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Abstract 

This thesis has created a new Snake model that overcomes many of the limitations of 
the traditional finite difference snake. This new deformable model combines a novel user ini­
tialization process with a finite element B-spline snake to create a powerful semi-automatic 
segmentation method. Using the simple but powerful initialization process, the user rec­
ognizes critical points and regions in a specified order, and transfers this knowledge to the 
model. By drawing lines across the object of interest, important information pertaining to 
the global shape of the object, such as width and symmetry, is imparted to the model. 

The snake is parameterized using minimum number of model degrees of freedom necessary 
and these degrees of freedom are placed in optimal positions around the object, based on 
the critical points and features recognized by the user via the input lines. Thus, the model 
is more like a deformable template than a local snake model- it is less sensitive to noise and 
more amenable to propagation to subsequent image slices in a volume image or time series. 
Unlike a traditional deformable template model however, it is constructed and positioned 
by the user rather than preconstructed and automatically initialized by the segmentation 
system. The template snake is initialized very close to the object boundary and is very 
similar in shape. Furthermore, it is "aware" of its position with respect to the object. 

This thesis also describes the computation of the external image forces and how the 
known initial position and shape of the snake can be used to design object-specific image 
forces. 

Keywords: snakes, B-spline curves, medical image segmentation, interactive image analysis. 
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Chapter 1 

Introduction 

Segmentation, partitioning an image into homogeneous areas, is adifficult intermediate step 

in the analysis of digital images. Inthe medical imaging field, the extraction of anatomical 

structuresfrom the background and from each other is crucial to a host of medical image anal­

ysis (MIA) tasks, such as measurement,visualization, matching and labeling, reconstruction, 

surgicalplanning, and compression. The ultimate goal of medical imagesegmentation is the 

development of fully automatic techniques thatguarantee maximum repeatability, robust­

ness, accuracy, andefficiency.Fully automatic segmentation systems have proved extreme­

lyelusive. The complexity and variability of anatomic shapes ofinterest, the significant vari­

ation between images, anatomicstructure abnormalities, nonuniform image acquisition, and 

thesheer size of the data sets have created imposing barriers to thedevelopment of robust 

systems. Furthermore, the problems of sampled data - noise, low contrast, partial volume pix­

els,sampling artifacts etc. - often result in indistinct, fuzzy and/ordisconnected object bound­

aries. The challenge is to extract the boundary elements belonging to the target anatomical 

structure,and integrate these elements into a complete and consistent modelof that struc­

ture. Researchers have struggled to effectivelyutilize prior knowledge of structure shape, po­

sition, orientation,symmetry, relationships to neighboring structures, associatedlandmarks, 

and plausible image intensity characteristics in orderto meet this challenge.At the other 

end of the spectrum, manual segmentation via boundary tracing is extremely labor-intensive, 

time-consuming, anderror-prone. Traditional low-level image processing techniques,such as 

1 
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2 
thresholding and region growing, can be effective for asmall set of specific segmentation prob-

lems. However, theyconsider local intensity information only and therefore often makein­

correct assumptions during the boundary element integration process, resulting in infeasi­

ble object boundaries. As a result,these model-free techniques usually require considerable 

amountsof expert intervention. Consequently, a more immediate andsignificant impact on 

MIA may be realized by optimizing thecapabilities of model-based semi-automatic segmen­

tationtechniques, to the point where only a small amount of time andlabor is required to 

process complex data sets. To achieve thisgoal, the recognition capabilities of the human 

expert must befully exploited. Model-based semi-automatic techniques that assistthe human 

expert in the extraction of the structures must bedesigned to not only be fast and intuitive, 

but also permit theinteractive transfer of structure shape and appearance knowledgefrom the 

expert in order to ensure segmentation accuracy,robustness and reproducibility with a mini­

mal user editing phase. This is especially important when processing a large number ofimage 

slices from a volume image or a time series, or when processing very noisy images. Deformable 

curve (and surface) models, such as Snakes [17]and their v~riants have become widely pop­

ular in medical imagesegmentation and are still intensively applied and researched[23]. A 

snake is an interactiveflexible contour model that is placed in the vicinity of thestructure to 

be segmented and then iteratively adjusted to fit theboundary of the structure. The shape 

of the snake in an image istypically dictated by an energy functional and the final shape 

of the contour corresponds to the minimum of this energy. Deformablemodels are particular 

well-suited for segmentation of images thathave artifacts, noise, and weak boundaries be­

tween structures. Although deformable models are powerful segmentation techniques, they are 

still prone to latching onto spurious or neighborstructure boundaries and they remain sensi­

tive to theirinitialization. Also, the traditional Snake initialization processof roughly tracing 

around the object boundary to create theinitial contour, continues to be a tedious and time­

consumingtask. The difficult challenge in improving the Snakes technique isto develop more 

effective user initialization mechanismsintegrated with control mechanisms that can guide 

the energyminimization process at an appropriately high level of abstraction[22].This thesis 
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3 
describes a simple but powerful custom Snakeinitialization process to meet this challenge. 

The initialization process uses the human expert to recognize landmarks and othercritical 

snape features and transfer this information in such away that the snake is explicitly 'aware' 

of where it is in theimage, how its 'parts' are arranged, and what structure it issegmenting. 

The process is intuitive, efficient and general andmakes use of simple line primitives that are 

quickly drawn acrossthe target structure at critical points in a pre-specified order. These line 

primitives are then used to construct a control polygonof a finite element B-spline snake[19]. 

By taking advantage of theproperties of B-splines, a model is created that is more like 

atemplate - a snake constrained by its control polygon that isinitially extremely close to 

and similar in shape to the targetstructure. The initialization process acts as almost apre­

segmentation and labeling step, making the model's job muchsimpler and hence more likely 

to succeed without user editing. Byimposing an order on the initialization process and by 

drawinglines across the target structure, the human expert is able totransfer knowledge of 

global shape, symmetry, landmark position,image appearance etc: to the model. This in­

formation can then beutilized by high-level snake fitting algorithms. Finally, therecognition 

and identification of critical shape features by theexpert also provides key information to 

subsequent shape analysisand comparison. In order to compute a minimum energy solution 

l~ 
_ r"'';<)!..j''·",'" 

(a) (b) (c) (d) 

Figure 1.1: Example of initialization process. In (a) the user enterslines, starting from the left 
side of the corpus callosum andproceeding to the right. In (b) the B-spline control polygon isshown, 
(c) initial B-spline snake, (d) segmentation result. 

of a Snakenumerically, the energy must be discretized. The Finite Element(FE) method and 

the Finite Difference (FD) method are the two most common approaches for representing a 

contour in terms of linearcombinations of local-support basis functions. Using FD meth­

ods, deformable models are represented as a finite ordered set of vertices. The derivatives at 
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4 
each point are then replaced by afinite difference approximation. In the FE method, the 

domain isdivided into sub-domains commonly referred to as finiteelements. The contour is 

represented within each element by aninterpolating polynomial which is continuous along 

with itsderivatives to a specified order within the element. In thisthesis the FE method is 

used for the following reasons: 

• The FE approach is more compact - it requires fewerdiscretization points and con­

sequently produces a smaller linearsystem to solve, thus reducing significantly the 

algori thmiccom plexi ty. 

• The FE approach produces more accurate result. 

• The FE method provides an analytical representation of theentire contour rather than 

only at discrete points. 

1.1 Thesis Outline 

Chapter 2 and 3 presents a comprehensive review of semi-automaticdeformable models, their 

use for medical image segmentation, andtheir mathematical foundations. Chapter 4 presents a 

development of the finite element formulationof deformable models including an FE B-Snake 

where the basisfunctions are cubic B-splines.Chapter 5 describes the new snake initializa­

tion process in detailand how the known initial position and shape of the snake controlthe 

optimization-driven segmentation process.In Chapter 6, the B-Spline template snake is ap­

plied to several2D images in order to demonstrate its potential. Some of theimages are very 

noisy with many large gaps in the boundaries. 
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Chapter 2 

Snake Fundamentals 

2.1 Introduction 

Active contour models, or Snakes, were first introduced in 1988 by Kass, Witkin, and Ter­

zopoulos as a semi-automatic segmentation technique. Snakes have been successfully applied 

to many image analysis tasks, such as motion tracking and analysis, matching (labeling, reg­

istration), and shape recognition.A Snake is essentially an elastic contour that is initialized 

by the user close to the boundary of the target object. The Snake converges towards the 

object boundary by minimizing an energy functional which controls the shape of the snake. 

The energy functional generally consists of two terms - one controlling the smoothness of 

the snake and the other coupling the snake to the image. The complete snake framework 

is specified by: a model representation, an energy functional, and an optimization method. 

The remainder of this chapter presents a complete review of the Snakes framework. 

2.2 Snake Representation 

Deformable models such as Snakes use either continuous or discrete geometric representa­

tions. With discrete representations, the geometry of the model is only known at a finite set 

of points. Discrete representations are simple, efficient and can be easily locally subdivided 

to add degrees of freedom in areas where the object boundary exhibits rapid variation or is 

highly curved. A disadvantage of the discrete scheme is the lack of compactness, the difficulty 

5 
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in controlling the model at multiple scales (and therefore the difficulty in utilizing higher-

level mechanisms to intelligently control the model fitting), and the lack of a representation 

between model points. Continuous representations must be discretized for computational 

needs but they are generally more compact and hence provide the same level of accuracy 

with fewer degrees of freedom. 

Furthermore, they offer the ability to compute differential quantities such as normals or 

curvature almost everywhere on the curve, and are more amenable to guidance by a higher­

level control mechanism. In continuous representations, Snakes may be defined through 

implicit or a parametric( explicit) equations. An implicit curve is generally defined as the 

zero level set of functions f in R as follows: 

s(p) = {p E R2If(p) = Ol}. 

When using parametric equations, snakes are represented as v(s) = (x(s),y(S))T, where 

x and y are coordinate functions and S E [0, 1] is the parametric domain. The comparison 

of the efficiency and implementation of these two frameworks is difficult because of the large 

variety of existing algorithms. However, in general, parametric representations are regarded 

as being more efficient, compact and easier to implement than the implicit form. In addition, 

they can describe open snakes. In the thesis, we focus on parametric form. 

2.3 Snake Energy Functional 

The energy functional controls the shape of the snake subject to an image I(x, y). The final 

position of the contour corresponds to a local minimum of Esnake. It consists of internal, 

external and constraint energies as follows: 

E;nake(v(s)) = 10
1 

(Einternal(V(S)) + Eimage(V(S)) + Econstraint(V(S))) ds. (2.1) 

Einternal represents the internal deformation energy of the contour due to stretching and 

bending and serves as a smoothness constraint. Eimage gives rise to the image forces that 

push the snake towards salient image features like edges. Econstraint gives rise to the external 
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7 
constraint forces such as user-initiated mouse forces which push or pull points on the snake. 

In the following sections we describe each of these terms in more detail. 

2.3.1 Internal Deformation Energy 

The internal deformation energy acts as a regularizer and imposes a smoothness constraint 

(elasticity and rigidity) on a snake. The most commonly used internal energy consists of two 

terms: 

Einternal = Etension ( v ( s )) + Erigidity ( v ( s ) ) . (2.2) 

The first term, Etension, makes the snake act like a membrane. It controls the elasticity or 

stretchiness of the snake and attempts to minimize the overall length of the shape. In the 

absence of an external energy, this term will cause the snake to shrink to a point. It is 

defined as follows: 

E . ( ( )) = o:(s) IOV(8) 12 = 0:(8) ((OX(S))2 (Oy(s) )2) 
tenswn V 8 2 Os 2 os + os . (2.3) 

The second term, Erigidity, makes the snake act like a wire(i.e. controls the bending energy) 

and attempts to minimize the overall curvature. In the absence of an external energy, this 

term will cause an open snake to become a straight line and a closed snake to become circular. 

