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Abstract

DYNAMICS OF A ROTATING BEAM WITH INTERMITTENT CONTACT

Mary Ann Ieropoli, 2007
Masters of Applied Science
in the program of
Mechanical Engineering

Ryerson University

A flexible beam that is attached to a rotating hub, and whose tip encounters intermittent
contact with a flat rigid surface is modelled. The beam is modelled using Euler-Bernoulli beam
theory. Lagrange Equations are used to develop the system governing equations of motion,
impact is modelled using the momentum balance method and contact is represented via a
Lﬁgrange multiplier and Coulomb friction. The model does not allow penetration of the surface
to occur By enforcing a geometric constraint throughout contact. Both flexible and rigid initial
beam assumptions before impact were analyzed. The effects of angular velocity, depth of
penetration and the friction coefficient were examined. A numerical algorithm is outlined and
Matlab software is used to implement the procedure. The results show some compliance with
expected trends and they show smoother transition from unconstrained to constrained motion for

the flexible initial beam configuration compared to the rigid configuration.
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Chapter One: Introduction

Rotating beams play a major rolé in mechanical and aerospace applications. The
solutions to problems encountered in robotics, engines, the use of helicopter rotors, etc., depend
on a good understanding of the dynamics at work. Further complications in solving problems
related to these rotating beams can arise when attempting to model impact or continuous contact.
Controlling contact is very important, whether making a robotic arm follow a certain path with a
particular amount of force, using wire bristles to polish a part, or simply trying to lessen its
adverse effects. It aids in making a system more efficient, enhancing performance and
minimizing expenses.

The first step to accomplishing this is to understand the behaviour of the system. This
thesis attempts to model and analyze a flexible beam attached to a rotating hub, whose tip
encounters intermittent rubbing with a flat rigid surface. The model does not permit the
penetration of the rigid surface to occur by enforcing a geometric constraint throughout contact.
Using Euler-Bernoulli beam theory, a half rotation causes the system to encounter free rotation
(or unconstrained motion), impact, constrained motion on the rigid surface interspersed with
brief moments of unconstrained motion, and finally, return to unconstrained motion.

Allowing the beam only to deform, the equations of motion are developed using
Lagrange’s equations. The coefficients of the equations of motion vary with time, and therefore
have to be calculated at every time step. To reduce the amount of calculation, the volume
integrals are calculated using Gaussian quadrature. An explicit fifth-order Runge-Kutta method
is used to solve for the generalized coordinates and velocities in unconstrained motion. When
the system goes from the unconstrained motion phase to the constrained motion phase, impact
parameters are calculated using the momentum balance method.

Constrained motion is more difficult to model. Accurately calculating the exchange of
energy that occurs when two bodies come into contact is one of the major challenges. Also,
friction is a complex occurrence that is often encountered in such applications as the constrained
motions of robots or the rubbing of engine components. There are many ways in which
engineers attempt to model friction and other forces associated with contact. These usually

include using Hertzian contact models, or using Coulomb friction combined with an assumed



loading profile or combined with Lagrange multipliers. The latter method is used in this thesis
along with a predictor-corrector numerical algorithm.

The transitions between the different types of motion also need to be considered. The
integrity of the model depends on being able to combine all the stages in a continuous fashion.
This is accomplished by making the most recent generalized quantities of the previous motion
the initial conditions for the motion that is to follow. Once this is complete, the parameters
angular speed, depth of penetration (if the constraint is not present), friction coefficient and beam
configuration at initial impact will be varied to examine the system behaviour. The term ‘depth
of penetration’ is a misnomer though it is consistent with the literature. It is the difference
between the normal distance between the hub centre and the rigid surface and the summation of
the hub radius and the length of the beam. It is represented in terms of the beam length.

The thesis is organized as follows. Chapter two presents a literature survey. Chapter
three describes the system. This is followed by the derivation of the system equations of motion
in chapter four. The system is solved using Matlab software that includes coding of Butcher’s
fifth-order Runge-Kutta method and a numerical method developed by Gear et al. [1]. The fifth
chapter presents the simulation results. Chapter six elaborates more on the results and other
issues encountered, including observed discrepancies in literature. Finally, concluding

statements and suggestions for future work are presented in Chapter seven.



Chapter Two: Literature Review

In the reviewed literature, the topics that were encountered many times over included the
modelling of flexibility, impact and contact, and axial stiffening. Most theory is based on rigid
bodies, due to simplicity. As machine parts and products began to become lighter and faster,
rigid body theory became insufficient to fully investigate these components. Therefore, the
theory needed to be extended to flexible parts, and examining the implications and errors
induced through rigid body theory on flexible components became essential. Also, impact and
contact are very complex subjects and therefore require extensive investigation. Axial stiffening
was often mentioned because it is an occurrence usually associated with fast rotating structures

and ignoring it can introduce substantial error.

2.1 Modelling Flexibility

The most popular way to model a flexible beam is to describe displacement fields using
eigenfunctions equations derived from the mode shapes of a non-rotating beam. The summation
of these eigenfunctions is used with an approximate method such as the Galerkin method or the
assumed modes method. Since the mode shapes are those of a non-rotating beam, the
eigenfunctions themselves are approximate. Bellezza ef al. [2] developed exact eigenfunctions

for a linear problem by adding an extra term to the classic solution such that:
v, (x) = Asin(fx) + B cos(fx) + C sinh(fx) + D cosh(fBx) + Fx (2-1)

¥ represents the eigenfunction for a pseudo-clamped beam (the clamped end is rotating), A to F
represent arbitrary values and B can be calculated from the characteristic equation. The
theoretical results obtained were in very good agreement with experimental values.

Christoforou and Yigit [3] examined the effect of flexibility on low velocity impact
response. It was shown that, depending on the nature of the impactor and target, three non-
dimensional parameters can completely describe the response. They are: the normalized impact
velocity, the relative stiffness of the impactor to the target, and the loss factor, which represents

the energy lost by the impactor to the target during contact. From this, the maximum normalized



force can be predicted without running a simulation. This is useful for designing impact loading
or choosing similar simplified models that can have experimental results scaled to the true
problem.

In Gilardi and Sharf [4], a description of the idea of the coefficient of restitution, which is
utilized often in many investigations, was given with examples of how it is applied in different
models. Care needs to be taken when using the coefficient of restitution for flexible bodies
because the coefficient is derived using rigid body assumptions. Yigit et al. [5], [6] and Yigit [7]
deal with the effect of flexibility on impact response when using this coefficient. All three
papers used Euler-Bernoulli beam theory and extended Hamilton’s principle to develop the
system equations of motion, and the Galerkin method to find approximate solutions. Included in
Yigit et al. [5] is a one-degree-of-freedom system example that showed that the effect of
flexibility on the coefficient of restitution is so small that the rigid body theory assumptions are
adequate. Hatman ef al. [8], [9] used this conclusion to justify using this coefficient for their
flexible systems.

