Franklin and Graesser [14] state that many entities could fall in one of above defini-

tions. Humans and animals, and some robots could be considered as autonomous agents.

All of them exist in the real world and are real world agents. Software and Artificial

Life agents live in computer operating systems, databases, networks, and so on. All of

them are situated in some kind of environment, sense their environment, and act au-

tonomously in that environment. They all pursue their own agenda and act continually

over some period of time. A software agent runs until it decides not to and an artificial

life agent runs until it is getting deceased or dies. Human and animals as well as other

real world agents do have the same behaviour. Franklin and Graesser [14] come up with

this definition which will be used further on in this document as agent definition:

“An autonomous agent is a system situated within, and a part of an environ-

ment that senses that environment and acts on it, over time, in pursuit of its

own agenda and so as to effect what it senses in the future.”

Based on the above definition an agent could be depicted as shown in Figure 2.1. An

agent perceives its environment through sensors and acts upon the collected information

through actuators. As an example a human (agent) has the eyes, ears, nose, tongue, skin

as sensors and hands, legs, mouth, and other body parts as actuators. A robot might

have optical and infrared cameras as sensors and various types of motors as actuators. A

software agent receives keystrokes, data streams like file contents and network packets as

inputs and acts on its environment by sending information to screen, or writing to files,

12

Percepts

Environm
ent

Sensors

Actuators

Agent
Function

Actions

Agent

Figure 2.1: Simple Agent Functional Diagram

or sending network packets.

2.1.4.2 Agent Environment

Agents by definition are situated and live in an environment. They could not exist

without an environment. In fact, their definition is closely related to the definition of

their environment. A robot with visual sensors in an environment that does not have

light is a useless creature. This means a system could be or could not be an agent

with respect to the associated environment. An agent could not be defined and designed

without specifying and defining the environment where it lives and possibly coexists with

other agents. Russell and Norvig provide a comprehensive categorization of environment

properties [6] as Fully Observable vs. Partially Observable Environments, Deterministic

vs. Non-Deterministic Environments, Episodic vs. Non-Episodic Environments, Static

vs. Dynamic Environments, Discreet vs. Continuous Environments, and Single Agent

vs. Multi-Agent Environments.

The most complex environments obviously are those that are not observable, non-

deterministic, sequential, dynamic, and continuous. Multi agency contributes to all these

13

complexities.

2.1.4.3 Agent Classification

Agents are designed for different purposes and are used in different applications but all

have four common properties. Table 2.1 lists these four properties plus several others.

Agents could be classified based on these uncommon properties. As an example agents

could be classified as Mobile agents vs. Non-mobile agents, or Learning agents vs. Non-

learning agents and so on.

Table 2.1: Properties of Agents, Adapted from [14]
Property Meaning
1 Reactive or Sensing/Acting Responds in a timely fashion to changes in the en-

vironment
2 Autonomous Exercises control over its own actions
3 Goal Oriented or Pro-Active Does not simply react. It has its own agenda and

planning to get to its goal.
4 Temporally Continuous Is a continuously running process
5 Communicative or Social Communicates with other agents, perhaps people
6 Learning or Adaptive Changes its behaviour based on its previous experi-

ence
7 Mobile Able to transport itself from one location (machine)

to another location (machine)
8 Character Believable Personality and emotional state

There are other possible classifications schemas. As an example classification based on

the environment where agents exist and live. In this case they could be grouped into three

categories of biological, robotic with physical bodies in real environment, and software

agents (aka computational agents) that exist in computer running environments. Agents

could be classified based on the task they perform, for instance, information gathering

or email filtering agents. Another possible classification for (software) agents could be

based on their control mechanism like algorithmic agents, rule based agents, fuzzy logic

14

agents, neural net agents and etc. The most important classification is the classification

of agents based on their internal architecture and design. The following full section has

been dedicated to architecture and design of agents.

2.1.4.4 Agent Design and Architecture

A generally accepted grouping classifies agent architecture into three categories of Re-

active Architecture, Cognitive Architecture, and Hybrid Architecture [15, p14–16]. A

Reactive agent does not have any explicit representation of its environment and other

agents. It simply maps its input to output based on some internal mapping tables, prior-

ity lists, rules, and policies. A Cognitive agent reasons from knowledge that represents its

environment. It keeps track of state, properties, and dynamics of objects in the environ-

ment as well as the other agents who live in that environment. Based on this knowledge

it sets up plans to reach its goals, evaluate these plans and goal(s), and if needed to

change its plans, and even its goal(s). A cognitive agent does not simply react to its

surrounding and that is how it is different from reactive agents. Reactive and cognitive

architectures, even though propose two very different solutions are actually complemen-

tary. Reactive agents are more responsive and faster and respond to their input with less

effort. On the other side cognitive agents think more before acting to make sure their

actions directs them to their goal. This is a more intelligent behaviour but requires a lot

of processing time so cognitive based agents are slower than their reactive counterpart.

There are many situations that just a simple reactive response is sufficient or necessary

to keep the agent on the right track. An agent should balance between its behaviours

to provide a better, more precise, and more efficient response. Agents that are designed

based on this approach are called Hybrid agents. They have two internal modules, one

module implements reactive behaviour and the other one the cognitive behaviour. The

15

challenge is to maintain a good coordination and balance between these two modules.

A more granular architecture classification has been provided by Stuart Russell and Pe-

ter Norvig [16, p46-56]. They categorize the architecture of (software) agents into five

groups of Simple Reflex, Model Based Reflex, Goal Based, Utility, and finally Learning

Agent that aggregates the behaviour of first four into a more complex architecture. A

Simple Reflex Agent is the simplest form of agents that selects its next actions based

on current perception. Its decision is not based on the past perception information. Its

power is its simplicity and its weakness is its limited intelligence. A Model Based Reflex

Agent keeps track of the status of its environment, as well as its perception history to

use them in its current decisions. Events change the environment and they could be

initiated by non-agent factors or entities or by other agents. As an example in the real

world the raining, snowing, or earthquake affects the state of environment. It could also

be affected as a result of actions that are committed by humans, animals, plants and any

live creatures. The actions committed by agent itself could also affect the environments

status. An agent has to keep track of all these events to make a right decision. Agents

who are equipped with the capability to follow a goal are known as Goal Based or Goal

Oriented Agents. Goal based agents are more flexible than the previous models but are

less efficient in terms of performance and response time. Goals by themselves do not

guarantee high quality behaviour in many environments. For instance, an agent, based

on a specific perception and internal state may come up with three best actions that

all of them direct the agent to its goal, or may face a decision between two or more

conflicting behaviours like speed and safety. A utility function that gives a score or nu-

meric value to each selection could help agent to decide. This function could help the

agent to make the best decision in many conflicting situations. Agents that use utility

functions in their decision process are called Utility Based Agents. Simple Reflex, Model

16

Based Reflex, Goal Based, and Utility architectures are not independent designs. In

fact, each one enhances the drawback of the previous one. All of these designs, even the

most sophisticated one, i.e. utility based agents, in their life span, do not evaluate their

own behaviour to improve their performance. Performance here means the efficiency of

methods that agents use to achieve their goal. The goal oriented or utility agents are

examples of intelligent agents who know how to use the inside and outside information

(their knowledge) to pursue their goals. Their decision making engine will decide what

to do next to get them closer to their goal. Utility based agent is smart enough to choose

a better path from all possible happy ending paths. This looks very smart and in many

scenarios it works. What these agents do not have in common is their ability to learn

from their past mistakes or successes. Therefore they cannot evaluate their quality of

actions to find out there could be better ways to do the same action with less amounts

of resources, effort, and time. These agents could not be labelled as learning agents. A

Learning Agent is an agent who is capable to learn based on its experience, performs

better and potentially chooses better goals.

Michael Wooldridge proposes an almost similar categorization for agents architecture

[17, p42–66]. He classifies the agent architecture into four groups of Logic Based, Re-

active, Belief-Desire-Intention, and Layered. Logic Based Agents decide through logical

deduction. Reactive Agents are similar to reactive and reflex agents mentioned before.

Belief-Desire-Intention (BDI) agents are cognitive-based agents who decide based upon

data manipulation of three internal data structures that represent their beliefs, desires,

and intentions. BDI architecture has been built based on a simplified version of intel-

ligence in the human being. In this architecture agents have a view on surrounding

environment that constitutes their belief. Whatever goal that is set for an agent by itself

or its programmer will shape the agent’s desire, and agent’s plan to achieve its goals

17

forms its intentions. Layered Architecture is the same as hybrid architecture defined in

[15] in which the decision is made via various software layers in a layered architecture.

Each layer explicitly reasons about the environment at different levels of abstraction. In

BDI architecture the main issue is choosing the right strategy of decision making between

being a reactive agent or pro-active agent. These two types could actually be combined

in one place. The result will be a layered architecture in which an agent is capable of

reactive and pro-active behaviour under one shelter with having different behaving sub-

systems. The subsystems could be arranged in a hierarchical structure where each layer

is responsible to take care of one of behaviours.

2.1.4.5 Multi–Agent Systems

In many scenarios an environment could have more than one agent. In fact there are very

few applications in which only one agent exists in the environment. Agents are rarely used

standalone and they usually coexist and live in the same environment. Software agents

that exist in the Internet or soccer playing robots are good examples of environments

of more than one agents. The system that consists of more than one agent is called

a Multi Agent System or MAS. Unlike single agent environment, the agents in a MAS

environment need to communicate, coordinate and resolve their conflicts so they could

achieve their goals. All of these new features make the MAS agents much more complex.

2.1.4.6 Applications of Agents and MAS

MAS could be potentially used in many types of applications especially in environments

where the computation is decentralized and distributed. Multi Agent Systems, because of

their distributed based architecture, are ideal platforms to simulate and develop any large

scale distributed systems. Distributed systems and applications include many distributed

18

computing nodes and programs that run in a large group together to execute a unified

task. Each node in a distributed system is responsible for execution of a portion of

this task. Each node does a specific job which is not necessarily the same job as the

other computing nodes. Multi agent system model is a very close model to distributed

architecture. Each node could be simulated or realized by an autonomous intelligent

agent. Each one of these nodes has its own functionality and configuration information.

Network Simulation, Distributed Data Mining, Distributed Information Retrieval, Sensor

Networks, Social Sciences, Artificial Life, Computer Games, and Soccer Robots are very

few examples of MAS applications.

2.2 Related Works

The first related work [18] provides a comprehensive classification of web-service- repli-

cation architectures. According to [18], there are two different approaches of replication

when it comes to web services that are based on the physical locations of hosting ma-

chines. These two approaches are Clustering Replication and Geographical Replication.

Geographical Replication could be divided into two subgroups by itself: Client-Side Repli-

cation and Server-Side Replication. Figure 2.2 shows a schematic of this classification.

Web Service
Replication

Clustering
Replication

Geographical
Replication

Server Side
Replication

Client Side
Replication

Figure 2.2: Web Service Replication Classification as Proposed by [18]

19

In cluster replication the replicas will be deployed in different servers or web clusters

that are physically located in the same location. In this approach, there is a server that

acts as a front end component, known as Web Switch or Dispatcher which is a proxy that

intercepts all incoming requests from clients and dispatches the request to an available

replica. In this systems clients only know the Universal Resource Locator (URL) of

the dispatcher server. Clustering replication approach aims to maximize web servers

throughput, rather than User Response Time (URT). It pays no attention to main

network issues like client latency time over the Internet and network dynamics in runtime.

A more general approach, which tackles both issues, is Geographical Replication.

In geographical replication, the copies of Replica Web Service (RWS) are distributed

among different servers residing in different geographical locations. In reality, in most

implementations, there are geographically distributed clusters of web services where each

cluster is perceived by clients as one web service as explained in clustering replication.

The challenge with this approach is to come up with the right choosing algorithm to

connect the best possible replica(s) to the client.

Depending on the physical location where this choosing process is executed two differ-

ent approaches could be emerged; Server Side Replication versus Client Side Replication.

In the former approach the decision making entity is located close to hosting server. This

entity could be a program or a hardware equipment or combination of both. A major

drawback in this approach is that the client machine does not have any influence on

selection of the replica, and the decision is made by servers, routers, DNS servers, or

any software or hardware component that has been designed to handle this task. This

replica selection mechanism is implemented as a commercial product that is usually very

expensive, which is another drawback for server side replication.

In the client side replication, the decision making entity is either located in the client

20

machine or running on a proxy server close to client machine(s). The decision making

entity should know the URL of all RWS instances and the main challenge here is to find

the best choosing algorithm to pick up the right RWS instance(s). Generally, this method

is implemented via software packages that either will deploy in the clients browser (as

an applet to download) or as a proxy server that will act as a broker between client and

web service replicas. The simulator program will be designed based on the client side

geographical replication to simulate and analyze the choosing algorithms.

The papers [19], [20], [21], [22], [23], and [24] include all works that either have imple-

mented a standalone application to optimize the replica selection process or simulation

applications that analyze and compare the different choosing algorithms. The work pre-

sented in [19] is based on the client side approach mentioned in [18] that analyzes and

compares a number of choosing policies in the real environment. This paper presents an

interesting assessment of five client-side choosing algorithms to access real web service

replicas that are hosted and run by four distant servers around the globe. The assessment

results show that how characteristics of local environment of client machines could im-

pact the performance of some choosing algorithms. The simulator application presented

in [20] defines a modelling framework by creating a broker proxy between clients and web

service replicas. The broker proxies contact with each other and find the best available

replica based on a utility function that could be defined based on different attributes like

geographical locations of a web service provider. The work done in [21] addresses the

issue from a different point of view. The authors show that how a peer to peer network

of service registries could be used to locate the most appropriate replica in the network.

