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Abstract 

Tornadoes are disastrous, naturally occurring atmospheric phenomena; they cause fatalities; they 

damage properties with an exceptional combination of translational and rotational velocities. 

Despite many studies on tornado-structure interaction, the research papers on tornado-multi-body 

interactions are limited. This research studies the effects of a tornadic wind on a 7-cylinder building 

model at several orientations in 2-D using a powerful Immersed Boundary-Lattice Boltzmann 

Method (IB-LBM). The tornadic wind was simulated by a customized Rankine Combined Vortex 

Model (RCVM). The wind-loadings on the seven cylinders were quantified using aerodynamic 

force and moment coefficients. The essential flow features associated with a vortex-structure 

interaction was investigated in great detail by doing a case study. Then, a unique optimization 

procedure was utilized to detect individual safe zones for each aerodynamic coefficient. Finally, 

an overall safe zone for the complete 7-cylinder building model has been ascertained to be between 

29° and 69° by analyzing the individual safe zones.  
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Chapter 1 - Introduction 

1.1. Introduction to Tornadoes 

Tornadoes are inherently destructive; short-lived; capable of producing unimaginable damage 

to both properties and lives. It is a type of vortex airflow that combines translational, vertical and 

rotational velocities. This complex combination makes the flow unique and more lethal compared 

to straight-line flows. Moreover, the combination is also responsible for tornado’s unpredictable 

and highly precipitous nature in terms of speed and direction. 

Over the last two to three decades, the improved warning systems and preparedness have 

reduced the casualties and injuries caused by tornadoes to a marked extent. But the number of 

tornadoes reported every year around the globe have been increasing at an alarming rate. For 

instance, an average of 1253 tornadoes occur every year in the United States alone as reported by 

National Climatic Data Center[1]. Therefore, a thorough understanding of the dynamics of tornado 

and it’s interaction with the structures are essential not only to reduce the destruction, but also to 

construct the buildings to be inordinately wind-resistant. There are two ways to do so; either to 

create the tornado-structure interaction in the laboratory or to simulate it numerically using 

computational techniques. 

Construction of a tornadic wind with all its basic elements in the laboratory involves numerous 

onerous tasks. In particular, imparting a high translation velocity to the tornado in the laboratory 

poses a great risk too. However, many researchers have tried to produce the tornadic wind 

physically and succeeded to some degree. Ward[2] first designed a tornado model using Euler’s 

Momentum theorem, which was capable of producing vortices of different sizes as well as multiple 

vortices. But the main drawback with the model was that it was not equipped to provide 
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translational velocity to the vortex. Wan and Chang[3] made use of a 3-D velocity probe and 

created comprehensive mappings of the velocity fields for two different swirl ratios. Subsequently, 

Church et al.[4] configured the transition points at which the single-cell tornado transformed into 

double-cell structures. In addition, they demonstrated those points to be functions of swirl ratio 

and Reynolds number. Davies-Jones[5] investigated the dependency of core radius on swirl ratio 

and showed that, for a given circulation and updraft radius of the tornado simulator, narrow 

vortices require high volume flow rates for its sustainability. During the same period, Diamond 

and Wilkins[6] modified tornado simulator to impart translation and demonstrated that the 

translation locally increases swirl ratio and thereby produces a bigger core compared to stationary 

vortex. Mitsuta and Monji[7] modified the simulator to induce circulation and found out that the 

maximum horizontal velocity occurs near the ground’s surface and the height of maximum 

velocity is independent of swirl ratio. Matsui and Tamura[8] showed that the floor roughness plays 

an effective role on tornadoes having lower swirl ratios than the higher ones. Zhang and Sarkar[9] 

investigated the vortex structure near the ground surface and established the dominance of 

tangential velocity component over the radial component by three times. Recently, Tari et al.[10] 

showed that the core radius, radial, and tangential components increase for higher swirl ratios. 

While the physical simulations generate productive results, they have a myriad of reservations too; 

they are laborious, expensive; difficult to redesign; and they may become futile. Thus, the 

simulation of tornadoes using numerical techniques has emerged as a prominent alternative to 

study the vortex structures. 