Yigit [7] specifically compares rigid and flexible bodies by using a Hertzian contact
model. The coefficient of restitution is used to obtain a suitable damping factor, even though
major differences are found between the response characteristics of the two types of bodies.
They include that the energy loss due to impact in the flexible case is much lower, that the
change in angular velocity is much smoother for the flexible case, and that multiple contacts
occur for the flexible case. The impulse due to impact is significantly higher for the rigid case.
The author concluded that as long as some elastic motion can be excited by impact, the responses

of flexible and rigid bodies differed significantly.

2.2 Modelling Impact and Contact

Gilardi and Sharf [4] presented a general literature survey for contact dynamics
modelling, and it explained different methodologies for solving impact and contact problems. A
popular approach to modelling impact problems is the momentum balance method in which the
momentum does not change over the impact process because impact is assumed to be
instantaneous, and therefore, body positions do not change. Yigit et al. [5], [6] and Palas et al.

[10] used this concept along with the assumed mode method. The objective in Palas ef al. [10]



was to determine if the use of these two methods is plausible for solving transverse impact
problems involving constraints. Through establishing relationships between the generalized
impulse, jump discontinuities in the velocity vector and reaction forces, impact parameters, and
the number of elastic degrees of freedom, it was shown that, as long as the number of modes
used is sufficiently high, the use of the impulse momentum equations and the coefficient of
restitution are effective. The disadvantage of using the momentum balance method is that force
histories cannot be obtained because impact is viewed as instantaneous and therefore contact
duration is ignored.

Yigit [7] avoids this disadvantage by using a Hertzian contact model. This option,
however, has some disadvantages: the damping force at the beginning of impact is not zero as it
should be, the sum of the damping and spring forces during restitution can be negative, and the
damping force reaches its maximum value when the relative displacement equals zero.

Hatman ef al. [8] and [9] use the momentum balance method to model the initial impact
and to calculate the jump in the system generalized velocities. The rest of the contact is
modelled using Lagrange multipliers. This method avoids the damping boundary inconsistencies
found with a Hertzian contact model and is able to provide a contact force history. Fung ef al.
[11] and Andersen ef al. [12] also used the idea of Lagrange multipliers much like Hatman et al.
did. Excluding the work done with piezomotors in the former two, the ideas and methodology
for modelling friction are very similar. Andersen argued, however, that the quality of the results
given by this method was unacceptable for his problem and suggested the inclusion of a contact
stiffness to improve them. Refs. [13-15] also used this method.

Matsuno and Kasai [14] used Hamilton’s principle, Euler-Bernoulli beam theory and the
Lagrange multiplier method to model a constrained flexible one-link arm. The inclusion of
friction due to the constraining surface introduces a non-homogenous term in the equations of
motion. The authors concluded that determining the beam deflection via non-rotating cantilever
beam mode shapes was not sufficiently accurate. Therefore, a change of variables was made to
the transverse displacement to derive the homogeneous equivalent of the governing equations.
Since the modified transverse displacement variable contained the friction term, a new ‘
eigenfunction modal model was derived that included both the geometric boundary conditions

and the boundary conditions that were induced by the external friction force. The focus of the



paper was the control of this system, and hence is out of the scope of this thesis. Ref. [15]
extended the study to include a non-symmetric rigid tip mass.

Fung and Chang [13] commit to solely deriving the non-linear dynamic equations for
single and double-link flexible systems using the Timoshenko and Euler beam models, the
simple flexure model and the rigid body model via Hamiltonian’s principle. The system used is
a constrained flexible arm with a tip mass and any friction included is modelled using Lagrange
multipliers.

Another approach is used in Sinha [16] to examine the dynamic response of a rotating
Timoshenko beam whose tip rubs against a rigid casing. In this application, contact is modelled
as a periodic pulse loading. The rubbing force acts along the beam axis, in compression, while
the shear force due to the Coulomb friction is split between two axes: in the blade tangential axis,
opposite the direction of motion, and in the blade normal axis as a point load in the beam lateral
direction, using the Dirac delta function. This procedure requires that the contact force time and
magnitude be supplied, rather than obtained. This makes the approach not useful for this thesis’
purpose, though, the derivation is useful and the results are insightful.

The finite element method is another option used to solve dynamic models involving
impact. Yang ef al. [17] use the extended Hamilton’s principle, Euler-Bernoulli beam theory and
the finite element method to develop equations of motion for a flexible beam. Hsu ef al. [18]
prove that this method along with the generalized impulse method can be used to study the
propagation of transverse waves due to impact in mechanical or structural systems.

In this thesis, the use of Lagrange multipliers to model contact is undertaken because a
contact force history can be obtained without making any assumptions of the contact profile.
Also, the coefficient of restitution, which is found to be valid for flexible structures, is included.
The momentum balance method is used only for initial impact. Since the contact time of the
beam is much longer than the instant of impact in this problem, this method is appropriate for the

transition calculations when going from unconstrained to constrained motion.

2.3 Modelling Axial Stiffening

Another prevalent issue involves modelling the effects of axial stiffening due to rotation.

It was mentioned in Refs. [S], [7], [8], and [17] that this occurrence must be included to avoid a

PROPERTY OF
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dynamic softening effect. Hatman ef al. [8] showed that including the longitudinal
displacements was necessary to achieving this. In the problem description, however, the beam is
only allowed to bend and the inextensibility assumption is used due to the differences in bending
and stretching stiffness of a tiny wire filament. Therefore, the authors decided to include the
longitudinal displacements within the calculation of the transverse displacements by defining the
arc length of the clamping point and an arbitrary point on the beam as invariant. In Refs. [5], [7]
and [17], however, a term is added to the potential energy, which represents the work done by
the axial deformation.

Al-Qaisia énd Al-Bedoor [19] compared these two methods along with a model that
combines the two options and a model that does not account for the stiffening. Due to the
consistency of the results for the potential energy option, this method was thought to be the best.
This option showed the hardening effect of the centrifugal forces when the system coupled-
dynamic response, the non-linear natural frequencies behaviour, and the system frequency
response were analyzed. The kinetic energy method was seen as the next best option because
some softening behaviour was found in the non-linear natural frequencies behaviour and in the .
frequency response analysis. The combination model performed the worst of the three options
accounting for the stiffening. Since this thesis centres heavily on Hatman et al.’s work [8] and

[9], the axial stiffening will be accounted for via the kinetic energy.