The work done in [22] evaluates replication possibilities at the operating system level

that uses features in the modern operating systems like windows 2003 and IIS servers

to replicate web service codes. Its approach could be categorized as the server side,

21

non-geographically based approach classified in [18].

A very similar work to our research is [23], a simulation platform that models web

service selection. This is the closest work to the simulation framework proposed in this

thesis. It is based on multi agent technology that provides an interesting approach in

simulation of distributed environment that hosts web services. Works presented in [5] and

[4] is about web service communities. These two papers explain the idea of web service

communities and how they could be utilized to improve the availability of web services

not through replication, but through creation of a society of functionally similar web

services, or composition of web services, so that any of them could provide the desired

service to the client(s).

The work presented here extends and enhances the simulation platform presented in

[24] that is not based on MAS and uses utility functions to simulate the interconnecting

networks between proxy and web servers. It combines several features from the mentioned

works. It adopts the client-side service selection model presented in [18], uses a proxy

server to choose the desired replica like [20], and is a MAS–based simulator similar to [23];

however it extends many of these works in different ways. It simulates the underlying

network of the distributed systems including the connecting routers and links. This part

could be extended and used as a standalone package to simulate any computer network

and so its usage is not restricted only to web service related applications. It abstracts

the high level components in a distributed systems as separate agents so it could also

be used as a simulation tool to simulate more generic distributed systems. It could be

configured to have more than one clients and could be deployed in a distributed running

environment. Each agent or group of agents could be deployed in different machines so

it could be easily scaled up to incorporate many more agents.

22

Chapter 3

Modelling

The simulation platform (or the simulator hereafter) consists of many agents, each sim-

ulates a host processing node or a communication link in web service distributed system

and its underlying network. The simulated distributed system is a replicated web ser-

vice application where each replica is hosted and executed by a separate web server. In

real scenario a web service is deployed in a hosting server machine, which is capable of

processing web service requests and delegating the requests to the appropriate web ser-

vice. A web-service-call process constitutes of a request message sent from the client to

host server and a response message coming back from the host server to the client. Web

service client(s) could be geographically very far from the hosting server and so the mes-

sages could pass through many intermediate processing nodes in the network including

intermediate servers and routers.

Simulating the behaviour of a web service requires understanding the conventional

Web Services Architecture [1, p551-552]. This architecture will be reviewed in section 3.1

particularly from web service availability perspective. The simulation model, the scope

of experiment, and how the model fits the conventional model will be explained later in

23

the sections after that.

3.1 Conventional Web Service Model

In conventional web service architecture there are three key components as shown in Fig-

ure 3.1 below. These components are Web Service Consumer, Web Service Provider, and

Web Service Registry or Directory Service also known as Universal Description Discov-

ery and Integration (UDDI) server. A web service should be first published in directory

server by Web Service Provider, the author of web service. To execute web service opera-

tions the consumer needs to find the service, a process known as Web Service Discovery.

Web Service Discovery is realized by searching web service key information in UDDI

server. One piece of information that UDDI server provides is Web Service Description

Language (WSDL) file. This file contains web service binding information like its URL

and signature of its operation(s). Consumer could then initiate a web service call. To do

so the consumer compiles the request in a SOAP message. A SOAP message is usually

sent on top of another protocol to host server. In majority of cases the hosting server is

a Web Server and so the SOAP message is wrapped within a HTTP message.

Provider

ConsumerRegistry

1- Publish

2- Discovery

3- Bind & Execution

Figure 3.1: Web Service Conventional Architecture

24

In the conventional model the consumer could be a human user initiating the request

from a web browser but in majority of scenarios it is a client program running from any

locations in the network. One of key features that contributes to QoS is its Availability.

Availability of a web service could be negatively affected by many factors like hosting

server failure, network traffic, or numerous requests coming from different consumers. A

low availability affects the service response time and hence it QoS. A general and very

common method to address a service availability and its response time is through Service

Replication. Web service replication and selection process could be realized by many

approaches that were briefly explained in first two chapters of this document.

3.2 Revised Web Service Architecture

Figure 3.2 shows a revised web service architecture by introducing a new component

that handles WS discovery, binding and execution on behalf of consumer. This new

component, shown as Proxy Server, communicates with directory server to query web

services and executes the web service calls on behalf of its consumers. Consumers will send

the service requests to Proxy Server instead of sending them directly to the service. Proxy

server is responsible to dispatch the requests to service provider. In case of replication the

proxy server is responsible to choose and forward the request to the right replica based on

some replica selection algorithms. Consumers only know the address of the proxy server

and not the services. When the message comes into proxy server it routes the message to

appropriate hosting server and in this process it substitutes the message source address

(consumer address) with its own address and substitutes the destination address (proxy

address) with the address of hosting server. The message is then sent to the host. The

host only knows the sender address (proxy server address) and it has no knowledge of

25

the consumer address. It is the responsibility of proxy server to make sure the consumer

message gets to the appropriate destination and the response are getting back to the

same consumer. The network between a consumer, a proxy server, and hosting servers

consists of intermediate servers, routers, and communication links. In a complex DS like

the Internet there could be many of these intermediate processing nodes and links, which

are responsible to carry and froward the message from sender host to destination host.

Provider

Proxy ServerRegistry

1- Publish

2- Discovery

3- Bind & Execution

Consumer

4- Bind & Execution via Proxy Server

Figure 3.2: Revised Web Service Model

One clear benefit of proxy server is that it could intercept and control the service

discovery and selection process. It can discover the replicated services (instances of the

same web service) or generic services (services with similar functionality but different

APIs). Proxy server also could cache in the information of replicas and keep track of

their status during web service calls or between calls. A Proxy server could decide which

replicas or generic web services are qualified enough to be considered as eligible services

and which one are not. Proxy server could increase the QoS in many different ways.

26

The solution presented in this thesis only addresses one of the benefits of proxy server:

Replica Selection. Web service publishing, and web service discovery and other potential

benefits of having a proxy server will not be discussed here. Based on this presumption

our model will be used to simulate the web service applications like Figure 3.3

Web
Server 1

WS2

WS3

WS1

Proxy
Server

Client
1

Web
Server

Web
Service

Selector
Proxy Client

R

R

RouterNetwork

R

R

R

R

R

R

RR

WS4

WS5

Client
2

Client
3

Web
Server 2

Web
Server 3

Web
Server 4

Web
Server 5

Figure 3.3: General Distributed System

As it is shown in Figure 3.3, the distributed network consists of a series of replicated

web services, each hosted by a separate web server plus a series of client nodes and a

server that hosts the proxy server. All these nodes are connected to the Internet shown

27

as a cloudy network. The simulation platform has been designed based on Client Side

Geographical Selection and so it is assumed that the physical location of proxy server is

within the vicinity of client nodes.

3.3 Development of the Model Using MAS

The proposed model has been implemented using one of mostly used MAS development

tools called Java Agent Development Environment (JADE) [25, 26]. JADE is an agent

based development and runtime environment based on Java programming language.

Any distributed system executes on top of a computer network [1, p116-125]. To

simulate a distributed system the underlying network should also be simulated. In this

experiment agents simulate both key network components as well as more complex com-

ponents running on top of the OSI reference model or Internet protocol stack [2, p48-56]

like web servers, proxy servers, and web service applications. A web service application

consists of major components like web servers, web services, client applications, process-

ing nodes, and communication links that reside between client and server. In reality the

network between client hosts and server hosts consists of routers, switches, bridges, and

communication links [2, p11-12]. All processing nodes between source and destination

hosts only process the messages (or packets) up to level three of network. The inter-

mediate processing nodes are only responsible to process messages up to the level that

guarantees the delivery the message or packets to their final destination host node [2,

p315-316].

A computer network could be abstracted by a graph in which each node is a pro-

cessing unit and each edge is a communication link. A processing unit could be a host

machine as the original source or final destination of the message, or could be an inter-

28

mediate machine that routes the message to its final destination. Communication links

are data pipelines that pass along the message from one node to another. Examples for

processing nodes could be desktop computers, network printers, routers, bridges, and

server machines like web servers in the Internet. Examples for communication links are

Ethernet network cards and cables [2, p53] . In the simulation program these components

could be categorized in three main groups shown in Table 3.1.

Table 3.1: Components Categorization in the Simulation Model
Name Description
Host Original sender or final receiver of messages. A host node connects to the

network through a link. In this experiment a message contains the web
service request or web service response payloads. Clients, proxy server, and
web servers are considered as host node

Router Intermediate processing nodes that are responsible to route the messages to
their final destination. Router nodes connect to the network by at least two
links. In this experiment the router Nodes simulate a portion of function-
alities defined in layers three of OSI reference model or Internet stack [2,
p51]

Link Simulates the communication lines and their behaviour which is part of the
responsibilities of layer one and two of OSI reference model or Internet stack
[2, p51] . A link connects two nodes to each other. The nodes could be host
or router nodes.

Each main component in a real web service application is modelled and simulated by

an agent and based on above categorization. There are agents that simulate client, proxy

server, web server, router, and link agents. There are also a couple of administrative

agents in this model that are responsible to administrate and configure the platform. In

this model the agents could be categorized as Administrative Agents or Runtime Agents.

Administrative agents are the agents that communicate with system administrator (a

person) who operates the system and runs the test scenarios. Administrative agents do

not participate in any simulation process and only accepts messages from the administra-

29

tor. Runtime agents are the agents that simulate the behaviour and functionality of a real

component in the network. Runtime agents do the real simulation task and only com-

municate with each other. Administrator also could directly communicate with runtime

agent but only to read their internal status for debugging purposes. This categorization

and type of each participating agent has been recapped in the Table 3.2.

Table 3.2: Components in Simulator Application

Agent
Name

Role Description

Initializer Administrative Initializes and creates the runtime environment including all
agents

Tester Administrative Accepts testing commands from administrator and conduct
the test scenarios

Client Runtime A host node that simulates the behavior of a Client
Proxy Runtime A host node that handles the replica selection process
Web
Server

Runtime A host node that simulates the behavior of a web server that
hosts a web service

Router Runtime A router node that simulates the behavior of routers and
intermediate processing nodes

Link Runtime Simulates the behavior of a communication line. A Link
Agent is connected to either a router node or a host node

Figure 3.4 shows a sample of a modelled distributed system that can be simulated by

the simulator. Any link and node in this figure is an agent. In this example there are 24

node based agents, out of which five nodes are Web Server agents, 17 are Router agents,

one is Proxy agent, and two are Client agents. The remaining agents are Link agents. In

total there are 64 runtime agents in this network. Initializer and Tester agents are not

shown in this picture. The configuration and topology of network will be defined in a

property file that is uploaded during system startup and is used by Initializer agent to

initialize and create the whole runtime environment.

30

R
1

R
2

R
3

R
4

R
5

WS
1

R
6

R
7

R
8

R
9

R
10

R
11

R
12

R
13

R
14

R
15

R
16

R
17

R
18

R
22

R
21

R
20

R
19

R
23

R
24

R
25

WS
2

WS
3

WS
4

WS
5

P1

C1

1

2 3 4

1

2 5

5

2 3

1

4 5 1

2

3

3

1

4

1 2

5

3 45

4 1

3

2

45

1

1

1

1

1

1

1

1

C2

1

Figure 3.4: Sample Simulator Network Topology: P =Proxy Agent, C=Client Agent,

R=Router Agent, and WS=Web Server Agent

Each agents has its own internal static and dynamic attributes that will be used

by the agent during runtime.These attributes will be initialized by Initializer agent in

startup and later on will be used and manipulated by that agent. Figure 3.5 shows the

UML class diagram of all agents and their associated classes.

31

UIO

agentName
agentType:AgentType

<<enumeration>>
AgentType

CLIENT
SERVER
PROXY
ROUTER
LINK

AgentDO

agentUIO
delay

ClientDO

connectedLinkDO
proxyUIO

RouterDO

links
routingTable

LinkDO
node1
node2
latency
baudRate
cost

WebServiceDO

WebServerDO
connectedLinkDO
url
webServices

ProxyDO

choosingAlgorithmName
kValue
numberOfServices
lastReplicaSelected
isTickerBehaviorEnabled
tickerPeriod
serversStatusMap

NodeUIO

ipAddress:IPAddress

BaseAgent

agentDO:AgentDO

ClientAgent

ProxyAgent

WebServerAgent

RouterAgent

LinkAgent

ClientBehaviour

ProxyBehaviour

WebServerBehaviour

ClientBehaviour

ClientBehaviour

SimulatorCyclicBehaviour

reqMsg:ACLMessage
respMsg:ACLMessage
content:String

Figure 3.5: Simulator Main Class Diagram

3.4 Static and Dynamic Attributes

A real distributed system consists of many processing nodes and communication links.

Each processing node could be made up of a number of software and hardware compo-

nents. The status of each processing node or communication link could be represented

by a series of attributes that could be categorized into two groups: Static Attributes and

Dynamic attributes. The value of static attributes does not change by time but the value

of dynamic attributes does.

32

The status of a web server, for instance, could be represented by many static and

dynamic attributes. IP Address, URL, CPU clock speed, number of CPUs, and machine

memory size are all examples of web server static attributes. Number of incoming mes-

sages, and CPU temperature are examples of web server dynamic attributes. A twisted

pair cable, as another example, could be represented by latency and baud rate attributes

that do not change by time. Each agent in this simulation platform has been modelled

like its real counterpart and has a series of static and dynamic attributes. For instance

each Web Server Agent has its own IPAddress, and URL, or each Link agent has its own

latency, and baud rate values.

