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Abstract

This study addresses the problem of detumbling a non-cooperative space target, such as a

malfunctioning satellite, using a space robot for the purpose of performing on-orbit servicing.

The space robot is denoted as the servicer and consists of a satellite base equipped with a

robotic manipulator. The formulation of a detumbling control strategy must respect limits on

the grasping force and torque at the servicer’s end-effector without knowledge of the target’s

inertial parameters (mass, inertia tensor, location of center of mass). In the literature, prior

studies have formulated detumbling strategies under the assumption of accurate knowledge of

the target’s inertial parameters. However, obtaining accurate estimates of the target’s inertial

parameters is difficult, and parameter uncertainty may lead to instability and violation of the

end-effector force/torque limits. This study will address the problem of detumbling a non-

cooperative target with unknown but bounded inertial parameters subjected to force/torque

limits at the servicer’s end-effector.

In this study, two detumbling control strategies are presented. The first detumbling strategy

is presented under the assumption that force/torque measurements at the end-effector are avail-

able. Detumbling of the target is achieved by applying a reference force/torque to the target

that is designed to bring the target’s tumbling motion to rest subjected to force/torque limits.

To ensure stable detumbling of the target, a robust compensator is designed based on bounds

of the target’s unknown inertial parameters. Furthermore, once the detumbling process starts,

in order to reduce the robust control gains, bounds on the target’s unknown inertial parameters
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are estimated in real-time. The resultant detumbling controller enables the servicer to detumble

the target while complying with the target’s unknown residual tumbling motion.

The second detumbling control strategy is developed without the need of end-effector’s

force/torque measurements and takes into account magnitude constraints on servicer’s control

inputs in the detumbling controller’s design. Detumbling is achieved by tracking a desired

detumbling trajectory that is delineated subjected to end-effector force/torque limits and re-

quires bounds on the target’s inertial parameters. The hyperbolic tangent function is utilized to

model the magnitude constraints on the servicer’s control inputs, resulting in a system that is

non-affine in its control inputs. As a result, an augmented model of the servicer is presented

to allow the formulation of the detumbling controller. Using bounds on the target’s inertial pa-

rameters, robust adaptive control approach is utilized to design the detumbling controller with

the backstepping technique in order to track the desired detumbling trajectory and to reject the

gained target’s momentum.

Numerical simulation studies were conducted for both detumbling control strategies utiliz-

ing a servicer equipped with a 7-degree-of-freedom (DOF) manipulator. The results demon-

strate that both control strategies are capable of detumbling a non-cooperative target with

unknown inertial parameters subjected to force/torque limits. Experiments conducted with

a 3-DOF manipulator demonstrate that the design procedure utilized to delineate the desired

detumbling trajectory in the second detumbling strategy respects force/torque limits at the end-

effector. The study is concluded with a discussion comparing the two proposed detumbling

strategies by highlighting their advantages and disadvantages.
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Chapter 1

Introduction

1.1 Background

The current state of space activity has been expanding significantly with increased access to
space by developing nations. Space activates range from space exploration to commercial
application: exploring the surface of Mars to ensuring effective telecommunication and weather
forecasting on Earth. Its impact on our daily lives is hard to notice due to their common place
in our society, but their significance on the functionality of our day to day activities is ever so
important that if gone, it would have a negative impact on our livelihood.

The increased utilization of the space environment without global cooperation to address
the growing population of space debris presents a significant problem for future access to space
regardless of the purpose. The term space debris encompasses both man made and natural
objects and is estimated to be composed of over 8700 objects larger than 10-30cm in Low
Earth Orbit (LEO) [40]. The composition of the debris field can range from paint flecks and
satellite coolant droplets to spent rocket upper stages and decommissioned or malfunctioning
satellites [4, 40].

The state of the space debris field posses a threat to current orbiting satellites and have the
potential to under go exponential growth through cascading collisions (Kessler effect [4, 14]).
The high impact collision that occurred in 2009 between deactivated Kosmos 2251 and oper-
ating Iridium 33 satellite with a relative speed greater than 11km/s resulted in more debris and
illustrates the risk space debris poses on current operational satellites [73]. In 2007, a milita-
rized test of a direct-ascent anti-satellite (ASAT) weapon on a weather satellite, Fengun-1C,
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1.1. BACKGROUND

produced at least 2087 additional pieces of space debris reported by the US Space Surveillance
Network (SSN) [31]. The growing debris field posses a direct threat to the operational safety
of the International Space Station (ISS) as it carries out collision-avoidance manoeuvers if the
chance of collision exceeds a certain tolerance [40]. As a result, NASA has developed a col-
lision risk assessment process for it high-value robotic spacecraft to prevent loss by collision
with space debris [43].

The first appearance of space debris mitigation was proposed by Lubo Perek in 1979, who’s
recommendations are still valid today: re-orbiting of GEO spacecraft into a disposal orbit at
the end-of-life [27]. Since then, various international organizations have proposed space debris
mitigation guidelines [65]. These guidelines impose design and operational considerations
that would aim to minimize debris released during normal operations, as well as limit the
long-term presence of a satellite in its orbital region after the completion of its mission. An
example of this is the debris mitigation policy proposed and practiced by the Inter-Agency
Space Debris Coordination Committee (IADC), an international technical body composed of
various space agencies such NASA, the European Space Agency (ESA), and Japanese Space
Agency (JAXA). However, these guidelines often fall on deaf ears as there is no requirement
by all spacefaring nations on compliance with the guidelines for access to space [65, 74]. In
addition, the proposed guidelines, while an attempt to mitigate the addition of more debris, do
not address the current state of the debris field.

Proposed solutions to address the current state of the space debris field vary from a reactive
approach of physically removing space debris to a proactive approach of the capture and repair
of malfunctioning satellites. Regarding the active removal of space debris, various strategies
for the capture and removal of space debris have been proposed in the literature and range from
the use of a net, harpoon, space tether-gripper or space manipulator(s) to capture and dispose of
space debris [55] (Fig. 1.1). However, the capture and repair of malfunctioning satellites, also
known as on-orbit servicing (OOS), not only addresses the problem of space debris mitigation,
but it is also an attractive fiscal approach for companies and space agencies as it extends the
operating life time of space assets [66].

Regardless of the proposed solution, the paradigm of space activity involves the use of
robotic probes as they remove significant design considerations that are associated with a
human in the loop. The role of robots in space consist of manoeuvring payloads, replac-
ing/assembling components on the ISS to supporting astronauts during spacewalks. One so-
lution for conducting OOS missions that is under investigation by various space agencies and

2



1.1. BACKGROUND

Figure 1.1: Example of space debris removal using net [13].

Figure 1.2: JAXA ETS-VII mission on the left [45]. DARPA Orbital Express Program on the
right [23].

research groups is a robotic manipulator attached to a satellite base, and is denoted as the
servicer [8,27]. The malfunctioning satellite to be serviced, is denoted as the target and is non-
cooperative and tumbling. The term non-cooperative implies that the target does not broadcast
any information regarding its current state of motion, nor can it control any of its on board
actuators to adjust its attitude in order to assist the servicing satellite in its capture. Further-
more, it also implies that the target was not designed to be grasped by the servicer, and hence,
contains no dedicated grasping surface.

Several on-orbit experiments have been conducted by different space and government agen-
cies to test and study the technology readiness of various designs and approaches for OOS
(Fig. 1.2). These experiments have been conducted on cooperative targets. The Engineering
Test Satellites VII (ETS-VII) was launched by JAXA in 1997 to test various robotics tech-
nologies and to demonstrate its applicability in OOS related task such as: autonomous ren-
dezvous/docking, orbital replacement unit exchange and deployment, and dynamically coordi-

3



1.1. BACKGROUND

Figure 1.3: Phases of satellite capture sequence [22].

nated control between the manipulator and servicer’s base to name a few [70]. The Robotic Re-
fueling Mission (RRM) is a joint project between NASA and Canadian Space Agency (CSA)
with the aim of demonstrating how robots can service and refuel satellites in space. Addi-
tional efforts by NASA, the US Department of Defence, DARPA, and German Aerospace Cen-
ter (DLR) have tested and proposed concepts for future experiments for the purpose of OOS
demonstration [24, 37, 46].

In the literature, researchers have separated the capture process of a non-cooperative, tum-
bling target by a servicer into different phases due to the complexity of the problem: pre-
grasping phase, grasping and post-grasping phase [2, 8] (Fig. 1.3). The pre-grasping phase is
concerned with moving the manipulator from its initial position to a predetermined position to
intercept the target’s grasping fixture. In [8,19,75], a vision system along with a nonlinear state
estimator are utilized to predict the motion of the non-cooperative target, and hence the grasp-
ing fixture on the target. Utilizing the predicted motion of the target, different strategies in the
literature have been designed to intercept the target’s grasping point with the aim of minimizing
impact or subjected to physical constraints of the servicer’s manipulator [8, 32–35, 53].

In the grasping phase, the servicer is concerned with physically grasping the target and
establishing a firm connection with the target. The grasping of a non-cooperative target is an
active area of research and is a difficult problem to address due in part that orbiting satellites
do not have dedicated grasping points. However, it has been proposed that potential grasping
points are the Payload Attach Fitting or the nozzle cone of an apogee kick motor as these com-
ponents have high structural strength that can be used to connect the target to the servicer [71].
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1.2. REVIEW OF LITERATURE ON POST-GRASPING PHASE

The grasping of these points is still a challenging task due to the uncertainty in their position
and velocity estimates at the moment of grasping. The uncertainty arises due to estimation
error in the estimated position and velocity of the grasping point and may lead to unexpected
contact between the servicer’s end-effector and target’s grasping surface. Active and passive
compliance have been proposed to mitigate the effect of unexpected contact between the ser-
vicer and target in order to maintain contact with the target in the grasping phase [51, 59, 71].
Additional studies have been presented on how to minimize the attitude disturbance of the
servicer’s base due to unexpected contact with the target [42, 48].

Accommodating the position and velocity uncertainty of the servicer’s grasping point can
be addressed with the design of the grasping mechanism at the servicer’s end-effector. Various
grasping mechanisms have been proposed in the literature and are simple and robust to grasping
point uncertainty [20,26]. However, interaction force/torque limits at which these mechanisms
will fail must be taken into account in the post-grasping phase. In the post-grasping phase
it is assumed that the servicer has grasped the target and is rigidly connected at the target’s
grasping point. A detumbling control strategy for the servicer must be formulated to bring the
tumbling motion of the target to rest while taking into account changes in the servicer’s inertial
parameters due to the unknown target grasped at the servicer’s end-effector. Furthermore, the
detumbling control strategy must take into consideration interaction force/torque limits at the
grasping location as this may result in damage of the servicer’s grasping mechanism or target’s
grasping point and/or saturation of the servicer’s attitude control system [7, 9, 47, 65, 66]. The
focus of this dissertation is on the development of a detumbling control strategy for the post-
grasping phase of the capture sequence.

1.2 Review of Literature on Post-Grasping Phase

The relevant literature pertaining to the post-grasping phase is reviewed in this section. First a
review of existing post-grasping detumbling control strategies are presented under ideal condi-
tions in which the target’s inertial parameters (mass, inertia tensor, location of center of mass)
are assumed known. After, a review of parameter identification techniques are presented, fol-
lowed by a review of detumbling strategies that aim to address the problem of detumbling of a
non-cooperative target with parameter uncertainty in the post-grasping phase.
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1.2. REVIEW OF LITERATURE ON POST-GRASPING PHASE

1.2.1 Ideal Scenario

Under the assumption that the target’s inertial parameters are known, a detumbling strategy that
takes into consideration the servicer’s end-effector force/torque limits at the grasping location
can be developed. In [6, 7, 21], it was shown that applying a torque along the target’s angular
momentum would bring its tumbling motion to rest in minimal time. With knowledge of the
target’s inertial parameters and a known torque limit, a detumbling trajectory can be determined
for the manipulator to track. This was made possible by subjecting the target’s dynamics to
a torque applied opposite to the its angular momentum vector. In [9], both the end-effector’s
force and torque limits are considered. The objective in this case was to bring the target’s
linear and angular momentum to zero. Stability analysis revealed that the detumbling torque
should be applied along the target’s angular momentum vector, while the applied force is along
a unit vector that is computed as a function of the target’s linear and angular momentum as
well as its location of center of mass. In [35], an optimal joint damping trajectory to dampen
the target’s relative motion is presented. Similar to [6, 7, 9], the authors of [54, 65] made use
of the target’s inertial parameters to plan a detumbling trajectory that would bring the target’s
tumbling motion to rest in minimum time while being subjected to a torque limit at the end-
effector. In [6, 7, 9, 65], coordinated control of the servicer’s base and its manipulator (i.e.,
[12,17]) is implemented to simultaneously track the desired end-effector detumbling trajectory
and to reject the gained target’s momentum as it is brought to rest.

In [72], utilization of the target’s inertial parameters allowed the development of a control
strategy that ensured a bias momentum distribution in the servicer prior to capture so as to
eliminate base attitude disturbance after capture of the target. This approach would pre-load
the servicer system, either its manipulator or reaction wheels or both, with momentum that
would cancel that of the target’s after capture. In [18], a distributed momentum control (DMC)
is proposed to manage the angular momentum in the servicer-target system such that no base
rotation occurs. The authors also made use of reaction null space control (RNSC) to manage the
angular momentum distribution in the servicer-target system while performing joint damping
in the null space of the primary momentum management task.

The above mentioned detumbling strategies for the post-grasping phase were developed
under the assumption that the target’s inertial parameters were accurately known, and further
studies were not conducted on their performance subjected to uncertainties in the target’s iner-
tial parameters. However, it is unrealistic to assume that these parameters are known prior to
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detumbling (e.g., no practical way to measure remaining propellant in a malfunctioning satel-
lite). Furthermore, it has been proposed that the target’s inertial parameters can be identified
with the use of parameter identification techniques prior to the post-grasping phase so that
detumbling strategies that require their use can be implemented.

1.2.2 Identifying the Target’s Inertial Parameters

Detumbling strategies discussed in the prior section required knowledge of the target’s inertial
parameters in the formulation of their detumbling controller for the post-grasping phase. As
mentioned, it is unrealistic to assume that these parameters are known prior to post-grasping
phase. However, it has been proposed that the target’s inertial parameters can be identified prior
to the post-grasping phase. As a result, in the literature, various techniques have been proposed
to facilitate parameter identification and can be classified into three different categories: vision
base [5, 8, 10], momentum and force based [37, 41].

Vision based techniques cannot identify the mass of the target but can estimate ratios of the
target’s moment of inertia in the pre-grasping phase [5,8,10]. From these dimensionless ratios,
it is not possible to identify the actual inertial values to be used in the post-grasping phase.
Vision based techniques are ideally utilized in the pre-grasping phase to predict the motion of
the target’s grasping point for the purpose of capturing the target.

Momentum and force base techniques in [37, 41] can be utilized once the target has been
captured, and are based on the equation of motion of the system expressed at the velocity
and acceleration level, respectively. Both techniques can identify the inertial parameters of the
target, however, convergence is dependent on the excitation of the input motion of the combined
servicer-target system. In [37], different manipulator motions were utilized to demonstrate the
effect of persistent excitation on parameter identification utilizing the force and momentum
base techniques.

In [44], the authors introduced a new phase to the capture sequence that would transition
from the grasping phase to the post-grasping phase. In the new phase, the authors proposed
an adaptive reactionless control algorithm to generate reactionless manipulator motion with an
unknown target attached to the end-effector. The term reactionless implies motion of the ma-
nipulator arm that would not induce a reaction motion on to the base, thus leaving its attitude
undisturbed. Simultaneously, the authors utilized the manipulator’s joint rates along with the
servicer’s base linear and angular velocities as measurement inputs to a momentum based algo-
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rithm in order to identify the target’s inertial parameters. However, convergence of the target’s
inertial parameters cannot be guaranteed as it is directly related to the level of excitation of the
input (motion of the combined servicer-target system) to the parameter identification scheme.

The dependence on parameter identification techniques to determine the target’s inertial
parameter as a prior for the post-grasping phase will not lead to the successful detumbling of
the target. Convergence of the estimated target’s inertial parameters is possible if the motion
of the combined system (servicer and target) is sufficiently exciting to identify the target’s
inertial parameters. This cannot be guaranteed prior to the post-grasping phase and hence, can-
not guarantee convergence of estimates of the target’s inertial parameters to their true value.
Detumbling strategies in the post-grasping phase cannot assume that the target’s inertial pa-
rameters are known a prior and must be design to account for the unknown target’s inertial
parameters.

1.2.3 Post-grasping Phase with Unknown Target

As it is unrealistic to assume that the target’s inertial parameters are known prior to the post-
grasping phase, there are a number of control strategies proposed in the literature that achieve
detumbling without perfect knowledge of the target’s inertial parameters.

Addressing target parameter uncertainty, the authors of [47] and [66] have proposed the
delineation of a detumbling trajectory without requiring accurate knowledge of the target’s
inertial parameters and subjected to end-effector’s force/torque or torque limits, respectively.
In order to respect end-effector force/torque limits, the detumbling trajectory in [47] is modi-
fied with the use of force/torque measurements at the end-effector. The detumbling trajectory
in [66] was formulated only considering end-effector torque limit and assumed that the loca-
tion of the target’s center of mass is known. Coordination control of the servicer’s satellite
base and manipulator’s end-effector to track the desired detumbling trajectory with an uncer-
tain target attached to it was not addressed in [47]. In [66] and similar to [3, 60], impedance
control is implemented with the use of end-effector’s force/torque measurements to track the
desired detumbling trajectory with an uncertain target attached to the servicer’s end-effector.
The implementation of these detumbling strategies required force/torque measurements at the
servicer’s end-effector. This can be a difficult requirement to satisfy as obtaining force/torque
measurements in space can be challenging due to the harsh environment of space [38].

Robust coordination control strategies of the servicer’s satellite base and manipulator with-
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out the need of force/torque measurements at the end-effector were proposed in [29, 74, 76].
In [74], an adaptive sliding mode controller is proposed to track a reference trajectory in the
post-grasping phase in order to detumble a non-cooperative target with uncertain inertial pa-
rameters. The authors achieve robustness to target parameter uncertainty without the need of
end-effector’s force/torque measurements, but their proposed control strategy requires mea-
surements of the servicer’s manipulator joint acceleration and base angular acceleration.

The authors of [76] proposed an adaptive sliding mode disturbance observer to estimate
the disturbance created by the unknown target in order to compensate for it while tracking a
desired joint space trajectory and regulating the servicer’s base attitude. In [29], an adaptive
variable structure control method was applied to implement a robust coordination controller
between the servicer’s satellite base and manipulator that addressed parametric uncertainties
in the servicer’s system. In [29, 76], the authors do not consider the detumbling problem in
the post-grasping phase. However, the approach can be utilized to compensate for parametric
uncertainties associated with an unknown target attached to the servicer’s end-effector while
attempting to track a desired detumbling trajectory. Furthermore, while the above-mentioned
robust coordination control strategies of the servicer address parametric uncertainty associated
with the unknown target ( [29, 74, 76]), they do not take into consideration limits on the ser-
vicer’s control inputs. In practical application, the servicer will be subjected to magnitude
limits on its control inputs because of physical limits of the onboard actuators. A controller
design for coordination between the servicer’s base and manipulator must consider limits on
the control input as they may lead to instability if not considered or poor performance of the
servicer in the detumbling task.

1.3 Research Focus and Contributions

The research problem to be addressed can be summarized as follows:
To develop a detumbling control strategy to detumble a non-cooperative tumbling target

with unknown inertial parameters, using a space robot that consists of a robotic manipulator

attached to a satellite while being subjected to force/torque limits at the grasping location.

From the overview of the previous section it should be clear that the formulation of a
detumbling control strategy must respect end-effector force/torque limits of the space robot
without prior knowledge of the target’s inertial parameters (mass, inertia tensor, location of
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center of mass). Prior studies have formulated detumbling strategies with the assumption of
accurate knowledge of the target’s inertial parameters. However, obtaining accurate estimates
of the target’s inertial parameters is difficult, and parameter uncertainty may lead to instability
and violation of the end-effector’s force/torque limits if not taken into account in the detum-
bling controller’s design. Force/torque limits are an important consideration in post-grasping
phase. Force/torque limits can be determined based on the structural limitation of the grasp-
ing mechanism at which point it will fail. Furthermore, force/torque limits at the servicer’s
end-effector are based on the rate at which momentum is being transferred from the target to
the servicer. This rate is specified such that the servicer’s control inputs can reject the gained
momentum from the target in order to avoid tumbling of the combined servicer-target system
in the post-grasping phase.

This dissertation presents two detumbling control strategies based on the availability of
force/torque measurements at the servicer’s end-effector. Obtaining force/torque measure-
ments at the end-effector adds additional complexity as the design and housing of the sensor
must be taken into account for successful operation in the harsh space environment. The two
presented detumbling strategies will be compared at the end of this dissertation.

If force/torque measurements at the end-effector are available, detumbling of the target is
achieved with the use of force control. This allows the formulation of a detumbling strategy
that enables compliance with the unknowns target’s tumbling motion as damping is applied to
bring its tumbling motion to rest. Detumbling of the target is achieved by controlling the space
robot to apply a reference force/torque to the target. The reference force/torque is designed to
detumble the target while respecting force/torque limits at the servicer’s end-effector, without
the use of the target’s inertial parameters. The reference force/torque is computed utilizing
only known parameters such as end-effector’s force/torque limits and end-effector’s linear and
angular velocity.

The implementation of this detumbling strategy is presented with and without compensa-
tion for changes in the servicer’s inertial parameters due to the grasped target. In the case of
no compensation for changes in the servicer’s inertial parameters, the servicer is controlled to
apply the reference force/torque to the target. A detumbling criteria is then formulated in the
form of bounds on the target’s inertial parameters and tumbling rate for which this approach
can detumble (domain of attraction). Evaluation of the detumbling criteria can be done utiliz-
ing estimates of bounds on the target’s inertial parameters. The availability of bounds on the
target’s inertial parameters is a realistic assumption as these bounds can be determined based on
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pre-launch data of the malfunctioning satellite slated to be serviced. The resultant detumbling
controller is simple, however, if the detumbling criteria cannot be satisfied a robust compen-
sator is presented to ensure stable detumbling of the target and is designed based on bounds of
the target’s unknown inertial parameters. Furthermore, bounds on the target’s unknown inertial
parameters are estimated in real-time in order to reduce the robust control gains.

Alternatively, if force/torque measurements at the end-effector are not available, a track-
ing control detumbling strategy is presented. A robust coordination controller is developed to
control the servicer’s base satellite and its manipulator to track a desired detumbling trajectory
with the unknown target attached to the end-effector while rejecting the target’s gained momen-
tum. The desired detumbling trajectory is delineated using only bounds on the target’s inertial
parameters and subjected to end-effector force/torque limits. The proposed robust coordina-
tion controller takes into account magnitude constraints on the servicer’s manipulator and base
attitude control inputs in the controller’s design. This is accomplished by making use of the
hyperbolic tangent function to model the magnitude constraints of the servicer’s control inputs,
which results in a system that is non-affine in its control inputs. An augmented model of the
servicer is formulated to allow the development of the detumbling controller. Using bounds
on the target’s inertial parameters, robust adaptive control approach is utilized to design the
detumbling controller with the backstepping technique to ensure successful detumbling of the
unknown target attached to the end-effector.

The main contributions from both detumbling strategies are as follows:

1. Prior detumbling strategies in the literature required accurate knowledge of the target’s
inertial parameters in the formulation of their detumbling strategies when taking into ac-
count interaction force/torque limits at the servcier’s end-effector. Studies that take into
account force/torque limits at the servicer’s end-effector without accurate knowledge
of the target’s inertial parameters make simplifying assumptions on the target’s inertial
parameters (i.e., assume target’s location of center of mass is known) or do not con-
sider both force and torque limit at the servicer’s end-effector. Furthermore, detumbling
strategies that achieve detumbling with the unknown target attached to the servicer’s
end-effector do not consider force/torque limits at the servicer’s end-effector. Both de-
tumbling strategies presented in this study achieves detumbling of the target subjected to
force and torque limits at the servicer’s end-effector without prior accurate knowledge of
the target’s inertial parameters.
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2. The reference detumbling force/torque in the force control based detumbling strategy is
uniquely defined such that it does not require knowledge of the target’s inertial param-
eters in its formulation and takes into account force/torque limits at the servicer’s end-
effector. This is unlike prior approaches in the literature that required knowledge of the
target’s inertial parameters in the formulation of their reference detumbling force/torque.