Several researches have been performed by many scholars on the numerical simulation of 

tornadoes as well as tornado-structure interactions. Harlow and Stein[11] numerically simulated 

vortices of various intensities and investigated many flow related parameters. Rotunno[12]-[13] 
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numerically simulated Ward’s tornado simulator and showed that the core radius is independent 

of the Reynolds number at higher Reynolds numbers. Moreover, his numerical surface pressure 

patterns are in accord with the Ward’s experimental results. Nolan and Ferrell[14] explored the 

structure and dynamics of axisymmetric vortices and demonstrated that the vortex Reynolds 

number controls the structure and maximum wind speed of the tornado. Lewellen and 

Lewellen[15]-[16] numerically simulated a 3-D tornado and studied the intensity of the vortex near 

the ground surface. Hangan and Kim[17] analyzed the dependency of flow dynamics on swirl ratio 

and its relation with the Fujita scale. Ishihara et al.[18] used the numerical Large Eddy Simulation 

(LES) turbulence model and simulated one-celled and two-celled vortices with two different swirl 

ratios. They further showed that the peak vertical velocity occurs at the center for one-celled 

vortex, whereas it appears near the radius of maximum tangential velocity for two-celled vortex. 

Natarajan and Hangan[19] also used LES model to study the effects of surface roughness and 

translation on the mean tangential velocity of the tornadic wind for different swirl ratios. They 

reported that the translation reduces the maximum mean tangential velocity for lower swirl ratios, 

whereas it faintly increases for higher swirl ratios. Moreover, the mean tangential velocity was 

also found to decrease for all swirl ratios because of surface roughness.       

In addition to the aforementioned numerical methods, there are plenty of other numerical 

techniques available for the simulation of tornadic wind in the conventional CFD approaches of 

solving the Navier-Stokes equations. But, the Immersed Boundary-Lattice Boltzmann Method (IB-

LBM) framework has been a revelation in the fluid flow problems in the recent years. In this paper, 

the IB-LBM framework along with Rankine Combined Vortex Model (RCVM) is utilized to 

simulate the vortex-structure interaction and are introduced in the following passages. 
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1.2. An Overview of Lattice Boltzmann Method (LBM) 

Lattice Boltzmann method, shortly known as LBM, has been demonstrated as an effective and 

efficient alternative method to the orthodox computational approach using Navier-Stokes 

equations to simulate fluid flow problems[20]. LBM, having its roots in the kinetic theory, 

examines the dynamics of fictitious particles using a density distribution function and it is applied 

on a Cartesian mesh. The standard LBM involves collision and streaming process for every time 

step and the variables such as density and velocity are calculated using the distribution function 

from the laws of conservation of mass and momentum. The cardinal advantages of LBM are 

simplicity, easy execution, and innate parallel computation capacity. Because of these advantages, 

LBM has drawn lot of applications and Succi et al.[21] presented a variety of applications from 

laminar to fully turbulent flows in 2D and 3D using Lattice Boltzmann equations and concluded 

that the LBM is an adequate computational tool to analyze fluid flows on various flow regimes. 

1.3. Background on Immersed Boundary Method (IBM)  

The immersed boundary method (IBM), as the name suggests, is used to simulate the moving 

boundaries of the objects in a fluid flow and it is first proposed by Peskin[22] in the 1970s. Being 

a non-boundary conforming method, the IBM governing equations are solved on a fixed Cartesian 

grid and the boundary points do not coincide with the grid points. Figure 1.1 shows the schematic 

of the immersed boundary method. As illustrated in the Figure 1.1, the flow field is represented by 

a set of Eulerian or fixed Cartesian points and the boundary of the immersed object is represented 

by a set of Lagrangian points. This idea of representing the flow field using fixed Cartesian points 

gives rise to the integration of IB and LBM techniques, called IB-LBM. Feng and Michaelides[23] 

first successfully merged the IB method with the LBM and substantiated its advantages on the 

simulation of 2D and 3D particulate flows[24]. IBM models the physical boundary to be 
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deformable and the restoring forces on the boundary, which is created while being distorted by the 

fluid flow over and around it, are distributed on the affected Eulerian points as a body force by 

using a discrete delta function. The major issue associated with the IBM is the computation of 

restoring force. There are so many ways to calculate the restoring force such as penalty 

method[22], direct forcing method[25], and momentum exchange method[26]. But the major 

drawback with all the three methods is that the restoring force is pre-calculated and this pre-

calculated restoring force does not guarantee the satisfaction of no-slip condition at the boundary. 