3.5 Modelling of Processing Time

In the simulation process, the real time could not be used for calculation of response times

because the real processing time tightly depends on the running environment where the

simulator program is being executed. A computer with higher CPU speed executes the

simulation program faster than a computer with lower CPU speed, therefore time has to

be simulated.

Processing time of each entity is a function of its relevant static and dynamic at-

tributes. Relevant attributes are attributes that could affect the response time of an

entity and could be static or dynamic attributes. For instance the CPU speed of web

server machine (a relevant static attribute), or number of waiting messages in web server

incoming queue (a relevant dynamic attribute) could affect its overall response time; how-

ever a web service IP Address (an irrelevant static attribute) does not affect its response

time.

To simplify the time simulation, the timing behavior of an entity can be represented

33

by two special purpose attributes. One as a static attribute and one as a dynamic one.

The static attribute is configurable and initialized in system startup and its value is not

changed by time. The dynamic attribute is calculated during runtime by each agent or

class. Total value of delay or processing time of an entity will be the addition of these

two values, therefore the processing time of any entity could be simplified and presented

by the following formula:

TP = SP + DP (3.1)

in which TP is total processing time, SP is static processing time and DP is dynamic

processing time. The effect of dynamic processing time could be turned on or turned off

before each test. The unit of time is conventional and for simplicity is shown as ms in

the the reports.

3.6 Initializer Agent

Initializer Agent (IA) is responsible to create and initialize the whole running environ-

ment including Links, Routers, Web Server, Proxy, Client, and Tester agents. IA is an

administrative agent and is not involved in the simulation process. It is the first and only

agent that is started in the platform and accepts only one command from operator (ad-

ministrator) to initialize the simulation platform. Initializer agent reads all the startup

and configuration information from a property file including agents specific attributes,

network topology, routing table information, and the type of choosing algorithm (See

appendix B to see these configuration properties). Figure 3.6 shows the detailed UML

sequence diagram of Initializer agent as soon as it receives the start command from the

34

operator. During initialization phase the Initializer Agent delegates the creation of each

agent type to a separate handler class. For instance, the web server agents and their

associated web services will be created and initialized by Server Agents Handler.

Operator Initializer
Agent

Network
Agents Handler

Server Agents
Handler

Proxy Agents
Handler

Client Agents
Handler

Tester Agent
Handler

1- Start

2- Create Links & Router Agents

3- Create Web Server Agents
& Web Services

4- Create Proxy Agent

5- Create Client Agents

6- Create Tester Agent

Figure 3.6: Initialization phase started by operator and executed by Initializer Agent

3.7 Tester Agent

Tester Agent (TA) is an administrative agent responsible to execute the test case sce-

narios. Administrator sends testing command to tester agent and tester agent sends

appropriate commands to Client Agent(s) on behalf of administrator to initiate web ser-

vice calls. Tester Agent accepts two parameters to initiate test case scenarios: number

of clients and number of requests. The first one determines the number of client agents

35

that should participate in the test and the latter one determined number of web service

calls that must be sent out by each client agent.

3.8 Client Agent

Client Agent (CA) simulates the behaviour of a web service client. In reality a web

service is identified by its associated WSDL which is referenced in a form of URL. A

real web service request is wrapped in a SOAP message and is sent over to server. The

SOAP message is usually wrapped within another transporting message like HTTP. These

protocols have not been modelled in the experiment. CA uses a proprietary message

protocol to send out web service calls that includs the requested operation name, and its

parameter(s). This protocol will be explained in section 3.14.

Clients in this model do not know the web server address. Delegating the request

to the right web server, or better to say the right Web Server Agent (WSA), is the

responsibility of PA. CA only knows the address of PA and so sends the request messages

to PA. CA is a host node and therefore is connected through a Link Agent (LA) to the

next processing node that is a Router Agent (RA). A Client Agent keeps track of the

following attributes shown in Table 3.3.

Table 3.3: Client Agent Attributes

Attribute Name Description
Agent Name Agent Unique Name Starts with ’C’ and a number like ’C1’
Agent Type An enumeration that specifies the agent type. CLIENT for this agent
IP Address Client agent is a node agent so it should have an IP Address
Connected Link Binding information to connected Link (Link Agent)
Proxy Agent Binding information of receiver host (Proxy Agent)

36

3.9 Web Server Agent

Web Server Agent (WSA) simulates the behavior of a web server. It hosts and deploys

a web service. In real scenario a web service is deployed in a server (usually web server)

with a Web Service Engine that can parse and handle a SOAP message. A web service

implementation is nothing but a simple program with one or more public operations. The

signature of the operation is defined in WSDL file. A simple and straightforward model

of a web service could be a class that implements the web service public operations.

When a hosting server (like a web server) receives a web service request it extracts the

SOAP payload and passes it to the SOAP engine. The SOAP engine parses the payload

to extract the operation name as well as the argument values and call the appropriate

operation of the object or program that implements the web service. WSA does the

same process. WSA could deploy one or more web services in the model but in this

experiment only one web service is deployed per each web server. WSA is a host node

that is connected to a Link Agent (LA). It keeps track the attributes shown in Table 3.5.

3.10 Web Service

A Web Service (WS) is not an agent in this model and is a simple Java class. The detailed

class model of web service and its relation to its hosting web server agent is shown in the

UML class diagram depicted in Figure 3.6. LengthConverterWS is the name of a sample

web service that has been designed and implemented to conduct the experiments. This

web service has two operations that handle simple length conversions.

37

Table 3.4: Web Server Agent Attributes

Attribute
Name

Description

Agent Name Agent Unique Name Starts with ’W’ and a number like ’W3’
Agent Type An enumeration that specifies the agent type. SERVER for this

agent
IP Address WSA is a node agent so it should have an IP Address
URL Web Server URL, a value given at startup
Connected Link Binding information to connected Link (LA)
Session Status
List

A simulation specific internal object that keeps track of start and
end time of each processed request to calculate server response time

Deployed
Web Services

A internal map that has the information of all deployed web services.
This map is used during request execution to find the information
needed to call a web service

Request
Message Counter

A simulation specific object that calculates the number of processed
requests for reporting purposes

Web Server Agent

connectedLink
url
sessionStatus

WebServerDO

WebService
name: String
url: String
processingDelay: Long

WebServiceDO

name
arguments: List

WebServiceOperations
*

1

double convertKmToMile(double kmValue)
double convertMileToKm(double mileValue)

LengthConverterWS

1

*

Figure 3.7: Class relationship between Web Server Agent and Web Service

38

3.11 Proxy Agent

Proxy Agent (PA) is the most complex agent of the simulation platform. It core business

logic could be reused in real scenarios without any modification. PA is responsible to

receive web service requests from client agents and forward them to the appropriate

replica based on the choosing algorithm method selected in startup. A proxy agent has

to collect and keep track of many dynamic and static information during system runtime

by which it will be able to find the best replica. PA functionality could be extended to

transform the operation requests to a new form so both replicas and generic services could

be used in the distributed environment. This capability is not currently implemented in

proxy agent and would be an extension to this work in future. Proxy Agent is a host

node and therefore is connected only to a link agent. It keeps track of the attributes

shown in Table 3.5.

Table 3.5: Proxy Agent Attributes

Attribute Name Description
Agent Name Agent Unique Name Starts with ’P’ and a number like ’P1’
Agent Type An enumeration that specifies the agent type. PROXY for this

agent
IP Address Proxy Agent is a node agent so it should have an IP Address
Connected Link Binding information to connected Link (Link Agent)
Choosing Algorithm Choosing Algorithms that should be used to select the replica
K Value Size of history window of past requests
Number of Servers Number of servers (replicas) that this proxy knows about
Last Selected Replica The status information of the replica selected in previous request
Server Status List An object that keeps track the status of previous requests for

each server

39

3.12 Router Agent

Router Agent (RA) simulates the behaviour of a router. It is connected to at least two

link agents: incoming link agent and outgoing link agent. RA receives a message from

incoming link agent and after calculating the destination node it delivers the message

to outgoing link agent. RA does the routing logic by consulting a routing table that is

initialized and configured for each router in system startup. Each RA keeps track of the

attributes shown in Table 3.6.

Table 3.6: Router Agent Attributes

Attribute
Name

Description

Agent Name Agent Unique Name Starts with ’R’ and a number like ’R4’
Agent Type An enumeration that specifies the agent type. ROUTER for this agent
IP Address Proxy Agent is a node agent so it should have an IP Address
Connected
Links

List of Link Agents Connected to This Router

Routing Table An object containing the routing information for all possible destina-
tion hosts

3.13 Link Agent

A Link Agent (LA) represents and behaves like a communicatio link. It actually simulates

layer one and two of the network in OSI reference model [2, p53]. Each LA connects two

nodes in a network. Each node could be a host or a router node. A node based agent

could be a Client, Proxy, a Web Server, or a Router Agent. A Link Agent must know

the address of its source and destination agents. A source agent is the agent that passes

40

the message to the link agent and the destination agent is the agent that the message

is delivered to. LA is not a node based agent and so does not have an IP Address. It

encapsulates the attributes shown in Table 3.7.

Table 3.7: Link Agent Attributes

Attribute Name Description
Agent Name Agent Unique Name Starts with ’L’, and names of agents that this

link agent connects them to each other separated by ’ ’ like ’L R5 R9’
Agent Type An enumeration that specifies the agent type. PROXY for this agent
Connected Node 1 Connection information of one of ending nodes
Connected Node 2 Connection information of the other ending node
Latency Latency value of the connection link that is initialized during startup
Baud Rate Baud rate throughput of connection link that is initialized during

startup
Cost Cost value of this connection link that is calculated based on Latency

and Baud Rate and is used by routers to calculate the next route

3.14 Message Protocol Format

In the simulation model, the client, proxy, and web server agents simulate the behavior

of components that run on top of all seven layers in OSI reference model. Router Agent

simulates the behavior of layer 3 of OSI reference model [2, p51-52], and Link Agent

simulates the behavior of layer one (physical layer) and layer two (link layer) of OSI

reference model [2, p53]. An agent, in order to talk to other agents, should send a

message to their input queue. Transferring of message from a source agent to destination

agent(s) is handled by JADE framework. Each message must comply with a well defined

communication protocol otherwise the receiver agent could not process and handle the

message. JADE platform supports Agent Communication Language (ACL) standard

41

which means the agents running in this environment communicate based on ACL protocol

[26, p13-14, p65-66]. The data content of an ACL message is different per application.

It is the responsibility of the application designers to define their own communication

protocol and make sure that all agents comply with that protocol. The message should be

wrapped inside an ACL message when agents communicate with each other. This MAS–

based simulation platform is no exception and has its own communication protocol. The

format of this protocol and the details of each data segment are illustrated and explained

in Figure 3.8 and Table 3.8.

In Each web service call the client agent fabricates a web service request message and

wraps it in an ACL message and then sends it to the next destination agent, which is

a link agent. Link agent’s job is to deliver the message to next processing node. Link

agent first calculates and updates the processing time segment (segment number 7 shown

as PT in Figure 3.8) based on the value of its baud rate and latency attributes and then

forward the message to its receiving processing node (a router agent). Router agent is

responsible to first calculate the processing time field and then deliver the message to

the next agent. Router agent will extract the the receiving host node address from the

message to calculate the address of the next agent (a link agent). Router agent updates

the destination processing node address segment in the payload and forward it to the

right link agent. This process continues until the message gets to the proxy agent. Proxy

agent is responsible the update receiving host address and selects the replica web service

that should receive the message. It will then update the destination host node address

fields and redirect the message to the right link agent. This sequence of actions continues

until the message is delivered to it finals destination web server agent. Figure 3.9 shows

a sample web service request message that is sent from Client Agent 1 to Web Server

Agent 1. In this figure where LM and HM indicate link and host messages receptively,

42

the request message has to travel through eight link agents (L–C1–R11, L–R11–P1, L-

P1–R11, L–R11-R7, L–R7–R8, L–R8–R4, L–R4–R5, and L–R5–WS1), and seven node

based agents (R11, P1, R11, R7, R8, R4, and R5) before it gets to its final destination

(WS1). This sample scenario is based on the network that was configured and tested in

this experiment (see Figure 3.4).

IPAddress : 20 Agent Name : 20 Agent Type : 1
NodeUIO : Node Unique Identification Object

3
PN: Port Number

10
CMD: Command

20
SID: Session ID

20
PT: Process. Time

100
DT: Data

NodeUIO NodeUIO
Source Host Address Dest. Host Address

Web Server Message

HM : Host Message

NodeUIO NodeUIO
Source Node Address Dest. Node Address

Host Message

LM : Link Message

WSM: Web Server Message

Web Service Message

WSReq: Web Service Message (Request Format)
Web Service Name, Web Service Operation Name [,arg1:string, arge2:string, . . .]