Chapter Three: Description of the System

Figure 1 shows the coordinate systems and the beam displacement of the system of

interest. The global right-handed coordinate system is denoted by X, Y, and Z with unit vectors

A A

along each axis denoted by i, j, and k, respectively. The local (or body-fixed) beam

A A

coordinate system is denoted by x, y, and z with unit vectors along each axis denoted by e, , e, ,

A

and e, , respectively. The positive x-axis runs radially from the origin along the beam. The y-

axis runs normal to the beam in the direction of transverse deformation. The z-axis is the

n n

resultant of the cross product of e, and e, . The beam will only undergo bending in the

transverse direction and out-of-plane motion is not allowed. Any axial shortening due to rotation
will be accounted for in the kinetic energy via the transverse eigenfunctions by defining the arc

length of the clamping point and an arbitrary point on the beam as invariant [8]. This is

A YA

P@ 1) x,er

Figure 1: Coordinate systems and beam displacement.



consistent with the inextensibility assumption; the derivation of which can be found in Al-Qaisia
and Al-Bedoor [19].

Variables ‘A’, ‘p’, ‘E’ and ‘I’ représent the beam cross-sectional area, the material
density, the Young’s modulus and the area moment of inertia, respectively. Angle ‘0’ represents
the angle between the beam and the positive X-axis.

Figure 2 is the system process schematic. The length of the beam is represented by ‘L’,
and the hub radius by ‘r,’. ‘d’ is the normal distance between the fixed centre of the rotating hub
and the rigid surface.

- The global X-axis is positive in the downward direction from the origin, O. The Y-axis is
positive in the direction on the right-hand side (RHS) of the origin, while the Z-axis is positive

coming out of the page, in accordance with the right-hand thumb rule. At the beginning of the

simulation, the beam is assumed straight and coincident with the Y-axis in the negative j

direction and having a constant angular velocity, denoted as ‘@’; which rotates about the global
Z-axis. The simulation is stopped at an angle at which contact between the beam tip and the flat

rigid surface is lost.

Rotating Hub

/
/

cesnvacans

_— Axis of rotation, Z
e

\

N TP
N Point of initial impact "
: Point of release

Flat rigid surface |

VX,+i

Figure 2: System process schematic.



Chapter Four: Governing Equations of the System and Numerical Algorithm

This chapter develops the governing equations of motion for the system described in the
previous chapter. Lagrange equations are used to model system energy, while Euler-Bernoulli
beam theory and the mode shapes of a non-rotating cantilever beam are used to describe beam
displacement. Impact is modelled using the momentum balance method and contact is
represented via the Lagrange multiplier and Coulomb friction. Hatman ef al. [8] and [9] have
already derived these equations and the purpose of including this section is for completeness and
to fill in any blanks where the transition from one step to another was not immediately obvious.

Also, modifications to the numerical algorithm are noted.

4.1 Position, Velocity, and Kinetic Energy Terms

The local and global position vectors of the system described in chapter three are

represented by r and R, respectively:

r={x,y,z} (@-1)

R={x,¥,zf (4-2)

The global position vector can be calculated using the transformation matrix A, where @ is the

angular displacement of the rotating beam:

R=Aer 4-3)

cos@ —sinf 0 4-4)
A=|sind cosf@ 0
0 0 1

Velocity is obtained by differentiating Eqn. (4-3) to get:

V=R=Ar+Ar (4-5)
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where the over-dot implies differentiation with respect to time. The kinetic energy of the beam is

then expressed as:

' .« . 4-6
T=1J'R’Rdm (4-6)
27

1 oT oT . o (4"7)
T=—2— r"A +r AT (Ar+Ar)dm

1 T & oT T . o7 . (4"8)
T=-2— r"A Ar+2r A Ar+r ATArdm
Let o = 6.’ ; the angular velocity, and the transformation multiplications are as follows:
r 1 00 0 -1 0 1 00
A A=0?0 1 0 ATA=0/1 0 0 ATA=|0 1 0| (4-9a-c)
0 00 0 0 O 01
The time derivative of the coordinate vector in the moving frame is expressed as:
. . . 4-10
r=—ygq,=%vq ( )
where,
[ ox ox ox | (4-11)
o, ~ dq, O,
o-|2 .2 2
oq, oq, aq,
0z 0z oz
| 0q; 0, aq,, |

and the vector of the time derivative of the generalized displacement with respect to time is:

11



L) . . ) T (4‘12)
q ={‘1p‘12’~--qn}

The resulting kinetic energy term is:
1 oT 0 -— 1 o7 . (4‘13)
T= 5 J(a;zr;rp +2mq (I)ﬁ[l 0 ]rp +q ®T¢q)dm

where r, = {x,y}" . This notation is developed because the third row and the third column of the

first two transformation multiplications are all zeroes. The following equations are developed

for use in the Lagrange equation:

-14
o|oT | o oU @14
—_— - __.___+._.._.=Q

ot oq

where T and U are the kinetic and potential energies, respectively, Q is the non-conservative

generalized force, and q is the generalized displacement vector.

The energy term derivation continues:

R T (4-15)
oa_1 a)z—a—(r;rp)+2w——a— q D) r, +_6_ q ©'dq |dm
aq 2J| oq oq 10 oq

0 -1 : @16
o _1 20D r +20"dq dm
a' 2 Pl o’
q v
0 -1 . 4-17)
T _ M woT r’ +&"dq ldm
ao p 1 0 p
q v
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The mass matrix M is expressed as:

M = [or"ordm @1

Using the above definition, the time derivative of equation (4-17) is:

(4-19)
419 co-‘-i—(CDT 0 ~Nr s oo 0 _1(D q m+l\.'lc.1+M;
d'a(°1~vd’p10p Pl 0]”*

Therefore,

dfor| or_

dt| 5q|

“ e 0 -1 0o -11 -
=Mq+Mq+;[(a>F((DZL 0]; a;cbf,[l O]CDP
T 0 1 1 T 0
Ly aq(r;..p)_a,_q(q @5[1 O]r,,]___(q q,rq,qndm
(4-20)
o0 e o 1 a T . 1 a
=Mq+Mq—-5!-é-a(q @T(Dq)dm——z—vwza(r;rp)im
d 0 -1 o(-" 0 -1 0 -1 .
+J(a)-c-1;(cbf,{l O]r;—-a)—a-a[q CD:,[I O]er)dm+Ia)®f,[l O](qudm
“4-21)
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To simplify the equations, some equations are manipulated. The second term in the above

equation is expanded:

VR, . 4-22)
Mq-EJ(D ddmq
e o _ d T L] T d L4 (4'23)
Mq—JE((D )d)qu+;’-d) Z((D)qu
(4-24)
—qu o )Cl)d +I<DT ((D)qu
oq
.. (4-25)
Mq=—_[——(q ) (Dq)dm+_[(DT——~(<D)qu
o o 1 a o7 . d . (4-26)
Mq-= |—|q ®'®q |dm=|0" —(@
q 2!aq(q q)m I — (@)dmq
And then the sixth term of equation (4-21) is expanded:
o .0 -1 0 dq -1 T L0 -1
—q @ =@——O0 + () (o)
waq(q "[1 o}rf’J “oq d "[1 o]r" Pl o [T
(4-27)
d( 0 -1 A0 1 .
=o—\D + oD [
og "{1 o]r" Pl-1 o] 79 (4-28)
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Also, the fourth term of equation (4-21) is rewritten as:

4-30

.--;'0) al-(rprp)dm——a) jrp 6q( )dm ( )
ox

-’ Ir: Eaa(rp)dm = -0’ _ﬂx y g;l dm = -’ f(x-‘%+y%}dm (4-31)
oq

Therefore:

(1] _l e
1971 T _mgs20 flr 0 @ ,dm |q
ot aq aq ; 1 0

(ol (50 2

Let G and D denote the following matrices:

G- J((D,[o —1](1) ]dm (4-33)
: y4 1 0 14
_ . (4-34)
= J((D > (CD)}I'm

Matrix D becomes all zeroes if the functions that describe the coordinates are linear with respect

(4-32)

and

to the generalized displacement. As can be seen in the following section, this is not the case,
because the local x coordinate is quadratic with respect to the generalized displacement. Finally,

the kinetic energy terms in the Lagrange equation are derived:

ot| 5| Oq oq ~dq

o0 (4"35)
—a—(aT]—g—]:—M +2a)Gq+Dq— J(x—+yay
oq v
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4.2 Generalized Coordinates and Further Equation Manipulation

The coordinates are represented as:

s (4-36)
x=n+ Idx
0
where ry, is the hub radius and s is any point along the beam.
But ds = \/dx” +dy* , hence dx? = ds* —dy?. It follows that:
dy 2
dx=.ds* —dy* = |1-| =< | ds
Y (ds) 4-37)

Using the binomial series [20]:

2 1 2
(&) 42 w2

Therefore, )mr +‘ 1_1(9’_}1)2 s =r +s—l]'(dy)2ds
=7, ; 2\ ds ! ds o

To find the transverse direction displacement field, the cantilever modes are derived. The

boundary conditions for a cantilever beam are as follows [21]:

The clamped end: deflection y(0,¢) =0, and slope of deflection @g)sﬁ =0 (4-40-1)

a2y(L 2

The free end: bending moment M (L,t) = EI(L)——>~-=0, (4-42)

16



2
and shearing force Q(L,f) = ——g—[EI(L) 0 g (f’ d )] =0 (4-43)
. A) S

Using the general eigenfunction equation [22],

S,(s) = cosh B,s —cos f,s —o,(sinh B,s —sin B;s) (4-44)
where,
o = (sinh B,.L —sin B,L) (4-45)
" (cosh BL+cosB.L)

and L is the length of the beam. The B; ‘s can be found by solving the characteristic equation:
cos 8, Lcosh B,L=-1 (4-46)

and are related to the natural frequencies of the beam, (o, ),. , via the expression:

2 _ pA 4-47)
ﬁ i = (wn )1 EI
The generalized coordinates become:
x(s)=r, +S--;—qT[ISP(s)],.jq (4-48)
and
»($)=[S)]q (4-49)
where,
_(dS,(s) Y 48,(5) (4-50)
isp), - [ 24 ){ A )ds |
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and

S(s) = 1{5,(5), 5,(5), S5 ()-8, ()} (4-51)

where ‘n’ is the number of modes being used. Letting r, = f,Land £ = S, iR where € is a

dimensionless point along the beam measured from where the beam is attached to the rotating
hub.

- _ids, &Y 48, (4-52)
s, = 2iiseeo), = [ S )( . Jd;
S,(£) =coshr,& —cosr,é — o, (sinhr,& —sinr,&) (4-53)
and,
o = (sinh7, —sinr) (4-54)

(coshr, +cosr,)

The local coordinates then become:

x(&)=r, +§L—%qf[1sp(;)1jq (4-55)

and

y&)=[8&TIq _ (4-56)

Now, the partial derivative of the local coordinates with respect to the generalized coordinates

can be expressed as:

~(/L)g"[ISP(&)] (4-57)

@(5) = ST
0

18



Using the above notation, the inertia matrix becomes:

.
M = [@ (5)D(s)pdds

M = pAL [@7 (£)D(E)dE = pAL I[— (%)[ISP(«:)]’q $7() 0
(1] ) 0

-(—i—)q"[lsr(:)]-

87
0

M =22 isp)F aa’ [SPEME + paL [SEIS" @)z

(4-58)

ds

(4-59)

(4-60)

where p is the beam density, and A is the beam cross-sectional area. D, the deformation induced

damping matrix, becomes:

o for

| [ Jisela
D= pdL I[(—"L—l)[lsmé)]’q 5@ 0

0

0
0

-2 [lispe)T aq fsp@k

G, the gyroscopic damping matrix, becomes:

0
G= [(cbﬁ[l

19
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s

(4-61)

(4-62)

(4-63)

(4-64)



G=pAL;fH-(—z—)[ISP(§)]Tq S(g)][‘l) P 1][-(%)q7[lsp(g)]ﬂd§ @63

S($)

G=pAL:]{[ ( )[ISP(&)]T‘I S(f)][ ( js:[i)P(g)]“” o

(4-67)

G =pAL j((—;—)[ISP(é‘)]T qS” (&) —(—i—)s(é)q’[ISP(f)]]df

0

l (4-68)
G = pu [([ISP(2)] 487 (&) - S(©)q7[isP(&) &

Also,

-0 J(x——-+y——)dm =

——pALwZ[ j( +:L-ngT[ISP@)I-,q)(—%q’[lsmf)])d:+ f(qTS(é)XS’(é)}if)
(4-69)

= —~pALw2(— j%qT[ISP@)]dé— [éa" ISPl

+—2; [l el o (&) ]Jae + jqfsg)sf@ng (4-70)
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4.3 Potential Energy Term

The potential energy is found by integrating the bending moment over the angle of the

tangent to the beam. Only the bending part is considered because the inextensibility assumption

is in use [8].