Therefore, a more powerful and more accurate variation of IB-LBM is proposed by Jie Wu et 

al.[27] , in which the restoring force is not pre-calculated and is determined by enforcing the no-

slip on the boundary and no flow penetration is observed in the results. In the field of fluid-solid 

interaction, this innovative IB-LBM finds lot of applications[28]-[32]. 

 

 

 

 

 

 

 

1.4. The Objectives and Significance of the Thesis 

When a tornado crosses a group of buildings, the severity of tornado is not the same on all the 

buildings; it is harsh on some buildings and gentle on some buildings. Figure 1.2 shows an after-

 

Figure 1.1 Immersed Boundary Method 
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tornado picture of a cluster of buildings in which some buildings are completely destroyed and 

some are slightly affected. This dual nature, cruelty and tenderness, of the tornadoes is attributed 

to the orientation of the buildings with respect to the direction of the path of tornadoes. But, 

predicting the path of tornadoes accurately is highly impractical. However, analysis of the tornado-

prone places would reveal the history of the direction of the path of tornadoes. This paper focuses 

on identifying the cylinders which are affected the highest and the lowest in the group of a seven 

cylinder building model that has the cylinders arranged in a semicircular pattern, for a given 

tornado direction and orientation of the buildings, using the novel IB-LBM framework in two 

dimensions. A lot of researchers have investigated the wind-loadings on a single structure either 

using 2-D or 3-D numerical techniques[33]-[35]. Recently, Guo et al.[36] examined the tornado 

wind-loadings on a two-cylinder model with the two cylinders arranged in horizontal, vertical and 

45 degree orientations using the IB-LBM framework. What makes the current research different 

and unique from others is that it deals with wind-loadings on an arrangement with more than two 

structures. The tornado-flow model is simulated using a modified Rankine-Combined Vortex 

Method (RCVM), which is explained in the subsequent sections. Figure 1.3 shows the arrangement 

of the seven cylinder building model, with the cylinders numbered from 1 to 7, and the incoming 

initial flow direction of the tornado-like airflow towards the model. As it can be seen, the cylinders 

are arranged in a semi-circular pattern, which is the essential case study of this research. There are 

many reasons behind taking up the semi-circular model to do the case study; the cylinders in the 

middle are exposed to the perturbed core of the tornado, in comparison with the straight line model, 

since the tornado core reaches the cylinders at the extreme ends before it reaches the middle 

cylinders; the orientation can be varied in order to find ways to reduce the wind-loadings on the 

buildings, which is not possible with the straight-line model. The basic idea of this study is multi-
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fold: a) to understand the tornado dynamics using a 7-cylinder building model, for a given tornado 

direction, b) to determine the maximum affected cylinder in the model, which needs to be built 

stronger to withstand the brutality of the tornado, c) to determine a safe zone for the maximum 

affected cylinder in the model, d) to assess the individual safe zones for each aerodynamic 

coefficients, and e) to determine an overall safe zone for the complete 7-cylinder model with the 

help of the individual safe zones of the aerodynamic coefficients.   

 

Figure 1.2 Tornado damage in Louisville, Mississippi on April 29, 2014. Credit: Mississippi National 

Guard. 

 

Figure 1.3 Illustration of 7-cylinder arrangement and tornado incoming direction 
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The frequency of tornadoes are high in certain places and there is a high possibility that the 

tornadoes may reoccur in the same location and in the same direction. Historically, there are many 

places that are hit by the tornadoes coming essentially from one direction. This study intends to 

reduce the damages caused by suggesting some building orientations that result in lower wind 

loading coefficients, provided the tornadoes reoccur in the same direction. For this purpose, this 

paper places a seven building arrangement in a tornado at seven different orientation angles and 

these seven test cases are named as A to G, which will be explained later in Chapter 4. 