WSRes: Web Service Message (Response Format)
Response Result : string

Data

1

2

3 4

5 6

7 8

9

10

11

PN CMD
Web Server Use

SID PT
Simulation Internal Use

Figure 3.8: Simulator Message Protocol

43

Table 3.8: Details of segments that are created and consumed by agents

Seg.
Name

Creator
Agent

Consumer
Agent

Description

1 WSReq CA WSA Contains a Web Service Request
2 WSRes WSA CA Contains response result of a web service call
3 NodeUIO CA

PA
WSA
RA

CA
PA
WSA
RA

Contains IP Address, agent name, and agent
type of the source or destination node agent

4 PN CA WSA Port number of destination web server
5 CMD CA WSA A web server used this filed to execute the right

command
6 SID CA CA

PA
WSA

Session ID that uniquely identifies a transac-
tion and used to correlate and keep track of
each web service call

7 PT CA CA
PA
WSA
RA
LA

Simulation internal use to calculate and record
the simulated processing time of each agent

8 DT CA
WSA

CA
WSA

Data section that contains either a web service
request or response

9 WSM CA
WSA

CA
WSA

Generated and consumed by main source and
destination host nodes (client and web servers)

10 HM LA CA
PA
RA
WSA

Acceptable message by all Node–Based–Agents

11 LM CA
PA
RA
WSA

LA Acceptable message Link Agent

44

C1 L-C1-R11 R11 L-R11-P1 P1 L-R11-P1

R11 L-R11-R7 R7 L-R7-R8 R8 L-R8-R4

R4 L-R4-R11 R5 L-R5-WS1 WS1

LM HM LM LM

LM

HM

HM LM HM

HM

HM

LM

LM LMHM HM

Figure 3.9: A sample web service request message travelling from client agent to web

server agent

45

Chapter 4

Results and Evaluation

In this chapter the results of the experiment will be presented. A single computer system

with dual core IntelR processor and 4GB of RAM has been used to execute the test sce-

narios. The full specification of the equipment and runtime environment could be found

in Appendix C. The first part of this chapter (sections 4.1 and 4.2) explains about the

setup and configuration of runtime and testing environment. The second part (sections

4.3 to 4.8) evaluates the simulator behavior and analyzes the results.

4.1 Configuration and Initialization Phase

The simulator platform as explained in chapter 3, is a MAS–based application. The

network topology, number of client, web server, proxy, router, and link agents is de-

fined in a configuration file. Agent’s specific attributes like IP Addresses, URLs, routing

information, and link latency, baud rate, and cost values are also determined in config-

uration file. The full list of configuration properties could be seen in Appendix B. The

configuration file is read by a special purpose agent called Initializer Agent (IA). IA is

46

responsible to create the whole running environment before the experiment begins. This

includes creation and initialization of all agents and related classes. IA is the first and

the only agent that is created at startup. It will then wait to get the start command

from the operator (the person who conducts the test) and after doing its job it will no

longer be used during the experiment. The initialization phase is done step by step in a

predetermined order as shown in UML sequence diagram shown in Figure 3.6.

Figure 3.4 shows the examined distributed web service system and the underlying

network topology. This system consists of two client agents (C1 and C2), one proxy

agent (P1), five web server agents (WS1 to WS5), five web service instances (not shown

in the figure but each is deployed and run within a dedicated web server agent), 25 router

agents (R1 to R25), and 39 link agents (shown as connected lines with their cost values).

Out of 25 router agents, only 17 of them are connected and actually participate in the

experiment. There is no limit for number of client, web server, router, and link agents.

Topology of the network could be any complex rectangular graph. The experimenter only

determines the number of rows and columns in the graph and the interconnecting links

as well as number of clients, and web servers. The rest will be created and initialized by

IA. The only limit is the number of proxy agents that could be only one. The number

beside each link is its cost value (see [2, p374-375]) that is defined for each link as a

separate property in configuration file. These values are used by IA to create the routing

tables for each router agent. For instance the routing table for router agent number 11

will be generated like Table 4.1. This routing table is used by Router Agent 11 during

run time to pass the incoming messages to the right destination.

In majority of test cases and for simplicity of comparison the web servers have been

configured in such a way that web service number one (aka WS1) has the fastest response

time and web service number five (aka WS5) has the slowest response time. In test cases

47

Table 4.1: Routing Table of Router Agent Number 11
Receiver Host
IP Address

Receiver Host
Agent Name

Destination
Link Agent Name

130.100.1.1 WS1 L R11 R7
130.100.1.2 WS2 L R11 R7
130.100.1.3 WS3 L R11 R7
130.100.1.4 WS4 L R11 R12
130.100.1.5 WS5 L R11 R13
100.10.1.1 C1 L R11 C1
100.10.1.2 C1 L R11 C2
110.10.1.1 P1 L R11 P1

Table 4.2: Route Paths and Costs from Proxy Agent to all Web Server Agents
Web Server Route Path Route Total Cost

WS1 R11-R7-R8-R4-R5 8
WS2 R11-R7-R8-R4-R10 10
WS3 R11-R7-R8-R14-R15 12
WS4 R11-R12-R18-R19-R20 8
WS5 R11-R12-R18-R24-R25 9

that require a different order the new values will be explicitly mentioned in the context.

The network topology is completely configurable as a matrix of m by n in which m and

n are read from configuration file and initialized in startup. The configured network and

link costs for this experiment has 5 rows and 5 columns as shown in Figure 3.4. The

routing of messages is static and so each web service call will follow a static route to the

destination. Based on configured-routing-tables the paths from the proxy agent to each

web server and their associated cost value are shown in Table 4.2.

As its seen in Table 4.2, web servers 1 and 4 have the shortest path (lowest cost) to

proxy agent and web server 2 has the longest path (biggest cost) to proxy agent. The

cost directly affect the delay time in run time. The time that it takes for a message to

48

Table 4.3: Choosing Algorithm Tested in the Experiment

Algorithm
Name

Description

1 Random Chooses the replicas randomly
2 Best Last Chooses the replica that had the best last response time
3 Best Median Chooses the replica that has the best median response time in last

k responses. k is a positive number that is set in configuration
4 Parallel Sends the requests to services in parallel. The winner is the replica

that responds first

get from proxy agent to one of these web servers depend on route cost, link delays, router

delays, and message length. The message length as explained in Chapter 3 is constant.

4.2 Testing Phase

This experiment analyzes several Replica Choosing Algorithms. A brief explanation of

utilized algorithms by the simulator is shown in Table 4.3.

Each choosing algorithm is tested separately started from Random selection algo-

rithm. For each algorithm three sets of tests are executed where each set sends five

hundred web service requests from clients to proxy agent. Proxy agent decides to which

replica the request should be forwarded. The result of each test is recorded by the pro-

gram and will be put in tables for further analysis and comparisons. Table A.1 lists the

collected attributes in each test case. The test is conducted by Tester Agent which gets

its testing commands from the operator. Figure 4.1 shows the high level UML sequence

diagram of test process. Table A.1 lists all the test case scenarios that have been executed

in the experiment. In total twenty–one test cases were executed to evaluate and validate

the behavior of the simulator. The remainder of this chapter presents and analyzes the

49

Tester Agent Client Agents Proxy Agent

Ask Each Client to
Start 500 WS Call

Initiate WS Call
500 times

Oprator

Ask Tester Agent
to initiate 500
requests from each
client

1

2

3

4

When 3 is done then
ask Tester to
generate the reports

Figure 4.1: Test Sequence Diagram

result of these test scenarios.

4.3 Random Selection

In Random selection each replica is chosen randomly by Proxy Agent. Figure 4.2 and

Tables A.3 show the results where the Dynamic Processing Behavior (DPB) is off for web

servers. Figure 4.3 and Table A.3 show the result where the feature is on. The numbers

shown on top of each bar indicates the number of times that each replica was selected

by the proxy agent. PA uses a random number generator function to choose each replica

and so the distribution of selections should be almost uniform in this algorithm. Each

replica is expected to be called equal number of times per each test run. The result of

random selection will be used as a reference to compare and analyze the performance of

other selection algorithms.

50

102	
 100	

93	
 96	

109	

80	

99	
 96	

121	

104	

111	

102	
 101	

86	

100	

0	

20	

40	

60	

80	

100	

120	

140	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 	

ca
lls
	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.2: Random Replica Selection with Dynamic Processing Behavior Turned Off

108	
 109	

91	

98	

94	
 93	
 95	

103	

98	

111	

84	

102	

112	

101	
 101	

0	

20	

40	

60	

80	

100	

120	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 	

ca
lls
	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.3: Random Replica Selection with Dynamic Processing Behavior Turned On

4.4 Best Last Selection

In Best Last Selection algorithm the proxy agent chooses a replica that has the best last

response time in the previous request. Proxy agent does not have the response time

51

of replicas at the beginning and needs to collect them in initial requests. In first few

requests (in this experiment 5 because the number of replicas is 5) it selects the replicas

one by one to collect the response times. Comparing to random selection this algorithm

leans towards the web service that provides the best response time. The value of the

response time that is perceived by proxy agent is an aggregation of the response time

of the replica, plus the response time of hosting web server, and the network delay time

that includes the link and router delay values. From client’s point of view the final result

should provide an overally better response time. Several different test cases have been

executed for this algorithm. In the first one the dynamic processing behaviour of web

server agents has been turned off that means the processing time of each web server is

constant as configured in startup and never changes by time. Figure 4.4 and Table A.5

clearly show that almost every request has been routed to web server 1 that hosts WS1

replica. As expected the client’s overall response time have been improved which looks

better than random selection as seen in Table A.5. Figure 4.5 and Table A.6 show the

result of best last choosing algorithm where DPB is turned on.

496	

1	
 1	
 1	
 1	

496	

1	
 1	
 1	
 1	

496	

1	
 1	
 1	
 1	

0	

100	

200	

300	

400	

500	

600	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 	

ca
lls
	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.4: Best Last Replica Selection with Dynamic Processing Behavior Turned Off

52

285	

85	

2	

64	
 64	

282	

88	

2	

64	
 64	

273	

97	

2	

64	
 64	

0	

50	

100	

150	

200	

250	

300	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 	

ca
lls
	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.5: Best Last Replica Selection With Dynamic Processing Behavior Turned On

4.5 Best Median Selection

In Best Median Selection the proxy agent first calls each replica one by one at least k

times to collect enough history data to calculate the mean values and then it selects the

replica that provides the best last mean value. k can be set a value between 1 and total

number of tests per each text case (500 in this experiment). Figure 4.6 shows the result

for value of k of 1, 5, and 9 where the dynamic processing behavior is turned off. Figure

4.7 shows the result where the dynamic processing behavior is on for value of k equal to

1, 3, 5, 7, and 9. For values of k = 1 as it is seen the behavior is very similar to best

last algorithm. Figure 4.8 shows the result where processing speed of web servers are

different.

53

K	
 =	
 1	

K	
 =	
 5	

K	
 =	
 9	

0	

100	

200	

300	

400	

500	

WS1:10	

WS2:12	

WS3:14	

WS4:16	

WS5:18	

496	

1	

1	

1	

1	

480	

5	

5	

5	

5	

464	

9	

9	

9	

9	

N
um

be
r	
 o

f	
 C
al
ls
	

K	
 =	
 1	

K	
 =	
 5	

K	
 =	
 9	

Figure 4.6: Best Median Replica Selection With Dynamic Processing Behavior Turned

off for values of k equal to 1, 5, and 9

281	

239	

212	

229	

220	

89	

106	

122	
 116	
 123	

2	
 6	
 9	
 7	
 9	

64	

76	
 72	
 72	
 73	

64	

73	

85	

76	
 75	

0	

50	

100	

150	

200	

250	

300	

N
um

be
r	
 o

f	
 C
al
ls
	

	
 	
 	
 	
 k=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k=3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k=5	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k=7	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k=9	

WS1:10	

WS2:12	

WS3:14	

WS4:16	

WS5:18	

Figure 4.7: Best Median Replica Selection With Dynamic Processing Behavior Turned

ON for values of k equal to 1, 3, 5, 7, and 9

54

475	
 467	
 460	
 458	
 455	

22	
 24	
 25	
 21	
 18	

1	
 3	
 5	
 7	
 9	
 1	
 3	
 5	
 7	
 9	
 1	
 3	
 5	
 7	
 9	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

N
um

be
r	
 o

f	
 C
al
ls
	

	
 	
 	
 	
 k=1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k=3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k=5	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k=7	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 k=9	

WS1:10	

WS2:20	

WS3:30	

WS4:40	

WS5:50	

Figure 4.8: Best Median Replica Selection With Dynamic Processing Behavior Turned

ON for values of k equal to 1, 3, 5, 7, and 9 and different static processing time

As k increases the distribution of service calls become more even because proxy agent

has to collect more statistical information from each replica. Best median response

algorithm does provide any advantage to best last algorithm in terms of client Average

Response Time (ART). This could be observed by comparing client ART values in Table

A.6 and Table A.10. Best median is actually a little bit slower to clients because proxy

agent has to do more calculations to choose the right replica. On the other hand best last

median is less sensitive than best last to abrupt changes in response times due to events

happen in web servers or the residing network between the server and the client. This

makes this algorithm more biased toward the already selected replica unless there is a

big change in response time of that replica to persuade proxy agent to switch to another

replica. This feature will be shortly analyzed in section 4.7.

55

4.6 Parallel Selection

In Parallel Selection Algorithm the proxy agent sends the client’s requests to all web

servers at the same time. The first response that comes back to proxy agent will be

the winner and that response will be forwarded back to the client agent. Proxy agent

collects and saves the statistics and responses of all replicas even though only one of them

is the winner. Figure 4.9 and Table A.11 show the results for parallel selection algorithm

where the dynamic processing behavior is off. Figure 4.10 and Table A.12 show parallel

selection where the dynamic processing behavior is on. Figure 4.11 shows the result for

parallel selection with dynamic processing behaviour turned on similar to Figure 4.10

but with different web servers speeds.