It is defined as follows: 

( ( )) ,8(s) 02V(S) 2 = ,8(S) ((02 X(S))2 + (02Y(S))2) . 
Erigidity v s = -2- os2 2 OS2 os2 (2.4) 

0:( s) and ,8 (s), can be used to control the tension and rigidity along different parts of the 

contour. For example we can adjust weights to make the contour more elastic than rigid. 

For simplicity, in most applications they are set to constant values. The values of these 

constants are typically based on empirical results. 

2.3.2 External Image Energy 

To couple the snake to images, external potential energies are designed such that their local 

minima coincide with intensity extrema, edges, and other image features of interest. For 
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example,the snake will be attracted to intensity extrema in I(x, y) by setting the potential 

to: 

Eimage = WextremaGa(x, y) * I(x(s), y(s)), (2.5) 

where the sign of the weight Wextrema controls whether the snake will be attracted to dark 

or bright regions. Note that GO' denotes a Gaussian smoothing filter of standard deviation 

a. The snake will be attracted to intensity edges by choosing a potential 

Eimage = -WedgellV'[GO'(x, y) * I(x(s), Y(S))]1I2, (2.6) 

where Wedge controls the magnitude of the potential and V' is the gradient operator. The 

gradient of Eimage gives rise to external force vectors which are normal to the image edges. 

Therefore, deformable models initialized close to an edge will coverage to a stable configu­

ration near it. Other edge-detectors, such as the Sobel or Canny edge detectors, are often 

used rather than the gradient magnitude. Note that a larger a of the Gaussian smoothing 

filter will blur the edges. Such large a are often necessary to increase the capture range of 

the deformable contour. 

2.3.3 Constraint Energy 

Constraint energy terms are designed to allow user interaction with the snake or to incor­

porate prior shape knowledge about the target object. The original paper [17] defined two 

constraints: a spring and a volcano. The spring constraint allowed the user to connect a 

spring to any point on the snake, usually by mouse click, in an interactive context. The 

other end of spring can be a fixed position, a snake point, or any point on the image. Cre­

ating a spring between point VI and V2 adds -k(VI - V2) to the external constraint energy, 

Econstraint. The opposite of the spring constraint, a volcano pushes the snake out of one 

local minimum and into another by adding energy function : to the constraint energy. This 

energy gives rise to a repulsion force /2 controllable by the mouse. 
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9 
2.3.4 Euler Equation for Snakes 

In accordance with the calculus of variations, the contour v(s) which minimize the snake 

energy must satisfy the Euler equation (see appendix C for details): 

-(a(s)vs)s + (j3(s)vss )ss + a:~xt = O. (2.7) 

Equation 2.7 expresses the balance of internal and external forces when the contour rests 

at equilibrium. The first two terms represent the internal stretching and bending forces 

respectively, while the third term represents the external forces that couple the snake to 

the image data. The usual approach to solving 2.7 is through the application of numerical 

algorithms (section 2.5). 

2.3.5 Inflation Force 

One of the shortcomings of the original snake is that it must be initialized close to the 

boundaries of the target object. The external image edge energy (Eq.2.6) gives rise to image 

forces in the Euler equations. These are short-range forces with their range depending on 

the width of the Gaussian smoothing filter. Cohen [4] proposed an inflationary force which 

pushes the contour outward. The contour must be initialized inside the target object but it 

no longer needs to be close to the boundaries. The contour passes over weak edges and is 

stopped only if the edge strength is strong. The inflation force is defined as follows: 

where n(s) is the unit normal vector at point v(s),and ki is the amplitude of the inflation. 

The external image forces now become: 

( ) \7 Eimage ( ( )) 
F = kIn s - k 11\7 Eimagell V S . 

(2.8) 

Coefficients kl and k are chosen such that they are of the same order, which is smaller 

than a pixel size (unit length). kis set slightly larger than ki so an edge point can stop the 

inflation force of the corresponding snake point. Changing the sign of ki will have an effect 

of deflation instead of inflation. The main problem with inflation forces is that the Snake 

can 'leak' through gaps in the boundary edges of a noisy image. 
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2.4 Dynamic Deformable Models 
10 

While it is natural to view energy minimization as a static problem, a another approach 

is to construct a dynamical system where the contour shape is a function of t( time) and 

8 and apply the principles of Lagrangian mechanics. This formulation leads to dynamic 

deformable models, making it possible to quantify not just the static shape of the model but 

also its shape evolution through time (i.e. its motion). Dynamic models exhibit intuitively 

meaningful physical behaviors, making their evolution amenable to interactive guidance from 

a user. A simple example is a dynamic snake which can be represented by introducing a 

time-varying contour V(8, t) = (X(8, t), y(s, t))T with a mass density J.-t(s) and a damping 

density ')'(8). The Lagrange equations of motion of a dynamic snake are 

(2.9) 

The first two terms in the above equation represent inertial forces due to the mass density 

(J.-t) and damping forces due to the dissipation density(')'). The next two terms represent the 

internal stretching and bending deformation forces. On the right hand side are the external 

forces, where \7 Eimage(V) is the negative gradient of the image potential energy function and 

1(8, t) are time-varying interaction forces applied by user (usually through a mouse). Other 

forces, such as an inflation force, may also appear on the right hand side. Note that the 

inertial forces are typically only used in object tracking applications. Consequently J.-t is most 

often set to Oand the system retains only first order dynamics. Equilibrium is achieved when 

the internal and external forces balance and the contour comes to rest (i.e. ~~ = ~:~ = 0 

which is equal to Euler equation). 

2.5 Snake Discretization 

In order to numerically compute a minimal energy solution numerically, the snake energy 

function (C.2) must be discretized. The typical approach is to represent the continuous 

geometric model v in terms of linear combinations of local support basis functions. Finite 

Elements(FE)and Finite Differences(FD) are the two most common local representation 
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11 
methods, transforming v(s) into a discrete vector u of shape parameters. The discrete form 

of snake energy may be written as follows: 

1 
E(u) = 2u TKu + E(u), 

where K is called the stiffness matrix and E(u) is the discrete version of the external 

potential. The discrete form of the equations of motion (2.9)can be written a set of second 

order ordinary differential equations for u(t) as follows: 

Mii+ CU+ Ku = f, (2.10) 

where M is the mass matrix, C is a damping matrix and f is the external force vector. The 

time derivatives are approximated by finite differences and explicit or implicit numerical 

time-integration methods are applied to solve the system of equations. 

Finite difference method(FDM) is the traditional method for local representation of 

snakes. A 2D FD snake contour is represented as an ordered set of discrete points v = 
(VI, V2,', v n ) where Vi(S) = (Xi(S), Yi(S))T, with VI , Vn for closed snakes. The points (ver­

tices) are connected by straight lines, resulting in a piece-wise linear curve. (see appendix B) 

As an alternative to FDM, one may use Finite Element method(FEM). 

2.6 Finite Element Snakes 

The Finite Element Method (FEM) is a computer-aided mathematical technique for ob­

taining approximate numerical solutions to equations where exact solutions are difficult or 

even impossible to find. Using the FEM, the domain n is subdivided into finite number of 

simpler sub-domains, called finite elements. Each element(segment) is represented geomet-

ric ally with specific shape functions and its corresponding nodes. FE snakes are represented 

as follows: 
N 

x(s, t) = L: xi(t)Bi(S), (2.11) 
i=l 

N 

y(s, t) = LYi(t)Bi(s), (2.12) 
i=l 
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12 
where Bi(S) are basis functions or shape functions and(xi' Yi) are unknown variables(usually 

called degrees offreedom) whose values must be computed. Different basis functions generate 

different snakes, each having specific advantages and disadvantages. In chapter4 FEsnakes 

with B-spline and Hermite Basis functions will be discussed in detail. 
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Chapter 3 

Motivation and Background 

3.1 User Interaction in Semi-automatic Segmentation 

The most important criteria to evaluate semi-automatic segmentation techniques are accu­

racy, efficiency, and repeatability. Accuracy is defined as the degree to which the delineation 

of the anatomical structure agrees with the truth. Accuracy is typically measured subjec­

tively by a human expert, or objectively by comparing the segmentation result against the 

ground truth using various metrics. Examples of these metrics are the difference in the object 

area or the average distance between points on the segmentation result and closest points 

on the ground truth boundary. Note that accuracy as a criterion makes more sense in the 

evaluation of fully automatic segmentation algorithms. In interactive methods, the user may 

improve the accuracy to the desired level unless the method does not provide sufficient user 

control. Therefore, a semi-automatic method can be considered accurate when it provides 

sufficient control to the user. 

Repeatability is measured as the difference between the segmentation result over different 

segmentation sessions with the same target object. The smaller the difference, the higher 

is the degree of repeatability. Furthermore, the difference must be minimal not only when 

one user performs the segmentation in different sessions (known as intra-operator bias), but 

also when multiple users perform the segmentation of the same object in a single or several 

segmentation sessions (inter-operator bias). The difference in the segmentation results can 

be due to the difference in the operation of the segmentation tool (for example, the user 

13 
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clicks the mouse at different positions in the image in different sessions) or a difference in 

user judgment of the correct object delineation. Nothing can be done about the latter but 

the method must minimize the effects of the former. This can generally be achieved when 

the segmentation result is generated mostly by the computational part of the method. 

Efficiency can be defined in several ways. The total elapsed time to perform the segmen­

tation is one way to measure efficiency. However, this definition may be too task dependent 

and it also may hide the contributions of the computational and interactive parts of the 

method. An alternative definition measures the amount and nature of user interaction (for 

example, the degree of interaction might be the number of mouse clicks required), with the 

goal of evaluating the overall effort required by the user to perform the segmentation. Effi­

ciency of the computational part is secondary as long as the method is fast enough to allow 

for interaction in real-time. 

Evaluating user effort (and hence efficiency) in terms of the nature of the interaction 

requires the measuring of task complexity. Task complexity involves several issues. One issue 

is the type of mouse operations required by the segmentation method (the use of alternative 

input devices, such as a pen and tablet, and their effect on the interaction efficiency is beyond 

the scope of this thesis). For example, the effort to control the mouse increases with the 

requirement to trace the object boundary more carefully, resulting in reduced efficiency and 

user fatigue. Another issue is the type of knowledge required by the user to input data 

during interaction. For example, if the user is required to enter a parameter value for the 

method, some knowledge about inner workings of the segmentation algorithm are needed. 

This may lead to reduced efficiency as it separates the effect of the user input from the effect 

on the segmentation tool. For efficient interaction, the user should be able to predict the 

impact of the interactions on the segmentation result and visual feedback of the effect of the 

interaction should be provided in real-time. 

In semi-automatic techniques, the goal is to combine the user and a computer to obtain 

an accurate delineation of the target object as efficiently as possible. The assumption is the 

user knows what the correct delineation and his/her role is to guide the computational part 
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of the method to find it efficiently. Specifically, the user's role typically consists of some or 

all of the following actions: judge the correctness of the computational part of the method 

and edit the results, set parameters for the computational part, select among different results 

which are generated automatically. 

Although editing of the segmentation result enhances its accuracy, it can reduce efficiency 

and hence increase segmentation time, and produces non-repeatable interaction, especially if 

the editing is performed at the pixel level. Using curve manipulation tools of some boundary­

based methods is more effective. 