The wind loading coefficients obtained from the seven test cases have been used to optimize 

the building orientation for a given tornado direction using an optimization procedure which is 

explained in Chapter 7 in great detail. The optimization has been performed on the basis of two 

wind loading coefficients, resultant planar force coefficient,𝐶𝐹, and moment coefficient, 𝐶𝑚, and 

they are strong functions of the orientation angle. The optimization procedure involves fitting 

polynomials of higher orders as a function of orientation angle to each of the coefficients, (𝐶𝐹)𝑚𝑎𝑥, 

(𝐶𝑚)𝑚𝑎𝑥, and (𝐶𝑚)𝑚𝑖𝑛. The polynomials have been investigated to find the safe zones, a range of 

orientation angles at which the aforementioned three coefficients achieve lower magnitudes. For 

demonstrating the safe zone, the polynomials are plotted on a graph and eventually becoming 

evidence to the higher wind-loading coefficients in the non-safe zones. With the help of the graphs, 

safe zones can be identified easily and better orientations can be found which would result in the 

least damage caused by the tornado. 

The first half of the study would explain the test case A, as illustrated in Figure 1.3 and all the 

flow features associated with the tornado-structure interaction with the help of flow visualization 

pictures at various times steps. The wind loadings on the buildings have been quantified with the 

help of coefficient curves and the coefficient values of all the seven cylinders involved have been 
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tabulated, which in turn identified the cylinder 1 to be the most affected one. The next part of the 

study is solely intended to optimize the building orientation and to identify and suggest the safe 

zones with better orientations which suffer the least. This study deals with a practical tornado-

structure interaction model for a wind engineering application. 

1.5. Thesis Structure 

The rest of the thesis is unrolled in the following pattern: Chapter 2 presents the standard 

RCVM and its customization used in this study followed by a summary of the numerical technique 

IB-LBM in Chapter 3. Chapter 4 defines the important parameters used in the study to quantify 

the wind-loadings on the building model. It also explains the seven cylinder building arrangement 

as well as the orientation angles used for the test cases A to G. Further, it gives the details used to 

set up the computational domain. Chapter 5 presents and explains the series of numerical results 

obtained for case A and analyses the wind-loadings on the individual cylinders. Chapter 6 is 

completely dedicated to tabulate the summary of wind-loadings for all the seven test cases. Chapter 

7 carries out the optimization procedure used to find the safe zones and discusses the crucial results 

of the procedure. Finally, remarks are mentioned in Chapter 8, addressing the conclusions and 

possible extensions of the study.  
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Chapter 2 - Tornadic Wind Model 

2.1. Rankine - Combined Vortex Model (RCVM) 

The Rankine Combined Vortex Model (RCVM) is the most straightforward and 

uncomplicated model to simulate a tornado-like airflow domain. In RCVM, the velocity profile is 

broken down into two velocity components, 𝑉𝑡, the translation velocity component, and 𝑉𝛾, the 

tangential velocity component. The RCVM tornado flow domain is composed of two regions, the 

forced-vortex and the free-vortex. In the forced-vortex region, 𝑉𝛾 increases linearly with radius, 

and in the free-vortex region, 𝑉𝛾 decreases inversely with the radius. The radius of the forced-

vortex region, 𝑟𝑐,  is usually considered to be the core region of the tornado and the free-vortex 

region is considered to be the outer region of the tornado. The mathematical expressions for the 

RCVM can be formulated as given below in Eq. (2.1):                                                       

 

𝑉𝛾 =  {

𝑟𝜔,                   𝑟 ≤  𝑟𝑐                       

           
𝑟𝑐

2𝜔

𝑟
,                 𝑟 >  𝑟𝑐                                

 (2.1) 

where 𝑟 is the radial distance from the center of the tornado and 𝜔 is the constant angular velocity. 

Even though this conventional RCVM has a specific advantage of satisfying Navier-Stokes 

equations[33] in both the regions, it has a limitation that it can only be applied to a 2-D obstacle 

free domain. But in this numerical model, the flow domain is initialized using the traditional 

RCVM through some modifications. In this RCVM model, at any time, 𝑡, the resultant anti-

clockwise velocity at any point (𝑥, 𝑦) is given by: 

 𝑽 =  𝑽𝒕 +  𝑽𝜸  (2.2) 
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The translational velocity is given by:                                                                              

 𝑽𝒕 =  𝑉𝑡𝑥 𝒊 +  𝑉𝑡𝑦 𝒋 (2.3) 

The tangential velocity is given by:                                                                                                             