3. In the tracking control based detumbling strategy, a procedure is presented to delineate
the desired detumbling trajectory. The procedure delineates a desired detumbling trajec-
tory subjected to force and torque limits at the end-effector without requiring accurate
knowledge of the target’s inertial parameters.

4. In the tracking control based detumbling strategy, coordination control of the servicer’s
base and manipulator is developed to track the desired end-effector detumbling trajectory
and to reject the target’s gained momentum. The coordination controller of the servicer’s
end-effector and base takes into account magnitude limits on the servicer’s control inputs
and do not require force/torque measurements at the servicer’s end-effector.

5. The presented force control and tracking control based detumbling strategies both con-
tain a criteria that can be used to determine if detumbling a target can be accomplished
based on the servicer’s design. The servicer’s design will dictate the maximum force/torque
it can experience at its end-effector such that its control inputs can reject the target’s mo-
mentum without causing the servicer-target system to tumble in the post-grasping phase.
Evaluation of each criteria is carried out using bounds on the target’s inertial parameters,
the target’s tumbling rate and the servicer’s force and torque limit.

1.4 Organization of Dissertation

This dissertation consists of five chapters and is organized as follows. A detailed literature
review and background information is given in the first chapter. This chapter also highlights
the research objective and contributions obtained from this research. Chapter 2 presents the
mathematical notation and assumptions utilized throughout this dissertation. The assumptions
presented in this chapter define the conditions for the post-grasping phase. The dynamics and
kinematics of the servicer and target are presented in this chapter as well.
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Chapter 3 presents the formulation of the detumbling strategy under the condition that
force/torque measurements at the end-effector are available. The realization of this strategy
is first presented in this chapter by defining the desired force and torque to be applied to the
unknown target so that its tumbling motion goes to zero and to allow compliance with its resid-
ual motion. In the first half of Chapter 3, this approach is presented with no compensation for
changes in the servicer’s inertial parameters due to the grasped unknown target. The detum-
bling criteria is presented in the form of bounds on the target’s inertial parameters and tumbling
rate for which the approach can detumble (domain of attraction). Numerical simulation study
of the detumbling strategy is conducted and the results are reported.

The second half of Chapter 3 presents a robust adaptive controller to compensate for
changes in the servicer’s inertial parameters due to the grasped target. This is accomplished in
two steps. First a bounding function is derived to robustly compensate for the addition of the
unknown target grasped at the servicer’s end-effector in order to achieve stable detumbling of
the target. The bounding function is computed using bounds on the target’s inertial parameters.
Following this, an adaptive technique is utilized to allow estimation of bounds on the target’s
inertial parameters in real-time. This eliminates the use of conservative estimates of bounds
on the target’s inertial parameters in the bounding function. Numerical simulation study of the
detumbling strategy is conducted and the results are reported.

Chapter 4 presents the formulation of the detumbling strategy under the condition that
force/torque measurements at the end-effector are not available. The approach presented in
this chapter achieves detumbling of the target by tracking a desired detumbling trajectory. The
delineation of the desired detumbling trajectory subjected to end-effector force/torque limit is
presented. The formulation of the controller to track the desired detumbling trajectory and
reject the gained momentum from the target is presented. Magnitude limits on the servicer’s
control inputs are taken into account in the controller’s design. An upper bound on the end-
effector force/torque experienced in the post-grasping phase is derived and presented. Nu-
merical simulation study is carried out using a 7-degree-of-freedom manipulator attached to
a satellite base to detumble a target using the presented approach and the results are reported.
Furthermore, an experiment is conducted to evaluate the design procedure used to delineate the
desired detumbling trajectory and the results are reported.

In Chapter 5, a summary and discussion of the advantages and disadvantages of the two
detumbling control strategies are presented. Following this, concluding remarks are given and
the direction of future work is presented.
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Chapter 2

Problem Formulation

This Chapter presents the assumptions used in formulating the two proposed detumbling strate-
gies in this dissertation. The mathematical notation utilized throughout this dissertation is pre-
sented as well as the servicer’s and target’s kinematics and dynamics. The Chapter concludes
with a description of the control problem for the post-grasping phase.

2.1 Post-grasping Phase

Prior to the commencement of on-orbit servicing of the tumbling malfunctioning target satel-
lite, it is required that the target must be captured. As mentioned in the previous Chapter,
the research community has partitioned the capture process of the target into three different
phases: pre-grasping phase, grasping phase and post-grasping phase. These different phases
were presented by the research community to facilitate research into different problems that
occur throughout of the capture process. These challenges arise primary as the target’s inertial
parameters are not known, the target is tumbling and is non-cooperative.

A malfunctioning satellite will usually not have a functioning attitude control system and it
is common for them to tumble as the angular momentum stored in their attitude control system
will start migrating to the body of the satellite. The inertial properties of the malfunctioning
satellite such as its mass, inertia tensor and location of center of mass from the grasping point
are usually uncertain because there is no practical way to measure remaining propellant fuel in
zero gravity [8].

The pre-grasping and grasping phases are responsible to for ensuring that the servicer’s end-
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effector can intercept the target grasping point and physically grasp the target. This must be
accomplished in light of the above difficulties associated with a malfunctioning target satellite.
In the post-grasping phase, the servicer is responsible for bringing the tumbling motion of
the target to rest subjected to interaction force/torque limits at the grasping location while
rejecting the target’s gained momentum in order to avoid tumbling of the combined servicer-
target system.

The following assumptions are utilized in developing the proposed detumbling strategy for
the post-grasping phase:

1. the base’s linear and angular velocities are measurable;

2. the target is rigidly attached to the end-effector after grasping (firmly grasped); and

3. the relative linear velocity between the center of mass of the servicer and target prior to
capture is zero.

The first assumption implies that measurements of the servicer system are available from
the inertial frame. This can be made possible if there exists an inertial observer such as a
camera on an external space structure as proposed by [49], or a second satellite in formation
with the servicer. To realize the last assumption, vehicular operations of the servicer satellite
are assumed to have been utilized to guide the servicer to a pose where the relative linear
velocity of the servicer and target are near zero and the servicer’s manipulator can reach out and
capture the target. Under these conditions, the combined servicer-target system after capture
will have zero linear momentum relative to the inertial observer as the problem of absorbing
and dissipating the gained linear momentum by the servicer with the use of external jet thruster
is not addressed. These assumptions are common in the literature on detumbling of a non-
cooperative target [18, 44, 47, 72].

In addition to the above assumptions that defined the post-grasping phase, it is assumed
that the detumbling process occurs sufficiently slow such that flexibility in the manipulator
joints and links and the servicer’s base can be neglected [61]. Thus, the servicer is assumed
to consists of multiple rigid bodies. The mass of each individual body are time invariant and
their respective location of center of mass within each body is fixed. The same assumption is
made for the malfunctioning non-cooperative target. This can be rationalized of the motion of
targets can be characterized as a slow rotation about a major axis [53].For example, ground
based observation of ADEOS 1 described its attitude motion as composed of two rotational
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components: 0.1deg/s about the satellite’s main body and another about the satellite’s boom of
about 0.4deg/s [77]. Observation of Envisat resulted in an average rotation rate of 3.5deg/s [62].

As a result of the above stated assumptions, the following Corollary can be stated:

Corollary 1. The servicer is composed of multiple rigid bodies that are physically constrained

to each other via revolute joints and the target is rigidly attached to the servicer’s end-effector

(Assumption 2), i.e., the maximum distance between the end-effector and the center of mass of

any rigid body of the servicer/target system is geometrically constrained. From Assumption 3,

it follows that the end-effector’s position is also bounded from an inertial frame of reference

located at the center of mass of the combined servicer/target system.

2.2 Mathematical Notation

The following notations are used:

• The left superscript, (·)( ), represents the frame of reference the vector ( ) is resolved in.
This notation is dropped for vectors expressed in the inertial frame.

• A right upper superscript d as in (·)d, denotes the desired value of (·).

• The rotation matrix that transforms vector from reference frame A to reference frame B
is denoted as follows: BRA ∈ R3×3.

• En ∈ Rn×n is an identity matrix.

• λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of matrix (·), re-
spectively.

• For the vector x =
[
{x}1 {x}2 {x}3

]T
∈ R3, the skew-symmetric matrix is denoted

as x× such that x×a = x× a for any a ∈ R3, where the skew-symmetric matrix of x is
defined as follows:

x× =

 0 −{x}3 {x}2

{x}3 0 −{x}1

−{x}2 {x}1 0

 (2.1)

.

• (·)+ denotes the Moore-Penrose pseudoinverse of the matrix (·).
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Figure 2.1: Space manipulator and base (servicer) with target

2.3 Kinematics of Servicer

The basic kinematic equation of a m degree of freedom (DOF) manipulator mounted to a satel-
lite base is presented in this Section. As per Fig. 2.1, the system is composed of the manipulator
and satellite base and is denoted as the servicer. It consists of m+1 rigid bodies. The formu-
lation presented in this section does not consider the target. However, as the target is assumed
rigidly attached to the end-effector it is possible to consider it as an extension of the last link.

From Fig. 2.1, let ai denote the vector pointing from joint i to the mass center of link i

and let bi denote the vector from the mass center of link i to joint i+ 1. The satellite base is
regarded as link i = 0. This formulation is comparable for the servicer’s base by noting that r0

denotes the vector from the servicer’s base center of mass relative to the inertial frame, ΣI, at
point O in Fig. 2.1. Furthermore, b0 denotes the vector from the mass center of servicer’s base
to joint i = 1. Note that all these vectors are expressed in the inertial frame. From Fig. 2.1, it
becomes trivial to express the position of the end-effector as:

pe = r0 +b0 +
m

∑
i=1

li (2.2)

where li = ai +bi.
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The end-effector’s linear velocity can be obtained by differenciating both sides of 2.2 with
respect to time and results in the following:

ve = vb +wb×b0 +
m

∑
i=1

wi× li (2.3)

where ve ∈ R3 denotes the end-effector’s linear velocity, vb ∈ R3 and wb ∈ R3 denotes the
servicer’s base center of mass linear and angular velocity, respectively. wi denotes the angular
velocity of link i and can be expressed as:

wi = wb +
i

∑
j=1

k jφ̇ j (2.4)

where k j ∈ R3 is the unit vector indicating the rotation axis of joint j and φ̇ j denotes the joint
rate of joint j.

Making use of (2.4) and (2.2) in (2.3) results in the following:

ve = vb +wb× (pe− r0)+
m

∑
i=1
{ki× (pe−pi)}φ̇ i (2.5)

where pi denotes the position of joint i. From (2.4, the end-effector’s angular velocity can be
expressed as:

we = wb +
m

∑
i=1

kiφ̇ i. (2.6)

Making use of (2.5) and (2.6), the end-effector’s linear and angular velocity can be ex-
pressed in a more compact form that will be utilized in the formulation of the servicer’s equa-
tion of motion: [

ve

we

]
= Jb

[
vb

wb

]
+Jmφ̇ m (2.7)

where the two Jacobian matrices are introduced and the manipulator joint rates are combined
into a joint vector as follows:

φ̇ m =
[
φ̇ 1 φ̇ 2 ... φ̇ m

]T
∈ Rm (2.8a)
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Jb =

[
E3 −p×0e

0 E3

]
∈ R6×6, p0e = pe− r0 (2.8b)

Jm =

[
k1× (pe−p1) k2× (pe−p2) ... km× (pe−pm)

k1 k2 ... km

]
∈ R6×m (2.8c)

The coefficient matrix of the base velocity term is denoted as the Jacobian matrix for the
base and the coefficient matrix for the manipulator joint rates is the Jacobaina for ground-base
manipulators. The end-effector velocity for the servicer is observed to be a linear combination
of the manipulator joint rates and of the servicer’s base velocities. The main difference between
the kinematics of a space manipulator and that of a ground-base manipulator is the addition
of the servicer’s base velocity components in the end-effector’s velocity. This represents the
motion of ground-base manipulator base joint.

2.4 Servicer’s Momentum Equations

In this Section, the momentum equations for the servicer will be presented. A compact form
of these expression will be presented that expresses the total momentum for the servicer with
respect to the location of the inertial frame at point O in Fig. 2.1 and about the center of mass
of the servicer’s base. Let P∈R3 and L∈R3 represent the total linear and angular momentum,
respectively, of the servicer with respect to the inertial frame. By definition they are defined as
follows:

P =
m

∑
i=0

mivi (2.9a)

L =
m

∑
i=0

(Iiwi + ri×mivi) (2.9b)

where ri ∈R3 is the position vector of the center of mass of link i, Ii ∈R3×3 is the inertia tensor
of link i with respect to its center of mass, mi is the mass of the rigid body link i, wi is the
angular velocity of link i as defined in (2.4) and vi ∈R3 is the linear velocity of center of mass
of link i. Note that link i = 0 denotes the servicer’s base where its linear and angular velocities
are denoted as v0 = vb and w0 = wb. Furthermore, recall that all vectors are expressed in the
inertial frame.
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From (2.5), changing the point of interest from the servicer’s end-effector to the center of
mass of link i in (2.5) presents an equation for vi of link i as follows:

vi = vb +wb× (ri− r0)+
i

∑
j=1
{k j× (ri−p j)}φ̇ j (2.10)

Replacing vi in (2.9a) with (2.10) results in the following:

P = mtotalvb +wb×mtotalr0g +JTwφ̇ m (2.11)

where

mtotal =
m

∑
i=0

mi (2.12a)

r0g = rg− r0 (2.12b)

rg =
∑

m
i=0 miri

mtotal
(2.12c)

JTw =
m

∑
i=1

miJTi (2.12d)

JTi =
[
k1× (ri−p1) k2× (ri−p2) ... ki× (ri−pi) 0 ... 0

]
∈ R3×m (2.12e)

From (2.12a), mtotal denotes the total mass of the servicer and rg in (2.12c) denotes the
position of mass center of the whole system.

Similar substitution can be made for the servicer’s total angular momentum. Replacing wi

with (2.4) and vi with (2.10) in the servicer’s total angular momentum in (2.9b) results in the
following:

L =
m

∑
i=0

[
Ii(wb +JRiφ̇ m)+ ri×mi(vb +wb× (ri− r0))

]
=

m

∑
i=0

Iiwb +
m

∑
i=1

IiJRiφ̇ m +
m

∑
i=0

miri×vb−
m

∑
i=1

miri× [(ri− r0)×wb]

+
m

∑
i=1

miri×JTiφ̇ m

(2.13)
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2.4. SERVICER’S MOMENTUM EQUATIONS

where
JRi =

[
k1 k2 ... ki 0 ... 0 ∈ R3×m

]
. (2.14)

Furthermore, the reduction in (2.13) resulted by noting that for i = 0, JR0 = 0, JT0 = 0 and
r0− r0 = 0.

The total momentum of the servicer can be expressed about the center of mass of the base.
Let Pb ∈ R3 and Lb ∈ R3 denote the momentum of the servicer about center of mass of the
base. The relationship between P, L, Pb and Lb is as follows:

Pb = P (2.15a)

Lb = L− r0×P. (2.15b)

With the use of (2.10) and (2.11), the product r0×P can be evaluated as follows:

r0×P = mtotalr0×vb−
m

∑
i=1

mir0× [(ri− r0)×wb]+
m

∑
i=1

mir0×JTiφ̇ m (2.16)

Substituting (2.16) and (2.13) into (2.15b) results in:

Lb = mtotalr×0gvb +

[ m

∑
i=1

(Ii +mir×0i
Tr×0i)+ I0

]
wb +

[ m

∑
i=1

(IiJRi +mir×0iJTi)

]
φ̇ m (2.17)

where r0i = ri− r0.
Combining (2.11) and (2.17) allows for the compact representation of the servicer’s mo-

mentum as: [
Pb

Lb

]
=

[
mtotalE3 mtotalr×0g

T

mtotalr×0g Hw

][
vb

wb

]
+

[
JTw

Hwφ

]
φ̇ m (2.18)

where

Hw =

[ m

∑
i=1

(Ii +mir×0i
Tr×0i)+ I0

]
∈ R3×3 (2.19)

Hwφ =

[ m

∑
i=1

(IiJRi +mir×0iJTi)

]
∈ R3×m (2.20)

The compact form of the servicer’s linear and angular momentum in (2.18) will be utilized
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2.5. SERVICER DYNAMICS

in the formulation of the servicer’s equation of motion. In this compact form, the coefficient
matrix of the servicer’s base linear and angular velocity is the servicer’s base inertia matrix, Hb.
The coefficient matrix of the servicer’s manipulator joint rates is the inertia coupling matrix,
Hc. These matrices are defined as follows:

Hb =

[
mtotalE3 mtotalr×0g

T

mtotalr×0g Hw

]
∈ R6×6 (2.21)

Hc =

[
JTw

Hwφ

]
∈ R6×m. (2.22)

2.5 Servicer Dynamics

In this Section, the dynamics of a space robot is reviewed in order to obtain the equations of
motion in the operation space of the space robot similar to the derivation by [47]. The space
robot consists of a base body and m-link serial manipulator arm (Fig. 2.1).

Let vb = [vT
b ,w

T
b ]

T ∈ R6 and φ̇ m ∈ Rm represent the linear and angular velocity of the
servicer’s base center of mass and joint rates of the manipulator, respectively. The equation of
motion of the servicer system is given by:

Hγ

[
v̇b

φ̈ m

]
+ cγ =

[
fb

τm

]
+

[
JT

b

JT
m

]
(−fe) (2.23)

where Hγ ∈R(6+m)×(6+m) is the generalized mass matrix of the servicer system ( [68]) and cγ ∈
R(6+m) represents the non-linear velocity dependent terms. fe = [FT

e ,τ
T
e ]

T ∈ R6 represents the
force/torque at the end-effector where Fe ∈R3 denotes the force and τe ∈R3 denotes the torque.
τm ∈ Rm denotes the manipulator’s joint torques. fb = [FT

b ,τ
T
b ]

T ∈ R6 are the force/torque
applied to the base center of mass, where Fb = 0 (Assumption 3, no linear momentum) and τb

is the control torque to be applied by the servicer’s base attitude control system. Jb ∈R6×6 and
Jm ∈R6×m are the servicer’s base and manipulator Jacobian matrices and are defined in (2.8b)
and (2.8c), respectively. The matrices Hγ is defined as follows:

Hγ =

[
Hb Hc

HT
c Hφ

]
(2.24)
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2.5. SERVICER DYNAMICS

where Hb is defined in (2.21), Hc is defined in (2.22), and Hφ is the mass matrix of the manip-
ulator and is defined as follows [68]:

Hφ =
m

∑
i=1

(JT
RiIiJRi +miJT

TiJTi) (2.25)

The servicer’s base linear acceleration, v̇b, can be eliminated from (2.23), resulting in:

M

[
φ̈ m

ẇb

]
+ c =

[
τm

τb

]
+J(−fe) (2.26)

where the submatrices M ∈R(m+3)×(m+3), c ∈R(m+3) and J ∈R(m+3)×6 result from the above
stated elimination [42]. Additional modifications can be made to (2.26) in order to express
the servicer dynamics in task space. This can be achieved by utilizing the momentum of the
servicer system [68]: [

Pb

Lb

]
= Hbvb +Hcφ̇ (2.27)

where Pb ∈R3 and Lb ∈R3 are the inertial linear and angular momentum of the servicer about
the base’s center of mass and are defined in (2.18). Hb ∈ R6×6 is the base inertia matrix and
Hc ∈ R6×m is the inertial coupling matrix and are defined in (2.21) and (2.22), respectively.
Furthermore, recall from (2.7) the kinematic relationship between the servicer’s end-effector,
base and manipulator joint velocities:

ve = Jbvb +Jmφ̇ m (2.28)

where ve = [vT
e ,wT

e ]
T ∈R6 represents the end-effector’s linear and angular velocity. The base’s

linear velocity can be eliminated from (2.28) with the use of servicer’s linear momentum in
(2.27) and results in the following [47]:

ve = Abwb +Amφ̇ m + 1
mtotal

Pb (2.29)

where mtotal is the total mass of the servicer system, Ab ∈ R6×3 and Am ∈ R6×m are defined
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2.5. SERVICER DYNAMICS

in [47] and presented below for convenience. The matrix Ab is defined as follows:

Ab =

[
r×ge

E3

]
∈ R6×3 (2.30)

where rge ∈ R3 is a position vector from the center of mass of the servicer system to the end-
effector. The matrix Am is defined as follows:

Am =

[
Jt

m− 1
mtotal

JTw

Jr
m

]
∈ R6×m (2.31)

where Jt
m ∈ R3×m and Jr

m ∈ R3×m are the linear and rotational component of the manipulator
Jacobian, Jm, defined in (2.8c): Jm = [Jt

m
T
,Jr

m
T]T. JTw is defined in (2.12d).

Taking the time derivative of (2.29) and solving for the manipulator joint acceleration, φ̈ m,
results in the following:

φ̈ m = A+
m(v̇e−Abẇb− cA− 1

mtotal

[
E3 0
0 0

]
fe)+PNDη (2.32)

where cA = (Ȧbwb+ Ȧmφ̇ m)∈R6 and the product PNDη represent manipulator joint accelera-
tion in the null space of Am, denoted as N(Am). PND = (Em−A+

mAm)∈Rm×m is the projection
operator onto N(Am) and η ∈ Rm can be designed to accomplish a task in N(Am). Any task
carried out in N(Am) will not affect the end-effector’s acceleration and hence will not influence
the end-effector’s position/orientation [4, 14]. N(Am) is non-trivial as long as the manipulator
arm is redundant with respect to the end-effector’s task space representation, that is m > 6, and
rank(Am) = 6.

To arrive at the final equation of motion of the servicer, (2.32) is utilized to express the
manipulator joint acceleration and base angular acceleration ([φ̈ T

m, ẇT
b ]

T) as follows:[
φ̈ m

ẇb

]
= A

[
v̇e

ẇb

]
+ cA +JA(−fe)+

[
PNDη

0

]
(2.33)

where the matrices A∈R(m+3)×(6+3), cA ∈R(m+3) and JA ∈R(m+3)×(6) are defined in [47] and
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are presented here for completeness. The terms A, cA and JA in (2.33) are defined as follows:

A =

[
A+

m −A+
mAb

0 E3

]
cA =

[
A+

mcA

0

]
(2.34)

JA =

A+
m

[
E3

−1
mtotal

0
0 0

]
0

 (2.35)

Substituting (2.33) into (2.26) results in the following:

M

[
v̇e

ẇb

]
+ c =

[
τm

τb

]
+J(−fe)−M

[
PNDη

0

]
(2.36)

where M = MA ∈ R(m+3)×(6+3), c = (McA + c) ∈ R(m+3) and J = (J−MJA) ∈ R(m+3)×6.
Furthermore, pre-multiply (2.36) by AT results in the following:

Msξ̇ + cs = AT
τ +Js(−fe)−ATM

[
PNDη

0

]
(2.37)

where ξ = [vT
e ,wT

b ]
T, Ms = ATMA ∈ R(6+3)×(6+3), cs = AT(McA + c) ∈ R(6+3), Js = AT(J−

MJA) ∈ R(6+3)×6 and τ = [τT
m,τ

T
b ]

T.

2.6 Target Dynamics

The target is modeled as a single rigid body where vt = [vT
t ,wT

t ]
T ∈ R6 represents the target’s

center of mass linear and angular velocity. The equation of motion of the target is given by:

Mtv̇t + ct = JT
t (fe) (2.38)

where Mt ∈ R6×6, ct ∈ R6 and Jt ∈ R6×6 are defined as:

Mt =

[
mtE3 0

0 It

]
ct =

[
0

wt× Itwt

]
Jt =

[
E3 −r×te
0 E3

]
(2.39)
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2.7. COMBINED SERVICER-TARGET DYNAMICS

where mt and It ∈R3×3 are the mass and inertia tensor of the target, respectively. rte ∈R3 (Fig.
1) is the radial vector from the target’s center of mass to the grasping point.

The velocity of the end-effector and target are subjected to the following kinematic con-
straints as a result of grasping (assumption 2):

ve = Jtvt (2.40)

v̇e = Jtv̇t + J̇tvt (2.41)

Utilizing (2.40) and (2.41) in (2.38), the target’s dynamics can be expressed as:

Λ tv̇e−Λ tJ̇tJ−1
t ve +J−T

t ct = fe (2.42)

where Λ t = J−T
t MtJ−1

t represents the target’s inertia projected onto the end-effector.