U= % :jM(s)d¢ = % ;[M(s)lc(s)ds

@-71)

where M(s) is the bending moment, x(s) is the curvature of the beam, and ¢ is the angle of the

tangent to the beam with the OX-axis. According to Euler-Bernoulli beam theory, “the bending

moment in every cross section is proportional to the curvature” [8]:
L
U= % oj EIx*(s)ds
When curvature is being expressed in terms of arc length, it can be defined as [23]:

d2
)=l=|"=

Therefore, the potential energy is:
L 2_\? 2.\? 1 2_3? 2_\?
E ERCOI=C CReo
0\ 0

oU EI'{dx d(d*x) d*y d{(d%
—=m gzl o Tt o o | |46
oq L J\dé dq\d&é® ) dé dql\dé

Let

N EAGNENG)
srol=1" }( dg Jd'f

" and

21

(4-72)

(4-73)

(4-74)

(4-75)

(4-76)



[sPD(&)], -——([SP@)I ) @77

Calculating the terms in equation (4-75):

(4-78)

Ix@)_ 1
=359 7z POl h=—5 ' (sep

dyE) _ r dSE) (4-79)
dg* d¢’

Finally, the potential energy term is:

o (& omon) {im o 57 L

(4-80)
Let ‘I’(q,«i,t) equal all the energy terms except for the inertia matrix:
. ) . 4'8 1
‘P(q,q,t)=2a)Gq+Dq— x2+yay dm+—‘zj- “-81)
\ 09 " oq dq
The equation of motion for the unconstrained portion of the process is:
(4-82)

M q+ ‘P(q,(i,t) =0

4.4 Surface Contact Constrained Motion Terms

The constraint causes the global X term to be equal to the distance between the centre of

the hub and the rigid surface.
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X =x(L)cos@—y(L)sin@=d (4-83)
Therefore, the constraint equation is defined as:
C(q,t))=x(£ =1)cosf—y(& =1)sinf~-d =0 (4-84)

C(q,0) = (r, + L-(1/2L)q" [ISP(1)|q) cos& — q"S(1)sind —d = 0 (4-85)

The two terms that describe the constrained motion are the generalized normal force and the
generalized friction force. The generalized normal force is expressed in terms of a Lagrange

multiplier multiplied with the gradient of the constraint manifold (with respect to the generalized

coordinates).
N = AgradC (4-86)

where N is the normal force applied to the beam in order to maintain the constraint condition.
The magnitude of N represents the normal force needed to enforce the constraint on the system,
while the sign of the Lagrange multiplier gives the direction of the force along the normal to the

constraint manifold.

The generalized friction force is expressed as:

dR 4-87
o, -reRs (4-87)
dq
where ‘F” is the friction force and the subscript ‘f* refers to the tip of the beam. Using
Lagrange’s relations of the first kind, the following is true:
dR, dV, (4-88)
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Therefore,

Q “F‘dv
s

The friction force is defined by Coulomb’s law, and is expressed as:

\4
F= —y|N||—é|

where p is the coefficient of friction. Manipulating the generalized force vector:

£_N_ dvrv))
|Vf| dq Vfl dq 2\/VfTVf dc}

Substituting Eqn. (4-86) into Eqn. (4-91), the result is:

4 |gradQ d(V/V,)

Q, =-4| —==|1Q;
! 2. Vv, 4, d
where,
Q' __H lgradC| d(VfTVf)
f 2 ,JVTV do
rr q
Since

\Z =l.{f =1’&rf+Al.‘/

(4-89)

(4-90)

(4-91)

(4-92)

(4-93)

(4-94)

has the same form as the velocity used for the kinetic energy, the square of the velocity will be

very similar to the kinetic energy derivation.
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100 0 -10]

o7

VfTV = rf 010 rf+2a)q O enfl 0 0 r,+q o3 (5.1)¢(§=1)q

0 00 : 0 0 O
(4-95)
4 0 -1 0 )
——.-(V}'Vf)= Zw(DT(§=1) 1 0 O r,+ 2CI)T(§=1)(D(§=1) q (4-96)
dq 0 0 0
The constrained equation of motion thus far is:
o . 4-97)
Mq+'Y| q,q,¢ | = AgradC +
4.5 Impact
The constrained system can now be described using the following set of equations:
Mg+ ‘P(q,(i,t) = AgradC + C(q,1) =0 (4-98a,b)

Referring to Eqn. (4-14) and examining equations (4-35), and (4-80-4-82) it is apparent that the
RHS of Eqn. (4-98a) is the derived equivalent of the RHS of Eqn. (4-14) for this particular

system. Integrating the equation of motion at impact, the equation becomes:

1,47 d l+r l+r t,+7 to+7 (4-99)
j { ] [ —dt j —dt— IﬂgradCdt+ flAlQ;ar
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Since the position of the bristle is assumed constant during the duration of impact, dg=0. Also, it
is assumed that the force does not do work because the beam tip does not move. Therefore, the
second and third terms on the lefi-hand side and the last term on the right-hand side of the

equation are set equal to zero. The equation is then reduced to:

j = dt=[AgradCat

t,+1 d [GT] 1,+7 (4"100)
The left-hand side can be further reduced to:

oq

o (4-101)
'jjt[aTJdr M jqd: Mj—ﬂdt_MAq

fo

where Aq is the jump discontinuity in velocity. It is the equivalent of subtracting the pre-impact
generalized velocity from the post-impact generalized velocity. The right hand-side can be

written as:

4t (4-102)
j AgradCdt = gradC j Adt = PgradC

Yo

where P is the impulsive force. Therefore, the resulting momentum equation is:

M,Aq = PgradC, (4-103)

where subscript ‘o’ denotes the initial configuration and Aq is the change in generalized
velocity. This particular term is also called the ‘jump velocity’ because it is discontinuous.
The coefficient of restitution is defined as the negative ratio of the post-impact velocity to

the pre-impact velocity:

. 4-104
. ( )

e=-
q-0)
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Since the generalized velocity after impact is unknown, it is necessary to develop an equation for
the jump velocity in terms of the known parameters: the generalized velocity before impact and
the generalized coordinates: (The derivation of the following equation can be found in Appendix
A)

oC, (4-105)
ot

gradCTAq=—(1+¢) gradcg((.l(_o))- (+¢)

The impulse force, P, can be deduced from Eqns. (4-103) and (4-105), which can then be used to

obtain the jump velocity expression:

ac, (4-106)
o _(m; gradc,)

— (1+e)gradC? ({;(_0)) —(+e)
gradCyM;' gradC,

Aq=

Using Yigit et al.’s [5] definition of the coefficient of restitution:

e=0.501y"""% (4-107)

where v is the normal component of the tip velocity of the beam.

4.6 Numerical Routine for Constrained Motion

There are many numerical methods available in the literature; however, choosing an
applicable one can be a challenge. The system defined by (4-98) has an index of three [1]. The
index of a system is defined as “the number of times that the algebraic equations of the system
must be differentiated in order to obtain a standard form of ordinary differential equation (ODE)
system” [24]. Index three systems are difficult to solve, and, therefore, it has been suggested that

they be transformed into an index two system to be solved. This is accomplished by
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differentiating the constraint equation twice and solving the Lagrange multiplier in terms of the

generalized coordinates and velocities. The second time derivative of the constraint equation is:

.“ w oF . T A2 2 4-108
C=G" q+q a—C;q+2q 6C+§_2£—_-0 ( )
oq oqot ot

Solving for q , substituting it into Eqn. (4-98a) and then collecting the terms containing the

Lagrange multiplier to one side, the following equation is obtained:

T a0 e T g g 4-109
A=G'M'¥-q éc—;—q——2q ocC __6___2C_,'_ ( )
oq oqot ot

G'M'Ga +GTM"Q}

Obtaining A from Eqn. (4-109) and inserting it into Eqn. (4-98a) can allow for the resulting
equation to be solved using a Runge-Kutta method. This, however, was found to be unstable.
Hatman ef al. [9] attribute this instability to the fact that having the constraint equation and it’s
first two derivatives equal zero means that the value of C is always equal to zero. Numerically,
this does not happen and solution drift occurs. A way to resolve this problem was proposed [25].
However, it was also found that drift still occurs if the constraint equation is explicitly dependent
on time [26]. Therefore, Eqns. (4-108-4-109) are used just to predict the generalized coordinates
and velocities in the predictor-corrector algorithm presented next.