 𝑽𝜸 =  − 𝑉𝛾 sin 𝛾 𝒊 + 𝑉𝛾 cos 𝛾  𝒋 (2.4) 

where 𝛾 is given by    𝛾 =  tan−1 [
𝑦−𝑦𝑐(𝑡)

𝑥−𝑥𝑐(𝑡)
], the angle between the line passing through the point 

(x,y) and the horizontal line and 𝑥𝑐(𝑡) =  𝑥𝑐0 +  𝑉𝑡𝑥 𝑡  and 𝑦𝑐(𝑡) =  𝑦𝑐0  +   𝑉𝑡𝑦 𝑡, where (𝑥𝑐0, 𝑦𝑐0) 

represents the center of the tornado. Eq. (2.2), (2.3), and (2.4) reveal the time-dependent nature of 

the velocity of the tornado in the RCVM model. In short, 𝑽 =  𝑽 ( 𝑥, 𝑦, 𝑡), since 𝛾 =  𝛾 (𝑥, 𝑦, 𝑡). 

2.2. Customized RCVM 

The time-dependent nature of the velocity in the customary RCVM model is basically due to 

its translational component. The translational component requires updating the boundary 

conditions every time step, which is very tedious and complicated. To overcome this problem, the 

“relative motion” concept is used here, in which the translation component is detached from the 

tornado and is re-attached to the buildings thereby creating a “virtual translation” of the buildings 

towards the tornado. The velocity of the buildings is equal to the translation component of the 

tornado in magnitude but opposite in direction. The center of the tornado is frozen at its center 

(𝑥𝑐0, 𝑦𝑐0) and the translation velocity components, 𝑉𝑡𝑥 and 𝑉𝑡𝑦 are taken to be zero. Therefore the 

different terms become 𝑥𝑐𝑡 =  𝑥𝑐𝑜 , 𝑦𝑐𝑡 =  𝑦𝑐0 , 𝛾 = tan−1 [
𝑦−𝑦𝑐0

𝑥−𝑥𝑐0
], and 𝑽𝒕 =  𝟎 . In short, 𝑽 =

 𝑽(𝑥, 𝑦), since  𝛾 =  𝛾(𝑥, 𝑦). The “virtual translation” of the building is modelled by the immersed 

boundary approach which will be explained in the next chapter. The time-independent nature of 

this new, innovative, and customized RCVM is simple and more efficient. Figure 2.1 illustrates 
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the nature of traditional RCVM with both the translation and rotation velocity components attached 

to the tornado, whereas Figure 2.2 shows the essence of the customization process with only the 

rotation velocity component attached to the tornadic wind. 

 

Figure 2.1 Traditional RCVM

 

Figure 2.2 Customized RCVM 

 

2.3. Rotation Intensity of Tornadic Wind in RCVM 

An important parameter associated with the tornadic wind is the rotation intensity, denoted by 

𝛽, which is the ratio of the maximum tangential velocity, (𝑉𝛾)𝑚𝑎𝑥 , to the translational velocity, 

𝑉𝑡 , of the tornado and is given by the following equation :                                                                       
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 ( 𝑉𝛾)𝑚𝑎𝑥 =  𝑟𝑐𝜔 =  𝛽𝑉𝑡 (2.5) 

The Eq. (2.5) clearly shows, the greater the value of 𝛽, greater is the dominance of the rotational 

component in the overall tornadic flow. 
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Chapter 3 - Numerical Methods 

3.1. Lattice Boltzmann Method (LBM) With Multiple-Relaxation Time 

(MRT) Collision Technique 

Lattice Boltzmann Method (LBM) has emerged as a more successful and promising 

alternative to the conventional CFD approach of solving Navier-Stokes in the last two decades or 

so. LBM, having its root in the kinetic theory, is based on microscopic approach. Even the Navier-

Stokes equations can be recovered from the Boltzmann equations by the use of collision operators 

such as single-relaxation time (SRT), multiple-relaxation time (MRT), and so on. This method 

consists of a large number of fictitious particles placed discretely at the nodes on a lattice mesh 

and the exchange of mass and momentum conservations is guided by the streaming and collision 

processes. In the streaming process, each fluid particle moves to the nearest node, whereas in the 

collision process, the particles coming to a node collide and change their velocity directions. LBM 

can be operated on different kind of lattices such as triangular, cubic, square, and so on.  