2.7 Combined Servicer-Target Dynamics

The equation of motion of the combined servicer and target system is obtained by substituting
(2.42) into (2.37), resulting in the following:

M̄ξ̇ + c = AT
τ (2.43)

where M̄ = Ms+[JsΛ t 0] and c = cs+Js(J−T
t ct−Λ tJ̇tJ−1

t ve). The equation of motion of the
combined servicer and target system, (2.43), is utilized in the formulation of the tracking con-
trol based detumbling strategy and assumes that the servicer does not contain any redundancy
with respect to the detumbling task.

2.8 Control Objective

The goal of this study is to develop a detumbling control strategy for the servicer to detum-
ble a non-cooperative tumbling target in the post-grasping phase. Detumbling of the target
requires that the target’s tumbling motion be brought to rest while rejecting the target’s gained
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2.8. CONTROL OBJECTIVE

momentum. Furthermore, this must be accomplished without exceeding force/torque limits at
the servicer’s end-effector and without accurate knowledge of the target’s inertial parameters.

The target’s inertial parameters consists of its mass (mt), inertia tensor (It) and location of
center of mass from the grasping location (rte). These parameters cannot be assumed known
prior to the post-grasping phase as there is no practical way to measure remaining propellant
fuel in zero gravity. The target (i.e., malfunctioning satellite) is not actuated by any onboard
actuators and hence has no means of expending fuel in the post-grasping phase. This implies
that its mass, bounds on its inertia tensor (λmin(It) ≤ ‖It‖ ≤ λmax(It)), and magnitude of its
location of center of mass from the grasping point (‖rte‖) are fixed and do not change during
the post-grasping phase. However, these bounds are not known and must be estimated prior to
the post-grasping phase. To determine these estimates, consider the following inequalities:

mtL ≤ mt ≤ mtU (2.44a)

λmaxL ≤ λmax(It)≤ λmaxU (2.44b)

λminL ≤ λmin(It)≤ λminU (2.44c)

rteL ≤ ‖rte‖ ≤ rteU (2.44d)

The upper and lower estimates of bounds on the target’s inertial parameters, denoted as (·)(·)L
and (·)(·)U in (2.44), can be estimated based on pre-launch data of the target satellite. Pre-
launch data of the satellite can be utilized to determine the satellites mass, inertia tensor and
location of center of mass with and without fuel. As a result of this, bounds on the target’s
inertial parameters and their estimates will depend on the target in question due differences in
the target’s inertial parameters with and without fuel. For instance, the percentage of a satellites
fuel mass to its total mass (satellites mass with fuel) can vary from 0% to 50% and ultimately
depends on the satellite’s mission [36].

Force/torque limits at the servicer’s end-effector play an important role in the post-grasping
phase. Force/torque limits can be specified based on design limits of the servicer’s end-effector
grasping mechanism [20,26], structural limits of the grasping point on the target [7,9,47,65,66]
and magnitude limits on the servicer’s control inputs. End-effector’s force/torque limits are
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related to the magnitude limits on the servicer’s control inputs so as to ensure that the target’s
momentum can be rejected by the servicer’s control inputs as it is transferred from the target to
the servcier. An increase in the end-effector’s force/torque limits will result in larger transfer
of momentum from the target to the servicer and will require larger servicer’s control inputs to
rejected the gained momentum so as to avoid tumbling of the combined servicer-target system.

Bringing the tumbling target’s motion to rest is reflected in its center of mass linear and
angular velocity (vt) converging to zero. However, as per the kinematic constraints presented
in (2.40) and (2.41) relating vt to ve, detumbling of the target can be realized once the ser-
vicer’s end-effector linear and angular velocity (ve) converge to zero. As stated above, it is
required that the target’s momentum be rejected in order to avoid tumbling of the combined
servicer-target system as the end-effector’s linear and angular velocity converge to zero. Under
assumption 3, the servicer-target system will only contain angular momentum. Rejection of
the target’s angular momentum in the post-grasping phase can be realized by requiring that
the servicer’s end-effector linear and angular velocity and the servicer’s base angular velocity,
ξ = [vT

e ,wT
b ]

T, converge to zero. This will mark the completion of the post-grasping phase.
End-effector force/torque limits can be expressed as follows: ‖Fe‖ ≤ Fmax, and ‖τe‖ ≤

τmax, where Fmax and τmax are the specified force and torque limits, respectively. The inter-
action force/torque experienced at the end-effector is dependent on the servicer’s and target’s
inertial parameters. While the servicer’s inertial parameters are assumed known, the target’s
inertial parameters are not known prior to the post-grasping phase but are bounded.

The control objective of this study is to design the servicer’s control input for its manipu-
lator and base attitude control system, τ = [τT

m,τ
T
b ]

T, that will bring the servicer’s end-effector
linear and angular velocity and servicer’s base angular velocity, ξ , to zero subjected to specified
end-effector force and torque limits, Fmax and τmax.
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Chapter 3

Detumbling Strategy using
Force/Torque Measurements

3.1 Detumbling Strategy Overview

In this Chapter, a detumbling control strategy is presented for the servicer to detumble a non-
cooperative target with unknown inertial parameter, while being subjected to force/torque lim-
its at the servicer’s end-effector. The presented detumbling control strategy is formulated un-
der the assumption that end-effector force/torque measurements are available. Detumbling is
achieved by following a newly defined reference detumbling force/torque that is designed to
bring the target’s linear and angular velocities to zero, while respecting force/torque limits at
the servicer’s end-effector. The reference detumbling force/torque is computed as a function of
known servicer parameters (end-effector force/torque limit and end-effector’s linear and angu-
lar velocities) and do not require the use of the target’s inertial parameters in its formulation as
in [6, 7, 9, 18, 65, 72]. The proposed detumbling control strategy enables the servicer to apply
a force/torque to the target’s grasping point that will bring its tumbling motion to rest while
allowing the servicer to comply with the targets’ unknown residual tumbling motion.

The controller to detumble the target is presented as follows:[
τm

τb

]
= c+Jfe +M

[
uf

ub

]
(3.1)
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where uf ∈R6 and ub ∈R3 are auxiliary inputs that will be designed to detumble the target and
to stabilize the servicer’s base, respectively. Note, it was assumed the servicer does not possess
any redundancy with respect to the detumbling task.

Substituting (3.1) into (2.36) will result in the following:[
v̇e

ẇb

]
=

[
uf

ub

]
. (3.2)

The auxiliary inputs in (3.2) will be designed to bring the target’s tumbling motion to rest
subjected to end-effector force/torque limits while rejecting the target’s gained momentum.
First, the design of the auxiliary input ub will be presented to control the servicer’s base atti-
tude in order to reject the target’s gained momentum as its tumbling motion is brought to rest.
Following this, the design of uf will be presented to dampen the target’s motion while allow-
ing compliance with its residual unknown tumbling motion. The development of uf will be
presented in two stages. In the first stage, the reference force/toque will be presented. In this
stage uf will be designed to follow the reference force/torque without accounting for changes
in the servicer’s inertial parameters as a result of the captured target. Instead, bounds on the
target’s inertial parameters and tumbling rate are derived for which the approach can detumble
(domain of attraction). In the second stage, an adaptive robust compensator will be introduced
into the design of uf that will account for changes in the servicer’s inertial parameters due to
the captured unknown target, and its benefits will be highlighted.

3.2 Control of Servicer’s Base Attitude

In the post-grasping phase, the target’s momentum is transferred to the servicer as its tumbling
motion is brought to rest. The gained momentum must be rejected by the servicer in order
to avoid tumbling of the combined servicer/target system. This can be achieved simply by
utilizing the following controller:

ub =−KADwb (3.3a)

where KAD ∈ R3×3 is positive definite. As per (3.1), control of the base and servicer’s end-
effector are decoupled. This allows the use of any controller to control the servicer’s base. For
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instance, if it is desirable to maintain the attitude of the servicer’s base to a specific attitude or
to re-orientate the attitude during the detumbling procedure, a simple PD quaternion feedback
can be utilized as follows:

ub =−KADwb−KAPδqv (3.3b)

where KAP > 0∈R. δqv = qsq∗v+qv×q∗v−qvq∗s ∈R3 represents the vector component of the
quaternion error where the scalar and vector components of the quaternion are denoted by (·)s

and (·)v, respectively, and (·)∗ represents the desired quaternion value. The utilization of either
controllers for the servicer’s base, (3.3a) or (3.3b), will result in the rejection of the gained
target’s momentum as it is brought to rest.

3.3 Control of Servicer’s End-effector

A force/torque must be applied to the target to counteract its momentum and bring it to rest.
In [7] and [9], knowledge of the target’s inertial parameters allowed the formulation of a de-
tumbling trajectory that adhere to force/torque limits at the grasping location. The force/torque
controller presented in this section allows compliance with the target while damping its motion
subjected to force/torque limits. This is achieved by applying a force/torque at the grasping
point that is opposite in direction to the end-effector’s linear and angular velocities and scaled
by the force/torque limits, respectively. The end-effector’s desired force/torque, denoted as
feD = [FT

eD,τ
T
eD]

T ∈ R6×1, are defined as:

FeD =
{ ve
‖ve‖(−Fmax) ‖ve‖> 0

0 ve = 0
(3.4)

τeD =
{ we
‖we‖(−τmax) ‖we‖> 0

0 we = 0
(3.5)

where Fmax and τmax are the limits of the end-effector’s force and torque magnitude and are
based on the structural design of the manipulator.

The auxiliary input, uf is defined as follows to track the desired force/torque [39]:

uf = KfP(feD− fe) (3.6)
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where KfP ∈ R6×6 > 0 is block diagonal proportional error gains, respectively.

3.3.1 Controller Evaluation

Substituting (3.3b) and (3.6) into (3.2) results in the following closed-loop equations:

v̇e = KfP(feD− fe) (3.7)

ẇb =−KADwb−KAPδqv (3.8)

Stability of the base attitude controller, (3.8), is proven based on the Lyapunov argument
in [73]. The closed loop dynamics of (3.7) describes compliance of the end-effector subjected
to the force error on the right side of (3.7). The dynamics of the environment must be utilized
to draw conclusions about the stability of (3.7). Under the current application of detumbling a
non-cooperative target, the dynamics of the environment is established by the tumbling target
and stability of the force controller in (3.7) can be ascertained by considering the environmental
force, fe (target’s dynamics).

Utilizing (3.4) and (3.5), (3.7) can be expressed as:

v̇e +KfP

[
Fmax
‖ve‖E3 0

0 τmax
‖ve‖E3

]
ve =−KfPfe (3.9)

for ‖ve‖ > 0 and ‖we‖ > 0. The above equation demonstrates that the interacting system is
stable since the excitation to the system,−KfPfe, is generated entirely by passive elements [11]:
the target has no means of creating energy.

During the detumbling operation, it is possible for the target’s kinetic energy to not mono-
tonically decrease while converging to zero. This is undesirable, as it may result in a prolonged
detumbling process. In addition, the evolution of the target’s dynamics subjected to an increase
in kinetic energy is difficult to predict and may result in larger force errors and even cause the
target to rotate out of the workspace of the servicer’s manipulator. It is desirable to bring the
target’s kinetic energy directly to zero during the detumbling procedure. These oscillations
are more prominent in targets with a low mass and inertia. To demonstrate this, consider the
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target’s kinetic energy expressed about the end-effector as:

Kte =
1
2

vT
e Λ tve (3.10)

If K̇te < 0,∀t > 0, we can conclude that the target’s kinetic energy will converge directly to
zero.

Evaluating the time derivative of (3.10) requires an expression of the target’s external force,
fe, that encompasses the desired force as well as the source of the force error. This is accom-
plished by utilizing the target’s dynamics, (2.42), and (3.7) to express fe as:

fe = (E6−K−1
fP (K−1

fP +Λ t)
−1)feD−K−1

fP (K−1
fP +Λ t)

−1(Λ tJ̇tJ−1
t ve−J−T

t ct) (3.11)

The time derivative of (3.10), yields:

K̇te = vT
e Λ tv̇e +

1
2

vT
e

d
dt
(Λ t)ve (3.12)

The evaluation of (3.12) requires using (3.11). Equation (3.11) can be simplified under the
assumption that the target’s mass and inertia are sufficiently large so that Λ t is much larger than
K−1

fP . This results in the following approximations:

K−1
fP +Λ t ≈Λ t, E6±K−1

fP Λ
−1
t ≈ E6 (3.13)

Note that the off diagonal components of Λ
−1
t are a function of the target’s size and are also

scaled by the inverse of the target’s inertia: M−1
t . Utilizing the above approximations, (3.13),

along with (2.42) and (3.11) allows the first term of (3.12) to be evaluated as follows:

vT
e Λ tv̇e = vT

e feD− vT
e J−T

t ct + vT
e Λ tJ̇tJ−1

t ve

= vT
e feD−vT

e ṙ×tewemt
(3.14)

where vT
e J−T

t ct = vT
t JT

t J−T
t ct = 0 with the use of (2.40), and vT

e Λ tJ̇tJ−1
t ve =−vT

e ṙ×tewemt were
utilized in (3.14).
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Utilizing the definition of Λ t, Jt, and ct in (2.39), the second term of (3.12) reduces to:

1
2

vT
e

d
dt
(Λ t)ve =

1
2

vT
e (J̇
−T
t MtJ−1

t +J−T
t MtJ̇

−1
t +J−T

t ṀtJ−1
t )ve

=
1
2
(vT

t ṙ×tewemt−wT
e ṙ×tevemt)

= vT
e ṙ×tewemt

(3.15)

where J−T
t ṀtJ−1

t = Ṁt and vT
e Ṁtve = 0.

Combining (3.14) and (3.15) in (3.12) results in:

K̇te = vT
e feD =−‖ve‖Fmax−‖we‖τmax < 0 (3.16)

which shows that the target’s kinetic energy goes directly to zero if the assumptions in (3.13)
are satisfied. If either the target’s mass or inertia tensor are small relative to K−1

fP , the above
analysis becomes invalid as assumption (3.13) cannot be applied and there will be the potential
for an exchange of kinetic energy between the target and servicer. To demonstrate this, we
evaluate K̇te without applying assumption (3.13). The resultant equation can be expressed as:

K̇te = α +β (3.17)

where α =−‖ve‖Fmax−‖we‖τmax and β = vT
t Γ (−feD+J−T

t ct−Λ tJ̇tJ−1
t ve) with Γ =K−1

fP (K−1
fP +

Λ t)
−1.
The additional term, β , aries because of the neglect of assumption (3.13) and is a function of

not only the target’s inertia but of its linear and angular velocity. Hence, the conclusion drawn
from (3.16) may be inaccurate for a target whose inertia is large enough to satisfy assumption
(3.13) if its motion is sufficiently large to the cause the presence of β in (3.17). Thus, it is of
interest to determine the target’s characteristics that ensure K̇te < 0,∀t > 0.

Upper bounds can be placed on α and β as follows:

α ≤−K‖ve‖ (3.18)

β ≤ ‖ve‖‖Γ ‖(‖feD‖+‖γ‖) (3.19)
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where K =min{Fmax,τmax}, ‖feD‖=(F2
max+τ2

max)
1
2 and ‖γ‖= ‖J−T

t ct−Λ tJ̇tJ−1
t ve‖. Utilizing

the definition of Λ t, Jt and ct in (2.39), the evaluation of ‖γ‖ in (3.19) is as follows:

γ = (J−T
t ct−Λ tJ̇tJ−1

t ve)

=

[
mtṙ×tewt

wt× Itwt−mtr×te ṙ×tewt

]
.

(3.20)

Utilizing Lemma 1 in [77], the components of (3.20) can be upper bounded
as follows:‖mtṙ×tewt‖ ≤ mt‖rte‖‖wt‖2, ‖wt × Itwt‖ ≤ [λ 2

max(It) − λ 2
min(It)]

1
2‖wt‖2 and

‖mtr×te ṙ×tewt‖≤mt‖rte‖2‖wt‖2. Utilizing these bounds and noting that ‖wt‖2≤‖ve‖2, the mag-
nitude of γ is upper bounded as:

‖γ‖ ≤ h‖ve‖2, h =
[
(mt‖rte‖)2 +

(
[λ 2

max(It)−λ
2
min(It)]

1
2 +mt‖rte‖2)2

] 1
2
. (3.21)

Utilizing the lower bound on Kte, 1
2λmin(Λ t)‖ve‖2≤Kte, and (3.21), results in the following

upper bound on β :

β ≤ ‖ve‖‖Γ ‖
(
‖feD‖+

2hKte

λmin(Λ t)

)
. (3.22)

Combining (3.22) and (3.18) in (3.17) results in:

K̇te ≤−‖ve‖
(

γ2−
2‖Γ ‖hKte

λmin(Λ t)

)
, γ2 = K−‖Γ ‖‖feD‖. (3.23)

From (3.23), provided γ2 > 0, for K̇te < 0, it is required that:(
γ2−

2‖Γ ‖hKte

λmin(Λ t)

)
> 0→ Kte <

λmin(Λ t)γ2

2‖Γ ‖h
(3.24)

Additionally, utilizing Kte≤ 1
2λmax(Λ t)‖ve‖2 and (3.24) results in an estimate of the domain

of attraction:

S =

{
ve

∣∣∣∣‖ve‖<
(

λmin(Λ t)γ2

λmax(Λ t)‖Γ ‖h

) 1
2
}
. (3.25)

Provided that γ2 > 0, it follows that if the target’s initial velocity after grasping is contained
in the set S, then the target’s kinetic energy will converge directly to zero since K̇te < 0 in S.
Furthermore, detumbling the target can be achieved in finite time. Utilizing the upper bounds
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on Kte and ‖ve‖ from (3.24) and (3.25) in (3.23), results in the following upper bound on the
time taken to detumble the target, tr, as:

tr ≤
ln(1/(1−ξc))

ς
(3.26)

where ς = [(4γ2‖Γ ‖h)/(λmin(Λ t)λmax(Λ t))]
1/2 and 0 ≤ ξc < 1 such that Kte(to) = ξcKUP

te

where KUP
te is the upper bound on Kte defined in (3.24).

The two requirements, γ2 > 0 and ve ∈ S, that arise from the above analysis imposes con-
straints on the target’s inertial parameters in order for K̇te < 0, ∀t > 0. The first constraint,
γ2 > 0 in (3.23), is dependent on K, ‖feD‖, KfP and ‖Γ ‖. For a fixed K, ‖feD‖ and KfP, ‖Γ ‖
is inversely proportional to the inertia of the target (‖Mt‖) and hence γ2 will approach 0 as the
target’s inertia decreases. The evaluation of the second constraint is dependent on the grasping
technique utilized in the pre-grasping phase as this will determine the initial velocity of the
post-grasping phase. The target’s velocity in the pre-grasping phase can be estimated from
vision based techniques [8]. If the approach utilized in the pre-grasping phase can capture the
target with little to no impact as in [8], then the estimated velocity prior to grasping can be
used to evaluate if the velocity of the grasping surface, ve, after capture (start of post-grasping
phase) is contained in the set S. Using estimated bounds on the target’s inertial parameters,
the above constraints can be evaluated to determine if the target can be detumbled under the
condition that K̇te < 0. Furthermore, increasing the proportional gain, KfP, allows for greater
uncertainty in bounds on the target’s inertial parameters (i.e., an increase in KfP ensures that
γ2 > 0 for targets with smaller and smaller inertia).

3.3.2 Force/Torque Error

Rearranging (3.11), the force/torque error, f̃e = feD− fe, results in:

f̃e = Γ [feD +Λ tJ̇tJ−T
t ve−J−T

t ct] (3.27)

Targets that satisfy γ2 > 0 (γ2 defined in (3.23)) and (3.25) ensures that the target’s kinetic
energy monotonically converges to zero and hence the terms on the right side of (3.27) are
bounded and will converge to zero. Hence, the force/torque error can be upper bounded by

36



3.3. CONTROL OF SERVICER’S END-EFFECTOR

utilizing (3.21) and (3.25), resulting in:

‖Γ [feD +Λ tJ̇tJ−T
t ve−J−T

t ct]‖< G (3.28)

where G = ‖Γ ‖‖feD‖+ λmin(Λ t)γ2/λmax(Λ t). Furthermore, considering the definition of Γ

presented after (3.17), the force/torque error can be reduced by an increase in KfP, and is lower
bounded by the second term of G.

3.3.3 Numerical Simulation

This subsection presents the evaluation of the proposed detumbling controller to detumble a
target in the post grasping phase. The manipulator and base attitude control inputs, τm and
τb, are defined as per (3.1). The auxiliary inputs, uf and ub, to detumble the target and to
reject the target’s momentum are defined as per (3.6) and (3.3a), respectively. Furthermore,
reference end-effector force/torque, (FeD) and (τeD), are modified in order to avoid chattering
as the end-effector’s linear and angular velocities converge to zero during the detumbling of
the target. As the target’s kinetic energy converges to zero, both the end-effector’s linear and
angular velocity will converge at different rates. This presents a drawback due to the kinematic
coupling between the end-effector’s linear and angular velocities and that of the target: the end-
effector’s linear and angular velocity will not remain at zero unless both are zero. As a result,
chattering of the desired force/torque in (3.4) and (3.5) will occur. To avoid this, the desired
force (FeD) and torque (τeD) are multiplied by sv and sw, respectively, where s(·) =

‖(·)‖
‖(·)‖+ε(·)

.
This results in the following:

FeD =−
(

ve

‖ve‖+ εv

)
Fmax (3.29)

τeD =−
(

we

‖we‖+ εw

)
τmax (3.30)

where εv and εw are positive constants used to attenuate the magnitude of the desired force and
torque, respectively, as the end-effector’s linear and angular velocities converge to zero.

Numerical simulations are carried out using a MATLAB Simulink add-on, SimMechanics
[1], emulating a 7-degree-of-freedom (DOF) space manipulator servicer satellite that is based
on a modified model of ETS-VII system. The model parameters of the servicer are described

37



3.3. CONTROL OF SERVICER’S END-EFFECTOR

in Appendix A.
As the servicer’s manipulator has 7-DOF, it will have redundancy with respect to the de-

tumbling task. The detumbling of the target will result in its momentum being transferred to
the manipulator as well as the servicer’s base. Redundant manipulators will have momentum
(joint motion) in the null space of the detumbling task when the target is brought to rest. This
momentum will be rejected by the base attitude control system. However, this process can
be slow as momentum is only rejected by the base attitude control system if the manipulator
null space motion disturbs the base. The transfer of momentum to the servicer’s base can be
improved with the use of joint damping in the null space of the detumbling task. This is similar
to reaction null space damping in [42], but the null space is formulated with respect to the
detumbling task in operational space. The manipulator joint torque to achieve this is defined
as:

τND =−M

[
PNDKNDφ̇ m

0

]
(3.31)

where PND ∈Rm×m stands for the projection operator onto the null space of Am ∈R6×m which
in turn maps the manipulator’s joint velocities from joint space to task space after eliminating
the base’s linear velocity (Am is defined in (2.31)). The gain, KND ∈Rm×m defines the damping
gain matrix, and PND = (Em−A+

mAm) where (·)+ denotes the Moor-Penrose pseudoinverse of
a matrix. The resulting detumbling controller is formulated by adding (3.31) to (3.1). For the
numerical simulation study, KND = E7.

The target is grasped at t = 0sec and is rigidly attached to the last link. As a result of impact,
the target’s initial angular momentum is redistributed in the servicer-target system, causing a
change in the servicer-target system velocities. The velocities of the servicer-target system
after grasping (t+ = 0sec) are computed as in [67]. Functions from the SpaceDyn toolbox
presented in [69] were utilized to compute the servicer’s mass matrix, Jacobian and nonlinear
forces.

The target is assumed to be a cube (1.95m× 1.95m× 1.95m cube) with the following
properties: It = diag([212.8, 212.8, 219.9])kgm2, mt = 350kg and an initial angular velocity
of wt = [−3.9,−3.9,−6.5]T deg/s. The end-effector’s force/torque magnitude Fmax, and τmax

are set at 8N and 10Nm, respectively. εv and εw are set at 10−2m/s and 10−2deg/s, respectively.
The servicer’s attitude and force controller utilize the following gains: KAD = 1.5E3 and KfP =

0.2E6.
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Figure 3.1: End-effector’s force and torque profile for Cases 1, 2 and 3.

The evaluation is carried out for three different cases. The first case is carried out utilizing
the above mentioned controller gains. The second case, introduces servicer model uncertainty
to the Case 1. The third case introduces an integral controller as in [64] to uf in (3.6) to Case
2. The integral controller is defined as follows: KfI

∫
(feD− fe)dt with KfI = 0.6E6. Servicer

model uncertainty is introduced by modeling the servicer’s geometry and inertia as 90% of
their true values, and the detumbling controller drops compensation of the nonlinear term, c,
in (3.1). As per the stated assumptions in Chapter 2, measurements of the servicer system are
assumed to be obtained at a sample rate of 0.01s from an inertial observer as suggested in [49].