Setting parameter values is performed at initialization or while the algorithm is running 

(known as steering). At initialization, the user sets parameters and the computational part is 

executed and the result is displayed on the screen for .. user evaluation. If the result is not sat­

isfactory, the user may initialize again and the computation part is repeated. The parameters 

often affect the computation globally, an undesirable characteristic. Another example of set­

ting parameters values is where the user draws an initial contour of a deformable model, and 

configures the model parameters such as the weights c~:mtrolling the balance between internal 

and external model constraints. Steering involves dynamically providing local information 

indicating the desired segmentation outcome, guiding the computational part in a process 

of progressive refinement. The information input by the user is used to locally adjust the 

parameter values so that regions where the delineation is correct remain unchanged. When 

properly designed, interactive steering has the following advantages: manual editing at the 

end is not necessary, integration of computation and interaction into one process produces a 

result with uniform properties, and finally, knowledge about the segmentation problem can 

be updated based on user modification. Live wire is an example for this approach. In live 

wire, wherever the user moves the mouse, the shortest path between initial point and the 

current mouse position is determined and the resulting line is shown to the user in real-time. 

If the result is not satisfactory, user again moves the mouse to get a better result. 

When the user's role is to select among different results, the idea is to let the computer 

find a number of plausible delineations and then the user decides on the most reasonable 
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one. Since the final result is mostly generated by the computational part, interaction can be 

very efficient. Also, the result is repeatable and has uniform properties since it is generated 

by one process. It should be noted that accuracy of the final result depends on the success 

of the segmentation method. 

In summary, the following design principles should be followed to produce an efficient 

interactive segmentation method that generates accurate and repeatable results [30]: 

1. Computation and user interaction should be integrated into one process. 

2. Use pictorial input to the computational part 

3. User interaction should be minimized by including options to select from. 

4. Users should initialize the segmentation method with key information which will lead 

the method to an accurate result more quickly. 

5. User control should be maintained throughout the whole process to generate accurate 

result. 

6. Proper visualization of the computational part is needed to enable an effective user 

response. 

7. Emphasize computation after each user interaction for optimal repeatability. 

8. Add intelligent behavior to elevate the abstraction level of the interaction. 

9. Add the capability to learn from the user interaction and consequently eliminate the 

need for further interaction. 

In the following sections, the most currently popular model-based segmentation tech­

niques, specifically deformable models and livewire, are reviewed and discussed with respect 

to these strategies. 
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3.2 Active Contour Models (Snakes) 
17 

As described in Chapter 2, one of the most well known deformable models are Active Contour 

Models, commonly known as Snakes [17]. Snakes are energy-minimizing contours controlled 

by internal and external energies. The internal energy enforces smoothness of the contour 

and the external energy attracts the contour towards salient features in the image. An 

iterative procedure is used to minimize the energy causing the snake to converge (i.e. lock 

on) to the boundary of the target object in the image. Unlike more traditional techniques 

such as edge linking, the model-based snake proposed by Kass, Witkin, and Terzopoulos 

[17], considered the target object boundary as single connected structure and designed to 

be interactive via constraint energy terms. Users are able to intuitively pull and push on 

the snake, pulling it off of spurious or incorrect image edges onto the correct edges (and 

hence moving it out of one local minima into another). Although Snakes introduced a new 

and powerful approach to image segmentation, the original formulation in [17] had several 

limitations that mitigated their utility across the full range of MIA problems and limited 

their potential for automation (and hence affected th~ir degree of repeatability and efficiency 

for some tasks): 

• Sensitivity to parameter settings. As described in the previous chapter, Snakes per­

formance is strongly influenced by parameters a (internal elastic force parameter), 

,B(internal bending force parameter), the strength of the external image force term, 

and the relative weighting of these terms. Unfortunately, these parameters depend 

heavily on the underlying image and object of interest and optimal settings are dif~ 

ficult to derive and are often based on empirical evidence rather than mathematical 

theory or a higher-level learning algorithm. Proper assignment of these parameters 

usually is a time-consuming task. 

• Small capture range. There is no external force on snake points in regions of homoge­

neous image intensity as the gradient of the image in these areas is almost zero. This 

can be ameliorated somewhat by gradually adjusting the degree of Gaussian blurring 
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using the a parameter but then another parameter is introduced into the mix. In addi-

tion, many optimization techniques like the variational calculus used to minimize the 

energy functional are local. Therefore snakes have a very small capture range and must 

be initialized close enough to the object boundary to ensure convergence. Otherwise 

the user must spend time pulling the snake onto the boundary . 

• Failure to detect boundary concavities. A traditional snake may fail to converge to 

concave boundary regions or cavities. The Snake is roughly initialized around the 

target object. The external force acting on a snake point in the concave regions pulls 

it in a sideways direction towards the closest edge and there is no force acting inwards 

pulling the point further into the concave region towards the inner edge. 

• Geometric and topological inflexibility. The original Snakes model had a fixed geomet­

ric parameterization and this fact in conjunction with the internal deformation energies 

made it incapable of changing its topology (connectivity) or conforming to long tubu­

lar shapes or shapes with significant branching or protrusions without significant and 

tedious user initialization. 

To overcome these limitations, researchers have developed various constraint energies 

and forces to the parametric Snakes model formulation. Balloon (or inflation) forces were 

introduced [5]. An inflation force significantly increased the capture range of a traditional 

snake but it must be set to push outwards or push inwards, a condition that mandates 

careful initialization. If a snake is initially drawn so that part of it is outside the target 

object and part is inside, then an incorrect segmentation will result. To overcome this 

problem, several researchers have created automatic snake element subdivision mechanisms 

[24]. In this case, the model can be simply initialized using one mouse click as a small 

circle inside (or outside) the target object. The inflation force expands the model and the 

model automatically subdivides, allowing it to 'grow' into complex shapes. As the model 

approaches the boundary of the target object, external image forces oppose the inflation, 

stopping the model on the boundary. However, this added feature does not come without 
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a cost. Some interactive control (steering capability) over the model is lost and there are 

typically always gaps in the object boundaries where the model will leak through. Another 

interesting solution to the boundary concavity and small capture range problems is the use 

of a gradient vector flow field (GVF) [36] as an external driving force. This force is detailed 

in the next section. 

To introduce both geometric flexibility (like the automatic subdivision models) and topo­

logical flexibility, several researchers have developed implicit snakes to the image segmenta­

tion problem [2]. These models are formulated as evolving contours or 'fronts' which define 

the level set of some higher-dimensional surface over the image domain. The main feature 

of this approach is that the topology changes of the contour are handled naturally, since the 

level set of the higher-dimensional surface need not be simply connected. While this is an 

attractive mathematical technique, implicit model formulations are not nearly as convenient 

as explicit parametric formulations when it comes to incorporating additional constraints 

and user interactive guidance. Note that McInerney and Terzopoulos developed a topology 

adaptive Snake that retains the explicit parametric form [24]. 

All of these Snakes extensions and re-formulations can and do work well when the image 

feature map is relatively clean. However, most clinical images are noisy, contain many 

uninteresting edges, contain regions of low contrast or have gaps in the object boundary, or 

texture is present. Hence, these more automatic techniques may not work as expected and are 

sensitive to parameter settings. Furthermore, the loss of interactive model control may not 

be offset by the gain in automation. Other researchers [14, 3, 12, 21] have integrated object 

region information in addition to the traditional object edge information into deformable 

contour models in an effort to decrease sensitivity to noise, insignificant edges and texture 

and initial model placement. One problem with these techniques is that regional image 

intensity information is not uniform over the entire target object. 

The use of global energy minimization approaches, such as dynamic programming and 

simulated annealing, have been proposed [1, 27, 13] as an alternative to the more common 

local optimization schemes. The speed of convergence of these techniques is an issue as is 
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the ability to describe the correct segmentation result using energy functionals. That is, 

global optimization schemes will find a global minimum, but this may not correspond to the 

desired result. 

B-spline Snakes have been proposed by several researchers. These models are built using 

parametric B-spline curves and may offer certain advantages for many segmentation problems 

over the traditional finite difference Snakes. They provide a compact, local representation 

of a curve, in terms of its control points. B-Snakes are expressed as a linear combination of 

the set of B-spline basis functions and the shape of the object is defined by the coefficients 

of this linear combination. B-snakes significantly converge faster than original snakes, the 

smoothness is implicitly built into the model, they provide an analytic representation over 

the whole snake, and they require fewer degrees of freedom for the same level of accuracy as 

finite difference Snakes. They also provide powerful contour editing semantics that have been 

well developed for CAD/CAM applications and can be exploited for segmentation problems. 

Finally, the control polygon can be utilized as an effective constraint framework - one of the 

main topics of this thesis. 

3.2.1 GVF(Gradient Vector Flow) Snakes 

Gradient Vector Flow{GVF) Snakes were introduced by [36] to overcome some of the limita­

tions mentioned previously. The vector force field is used as long range forces by the Snake 

points, pushing each point towards the closest edge. The specific advantages of the GVF 

snake over traditional model is its insensitivity to its initialization, and its ability to move 

into boundary concavities. The initial snake can be inside, outside, across and far away from 

the object's boundary. Unlike deformable models that use inflation focus, a GVF snake 

doesn't need prior knowledge about whether to shrink or expand toward the boundary. The 

GVF snake also has a large capture range. This is achieved through a generalized diffusion 

process that does not blur the edges themselves. 

The GVF snake is defined as a contour x(s, t) (x(s, t), y(s, t)) which satisfies the 
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following Euler equation 

(3.1) 

where V(x) is gradient vector flow and a substitution for the potential force V Eext in (B.10) 

and (B.ll). It is defined as the equilibrium to the following vector diffusion equation: 

Ut = g(IV f(x)I)V 2u - h(IV f(x)l)(u - V f(x)), (3.2) 

with the following boundary condition: 

u(x, 0) = V f(x). (3.3) 

In 3.2, the first term on the right is referred to as the smoothing term since this term alone 

will produce a smoothly varying vector field. The second term is referred as data term since 

it encourages the vector field u to be close to V f computed from the data. f(x), called edge 

map, is derived from the image I(x) and has the property that it is larger near the image 

edges. It can be defined as f(x) = Eext(x). The weighting functionsg(.) and h(.) apply to 

the smoothing and data terms, respectively. They ca:t:l be chosen as follows: 

g(IV fl) = Il, (3.4) 

(3.5) 

Since g(.) is constant, smoothing occurs everywhere. Weighting function h(.) grows larger 

near strong edges and get it's maximum values at the boundaries. Using these weighting 

functions provides good edge localization. One problem is when there are two edges in 

close proximity, such as when there is a long, thin indentation along the boundar~. In this 

case, GVF tends to smooth between opposite edges, losing the forces necessary to drive a 

deformable contour into this region. To address this problem, they must be defined so that 

g(.) gets smaller as h(.) becomes larger. Then, in the proximity of large gradients, there will 

be very little smoothing and the effective vector field will be nearly equal to the gradient of 

the edge map. One example of such pairs of weighting functions is as follows: 

( lYll)2 g(IV fl) = e- K , (3.6) 
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(3.7) 

The GYF field computed using such weighing functions will conform to the edge map gradient 

at strong edges, but will vary smoothly away from the boundaries. The specification of K 

determines to some extent the degree of trade-off between field smoothness and gradient 

conformity. 

A main criticism of the GYF technique is that it does not work as well in noisy images. 

The resultant vector field will drive the snake towards spurious edges. As a result, the same 

Snakes initialization problem remains, although the GYF field does improve the performance 

of the snake for objects with concavities. and prevents the model from leaking through gaps 

in the boundary edges. Multi-scale versions of GYF are beginning to appear in the literature 

to ameliorate the noise sensitivity. 

3.3 Live Wire 

Live wire (also known as Intelligent Scissors) [19] is a semi-automatic segmentation technique 

which allows user interaction and control over the segmentation process. In this technique, 

the user initially specifies a seed point on the object boundary. For any subsequent position 

of the cursor, a globally optimum path from the initial seed point to the current point is 

computed and displayed in real time. The optimal paths are determined by assigning a set 

of features and cost functions to boundary elements, and then finding the minimum cost 

path. As the user moves the cursor slightly, different paths are computed and displayed in 

real-time, akin to an electrical arc - hence the name 'live wire'. If the cursor moves close 

to the boundary, the live wire snaps to the boundary (assuming the cost functions are set 

correctly). If the user is satisfied with the boundary segment computed, the user 'deposits' 

the cursor, the point becomes the new seed point and the recursive process continues. 