To avoid confusion, this algorithm is kept separate from all the other equations being
derived thus far by denoting the generalized coordinates by a bold lowercase ‘x’ and d¢noting
thé generalized velocities with a bold lowercase ‘u’. Thus, the following equations represent the

present system equations of motion:
x=u, Mu = -%(x,u,t)+ 1G+| | Q}, C(x,)=0  (4-110a-c)

Using the algorithm proposed by Gear et al. [1], a new index two system needs to be
developed, whose solution is also a solution of the index three system. As suggested in [1], a

term will be added to Eqn. (4-110a) that will introduce nonzero projections of the time derivative
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of the generalized coordinate vector along the gradient. Also, another constraint is added that
makes the total time derivative of the constraint equation equal to zero. This is to
mathematically ensure that the constraint equals zero [9]. The system described takes the

following form:

x=u+6G, Mu =-¥(x,u,)+ iG+| 1| Q}, (4-111a-b)
Cx,0=0, G’ -u+aa—f=o @-111c-d)

The generalized coordinates and velocities, the Lagrange multiplier, and & are the
unknowns. The solution to system Eqns. (4-111) is the same as the solution of system Eqns. (4-
110) when § is equal to zero.

Before presenting the algorithm, it is important to be able to solve an equation for a
variable, if both the variable and the variable’s magnitude are present. From Eqn. (4-109), it is
difficult to factor out A because its sign is unknown. However, the sign of A is the same whether
or not friction is present in the system [6], [12]. Therefore, if the friction term disappears, A can
be solved for. The sign of this solution can be used to find the real A that exists when friction is
present. Going back to Eqn. (4-110), | 2| will be replaced with Asign(1), and finally, the actual
A can be isolated.

The following is the implementation of the predictor-corrector algorithm (which is a

modified version of Hatman ef al.’s work [9]):

Step (1): When contact first occurs, assume that the system has reached time t,.; and values x,.;
and up.;. Then use Eqn. (4-109) to make a prediction for lambda, A1, as explained above. Then

do a Runge-Kutta iteration with this new A, and t,.1, Xs.1, and u,.; for the constrained system.
Step (2): Correct the predicted value for x, by solving the system formed by equations (4-111a,

c) and by setting 6 equal to zero. This is done by using the following backward differentiation

formula (BDF) for the time derivative of the generalized coordinates:

29



x=(x, ~x,,)/h (-112)

where h is the constant time step. The Newton-Raphson iterative method is used to solve for the

unknown & term. Performing only one corrector iteration, and starting with & equal to zero:

P C(x,., +hu?) (4-113)
" G'(x,, +hul)eG(x,_, +hu?)

The new value for x can be computed as:

C(x,,_l +hll'l:) G(x oy ) (4_1 14)
GT(.)C,,_I +hu,"’)oG(x”_I +hu?) n-1 noln

—_ P
X, =X, ,+hu’ -

(See Section 6.2 for the full derivation).
Step (3): The generalized velocities; u, can be corrected by solving the system formed by

equations (4-111 b, d). Using the same BDF mentioned in Step (2) for the time derivative of u,

the result is:

u, =u,  —IM7(x,,t,) e ¥(x,,u’,t, )+ FAM™(x,,t,) ¢ G(x,,1,)

n

+h|2’n|M-l(xnatn).Q}(xn3ur’:’tn) (4-115)

where A, is the value of the Lagrange multiplier at the time moment t,. It is currently an

unknown value, but it can be calculated by substituting the above expression for u, in equation

(@-115):
hA,G"(x,.t,) M (x,,1,) *G(x,,1,) + | A, | GT (x,,1,) e M (x,,£,)Q (x,,u’,1,)

=BG (%,1,) e M7 (X,01,) 0 P (X, 020,) ~ G (x,,1,) o1, ~ 2C.
ot (4-116)

30



where,

oc (4-117)

=—QTy?
—=-G'u}

ot.

Note that Eqn. (4-117) must be solved as outlined above because of the presence of the

magnitude of A,

Step (4): Let x; = x, andu’ =u,, and repeat steps (2) and (3) until the value of A, converges.

Hatman et al. [9] found that five repetitions were usually sufficient if the time step was small

enough. Using this modified routine, anywhere from two to four repetitions was the norm.

Step (5): Go to the next time step.

4.7 Algorithm for Entire Problem

The algorithms for the rigid and flexible cases slightly differ to save computational time.
For the latter, even the first unconstrained motion must be computed with a small time step to
avoid large errors due to the variable coefficient system equations. For the rigid case, however,
the time at which contact is first made can be computed using simple geometry and the angular
velocity. This is only possible for the first time Step (1) is completed. The generalized vectors

are both equal to zero, for this case, until starting Step (2).

Step (1): For the very first time this step is carried out, the beam begins coincident with the

global Y-axis with its tip pointing towards the negative j direction. For the first rigid case
calculation, find the time contact occurs using geometry and the angular velocity. For the
flexible case, run the Runge-Kutta routine until the constraint eqﬁation becomes equal to zero or
if it becomes positive. If it is positive, do a linear interpolation over the last time step to find out
the time moment C(qt) is equal to zero. Using this time, update the solution for the generalized
vectors. The resulting generalized vectors become the initial conditions for the impact phase of

the system motion.
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Step (2): When the beam first comes into contact with the flat surface, the jump velocity vector
can be calculated from Eqn. (4-106) and added to the latest generalized velocity vector. The
generalized coordinate vector remains the same because there is no tip displacement at the
instant of impact. These generalized vectors are now the initial conditions for the constrained

motion phase.

Step (3): Predict the new generalized co-ordinates and velocities using one Runge-Kutta

iteration and perform the correction using steps (1) to (5) in Section 4.6.
Step (4): Take the sign of the Lagrange multiplier.

Step (4a): If the Lagrange multiplier is negative or zero, the beam is in contact with the surface.
Update the solution with the values of the generalized co-ordinates and velocities resulting from

the corrector iteration, and the value of the Lagrange multiplier. Return to step (3).

Step (4b): If the Lagrange multiplier is positive, the beam tip has lost contact. Do a linear
interpolation over the last time step to find out the instant when the Lagrange multiplier becomes
zero.