The end-effector force/torque profile and force/torque tracking error are presented in Figs.
3.1, 3.2 and 3.3. For Cases 1 through 3, the end-effector force/torque are within the force/torque
limits, Fmax = 10N and τmax = 10Nm, for the duration of the detumbling period (Fig. 3.1). The
left plots of Figs. 3.2 and 3.3 indicate that the force and torque error are bounded by the force
and torque error bound derived in Section 3.3.2, (3.28). The force/torque profiles for Cases 1
through 3 appear to be identical in Fig. 3.1. However, subtle difference are observed when the
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Figure 3.2: End-effector’s force error profile. Left plots depict force error bound that is com-
puted as per (3.28). Right plots show enlarged force error.

force and torque tracking error are enlarged (right plots of Figs. 3.2 and 3.3). Force and torque
tracking errors are larger in Case 2 than in Case 1 due to servicer model uncertainty in Case 2.
The introduction of the integral gain, KfI, in Case 3 allows for better convergence of the force
and torque error but at the expense of larger peak force/torque error (Case 3, right plots in Figs.
3.2 and 3.3).

Detumbling of the target is considered complete once it is brought to rest. This is demon-
strated in Figs. 3.4 and 3.5 as the end-effector’s linear and angular velocity profiles are pre-
sented in Fig. 3.4 and the angular momentum distribution of the servicer-target system is
presented in Fig. 3.5. In Fig. 3.4, the end-effector’s linear and angular velocity components
converge to zero and are similar for Cases 1 through 3. In Fig. 3.5, the target’s momentum
is rejected as it converges to zero for Cases 1 through 3. In addition, Fig. 3.5 also demon-
strates the effect of null space damping for a redundant manipulator. A lower value of KND
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Figure 3.3: End-effector’s torque error profile. Left plots depict torque error bound that is
computed as per (3.28). Right plots show enlarged torque error.

will prolong the detumbling procedure as the manipulator’s momentum in the null space of the
detumbling task will take time to transfer to the servicer’s base where it will be rejected. As
per the stability analysis presented earlier, the kinetic energy of the target, (3.10), is presented
in Fig. 3.6 and is shown to monotonically converge to zero for Cases 1 through 3.

As indicated from Figs. 3.1 through 3.6, detumbling is achieved for all three cases while
respecting force/torque limits without the use of the target’s inertial parameters. Determining
if the target could be detumbled under the condition that K̇te < 0 is determined based on pre-
launched data of the satellite as discussed at the end of Section 3.3.1. Furthermore, in the
above analysis, the rotation rate (wt) utilized for the target initial angular velocity may appear
considerably low. However, a low tumbling rate is reasonable as the motion rate of most targets
can be characterized as a slow rotation about a major axis with a small nutation angle [53]. For
example, ground based observation of ADEOS 1 described its attitude motion as composed

41



3.3. CONTROL OF SERVICER’S END-EFFECTOR

of two rotational components: 0.1deg/s about the satellite’s main body and another about the
satellite’s boom of about 0.4deg/s [77]. Observation of Envisat resulted in an average rotation
rate of 3.5deg/s [62].

Figure 3.4: End-effector’s linear and angular velocities for Cases 1, 2 and 3.
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Figure 3.5: Angular momentum distribution for Cases 1, 2 and 3.

Figure 3.6: Target’s kinetic energy for Cases 1, 2 and 3.
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3.4 Robust Detumbling of Target

In this section, the design of uf is extended with the addition of a continuous robust compen-
sator that is designed to compensate for changes in the servicer’s inertial parameters due to the
grasped target at the servicer’s end-effector in the post-grasping phase. In the previous section,
detumbling of the target is seen to be possible without the addition of any robust compensator
and the resultant detumbling controller is simple. However, implementation of the detumbling
controller requires one to determine if the potential target slated for servicing will satisfy the
detumbling criteria: γ2 defined in (3.23) is greater than zero, and ve ∈ S with S defined in (3.25).
Bounds on the target’s inertial parameters can be utilized to evaluate the detumbling criteria.
However, the detumbling criteria may not be possible to satisfy if the estimated bounds on the
target’s inertial parameters are conservative (i.e., the detumbling criteria becomes impractical
to satisfy as the set S may become small).

Alternatively, in this section, instead of imposing restrictions in the form of the detumbling
criteria (i.e., γ2 > 0 and ve ∈ S), a robust compensator is designed to compensate for changes
in the servicer’s inertial parameters as a result of the captured target during the post-grasping
phase. The continuous robust compensator is designed in this section and its gains are pre-
sented to be determined as a function of bounds on the target’s inertial parameters. Following
this, an adaptive technique is utilized to allow the estimation of bounds on the target’s inertial
parameters in real-time. This eliminates the use of conservative estimates of bounds on the
target’s inertial parameters in the robust compensator. Furthermore, the desired force/torque in
(3.4) and (3.5) are modified and stability proof of the closed-loop system is presented.

Prior to presenting the robust detumbling controller, the target’s equation of motion are
presented once more, but are expressed in a body fixed frame on the target. This is done so
that the time derivative of the target’s kinetic energy does not involve the time derivative of the
target’s mass matrix.

3.4.1 Target Dynamics in Body Fixed Frame

From Fig. 2.1, two body fixed frames are denoted as Σt and Σe. Σt is located at the target’s
center of mass and Σe is located at the grasping point. As per assumption 2, the target is
assumed to be rigidly grasped. Hence, the body fixed frame at the target’s grasping point, Σe,
also represents the end-effector’s frame.
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The orientation of Σe is known and Σt is assumed to have the same orientation as Σe, re-
sulting in eRt = E3. Let tvt = [tvT

t ,
t wT

t ]
T ∈R6 represent the target’s linear and angular velocity

about its center of mass in Σt. The target’s linear and angular velocity about its center of mass
can also be expressed as evt = [evT

t ,
e wT

t ]
T ∈ R6 in Σe where tvt =

evt since eRt = E3. Utilizing
the above, the equations of motion of the target are:

Mte
ev̇t + cte = JT

te(
efe) (3.32)

where Mte ∈ R6×6, cte ∈ R6 and Jte ∈ R6×6 are defined as:

Mte =

[
mtE3 0

0 Ite

]
cte =

[
ewt×mt

evt
ewt× Ite

ewt

]
(3.33)

Jte =

[
E3 −er×te
0 E3

]
(3.34)

and mt and Ite ∈ R3×3 are the mass and inertia tensor of the target about Σt, respectively.
erte ∈ R3 is the radial vector from the target’s center of mass to the grasping point, and efe is
the end-effector’s force/torque expressed in Σe. efe and fe have the following relationship:

efe = Rfe

=

[
eR 0
0 eR

]
fe.

(3.35)

The velocity of the end-effector and target are subjected to the following kinematic con-
straints as a result of grasping (assumption 2):

eve = Jte
evt (3.36)

ev̇e = Jte
tv̇t (3.37)

Utilizing (3.36) and (3.37) in (3.32) results in the following equation of motion for the
target:

Λ te
ev̇e +J−T

te cte =
efe (3.38)
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where Λ te = J−T
te MteJ−1

te ∈ R6×6 represents the target’s inertia projected onto the end-effector.
Λ te > 0 since Mte > 0 and J−1

te is always full rank (Jte defined in (3.34) is always invertible).

3.4.2 Modified Detumbling Control

Recall that the ultimate goal of detumbling a target is to bring its linear and angular velocities
to rest and is accomplished by applying a detumbling force/torque to the target at the grasping
location. Achieving this goal is further complicated as the detumbling force/torque must be
constrained by force/torque limits at the grasping location. As pointed out earlier, in the liter-
ature, this is accomplished by defining a desired detumbling force/torque as a function of the
target’s inertial parameters and force/torque limits [6, 7, 9, 47, 65]. However, it is not practical
to obtain accurate values of the target’s inertial parameters for use in the computation of the de-
sired detumbling force/torque. Furthermore, the detumbling force/torque presented by [6, 7, 9]
and [47] will result in a discontinuous desired detumbling force/torque. This is undesirable as
the discontinuity may result in the excitation of unmodeled dynamics in both the servicer and
target.

The detumbling force/torque presented in this section is designed to bring the target’s linear
and angular velocities to zero, and it does not require the target’s inertial parameters in its
computation and is continuous. This is accomplished by defining the desired force/torque
in the opposite direction of the end-effector’s linear/angular velocity vectors and scaled by
force/torque limits. The desired force/torque is denoted as efeD = [eFT

eD,
e τT

eD]
T ∈ R6, where

eFeD ∈ R3 denotes the end-effector’s desired force and eτeD ∈ R3 denotes the end-effector’s
desired toque. eFeD and eτeD are defined as follows:

eFeD =
eve

‖eve‖+εs
(−Fmax) (3.39)

e
τeD =

ewe
‖eve‖+εs

(−τmax) (3.40)

where Fmax and τmax are the force and torque limits, respectively, at the end-effector. εs is a
positive constant used to attenuate the magnitude of the desired force and torque, respectively,
as the end-effector’s linear and angular velocities converge to zero. This was done to avoid
chattering of the desired force/torque since kinematic coupling between the end-effector’s lin-
ear and angular velocities, and that of the target’s centre of mass will result in the following as
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the end-effector’s linear and angular velocities converge to zero and if εs = 0: end-effector’s
linear and angular velocities will not remain at zero unless both are zero.

The auxiliary input, uf, is defined as follows:

uf = RTeuf

= RT(KfP(
efeD−e fe)−KfPΨ)

(3.41)

where KfP ∈ R6×6 > 0 is block diagonal proportional force error gain and Ψ ∈ R6 is a ro-
bust compensator that will account for the target’s unknown inertial parameters (defined in the
following subsection).

3.4.3 Controller Evaluation

Substituting (3.1), (3.3b) and (3.41) into the servicer’s equation of motion, (2.36), and noting
that v̇e = RT

(ev̇e +Vc), results in the following closed-loop equations:

ev̇e = KfP(
efeD− efe)−KfPΨ −Vc (3.42)

ẇb =−KADwb−KAPδqv (3.43)

where

Vc =

[
ew×e eve

0

]
(3.44)

Stability of system (3.43) is proven based on the Lyapunov argument presented by [73]
(stability with the use of the base controller (3.3a) is trivial). Stability of (3.42) can be ascer-
tained by proving that the target’s kinetic energy decrease during the detumbling procedure.
The target’s kinetic energy is defined as:

V1 =
1
2

evT
e Λ te

eve. (3.45)
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Taking the time derivative of (3.45) and using (3.38), we have:

V̇1 =
evT

e Λ te
ev̇e

= evT
e (

efe−J−T
te cte)

= evT
e

efe

(3.46)

where evT
e J−T

te cte =
evT

t JT
teJ−T

te cte = 0 with the use of (3.36).
Evaluating V̇1 in (3.46) requires an expression of the end-effector’s force/torque, efe, that

encompasses the desired force/torque and the force/torque error. This is accomplished by rear-
ranging the target’s equation of motion in (3.38), resulting in:

ev̇e = Λ
−1
te

efe−Λ
−1
te J−T

te cte

= Λ
−1
te

efe− f (Mte,
erte,

eve)−Vc
(3.47)

f (Mte,
erte,

eve) =

[
ew×e er×teewe

0

]
+

[
−er×teI−1

te
ew×e Ite

ewe

I−1
te

ew×e Ite
ewe

]
(3.48)

where ewe =
ewt as per (3.36). Substituting (3.47) into the closed-loop equation, (3.42), results

in the following expression for the end-effector’s force/torque:

efe =
efeD +K−1

fP G−Ψ (3.49a)

G = f (Mte,
erte,

eve)−Λ
−1
te

efe (3.49b)

From (3.49a), the term G prevents the end-effector’s force/torque, efe, from accurately
tracking the desired force/torque, efeD. The additional term G is a function of the target’s in-
ertial parameters and may cause the target’s kinetic energy to increase during the detumbling
procedure. An increase in the target’s kinetic energy is undesirable in the detumbling pro-
cedure as it may result in a prolonged detumbling process. In addition, the evolution of the
target’s motion subjected to an increase in kinetic energy is difficult to predict and may result
in the target rotating out of the workspace of the servicer’s manipulator. Thus, it is desirable
for the target’s kinetic energy to monotonically converge to zero. To achieve this, the robust
compensator, Ψ , is designed to robustly compensate for G so that the target’s kinetic energy
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monotonically converges to zero. Similar to the work by [28], the robust compensator, Ψ , in
(3.49a) is defined as:

Ψi = Ditanh
(

6Diku{eve}i
εr

)
for i = 1,2,3, ...,6 (3.50a)

where ku = 0.2785 [52], εr is a small positive scalar, and Di is a bounding function of the
end-effector’s angular velocity, end-effector’s force/torque and bounds on the target’s inertial
parameters, and satisfies the following inequality:

|{K−1
fP G}i| ≤ Di. (3.50b)

Defining the robust compensator, (3.50a), with the use of the hyperbolic tangent function was
done to prevent chattering. That is, if the hyperbolic tangent function was not utilized, an
alternative robust compensator would have to be defined using the sign function of the end-
effector velocity and would result in chattering of the robust compensator: Ψi = Disgn({eve}i),
where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, or sgn(x) = 0 if x = 0. Chattering would
result as the individual components of the end-effector’s velocity will not converge to zero all
at the same time. Some components would equal to zero while others would not. This arises
because there is coupling between the servcier’s end-effector’s velocity and target’s center of
mass velocity, (2.40), the components at zero will not stay at zero unless all components of
the end-effector’s velocity are all zero. Using the sign function in the robust compensator, Ψi,
would result in its values changing from 0 to Di when the |{eve}i| changes from 0 to a non-
zero value. This is undesirable as this sudden change in control input could excite unmodelled
dynamics.

To determine the bounding function, Di, note that G ∈R6 in (3.49b) can be segmented into
linear and angular components as follow: G = [GT

L,G
T
A]

T where GL ∈R3 and GA ∈R3 are the
linear and angular components of G, respectively. Using (3.48) and the definition of Λ t from
(3.38) in (3.49b), allows G to be expanded as:

GL = ew×e
er×te

ewe− er×teI−1
te

ew×e Ite
ewe

− (m−1
t E3− er×teI−1

te
er×te)

eFe +
er×teI−1

te
e
τe

(3.51a)

GA = I−1
te

ew×e Ite
ewe− I−1

te
er×te

eFe− I−1
te

e
τe (3.51b)
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Di can be determined by bounding GL and GA. This is established by noting the following:

‖erte‖ ≤ rte, (3.52)

and make use of Lemma 1 in [77]. As a result, the components of GL and GA are bounded as
follows:

ew×e
er×te

ewe ≤ ‖ewe‖2rte (3.53)

−er×teI−1
te

ew×e Ite
ewe = (I−1

te
ew×e Ite

ewe)
×erte

≤ ‖I−1
te ‖[λ 2

max(Ite)−λ
2
min(Ite)]

1/2‖ewe‖2rte

≤ [σ2−1]1/2‖ewe‖2rte

(3.54)

where σ = λmax(Ite)/λmin(Ite).

−(m−1
t E3− er×teI−1

te
er×te)Fe ≤ m−1

t ‖Fe‖+ rte‖er×teFe‖λ−1
min(Ite)

≤ (m−1
t + rte

2
λ
−1
min(Ite))‖Fe‖

(3.55)

er×teI−1
te τe ≤ rteλ

−1
min(It)‖τe‖ (3.56)

I−1
te

ew×e Ite
ewe ≤ [σ2−1]1/2‖ewe‖2 (3.57)

−I−1
te

er×teFe− I−1
te τe ≤ λ

−1
min(Ite)[rte‖Fe‖+‖τe‖] (3.58)

Using the defined bounds in (3.53-3.58) to upper bound GL and GA in (3.51), the following
bounding function, Di, can be obtained:

Di=1,2,3 = ‖K−1
fPi‖
[
a1‖ewe‖2 +a2‖eFe‖+a3‖e

τe‖
]

(3.59a)

Di=4,5,6 = ‖K−1
fPi‖
[
a4‖ewe‖2 +a5‖eFe‖+a6‖e

τe‖
]

(3.59b)
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where
a1 = rte

(
(σ2−1)1/2 +1

)
(3.60a)

a2 =
(
m−1

t + r2
teλ
−1
min(Ite)

)
(3.60b)

a3 = (rteλ
−1
min(Ite)) (3.60c)

a4 = (σ2−1)1/2 (3.60d)

a5 = a3 (3.60e)

a6 = λ
−1
minL(Ite) (3.60f)

Now, V̇1 can be evaluated by substituting (3.49a) into (3.46), resulting in:

V̇1 =
evT

e
efeD + evT

e (K
−1
fP G−Ψ) (3.61)

An upper bound on first term of (3.61) is obtained as follows:

evT
e

efeD =−(‖eve‖2Fmax +‖ewe‖2
τmax)

1
‖eve‖+ εs

≤−K
‖eve‖2

‖eve‖+ εs

(3.62)

where ‖eve‖2 = ‖eve‖2 +‖ewe‖2 and K = min{Fmax,τmax} were utilized.
The hyperbolic tangent function has the following property [52]:

0≤ |x|− xtanh
(

x
εu

)
≤ kuεu (3.63)

for any εu > 0 and any x ∈ R. The second term of (3.61) is upper bounded with the use of
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(3.63) and (3.50) as follows:

evT
e (K

−1
fP G−Ψ)≤∑

6
i

[
|{eve}i|Di− eveiDitanh

(
6Diku{eve}i

εr

)]
≤∑

6
i

(
εr
6

)
= εr.

(3.64)

Utilizing (3.62) and (3.64) in (3.61), we obtain the following upper bound for V̇1:

V̇1 ≤−K
‖eve‖2

‖eve‖+ εs
+ εr. (3.65)

From (3.65), the magnitude of the end-effector’s velocity will converge to a nieghborbood
of zero. The size of this neighborhood is determined by making use of the following inequality:

λminA

2
‖eve‖2 ≤ V1 ≤

λmaxA

2
‖eve‖2 (3.66)

where λminA and λmaxA are the minimum amd maximum eigenvalue of Λte.
Utilizing the inequality in (3.66), (3.65) can be expressed as:

V̇1 ≤−
2KV1/λmaxA√
2V1/λminA + εs

+ εr. (3.67)

From (3.67), V̇1 < 0 when:

V1 >

(
εr
√

2/λminA +
√

2εr2/λminA +8εrεsK/λmaxA

4K/λmaxA

)2

. (3.68)

Utilizing (3.66) and (3.68), an ultimate bound on the end-effector’s velocity is:

limsup
t→∞

‖eve‖ ≤ C
√

2/λminA (3.69a)

C =

(
εr
√

2/λminA +
√

2εr2/λminA +8εrεsK/λmaxA

4K/λmaxA

)
. (3.69b)

The proposed detumbling controller ensures that the end-effector’s velocity will converge
to a neighbourhood of ‖eve‖= 0 and is ultimately upper bounded by (3.69). Both εr and εs are
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selected to avoid chatter of the proposed detumbling controller. εs is utilized to avoid chattering
of efeD and εr is utilized to avoid chattering of the robust compensator. As shown from (3.69),
a reduction in εr will result in a reduced ultimate upper bound on the end-effector’s velocity.
However, this increases the likelihood of chattering when the end-effector’s linear and angular
velocities are near zero. Thus, the selection of εr must trade off between the magnitude of the
upper bound on ‖eve‖ and chattering effect of the control.

3.4.4 Real-Time Estimation of Bounds on the Target’s Inertial Parame-
ters

The robust compensator, Ψ in (3.50a), requires bounds on the target’s inertial parameters in
order to reject the disturbance created by GL and GA. The target’s inertial parameters are
unknown, but bounds on the target’s inertial parameters can be estimated from pre-launch data.
Traditionally, these estimates will be conservative and will result in larger than required robust
gains to detumble the target. An intuitive way to avoid this and enhance robustness, is to
introduce an additional control input that adaptively rejects the disturbance created by GL and
GA. This is achieved by estimating the bounds on the target’s inertial parameter, ai, in real-time
and ensuring that the estimate is always less than or equal to the conservative estimate of ai,
denoted as ai.

With additional modelling information, the target’s inertial parameters can be bounded as:

mtL ≤ mt ≤ mtU (3.70a)

λmaxL ≤ λmax(Ite)≤ λmaxU (3.70b)

λminL ≤ λmin(Ite)≤ λminU (3.70c)

rteL ≤ ‖rte‖ ≤ rteU (3.70d)

where (·)L and (·)U represent lower and upper bounds on (·), respectively. Utilize (3.70), the
coefficients, ai, of the bounding function, Di, defined in (3.60) can be upper and lower bounded
such that ai ≤ ai ≤ ai for i = 1,2,3, ...,6, where ai and ai represent the lower and upper bounds
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of ai, respectively. As a result, the robust compensator is designed as:

Ψi = 2D̂itanh
(

12D̂iku{eve}i
εr

)
for i = 1,2,3, ...,6 (3.71)

where D̂i is computed as in (3.59) with the use of âi instead of ai. The variable âi is a dynamic
estimate of ai for i = 1,2,3, ...,6, and are updated by [24]:

˙̂ai = ci
(
1− âi

ai

)
ρi−κi(âi−ai) for i = 1,2,3, ...,6 (3.72)

where ci > 0 and κi > 0 are constants and ρi for i = 1,2,3, ...,6 are defined as follows:

ρi = Ξ?‖K−1
fPi‖‖

ewe‖2 for i = 1,4 (3.73a)

ρi = Ξ?‖K−1
fPi‖‖

eFe‖ for i = 2,5 (3.73b)

ρi = Ξ?‖K−1
fPi‖‖

e
τe‖ for i = 3,6 (3.73c)

where ?=U if i= 1,2,3, and ?= L if i= 4,5,6. ΞU =∑
3
i=1|{eve}i| and ΞL =∑

6
i=4|{eve}i|. The

above adaptive law (3.72) will ensure that ai ≤ âi(t) ≤ ai if ai ≤ âi(0) ≤ ai and thus prevents
the estimate, âi, from drifting arbitrarily and exceeding the conservative estimate, ai [24].

Stability of the resultant system (3.42) with the modified robust compensator, (3.71), and
adaptive update law, (3.72), is studied considering the following Lyapunov function candidate:

V2 = V1 +∑
6
i=1

1
2ci

ã2
i (3.74)

where ãi = ai− âi and V1 was defined in (3.45).
Taking the time derivative of (3.74) and using (3.38) and (3.49a), we have:

V̇2 =
evT

e
efeD + evT

e (K
−1
fP G−Ψ)−∑

6
i=1

1
ci

ãi ˙̂ai. (3.75)

where Ψ is defined as per (3.71).
The first term of (3.75) is upper bounded as in (3.62) and the second term of (3.75) is upper
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bounded with the use of (3.73), (3.71), (3.63) and (3.50b) as follows:

evT
e (K

−1
fP G−Ψ)≤ ∑

6
i

[
|{eve}i|Di−2eveiD̂itanh

(
12D̂iku{eve}i

εr

)]
≤ εr +∑

6
i=1|{eve}i|Di−2∑

6
i=1|{eve}i|D̂i

= εr +∑
6
i=1 aiρi−2∑

6
i=1 âiρi

(3.76)

where ∑
6
i=1|{eve}i|Di = ∑

6
i=1 aiρi and ∑

6
i=1|{eve}i|D̂i = ∑

6
i=1 âiρi were utilized.