The mathematical formulation of live wire is as follows [8]. A 2D-scene (i.e. image) C is 

defined as a pair (C, g) where C is a finite matrix of pixels and g is a function, defined as 

g(p) : C -+ [L, H], that assigns an intensity value lying in an interval [L, H] to each pixel p 

in C. Also, a directed graph is associated with C in which the pixels represent the nodes of 
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the graph and their order represents the directions of the graph arcs. 

The boundary of interest in C is a closed, oriented, and connected contour made up of 

oriented pixel edges. The 'closeness' here means that the contour partitions the space into 

two disjoint components. 'Orientedness' means that one of the components can be identified 

as the 'interior' of the boundary and the other as 'exterior'. 'Connectedness' guarantees that 

the boundary is a single connected curve. 

Since there are numerous possible closed, oriented and connected contours, every pixel 

edge in C is a potential boundary element. A boundary element( bel for short) is defined as 

an ordered pair of four adjacent pixels. The location of b = bel (p, q) is that of the unique edge 

shared by pixels p and q. To each bel b(p, q), a set of features is assigned which expresses the 

likelihood of the bel belonging to the boundary of interest in C. The features describe certain 

properties of the object (the 'interior' of the boundary), of the background (the 'exterior' of 

the boundary) and of the boundary itself. Then, the feature values are converted to a single 

cost value which describes the cost of having b as part of the boundary we are seeking. To 

every closed, oriented, connected contour that can be defined in C, we assign a cost which 

is simply the sum of the cost of all bels comprising the contour. The aim is to find a closed, 

oriented, connected contour with minimum total cost starting from the first user inputed bel 

bOo Thus, the problem of finding the best boundary segment (live wire segment) between any 

two edge points is translated to finding the minimum-cost path between the corresponding 

two vertices of the graph which can be solve by dynamic programming. 

The main issues in live wire are feature selection, converting feature values into cost 

values, and finding the optimum global path between any two vertices specified in C. There 

are many ways to select features and define transformation function to assign cost values to 

them. Typically, features are considered as functions that assign to every bel b = bel(p, q) 

of a given scene C = (c, g), an integer representing a property value. Most feature selection 

methods are based on the intensity or gradient of the neighbor pixels. 

Feature transform functions( cost functions) can be any functions (Cj (Ii)) converting in­

teger feature values (fi) into the range of [0,1]' which assigns sufficiently low cost values to 
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bels on the desired object boundaries. Two example cost functions are: 

• linear (CI): CI is a linear mapping within an interval [ft, hI] of feature values. Values 

outside this interval are mapped to 

• Gaussian C3: C3 is a Gaussian function with mean l3 and standard deviation h3 

• Modified hyperbolic (C2): only a part of a hyperbolic function with non-negative values 

is considered 

{ 

2 
1 forx ::; l5 + az 

C2 (x) = 2(:~15) forl5 + ~ ::; x ::; h5 . 
o forx ::; h5 

(3.8) 

here a, l5, and h5 are free parameters. Parameter a represent the distance of the focus of 

the hyperbola from its two asymptotes, l5 represents the distance of the vertical asymptotes 

x = l5 from the original, and h5 is the upper cut-off values for x. The process of feature 

selection, transforms and their parameters can be facilitated by training, obviating the need 

for the the users to become knowledgeable about the segmentation methodol0I!S, Although, 

live wire methods are much faster and more reproducible than manual tracing of object 

boundaries, and provide the user with good control during the segmentation process, the 

following disadvantages must be noted: 

• When the desired object boundary has a relatively weak edge close to an insignificant 

but strong edge, the live wire snaps to the strong edge rather than the desired weak 

boundary. To eliminate this problem, Falcao and Udupa [8] developed a technique 

called 'live wire on-the-fly'. Basically this technique dynamically updates the cost map 

to filter out the image features which do not have similar edge characteristics to the 

sample boundary specified by the user. That is, the edge property is assumed to be 

relatively consistent along the object boundary. Therefore, it doesn't work well for 

objects with sudden and/or dramatic changes in their boundary properties. 

• Another problem of live wire is possibility of jumping live wire from boundary gaps 

and passing through noisy areas. Even if there are no image features at all between 
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two points, live wire can still provide a minimal path-a straight line between the two 

points [20] (although a straight line paths may not be desired). 

• Once the user places the cursor when tracing the boundary, the point is collected as a 

seed point and the trace adds to the extracted object boundary. At this point the user 

has no further control over the trace other than return to the previous point and remove 

it. This correction increases segmentation time and user interaction when dealing with 

a noisy and low contrast object or complex boundary. 

• Like the snakes model, live wire is only as good as the accuracy of its cost functions 

to describe the target boundary. Many images are noisy and the image features vary 

across the target object. In addition, objects which are complex in shape (contain 

. highly curved regions or protrusions for example) often force the user to deposit many 

seed points. 

• Although far superior to manual tracing, Live wire still requires tracing-like actions to 

position the cursor. Moving the cursor around an object under the control of a mouse 

(or other input device) is tedious and therefore fatiguing. 

• Live wire is not as amenable to segmenting multiple image slices in a time series (object 

tracking) or volume image as are Snakes. This is due to the fact that it is fundamentally 

tracing-based. Snakes, on the other hand, can be modified anywhere at any time by 

the user. 

• Unlike Snakes, live wire is limited in its ability to be controlled by 'intelligent' high-level 

control algorithms. 

3.4 Deformable Templates 

Interactive techniques such as Snakes and live wire are based on only small scale, local 

boundary information and are unable to take advantage of higher-level object shape infor­

mation that manifests itself at multiple scales and locations with respect to the object. For 
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example, they cannot make use of an object's width or symmetry. Deformable template 

models on the other hand, are generally able to take advantage of this prior object infor­

mation. These models usually use hand-crafted global shape parameters to embody prior 

knowledge of expected shape and/or shape variation of the structures. The use of prior 

knowledge makes them much less sensitive to noise and boundary gaps than snakes. On the 

other hand, they are obviously not as general a technique and are typically designed to be 

completely automatic. 

The idea of deformable templates can be traced back to the early work on spring-loaded 

templates by Fischler and Elshlager [9]. Yuille et al. constructed a deformable face template, 

consisting of ellipses and curves connected by springs, to detect and describe features of 

faces, such as the eyes and the mouth. Several deformable templates based on superquadrics 

[25, 34] have been developed. Superquadrics are defined by a small number of intuitive global 

shape parameters that can be set such that the superquadric takes on the average shape of 

a target anatomical structure. The global shape parameters can be coupled to local shape 

representations, such as spline curves, to allow for a greater range of shape coverage. The 

global shape parameters efficiently capture the gross shape features of the object, while the 

local shape parameters reconstruct the fine details. 

Several researchers have cast the deformable model-based approach in a Bayesian frame­

work, where the model prescribes a prior distribution on allowable shape variations and 

where the likelihood function describes how well measurements derived from the image are 

in accordance with a given geometric state of the model [31, 35, 33, 10]. Although they are 

can represent large shape variability, the task of choosing an appropriate probabilistic defor­

mation model is very complex and not necessarily intuitive. In active shape models(ASM), 

introduced by Cootes [6, 15], a statistics-based technique for building deformable shape 

templates is used. The statistical parameterization provides global shape (and appearance) 

constraints and allows the model to deform only in ways found by the training set. The 

shape models represent objects by sets of landmark points which are placed by an expert in 

the same way on an object boundary in each image of a training set of images. Once the 
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shapes are aligned and properly annotated, principal component analysis(PCA) is used to 

generate an average shape(prototype) along with a series of modes of variation. Dutahas 

proposed a method to automatically align and annotate the training examples. New shapes 

are generated using the mean shape and a weighted sum of the major modes of variation. 

Object boundaries are segmented using this point distribution model by examining a re­

gion around each model point to calculate the displacement required to move it towards the 

boundary. These displacements are then used to update the shape parameter weights. 

Deformable templates are constructed for a particular object (or small set of related 

objects) and are specifically designed to be robust, automatic, and exhibit more intelligent 

segmentation behavior than their semi-automatic counterparts. However, it has been chal­

lenging for researchers to build completely reliable systems. As a result, it may be desirable 

to imbue the semi-automatic techniques with some of the properties of a deformable tem­

plate but in such a way that the user can easily construct and/or train the model rather 

than the programmer. Preliminary work on this idea is explored in chapter 5 of this thesis. 
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Chapter 4 

Finite Element Snakes Formulation 

4.1 Finite Element Method(FEM) 

The Finite Element Method (FEM) is a computer-aided mathematical technique to find 

approximate numerical solutions of equations where exact solutions are difficult or even 

impossible to be found. Usually the equations predict the response of the system subjected 

to external influences. 

In the FEM, the domain of the problem is divided (partitioned) into smaller regions 

(sub-domains) called elements. Adjacent elements touch without overlapping and there are 

no gaps between elements. 

The approximate solution of a 1D dynamic equation is a function of s, Xl (t), X2(t)···, XN(t) 

as follows: 
N 

x(s, t; a) = L Ej(s)Xj(t), (4.1) 
j=l 

where Xl (t), X2(t), .. " XN(t) are unknown parameters, frequently called degrees of free-

dom (DOF) and must be found. Subsequently, a in x(s,t;a) represents all the parameters 

Xl, X2,' . " XN. X is a function of parameter s, t (time) ,as well as Xl (t), X2(t), .. " XN(t). The 

functions E I , E2, .. " EN are known functions, called basis functions. They are also called 

trial or coordinate functions. 

The FEM is mainly categorized into two approaches[29]: 

• the Ritz Variational method(RVM) which is applicable when the equation is a varia-

28 
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tional (integral) equation . 

• the Method of \iVeighted Residuals (MWR), which is applicable when the equation is 

a differential equation. In this thesis we use the MWR. 

Given equation L(x(s; a(t))) = F(s), where L is a differential operator and R(s, t; a) is an 

expression of error, the MWR finds numerical values for Xl, X2,· •• , XN which make R(s, t; a) 

as close as possible to zero for all values of s in the domain. R(s, t; a) in ID is defined as 

follows: 

R(s; a) = L(x(s; a(t))) - F(s). 

Applications of M"WR produce a set of algebraic equations, the solutions of which are 

the best set of numerical values of Xj. 

The Galerkin method is one of the most commonly used methods in the MWR category, 

which is applicable to a wide range of applications. Applying this method to any boundary­

value problem produces N residual algebraic equations for the elements as follows: 

iaN 

R(s; a(t))Bl (s)dx = 0, 
al 

i
aN 

R(s; a(t))B2(S)dx = 0, 
al 

iaN 

R{s; a(t))BN{S)dx = 0. 
al 

where N is the number of degrees of freedom{NDOF). The solution of above equations is 

the best set of numerical values for a. Depending on the trial functions chosen, we may 

have different solutions that are very close to each other and to the exact solution (i.e. an 

acceptable solution for the user). The main steps on solving an equation using Galerkin's 

method are as follows: 

• Choose the number of elements, basis functions and mesh (if the application is 2D or 

3D). 
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• \\Trite Galerkin element residual equations. 

• Integrate by parts. 

• Substitute the general form of the trial functions (Eq. 4.1) into the system of equations 

and transform the integrals into an appropriate form for numerical evaluation. 

• Apply boundary conditions to the system of equations. 

• Solve the system of equations. 

• Display the solution and estimate its accuracy. 