475	

11	
 1	
 13	
 0	

484	

10	
 0	
 6	
 0	

473	

8	
 0	
 15	
 4	

0	

100	

200	

300	

400	

500	

600	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 W
in
s	

Test	
 3	

Test	
 2	

Test	
 1	

Figure 4.9: Parallel Replica Selection With Dynamic Processing Behavior Turned Off

56

482	

5	
 0	
 11	
 2	

483	

9	
 1	
 7	
 0	

473	

8	
 0	
 17	
 2	

0	

100	

200	

300	

400	

500	

600	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 W
in
s	

Test	
 3	

Test	
 2	

Test	
 1	

Figure 4.10: Parallel Replica Selection With Dynamic Processing Behavior Turned ON

496	

4	
 0	
 0	
 0	

498	

2	
 0	
 0	
 0	

496	

4	
 0	
 0	
 0	

0	

100	

200	

300	

400	

500	

600	

WS1:10	
 WS2:20	
 WS3:30	
 WS4:40	
 WS5:50	

N
um

be
r	
 o

f	
 W
in
s	

Test	
 3	

Test	
 2	

Test	
 1	

Figure 4.11: Parallel Replica Selection With Dynamic Processing Behavior Turned ON

for different web server speeds

In parallel selection all the web servers receive web service requests from proxy agent.

This makes this algorithm more fair than previous algorithms in terms of replica selection

but the number of requests that are sent to servers put lot of traffic on network and web

57

servers that could affect the overall response time as clearly shown in Table A.12 that

shows considerably more client ART value comparing to best last, best median, and even

random selection algorithms. The great advantage of parallel algorithm is on service

availably. If for any reason the web servers become unavailable due to server failure or

network issues, the parallel selection algorithm is the most reliable choice. It is more

unlikely that all servers go down at the same time and so at least one of the servers could

respond to client.

4.7 Simulator Evaluation

As indicted before the purpose of this experiment is not the evaluation of choosing al-

gorithms, a work that has been done in many other experiments including [19, 18]. The

intention of this experiment is to evaluate the simulator application behavior. Thanks to

agent systems, the simulator program is highly flexible and and could provide test case

scenarios that are extremely hard or impossible to achieve in real scenarios. For each

test scenario that follows the behavior of the simulator is analyzed and verified.

We start from Last Best Algorithm. It is known and also logically easy to conclude

that this algorithm does not provide a fair distribution when it comes to replica selection

[19, 18]. This means a great majority of requests will be forwarded toward the replica

that provides the fastest recent response to proxy server. On the other hand Last Best

is a biased algorithm, a characteristic that has been shown in Figure 4.4. In reality, the

distribution of calls is not very biased to only one web server as shown in Figure 4.5 where

the dynamic processing behaviour is turned on for all web server agents. This means each

web service response time dynamically changes based on the number of incoming requests.

The more requests that flows toward a web server the more time it needs to process it.

58

Other requests have to wait to take turn and that is what happens in reality. If a web

server receives a great number of requests per unit of time its response time will increase.

This behaviour has been simulated in each web server agent. The result shown in Figure

4.5 and Table A.6 show a better distribution in terms of replica selections comparing to

Figure 4.4 and Table A.5, which does not necessarily mean a better overall response time

from client’s perspective. Being biased toward a specific replica may not be desirable for

the selected web server that would face lot of network traffic flow but will be desirable

to clients of that server if it is much faster than other hosting servers.

An interesting observation in Figure 4.5 shows that web servers 4 and 5 provide better

overall response time comparing to web server number 3 even though the web server 3 is

faster than the other two. This is the effect of network response time that lies between

proxy agent and these web servers. Web server 3 has a slower network connection to

proxy agent (total cost of 12) than web servers 4 and 5 (see Table 4.2). Web server 2,

even though has a slower connection than number 4 and 5 but is fast enough to beat

them. Obviously the proxy agent perception is important here that determines the final

winner. This test shows how network latency affects the overall response time, a known

fact, and a confirmation of a valid behavior of router and link agents.

A little change in processing power of each web server shows how that affects the

replica selection pattern. In next experiment shown in Figure 4.12 and Table A.7 web

servers 4 and 5 have been configured to be much slower than web servers 1, 2, and 3.

The result shows how the faster web servers steel the requests from slower web servers

even though the network costs are in favour of slower web servers. Look at majority of

calls that have been sent over to web servers 1 and 2 in Figure 4.12 and compare it with

results shown in Table 4.5. This is expected and indicates another correct behavior of

the simulator.

59

441	

56	

1	
 2	
 1	

432	

64	

1	
 2	
 1	

433	

63	

1	
 2	
 1	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

WS1:10	
 WS2:15	
 WS3:20	
 WS4:25	
 WS5:30	

N
um

be
r	
 o

f	
 	

ca
lls
	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.12: Best Last Replica Selection With Different Server Response Times and

Dynamic Processing Behavior On

In another interesting test case the processing time of routers 4, 7, and 8 has increased

from 2ms to 10ms to show how the network response time could affect the replica selection

pattern. By looking at Table 4.2 it is clear that routers 4, 7, and 8 will be used to

send messages from proxy agent to web servers 1 and 2, the two fastest servers in this

distributed web server system. The results of this change, shown in Figure 4.13 and Table

A.8, indicate how differently the replicas are selected with this change. The majority of

requests are now forwarded to web servers 4 and 5 even though their response time are

much slower than web servers 1 and 2. This experiment shows how easily an MAS–based

simulator could be tuned to execute test scenarios that are impossible to run in real

environments. In real environments the components that constitute the network are out

of reach and could not accessed and configured by the experimenter.

60

1	
 1	
 1	

324	

173	

1	
 1	
 1	

324	

173	

1	
 1	
 1	

324	

173	

0	

50	

100	

150	

200	

250	

300	

350	

WS1:10	
 WS2:15	
 WS3:20	
 WS4:25	
 WS5:30	

N
um

be
r	
 o

f	
 	

ca
lls
	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.13: Changing the Response time of Routers in Best Last Replica Selection

It was indicated before that Best Last algorithm inclines to the replica that has had

the best response time that means Best Last forgets about the other replicas as long

as the first chosen replica provides the best response time. This could have a positive

or negative impact on client’s overall response time that could be easily affected due to

fluctuations in network traffic or web servers availability.

If these dynamic fluctuations provides a faster response time for the already selected

replica then the algorithm sticks even more to that replica and so the overall response

time will improve (decrease) but if these fluctuations results in faster response times for

other replicas, which cannot be perceived by the proxy agent, then the overall response

time will be longer (increase) even though the other replica could have provided better

response times if they were selected.

In best last algorithm the Proxy agent only collects history information of the replicas

that it communicates with. If Proxy agents forward all requests to one server then it can

only collect the responses from that server so the history data for other replicas becomes

61

out dated over time. This means the proxy agent will never switch to another replica

as long as the response time of the chosen replica is better than the response time of

other replicas. This behaviour is actually one of the drawbacks of this algorithm. This

drawback could be compensated to force proxy to communicate and ping other server

periodically. This is doable but will consume a portion of processing time of Proxy agent.

This behavior could be considered as a different choosing algorithm which could be easily

implemented using this platform but will be left as one of future tasks.

This mentioned drawback could be viewed from another perspective. Suppose for

any reasons the proxy agent perceives a negative spike in response time of an already

selected replica. That spike should persuade proxy agent to switch to different replica

that has the second best response time in its history data. Best last always inclines

to replica that has the best last response time so due to this spike it stays with the

second replica even though the spike could be temporary and the original replica could

provide the best response time afterward. This behavior could be easily simulated by

our platform. A spike or communication turbulence could be simulated by changing

the behaviour of the related agents. For instance we could enforce WS1 Agent (fastest

agent in the experiment) to artificially prolong its response time for a short period of

time or for a specific request payload, then we could observe and measure the impact

of spike. Figure 4.14 and Table A.9 show how the algorithm will react to this spike in

WS1. The proxy agent selects the next best responsive agent (WS2) and it inclines to

stay with WS2 afterward in majority of remaining requests. The overall client response

time (average and worst response times) have also increased a little bit that is because of

slower response time of WS2. As it is shown in Figure 4.14, in the first test case the spike

is programmed to happen in 20th requests. In the second test case the spike happens

in 40th request, and in the last test case the spike happens in request 100 (information

62

such as request number is fully logged by the simulator application in each test run).

16	

480	

1	
 1	
 1	

36	

461	

1	
 1	
 1	

96	

401	

1	
 1	
 1	

0	

100	

200	

300	

400	

500	

600	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 	

ca
lls
	

Test	
 1	
 -­‐	
 Spike	
 at	
 Request	
 20	

Test	
 2	
 -­‐	
 Spike	
 at	
 Request	
 40	

Test	
 3	
 -­‐	
 Spike	
 at	
 Request	
 100	

Figure 4.14: Effect of Spike in Best Last Selection Algorithm - Spikes happen in WS1

with a jump of 20 ms in predefined request messages

If the same experiment is executed for Last Median algorithm, that injects a spike of

20ms in request number 20 (shown in Figure 4.15) the replica selection patterns changes

in favour of WS1. Depending on the value of k the proxy agent tries to forgive the

unexpected rise in response time in WS1 and chooses that replica because now it looks

at the last average value of k response times and not only the last response time. For

k =2 the system stays with WS2 longer until request number 252 and then it switches

back to WS1 in request number 253. For k = 3 the proxy agent stays with WS1 when

the spikes occurs at request number 20 because the last mean value of WS1 stays lower

value than last mean value of WS2 even though the spike is a big amount.

63

260	

234	

2	
 2	
 2	

488	

3	
 3	
 3	
 3	

0	

100	

200	

300	

400	

500	

600	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 	

ca
lls
	
 Test	
 1	
 -­‐	
 Spike	
 at	
 Req	
 20	
 for	
 k	
 =	
 2	

Test	
 2	
 -­‐	
 Spike	
 at	
 Req	
 20	
 for	
 k	
 =	
 3	

Figure 4.15: Comparison of Spike in Best Last and Best Median Selections - For k=2

the proxy agent switches back to WS1 at request number 253. For k=3 the proxy agent

stays with WS1

Figure 4.17 compares the client response times for all choosing algorithms while the

dynamic processing behavior is off and Figure 4.18 shows the comparison when it is on.

From client perspective Best Last and Best Median provides the best response times and

Parallel selection provides the worst response times even comparing to Random selection.

The results for parallel selection are not surprising because in this approach the proxy

agent sends requests to all replicas and so all hosting web servers will receives equal

number of requests. This algorithm sends a lot of messages to all web servers that causes

lot of pressure on each server. This in return causes a much slower response time. In

Random selection only one of replicas receives the request so the servers will not become

overloaded. In parallel selection the proxy agent also becomes busier because it needs to

take care of much more responses (five times comparing to best last, best median, and

random methods in this experiment). That puts pressure on Proxy agent that contributes

64

negatively to overall response time perceived by the client.

72	

63	
 63	

76	

61	
 61	
 61	

91	

84	

80	
 80	

93	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Random	
 Best	
 Last	
 Best	
 Median	
 Parallel	

Cl
ei
nt
	
 R
es
po

ns
e	

Ti
m
e	

Average	
 Response	
 Time	

Best	
 Response	
 Time	

Worst	
 Response	
 Time	

Figure 4.16: Comparison of Single Client Response Times when Dynamic Processing

Behavior is Off

77	
 76	
 75	

95	

62	
 62	
 62	
 63	

93	

86	
 86	

117	

0	

20	

40	

60	

80	

100	

120	

140	

Random	
 Best	
 Last	
 Best	
 Median	
 Parallel	

Cl
ei
nt
	
 R
es
po

ns
e	

Ti
m
e	

Average	
 Response	
 Time	

Best	
 Response	
 Time	

Worst	
 Response	
 Time	

Figure 4.17: Comparison of Single Client Response Times when Dynamic Processing

Behavior is On

65

4.8 Effect of More than One Client

The simulation platform is capable to simulate an unlimited number of clients. In this

test scenario two client agents send the same number of requests (500) to proxy agent.

This experiment has been executed for all selection algorithms. Figure 4.18 and 4.19 show

the results when there are two clients and the choosing algorithm is Random. The first

one is for dynamic processing behavior turned off and the later one when this feature

in on. Figure 4.20 and 4.21 show the same results for Best Last selection and Tables

A.13 to A.16 show the experiment results for all choosing algorithms while the dynamic

processing feature is turned on. From clients point of view the response times are the best

when selection algorithms are best last and best median but worst when the selection

algorithm is parallel. General response times is worse than one client scenario which is

expected. The more number of clients means the worse response time in overall because

all servers are busier and hence slower (see Figure 4.22).

191	
 192	

216	

204	
 197	
 194	

217	

179	

213	

197	

213	

168	

219	

203	
 197	

0	

50	

100	

150	

200	

250	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 	

ca
lls
	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.18: Random Selection: Two Clients, Dynamic Processing Behavior = Off

66

200	

194	

207	

191	

208	

200	

192	

196	

208	

204	

198	

193	

206	

196	

207	

180	

185	

190	

195	

200	

205	

210	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 	

ca
lls
	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.19: Random Selection: Two Clients, Dynamic Processing Behavior = On

993	

2	
 1	
 2	
 2	

993	

2	
 1	
 2	
 2	

993	

2	
 1	
 2	
 2	

0	

200	

400	

600	

800	

1000	

1200	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 W
in
s	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.20: Best Last Selection: Two Clients, Dynamic Processing Behavior = Off

67

334	

221	

61	

189	
 195	

361	

217	

60	

162	

200	

350	

224	

61	

179	
 186	

0	

50	

100	

150	

200	

250	

300	

350	

400	

WS1:10	
 WS2:12	
 WS3:14	
 WS4:16	
 WS5:18	

N
um

be
r	
 o

f	
 W
in
s	

Test	
 1	

Test	
 2	

Test	
 3	

Figure 4.21: Best Last Selection: Two Clients, Dynamic Processing Behavior = On

85	
 85	
 83	
 83	
 84	
 84	

137	
 137	

63	
 62	
 62	
 62	
 62	
 63	
 64	
 64	

109	
 109	

101	
 101	
 104	
 103	

175	
 175	

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

C1	
 Random	
 C2	
 Random	
 C1	
 Best	
 Last	
 C2	
 Best	
 Last	
 C1	
 Best	
 Median	
 C2	
 Best	
 Median	
 C1	
 Parallel	
 C2	
 Parallel	

Cl
ei
nt
	
 R
es
po

ns
e	

Ti
m
e	

Average	
 Response	
 Time	

Best	
 Response	
 Time	

Worst	
 Response	
 Time	

Figure 4.22: Comparison of Two Client Response Times when Dynamic Processing Be-

havior is On

68

Chapter 5

Conclusion and Future Work

Agent systems have been utilized in many applications particularly in simulation but a

very few works show they effective usage in simulation of distributed applications and

computer networks. Development and maintenance of agent systems is fast and easy

thanks to tools like JADE; however the agent runtime environment requires lot of pro-

cessing power. A big concern about Multi-Agent Systems and their usage in simulation of

large scale systems like computer networks and distributed systems is their performance

and scalability. This concern has not been clearly addressed or even mentioned in the

related literature and works, at least the ones that were reviewed for this thesis. The

outcome of this thesis has helped to evaluate and clarify this concern.