Since the adaptive law ensures ai ≤ âi(t)≤ ai, it follows that ai/ai ≤ 1, â2
i ≥ a2

i and ãi(âi−
ai) ≤ (ai− ai)

2. Using these properties along with (3.72), the third term of (3.75) is upper
bounded as follows:

−∑
6
i=1

1
ci

ãi ˙̂ai = ∑
6
i=1(−ãiρi +

ãiâi
ai

ρi +
κi
ci

ãi(âi−ai))

≤ ∑
6
i=1(−aiρi +2âiρi−

a2
i

ai
ρi +

κi
ci
(ai−ai)

2).
(3.77)

Utilizing (3.62), (3.76) and (3.77) in (3.75) results in the following:

V̇2 ≤−K
‖eve‖2

‖eve‖+ εs
+ηo (3.78)

where ηo = εr +∑
6
i=1(

κi
ci
(ai−ai)

2). From (3.78) the magnitude of end-effector’s velocity will
converge to a neighborhood about zero. The size of this neighborhood is determined by making
using of the following inequality:

λminA
2 ‖

eve‖2 ≤ V2 ≤ λmaxA
2 ‖

eve‖2 +∑
6
i=1|ãi|2 ≤ λmaxA

2 ‖
eve‖2 +∑

6
i=1(ai−ai)

2 (3.79)

where |ãi| ≤ (ai−ai).
Similarly to Section 3.4.3, the ultimate bound on the end-effector velocity is obtained by

using (3.79) in (3.78), resulting in the following:

limsup
t→∞

‖eve‖ ≤ C
√

2/λminA (3.80a)

C =

(
ηo
√

2/λminA+
√

2ηo2/λminA+8Kηoεs/λmaxA+16K2(∑6
i=1(ai−ai)

2)/λ 2
maxA

4K/λmaxA

)
. (3.80b)
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The proposed robust detumbling controller with real-time estimation of bounds on the tar-
get’s inertial parameters ensures that the end-effector’s velocity will converge to a neighbour-
hood of ‖eve‖= 0 and is ultimately upper bounded by (3.80). A reduction in the size of ηo will
result in a reduction of the ultimate upper bound. This can be made possible with the selection
of the gains ki and ci such that the ratio ki/ci is reduced. Furthermore, a smaller selection of
εr will also result in a reduce ηo. However, this increases the likelihood of chattering and this
trade off must be considered in its selection.

3.4.5 Force/Torque Error

Rearranging (3.49a) and utilizing (3.71), the components of the force/torque error, ef̃ei =
efei−

efeDi for i = 1,2,3...6, are upper bounded by:

|ef̃ei| ≤ Di

(
1+2tanh

(
12Diku{eve}i

εr

))
(3.81)

where Di is computed as in (3.59) with the use of ai instead of ai.
From (3.81), the largest value of ef̃ei is 3Di and decreases as the target’s linear and angular

velocities converge to a neighbourhood of zero. As per (3.59), the value of Di is dependent
on the target’s size, rotation rate, inertia, contact force/torque and decreases as the target is
detumbled. The rotation rate of a tumbling satellite can be assumed small, [40,53,63], and the
contact force/torque scaled by the inertia of the target becomes negligible as both the contact
force and torque are scaled by (m−1

tL + r2
teUλ

−1
minL), rteUλ

−1
minL and λ

−1
minL in (3.59).

3.4.6 Implications of Servicer’s Force/Torque Limits

Adhering to end-effector force/torque limits is an important mission constraint in the post-
grasping phase. Force/torque limits at the grasping point can be determined based on
force/torque limits of the grasping mechanism at the servicer’s end-effector. Exceeding these
limits will result in damage of the grasping mechanism and potential lost of contact with the
target. Additionally, end-effector force/torque limits are determined based on the servicer’s
attitude control system torque limits and the manipulator joint torque limits.

In order to establish a relationship between the servicer’s force/torque limits at the grasp-
ing point and the maximum torque experienced by the servicer’s manipulator joints and base
attitude control system, it is first assumed that ẇb = wb = 0. This assumption reflects the study
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conducted by [8], where the pre-grasping phase intercept trajectory to grasp the target is de-
signed to avoid impact with the target’s grasping point. This will result in zero disturbance to
the servicer’s base. With this assumption, keeping the base undisturbed in the post-grasping
phase will ensure that the target’s momentum is rejected while its tumbling motion is brought
to rest. The resultant manipulator joints and base attitude control system torque limits to be
determined below, reflect the maximum torques required to achieve this while being subjected
to an external force/torque at the end-effector in the post-grasping phase. Utilizing the above
assumption in the servicer’s equation of motion, (2.36), results in the following (servicer does
not possess redundancy with respect to the detumbling task):

τm = M11v̇e + ce +Jefe (3.82a)

τb = M21v̇e + cl +Jlfe (3.82b)

where M, c and J are partitioned into the following components:

M =

[
M11 M12

M21 M22

]
c =

[
ce

cl

]
J =

[
Je

Jl

]
(3.82c)

where M11 ∈Rm×6, M12 ∈Rm×3, M21 ∈R3×6, M22 ∈R3×3, ce ∈Rm, cl ∈R3, Je ∈Rm×6 and
Jl ∈ R3×6.

From (3.82a) and (3.82b), in order to keep the servicer’s base undisturbed (i.e. reject the
target’s gained momentum) it is required that the servicer’s manipulator joint torques, τm,
and servicer’s base attitude control torques, τb, be equal to the terms on the right side of the
equations. The end-effector’s acceleration, v̇e, can be eliminated from (3.82a) and (3.82b) with
the use of the target’s equation of motion, (3.38), and making note that v̇e = RT

(ev̇e +Vc) will
result in the following:

τm = (M11RT
Λ
−1
te R+Je)fe +(ce +M11RT

(Vc−Λ
−1
te J−T

te cte))

≈ (M11RT
Λ
−1
te R+Je)fe

(3.83a)

τb = (M21RT
Λ
−1
te R+Jl)fe +(cl +M21RT

(Vc−Λ
−1
te J−T

te cte))

≈ (M21RT
Λ
−1
te R+Jl)fe

(3.83b)
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In (3.83a) and (3.83b), it was approximated that the non-linear velocity dependent terms
are negligible due to the slow rotation rate of the target [40, 53, 63]. From (3.83a) and (3.83b),
the manipulator and base attitude control torques are upper bounded as follows:

‖τm‖ ≤ (‖M11‖‖Λ−1
te ‖+‖Je‖)Kmax (3.84a)

‖τb‖ ≤ (‖M21‖‖Λ−1
te ‖+‖Jl‖)Kmax (3.84b)

where ‖R‖ = 1 and Kmax = max{Fmax,τmax}. The upper bound of fe is the maximum of the
force and torque limit at the end-effector and is denoted as Kmax. From (3.84a) and (3.84b),
increasing the force/torque limits at the end-effector will result in an increase of the maximum
manipulator torque or maximum servicer’s attitude control torque required to keep the ser-
vicer’s base undisturbed and reject the target’s gained momentum. The norms ‖M11‖, ‖M21‖,
‖Je‖ and ‖Jl‖ are dependent on the known servicer’s inertial parameters and geometry, and
their largest possible values can be determined. The target’s inertial parameters are unknown,
but the largest possible value of ‖Λ−1

te ‖ can be determined based on pre-launched data of the
target. For target’s with sufficiently large inertia, the first terms of the upper bounds of τm

and τb can be approximated as zero (‖M11‖‖Λ−1
te ‖ = ‖M21‖‖Λ−1

te ‖ ≈ 0) so that the above
inequalities in (3.84) reduces to:

‖τm‖ ≤ ‖Je‖Kmax (3.85a)

‖τb‖ ≤ ‖Jl‖Kmax (3.85b)

3.4.7 Numerical Simulation

This section presents the evaluation of the proposed detumbling controller to detumble a non-
cooperative target with unknown but bounded inertial parameters, while being subjected to
force/torque limits at the servicer’s end-effector. The evaluation is carried out using a 7-degree-
of-freedom (DOF) space manipulator servicer satellite that is based on a modified model of
ETS-VII system. The model parameters of the servicer are described in Appendix A. The
target is modelled as a cube with 1.95 m sides and its inertia parameters are presented in
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Table 3.1: Target Properties for Numerical Simulation Studies

Condition: Dry Wet

mt,kg 350 500
It,kgm2 diag([212.8,212.8,219.9]) diag([263.4,263.4,240.1])
‖rte‖,m 1.62 1.71

Table 3.1. Further details on the modelling of the target and its inertial parameters can be found
in Appendix A. For the numerical simulation, the target will be modelled with zero fuel and its
inertial parameters will reflect that of the Dry Condition in Table 3.1.

The target is grasped at t = 0s, resulting in a redistribution of its momentum in the servicer-
target system. The velocities of the servicer-target system after grasping (t+ = 0s) are com-
puted as in [67]. The target has an initial angular velocity of wt = [−3.9, −3.9, −6.5]T deg/s
at the start of the post grasping phase. The initial velocity of the target in the post-grasping
phase is reasonable as ground based observation of ADEOS 1 described its attitude motion as
composed of two rotational components: 0.1deg/s about the satellite’s main body and another
about the satellite’s boom of about 0.4deg/s [77]. Observation of Envisat resulted in an average
rotation rate of 3.5deg/s [62]. Functions from the SpaceDyn toolbox were utilized to compute
the servicer’s mass matrix, Jacobian and nonlinear forces [69].

The manipulator and base attitude control torques, τm and τb, are defined as per (3.1). Con-
trol of the servicer’s base and end-effector are defined by the auxiliary inputs, uf in (3.41) and
ub in (3.3a), respectively. The reference force/torque is defined in (3.39-3.40). The robust com-
pensator, Ψ , is defined in (3.71) and estimates of the bounds on the target’s inertial parameters,
âi for i = 1,2,3, ...,6, are updated as per (3.72).

The proposed detumbling strategy is presented for two different cases. Both cases uti-
lize the same controller gains. In Case 1, the servicer’s base control torques are realized
with continuous torques applied to its center of mass. In Case 2, the servicer’s base control
torques are achieved with reaction thrusters that provide only on-off thrust. Case 2 is pre-
sented to demonstrate that the proposed detumbling strategy can also be incorporated with
a pulse-width pulse-frequency (PWPF) modulator to control the servicer’s base using on-off
thrusters located on the servicer’s base. From Fig. 3.7, the PWPF modulator is a feed-
back loop containing a linear first-order filter and Schmidt trigger and are characterized by
the user-defined positive parameters: Km, Tm, Uon, Uoff and Ymax [25, 50]. Let Σb denote
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the body fixed frame located at the servicer’s base center of mass. The components of the
base attitude control torque in Σb are inputs to the PWPF modulator. The outputs of the
PWPF modulator are used to fire a set of thrusters based on the thruster configuration in
Fig. 3.8 and the thruster selection logic in Table 3.2 in order to apply a torque to the ser-
vicer’s base. The thrusters are assumed to have a specific impulse of Isp = 70s and gen-
erate an on-off reaction force of 8 N. This is a reasonable value for the reaction force, as
thrusters with similar values have been utilized with orbiting satellites [36]. Furthermore,

Figure 3.7: Block diagram of the PWPF modulator.

Figure 3.8: Servicer’s base thruster configuration. Σb denotes body fixed frame located at
servicer’s base center of mass and coincides with principle axis. r = 1.15 m
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Table 3.2: Thruster Firing Logic

PWPF modulator
Input Output Thruster turned ON
bτbx Ymax #4,#6
bτbx −Ymax #2,#8
bτby Ymax #10,#11
bτby −Ymax #9,#12
bτbz Ymax #3,#5
bτbz −Ymax #1,#7

this produces a torque of 18.4 Nm about the servicer’s base center of mass which is reasonable
as reaction torque levels ranging between 0.01 Nm and 30 Nm are common in most spacecraft
using reaction thrusters for attitude control [56].

As per the stated assumptions in Chapter 2, it is assumed that inertial measurements can
be obtained from an inertial observer at a sample rate of 0.01s. In both cases, the servicer is
modelled with 90% of its true geometry and inertia, and neglects compensation of c in (3.1).
Furthermore, joint null space damping is utilized to minimize excess manipulator joint motion
in the null space of the detumbling task at the servicer’s end-effector. The controller gains for
both Cases 1 and 2 are as follows: KAD = 1.5E3, KfP = 0.2E6, εr = 4, Fmax = 10 N, τmax =

10 Nm. The PWPF modulator parameters are Km = 2, Tm = 0.8, Uon = 0.1, Uoff = 0.6Uon

and Ymax = 12. For the update law in (3.72), âi(t = 0) = ai, the coefficient κi = 1 and ci is
selected as the ith element of [1,1,0.25,1,0.25,0.1] for i = 1,2,3, ...,6. The upper and lower
bounds on the target’s inertial parameters are obtained as described in Appendix A (Table A.5
in Appendix A). From these bounds, the upper and lower bounds of the coefficients ai can be
determined making use of (3.60).

Regarding the selection of εs in the reference force/torque, (3.39-3.40), the following
should be considered: a small εs will result in larger desired force/torque and hence faster
detumbling of the target. While this is desirable, faster detumbling will result in larger end-
effector acceleration and hence a larger rate of change in the desired force/torque as the end-
effector’s linear and angular velocities will converge to zero faster. Attempting to follow a
fast changing desired force/torque may result in instability due to unmodeled dynamics. A
large value for εs will result in a slow changing desired force/torque, and will lead to approx-
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Figure 3.9: Magnitude of end-effector’s force/torque profile for Cases 1 and 2.

imately zero desired force/torque as the end-effector’s linear and angular velocities converge
to zero. This will result in a prolonged detumbling period. To avoid this, εs is defined as:
εs = 2.5‖eυe‖+0.1 for both Cases 1 and 2.

The simulation results are reported in Figs. 3.9-3.15 for both Cases 1 and 2. It can be ob-
served in Fig. 3.9 that in both cases the end-effector’s force/torque limit is respected. Detum-
bling of the target is can be observed to have been accomplished as the servicer’s end-effector’s
velocity converge to a neighbourhood of zero in Fig. 3.10.

As the target is brought to rest, its momentum is transferred to the servicer and must be
rejected in order to avoid tumbling of the combined servicer/target system. The maximum ex-
pected torque of the manipulator and base attitude control system required to reject the gained
target’s momentum are determined using inequality (3.85) to be 19.5 Nm and 17.9 Nm, respec-
tively. The maximum manipulator and base attitude control torque from Fig. 3.11 are observed
to be within these bounds. Note, from (3.85), the maximum manipulator and base attitude
control system torques are directly proportional to the force/torque limits at the end-effector.
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Figure 3.10: End-effector’s linear and angular velocities for Cases 1 and 2.

Figure 3.11: Magnitude of servicer’s control inputs for Case 1.
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Figure 3.12: Servicer-target system’s momentum distribution for Cases 1 and 2.

Figure 3.13: Target’s kinetic energy for Cases 1 and 2.

Larger end-effector force/torque implies that the target’s momentum is being transferred faster
to the servicer and needs to rejected at a larger rate in order to avoid tumbling of the combined
system. Rejection of the target’s momentum is observed in Fig. 3.12 as the servicer’s and
target’s momentum converge to a neighbourhood of zero. Furthermore, as per the stability
analysis, the target’s kinetic energy is presented in Fig. 3.13 and is observed to monotonically
converge to a neighbourhood of zero.
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Figure 3.14: Time history of âi as a percentage of ai for Cases 1 and 2.

For both Cases 1 and 2, the estimated bounds (âi) are presented in Fig. 3.14 as a percentage
of their maximum value (ai). From Fig. 3.14, it can be observed that some of these values are
significantly less than ai for the duration of the detumbling period and results in the reduced
need of high robust gains (high robust gains are computed using ai). This highlights the benefit
of estimating these parameters during the detumbling procedure as the controller will determine
the required values of these parameters in order to detumble the target and in most cases the
largest possible values of these parameters are not required as observed in Fig. 3.14.

The servicer’s base torque output for Case 2 is presented in Fig. 3.15. According to the
classical rocket equation the rate of change of the spacecraft’s mass is determined by: ṁ =

‖Fc‖/(Ispgr) where Fc is the thruster force vector of the reaction thruster, Isp is the thruster’s
specific impulse, and gr = 9.81m/s2. Using this equation, the fuel consumption in Case 2 is
0.0868kg.

The above results demonstrate that the detumbling controller can detumble a target with
unknown inertial parameters while being subjected to force/torque limits at the servicer’s end-
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Figure 3.15: Servicer’s base torque output for Case 2.

effector, even with the use of reaction thrusters to realized the control torques on the servicer’s
base as in Case 2. Furthermore, they indicate that knowledge of the target’s inertial parameters
are not required prior to post-grasping phase, and eliminates the need to perform parameter
identification prior to the post-grasping phase in an attempt to identify the target’s inertial
parameters. Implementation of the detumbling controller requires conservative estimates (ai)
of bounds on the target’s inertial parameters and can be obtained using pre-launched data of
the target. In the presented numerical study, bounds (lower and upper) on the target’s inertial
parameters were based on the target’s satellite inertial properties with and without fuel (wet
and dry mass as described in Appendix A).

3.4.7.1 Detumbling Target with Random Inertial Properties

Let the target’s dry mass, mdry, be defined as mdry = 350kg as per Table 3.1 and denote the
target’s mass, mt, as the sum of its dry mass and mass of its fuel, mfuel. From Table 3.1, the
maximum fuel mass that the target can carry is 150kg. As the target’s fuel mass varies from
0kg and 150kg, so to does its inertial properties as described in Appendix A.
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3.4. ROBUST DETUMBLING OF TARGET

Figure 3.16: Magnitude of end-effector’s force/torque profile as the target’s fuel mass varies.

The purpose of the numerical example presented herein is to demonstrate the robustness of
the proposed detumbling strategy in detumbling a target with unknown inertial parameters with
known bounds. To this end, 50 simulations are performed, where mfuel is randomly selected
as a value between 0kg and 150kg. The target’s initial angular velocity is assumed to have
the same magnitude as that in Case 1 of Section 3.4.7, however the direction is randomly
determined by a sequence of rotations as follows:

wtdir = Rz(θ1)Ry(θ2)Rx(θ3)[0,0,1]T (3.86)

where R(·) ∈ R3×3 describes a rotation matrix about axis (·) = x,y,z by a randomly selected
angle between 30 deg and −30 deg for θ1, θ2 and θ3. This is accomplished with MATLAB’s
“rand” function. The control gains are the same as in Case 1 in Section 3.4.7 (servicer’s base
control torques are continuous).

The main results are reported in Figs. 3.16 and 3.17. From these results, the end-effector’s
force/torque limits are observed to be respected, Fig. 3.16, and the target’s momentum is
rejected as the angular momentum of the servicer and target all converge to a neighbourhood
of zero as observed in Fig. 3.17.
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Figure 3.17: Servicer-target system’s momentum distribution profile as the target’s fuel mass
varies.

3.4.7.2 Effect of εr Parameter on Detumbling Controller’s Performance

The robust detumbling controller presented in Chapter 3.4 is a sliding mode controller, where
the sliding variable can be regarded as s = ve− vd

e and vd
e = 0. The robust compensator pre-

sented in (3.50a) is designed to force the system dynamics onto the sliding surface. The robust
compensator could have been designed using a non-smooth function (i.e., sign function) [57].
The use of a non-smooth function can lead to chattering in practical implementation of sliding
mode control due to the difficulty of switching the control law at high frequency in order to
keep system’s dynamics on the sliding surface, and the difficulty of avoiding the excitation of
unmodeled dynamics when switching the controller at high frequency [58]. Hence the smooth
robust compensator in (3.50a) was utilized with the goal of avoiding this problem. This, how-
ever, requires the selection of the tuning parameter εr in (3.50a).

The influence of εr on the end-effector’s force/torque profile and the servicer’s control in-
puts are presented in Figs. 3.18 and 3.19. Note, the same controller gains and initial conditions
for the post-grasping phase as in Case 1 of Chapter 3.4.7 were utilized to obtain the results in
Figs. 3.18 and 3.19. It can be observed in Fig. 3.18, that a decrease in εr results in an increase
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Figure 3.18: Effect of εr in Ψ (3.50a) on the end-effector force and torque magnitude profile in
the post-grasping phase.

in end-effector’s force and torque magnitude. Similar observation can be made regarding the
servicer’s control inputs in Fig. 3.19. This trend is to be expected. As the value of εr becomes
smaller, the robust compensator produces a larger output for smaller inputs, resulting in larger
value for the robust compensator. This in turn will result in larger servicer control inputs.

3.5 Conclusions

This chapter has addressed the problem of detumbling a non-cooperative target with unknown,
but bounded inertial parameters by a space robot, which is subjected to force/torque limits at its
end-effector. The detumbling strategy presented within this chapter was developed under the
assumption that measurements of end-effector force/torque are available. Detumbling of the
target is achieved by following a reference detumbling force/torque that is designed to bring the
target’s linear and angular velocity to zero subjected to force/torque limits at the servicer’s end-
effector. The reference detumbling force/torque is computed using the servicer’s end-effector
linear and angular velocity and force/torque limits. An adaptive robust compensator is designed
to ensure stable detumbling of the target utilizing real-time estimates of bounds on the target’s
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inertial parameters to update its gains. The design of the reference detumbling force/torque
and use of real-time estimates of bounds on the target’s inertial parameters eliminates the need
for accurate knowledge of the target’s inertial parameters and their bounds. The resultant de-
tumbling controller can detumble the unknown target by damping its tumbling motion while
allowing compliance with its residual unknown motion. Finally, numerical simulations have
been conducted for a 7-degree-of-freedom space manipulator and have demonstrated the effec-
tiveness of the proposed detumbling controller. This study lacked the means to experimentally
evaluate the proposed detumbling strategy, and future work will aim to develop an experimental
test platform. The experimental test platform will be used to evaluate the detumbling strategy
developed in this chapter and to further advance research into post-grasping phase detumbling
strategies.

Figure 3.19: Effect of εr in Ψ (3.50a) on the magnitude of the servicer’s control inputs.
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Chapter 4

Detumbling Strategy without
Force/Torque Measurements

4.1 Detumbling Strategy Overview

In this Chapter, a detumbling control strategy is presented for the servicer to detumble a non-
cooperative target with unknown inertial parameters, while being subjected to force/torque
limits at the servicer’s end-effector. The presented detumbling control strategy is formulated
under the assumption that end-effector force/torque measurements are not available. Detum-
bling of the target is accomplished by designing a robust coordination controller to control the
servicer’s base satellite and manipulator to track a desired task space detumbling trajectory and
to reject the target’s gained momentum as its tumbling motion is brought to rest. The pro-
posed robust coordination controller takes into account magnitude constraints on the servicer’s
control inputs in the controller’s design. Furthermore, the desired detumbling trajectory is de-
lineated subjected to force/torque limits at the end-effector and requires only bounds on the
target’s inertial parameters. This is accomplished by defining the desired velocity and acceler-
ation as a function of the detumbling period using a combination of elementary functions. The
detumbling period is then identified from these functions by utilizing bounds on the target’s
inertial parameters, end-effector force/torque limits and the target’s equation of motion. In this
Chapter, a numerical simulation study is carried out using a 7-degree-of-freedom manipulator
attached to a satellite base to detumble a target using the presented approach and the results
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4.1. DETUMBLING STRATEGY OVERVIEW

are reported. Furthermore, an experiment is conducted to evaluate the design procedure used
to delineate the desired detumbling trajectory and the results are reported.

4.1.1 Delineation of End-effector Detumbling Trajectory

The delineation of the desired detumbling trajectory for the post-grasping phase must be de-
termined while accommodating force/torque limits at the end-effector and without requiring
accurate knowledge of the target’s inertial parameters. Prior studies in the literature have deter-
mined detumbling trajectories that accommodate end-effector force/torque limits constraints
with the assumption that the target’s inertial parameters are accurately known [6,7,9,65]. This
is an unrealistic assumption as the target’s inertial parameters cannot be known prior (there
is no practical means of measuring remaining propellant in a malfunctioning satellite [8]).
Furthermore, estimation techniques in [5, 8, 10, 37, 41, 44] cannot guarantee convergence of
estimates of the target’s inertial parameters prior to the post-grasping phase. In the face of
parameter uncertainty, [66] delineates a detumbling trajectory utilizing conservative estimates
of the target’s inertial parameters. However, their proposed approach only considers limits on
the end-effector’s torque and assumes that the location of the target’s center of mass is known.
Herein, an end-effector detumbling trajectory is derived which accommodates end-effector’s
force and torque limits and requires only bounds on the target’s inertial parameters.

Let vd
e(τn) = [(vd

e)
T,(wd

e)
T]T ∈ R6 and v̇d

e(τn) = [(v̇d
e)

T,(ẇd
e)

T]T ∈ R6 denote the end-
effector’s desired linear and angular velocity and acceleration, respectively, and delineate them
using the following functions of normalized time as in [66]:

{vd
e(τn)}i =−kie−τn + aiτ

2
n +biτn + ci (4.1)

{v̇d
e(τn)}i = τ̇n(kie−τn +2aiτn +bi) (4.2)

where τn ∈ [0,1] is normalized time and τn = 0 denotes the start of the post-grasping phase.
From (4.1) and (4.2), i = 1,2,3, ...,6 denotes the ith component of the vector and ki, ai, bi and
ci are constants to be determined. The time derivative of normalized time, τ̇n, represents the
rate at which detumbling is accomplished and is defined as follows:

τ̇n =
1
T (4.3)
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where T is the detumbling period (time taken to detumble the target).
In order to determine the desired detumbling trajectory, first the boundary conditions on

the end-effector’s velocity and acceleration are utilized to determine the coefficients of (4.1)
and (4.2). Following this, using the target’s equation of motion, (2.42), along with end-
effector’s force/torque limits, the detumbling period is determined, T . With this, the desired
end-effector’s velocity and acceleration are determined from (4.1) and (4.2). The desired posi-
tion and orientation of the end-effector can be obtained by integrating the end-effector’s desired
velocity subjected to the initial position and orientation of the end-effector.