4.2 Finite Element Snake 

In a finite element snake, the parametric domain 0 :::; S :::; L is partitioned into finite sub­

domains[sl' S2], [S2' S3],'" [SN-l, SN]' Consequently, the snake is divided into N - 1 elements 

if it is open, and N elements if it is closed. Each element e is represented geometrically with 

shape functions that involve its corresponding shape parameter. 

Snakes in a FE formulation are approximated by: 

v(s, t) ::: B(s)u(t), 

or in Cartesian coordinates: 

Uj(t) = UXj(t)£ + uyj(t)f, 

v(s, t) = X(s, t)1 + Y(s, t)i, 

X(s, t) = B(s)ux(t), 

Y(s, t) = B(s)uy(t), 

where B(s) = [Bl(S), B2(S), B3(S)", Bn(s)] are basis functions, and u = [Ul(t), U2(t), U3(t), ... un( T 

are unknown variables(degrees of freedom) of the snake contour model. For closed snakes, 

we have v(O, t) = v(L, t) as a boundary condition. 
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Recalling Eq.2.7, the optimum solution of Esnake using Euler equations must satisfy the 

following condition: 

(4.2) 

Using Galerkin's method to solve the above equation, the residuals for the equation are: 

(4.3) 

The N Galerkin residual equations are: 

foL R(s, U)Bi(S)ds = 0 i = 1· .. N. (4.4) 

Substituting 4.3 into 4.4 we have: 

(4.5) 

or 

foL [-(o:(s)Vs)sBi(S) + (f3(s)vss )ssBi(S) + 8:~xt Bi(S)] ds = O. (4.6) 

Integration by parts for the first term results in: 

(4.7) 

and for the second term results in: 

[(f3(S)vss )sBi(s)lt - foL f3(s)vss)s~(s)ds 

[(f3(s)vss )sBi(s)lt - [f3(s)vss~(s)lt + foL f3(s)v ss 8;s~i (s)ds. 
(4.8) 

Substituting 4.7 and 4.8 in 4.6 gives 

foL o:(s)vs~(s)ds + foL f3(s)vss 8;s~i (s)ds + foL 8~!xtBi(S)ds 
[-O:{S)VsBi{S) + (f3(s)Vss )sBi(S) - f3(s)vss~(s)]~ = o. 

(4.9) 

Using the Finite Element Method, snakes are approximated as 

V(s, t) = B(s)u(t), (4.10) 
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or v = l:f=l Bjuj (t) and therefore, 

vs o~ls)u(t) 

and 
vss _ 02~~S)U(t) 

N o2B(s) () 
l:j=l ~Uj t . 

Substituting EqsA.10, 4.11 and 4.12 into 4.9 gives: 

J/ (EN OBi(S)U.(t)) a(s)OB;(s)ds o J=l os J os + ,hL (EN 02 Bi(S)U.(t)) (3(S)02Bi(S)ds o J=l OS2) os2 

,hL B- (s) !!.fu.tds o z ov + (-Bi(s)a(s) (Ef=l OBjs(S)Uj) 

( N o2B(s) ) 
Bi(S)(3(S) l:j=l ~Uj s 

oB;(s)(3(s) (l:N 02Bj(S)u-)]L 
os )=1 os2 ) 0 

Eq. 4.13 is the finite element formulation of snakes. 

Let 

( )((3( ) ",N o2Bj(s) ()) OB;(S)(3( )(",N o2Bi(S) ())]L Bi S S LJj=l os2 Uj t s - os S LJj=l os2 Uj to' 

where i = 1··· Nand j = 1··· N. Then Eq. 4.13 becomes: 

32 

( 4.12) 

+ 

+ (4.13) 

= O. 

(4.14) 
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where Ki is called the element stiffness matrix, Pi is called the boundary force, and Fi is 

called the nodal force. 

To calculate an element force (Fi), Gaussian-quadrature is used to approximate the value 

of the integral as follows: 

Fi = £LPjBh(~jf(-\1P;(v(~j)), 
j 

(4.15) 

where ~j and Pj are the jth Gaussian integration point and its corresponding weighting 

coefficient, respectively. 

To calculate the element boundary force (P i), assuming a (s) and f3 (s) are constant for all 

values of s, we have: 

_ (-B.(O)a("~ OBi(O)U(t)) + B(O)(f3"~ 02 Bj (O)U(t)) _ &B;(O)(3("N 8
2
Bi(O)u(t))) 

t wJ=l 8s J 1 wJ=l 8s 2 J S OS wJ=1 OS2 J . 

If v(s; u(t)) interpolates nodes Uj(Xj, Yj) i.e v(Sj, t) = Uj(t) the following condition is true 

for all basis functions. 

So 

and 

B. s = s. = {I if i = j 
t ( J) 0 otherwise . 

{
I if i = N 

Bi (s = L = S N) = 0 otherwise ' 

{
I if i = 1 

Bi(S = 0 = SI) = 0 otherwise 

Substituting Eq.4.16 and Eq.4.17 into the boundary force equation (Pi)' we have 

P N a&B;}L)UN(t) + Bi(L)f3(82~:2(L)UN(t))s - OB;}L)f3(82~:2(L)UN(t)), 

(4.16) 

( 4.17) 

Applying the condition v(O, t) = v(L, t) for closed interpolating snakes results in P = 0, but 

for open snakes PI and P N must be calculated. 
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4.3.1 Formulation Along the X And Y Directions 

For convenience of manipulation, the formulations can also be set up based on deflections 

along X and Y directions of Cartesian coordinates. Considering that v can be expressed in 

Cartesian coordinates as v = x7 + yj, we can substitute this Cartesian equation into the 

internal energy equation. So, we have 

(4.18) 

and the energy of the snake becomes· 

( 4.19) 

Using the Calculus of Variations, minimizing the above integral corresponds to solving 

the following Euler equations: 

F'x - (F'xJs + (F'x.Jss = 0, (4.20) 

(4.21 ) 

l.e. 

( 4.22) 

and 

( 4.23) 

Eq.4.13 can be obtained separately for X and Y by following exactly the same steps that 

have been applied to Eq4.2. 

Additionally, X and Y can share the same shape functions. The finite element formula­

tion along X and Y directions can be given by the following two equations, respectively: 

KX+Fx = 0, (4.24) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

35 
and 

KY +Fy = 0. ( 4.25) 

where X and Yare the X and Y components of u, and Fx and F y are the forces due to the 

external energy. The solutions to 4.24 and 4.25 will update X and Y coordinates of nodal 

points on the finite element mesh. 

Similarly, F x and Fy can be calculated from the following: 

F~ = fal Bi(S)(Eext)~ds, ( 4.26) 

( 4.27) 

Furthermore, end point forces Po and P I along X and Y direction must be calculated 

for open snakes. 

4.3.2 Global Assembly 

The global K,P and F matrices are obtained by assembling K~ ,P~ ,F~ over all the elements. 

Assembling here means summing up the items corresponding to shared nodes( degrees of 

freedom) by adjacent elements. That is K = L K~, P = L P~ and F = L F~ The global FE 

formulation can be written as follows: 

Ku+P+F = 0. ( 4.28) 

As described in the previous section, Po and PI are non-zero for open snakes. To simplify 

equation4.28, we assume the non-zero items in vector P = [Po, 0, 0, .. " Pnl have been added 

to the external force vector F. 

4.4 Snakes Deformation 

To solve the discrete form of the Lagrange Eq. 2.10, we calculate time derivatives of u by 

backward finite differences as follows: 

(4.29) 
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(4.30) 

Where the superscripts in Eq.4.29 and Eq.4.30 show the time quantity evaluated and l::.t 

is the time step. Substituting them in the Eq. 2.10, yields the update formula 

(4.31 ) 

where 

and 

M 
c = - l::.t2 ' g = F. 

Since a has coefficients of u t-6.t and u t+6.t and u t ,' it is a pentadiagonal banded matrix 

and can be saved in skyline storage to save memory and the computational cost of solving 

Eq4.31. With negligible mass, we have the following form: 

( 4.32) 

( 4.33) 

The matrix K can be factorized uniquely into the form K = LDLT where L is a lower 

triangular matrix and D is a diagonal matrix. The solution u t+6.t to Eq. 4.31 is obtained by 

first solving Ls = but + cui -6.t + g with forward substitution, then LT u = D-1 s with back­

ward substitution. Since K is constant, only a single factorization is necessary. Therefore, , 

at each time step, only the forward/backward substitutions are performed to integrate the 

snake forward through time. The following sections describe B-snakes, and Hermite snakes 

which are variations of the FE Snake deformation described above. 
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4.4.1 Hermite Snake 

In the case of Hermitian snakes, x(s) (0 :S s :S [, where [ is the element parametric length) 

is approximated with cubic polynomial functions, parameterized by position x and slope () 

at the end points s = 0 and s = l of an element. We can show that xe(s) = Bue;, where 

u ei = [Xi, Gi , Xi+l, Gi +1] are the shape parameters of element ei and B = S x H are the 

Hermitian shape functions, with S = [1, s, 82, S3] and the followingHermitian shape matrix 

(see appendix A) 

H = [_}/12 -L 3Jl2 -L]· 
2/l3 1/[2 -2/[3 1/[2 

(4.34) 

Considering the tension function 0:(8) and rigidity function j3(s) as constant values, the 

stiffness matrices associated with the tension and rigidity components for element ei are, 

respectively 

[ 

36 
O:i 3l 
30l -36 

3l 

[ 

12 

Kei = j3i 6l 
f3 [3 -12 

6l 

31 -36 31 ] 
4[2 -3l _l2 

-3l 36 -3l ' 
-l2 -3l 412 

6l -12 6l ] 
412 -61 212 

-61 12 -6l . 
2[2 -61 4[2 

(4.35) 

(4.36) 

An analytic form of the external forces generally is not available. Therefore, Gauss-Legendre 

quadrature may be employed to approximate the value of the integral for the element external 

force vector Fe. For element ei we have 

fol Nhqx{V(8)) ds 

l L PjNh((,j )qx( V ((,j) ), 
j 

(4.37) 

where the subscript x indicates the association with coordinate function x(s), and (,j and Pj 

are the jth Gaussian integration point and its corresponding weighting coefficient, respec­

tively. The force vector F~i is derived in a similar way. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

38 
To make the global matrix assembly process identical for all shape functions, Liang([18]) 

has introduced assembling matrices. Suppose that there is a snake with n elements and N 

nodes (N = n for closed snake and N = n + 1 for open snakes). For the ith element ei of 

the snake (0:::; i :::; n - 1), the assembling matrices are G~i = G~i = G~ = Ge;, where 

(G ei). = {I if (j + ~i) mod (dN) = k 
Jk 0 otherwIse (4.38) 

are (2 . d) x (d· N) matrices, with d the number of degrees of freedom of each node in an 

element (here d = 2). Hence, Ko., Kf3 and F may be assembled as follows: 

F 

4.5 B-Spline Shape Functions 

For B-spline shape functions, x(s) coordinate function of v(s) is constructed as a weighted 

sum of NB basis functions Bn(s), n = 0, ... , NB - 1 as follows: x(s) = B(s)Qx, where 

B(s) = [Bo(s), ... , BNB -1(S)], QX = [po, ... , PNB-r] and Pt are weights (control points) that 

are applied to the respective basis functions Bn (s). The number of control points determines 

the number of degree of freedom available in the fitting process and an optimal choice for 

this is needed to maintain both smoothness and closeness to the target object. 

Similar to Hermite Snakes, the nodal variables (snake shape parameters), the shape 

matrix, and the assembling matrix associated with an element must be determined. 