If this is the Lagrange multiplier that occurred when contact was first made, i.e., there
was no previous negative multiplier, the system has gone into bounce back (where the jump
velocity is big enough to change the direction of the beam tip) and contact has been lost. The
interpolation can still be carried through because the result will be equivalent to the time and
generalized vectors that occur at the end of impact and a Lagrange multiplier equal to zero. This
is valid because the positive multiplier does not have any real meaning. -

Now, update the solution with the time when the Lagrange multiplier becomes zero, the
corresponding (interpolated) values for the generalized co-ordinates and velocities and a zero
value for the Lagrange multiplier. Do an unconstrained motion prediction keeping the same

small time step and evaluate the tip distance.

Step (5): Take the sign of the tip distance.
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Step (5a): If the sign of the tip distance is positive, it means that the tip of the beam penetrates
the rigid surface. Since this is not possible, no solution update is made. Perform a number of
unconstrained system Runge-Kutta iterations until the tip distance becomes negative [12].

Update this last solution and continue on to Step (6).

Step (5b): If the tip distance is negative, the motion is now unconstrained. Update the solution
with the predicted values for the generalized co-ordinates and velocities, and a zero value for the

Lagrange multiplier. Continue on to Step (6).

Step (6): This step is similar to Step (1); however, to avoid confusion, it will be restated. The
system has entered into unconstrained motion once again. The initial conditions for this phase
are the last updated results from Step (5). Keep doing unconstrained system Runge-Kutta
iterations until C(q,t) is greater than or equal to zero. At this point, do a linear interpolation over
the last time step to find the instant when C(q,t) is equal to zero. Update the solution and return
to Step (2).

Since the time that the beam tip and the flat rigid surface have lost all contact is
unknown, allow the simulation to run until the clamped side of the beam has reached such an
angle that the tip could not possibly still be in contact. Trial and error can be used to find an
appropriate angle. Also, it is helpful to watch the global position of the beam tip as the
simulation nears the angle to make sure that the values are far enough away form the rigid
surface. This thesis uses an angle of 90° to the positive X-axis.

Figure 3 contains a flow chart that describes the algorithm for the entire problem. Refer
to Appendix B for the Matlab program codes associated with the algorithms presented.
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Figure 3: Algorithm flow chart for entire problem.
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Chapter Five: Numerical Simulations

This chapter presents the simulation results. The results were obtained using a computer
code written for a Matlab platform. Five modes are used and the numerical integrations are
implemented by the Gaussian Quadrature method, with sixteen abscissas and weight coefficients
[27]. Unlike the approach in Ref. [6], a constant time-step was used for the unconstrained
motion. This is because the initial beam generalized coordinates and velocities are known to
equal zero for the rigid beam initial configuration. Only the time to reach impact was needed to
be calculated. Once the generalized coordinates and velocities had values, which happens for
unconstrained motion within the contact region, or for an initial flexible beam configuration, it
was necessary to use a small time step to avoid large numerical errors. These errors arise
because both the generalized values and the coefficient matrices in the equations of motion are
time dependent. The largest time-step for any type of motion is 1 pus. Once inside the
constrained motion, the time-step is decreased further, if necessary, to better handle the
intermittent changes in types of motion.

Table 5-1 lists the dimensions that are common to all simulations. The mechanical

properties of steel are obtained from Ref. [11] because they are unspecified in Ref. [6].

Table 5-1: Dimensions used for simulations.

Parameter Value Units
Length of beam 0.0635 m
Radius of hub 0.0635 m
Beam cross-section diameter 5.08E-4 m
Density of steel 7800 kg/m’
Elastic modulus of steel 2.2E11 Pa

The normal distance between the hub centre and the flat rigid surface is denoted by ‘d’.
The depth of penetration is the difference between ‘d’ and the summation of the hub radius and
the length of the beam. It is expressed as a percentage of the beam length. The values of the
varying parameters, see Table 5-2, are those of Ref. [6] and are chosen because these are the
typical ranges of values that a steel wire brush undergoes.

Next, the following graphs are obtained from the simulations. In the figures, the ordinate
axis (i.e., the y-axis) represents the normal force needed to enforce the geometrical constraint, |

" and these values are calculated as the magnitude of the Lagrange multiplier multiplied by the
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Table 5-2: Changing parameters.

Parameter Values Units
Angular velocity 550, 1000, 2000, 3000 rpm
Depth of penetration 2,4,6,8 percent
Friction coefficient 0.1,0.3,04,0.5,0.7 -
Initial generalized velocity per mode 0.1 --

magnitude of the gradient of the constrained manifold with respect to the generalized coordinates
(see Eqn. (4-86)). The abscissas in the figures represent the global Y-axis values of the system,
as outlined in chapter three. Therefore, the value zero represents the global Y coordinate where
the hub centre is located.

Figures 4 - 7 show the effect that changing angular velocities and depths of penetration
have on the contact process of a single wire filament. The value of the friction coefficient used
for all these simulations is 0.4. For Figure 4, 550 rpm was used with a range of depth of
penetrations. Since the beam initial configuration at impact is of a rigid beam, the point of first
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Figure 4: Normal force profiles for 550 rpm hub speed and depth of penetration of 2% ( )y 4% ( ),
6% ( ), 8% ( )
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contact can be calculated geometrically. Looking at the figure and using the appropriate
dimensions, it is evident that the initial impacts are occurring where they are supposed to be. A
trend in how the depth of penetration affects the process cannot be found. Four percent
penetration causes the largest forces; followed by six, eight and then two percent.

Figure 5 does the same comparison for a constant angular velocity of 3000 rpm.
Looking at the two percent case, contact is beginning later than expected. Observing the
simulations as they run, there is a noticeable occurrence where, after the initial impact occurs, the
beam tip moves in the opposite direction to the original motion for a few moments, and then
continues back in the original direction. This will be referred to as ‘bounce back’. When the

second impact occurs, the jump in velocity is not large enough to change the direction of the
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Figure 5: Normal force profiles for 3000 rpm hub speed and depth of penetration of 2% (
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), 4%

beam tip, so the beam continues the contact phase. Bounce back actually occurs in the 550 rpm
case. However, it is so small that it is not noticeable in the graphed results. In Figure 5, there is
not one trend that can describe the effect of the depth of penetration on the system process. It is
expected that the faster the system, the larger the normal forces. However, if the two percent
simulation is removed, the expected trend can be seen with the remaining results. The
inferesting observation about these plots is that they are very similar, except in magnitﬁde and
where they begin contact. ' 4

Figure 6 illustrates how the change in angular velocity affects a system with a two
percent penetration. The graph is intuitively expected to show that the normal force increases
with increasing angular velocity while the contact length decreases with increasing angular

velocity.
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Figure 6: Normal force profiles for depth of penetration of 2% and hub speed of 550 rpm (——), 1000 rpm
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The 1000 rpm case has larger forces than the 2000 rpm case, but the other résults are in accord
with intuition. Also, the 3000 rpm case appears to have more contact length than the 1000 and
2000 rpm cases. The trend does, however, hold true for cases 550 to 2000 rpm.