The initial linear and angular velocities of the end-effector in the post-grasping phase are
known: vd

e(τn = 0) = ve(int), where ve(int) = [vT
e(int),w

T
e(int)]

T denotes the initial linear and angu-
lar velocity of the servicer’s end-effector. The end-effector’s desired final velocity and accel-
eration are zero: {vd

e(τn = 1)}i = 0 and {v̇d
e(τn = 1)}i = 0. In addition, it is desirable for the

second derivative of the end-effector’s velocity to converge to zero at the end of the detumbling
period to eliminate any sudden jerks in the system: {v̈d

e(τn = 1)}i = 0. Substituting the above
stated initial state conditions into (4.1), (4.2) and {v̈d

e(τn)}i results in the following:

ki =
−1

1−2.5e−1{ve(int)}i (4.4a)

ai =
1
2kie−1 (4.4b)

bi =−kie−1−2ai (4.4c)

ci = {ve(int)}i + ki (4.4d)

Substituting the above coefficients, (4.4), into (4.1) and (4.2), and making use of (4.3)
results in the following:

{vd
e(τn)}i =−kie−τn +aiτ

2
n +biτn + ci

= {ve(int)}i +(−e−τn + 1
2e−1

τ
2
n −2e−1

τn +1)ki

=
(

1+
(
e−τn− 1

2e−1
τ

2
n +2e−1

τn−1
) 1

1−2.5e−1

)
{ve(int)}i

(4.5)
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{v̇d
e(τn)}i = τ̇n(kie−τn +2aiτn +bi)

= 1
T

(
e−τn + e−1

τn−2e−1) −1
1−2.5e−1{ve(int)}i

(4.6)

To determine the detumbling period, T , the target’s equation of motion, (2.42), is segmented
into its linear and angular components using the definition of Λ t, Jt and ct in Section 2.6 and
the desired velocity and acceleration are substituted as follows:

mtv̇d
e(τn)+mtr×teẇd

e(τn)+mtṙ×tewd
e(τn) = Fe (4.7)

−mtr×te v̇d
e(τn)+(It−mtr×ter×te)ẇ

d
e(τn)−mtr×te ṙ×tewd

e(τn)+wd
e(τn)× Itwd

e(τn) = τe (4.8)

From the above equations, the force/torque exerted onto the end-effector are a function of
the target’s inertial parameters and end-effector’s desired acceleration and velocity. The larger
the desired acceleration and velocity, the larger the force/torque on the end-effector. In order
to respect end-effector’s force/torque limits along the delineated detumbling trajectory, it is
required to determine the desired velocity and acceleration along which the target’s inertial
forces do not exceed the servicer’s end-effector force/torque limits. This is accomplished by
upper bounding the left side of (4.7) and (4.8) and finding the smallest value of T that will
ensure that these bounds do not exceed the end-effector’s force/torque limits. To proceede, the
following lemma is required:

Lemma 1 ( [77]). Let J ∈ R3×3 be symmetric and positive definite, with minimum and maxi-

mum eigenvalues λmin(J) and λmax(J), respectively. Then, for any x ∈R3, the following bound

holds:

‖x×Jx‖ ≤ [λ 2
max(J)−λ

2
min(J)]

1/2‖x‖2. (4.9)

Upper bounding the left side of (4.7) and (4.8) requires determining an upper bound for
the desired velocity and acceleration in (4.5) and (4.6), respectively, for τn ∈ [0,1]. This is
accomplished by making use of the following two inequalities for τn ∈ [0,1]:

1≥ e−τn− 1
2e−1

τ
2
n +2e−1

τn (4.10a)

74



4.1. DETUMBLING STRATEGY OVERVIEW

1≥ e−τn + e−1
τn (4.10b)

Let f1(τn) = e−τn− 1
2e−1τ2

n +2e−1τn, f2 = e−τn + e−1τn and f
′
i (τn) = d fi(τn)/dτn for i =

1,2. Proof of the inequality in (4.10a) can be concluded by considering the following: f1(τn =

0,1)≤ 1 and f
′
1(τn = 0,1)≤ 0. Given that f

′
1(τn = 0)< f

′
1(τn = 1) and f

′′
1 (τn)> 0 for τn ∈ [0,1)

(no sign change), it follows that f1(τn)≤ 1 for τn ∈ [0,1]. Similarly, proof of the inequality in
(4.10b) can be concluded by considering the following: f2(τn = 0,1)≤ 1. Since f

′
2(τn)< 0 for

τn ∈ [0,1], it follows that f2(τn)≤ 1 for τn ∈ [0,1].
Proof of inequalities (4.10a) and (4.10b) allows one to arrive at the required inequalities

that will be utilized to upper bound the magnitude of the desired acceleration and velocity, re-
spectively. This is achieved via algebraic manipulation of the individual inequalities in (4.10a)
and (4.10b). Using the inequality in (4.10a), a constant value of one is subtracted from both
sides of the inequality, then it is multiplied by a positive constant, 1

1−2.5e−1 , followed by the ad-
dition of a constant of one to both sides of the inequality. These steps are demonstrated below:

1≥ f1

0≥ f1−1

0≥ ( f1−1) 1
1−2.5e−1

1≥ 1+( f1−1) 1
1−2.5e−1

(4.11)

Logically, since the first inequality in (4.11) holds, the last equality in (4.11) also holds. The
last equality in (4.11) is utilized to upper bound the end-effector’s desired velocity as follows:

|{vd
e(τn)}i|=

∣∣∣(1+
(
e−τn− 1

2e−1
τ

2
n +2e−1

τn−1
) 1

1−2.5e−1

)∣∣∣|{ve(int)}i|

=
∣∣1+( f1−1) 1

1−2.5e−1

∣∣|{ve(int)}i|

≤ |{ve(int)}i|

. (4.12)

From inequality (4.10b), a constant is subtracted from both sides of the inequality as fol-
lows:

1≥ f2

1−2e−1 ≥ f2−2e−1
(4.13)
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Making use of the last inequality of (4.13), the desired end-effector acceleration is upper
bounded as follows:

|{v̇d
e(τn)}i|= 1

T

∣∣(e−τn + e−1
τn−2e−1)∣∣∣∣ −1

1−2.5e−1

∣∣|{ve(int)}i|

= 1
T

∣∣( f2−2e−1)∣∣∣∣ −1
1−2.5e−1

∣∣|{ve(int)}i|

≤ 1
T κ|{ve(int)}i|

(4.14a)

κ =
∣∣( 1−2e−1

1−2.5e−1

)∣∣ (4.14b)

.
The target’s inertial parameters are bounded as follows:

mt ≤ mtU (4.15a)

λmin(It)≤ ‖It‖ ≤ λmax(It) (4.15b)

|{rte}x| ≤ rteU |{rte}y| ≤ rteU |{rte}z| ≤ rteU (4.15c)

Based on available initial knowledge of the target is it possible to determine an estimate rteU

that satisfies (4.15c) such that rteU ≤ ‖rte‖.
Making use of (4.12), (4.14) and (4.15), the components of the left side of (4.7) and (4.8)

are upper bounded as follows and are required to be upper bounded by the end-effector’s
force/torque limits:

mtU
T κ
(
|ve(int)x|+rteU

(
|we(int)z|+ |we(int)y|

))
+mtUrteU

(
|we(int)y|2 + |we(int)z|2 +wA +wB

)
≤ Fmax

(4.16a)

mtU
T κ
(
|ve(int)y|+rteU

(
|we(int)z|+ |we(int)x|

))
+mtUrteU

(
|we(int)x|2 + |we(int)z|2 +wA +wC

)
≤ Fmax

(4.16b)
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mtU
T κ
(
|ve(int)z|+rteU

(
|we(int)y|+ |we(int)x|

))
+mtUrteU

(
|we(int)x|2 + |we(int)y|2 +wB +wC

)
≤ Fmax

(4.16c)

κ

T

(
mtUr2

teU(2|we(int)x|+ |we(int)y|+ |we(int)z|)+mtUrteU(|ve(int)z|+ |ve(int)y|)+λmax(It)‖we(int)‖
)
+

mtUr2
teU(|we(int)y|2 + |we(int)z|2 +wC +wB +wA)+G≤ τmax

(4.16d)

κ

T

(
mtUr2

teU(2|we(int)y|+ |we(int)x|+ |we(int)z|)+mtUrteU(|ve(int)z|+ |ve(int)x|)+λmax(It)‖we(int)‖
)
+

mtUr2
teU(|we(int)x|2 + |we(int)z|2 +wB +wC +wA)+G≤ τmax

(4.16e)

κ

T

(
mtUr2

teU(2|we(int)z|+ |we(int)x|+ |we(int)y|)+mtUrteU(|ve(int)y|+ |ve(int)z|)+λmax(It)‖we(int)‖
)
+

mtUr2
teU(|we(int)x|2 + |we(int)y|2 +wA +wC +wB)+G≤ τmax

(4.16f)

where wA = |we(int)x||we(int)y|, wB = |we(int)x||we(int)z|, wC = |we(int)y||we(int)z|, G =

(λ 2
max(It)−λ 2

min(It))
1
2‖we(int)‖2 and Lemma 1 in [77] was utilized to upper bound ‖wd

e(τn)×

Itwd
e(τn)‖ ≤ (λ 2

max(It)−λ 2
min(It))

1
2‖we(int)‖2 in G.

From (4.16a) through (4.16f), the detumbling period can be solved from each equation and
will be denoted as Ti for i = 1,2,3, ...,6 corresponding to each equation in (4.16). From this,
the detumbling period is determined as follows:

T ≥max{Ti : i = 1,2,3, ...,6} (4.17)

Utilizing T , the desired end-effector velocity and acceleration are delineated by (4.5) and (4.6).
The desired position of the end-effector can be obtain by integrating the desired linear velocity.
The end-effector’s desired orientation can be obtained by integrating the time derivative of the
quaternion representing the end-effector’s attitude with the use of the desired angular velocity.

77



4.1. DETUMBLING STRATEGY OVERVIEW

The desired end-effector position is denoted as xd
e and the desired end-effector orientation is

denoted as the following unit quaternion qd
e .

Solving for the detumbling period from (4.16) provides additional insight into the design
requirements of the servicer satellite. Under the requirement that T > 0, it is required that
servicer be designed so that Fmax and τmax are large enough to satisfy the following:

Fmax−mtUrteU
(
|we(int)y|2 + |we(int)z|2 +wA +wB

)
> 0 (4.18a)

Fmax−mtUrteU
(
|we(int)x|2 + |we(int)z|2 +wA +wC

)
> 0 (4.18b)

Fmax−mtUrteU
(
|we(int)x|2 + |we(int)y|2 +wB +wC

)
> 0 (4.18c)

τmax−mtUr2
teU(|we(int)y|2 + |we(int)z|2 +wC +wB +wA)−G > 0 (4.18d)

τmax−mtUr2
teU(|we(int)x|2 + |we(int)z|2 +wB +wC +wA)−G > 0 (4.18e)

τmax−mtUr2
teU(|we(int)x|2 + |we(int)y|2 +wA +wC +wB)−G > 0 (4.18f)

4.1.2 Desired Base Attitude

In the post-grasping phase, as the target’s tumbling motion is brought to rest its momentum is
transferred to the servicer. The gained momentum must be rejected in order to avoid tumbling
of the combined servicer/target system. This is accomplished by simply setting the servicer’s
base desired angular velocity as wd

b = 0. An additional task such as re-orienting the servicer’s
base to a desired attitude during the detumbling procedure can still be accomplished and will
still achieve rejection of the target’s gained momentum. In this case the servicer’s base desired
attitude will be denoted as the following unit quaternion qd

b.
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4.1.3 Robust Trajectory Tracking Controller

This subsection presents the development of a robust coordination controller to control the
servicer’s manipulator and satellite base to track the desired detumbling trajectory at the end-
effector and to accommodate the target’s gained momentum as its tumbling motion is brought
to rest. The development of the robust coordination controller does not require force/torque
measurements at the end-effector and takes into account magnitude constraints on the servicer’s
manipulator and satellite base attitude control inputs in the design of the controller.

It is assumed that the presented desired detumbling trajectory in Section 4.1.1 lies within the
capability of the servicer’s actuators. This is a reasonable assumption because it implies there
exists a control input that satisfies the magnitude constraints on the servicer’s control input such
that detumbling of the target can be achieved. This can be be observed by upper bounding the
servicer’s control inputs, τ , from (2.37) while making use of the desired detumbling velocity
and acceleration as follows:

‖τ‖ ≤ ‖MA‖‖ξ̇ d‖+‖(McA + c)‖+‖(J−MJA)‖Kmax (4.19)

where Kmax = max{Fmax,τmax}. Upper bounding ‖(McA + c)‖ along the desired trajectory is
difficult as it not only depends on ξ

d but also on the servicer’s manipulator joint velocities and
base linear velocity. However, it can be neglected as the motion of the servicer’s manipulator
and base are slow. Similarly, the magnitude of ‖MA‖‖ξ̇ d‖ can be neglected due to the low
desired acceleration and the fact that ẇd

b = 0. As a result, the upper bound on the servicer’s
manipulator and attitude control inputs are approximated as follows:

‖τm‖ ≤ ‖Je‖Kmax (4.20a)

‖τb‖ ≤ ‖JR‖Kmax (4.20b)

(J−MJA) =

[
Je

JR

]
(4.20c)

where Je ∈ Rm×6 and JR ∈ R3×6.
From (4.20a) and (4.20b), the upper bound on manipulator and attitude control inputs are a
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function of the maximum force/torque that may occur when detumbling the target. However,
these bounds only hold provided that servicer’s end-effector’s position/orientation and velocity
tracking errors are zero and servicer’s base attitude and angular velocity tracking errors are
zero. Non-zero tracking errors may require the servicer’s control input to exceed these bounds.
In practice, these bounds will be fixed and cannot be exceeded due to actuator limitation and
may lead to instability if not taken into account in the controller’s design. The remainder
of this subsection takes into account magnitude limits on the servicer’s control inputs in the
controller’s design to track the desired detumbling trajectory and reject the gained target’s
momentum.

To achieve this the position and orientation error of the end-effector and base attitude are
defined as follows:

eP =

xe−xd
e

(δqv)e

(δqv)b

=

 epe

(δqv)e

(δqv)b

 (4.21a)

eV =

 ve−vd
e

we−wd
e

wb−wd
b

=

eve

ewe

ewb

 (4.21b)

where (δqv)(·) denote the vector component of the quaternion associated with the attitude
tracking error of the end-effector, (·) = e, and base, (·) = b. δqv = qsqd

v +qv×qd
v−qvqd

s ∈
R3 where the scalar and vector components of the quaternion are denoted by (·)s and (·)v,
respectively, and (·)d represents the desired quaternion value. Making use of (4.21), a sliding
variable, s1 ∈ R9, is defined as:

s1 = eV +KPeP (4.22)

where KP = diag[KPEL,KPEAE3,KPBAE3] and 0 < KPEL ∈R3×3, KPEA ∈R and KPBA ∈R are
positive gains. Let s1 = [sT

1pe,s
T
1we,s

T
1wb]

T where s1pe ∈R3, s1we ∈R3 and s1wb ∈R3, it follows
from (4.21) and (4.22) that:

s1pe = eve +KPELepe (4.23a)

s1we = ewe +KPEA(δqv)e (4.23b)

s1wb = ewb +KPBA(δqv)b (4.23c)
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Boundedness of s1 will result in eV and eP also being ultimately bounded. For the system in
(4.23a), this follows since it represents an exponentially stable system that is disturbed by an
ultimately bounded input in s1pe. Similarly, boundedness of ew(·) and (δqv)(·) for a bounded
s1w(·) in the systems described in (4.23b), (·) = e, and (4.23c), (·) = b, follows from Lemma 1
in [16].

The controller design takes into account magnitude constraints on the servicer’s control
inputs by modelling the servicer’s control inputs, τ in (2.43), by a smooth hyperbolic tangent
function [77]:

τ = f (V) (4.24a)

{ f (V)}i = {UM}itanh
(
{V}i

{UM}i

)
(4.24b)

V̇ = f̄−1U (4.24c)

where i = 1,2,3, ...,(m + 3) and the ith element of UM ∈ R(m+3) denotes the control input
magnitude limit of the ith servicer’s actuator. f̄ = ∂ f/∂V, V ∈Rm+3 and U ∈Rm+3. From the
above model of the servicer’s control input, it can be concluded that servicer’s control input
will always satisfies its magnitude constraint: {τ}i ≤ {UM}i for i = 1,2,3, ...,(m+ 3). All
functions of the resultant system comprising of (2.43) and (4.24) are smooth, and hence, the
use of the backstepping technique is feasible to design the auxiliary signal U.

The use of the hyperbolic tangent function to model the servicer’s control inputs is an
alternative to the use of a discontinuous auxiliary system designed to account for control input
magnitude limits as in [30]. The latter adds additional complexity in the tuning of the auxiliary
system and analysis of the resultant controller, while the former results in a simpler control
design and analysis of the resultant controller with the use of the backstepping technique.

The design of U is described in the following steps:
Step 1: Design of the virtual controller for f (V). The dynamic equation for s1 is obtain

using (4.22) and (2.43):

M̄oṡ1 = AT f (V)− co−∆c−M̄oξ̇
d−∆M̄ξ̇ +M̄oKPėp (4.25)

where M̄o = Ms and co = cs denote the nominal component of the servicer/target mass ma-
trix and nominal component of the servicer’s nonlinear velocity dependent terms, respectively.
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∆M̄ = [JsΛ t 0] ∈ R(6+3)×(6+3) and ∆c = Js(J−T
t ct−Λ tJ̇tJ−1

t ve) so that M̄ = M̄o +∆M̄ and
c = co +∆c.

Utilizing the definition of Λ t, Jt and ct in Section 2.6, the evaluation of ∆c is as follows:

∆c = Js(J−T
t ct−Λ tJ̇tJ−1

t ve)

= Js

[
mtṙ×tewt

wt× Itwt−mtr×te ṙ×tewt

]
= Js(γ1 + γ2)

(4.26)

where with the use of wt = we = ewe +wd
e in (4.26), γ1 and γ2 are defined as follows:

γ1 =

[
mtwd×

t r×tewd
t

wd
t × Itwd

t −mtr×tewd×
t r×tewd

t

]
(4.27a)

γ2 =

[
mtγ2a

γ2b +mtr×teγ2a

]
(4.27b)

where γ2a = e×wer×teewe +2e×wer×tewd
e and γ2b = ewe× Itewe + ewe× Itwd

e +wd
e× Itewe.

Making use of (4.15) and Lemma 1 in [77], the components of (4.27a) are upper bounded
as:

‖mtwd×
t r×tewd

t ‖ ≤ mtU‖rte‖‖wd
e‖2 (4.28a)

‖wd
t × Itwd

t ‖ ≤ (λ 2
max(It)−λ

2
min(It))

1
2‖wd

e‖2 (4.28b)

‖mtr×tewd×
t r×tewd

t ‖ ≤ mtU‖rte‖2‖wd
e‖2 (4.28c)

Utilizing (4.28) the magnitude of γ1 is upper bounded as:

‖γ1‖ ≤ h‖wd
e‖2 (4.29a)

h =
[
(mtU‖rte‖)2 +

(
[λ 2

max(It)−λ
2
min(It)]

1
2 +mt‖rte‖2)2

] 1
2
. (4.29b)

As a result of the above, ∆c = Jsγ1 +Jsγ2, and with the use of (4.29a), Jsγ1 can be upper
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bounded as follows:
‖Jsγ1‖ ≤ h‖Js‖‖wd

e‖2 ≤ θ (4.30)

where θ is known positive constant since h can be computed utilizing bounds on the target’s
inertial parameters, Js is a function of known servicer’s inertial and geometric parameters, and
wd

e is shown to be bounded in Section 4.1.1.
To design the virtual controller for f (V), we utilize the following Lyapunov function can-

didate from [77] which is radially unbounded and globally positive-definite function:

VP1 =
9

∑
i=1

ln(cosh({s1}i)) (4.31)

Taking the time derivative of (4.31) and making use of (4.25) and (4.26), results in the
following expression for V̇P1:

V̇P1 = tanhT(s1)ṡ1

= tanhT(s1)M̄
−1
o (AT f (V)− co−Js(γ1 + γ2)−M̄0ξ̇

d−∆M̄ξ̇ +M̄oKPėp)
(4.32)

where tanh(x) = [tanh(x1), tanh(x2), ..., tanh(xn)]
T for any vector x ∈ Rn

Considering f (V) as a virtual controller, the following virtual controller is proposed:

f (V)d = A−T(co +M̄oξ̇
d−M̄oKPėP−M̄oK1tanh(s1)−ψP1) (4.33)

with K1 as a positive constant and ψP1 ∈ R9 is a robust compensator defined as in [28]:

ψP1i = θ tanh
(

9kuθ{M̄−1
o tanh(s1)}i

ε1

)
for i = 1,2,3, ...,9 (4.34)

where ku = 0.2785 [52] and ε1 is a small positive scalar. The hyperbolic tangent function has
the following property [52]:

0≤ |x|− xtanh
(

x
εu

)
≤ kuεu (4.35)

for any εu > 0 and any x ∈ R. It was also utilized to prevent chattering of f (V) [57]. Making
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use of this property, the following bound is obtained:

‖tanhT(s1)M̄
−1
o ‖θ − tanhT(s1)M̄

−1
o ψP1 ≤

9

∑
1

(
|{tanhT(s1)M̄

−1
o }i|θ −{tanhT(s1)M̄

−1
o }i{ψP1}i

)
≤ ε1

(4.36)

Utilizing (4.33) and (4.36) in (4.32), results in:

V̇P1 = tanhT(s1)M̄
−1
o (ATs2 +AT f (V)d− co−Js(γ1 + γ2)−M̄oξ̇ +M̄oKPėP−∆M̄ξ̇ )

≤−K1‖tanh(s1)‖2 + ε1 + tanhT(s1)χ

(4.37)

where s2 = f (V)− f (V)d and χ = M̄−1
o (ATs2−Jsγ2−∆M̄ξ̇ ).