In this study, the popular D2Q9[20] model is selected to operate on a square lattice and the 

collision is taken to be MRT technique. D2Q9 stands for two dimension, nine-velocity model. One 

of the important parameters in the LBM is the lattice speed, 𝑐 =  𝛿𝑥 𝛿𝑡⁄ , where 𝛿𝑥 is the lattice 

spacing and 𝛿𝑡 is the time step. Figure 3.1 represents the schematic of the D2Q9 square lattice 

model. Figure 3.1 illustrates that there is a total of 9 nodes, and a particle residing at a node can 

travel to any one of the nearest 8 neighbor nodes along any one of the eight connecting links for 

every time step. For every time step, the two processes, streaming and collision, would be 

implemented. 
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The particle velocity set in the D2Q9 model is described by the particle distribution 

function[27] given below: 

            𝑐𝑖 = {   

(0,0)                                                                                            𝑖 = 0         
(cos[(𝑖 − 1)𝜋 2]⁄ , sin [(𝑖 − 1)𝜋 2])𝑐⁄                                𝑖 = 1,2,3,4

(cos [(2𝑖 − 9)𝜋 4⁄ ],  sin [(2𝑖 − 9)𝜋 4]⁄ √2𝑐                      𝑖 = 5,6,7,8 

            (3.1)                 

where 𝑖 represents the velocity direction in the lattice. Eq. (3.1) reveals that there are three types 

of particles in the D2Q9 model with the magnitudes of the velocity to be zero, c, and √2c 

respectively. 

The governing equation of the MRT-LBM is given by Eq. (3.2): 

 𝒇(𝑥 + 𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝒇(𝑥, 𝑡) =  −𝑴−1𝑺 [ 𝑹(𝑥, 𝑡) −  𝑹𝑒𝑞(𝑥, 𝑡) ] (3.2) 

where 𝒇 is the distribution function vector, 𝑹 is the moment vector, 𝑹𝑒𝑞 is the corresponding 

equilibrium moment vector, 𝑴 is the transformation matrix, and 𝑺 is the diagonal relaxation 

matrix. 

 

 

Figure 3.1 D2Q9 Square Lattice Model 
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The relaxation matrix is given by Eq. (3.3): 

 𝑺 = 𝑑𝑖𝑎𝑔(𝑠0, 𝑠1, … … … … . . , 𝑠6, 𝑠7, 𝑠8) = 𝑑𝑖𝑎𝑔 (0, 𝑠𝑒 , 𝑠𝜀 , 0, 𝑠𝑞 , 0, 𝑠𝑞 , 𝑠𝑣, 𝑠𝑣) (3.3) 

Here to reduce the cost of computation,  𝑠0 = 𝑠3 = 𝑠5 = 0  is used. The values of the relaxation 

rates, 𝑠𝑒 , 𝑠𝑣, 𝑎𝑛𝑑 𝑠𝜀 can be adjusted within the interval (0, 2). The relation between the relaxation 

rates and the viscosities are given by Eq. (3.4) and (3.5): 

 
𝑣 =  𝑐𝒔

𝟐 [
1

𝑠𝑣
−

1

2
] 𝛿𝒕 (3.4) 

                                                                   
𝜁 =   𝑐𝑠

2 [
1

𝑠𝑒
−

1

2
] 𝛿𝑡 (3.5) 

where 𝑣 and 𝜁 are the kinematic and bulk viscosities respectively, 𝑐𝑠 is the speed of sound and its 

value is taken to be one-third of the magnitude of velocity, c[27]. 