Figure 7 does the same comparison as Figure 6, except for an eight percent penetration.
The trend of larger normal forces is upheld. Also, the trend of longer contact lengths for smaller
angular velocities is found for rpm values of 550 to 2000. The contact length for the 3000 rpm
case is found between 1000 and 2000 rpm.
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Figures 8 - 11 show the effect that the coefficient of friction has on the system results. It
is expected that the profiles of the normal force against contact length will not change much in
shape, just in the magnitude of the normal force. Figure 8 depicts results for a system with a hub
speed of 550 rpm and a two percent penetration. It may be counter-intuitive to expect that the
normal forces are larger for smaller coefficients of friction; however, if the friction fofce is
reduced (with a smaller coefficient), the normal force must increase to keep the tip on the rigid
surface [6]. The trend described here is followed in Figure 8 for the first part of the process,

however, the pattern begins to unravel, especially with the coefficient equal to 0.3.
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The corresponding plots for the eight percent penetration are depicted in Figure 9. Again
the trend described above is followed very closely for the first part of the process, then its pattern
appears to unravel, and then again appears to follow the trend, albeit not as closely as the very
first part. Figure 10 has results for a system with a hub speed of 3000 rpm and a two percent
penetration. Basic profile shapes can be observed and only some coefficients follow the trend at
different locations. Figure 11 is a result of 3000 rpm angular velocity and eight percent

penetration. The same tendencies found in the previous three graphs can also be seen here.
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Figure 12 differs from the rest of the previous figures because, when initial impact
occurs, the beam is not in a rigid configuration. An initial disturbance in the generalized velocity
vector will allow the beam to vibrate like a flexible beam before initial impact occurs. The
figure represents a system rotating at 550 rpm, with two percent depth of penetration, and a
cdéfﬁcient of friction of 0.4. A value of 0.1 s™ is used once for each mode in five diﬁérent
simulations. The graph is dense; therefore, the modes will be graphed ;eparately in the
successive figures, Figures 12(a)-(e), representing the disturbances in modes 1 to 5, respectively.
Looking at the legend for Figure 12, when the disturbance is put into the second mode, a large
force appears, but will not fully appear in Figure 12(b) due to the range on the vertical axis scale.

Comparing Figure 4(a), which is the same system except with an initially rigid
configuration, to Figures 12(a)-(e), it is evident that its profile is more consistent with that of the
higher modes. Particularly, when the disturbance is included in modes four and five, Figures
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12(d)-(e), the profile appears very similar, except for some slight differences in the magnitude of

the normal force. This suggests that the higher modes are being excited in the simulation.
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Figure 11: Normal force profiles for depth of penetration of 8%, hub speed of 3000 rpm, and friction
coefficient values of 0.1 ( ), 0.3 ( ), 0.5 ( ), 0.7 ( ).

Figure 13 shows the global tip position throughout the entire process. However, the
ordinate axis is multiplied by a negative unit vector. This is done to place the results in the third
and fourth quadrants of a conventional coordinate system. The result gives a better sense of the
true physical tip positioning. Therefore, multiply the X-axis position obtained from the graph by
-1 to get the true value.
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Figure 12: Normal force profiles for depth of penetration of 2%, hub speed of 550 rpm, friction value of 0.4,
and flexible beam configuration before initial impact. Mode number with initial generalized velocity
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Figure 13 represents the case where the angular velocity is 550 rpm, there is a two
percent depth of penetration, and there is a friction coefficient of 0.4; however, the other cases
have very similar occurrences. In Figure 13(a), most phases of the process can be seen: the
location of the initial impact, approximately at (-0.0179, -0.1257) on the graph, constrained
motion, characterized by a flat straight line, with intervals of unconstrained motion, and full
unconstrained motion with two unexpected disturbances in beam tip positioning. A close up of
these disturbances can be seen in Figure 13(b). This may be due to the excitations of higher
mode shapes, or may just be due to numerical errors. Figure 13(c) is a close-up of the contact
region, while part (d) is a close-up look at the bounce back that occurs at the time initial impact

is over.
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According to Ref. [9], the flexibility of a beam causes the transition from unconstrained
motion to impact to be numerically more gradual. The transitions are smoother with less change
in process parameter values when compared to the rigid beam cases. Therefore, it is important to

investigate the magnitude of the changes in velocity when impact occurs, to see if this
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Figure 13: Displacement profile for depth of penetration of 2%, hub speed of 550 rpm and friction value of
0.4.

occurrence is captured. Table 5-3 uses Eqn. (4-5), two percent depth penetration and a friction
coefficient of 0.4 to compare the rigid and flexible initial configuration cases. The flexible case
is calculated using a disturbance in the first mode of the generalized velocity at the beginning of
the simulation.

Several observations can be made, even though the changes are small. The magnitudes
of the impact, before and after, and the change in velocity magnitudes are all largest for the rigid
cases when compared to the corresponding flexible cases. Within the data of the flexible cases,
the magnitudes decrease with increasing initial disturbance of the generalized velocity vector.
The decrease in the magnitude of the change in velocities implies that the velocity discontinuity
value is smaller for the flexible cases. Intuitively, the smaller the discontinuity, the smoother the

transition from the unconstrained phase of motion to the constrained phase of motion is.
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Table S-3: Comparison of tip velocity magnitudes and coefficient of restitution when impact occurs.

Parameters Beam Tip Velocity (m/s) Coefficient OF
. Restitution
rpm Other Before After Change in -_Vx_(w_).
Impact Impact | Magnitude Vo)
Vaco £ AV,

550 Rigid q(1)=0 1.0319 -0.5129 - 1.5448 0.4970
Flexible q(1)=0.1 | 10171 -0.5074 1.5245 0.4989
Flexible ¢ (1) = 1 0.9371 -0.4772 1.4143 0.5092
Flexible ¢ (1) = 2 0.8912 -0.4596 1.3508 0.5157

3000 | pigid q(1)=0 5.6283 -1.8307 7.4590 0.3253
Flexible q(1) = 0.1 5.6006 -1.8239 7.4245 0.3257
Flexible q (1) =1 33422 -1.7605 7.1027 0.3295
Flexible q(1)=2 5.0358 -1.6842 6.7200 0.3344

The coefficient of restitution is slightly smaller for the rigid case than it is for the flexible

case. As the initial excitation of the generalized velocity vector increases, so does the size of the

coefficient of restitution. This coefficient ranges in value from 0 to 1, from a perfectly plastic

collision to a perfectly elastic collision, respectively [4]. From the tabulated results, it appears