Step 2: Design the control law for U. Using (4.24), the dynamic equation for s2 is obtained
as follows:

ṡ2 = ḟ (V)− ḟ (V)d

= U− ḟ (V)d
(4.38)

The input U to the auxiliary system (4.24c), is designed to robustly compensate for ḟ (V).
To achieve this, we construct the following compact sets:

Ω 1 =

{
‖xd

e‖ ≤ C1,‖ξ d‖ ≤ C2,‖ξ̇
d‖ ≤ C3,‖ξ̈

d‖ ≤ C4,

}
(4.39a)

Ω 2 =

{
(s1,s2)

∣∣∣∣ 9

∑
i=1

ln(cosh({s1}i))+
m+3

∑
i=1

ln(cosh({s2}i))≤ C5

}
(4.39b)

where Ci=1,2,3,4,5 are positive constants. The desired detumbling trajectory constructed in this
study is bounded by known bounds which can be utilized in the selection of the constants C1

to C4 in order to satisfy (4.39a). The choice of C5 is free but will affect the controller’s gain
selection as discussed at the end of this subsection. Furthermore, provided that s1 and s2 are
contained in the compact set Ω 2, with the use of Corollary 1, it follows that χ and ḟ (V)d are
bounded, such that ‖χ‖ ≤M1 and ‖ ḟ (V)d‖ ≤M2 where Mi=1,2 are positive constants (proof
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of this can be found in Appendix B. From this, the control law for U is proposed as:

U =−K2tanh(s2)−ψP2 (4.40)

where K2 is a positive constant and ψP2 is a robust compensator that is defined as [28]:

ψP2i = M̂2tanh
(
(m+3)kuM̂2{tanh(s2)}i

ε1

)
for i = 1,2,3, ...,(m+3) (4.41)

The variable M̂2 is an estimate of M2 and is updated by the following update law [77]:

˙̂M2 = σ1‖tanh(s2)‖−σ1σ2M̂2 (4.42)

Uniform ultimate boundedness of s1, s2 and M̃2 = M2− M̂2 can be concluded with the use
of the following Lyapunov function candidate:

VP = VP1 +
m+3

∑
i=1

ln(cosh({s2}i))+
1

2σ1
M̃2

2 (4.43)

The time derivative of (4.43) along with (4.37), (4.38) and (4.40-4.42) results in the follow-
ing:

V̇P ≤−K1‖tanh(s1)‖2−K2‖tanh(s2)‖2 + ε1 + tanhT(s1)χ + tanhT(s2)(− ḟ (V)d−ψP2)−
1

σ1
M̃2

˙̂M2

≤−K1‖tanh(s1)‖2−K2‖tanh(s2)‖2 + ε1 +M1− tanhT(s2)ψP2 +‖tanhT(s2)‖(M2− M̂2)

+‖tanhT(s2)‖M̂2−
1

σ1
M̃2

˙̂M2

≤−K1‖tanh(s1)‖2−K2‖tanh(s2)‖2 +2ε1 +M1 +‖tanhT(s2)‖(M2− M̂2)−
1

σ1
M̃2

˙̂M2

≤−K1‖tanh(s1)‖2−K2‖tanh(s2)‖2− σ2

2
M̃2

2 + ε̄

(4.44)

where the following inequalities were utilized in (4.44):

M̂2‖tanh(s2)‖− tanhT(s2)ψP2 ≤ ε1 (4.45)
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σ2M̃2M̂2 ≤−
σ2

2
M̃2

2 +
σ2

2
M2

2 (4.46)

ε̄ = 2ε1 +M1 +
σ2

2
M2

2 (4.47)

From (4.44), V̇P can be expressed as:

V̇P ≤−ρV̄+ ε̄ (4.48a)

V̄ = ‖tanh(s1)‖2 +‖tanh(s2)‖2 + M̃2
2 (4.48b)

where ρ = min{K1,K2,σ2/2}. Thus, V̇P is strictly negative outside the following compact set:

Ω 3 =

{
V̄
∣∣∣∣ V̄≤ ε̄

ρ

}
(4.49)

From (4.49), we can conclude that s1, s2 and M̃2 are uniformly ultimately bounded provided
that VP(0) ≤ C5 and the controller gains, K1, K2 and σ2 be chosen such that ρ > ε̄/p̄, where
p̄ = minVP=C5V̄. The size of set Ω 3 is determined by the gains K1, K2, ε1 and σ2, and reflects
the final bound on s1, s2 and M̃2. A smaller bound requires higher selection of the gains K1,
K2 and σ2 with a lower ε1.

A drawback of the backstepping approach is that its recursive nature can lead to numerical
instability after several steps of recursion. Furthermore, estimating the time derivative of the
virtual controller can be difficult. The coordination controller presented herein only required
a single level of recursion and computing the time derivative of the virtual controller is not
required.

4.1.4 Servicer’s End-effector Force/Torque Limits

The proposed detumbling strategy presented in this study addresses the problem of detumbling
a non-cooperative target subjected to force/torque limits by tracking a desired detumbling tra-
jectory, where in the desired detumbling trajectory was delineated subjected to end-effector
force/torque limits. In this section, it is shown that the end-effector force/torque are bounded
by a function of the servicer’s control input magnitude constraints and the inertial properties of
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the servicer and target. This is achieved by utilizing the servicer’s equation of motion, (2.37),
and the target’s equation of motion, (2.42), to obtain a relationship between the servicer’s con-
trol inputs and the force/torque experienced at the end-effector. The servicer’s equation of
motion from (2.37) is expanded as follows:

M11v̇e +M21ẇb + ce = τm +Je(−fe) (4.50a)

M12v̇e +M22ẇb + cb = τb +JR(−fe) (4.50b)

where:

MA =

[
M11 M12

M21 M22

]
(McA + c) =

[
ce

cb

]
(J−MJA) =

[
Je

JR

]
. (4.50c)

The servicer’s base angular acceleration can be eliminated from (4.50a) with the use of
(4.50b), resulting in:

J1efe = [(τm−M12M−1
22 τb)−M1ev̇e +−c1e] (4.51)

where M1e = M11−M12M−1
22 M21, c1e = (ce−M12M−1

22 cb) and J1e = (Je−M12M−1
22 JR). The

servicer’s end-effector acceleration can be eliminated from (4.51) with the use of the target’s
equation of motion in (2.42), and will result in the following:

(J1e +M1eΛ
−1
t )fe = (τm−M12M−1

22 τb)+(M1eΛ
−1
t (J−T

t ct−Λ tJ̇tJ−1
t ve)− c1e) (4.52)

Making use of Λ t, Jt and ct defined in Section 2.6 and h defined in (4.29b), it can be
verified that ‖J−T

t ct−Λ tJ̇tJ−1
t ve‖ ≤ h‖we‖2 similar to the derivation of the upper bound on γ1

in (4.27a). Furthermore, the magnitude constraints of the servicer’s control inputs results in
the following upper bound: ‖(τm−M12M−1

22 τb)‖ ≤ (UMm + ‖M12‖‖M−1
22 ‖UMb) where UMm

and UMb are the upper bounds on the servicer’s manipulator and base attitude control input,
respectively. Making use of this in (4.52), the end-effector’s force/torque can be upper bounded
as follows:

‖fe‖ ≤
(UMm +‖M12‖‖M−1

22 ‖UMb)+(‖M1e‖‖Λ−1
t ‖h‖we‖2 +‖c1e‖)

(‖J1e‖+‖M1e‖‖Λ−1
t ‖)

(4.53)
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where ‖c1e‖ if a function of known servicer’s inertial and geometric parameters as well as
servicer’s manipulator joint and base velocities. All terms in (4.53) are based on known ser-
vicer’s inertial parameters and geometry with the exception of ‖Λ−1

t ‖ and h. ‖Λ−1
t ‖ and h

can be estimated based on pre-launched data of the target. Furthermore, the non-linear veloc-
ity dependent terms in (4.53) can be considered negligible due to the slow rotation rate of the
target [40, 53, 63], and for targets with sufficiently large inertia, the second term in the denom-
inator of (4.53) can be approximated as ‖M1e‖‖Λ−1

t ‖ ≈ 0 so that the above inequality can be
approximated to:

‖fe‖ ≤
(UMm +‖M12‖‖M−1

22 ‖UMb)

‖J1e‖
. (4.54)

The inequality in (4.53) will be evaluated with and without the inclusion of the non-linear
velocity dependent terms in the numerical simulation section of this Chapter.

4.2 Numerical Simulation Study of Detumbling Strategy

In this subsection, numerical simulations are presented to evaluate the effectiveness of the
proposed detumbling strategy to detumble a non-cooperative target with unknown but bounded
inertial parameters. The evaluation is carried out using a 7-degree-of-freedom (DOF) space
manipulator servicer satellite that is based on a modified model of ETS-VII system. The model
parameters of the servicer are described in Appendix A. The target is modelled as a cube
with 1.3 m sides and its inertia parameters are presented in Table 4.1. A description on how
the target’s inertial parameters were obtained can be found in Appendix A. For the numerical
simulation, the target will be modelled with zero fuel and its inertial parameters will reflect that
of the Dry Condition in Table 4.1.

The target is grasped at t = 0s, resulting in a redistribution of its momentum in the servicer-

Table 4.1: Target’s Properties for Numerical Simulation Studies

Condition: Dry Wet

mt,kg 119 170
It,kgm2 diag([32.2,32.2,33.2]) diag([39.8,39.8,36.3])
‖rte‖,m 1.08 1.15
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target system. The velocities of the servicer-target system after grasping (t+ = 0s) are com-
puted as in [67]. The target has an initial angular velocity of wt = [5, 5, 8.2]Tdeg/s at the start
of the post grasping phase. The initial velocity of the target in the post-grasping phase is rea-
sonable as ground based observation of ADEOS 1 described its attitude motion as composed
of two rotational components: 0.1deg/s about the satellite’s main body and another about the
satellite’s boom of about 0.4deg/s [77]. Observation of Envisat resulted in an average rotation
rate of 3.5deg/s [62]. Furthermore, functions from the SpaceDyn toolbox [69] were utilized to
compute the servicer’s mass matrix, Jacobian and nonlinear forces.

Detumbling of the target is accomplished by first determining the detumbling period uti-
lizing bounds on the target’s inertial parameters (Table A.6 of Appendix A) and the specified
end-effector’s force torque limit (Fmax = 10N and τmax = 10Nm). The bounds on the target’s
inertial parameters presented in Appendix A are reflective of the target when it is full with
fuel. Furthermore, in determining the detumbling period, the nonlinear velocity dependent
terms in the target’s equation of motion are neglected due to the slow rotation rate of the tar-
get and results in a detumbling period of 18.4sec. Using the obtained detumbling period, the
desired detumbling trajectory is delineated utilizing (4.3), (4.5) and (4.6). Tracking the refer-
ence detumbling trajectory with the unknown target attached to the servicer’s end-effector is
accomplished by applying the auxiliary control input U in (4.40) to the augmented model for
the servicer’s input defined in (4.24c). This provides us with the variable V which is utilized to
compute τ = f (V) where f (V) is defined in (4.24a).

The proposed detumbling strategy is presented for two different cases. In Case 1, the ser-
vicer’s base control torques are realized with continuous torques applied to its center of mass.
In Case 2, the servicer’s base control torques are achieved with reaction thrusters that provide
only on-off thrust. Case 2 is presented to demonstrate that the proposed detumbling strategy
can also be incorporated with a pulse-width pulse-frequency (PWPF) modulator to control the
servicer’s base using on-off thrusters located on the servicer’s base. As described in Section
3.4.7, from Fig. 3.7, the PWPF modulator is a feedback loop containing a linear first-order
filter and Schmidt trigger and are characterized by the user-defined positive parameters: Km,
Tm, Uon, Uoff and Ymax [25, 50]. Let Σb denote the body fixed frame located at the servicer’s
base center of mass. The components of the base attitude control torque in Σb are inputs to the
PWPF modulator. The outputs of the PWPF modulator are used to fire a set of thrusters based
on the thruster configuration in Fig. 3.8 and the thruster selection logic in Table 3.2 in order
to apply a torque to the servicer’s base. The thrusters are assumed to have a specific impulse
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Table 4.2: Gains

Gain Set K1 K2

1 10 15
2 10 40
3 15 40

of Isp = 70s and generate an on-off reaction force of 6N. Furthermore, in Fig. 3.8 the radial
distance, r is set to 0.5 m. A reaction force of 6N is a reasonable as thrusters with similar
values have been utilized with orbiting satellites [36]. Furthermore, this produces a torque of
6 Nm about the servicer’s base center of mass which is reasonable as reaction torque levels
ranging between 0.01 Nm and 30 Nm are common in most spacecraft using reaction thrusters
for attitude control [56].

The following controller gains are utilized for both Cases 1 and 2: ε1 = 1, σ1 = 20, σ2 = 3,
{UM}i = 8Nm for i = 1,2,3, ...7 (manipulator) and {UM}i = 6Nm for i = 8,9,10 (base atti-
tude control). Furthermore, for the detumbling task, the desired position of the end-effector
is ignored and is reflected as: KPEL = 0E3, KPEA = 0, KPBA = 0. Numerical results are pre-
sented for Case 1 utilizing all three Gain Sets for K1 and K2 presented in Table 4.2. Case 2
sets K1 = 4, K2 = 10, and the PWPF modulator parameters are Km = 2, Tm = 1, Uon = 0.01,
Uoff = 0.6Uon and Ymax = 4.

The desired end-effector velocity and acceleration are presented in Fig. 4.1. In Figs. 4.2-
4.4, for Case 1, the velocity tracking errors are observed to decrease as gains K1 and K2 are
increased from Gain Set 1 to Gain Set 3 (Table 4.2). The increase in gains from Gain Set 1 to
Gain Set 3 (Table 4.2) for Case 1 do not cause the end-effector’s force or torque to exceed the
specified force and torque limits (Fmax = 10N, τmax = 10Nm) utilized to delineate the desired
detumbling trajectory as observed in Fig. 4.5. Furthermore, the end-effector force/torque do
not exceed the end-effector force/torque upper bound, as seen in Fig. 4.5. The computed
force/torque upper bound in Fig. 4.5 was determined using (4.53) while neglecting the upper
bound on the non-linear velocity dependent terms, ‖(M1eΛ

−1
t (J−T

t ct−Λ tJ̇tJ−1
t ve)− c1e)‖, in

the numerator of (4.53). Note that the force/torque upper bound is less than the force/torque
limits utilized to determine the detumbling period for the numerical simulations. This was done
on purpose to demonstrate the controller’s ability to detumble the target even if the servicer’s
control inputs become saturated.

The manipulator and base attitude control inputs are presented in Fig. 4.6 for Case 1 using
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gains from Gain Set 3 (Table 4.2) and can be observed to be bounded by their respective input

Figure 4.1: End-effector’s desired linear and angular velocity and acceleration.

Figure 4.2: End-effector’s linear velocity error for Case 1
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Figure 4.3: End-effector’s angular velocity error for Case 1

Figure 4.4: Servicer’s base angular velocity error for Case 1
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Figure 4.5: End-effector’s force/torque magnitude and force/torque bound determined from
(4.53) for Case 1

Figure 4.6: Servicer’s manipulator and base attitude control input profile for Case 1, Gain Set
3, where {UM}i = 8Nm for i = 1,2,3, ...7 (manipulator) and {UM}i = 6Nm for i = 8,9,10
(base attitude control).

magnitude limit. It can be observed from Fig. 4.6 that detumbling of the target was accom-
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plished for Case 1, Gain Set 3, even when the base attitude control inputs were saturated.
In Case 1, detumbling of the target can be observed to be accomplished as the servicer’s

end-effector and base velocity errors converge to a neighbourhood of zero (Figs. 4.2 -4.4).
Rejection of the target’s momentum is demonstrated in Fig. 4.7. In Case 2, detumbling of the
target where the base is controlled by on-off thrusters can be observed from Fig. 4.9, as the
servicer’s end-effector linear and angular velocity converges to a neighbourhood of zero. The
end-effector’s force/torque limit is observed to be respected in Fig. 4.8 while the servicer’s base
torque output for Case 2 is presented in Fig. 4.10. According to the classical rocket equation,
the rate of change of the spacecraft’s mass is determined by: ṁ = ‖Fc‖/(Ispgr) where Fc

is the thruster force vector of the reaction thruster, Isp is the thruster’s specific impulse, and
gr = 9.81m/s2. Using this equation, the fuel consumption in Case 2 is 0.0861kg.

Figure 4.7: Servicer-target system’s momentum distribution for Case 1.
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Figure 4.8: End-effector’s force/torque magnitude and force/torque bound determined from
(4.53) for Cases 2.

Figure 4.9: End-effector’s linear and angular velocity profile for Case 2.
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Figure 4.10: Servicer’s base torque output for Case 2.

4.2.1 Detumbling Target with Random Inertial Properties

Let the target’s dry mass, mdry, be defined as mdry = 119kg as per Table 4.1 and denote the
target’s mass, mt, as the sum of its dry mass and mass of its fuel, mfuel. From Table 4.1, the
maximum fuel mass that the target can carry is 51kg. As the target’s fuel mass varies from 0kg
too 51kg, so to does its inertial properties as described in Appendix A.

The purpose of the numerical example presented herein is to demonstrate the robustness of
the proposed detumbling strategy in detumbling a target with unknown inertial parameters with
known bounds. Bounds on the target’s inertial parameters are determined based on its wet mass
as described in Appendix A. To this end, 50 simulations are performed, where mfuel is randomly
selected as a value between 0kg and 51kg. The target’s initial angular velocity is assumed to
have the same magnitude as that in Case 1 of Section 4.2, however the direction is randomly
determined as defined in (3.86) of Section 3.4.7. This is accomplished with MATLAB’s “rand”
function. For each numerical simulation, the servicer’s base control torques are generated as
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in Case 1 of Section 4.2 (servicer’s base control torques are continuous) and the detumbling
control gains are the same as in Case 1 in Section 4.2 with Gain Set 2 (Table 4.2).

The main results are reported in Figs. 4.11 and 4.12. From these results, the end-effector’s
force/torque limits is observed to be respected, Fig. 4.11, and the target’s momentum is rejected
as the angular momentum of the servicer and target all converge to a neighbourhood of zero as
observed in Fig. 4.12.

Figure 4.11: Magnitude of end-effector’s force/torque profile as the target’s fuel mass is ran-
domly selected.
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Figure 4.12: Servicer-target system’s momentum distribution profile as the target’s fuel mass
is randomly selected.

4.2.2 Effect of ε1 Parameter on Detumbling Controller’s Performance

The robust compensators, ψP1 in (4.34) and ψP2 in (4.41), were designed to robustly com-
pensate for the disturbances preventing the sliding variable, s1 and error, s2, respectively, from
converging to zero. The robust compensator can be designed using a non-smooth function
(i.e., sign function) [57]. The use of a non-smooth function can lead to chattering in practical
implementation of sliding mode control due to the difficulty of switching the control law at
high frequency in order to keep system’s dynamics on the sliding surface, and the difficulty
of avoiding the excitation of unmodeled dynamics when switching the controller at high fre-
quency [58]. Hence the smooth robust compensator used in (4.34) and (4.41) were utilized
with the goal of avoiding this problem. The hyperbolic tangent function were utilized as a
smooth approximation of the saturation function [57]. However, using this function requires
tuning the parameter ε1 in (4.34) and (4.41). Smaller values of ε1 will make the hyperbolic
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tangent function better approximate the sign function as seen in Fig. 4.13.
It is observed from Fig. 4.13, as the value of ε decreases the output of the hyperbolic

tangent function approaches ±1 using a smaller argument to the hyperbolic tangent function
(variable t in Fig. 4.13). The effect of the tuning parameter, ε1, in ψP1 and ψP2 (defined in
(4.34) and (4.41)) on the detumbling controller’s performance can be observed in Figs. 4.14
and 4.15. Note, the results presented in Figs. 4.14 and 4.15 were obtained utilizing Gain Set
2 in Table 4.2 and the same gains and initial conditions stated in Chapter 4.2. It is observed in
Fig. 4.14 that a decrease in ε1 corresponds to an increase in the end-effector’s force and torque
magnitude and even begins to oscillates. Identical observations can be made in Fig. 4.15 for
the magnitude of the servicer’s manipulator and base control inputs. This observations is to
be expected based on the relations presented in Fig. 4.13. As the value of ε1 is made smaller
the output of the robust compenstor (ψP1 and ψP2) will be larger for a smaller input. This will
result in a larger control input to the servicer, and in turn, will result in a larger end-effector
force/torque magnitude based on the relationship established in (4.52): larger control input will
result in larger force/torque at the end-effector.

Figure 4.13: Plot of tanh(t/ε) for different values of ε .
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Figure 4.14: Effect of ε1 in ψP1 and ψP2 on the end-effector force and torque magnitude profile
in the post-grasping phase.

Figure 4.15: Effect of ε1 in ψP1 and ψP2 on the magnitude of the servicer’s control inputs.
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Figure 4.16: Experimental setup

4.3 Experimental Evaluation

Experiments are conducted to evaluate the design of the desired detumbling trajectory by com-
paring the specified end-effector force/torque limits to the measured end-effector force/torque.
This is accomplished by tracking a desired detumbling trajectory and comparing the specified
force/torque limits used to delineate the desired detumbling trajectory to the measured end-
effector force/torque. The procedure for designing the desired detumbling trajectory is as fol-
lows: 1) utilize bounds on the target’s inertial parameters and 2) the end-effector force/torque
limits to determine the minimum detumbling period; utilize the detumbling period to delineate
the desired detumbling trajectory.

The experimental setup is depicted in Fig. 4.16 and is confined to the X-Y plane. It consists
of the target and a 3 degree of freedom (DOF) Modular and Reconfigurable Robot that was
designed and built at the Systems and Controls Lab at Ryerson University. Each joint of the
manipulator is equipped with an absolute encoder to measure the link-side position and the end-
effector is equipped with a 6 axis force/torque sensor (ATI Mini45). The target is represented
by a square platform constructed from MDF (Fig. 4.16) and hangs from a taut string and has
the following inertial properties: mt = 5kg, λmax(It) = 0.3kgm2 and ‖rte‖= 0.3m.

From Fig. 4.16, the manipulator’s base joint is fixed and does not allow the emulation of
the servicer’s base motion. However, this does not effect the intended goal of the experiment.
This becomes a requirement when evaluating the performance of the proposed controller in
Section 4.1.3 in its ability to reject the coupling dynamics between the servicer’s manipulator
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and base in order to track the desired detumbling trajectory (controller’s performance not be-
ing experimentally evaluated). As a result, the desired end-effector detumbling trajectory is
mapped to joint space, and a simple PD controller is implemented to track the desired joint
space trajectory.

Since the target hangs from a taunt string (experimental setup in Fig. 4.16), it is undesirable
for its center of mass to translate as this will induce an unwanted restoring force that is unrep-
resentative of a target in space. With this in mind, the detumbling trajectory is designed by
forcing ‖Fe‖= Fmax = 0 in (4.7) so as to not induce any translational movement of the target’s
center of mass during the experiment. This experimental constraint requires rte to be known in
order to compute the desired end-effector position trajectory that will satisfy ‖Fe‖= Fmax = 0,
and results in only the end-effector’s torque being evaluated along the desired detumbling tra-
jectory. As a result, (4.7) and (4.8) reduce to the following for the planner case:

v̇d
e =−r×teẇd

e− ṙ×tewd
e (4.55a)

Itẇd
e = τe (4.55b)

From (4.55b), the detumbling period is determined as follows:

T ≥
|wtz(int)|λmax(It)

τmax
(4.56)

where setting wtz(int) = 5deg/s, λmax(It) = 1kgm2 and τmax = 5Nm produces a detumbling
period of T ≥ 0.02sec. While setting T to a very small value may seem valuable, it will result
in the excitation of unmodelled dynamics. For the experiment, two cases will be considered.
In Case 1, T = 10sec and in Case 2, T = 15sec. Using the detumbling period, the desired
detumbling trajectory of the end-effector’s orientation and its first and second derivatives are
computed from (4.3), (4.5) and (4.6). The desired trajectory of the end-effector’s position is
determined by integrating (4.55a).

The experimental procedure is partitioned into two phases. The goal of phase one is to
set the initial conditions for the post-grasping phase so that the detumbling trajectory can be
evaluated in phase two. Phase one starts at point A in Fig. 4.17a, and controls the manipu-
lator’s end-effector to move from point A to point B along a smooth trajectory such that the
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angular velocity of the end-effector at point B is equal to wtz(int) (initial angular velocity of
post-grasping phase). Phase two starts once the end-effector arrives at point B in Fig. 4.17b,
where tracking of the desired detumbling trajectory commences.

The manipulator joint position and velocity tracking errors are presented in Figs. 4.18
and 4.19, respectively, for both Cases 1 and 2. The measured end-effector’s torque and force
profile in frame Σ e (Σ e defined in Fig. 4.16) are presented in Fig. 4.20 for Cases 1 and 2.
From the aforementioned plots (Figs. 4.18, 4.19, 4.20), phase one occurs from t = 0sec to
t = 15sec, and phase two starts at t = 15sec and ends at t = 25sec for Case 1 and t = 30sec
for Case 2. The manipulator tracks the desired trajectory in both phases one and two (Figs.
4.18 and 4.19). Due to the experimental setup constraint, the desired detumbling trajectory
was designed to keep Fe = 0 along the detumbling trajectory. However, from Fig. 4.20,
the end-effector force is not exactly zero for both Cases 1 and 2. A non zero end-effector
force would result in an addition term contributing to the measured end-effector torque in

Figure 4.17a: Phase one of experiment

Figure 4.17b: Phase two of experiment
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Figure 4.18: Manipulator joint position error

Figure 4.19: Manipulator joint velocity error
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Figure 4.20: Measured end-effector’s force/torque for Cases 1 and 2 in frame Σ e located at the
end-effector. Top plot presents torque about z axis of Σ e. Bottom two plots present force along
x and y axis of Σ e.

addition to the inertial torque of the target along the desired detumbling trajectory: (4.55b)
would become−r×teFe+ Itẇe = τe. Given ‖rte‖= 0.3m of the target platform in Fig. 4.16, and
the maximum ‖Fe‖ from Fig. 4.20 for t ≥ 15sec, the maximum torque created by the additional
term r×teFe in phase 2 of the experiment (t ≥ 15sec) is determined to be ‖r×teFe‖= 0.54Nm. The
additional torque created by ‖r×teFe‖ is well below the torque limit of 5Nm that was utilized to
compute the desired detumbling trajectory and hence does not affect the results obtained from
the experiment.