5.1 Conclusion

Design, development, and testing of distributed systems such as a web service based

application is a complex process that demands a lot of resources. From software engi-

neering perspective, each stage in development of a distributed application, from design

69

and architecture to implementation, deployment, and testing phase is time consuming,

resourceful, and expensive. Many design and development tools have been created to

improve this process but the growing complexity of such applications demands for more

innovative and effective methods and tools. Simulation of such systems could be an ef-

fective method to help architects and developers to evaluate their designs before starting

the real implementation but a big challenge in simulation of distributed systems is the

underlying computer network.

The main purpose of this experiment was to show how effectively a multi-agent system

could be used to simulate the behavior of a computer network and complex distributed

application. A replica based web service system was chosen as an example to show how

this simulation could be realized. This thesis could be considered as an extension to a

previous work presented in [24]. Contrary to that approach that used utility functions to

simulate a network, in a single thread environment, in this model the agents were used to

handle this task. Each agent is running in its own thread of execution as an independent

and autonomous entity that makes it very suitable to simulate the behavior of decentral-

ized processing nodes in a distributed system. The underlying network was modelled as

a matrix of nodes and links where each node represents a router and each link represents

a communication link. The core functionality of real routers and communication links

were simulated by agents.

Higher level components in web service application like clients, web servers, and

proxy servers were also modelled and constructed as agents. Each of these components

in a distributed system are host nodes. A host node in a computer network is a node

that is either initiates a request message or consumes a request message. The host

node agents in this simulation platform handle two major tasks. The first task enables

them to connect and deliver message to the network or receive a message from the

70

network and the second task simulates the real business logic of the simulated entity.

The first task does not change per application but the second one could be changed

per application requirement. For a new application only the second task should be

changed and this makes this architectural model very flexible in simulation of a verity of

distributed applications.

The simulator application used to execute a series of well known and already tested

replica choosing algorithms to evaluate its bahavior as a distributed application. Agents

are extremely easy to develop, maintain, and configure and during the development or

experiment phase these features became very handy and useful. The challenge was to

make each agent similar to its related real entity as closely as possible. If modelling

of each component is done correctly then the overall behavior of mutli-agent system

converges to behavior of the real system. Even though the simulation of each individual

entity was not perfect and comprehensive, the obtained results were very promising and

showed that we were in the right direction.

The simulated network consisted of 67 agents in total. Each test case took between

40 to 50 seconds for processing of 500 requests in a notebook computer. A preliminary

test showed that the simulator application, on the current running environment, could

accommodate at least couple of thousands of agents with simulation time not more than

several minutes. These numbers were promising and indicated that agent systems are

scalable enough to be used in simulation of more complex networks and distributed

systems.

71

5.2 Future Work

Many enhancements could be done in future to improve the functionality and behavior

of the simulator application. Here is a list of some of them:

I: Creating of more complex router and link agents: A challenging part

of this experiment was creating a platform that could simulate the behavior of a

real computer network. Simulation of a network is not an easy task because the

network behavior is very dynamic and its performance depends on many dynamic

variables. This dynamic and complex behavior is not predictable in runtime. The

router and link agents used in this platform only simulate a portion of the job of

their real counterparts. For instance the router agents in this experiment cannot

provide dynamic routing. They also do not provide packet switching and handling.

The router agents in this experiment do not fail but the real ones could! A great

improvement in this simulation platform is to make the behavior of router and link

agents more similar to behavior of their real counterparts. This does not require

extensive work and is doable. In fact with a little effort the router and link agents

could be packaged and used as a standalone network simulator.

II: Creating of message protocols similar to OSI network layers: Current

simulation protocol uses a proprietary message protocol for host node, routers and

link agents. That could be improved to be make it compliant with real message

protocols used in Transport, Network, Link, and Physical layers in OSI or Internet

protocol stack. This requires the implementation of more complex behaviors in

host nodes to simulate transport layer functionality like packet retransmission and

fail over mechanisms.

72

III: Creating of more complex web server agents: The behavior and interface

of current web server agents and web services could be improved to imitate the

behavior of their real counterparts. For instance we could enhance the messaging

protocol to support real SOAP and HTTP messages.

IV: Creating of more complex web services: The web service that was used in

this experiment was a simple length converter that accepts one decimal number

and returns a decimal number. More complex web services could be implemented

that accept more complex data structures and return larger data payloads so we

could analyze the beahvior and performance of the simulator in processing of large

message payload.

V: Using more than one proxy agent in a clustered or peer-to-peer archi-

tecture: The business logic of proxy agent as mentioned before is a portable

code that could be used in real scenarios; however using only one proxy agent that

handles all these tasks on behalf of clients produces a common design flaw: Point of

failure. We could fix this flaw by having more than one proxy agent in a clustered

or peer-to-peer architecture. In either approach the proxy agents need to communi-

cate with each other to synchronize the history information. This approach should

provide a better overall response time to client.

VI: Deploying the simulator in a distributed running environment: This ex-

periment was conducted on a single computer and so all the agents were living and

running in the same physical computing environment. MAS runtime environments

including JADE allow a distributed running environment. For instance with lit-

tle effort the proxy, client, and web server agents could be deployed in different

73

computers or Java virtual machines. Routers and link agents could also be spread

between these environments. This makes the simulation even closer to reality.

VII: Creating a better graphical user interface for initializer and tester agents:

In this experiment the simulator is communicated through a default user interface

that is provided by JADE. A better graphical user interface could be created to

establish a easier and more intuitive communication with administrative agents

(Initializer and Tester agents) and to configure and run the experiment faster.

74

Appendix A

Experiment Results

75

Table A.1: Test Scenarios Executed in the Experiment

Test Case Description Figure Table
1 Random selection with DPB turned off 4.2 A.3
2 Random selection with DPB turned on 4.3 A.4
3 Best last selection with DPB turned off 4.4 A.5
4 Best last selection with DPB turned on 4.5 A.6
5 Best median selection with DPB turned off for values of k equal

to 1, 5, and 9
4.6 –

6 Best median selection with DPB turned on for values of k equal
to 1, 3, 5, 7, and 9

4.7 A.10

7 Best median selection with DPB turned on for values of k equal
to 1, 3, 5, 7, and 9 and different processing speeds for web servers

4.8 –

8 Parallel selection with DPB turned off 4.9 A.11
9 Parallel selection with DPB turned on 4.10 A.12
10 Parallel selection with DPB turned on and different web server

speeds
4.11 –

11 Best last selection with DPB turned on and different web server
speeds

4.12 A.7

12 Best last selection with DPB turned on and different router re-
sponse time

4.13 A.8

13 Injecting spike in response time of the fastest web server for best
last selection algorithm

4.14 A.9

14 Injecting spike in response time of the fastest web server for best
median selection algorithm for two different values of k

4.15 –

15 Random selection with two client agents and DPB turned off 4.18 –
16 Random selection with two client agents and DPB turned on 4.19 A.13
17 Best last selection with two client agents and DPB turned off 4.20
18 Best last selection with two client agents and DPB turned on 4.21 A.14

76

Table A.2: Meaning of Collected Attributes in each Test Scenario

Attribute Name Abbr. Meaning
Number of Requests RN Number of requests processed by the replica
Web Server Average
Response Time

WS ART Average response time of all requests processed
by the web server

Web Server Best
Response Time

WS BRT The best response time provided by the web
server

Web Server Worst
Response Time

WS WRT The worst response time provided by the web
server

Proxy Average
Response Time

Proxy ART Average response time observed by proxy agent

Proxy Best
Response Time

Proxy BRT The best response time observed by proxy
agent

Proxy Worst
Response Time

Proxy WRT The worst response time observed by proxy
agent

Proxy Last Medium
Response Time

Proxy LMRT Last medium response time observed by the
web server. This value is meaningful only in
Last Median algorithm

Client Average
Response Time

Client ART Average response time perceived by client

Client Best
Response Time

Client ART Best response time perceived by client

Client Worst
Response Time

Client ART Worst response time perceived by client

77

Table A.3: Random Replica Selection with Dynamic Processing Behavior OFF
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 102 100 93 96 109
T2 80 99 96 121 104
T3 111 102 101 86 100

Proxy ART
T1 58 66 77 69 69
T2 58 66 77 69 69
T3 58 66 77 69 69

Proxy LRT
T1 60 68 79 71 71
T2 60 68 79 71 71
T3 60 68 79 71 71

Proxy BRT
T1 57 65 76 68 68
T2 57 65 76 68 68
T3 57 65 76 68 68

Proxy WRT
T1 60 68 79 71 71
T2 60 68 79 71 71
T3 60 68 79 71 71

Proxy LMRT
T1 60 68 79 71 71
T2 60 68 79 71 71
T3 60 68 79 71 71

WS ART
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

WS BRT
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

WS WRT
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

Client ART Test 1 = 72, Test 2 = 73, and Test 3 = 72
Client BRT Test 1 = 61, Test 2 = 61, and Test 3 = 61
Client WRT Test 1 = 84, Test 2 = 85, and Test 3 = 84

78

Table A.4: Random Selection with Dynamic Processing Behavior ON
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 108 109 91 98 94
T2 93 95 103 98 111
T3 84 102 112 101 101

Proxy ART
T1 63 71 81 73 73
T2 62 71 82 74 74
T3 62 71 82 74 74

Proxy LRT
T1 66 71 85 75 75
T2 61 76 85 73 80
T3 64 72 85 77 76

Proxy BRT
T1 58 66 77 69 69
T2 58 66 77 69 69
T3 58 66 77 69 69

Proxy WRT
T1 68 78 86 80 78
T2 66 77 90 79 80
T3 68 75 88 79 78

Proxy LMRT
T1 65 71 84 75 76
T2 64 75 82 75 77
T3 65 72 83 76 75

WS ART
T1 19 22 23 25 27
T2 19 21 23 25 28
T3 19 21 24 25 27

WS BRT
T1 16 18 20 22 24
T2 16 18 20 22 24
T3 16 18 20 22 24

WS WRT
T1 24 27 26 30 30
T2 22 26 30 30 32
T3 23 26 28 30 31

Client ART Test 1 = 77, Test 2 = 77, and Test 3 = 78
Client BRT Test 1 = 62, Test 2 = 62, and Test 3 = 62
Client WRT Test 1 = 91, Test 2 = 95, and Test 3 = 93

79

Table A.5: Best Last Replica Selection with Dynamic Processing Behavior OFF
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 496 1 1 1 1
T2 496 1 1 1 1
T3 496 1 1 1 1

Proxy ART
T1 58 65 76 68 68
T2 58 65 76 68 68
T3 58 65 76 68 68

Proxy LRT
T1 58 65 76 68 68
T2 58 65 76 68 68
T3 58 65 76 68 68

Proxy BRT
T1 57 65 76 68 68
T2 57 65 76 68 68
T3 57 65 76 68 68

Proxy WRT
T1 60 65 76 68 68
T2 60 65 76 68 68
T3 60 65 76 68 68

Proxy LMRT
T1 60 65 76 68 68
T2 60 65 76 68 68
T3 60 65 76 68 68

WS ART
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

WS BRT
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

WS WRT
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

Client ART Test 1 = 63, Test 2 = 63, and Test 3 = 63
Client BRT Test 1 = 61, Test 2 = 61, and Test 3 = 61
Client WRT Test 1 = 80, Test 2 = 80, and Test 3 = 80

80

Table A.6: Best Replica Selection with Dynamic Processing Behavior ON
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 285 85 2 64 64
T2 282 88 2 64 64
T3 273 97 2 64 64

Proxy ART
T1 71 71 78 73 73
T2 71 71 78 73 73
T3 71 71 78 73 73

Proxy LRT
T1 80 80 80 80 80
T2 81 71 80 80 80
T3 81 80 80 80 80

Proxy BRT
T1 58 66 77 69 69
T2 58 66 77 69 69
T3 58 66 77 69 69

Proxy WRT
T1 80 80 80 80 80
T2 81 80 80 80 80
T3 81 80 80 80 80

Proxy LMRT
T1 80 75 78 76 76
T2 80 74 78 76 76
T3 80 75 78 76 76

WS ART
T1 28 22 20 24 26
T2 27 22 20 24 26
T3 27 22 20 24 26

WS BRT
T1 16 18 20 22 24
T2 16 18 20 22 24
T3 16 18 20 22 2

WS WRT
T1 35 29 20 30 32
T2 36 29 20 30 32
T3 36 29 20 30 32

Client ART Test 1 = 76, Test 2 = 76, and Test 3 = 76
Client BRT Test 1 = 62, Test 2 = 62, and Test 3 = 62
Client WRT Test 1 = 86, Test 2 = 86, and Test 3 = 86