When all B-Spline elements have equal length, the knot multiplicities at the breakpoints 

are mo, ... , m L (L is the number of elements and the total number of knots N B = 'Lr=o mi), the 

knot values ki are determined by ki = l, such that 0 :::; (i - 'L;=o mj) < mi+!. Furthermore, 

the nth polynomial B~ d in span a can be computed as follows: , 

BU (s) = {I if kn :::; a < kn+! 
n,l 0 otherwise ' (4.39) 
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() 

(s+(J-kn)B~d_l(S) (kn+d-S-(J)B~+ld_l(S) 
E U 

d S = '+ '. (4.40) 
n, kn+d - 1 - kn kn+d - kn+1 

The indices of basis functions for span (J can be calculated as follows: 

where bu = [(:Ei=o mi) - d] mod N B . Now, the shape matrix for span (J can be constructed 

by collecting the coefficients of each of the d basis functions B~,d as its columns. In this 

thesis, our implementation is based on cubic uniform B-Splines. For a uniform cubic B­

spline (where spacing between knot values is constant) the shape matrix for all spans is the 

same as follows: (see appendix A) ) 

[ 1/6 
2/3 1/6 

0] H = -1/2 0 1/2 0 
( 4.41) 

1/2 -1 1/2 o ' 
-1/6 1/2 -1/2 1/6 

and the element stiffness matrices for element ei are 

[ 0.0500 0.0583 -0.1000 -0.0083] 
Kei _. 0.0583 0.2833 -0.2417 -0.1000 

a - at -0.1000 -0.2417 0.2833 0.0583 ' 
-0.0083 -0.1000 0.0583 0.0500 

( 4.42) 

[ 0.3333 -0.5000 0 0.166~ ] 
Kpi = f3i -0.500~ 1.0000 -0.5000 

-0.5000 1.0000 -0.5000 . 
0.1667 0 -0.5000 0.3333 

( 4.43) 

The assembling matrix Gei can be defined as 

(Gei). ={1 if(j+blT)modNB=k 
Jk 0 otherwise 

( 4.44) 

In a similar fashion as above, other kinds of snakes with different shape functions can be 

constructed; for instance, NURBS shape functions[32], Catmull-Rom shape functions, Bezier 

shape functions and Fourier shape functions. 
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Chapter 5 

User-Defined B-Spline Template 
Snakes 

In this chapter a new Snakes model is described that overcomes many of the limitations 

of the traditional finite difference snake. This new deformable model combines a novel 

user initialization process with a finite element B-spline snake to create a powerful semi­

automatic segmentation method. The FE B-spline snake is initialized such that it is very 

similar in shape and very close to the boundary of the target object. The model has a 

structure imposed on it - it 'knows' what parts it has and where these parts are located with 

respect to the object. This 'template' snake is built on top of the general FE Snakes model, 

hence there is no need to use predefined, restrictive shape representations like superquadrics. 

Furthermore, B-spline snakes have many desirable properties. They are a compact, explicitly 

parameterized model with a control polygon which can be used for global deformation control 

and customized deformation handles. This chapter also describes the computation of the 

external image forces and how the known initial position and shape of the snake can be used 

to design object-specific image forces. 

5.1 Initialization Process 

The user draws, with a mouse or pen input device, cross-sectional lines (or individual points) 

on the target object. A point is clicked on one side of the object boundary and a line is 

stretched and rotated interactively to a point on the opposite boundary. For end cap regions 

40 
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of objects, the user draws lines approximately tangent to the region. 

(a) (b) (c) (d) 

Figure 5.1: Example of initialization process. In (a) the user enters lines, starting from the left 
side of the corpus callosum and proceeding to the right. In (b) the B-spline control polygon is 
shown, (c) initial B-spline snake, (d) segmentation result. 

Lines are drawn in prescribed critical locations, such as landmark points, and in a pre­

scribed order for a particular object. For example, to segment the corpus callosum (CC) 

from a mid-sagittal MR brain image, the user starts at the end cap region near the rostrum 

(extreme left). A small line, tangent to the end cap region, is drawn (Figure 5.1 (a)). The 

user then identifies the genu (highly curved region on the left) and draws a line across the 

CC in this region. The user then draws two lines that cross the CC, where the first line 

roughly divides the CC into half and the next line demarcates the splenium region (the 

circular-shaped right end cap region). The exact positions of these lines are not important. 

The splenium is then identified and a line is drawn tangent to the splenium end cap region. 

This process, once learned, is fast and intuitive. Drawing cross-sectional lines is simple 

and less tedious than tracing or moving a cursor around an object. Figure 5.1 (b) shows 

the resulting control polygon, Figure 5.1 (c) shows the initial B-spline curve, while Figure 

5.1(d) shows the resulting segmentation. Once the prescribed lines are drawn, the algorithm 

uses them to automatically construct a control polygon, and displays the resulting B-Spline 

curve. 

Using this simple but effective process, the user recognizes critical points and regions 

in a specified order, and transfers this knowledge to model. By drawing lines across the 

object, important information pertaining to the global shape of the object, such as width 

and symmetry, is imparted to the model. The template snake is initialized very close to 

the object boundary and is very similar is shape. Furthermore, it is 'aware' of it's position 
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with respect to the object. The snake is parameterized using minimum number of model 

degrees of freedom necessary and these degrees of freedom are placed in optimal positions 

around the object, based on the critical points and features recognized by the user via the 

input lines. Thus, the model is more like a deformable template than a local snake model 

- it is less sensitive to noise and more amenable to propagation to subsequent image slices 

in a volume image or time series. Unlike a traditional deformable template model however, 

it is constructed and positioned by the user rather than preconstructed and automatically 

initialized by the segmentation system. 

5.1.1 Editing the control polygon 

The control polygon can be shown simultaneously as the user is drawing the cross sectional 

lines. The user may 'click' on control polygon edges or control points, and add new lines or 

control points if desired. The B-spline control polygon is then updated, incorporating this 

new information and the new B-spline curve displayed. These new lines and points may be 

added during initialization or while the snake is runnin~. 

When adding a new control point, the control polygon edge corresponding to the control 

point is removed and two new edges are created by connecting each of the original end-points 

to the new control point as shown in Figure 5.2. To simplify the interaction and minimize the 

number of mouse clicks, the user need not explicitly select the edges needed to be divided. 

Instead, the user may press and hold a designated key on the keyboard(the control key for 

example) while clicking on the desired point. The program automatically finds the closest 

edge and subdivides it. 

5.1.2 On-the-fiy Segmentation 

It may be advantageous in many segmentation scenarios to run the snake algorithm as the 

user enters each line. This 'on-the-fly' or 'as-you-go' segmentation mode ( 5.3) allows the 

user to see the result of his/her actions in real-time (principle number 6 and 7 from Section 

) and hence allow immediate modification/correction (by adding or deleting lines or control 
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(a) (b) (c) 

Figure 5.2: Example of adding a new point. In (a) the user enters lines. In (b) the control polygon 
and PO (the user added point) are shown. In (c),the corresponding line is found and divided into 
two, where the point is an end point for the two lines 

points, moving existing control points, or applying traditional spring forces to points on the 

snake). This segmentation mode provides the user with more complete control throughout 

the entire segmentation process (principle number 5), thereby ensuring an accurate result. 

5.2 Object-Specific External Image Forces 

Since the initialized template snake is very similar in shape to and very close to the boundary 

of the target object, each snake element roughly corresponds to a specific object boundary 

segment. This knowledge can be used to construct object-specific external image forces. The 

following sections describe several of these forces. 

5.2.1 Snake-Point Control 

For each snake element, the number of points in the element, which are termed snake points, 

at which to compute image forces can be specified. For example, the number of snake points 
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(a) (b) (c) 

(d) (e) 

Figure 5.3: Example of on-the-fiy segmentation. Partially segmented object after drawing(a) 
three lines (b) four lines (c) five lines (c) six lines. (d) Final segmentation result. 

can be matched to the image resolution so that there is roughly one snake point for each 

pixel along the element. The forces computed at a point on the B-spline snake are then 

distributed to the corresponding control points according to equation 4.15. This feature 

makes the snake less sensitive to noise or spurious image edges. Furthermore, if a snake 

element is known to correspond to a boundary region with strong image edges, the number 

of snake points can be reduced. 

5.2.2 Knowledge-based Image Feature Search 

For each snake element, the initialization process provides knowledge of approximately how 

far away the object boundary is, that it is roughly locally parallel to the element, and what 

are the neighboring objects. Therefore, at each snake point, a search along a direction normal 

to the snake point can be performed for a pre-specified distance. 

d/ Seald-mg a!c·ng th~ ~'('" 

n()rmal Ghrectlon 

(a) 

(OlrP;pondrng€dg€ ---rT, 
,'omi:s. ><.. 't, . 

(b) 

Figure 5.4: Example of searching along the normal direction for 3 points on an snake element. 
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Search criteria can be either the strongest edges with the correct direction (orthogonal 

to the snake point normal) or having edge strength in a specific range. If a match is found, a 

spring force is applied to attract the snake point to the matched edge point. If no matching 

edge is found at a snake point, this point does not contribute to the image forces. Further­

more, if the image feature information is known to be weak or missing along a particular 

snake element or snake region, the entire element can be deactivated. 

5.2.3 User-input Derived Forces 

The user specified input lines provide control points that can be an effective means to 

bootstrap the snake segmentation process. These points are known to be on or at least close 

to the object boundary. This knowledge is utilized by constructing a scheduled or phased 

snake fitting algorithm. In the first phase, for each boundary point derived from the input 

control points (termed 'pin' points), we find the closet snake point (8 = 0 in each segment is 

a good approximation, where s is the parametric sub-domain of the B-spline element) and 

attach them with a zero rest length spring. After a few iterations, the spring forces bring 

the entire snake closer to the object boundaries. The result is that the snake even more 

closely matches the shape of the target object (see Fig 5.5). In the second and subsequent 

phases, all remaining snake points are activated and forces are computed as described in the 

previous section. Some or all of the 'pin' points can be deactivated after phase one. This 

helps reduce the sensitivity to the positioning of the user specified input lines. If these lines 

are off by a couple of pixels (i.e. the end points are not exactly on the object boundary), the 

snake is still close enough to the boundary to successfully segment it. In future work, the 

use of a small zoom window or nonlinear magnification (known as a 'fisheye' zoom) around a 

small region centered at the cursor will be explored to determine if these techniques reduce 

user fatigue and hence increase efficiency. 
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(a) (b) 

Figure 5.5: Example of pin spring forces.(a) shows the initial curve and control points (used as 
pin points) at the beginning of phase one. (b) shows the curve at the end of phase one. 

5.2.4 Local Intensity Statistics 

As an alternative to the phase II forces described in the previous section, an inflation force 

based on local intensity statistics can be applied to each snake point. Local intensity statistics 

can be computed along reetangular regions centered around (and aligned with) the user 

specified lines. Since these lines are used to construct B-spline control points, each control 

point data structure stores the local intensity statistics from its associated user line. Each 

snake point can then use the statistics from its nearest control point to compute a local object 

intensity model. Custom image-based inflation forces can then be designed for each snake 

point, rather than using global intensity statistics for all snake points. The inflation force is 

defined as finfl(s) = wF(I(v(s))n(s) where n(s) is the unit normal vector at a snake point, 

and w is the amplitude of this force. The local image intensity statistics are incorporated 

into the inflation force as follows [16]: 

F(I(x )) = {+1 if II(x,.y) - ILl::; k(J } . 
, Y -1 otherwlse, (5.1) 

where IL is the mean local image intensity, (J the local standard deviation and k is a user 

defined constant. Fig.5.6 is an example of segmentation using local statistic intensity. 