The end-effector’s torque profile is presented in the top plot of Fig. 4.20 for both Cases
1 and 2. For both cases, the end-effector’s measured torque is observed to have a maximum
at the start of the desired detumbling trajectory (t = 15sec) and converges to around zero as
the target is brought to rest along the desired detumbling trajectory. It is clearly observed that
the measured torque is well within the specified torque limit utilized to construct the desired
detumbling trajectory even as the detumbling period is reduced from T = 15sec to T = 10sec.
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4.4 Conclusions

This chapter has addressed the problem of detumbling a non-cooperative target with unknown
but bounded inertial parameters by a space robot. The detumbling strategy presented within
this chapter was developed under the basis that measurements of the end-effector force/torque
are not available. Detumbling of the target is accomplished by designing a robust controller to
coordinate the motion between the servicer’s base and manipulator in order to track a desired
task space detumbling trajectory and to accommodate the target’s gained momentum as its tum-
bling motion is brought to rest. The proposed robust controller takes into account magnitude
constraints on the servicer’s control input in the controller’s design. The desired detumbling
trajectory is delineated subjected to end-effector force/torque limits and requires only bounds
on the target’s inertial parameters. The use of bounds on the target’s inertial parameters in the
proposed detumbling strategy to both determine the detumbling trajectory and to track it, elim-
inates the need for accurate knowledge of the target’s inertial parameters, which are impractical
to be assumed known prior to detumbling the target. Numerical simulations and experimental
evaluations have demonstrated that the end-effector’s force/torque limits are respected as the
target with unknown inertial parameters is detumbled by the proposed detumbling strategy.
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Chapter 5

Conclusions and Future Work

5.1 Summary and Conclusions

In this dissertation, the problem of detumbling a malfunctioning satellite by a space robot for
the purpose of performing on-orbit servicing is addressed. The malfunctioning satellite is de-
noted as the target and is non-cooperative, tumbling and has unknown but bounded inertial
parameters. The space robot consists of a manipulator attached to a satellite base. Two detum-
bling control strategies are presented in this study. In both detumbling strategies, detumbling
of the target is accomplished while being subjected to force/torque limits at the servicer’s end-
effector and do not require knowledge of the target’s inertial parameters other than estimates
of bounds on the target’s inertial parameters.

The difference between the two detumbling strategies lie in the assumption on the availabil-
ity of force/torque measurements at the end-effector. If end-effector force/torque measurements
are not available, a tracking control based detumbling strategy is presented. Alternatively, if
force/torque measurements are available, a force control based detumbling strategy is pre-
sented. The availability of force/torque measurements at the end-effector is not impossible to
achieve, but adds additional complexity as the design and housing of the sensor must be taken
into account for successful operation in the harsh space environment (i.e., large temperature
fluctuations).

The force control based detumbling strategy achieves detumbling by applying a reference
detumbling force/torque to the target that is designed to bring the target’s velocity to zero sub-
jected to force/torque limits at the servicer’s end-effector, and is computed using the servicer’s
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end-effector velocity and force/torque limits. This allows the servicer to detumble the target
while complying with its residual tumbling motion. The implementation of this detumbling
strategy is presented with and without compensation for changes in the servicer’s inertial pa-
rameters due to the grasped target. In the case of no compensation for changes in the servicer’s
inertial parameters a detumbling criteria is formulated in the form of bounds on the target’s
inertial parameters and tumbling rate for which this approach can detumble (domain of attrac-
tion). Evaluation of the detumbling criteria can be carried out utilizing estimates of bounds on
the target’s inertial parameters.

If the estimated bounds on the target’s inertial parameters are very conservative, then it
may become difficult to satisfy the detumbling criteria. In this case, an adaptive robust com-
pensator was designed to ensure stable detumbling of the target utilizing real-time estimates
of bounds on the target’s inertial parameters to update its gains. The design of the reference
detumbling force/torque and use of real-time estimates of bounds on the target’s inertial param-
eters eliminates the need for accurate knowledge of the target’s inertial parameters and their
bounds, and allows the robust controller gains be adjusted in real-time based on real-time es-
timates of bounds on the target’s inertial parameters. Bounds on the end-effector force/torque
are derived along with bounds on the servicer’s control inputs. Numerical simulations have
demonstrated that the end-effector force/torque limits are respected as the target with unknown
inertial parameters is detumbled using the force control based detumbling strategy.

The tracking control based detumbling strategy achieves detumbling of the target by de-
signing a robust coordination controller to coordinate the motion between the servicer’s base
and manipulator in order to track a desired task space detumbling trajectory and to reject the
target’s gained momentum. The proposed robust coordination controller takes into account
magnitude constraints on the servicer’s control inputs in the controller’s design. The desired
detumbling trajectory is delineated subjected to end-effector force/torque limits and requires
only bounds on the target’s inertial parameters. The use of bounds on the target’s inertial
parameters in the proposed detumbling strategy to both determine the detumbling trajectory
and to track it eliminates the need for accurate knowledge of the target’s inertial parameters,
which are impractical to be assumed known prior to detumbling the target. Numerical simula-
tions and experimental evaluations have demonstrated that the end-effector force/torque limits
are respected as the target with unknown inertial parameters is detumbled using the tracking
control based detumbling strategy.

The tracking control based detumbling strategy indirectly takes into account limits on the
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servicer’s end-effector force/torque. Force/torque limits at the end-effector are taken into ac-
count via the design of the desired detumbling trajectory and coordination control between
the servicer’s manipulator and base is implemented to track the desired trajectory. However,
the end-effector’s force/torque experienced during the detumbling of the target is shown to be
upper bounded by a function of the servicer’s control input magnitude constraints in Section
4.1.4. Larger control input magnitude constraints will result in a larger force/torque bound.
Hence, utilizing the servicer’s control input magnitude constraints, the maximum force/torque
experienced at the end-effector can be determined and specified as the end-effector’s force and
torque limits. These limits in conjunction with bounds on the target’s inertial parameters can be
utilized to delineate the desired detumbling trajectory. Design of the desired detumbling trajec-
tory in this manner, and the utilization of the robust coordination controller to track the desired
detumbling trajectory while rejecting the target’s gained momentum will ensure force/torque
limits at the servicer’s end-effector are respected.

Both detumbling strategies are capable of detumbling the target subjected to force/torque
limits at the end-effector using only bounds on the target’s inertial parameters. However, there
are inherent advantages and disadvantages between the two strategies. The tracking control
based detumbling strategy does not require force/torque measurements at the end-effector in its
implementation. While this presents an advantage, the resultant strategy produces conservative
requirements on the servicer’s design in order to respect end-effector force/torque limits.

The procedure to delineate the desired detumbling trajectory in the tracking control based
detumbling strategy, outlined in Section 4.1.1, utilizes bounds on the target’s inertial parame-
ters to determine the detumbling period. The detumbling period is then used to delineate the
desired detumbling trajectory (recall that a smaller detumbling period results in faster detum-
bling of the target and larger force/torque at the end-effector during the detumbling procedure).
As the bounds on the target’s inertial parameters are inherently larger than the target’s actual
inertial parameters, a larger detumbling period will result leading to experienced force/torque
at the end-effector that are smaller in comparison to their respective force/torque limit.

Furthermore, the procedure to delineate the desired detumbling trajectory in the tracking
control based detumbling strategy imposes constraints on the target’s inertial parameters for
which it can detumble based on the servicer’s force/torque limits: using bounds on the target’s
inertial parameters and the servicer’s force/torque limits, the inequality in (4.18) must be satis-
fied. Inequality (4.18) dictates that an increase in the target’s inertial parameters and tumbling
rate requires a servicer designed with a larger force/torque limit in order to arrive at a feasible
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solution for the detumbling period (T > 0). As a comparison, if the tracking control based de-
tumbling strategy were to be used to detumble the target with the same inertial properties and
tumbling rate as that in the numerical simulation study of the force control based detumbling
strategy in Section 3.4.7, the servicer will be required to possess force and torque limits of at
least 35N and 35Nm, respectively, to be able to delineate a detumbling trajectory. In Section
3.4.7, using the force control based detumbling strategy, detumbling of the target was achieved
with a servicer specified with 10N and 10Nm for force and torque limit at the end-effector,
respectively. This highlights the advantage of the force control based detumbling strategy in
that it would require a servicer designed with smaller force/torque limits to detumble the same
target than with the use of the tracking control based detumbling strategy. A servicer designed
with smaller force/torque limits would require smaller control inputs to detumble the target and
reject its momentum as well as a grasping mechanism designed to handle smaller interaction
force/torque at the grasping point.

5.2 Future Work

It is the hope of the author that the proposed detumbling control strategies have advanced the
literature on the subject and stimulated ideas on how to further develop detumbling control
strategies to address the problem of detumbling a non-cooperative target with unknown but
bounded inertial parameters. Some of the possible future directions of research on the problem
are as follows:

1. Improve the delineation of the desired detumbling trajectory in the tracking control based
detumbling strategy so that the end-effector’s experienced force and torque that occur
during the detumbling procedure are closer to the end-effector’s force/torque limits. Fur-
thermore, the inclusion of additional considerations in the delineation of the detumbling
trajectory should be considered: minimize fuel consumption, avoid singular configura-
tion.

2. An investigation should be carried out to determine the possibility of utilizing a pa-
rameter estimation scheme with the force control based detumbling strategy in order to
identify the target’s inertial parameters and to predict its motion. This would enable the
servicer to determine if the target will rotate out of its workspace and allows for the pos-
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sibility of corrective action by the servicer: i.e., change the direction and magnitude of
the applied detumbling force/torque.

3. An investigation should be carried out to study the implementation of both detumbling
control strategies using a servicer that consists of two manipulators attached to the ser-
vicer’s base. One arm can be utilized to detumble the target, while the second arm can
be utilized to manage the momentum distribution in the servicer system in order to avoid
saturation of the servicer’s attitude control system as it rejects the target’s momentum.
The rationalization of a multi arm servicer stems from the fact that in order to perform
on-orbit servicing of the target, two or more arms will likely be required: one arm to
grasp the target, and a second arm to perform on-orbit servicing.

4. The detumbling of a non-cooperative target using Multiple Mode Control should be in-
vestigated. Multiple Mode Control allows the manipulator’s joints to work in passive or
active mode. Joints in passive mode will exhibit passive like compliance allowing the
manipulator to comply with unmodelled environmental constraints resulting in reduced
constraint force/torque at the interaction point between the manipulator and the envi-
ronment. This work has been started in [48], in which a selection criteria is presented
to select manipulator joints to work in passive mode in order to reduce the momentum
transfer from the servicer’s end-effector to its base when interacting with an unknown ob-
ject. This results in a reduced servicer’s attitude control torque to maintain the servicer’s
base attitude when a force/torque is applied to the servicer’s end-effector.
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Appendix A

Description of Servicer and Target
Model Parameters Used in
Numerical Simulations

Here, the model parameters of the servicer and target used in the numerical simulations are
presented.

A.1 Model Parameters for Servicer

The numerical simulation study was carried out using a MATLAB Simulink add-on, SimMe-
chanics [1]. SimMechanics allows the representation of a connected multibody system, such
as the servicer, by connected individual blocks. Each individual block represents a single rigid
body of the multi body system. The block are connected utilizing different joint connections
blocks. The joint connection blocks impose kinematic constraints between the two bodies that
determine how they can move relative to each other. Each joint has an actuation input that is
determined by the detumbling control strategy.

The servicer consist of a base satellite and a 7 degree-of-freedom (DOF) manipulator. Each
link of the manipulator is modelled as a rigid body and is connected to the lower link by a
revolute joint (Fig. A.1 ). The first manipulator link is connected to the base by a revolute
joint. The servicer’s base center of mass is connected to the inertial frame by a 6-DOF joint.
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Figure A.1: Servicer model created in SimMechanics

The 6-DOF joint can accept both force and torque as actuation inputs. However, only actua-
tion torques are applied to the 6-DOF joint. These actuation torques are determined from the
detumbling control strategy.

As mentioned above, the servicer consist of a base satellite and a 7-DOF manipulator. The
structure of the manipulator is depicted in Fig. A.1. The servicer’s base is model as cube
with 1m sides. The 7-DOF manipulator is based on a modified model of the manipulator on
Engineering Test Satellite Number 7 (ETS-VII) presented in [44]. Model parameters of the
servicer are presented in Table A.1 and Denavit-Hartenberg parameters are presented in Table
A.2 from [44].
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A.2. MODEL PARAMETERS FOR TARGET

Table A.1: Servicer’s Model Parameters

Mass(kg) Ixx(kgm2) Iyy(kgm2) Izz(kgm2)

Base 1000 1200 1200 1200
Link 1 35.01 1.218 0.5132 1.331
Link 2 30 2.10 1.378 2.359
Link 3 22.69 0.102 3.378 3.359
Link 4 21.38 0.4327 2.266 1.911
Link 5 16.75 0.3878 0.3963 0.07271
Link 6 26.17 0.5727 0.5987 0.1288
Link 7 18.07 0.165 0.241 0.135

Table A.2: Denavit-Hatenberg table of 7-DOF manipulator

ai (m) αi (deg) di (m) φi (deg)

Link 1 0 90 0.35 φ1
Link 2 0 90 0.2 φ2+90
Link 3 0.87 0 0.275 φ3
Link 4 0.63 0 -0.275 φ4
Link 5 0 90 -0.36 φ5-90
Link 6 0.55 90 0.16 φ6-90
Link 7 0.532 00 0.2 φ7

A.2 Model Parameters for Target

In the numerical simulation studies of this dissertation, the target is modelled as a rigid body.
The target’s inertial parameters such as its mass (mt), inertia tensor (It) and location of center
of mass from the grasping location (rte) are determined by the following steps.

1. The total mass of the target satellite is selected. The total mass of the satellite is de-
noted as mTtotal and is the summation of the target’s dry mass, mdry, and the mass of the
maximum amount of fuel that the target can hold at launch, mMfuel.

2. The spacecraft density, ρ , will vary between ρ = 20kg/m3 and ρ = 172kg/m3 with the
average being ρ = 79kg/m3. This was obtained from [36] and reflects the density of the
75 spacecrafts launched between 1975 and 1984 in launch configuration with propellant
loaded. With the use of the target’s total mass and density, the volume of the satellite
can be determined. The body of most satellites will be similar in shape to a cube or
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A.2. MODEL PARAMETERS FOR TARGET

Table A.3: Target Properties for Numerical Simulation Studies

Section:3.4.7 Section:4.2

mTtotal (kg) 500 170
mdry (kg) 350 119

mMfuel (kg) 150 51
sside (m) 1.95 1.3
rtank (m) 0.45 0.3

cylinder. Assuming the shape of the target is that of a cube, the dimensions of the cube
can be estimated using the estimated volume. Let the length of the cube be denoted by
sside. The procedure utilized here to determine the size of the target satellite parallels that
presented in [36] in estimating the size of the satellite based on its total mass.

3. As stated above, the total mass is the summation of its dry mass and total fuel mass:
mTtotal = mdry+mMfuel. From [36], the fuel mass of some satellite can be as high as 50%
of their total mass. However the percentage of mMfuel out of mTtotal ultimately depends on
the target satellite’s mission. Herein, mMfuel is selected as 30% of mTtotal. Furthermore,
an assumed size of the fuel tank is made. As per Fig. A.2 the fuel tank is assumed to
sit just below the target’s geometric center, with the aim of keeping the tank close to the
target’s center of mass. From Fig. A.2, the fuel tank is modelled as the smaller cube that
sits inside of the larger cube, that is the target. The length of the smaller cube (tank) is
denoted by rtank. For the numerical simulations carried out in Section 3.4.7 and 4.2, the
assumed mass and size of the target satellite and fuel tanks are presented in Table A.3.

4. Making use of the mass properties and geometric properties of the satellite body and of
its tank in Table A.3, the inertia tensor of the satellite with zero fuel and with a full tank
of fuel about the satellite’s body geometric center can be determined and are denoted as
ItarDRY and ItarWET, respectively. The target’s center of mass with respect to frame Σt in
Fig. A.2 can be determined with and with out fuel and are denoted as rcgDRY and rcgWET,
respectively. The origin of Σt in Fig. A.2 is located at the geometric center of the target’s
cube shape body. These parameters are presented in Table A.4.

The numerical simulations in Section 3.4.7 and 4.2 require the upper and lower bounds
on the target’s inertial parameters. The upper bounds on the target’s inertial parameters are

115



A.2. MODEL PARAMETERS FOR TARGET

Table A.4: Target Inertia Tensor and Location of Center of Mass

Section:3.4.7 Section:4.2

ItarDRY,(kgm2) diag([212.8,212.8,219.8]) diag([32.2,32.2,33.2])
ItarWET,(kgm2) diag([263.4,263.4,240.1]) diag([39.8,39.8,36.3])

rcgDRY,(m) [0,0,0.12]T [0,0,0.08]T

rcgWET,(m) [0,0,−0.05]T [0,0,−0.04]T

determined by multiplying the target’s dry mass and max fuel mass by 1.2 (20%) to determine
the mass, inertia tensor and location of center of mass. The lower bound is determined by
multiplying the target’s dry mass by 0.8 and setting the fuel mass to zero to determine the
mass, inertia tensor and location of center of mass of the target. In the calculation of bounds
on the target’s inertial parameters, the size of the target’s body and fuel tank are assumed fixed.
An uncertainty of 20% is utilized to reflect the uncertainty associated with mass estimation of
a satellite’s inertial properties prior to launch [15].These values are presented in Table A.5 and
A.6 for the targets in utilized in Section 3.4.7 and 4.2, respectively.

Figure A.2: Target model. The origin of Σt coincides with the geometric center of the target’s
satellite body.
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A.2. MODEL PARAMETERS FOR TARGET

Table A.5: Bounds on Target’s Inertial Parameters for Section 3.4.7

Lower Bound Upper Bound

mt(kg) 280 600
It(kgm2) diag([170.3,170.3,175.9]) diag([316.1,316.1,288.1])
‖rte‖(m) 1.62 1.71

Table A.6: Bounds on Target’s Inertial Parameters for Section 4.2

Lower Bound Upper Bound

mt(kg) 95.2 204
It(kgm2) diag([25.7,25.7,26.5]) diag([47.8,47.8,43.5])
‖rte‖(m) 1.08 1.15
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Appendix B

Upper Bound on ‖χ‖ and ‖ ḟ (V)d‖

Here, it is demonstrated that χ and ḟ (V)d are upper bounded by a finite positive constant
provided that (s1,s2) ∈ Ω 2 and the desired velocity and its first two derivatives are contained
in the set Ω 1. From this, it will become clear why χ and ḟ (V)d cannot be bounded if the
servicer’s manipulator is redundant with respect to the end-effector’s task space representation.

In order to conclude boundedness of s1 and s2, it is required that χ and ḟ (V)d be bounded.
From Chapter 4.1.3, the definition of χ and ḟ (V)d are presented below:

χ = M̄−1
o (ATs2−Jsγ2−∆M̄ξ̇ ) (B.1)

ḟ (V)d =Ȧ−T
(co +M̄oξ̇

d−M̄oKPėP−M̄oK1tanh(s1)−ψP1)+

A−T(ċo +
d
dt
(M̄oξ̇

d−M̄oKPėP−M̄oK1tanh(s1)−ψP1))
(B.2)

From (1) and (2), boundedness of χ and ḟ (V)d can be concluded if the terms on the right side
of (1) and (2) are bounded. Consider the following remarks:

Remark 1: co represents the non-linear velocity dependent terms and is a function of the
servicer’s base linear and angular velocity (vb) and servicer’s manipulator joint velocity (φ̇ m).
γ2 and ėp are functions of ve and wb

Remark 2: ċo is a function of vb, φ̇ m and their derivatives (v̇b, φ̈ m).
Remark 3: A, M̄o, Js and ∆M̄ are functions of the servicer’s configuration (dependent
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on position and orientation of the servicer’s base and manipulator), its inertial and geometric
properties as well as the target’s inertial parameters and are bounded.

Remark 4: The derivative of A and M̄o with respect to time are a function of the servicer’s
configuration, inertial properties and vb, φ̇ m.

Remark 5: ψP1 (defined in equation (4.34)) is bounded. The derivative of ψ1 and s1 with
respect to time are a function of the servicer’s configuration, vb, φ̇ m, v̇b and φ̈ m.

For χ and ḟ (V)d to be bounded, it is required ve, vb, φ̇ m, v̇e, v̇b and φ̈ m be bounded.
Assumption A1: It is assumed that (s1,s2) ∈ Ω 2. Recall that ξ = [vT

e ,wT
b ]

T. It is assumed
that the desired end-effector position trajectory as well as ξ

d and its first two derivatives are
contained in the set Ω 1.

Remark 6: Corollary 1 (Chapter 2.1), demonstrates that the servicer’s end-effector position
is bounded.

Boundedness of ve, vb, φ̇ m, v̇e, v̇b and φ̈ m is demonstrated as follows:
Step 1: Recalling the definition of s1 (4.22), and using Assumption A1 and Remark 6, we

can conclude that ξ = [vT
e ,wT

b ]
T is bounded.

Step 2: Equation (2.29) is rewritten here for convenience as follows:

ve = Abwb +Amφ̇ m + 1
mtotal

Pb (B.3)

where the definition of Ab ∈R6×3 and Am ∈R6×m are defined as (2.30) and (2.31), respectively
(Am and its inverse are functions of the servicer’s configuration and are bounded). Pb is the lin-
ear momentum of the combined system (servicer/target) and is constant under the assumption
that there is no external force/torque applied to the servicer/target system. Equation (B.3) is
different from (2.29) because the matrices in (B.3) are determined using mass properties (mass,
inertia tensor, center of mass) based on the combined servicer/target system. Recalling that ve

and wb are bounded from Step 1, it follows from (B.3) that the manipulator’s joint velocities,
φ̇ m, are bounded if Am is square and rank(Am) = 6.

By forcing Am to be square and rank(Am) = 6, we are removing any redundancy in the
manipulator with respect to the end-effector’s task space representation. If the manipulator is
to possess any redundancy with respect to its end-effector’s task space representation, then it
would not be possible to conclude boundedness of φ̇ m from (B.3). This can be observed by
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solving for φ̇ m from (B.3) as follows:

φ̇ m = A+
m(ve−Abwb− 1

mtotal
Pb)+ φ̇ mNL (B.4)

where φ̇ mNL is a component of the manipulator’s joint velocity that lies in the null space of Am.
The first terms, A+

m(ve−Abwb− 1
mtotal

Pb) can be bounded but boundedness of φ̇ mNL cannot be
assumed.

Step 3: Equation (2.28) is restated here for convenience:

ve = Jbvb +Jmφ̇ m (B.5)

where Jb ∈R6×6 and Jm ∈R6×m are both square and full rank. Jb and its inverse are functions
of the servicer’s configuration and are bounded. Provided that ve and φ̇ m are bounded from
Steps 1 and 2, it follows that vb is bounded from (B.5).

Step 4: Equation (2.23) is rewritten here for convenience::

Hγ

[
v̇b

φ̈ m

]
+ cγ =

[
fb

τm

]
+

[
JT

b

JT
m

]
(−fe) (B.6)

If the mass properties of the target are considered an extension of the servicer’s manipulator
and under the assumption that there is no external force on the combined servicer/target system
(Fb = 0), (B.6) becomes:

Hfl

 v̇b

ẇb

φ̈ m

+ cfl =

 0
τb

τm

 (B.7)

where the inertial properties of the manipulator’s last link are modified to reflect the rigidly
attached target to the end-effector and Hγ is positive definite. τ = [τT

b ,τ
T
m] = f (V) is bounded

as per (4.24b). The nonlinear velocity dependent term, cγ , is bounded since ve, vb and φ̇ m

are all bounded from Steps 1 to 3. It follows from (B.7) that v̇b, ẇb and φ̈ m are bounded.
Furthermore, from the time derivative of the kinematic equation (B.5), it follows that v̇e is also
bounded.

With the use of Assumption A1, Steps 1 to 4 demonstrated the boundedness of ve, vb, φ̇ m,
v̇e, v̇b and φ̈ m. As a result there exist an upper bound on χ and ḟ (V)d such that ‖χ‖ ≤M1 and
‖ ḟ (V)d‖ ≤M2 where Mi=1,2 are positive constants.
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