81

Table A.7: Best Last Replica Selection with Dynamic Processing Behavior ON and
Different Web Server Processing Speeds

Attribute T# WS1(10) WS2(15) WS3(20) WS4(25) WS5(30)

Num of Hits
T1 441 55 1 2 1
T2 432 64 1 2 1
T3 433 63 1 2 1

Proxy ART
T1 76 73 83 79 81
T2 75 73 83 79 81
T3 76 73 83 79 81

Proxy LRT
T1 80 81 83 81 81
T2 80 81 83 81 81
T3 80 81 83 81 81

Proxy BRT
T1 58 69 83 78 81
T2 58 69 83 78 81
T3 58 69 83 78 81

Proxy WRT
T1 81 81 83 81 81
T2 81 81 83 81 81
T3 81 81 83 81 81

Proxy LMRT
T1 80 76 83 79 81
T2 80 76 83 79 81
T3 80 76 83 79 81

WS ART
T1 32 24 26 31 36
T2 32 24 26 31 36
T3 32 24 26 31 36

WS BRT
T1 16 21 26 31 36
T2 16 21 26 31 36
T3 16 21 26 31 36

WS WRT
T1 36 30 26 31 36
T2 36 31 26 31 36
T3 36 30 26 31 36

Client ART Test 1 = 80, Test 2 = 80, and Test 3 = 80
Client BRT Test 1 = 62, Test 2 = 62, and Test 3 = 62
Client WRT Test 1 = 87, Test 2 = 87, and Test 3 = 87

82

Table A.8: Best Last Replica Selection with Dynamic Processing Behavior ON and
Router Response Time Changes - Response Time of R4, R7, and R8 increased from
2 to 10

Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 1 1 1 324 173
T2 1 1 1 324 173
T3 1 1 1 324 173

Proxy ART
T1 106 109 115 92 89
T2 106 109 115 92 89
T3 106 109 115 92 89

Proxy LRT
T1 106 109 115 100 101
T2 106 109 115 100 101
T3 106 109 115 100 101

Proxy BRT
T1 106 109 115 78 81
T2 106 109 115 78 81
T3 106 109 115 78 81

Proxy WRT
T1 106 109 115 101 101
T2 106 109 115 101 101
T3 106 109 115 101 101

Proxy LMRT
T1 106 109 115 100 96
T2 106 109 115 100 96
T3 106 109 115 100 96

WS ART
T1 16 21 26 43 43
T2 16 21 26 43 43
T3 16 21 26 43 43

WS BRT
T1 16 21 26 31 36
T2 16 21 26 31 36
T3 16 21 26 31 36

WS WRT
T1 16 21 26 51 53
T2 16 21 26 51 53
T3 16 21 26 51 53

Client ART Test 1 = 95, Test 2 = 95, and Test 3 = 95
Client BRT Test 1 = 82, Test 2 = 82, and Test 3 = 82
Client WRT Test 1 = 119, Test 2 = 119, and Test 3 = 119

83

Table A.9: Best Last Replica Selection with Dynamic Processing Behavior ON and a
Spike of 20ms in WS1 - Spike happens at Request# 20 in Test 1, Request# 40 in Test
2, and Request# 100 in Test 3

Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 17 480 1 1 1
T2 36 461 1 1 1
T3 96 401 1 1 1

Proxy ART
T1 60 66 76 68 68
T2 57 66 76 68 68
T3 57 66 76 68 68

Proxy LRT
T1 70 68 76 68 68
T2 77 68 76 68 68
T3 77 68 76 68 68

Proxy BRT
T1 57 65 76 68 68
T2 57 65 76 68 68
T3 57 65 76 68 68

Proxy WRT
T1 70 68 76 68 68
T2 77 68 76 68 68
T3 77 68 76 68 68

Proxy LMRT
T1 61 68 76 68 68
T2 67 68 76 68 68
T3 67 68 76 68 68

WS ART
T1 16 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

WS BRT
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

WS WRT
T1 25 17 19 21 23
T2 35 17 19 21 23
T3 35 17 19 21 23

Client ART
Test 1 (Spike at Req# 20) = 70
Test 2 (Spike at Req# 40) = 70
Test 3 (Spike at Req# 100) = 69

Client BRT
Test 1 (Spike at Req# 20) = 61
Test 2 (Spike at Req# 40) = 61
Test 3 (Spike at Req# 100) = 61

Client WRT
Test 1 (Spike at Req# 20) = 80
Test 2 (Spike at Req# 40) = 81
Test 3 (Spike at Req# 100) = 81

84

Table A.10: Best Median Replica Selection with Dynamic Processing Behavior ON value
of k equal to 1, 3, 5, 7, and 9

Attribute k WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits

1 475 22 1 1 1
3 467 24 3 3 3
5 460 25 5 5 5
7 458 21 7 7 7
9 455 18 9 9 9

Proxy ART

1 77 76 93 93 101
3 77 77 94 94 102
5 77 77 95 95 102
7 77 78 95 95 103
9 77 79 96 96 104

Proxy LRT

1 80 81 93 93 101
3 80 81 94 94 102
5 80 82 97 97 104
7 80 83 98 98 106
9 80 77 100 100 108

Proxy LMRT

1 80 81 93 93 101
3 80 80 94 94 102
5 80 80 95 95 102
7 80 80 95 95 103
9 80 80 96 96 104

WS ART

1 33 27 36 46 56
3 33 27 37 47 57
5 33 28 38 48 57
7 33 28 38 48 58
9 34 29 39 49 59

Client ART

1 81
3 82
5 82
7 82
9 83

85

Table A.11: Parallel Selection with Dynamic Processing Behavior OFF
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 500 500 500 500 500
T2 500 500 500 500 500
T3 500 500 500 500 500

Num of Wins
T1 475 11 1 13 0
T2 484 10 0 6 0
T3 473 8 0 15 4

Proxy ART
T1 69 76 87 76 76
T2 69 76 87 76 76
T3 69 76 87 76 76

Proxy LRT
T1 83 90 103 87 90
T2 83 90 103 88 89
T3 83 90 103 87 90

Proxy BRT
T1 57 65 76 68 68
T2 57 65 76 68 68
T3 57 65 76 68 68

Proxy WRT
T1 83 90 103 87 90
T2 83 90 103 88 89
T3 83 90 103 87 90

Proxy LMRT
T1 82 89 100 85 88
T2 82 89 100 86 87
T3 82 89 100 85 88

WS ART
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

WS BRT
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

WS WRT
T1 15 17 19 21 23
T2 15 17 19 21 23
T3 15 17 19 21 23

Client ART Test 1 = 76, Test 2 = 75, and Test 3 = 76
Client BRT Test 1 = 61, Test 2 = 61, and Test 3 = 61
Client WRT Test 1 = 94, Test 2 = 94, and Test 3 = 92

86

Table A.12: Parallel Selection with Dynamic Processing Behavior ON
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 500 500 500 500 500
T2 500 500 500 500 500
T3 500 500 500 500 500

Num of Wins
T1 482 5 0 11 2
T2 483 9 1 7 0
T3 473 8 0 17 2

Proxy ART
T1 89 96 107 96 96
T2 88 96 107 96 96
T3 88 96 107 96 96

Proxy LRT
T1 103 110 123 107 110
T2 103 111 123 107 110
T3 103 110 123 107 110

Proxy BRT
T1 58 66 77 69 69
T2 58 66 77 69 69
T3 58 66 77 69 6

Proxy WRT
T1 103 110 123 107 110
T2 103 111 123 107 110
T3 103 110 123 107 110

Proxy LMRT
T1 102 109 120 106 108
T2 102 110 120 106 108
T3 102 109 120 105 108

WS ART
T1 34 36 38 40 42
T2 34 36 38 40 42
T3 34 36 38 40 42

WS BRT
T1 16 18 20 22 24
T2 16 18 20 22 24
T3 16 18 20 22 24

WS WRT
T1 40 42 44 46 48
T2 38 40 42 44 46
T3 39 41 43 45 47

Client ART Test 1 = 95, Test 2 = 95, and Test 3 = 96
Client BRT Test 1 = 63, Test 2 = 62, and Test 3 = 62
Client WRT Test 1 = 112, Test 2 = 124, and Test 3 = 114

87

Table A.13: Random Selection with Two Clients and Dynamic Processing Behavior ON
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 200 194 207 191 208
T2 200 192 196 208 204
T3 198 193 206 196 207

Proxy ART
T1 70 78 90 80 81
T2 70 78 90 81 80
T3 71 78 90 80 81

Proxy LRT
T1 79 84 95 84 91
T2 77 84 99 89 85
T3 82 86 97 85 86

Proxy BRT
T1 58 66 77 69 69
T2 58 66 77 69 69
T3 58 66 77 69 69

Proxy WRT
T1 81 91 101 89 91
T2 80 89 103 90 91
T3 83 91 104 92 89

Proxy LMRT
T1 78 85 96 83 90
T2 76 85 98 88 85
T3 82 85 96 84 85

WS ART
T1 23 25 27 29 31
T2 23 25 27 29 31
T3 23 25 25 27 29 32

WS BRT
T1 16 18 20 22 24
T2 16 18 20 22 24
T3 16 18 20 22 24

WS WRT
T1 29 30 34 37 38
T2 31 30 35 35 37
T3 28 32 34 36 38

Client 1 ART Test 1 = 86, Test 2 = 85, and Test 3 = 85
Client 1 BRT Test 1 = 102, Test 2 = 64 , and Test 3 = 63
Client 1 WRT Test 1 = 108, Test 2 = 109, and Test 3 = 111
Client 2 ART Test 1 = 85, Test 2 = 85, and Test 3 = 85
Client 2 BRT Test 1 = 63, Test 2 = 62, and Test 3 = 62
Client 2 WRT Test 1 = 108, Test 2 = 110, and Test 3 = 109

88

Table A.14: Best Last Selection with Two Clients and Dynamic Processing Behavior ON
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 334 221 61 189 195
T2 361 217 60 162 200
T3 350 224 61 179 186

Proxy ART
T1 74 78 83 80 80
T2 74 78 84 80 80
T3 75 78 84 80 80

Proxy LRT
T1 71 93 93 93 93
T2 94 94 94 94 91
T3 95 85 95 95 94

Proxy BRT
T1 58 66 77 69 69
T2 58 66 77 69 69
T3 58 66 77 69 69

Proxy WRT
T1 93 93 93 93 93
T2 94 94 94 94 93
T3 95 94 95 95 94

Proxy LMRT
T1 85 92 92 92 92
T2 93 93 93 93 90
T3 94 84 94 94 93

WS ART
T1 27 25 22 28 30
T2 27 25 21 28 30
T3 27 25 22 28 30

WS BRT
T1 16 18 20 22 24
T2 16 18 20 22 24
T3 16 18 20 22 24

WS WRT
T1 42 35 27 37 39
T2 41 35 27 38 39
T3 42 36 27 39 40

Client 1 ART Test 1 = 83, Test 2 = 83, and Test 3 = 83
Client 1 BRT Test 1 = 63, Test 2 = 62 , and Test 3 = 62
Client 1 WRT Test 1 = 100, Test 2 = 101, and Test 3 = 101
Client 2 ART Test 1 = 83, Test 2 = 83, and Test 3 = 83
Client 2 BRT Test 1 = 62, Test 2 = 63, and Test 3 = 62
Client 2 WRT Test 1 = 100, Test 2 = 101, and Test 3 = 102

89

Table A.15: Best Median Selection with Two Clients, Dynamic Processing Behavior ON,
and k=3
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 347 205 69 187 192
T2 365 189 67 189 190
T3 367 248 48 155 182

Proxy ART
T1 75 79 85 80 80
T2 75 78 85 80 80
T3 75 79 84 80 80

Proxy LRT
T1 98 90 97 97 97
T2 97 87 97 97 98
T3 96 96 95 95 95

Proxy BRT
T1 58 66 77 69 69
T2 58 66 77 69 69
T3 58 66 77 69 69

Proxy WRT
T1 98 96 97 97 97
T2 97 96 97 97 98
T3 96 96 95 95 95

Proxy LMRT
T1 97 89 96 96 96
T2 96 86 96 96 97
T3 95 95 94 94 94

WS ART
T1 28 26 23 29 31
T2 28 25 22 29 30
T3 28 25 22 28 30

WS BRT
T1 16 18 20 22 24
T2 16 18 20 22 24
T3 16 18 20 22 24

WS WRT
T1 45 39 29 41 43
T2 42 35 27 41 44
T3 42 36 27 39 41

Client 1 ART Test 1 = 84, Test 2 = 84, and Test 3 = 84
Client 1 BRT Test 1 = 62, Test 2 = 63 , and Test 3 = 62
Client 1 WRT Test 1 = 105, Test 2 = 105, and Test 3 = 104
Client 2 ART Test 1 = 84, Test 2 = 84, and Test 3 = 84
Client 2 BRT Test 1 = 63, Test 2 = 62, and Test 3 = 63
Client 2 WRT Test 1 = 104, Test 2 = 104, and Test 3 = 102

90

Table A.16: Parallel Selection with Two Clients and Dynamic Processing Behavior ON
Attribute T# WS1(10) WS2(12) WS3(14) WS4(16) WS5(18)

Num of Hits
T1 1000 1000 1000 1000 1000
T2 1000 1000 1000 1000 1000
T3 1000 1000 1000 1000 1000