5.3 Object-Specific Global Shape Constraints 

The B-spline control polygon is a coarse approximation of the curve and hence a coarse 

approximation of the target object boundary (Fig. 5.1b). It is therefore a convenient frame 
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(c) 

Figure 5.6: Example of segmentation using local intensity statistics around user specified lines. 
(a)User-input lines (b)Areas where intensity statistics are collected. After this, for each snake point 
the intensity statistics from its closest area will be used. (c )Final Result. 

upon which to build global model deformation control. With the push of a button, the 

control points of the control polygon can be connected with springs (including control points 

on opposite sides of the polygon). 

The spring force between two terminal nodes with positions Xi and Xj is defined as 

follows: [11]: 

j hook k (II II ) Xi - Xj 
ij = - s Xi - Xj - rij II II' 

Xi - Xj 

where ks is Hook's spring constrant. 

These spring constraint forces can be included on the right hand side of equation (2.10). 

The control polygon acts as a spring-mass lattice, constraining the global shape or symmetry 

of the snake (Fig. 5.7). 

(a) (b) 

Figure 5.7: (a) A snake with global constraint. (b) effect of a user-click on the snake: because of 
the global constraint the whole snake is pulled toward the user clicked point. 

As an example, since we know that the rostrum region of the corpus callosum is con­

sistently triangular in shape, we can connect the control points in this region with springs 
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fig.(5.8}. The forces exerted by the springs will constrain the snake to remain triangular in 

this region and thus help ensure the tip of the B-spline template snake is attracted to the 

rostrum tip of the corpus callosum boundary, when the snake is pulled by image forces or 

by user input forces. 

(a) (b) 

Figure 5.8: Example of global shape constraint. The three control points within the triangle are 
connected together with springs, forcing this region of the snake to remain triangular in shape. The 
snake is initialized incorrectly in (a) but manages to move towards the correct position in (b) so 
that the rostrum tip of the snake ends up at the rostrum tip of the data. 

These shape constraints are invaluable for processing a number of image slices in a time 

series (i.e. tracking the motion of an object) or in an image volume. A common method 

of segmenting multiple image slices is to propagate the fitted snake of image n to image 

n + 1 (or n - 1). The fitted snake of the previous slice acts as the initial snake of the next 

or neighboring image. The idea is for the user to enter cross sectional lines in the first 

image and segment the target object with the template snake in a normal fashion. Some 

user editing may be required if the image is very noisy or there are neighboring structures 

with similar image features. Once the user is satisfied, the global shape constraint springs 

are activated, and their rest lengths computed. The stiffness values of these springs are 

currently empirically determined. The constrained snake is then used as the initial snake 

in the next image. The shape constraints prevent the propagated snake from latching on 

to neighboring edges, a common problem with a propagated snake that is not constrained, 

resulting in tedious user editing. 

Currently, all control polygon edges and control point pairs on opposite sides of the 

snake are connected with springs. However, many useful user-definable spring constraint 
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lrrangements are possible for different objects. 

5.4 Intelligent Fitting Algorithms 

fhe initialization process transfers knowledge of object shape and landmark positions to the 

,em plate snake. This information, combined with the properties of a B-spline curve, provides 

,he means to design more intelligent fitting algorithms. Intelligent fitting algorithms can 

,ake advantage of object shape and appearance knowledge, resulting in more robust (i.e. 

nsensitivity to noise, edge gaps etc.) segmentations [22]. These algorithms also increase the 

legree of automation and, consequently, reduce the burden on the user. For example, the 

lUmber of input lines can be reduced for some objects. The tradeoff is algorithm complexity. 

An example of an intelligent fitting algorithm that works very well with the B-spline 

emplate snake is a 'ziplock' algorithm [26] Because of the properties of a B-spline curve, 

he initial template snake is very close to the target object boundary near the end points 

)f the user input lines (i.e. near the 'pin' points). The initial snake is also nearly parallel 

o the boundary at these locations. At other parts of the ~nitial snake, the snake points 

nay be quite a distance from the object boundary, especially if the object is highly curved 

mdj or a reduced number of input lines is used. Therefore, the external image forces can 

)e activated for snake points in a phased manner. Initially, the external image forces are 

turned on' only for the snake points near the pin points. The internal forces are activated 

or the entire snake so that as the snake points near the pin points are pulled towards the 

>oundary, the neighboring snake points are pulled along by the internal forces. In the next 

)hase, external image forces are activated for these neighboring snake points, which are now 

lose to the target boundary. These snake points pull their neighbors towards the boundary 

'ia the internal forces and then in the next phase, more snake point external image forces 

~re activated, and so on. The effect is analogous to doing up a zipper on a coat. Fig. 5.9 

hows the effect of applying ziplock on a ee, initialized with only four lines. As Fig. 5.9(d) 

md Fig. 5.9(i) show, while the non-intelligent algorithm fails, the ziplock version segments 

he image properly. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 5.9: Example of intelligent fitting. (a) user-input lines, (b) initial B-spline snake, (c) snake 
after phase I, (d) final result without using ziplock in phase II, (e-i) using ziplock in phase II -circles 
show image forces-: (e) after 100 iterations, (f) 200 iterations, (g) 300 iterations, (h) 400 iterations, 
(i) final result. 

Other algorithms may activate external image forces for snake points in a more elaborate 

manner, proceeding from object boundary regions that exhibit strong edges to regions with 

less strong edges etc. [22]. In regions where there is a high probability of little if any image 

edge evidence, noise, or neighbor object interference, the internal forces can be increased 

and the external image forces deactivated. 
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Chapter 6 

Results 

\Ve have applied our B-Spline template snake to several 2D images in order to demonstrate 

its potential. This chapter represents samples of segmentation results. 

6.1 Corpus Callosum(CC) Segmentation 

We have tested our B-Spline template snake on 25 CC images using only five user input lines 

for each. The average error when compared against expert manual segmentation is 0.66 pixel, 

where the error is defined as the shortest distance between the snake points and the expert 

hand-segmented boundaries. This error can be reduced by using additional program-added 

degrees of freedom or by additional user input lines in the initialization step. Note that 

once the input lines are entered, no further user editing of the snake is needed. Quantitive 

en;or measurements for 25 CCs relative to manual segmentation is summarized in table 6.1. 

Important details to consider regarding table 6.1 are as follows: 

• All the images are segmented with only 5 initial lines. 

• A soft control point has been automatically added in the middle of every polygon edge. 

• 7 points per element have been saved for comparison with hand segmented images. As 

a result, we have 5 x 2 x 2 x 7 = 140 saved points per snake (assuming there are 5 user 

lines and auto middle point for every edge). 

• Image forces are based on local statistical intensities described in section 5.2.4 

51 
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Table 6.1: Mean, min, max and standard deviation of the shortest distances between automatically 
extracted and expert segmented CC boundaries. The last column is pixel distance between the 
automatically and manually labeled rostrum tip. 

Case no. Mean Min Max S.D. Rostrum tip 
(pixel) (pixel) (pixel) (pixel) (pixel) 

1 0.7664 0.0081 1.8056 0.4106 1.8468 
2 0.5874 .0.0043 1.6456 0.3781 0.8621 
3 0.6447 0.0001 1.8093 0.3955 1.0095 
4 0.5530 0.0033 1.8015 0.3804 1.5201 

5 0.5573 0.0124 2.0024 0.3136 0.9568 
6 0.6976 0.0047 2.1281 0.4918 1.1551 
7 0.7340 0.0011 2.3320 0.4771 1.7614 
8 0.5562 0.0003 2.0921 0.4105 1.8577 
9 0.6665 0.0005 2.6744 0.4822 1.4507 
10 0.6478 0.0100 1.8693 0.3315 1.9780 
11 0.7516 0.0109 .3.3611 0.5449 2.0826 
12 0.6643 0.0091 1.8679 0.4174 2.8225 
13 0.7033 0.0067 2.2122 0.4814 1.5439 
14 0.6183 0.0009 1.5600 0.3698 0.5282 
15 0.6836 0.0050 1.6469 0.3946 1.8151 
16 0.6444 0.0042 2.1135 0.4502 2.6555 
17 0.6542 0.0005 2.8491 0.4361 0.8521 
18 0.6508 0.0027 1.9678 0.4038 2.1007 
19 0.7355 0.0168 2.2821 0.4410 1.7261 
20 0.6784 0.0137 2.1251 0.3979 3.4104 
21 0.6334 0.0029 1.8341 0.4103 0.3101 
22 0.6980 0.0027 3.0262 0.5451 1.1841 

23 0.7494 0.0055 4.5166 0.6004 2.0205 
24 0.5748 0.0116 1.2332 0.2672 2.7903 
25 0.7556 0.0027 2.0192 0.5202 1.8805 
Average 0.6643 0.0056 2.1910 0.4301 1.6848 
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Figures 6.1, 6.2, and 6.3 represent some of the segmentation results. The first column 

represents the user input lines, the second column represents the corresponding initial snake, 

and the last column .represents the final results. 

As we mentioned before by adding even 1 more user line we get more accurate results. 

Figure 6.4 shows two complex CC's that have been segmented using 6 initial lines. 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 6.1: Samples of segmenting CCs images. The first column is user init lines, the second 
column is initial snake, and the last column is final result. 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (1) 

(m) (0) (0) 

Figure 6.2: Samples of segmenting CCs images (continued from figure 6.1). 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (1) 

(m) (n) (0) 

Figure 6.3: Samples of segmenting CCs imag~s (continued from figure 6.2). 
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(a) (b) (c) 

(d) (e) (f) 

Figure 6.4: Complex CC images segmented with 6 user init lines. 

6.2 Bone Segmentation 

Figure 6.S shows the initial user lines, the resulting initial snake and the final segmentation 

of two arm bones in an X-ray image. The image is very noisy, especially where the two bones 

overlap. There are many large gaps in the edges of the bone boundary and many spurious 

edges inside the bone. Notke how with only a few input lines the initial snake is almost the 

same shape as the bone. The model ignores edges that are not of a specific magnitude and 

direction. 

To show power of our model, we applied an inflating snake on the bone image, with 

different parameters, but it leaked into the other bone. Usually, setting the parameters of an 

inflating snake is difficult for an object with a lot of texture. If we set the internal too small, 

or if we set the inflation force too strong, the snake may leak. If we set the internal forces 

too high or the inflation snake too weak, the snake gets caught on spurious/noisy edges or 

cannot flow into protrusions in the object. 
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(a) (b) (c) 

(d) (e) (f) 

Figure 6.5: Segmenting two arm bones in an X-ray image. From left to right: user init line, initial 
snake, and the final result. 
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Figure 6.6 shows the bladder segmentation using 5 input lines. Notice that the model 

successfully segments the complex lower part of the bladder. 

(a) (b) (c) 

Figure 6.6: Segmenting the balder using 5 input lines. 

6.4 Putamen Segmentation 

Segmenting the putamen is a difficult task. The putameI,l is adjacent to the grey matter and 

to globus pallidus (both with highly similar intensity to the putamen). Consequently, there 

are many large gaps, noise, and texture in the putamen edges (see figure 6.7). 

We have applied our model to segment the putamen from several slices of an MR image 

volume. The user enters lines in the first image and turns on the control polygon spring 

constraints, so all control polygon edges and control point pairs on opposite sides of the 

snake are connected with spring (Fig. 6.8). 

Once the initial model has been fitted to the first slice (Fig. 6.8(c)), the snake is able 

to successfully "track" the putamen in neighboring slices with no need to user interaction 

(Fig. 6.9). This is the case especially if images are generated at high frequencies. When two 

consequent slices are considerably different, user may initialize a new snake on the new slice 

to get more accurate result and less editing. 
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(a) (b) 

Figure 6.7: The putamen (left) and its potential (right). Notice that even with lots of enhance­
ments, the edges are still quite noisy. 

(a) (b) (c) 

Figure 6.8: Segmenting a single frame potamen, using 5 input lines. 

(a) (b) (c) (d) (e) (f) 

Figure 6.9: Segmenting a sequence of putamen frames (from left to right). There is no need for 
user initialization, instead the result of each frame is used as the initial snake for the next frame. 
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Chapter 7 

Conclusion 

The thesis has developed a user-definable deformable template model using a B-Spline snake. 

A simple but effective and efficient initialization process, coupled with the properties 

of a B-spline, enables the construction of a snake that is extremely close to and similar in 

shape to the target anatomical structure. Since each snake element roughly corresponds to 

a specific object boundary segment, the user is able to create customized external forces and 

utilize custom fitting algorithms, ensuring a more robust and automatic segmentation result. 

Moreover, since the B-spline control polygon is a coarse approximation of the curve and 

hence a coarse approximation of the target object boundary, it is a convenient frame upon 

which to build global model deformation control. 

In chapter 2 several design principles for optimal interactive segmentation techniques 

were listed. This chapter will briefly discuss some of these principles with respect to the 

B-spline template snake. 

Principle 1 states that computation and user interaction should be integrated into one 

process. The physics-based framework of snakes is inherently integrative. The computa­

tional component solves force balance equations and includes user derived forces. Pushing 

and pulling on the snake via mouse spring forces is very intuitive - a key feature of semi­

automatic deformable models. Principle 3 states that users should initialize the segmenta­

tion method with key information which will lead the method to an accurate result more 

quickly. This is the key feature of B-spline template snakes. They were designed to ex-
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)loit user recognition abilities. The user input lines are often the only interaction required 

subsequent manual editing of the snake is seldom needed. Principle 4 states: user control 

:hould be maintained throughout the whole process to generate accurate results. Again, 

3-spline template snakes maintain the powerful force-based editing semantics of traditional 

:nakes. At any time during the segmentation, the user is able to correct the result, either 

)y pulling on the snake, pulling on the control polygon, or adding more user input lines or 

)oints. Furthermore, in on-the-fly segmentation, the user has even tighter control over the 

~ntire segmentation process. Principle 5 is: proper visualization of the computational part 

s needed to enable an effective user response. This property is, again, inherent to all snakes. 

Jrinciple 6 states: emphasize computation after each user interaction for optimal repeata­

)ility. The use of the user input lines, entered at landmark locations and in a specific order 

~nsures repeatability. As mentioned, there is little need for subsequent manual editing - the 

:omputational component of template snakes has enough user information in the beginning 

,0 perform an accurate segmentation. Principle 7 states: add intelligent behavior to elevate 

,he abstraction level of the interaction. This was the guiding principle behind the design of 

3-spline template snakes and is the thrust of this thesis. 

Finally, principle 8 - add the capability to learn from the user interaction and consequently 

~liminate the need for further interaction - is a topic for future research. 

Also, as future works, the following features can be considered: 

• The use of nonlinear magnification in a small region around the cursor to ease user 

burden of interactive line placement. Also, the use of a small secondary zoom window. 

• The use of a pressure sensitive pen input device and a tablet rather than a mouse for 

more comfortable and natural user input. 
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Appendix A 

Hermite and B-Spline Curves: An 
Overview 

The following sections discuss Hermite and B-Spline parametric splines. Generally, they are 

composed of individual parametric-curve segments, joined to form a single curve. Further­

more, their continuity is controlled at segment joints. The spline degree refers to the degree 

of its piecewise polynomials. 

A.I B-Spline Approximation 

B-Spline approximation is a piecewise polynomial curve defined by a set of control points 

that ordinarily are not interpolated. The degree of the polynomial functions representing the 

curve (basis functions) is independent of the number of control points. The control points 

influence only a few of the nearby curve segments. As a result, changes in the position of a 

control point do not propagate shape changes globally. 

Although, B-splines are smooth curves or surfaces with high level of geometric continuity, 

they can have sharp corners ( continuity CO) by duplicating some control points. 

B-spline curves are defined by: 

n 

P(u) = L,PkBk,d(U) U E [0,1] dE [2, n + 1], 
o 

(A.l) 

where Pk are the input set of n + 1 control points. Blending functions for B-Spline curves 
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are defined by the following recursion formula: 

B = {1 U E [Uk,Uk+l] 
k,l 0 otherwise ' (A.2) 

(A.3) 

where Bk,d = 0 for Bk,d = ~, and n is the number of control points. The degree of the 

polynomial curve is d - 1 and its continuity over the range of U is Cd- 2 . Each blending 

function is defined over d subinterval of the total range of u. The selected set of subinterval 

endpoints Uj is referred to as a knot vector which are Uj ~ Uj+l. Each control point controls 

d curve segments. 

A valuable property of B-Splines is their invariance under an affine transformation (trans­

lation, rotation, scaling) [7]. In other words, the following two methods produce the same 

result: 

1. Computing the point p( Ui) = L~ PiBi,d and then applying an affine transformation A 

such that P'(Ui) = Ap(ui). 

2. Applying an affine transformation A to control points such that p~ = APi and then 

calculate the curve represented by the transformed control points at Ui, where P'(Ui) = 

L,~ P~Bi,d. 

This property allows us to translate, rotate, and scale a B-spline curve while preserving 

the relationship between evaluated points and the corresponding control points. Also, we 

can change the number of control points without changing the degree of the polynomial. 

A.2 Uniform Closed Periodic B-Splines 

In a uniform B-Spline, where spacing between knot values is constant, blending functions 

are periodic, i.e. for given values of nand d all blending functions have the same shape. 
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, where D.u is the interval between adjacent knot values. 

Uniform B-spline curves are particularly useful for generating closed curves. Blending 

functions of a uniform cubic (d=4) B-spline using Eq. A.3 are: 

vVe have the following equation for open and closed curves, respectively: 

where, EB stands for modulo. 

A.3 Hermite Interpolation 

A Hermite spline is an interpolating piecewise cubic polynomial defined by its two end points 

and the tangent vectors at those points. Hermite splines can be adjusted locally because 

each curve element is only dependent on its end point constraints. If P(u) represents a 

parametric cubic point function for the curve element section between control points the 

boundary conditions that define this Hermite curve section are: 

P(O) 
p'(O) -

Pk P(l) 
DPk P'(l) 

where DPk and DPk+1 specify the values of the parametric derivatives (slope of the curve) 

at control points Pk and PH 1, respectively. 

) 

p(u) = au3 + bu2 + cu + d, (A.4) 

where the x component of Pis x(u) = axu3 + bxu2 + cxu + dx u E [01]. 

Applying the boundary conditions to the Eq. A.4 to find vector coefficients a,b,c, and d, 

we obtain the polynomial form: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

p(U) Pk(2u3 - 3u2 + 1) + Pk+l (-2u3 + 3u2)+ 
Dpk(U3 

- 2u2 + U) + DPk+1(U3 
- U2) 

PkHO(U) + Pk+lHl(U) + DpkH2(U) + Dpk+1H3(U). 
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(A.5) 

The polynomials Hk for k = 0,1,2,3 are referred to as blending functions Since they blend 

the boundary constraint values (end point coordinates and slopes) to obtain each coordinate 

position along the curve. Hermite curves are fairly easy to subdivide. They have C 1 conti­

nuity. i.e. the first parametric derivatives (tangent lines) of the coordinate functions for two 

successive curve segment are equal at their joining point. Its lack of invariance under affine 

transformations can be troublesome if not accounted for. 
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Appendix B 

Finite Difference Snakes 

The use of Finite differences (FD) is the traditional method for local representation of snakes. 

A 2D FD snake contour is represented as an ordered set of discrete points v = (VI, V2,', v n ) 

where Vi(S) = (Xi(S),Yi(S))T, with VI = Vn for closed snakes. The points (vertices) are 

connected by straight lines,resulting in a piece-wise linear curve. Letting Eext = Eimage + Econ 

and setting o:(s) = 0: and,B(s) = ,B to constants, minimizing the energy functional(C.2) gives 

rise to the following two independent Euler equations: 

aEext 
-O:Xss + ,Bxssss + ~ = O. 

BEext 
-O:Yss + ,BYssss + -----ay = O. 

The discrete form of the snake energy functional can be written: 

Let 

n 

Esnake = L Eint(i) + Eext(i). 
i=1 

BEext = F (.) = [Eext(x(i) + h, y(i)) - Eext(x(i) - h, y(i))] 
ax x ~ 2h ' 

BEext = F (.) = [Eext(x(i) , y(i) + h) - Eext(x(i), y(i) - h)] 
By y ~ 2h ' 

and approximating the derivatives with finite differences: 

xss(i) = x(i - 1) - 2x(i) + x(i + 1), 
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(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 
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yss(i) = y(i - 1) - 2y(i) + y(i + 1), 

Yssss(i) = yss(i - 1) - 2Yss(i) + yss(i + 1). 

Substituting (BA), (B.5), (B.6),(B.7), (B.8) and (B.9), into (B.1) we have 

XA + Fx(X, Y) = 0, 

YA + Fy(X, Y) = 0, 
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(B.7) 

(B.8) 

(B.9) 

(B.10) 

(B.11) 

where the stiffness matrix A is pentadiagonal and banded. A dynamic snake is constructed 

(first order dynamic equations of motion only) with a damping density /': 

or 

X t = (Xt - 1 - FAxt-1, yt - 1)) (A + /,1)-1, 

Y t = (Yt - 1 - F y(Xt-1, yt - 1)) (A + /'1)-1. 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

In equations B.12, the internal forces (i.e. XA and VA) are evaluated at time t which yields 

an implicit Euler step. Taking into account derivatives of the external forces can break the 

banded structure of A.Therefore, it is assumed that F x and F yare constant during a time 

step and they are evaluated at time t - 1,yielding and explicit Euler step with respect to 

these forces. At equilibrium, the time derivatives vanish and equations (B.12) and (B.13) 

reduces to equations (B.10) and (B.11). 
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Appendix C 

Euler Equations for Snakes 

The task of fitting a snake contour to the desired object boundary is a classic optimization 

or minimization problem. There are several methods to perform this task, one oft hem is 

the variational calculus. In variational calculus, function v( s) minimizes the functional 

E(v) = lb F(s, V, v', v")ds, 

if the following Euler-Lagrange equation is satisfied: 

8F d 8F d 82 F _ 0 
8v - ds 8v' - ds2 8v" - . 

Assuming Eext = Eimage(V(s)) + Econstraint, we have 

Letting 

h av d a2v h were Vs = 8s an Vss = 8s2 ' we ave 

8F ( ) 8Eext 
-8 =a s v s +-

8
--, 

Vs VS 

8F ( ) 8Eext 
-8 = f3 s Vss + -8--' 

Vss Vss 
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(C.l) 

(C.3) 

(C.4) 

(C.5) 
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69 
lbstituting Eq.C.3 and Eq.C.4 and Eq.C.5 into Eq.C.I gives: 

8Eext ((. ) 8Eext) (( ) 8Eext) --a;-- Q' s vs + 8v
s 

s + f3 s Vss + 8v
ss 

ss = 0, (C.6) 

( ()) ( () ) 8Eext (8Eext ) (8Eext ) 
- Q' S Vs s + f3 S Vss ss + -~- - -~-- s + -~-- ss = O. 

uv uVs uVss 
(C.7) 

~tting 

( ) 
8Eext 8Eext 8Eext Q S, v, VS, vsS = -8-- - (-8--)S + (-8--)ss, 

v Vs Vss 
(C.S) 

Len the Euler equation in C.6 becomes as follows: 

(C.g) 

~tting (8
a
Eex t )s = 0 and (aaEext)ss = 0 in Eq.C.S gives: 

Va Vas 

(C.IO) 

hich is the equation of equilibrium for the snake model. This vector-valued partial differ­

Ltial equation expresses the balance of internal and external forces when the Snake rests 

,equilibrium. The first two terms represent the internal stretching and bending forces 

spectively, while the third term represents the external forces. 
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