Num of Wins
T1 904 13 0 81 2
T2 911 21 2 63 3
T3 872 13 0 115 0

Proxy ART
T1 127 134 144 128 130
T2 127 134 144 128 130
T3 127 135 144 129 131

Proxy LRT
T1 158 164 177 153 159
T2 158 164 177 153 158
T3 157 163 176 152 157

Proxy BRT
T1 58 66 77 69 69
T2 58 66 77 69 69
T3 58 66 77 69 69

Proxy WRT
T1 158 165 177 153 159
T2 158 165 177 153 158
T3 158 164 176 152 157

Proxy LMRT
T1 157 164 174 151 155
T2 156 163 173 150 154
T3 156 163 173 150 154

WS ART
T1 55 57 59 61 63
T2 55 57 59 61 63
T3 56 58 60 61 63

WS BRT
T1 16 18 20 22 24
T2 16 18 20 22 24
T3 16 18 20 22 24

WS WRT
T1 82 83 80 77 76
T2 83 84 79 76 76
T3 84 86 82 78 76

Client 1 ART Test 1 = 137, Test 2 = 137, and Test 3 = 138
Client 1 BRT Test 1 = 63, Test 2 = 62 , and Test 3 = 66
Client 1 WRT Test 1 = 174, Test 2 = 177, and Test 3 = 173
Client 2 ART Test 1 = 137, Test 2 = 137, and Test 3 = 138
Client 2 BRT Test 1 = 62, Test 2 = 65, and Test 3 = 64
Client 2 WRT Test 1 = 177, Test 2 = 173, and Test 3 = 174

91

Appendix B

Configuration Information

92

Table B.1: Simulator Configuration Setup - Table 1 of 5

Property Name Description
chossingAlgorithmMethod Specifies the choosing algorithm method. Possible Values

are:
0: Random
2: Best Last
3: Best Median
4: Parallel

bestMedian.k k factor value: The value of k is only used for Best Median
algorithm and specifies the number of last responses that
will be used to calculate the best median value. As an ex-
ample if k is 3 then the last three response times are used
to calculate the median response time

numberOfRows
numberOfCols

Network Topology: A matrix of [numberOfRows] rows and
[numberOfCols] columns.
Example: numberOfRows = 5 and numberOfCols = 5
means a network of 25 routers in a rectangular graph of
5 rows and 5 columns

numberOfClients
numberOfProxies
numberOfWebServers

Specifies Number of Client, Proxy, and Web Server Agents

web.server.delay.x Static processing time power of a Web Server Agent in
which ’x’ identifies the number of web server.

Example:

web.server.delay.1=10
web.server.delay.2=12
web.server.delay.3=14
web.server.delay.4=16
web.server.delay.5=18

means that Web Server 1 has static processing time
of 10ms. Web Server 2 has static processing time of 12ms
and so on. The number of this properties must be equal to
number of web servers defined for [numberOfWebServers]
property.

93

Table B.2: Simulator Configuration Setup - Table 2 of 5

Property Name Description
nameAddressMapper.client.x Name to IPAddress Mapper for Client Agents. ’x’ defines

the client agent name. This property is used during
creation and runtime to map a client agent name to its
associated IP Address.

Example:

nameAddressMapper.client.C1 = 100.10.1.1
nameAddressMapper.client.C2 = 100.10.1.2
defines the IP Addresses for Client Agents C1 and C2. For
each client agent we should have one property name of this
type in configuration file.

nameAddressMapper.proxy.x Name to IPAddress Mapper for Proxy Agents. ’x’ defines
the proxy agent name. This property is used during
creation and runtime to map a proxy agent name to its
associated IP Address.

Example:

nameAddressMapper.proxy.P1 = 110.10.1.1 defines the IP
Address for Proxy Agent P1. For each proxy agent we
should have one property name of this type in configuration
file.

nameAddressMapper.router.x Name to IPAddress Mapper for Router Agents. ’x’ defines
the router agent name. This property is used during
creation and runtime to map a router agent name to its
associated IP Address.

Example:

nameAddressMapper.router.R1= 120.11.1.1 defines the IP
Address for Router Agent R1. For each router agent we
must have one property name of this type in configuration
file. In the conducted experiment we have 25 routers so 25
of these properties should exist in configuration file.

94

Table B.3: Simulator Configuration Setup - Table 3 of 5

Property Name Description
nameAddressMapper.server.x Name to IPAddress Mapper for Web Server Agents. ’x’

defines the web server agent name. This property is used
during creation and runtime to map a web server agent
name to its associated IP Address.

Example:

nameAddressMapper.server.WS1 = 130.100.1.1 defines
the IP Address for Web Server Agent WS1. For each web
server agent we should have one property name of this type
in configuration file.

router.delay.x Static Processing Time Delay for each router agent. ’x’
defines the router number. This property will be used by
IA during RA creation and is used by RA during run time
to calculate the router processing time when it receives a
message.

Example:

router.delay.1= 2 set a value of 2ms for processing
time to RA number 1. For each RA there should be one
property name of this type in configuration file.

web.service.delay.x Static Processing Time Delay for each WS. ’x’ defines
the WS number. This property will be used by IA during
WSA creation and is used by WS during run time to cal-
culate the server processing time when it receives a message.

Example:

web.service.delay.1= 5 sets a value of 5ms for pro-
cessing time to WS number 1. For each WS (replica)
instance there should be one property name of this type in
configuration file.

95

Table B.4: Simulator Configuration Setup - Table 4 of 5

Property Name Description
links.from.router.x Defines all links started from router number ’x’. The link information

for each router has the following format:
links.from.router.S={PN,D,C,L,B}-{PN,D,C,L,B}-...-{PN,D,C,L,B}
in which

S: Source Router Index, a positive integer number
PN: Name of Non-Host-Processing Node: Name of non-host-processing
node. In this platform this could only be router that is shown as ’R’
D: Destination Router Index, a number that specifies the destination
router index
C: Link cost that is a function of two subsequent fields (L and B) , a
positive number
L: Link Latency, measured by virtual millisecond, which is shown by
’ms’, a positive number.
B: Link Baud Rate, measured by bit/s. A positive integer

Routers use the following formula to calculate the cost of Link
shown as C. At this stage the L values are given as a static value at
system start up. Routing tables are calculated and initialized based
on L values:

C = L + (100 / B)

For simplicity C has been already calculated and put in prop-
erty file. The values of L and B will be used by each Link Agent to
provide a time based value that specifies the response time of link.

Example:

links.from.router.4={R, 5, 1, 0,1000}-{R, 8, 2, 1,1000}-{R, 10,
3, 1, 500}

means the router R4 is connected to three other routers (R5,
R8, R10) through three links. The link that connects R4 to R5 has a
cost of 1, latency of 0ms, and baud rate of 1000 bits/s. Respectively
the Link that connects R4 to R8 has cost of 2, latency of 1ms, and
baud rate of 1000 bits/s. The last link that connects R4 to R10 has
cost of 3, latency of 1ms and baud rate of 500 bits/s.

96

Table B.5: Simulator Configuration Setup - Table 5 of 5

Property Name Description
router.Rx.routingInfo Routing information from Router Rx to all destina-

tion host nodes. ’x’ is the number of router.

Example:

router.R11.routingInfo=WS1:R7;WS2:R7;
WS3:R7;WS4:R12;WS5:R12;P1:P1;C1:C1;C2:C2

means Router R11 should send any income messages
to R7 if the receiver host is WS1, to R7 if the receiver
host is WS2, to R7 if the receiver host is WS3, to
R12 if the receiver host is WS4, to R12 if the receiver
host is WS5, to P1 if the receiver host is P1, to C1 if
the receiver host is C1, and to C2 if the receiver host
is C3.
For each router in the graph we need to have one
entry like this. If there is no value assigned to this
property that means that router is not connected to
any node in the graph.

web.server.url.x URL for each web server. ’x’ is the number of web
server

web.service.url.x URL for each web service. ’x’ is the number of web
service.

client.delayBetweenEachWSCall.x Delay value between each call that is sent from a client
agent. ’x’ is the number of client agent. Each client
agent waits for the specified amount in ms between
each calls. The default value is 5 ms and the value
set in this experiment is 50 ms.

97

Appendix C

Runtime Environment

This experiment was executed on the following environment:

Hardware
Overview

Model Name: MacBook Pro
Processor Name: Intel Core 2 Duo
Processor Speed: 2.53 GHz
Number Of Processors: 1
Total Number Of Cores: 2
L2 Cache: 3 MB
Memory: 4 GB
Bus Speed: 1.07 GHz

Software
Overview

Operating System: Mac OS X version 10.6.4
Java Runtime Version: Java(TM) SE Runtime Environment (build 1.6.0 20-
b0227910M3065)
JADE Version: Version 4.0

98

Bibliography

[1] Andrew S. Tanenbaum, Maarten Van Steen, Distributed Systems: Principles and

Paradigms. PEARSON Prentice Hall, 2nd ed., 2007.

[2] James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach.

Addison Wesley, 5 ed., 2010.

[3] Nikos Vlassi, A Concise Introduction to Multiagent Systems and Distributed Artifi-

cial Intelligence. Morgan & Claypool Publishers, 2007.

[4] Sattanathan Subamanian, “High-avaiable web service community,” Sixth Interna-

tional Conference on Information Technology: New Generation. IEEE Computer

Society, 2009.

[5] Zakaria Maamar, Quan Z. Ssheng, Djamal Benslimane, “Sustaining web services

high-availability using communities,” The Third International Conference on avail-

ability, reliability and Security, IEEE Computer Society, 2008.

[6] W. Kowalczyk, N. Vlassis, “Advances in neural information prcoessing systems 17,”

MIT Press, Cambridge, MA, pp. 713–720, 2005.

[7] A. L. Symeonnidis, P. A. Mitkas, ed., Agent Intelligence Through Data Mining.

Springer, Berlin, 2006.

99

[8] V. Lesser, C. L. Ortiz Jr., M. Tambe, ed., Distributed Sensor Networks: A Multiagent

Perspective. Kluwer Academic, Dodrecht, 2003.

[9] M. A. Paskin, C.E. Guestrin, J. McFadden, “A robust architecture for distributed

inference in sensor networks,” in 4th Int. Symp. on Information Prcoessing and

Multiagent Systems, Los Angles, CA, 2005.

[10] Maes, Pattie, “Artificial life meets entertainment: Life like autonomous agents,”

Communications of the ACM, 38, 11, 108-114, 1995.

[11] Michael Coen, “Sodabot: A software agent construction system,” Proceedings of the

1994 Conference on Information and Knowledge Management Workshop on Intel-

ligent Proceedings of the 1994 Conference on Information and Knowledge Manage-

ment Workshop on Intelligent Information Agents, 1995.

[12] Wooldridge, Michael, Nicholas R. Jennings, “Agent theories, architectures, and lan-

guages: a survey,” Springer-Verlag, 1-22, 1995.

[13] Brustoloni, Jose C., “Autonomous agents: Characterization and requirements,”

Carnegie Mellon Technical Report CMU-CS-91-204, Pittsburgh: Carnegie Mellon

University, 1991.

[14] Stan Franklin, Art Graesser, “Is it an agent, or just a program?: A taxonomy for

autonomous agents,” Proceedings of the Third International Workshop on Agent

Theories Architectures, and Languages, Springer-Verlag, 1996.

[15] Adelinde M. Uhrmacher, Danny Weyns, ed., Multi-Agent Systems, Simulations and

Applications. CRC Press Taylor & Francis Group, 2009.

100

[16] Stuart Russel, Peter Norvig, Artificial Intelligence: A Modern Approach. Prentice

Hall, 3rd ed., 2010.

[17] Gerhard Weiss, ed., Multi Agent Systems, A Modern Approach to Distributed Arti-

ficial Intelligence. The MIT Press, 1999.

[18] Marco Conti, Enrico Gregori, Willy Lapenna, “Content delivery policies in replicated

web services: Client-side vs. server-side,” in Cluster Computing, vol. 8, pp. 47–60,

Springer Science + Business Media, Inc., 2005.

[19] Nabor C. Mendonca, Jose Airton F. Silva, Ricardo O. Anido, “Client-side selection

of replicated web services: An empirical assessment,” The Journal of Systems and

Software 81, vol. 81, no. 81, pp. 1346–1363, 2008.

[20] Kambiz Frounchi, Partheeban Chandrasekaran, Jawid Ibrahimi , Shikhharesh Ma-

junmdar, Chung Hung Lung, Laura Serghi, “A QoS-Aware Web Service Replica

Selection Framework For an Extranet,” 2007.

[21] Fei Li, Fangchum Yang, Kai Shuangm Sen Su, “Peer-to-peer based qos registry archi-

tecture for web services,” IFIP International Federation for Information Processing,

pp. 133–138, 2007.

[22] Vladimir Stantchev, Miroslaw Laek, “Addressing web service performance by repli-

cation at the operating system level,” in The Third International Conference on

Internet and Web Applications and Services, 2008.

[23] Ziad Kobti, Ding Chen, “A multi-agent simulation platform for web service qos

selection modeling,” CIMCA 2008, IAWTIC 2008, and ISE 2008, IEEE Computer

Society, 2008.

101

[24] Khashayar Habibi, Reza Ariaeinejad, Abdolreza Abhari, “Modeling and simulation

of web service replica choosing algorithm,” SpringSim’09-Poster Sessions, 2009.

[25] Mehdi Dastani, Rafael H. Bordini, Jurgen Dix, Amal El Fallah Segrouchni, ed.,

Multi-Agent Programming Languages, Tools, and Applications. Springer, 2009.

[26] Fabio Bellifemine, Giovanni Caire, Dominic Greenwood, developing multi-agent sys-

tems with JADE. John Wiley & Sons, 2007.

102