The distribution function vector is given by Eq. (3.6): 

 𝒇 = (𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7, 𝑓8)𝑻 (3.6) 

The moment and equilibrium moment vectors are given in the next two expressions as follows: 

 𝑹 = (𝜌, 𝑒, 𝜀, 𝑗𝑥, 𝑞𝑥, 𝑗𝑦, 𝑞𝑦, 𝑝𝑥𝑥, 𝑝𝑥𝑦)𝑻 (3.7) 

 𝑹𝑒𝑞 =  𝜌(1, −2 + 3𝑢2, 1 − 3𝑢2, 𝑢𝑥, −𝑢𝑥, 𝑢𝑦, −𝑢𝑦, 𝑢𝑥
2, −𝑢𝑦

2, 𝑢𝑥𝑢𝑦)𝑇 (3.8) 

As the name suggests, the transformation matrix is used to transform the distribution function 

vectors in the forms given below: 

 𝑹 = 𝑴𝒇 (3.9) 

                                        𝑹𝑒𝑞 = 𝑴𝒇𝑒𝑞 (3.10) 
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The transformation matrix itself is given by: 

 1 1 1 1 1 1 1 1 1

4 1 1 1 1 2 2 2 2

4 2 2 2 2 1 1 1 1

0 1 0 1 0 1 1 1 1

0 2 0 2 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 2 0 2 1 1 1 1

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

 
 
     
    
 

   
    
 

   
   
 

  
 

  

M

 

(3.11) 

From Eq. (3.10), the corresponding equilibrium distribution function is found and is given 

by: 

  
2 2

2 4 2
1 , 0,1, ,8

2 2

ieq i
i i

s s s

u
f w i

c c c

 

      
  

c uc u

 

(3.12) 

 where     

 

𝑤𝑖 =  {
4 9                               𝑖 = 0⁄           
1 9⁄                                𝑖 = 1,2,3,4
1 36⁄                              𝑖 = 5,6,7,8

 (3.13) 

The density, velocity of the fluid, and the pressure can be found from the expressions below: 

 

𝜌 =  ∑ 𝑓𝑖

8

𝑖=0

 (3.14) 

 

𝒖 =  
1

𝜌
 ∑ 𝑓𝑖𝑐𝑖

8

𝑖=0

 (3.15) 

 𝑝 =  𝜌𝑐𝑠
2 (3.16) 
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3.2. Integration of Immersed Boundary (IB) Scheme in LBM 

As already mentioned, while integrating the IB and LBM, the flow field Ω is represented by 

a set of Eulerian points, which are fixed Cartesian points in the LBM framework. The boundary 

of the immersed object, denoted by Γ, is represented by a set of Lagrangian points, 𝑿𝑩
𝒍 , where l 

and B represent the Lagrangian point and the boundary of the immersed object respectively. An 

external force term reflecting the fluid-solid interaction, RSTf , allocated at the Eulerian points 

within the neighborhood of the immersed boundary, should be numerically determined and then 

seamlessly added to the LBM framework. The IB and MRT-LBM incorporation is carried out 

through the following procedure: 

Step 1: obtain the velocity 
l

BU at the Lagrangian points 
l

BX  

To measure the closeness between an Eulerian point,  ,
t

ij i jx yx , and a Lagrangian point, 

 ,
t

l l l

B B BX YX , the following continuous kernel distribution is required:
        

                          

        

      l l l

ij ij B i B j BD x X y Y    x X
 

(3.17) 

where  

 

 

1
1 cos , 2

4 2

0, 2

r
r

r

r





   
         


  

(3.18) 

and the distribution is proposed by Peskin[37]. While  , tu x  is known at all Eulerian points, the 

velocity of the fluid adhered to a Lagrangian point
l

BX can be determined by:  



Chapter 3 – Numerical Methods 

[19] 
 

        
,

, , ,l l l l

B B B ij ij B

i j

t t t D x y   U X u X u x x X

 
(3.19) 

with 𝛿𝑥 = 𝛿𝑦 = 1 in the present LBM framework. Eq. (3.19) indicates that the fluid velocity at a 

boundary point is equal to the boundary velocity at the same position, which ensures no-slip 

condition at the boundary and no flow penetration. 

Step 2: Determine the restoring force 
l

RSTF at Lagrangian points 
l

BX  

After 
l

BU  is obtained at Lagrangian points, the restoring force per unit volume exerted at a 

Lagrangian point can be easily computed using the following feedback-forcing model[38]: 

 
 1 2

0
( )

t
l l l

RST B IMS B IMSdt    F U U U U
 

(3.20) 

where 1  and 2 are two negative free constants with dimensions of 3 2ML T  and 3 1ML T  , 

respectively. According to [38], 1  and 2 are stable for moderate values within [-100, -1], and 

insensitive to their exact values. Also, note that IMSU
 
in Eq. (3.20) represents the velocity of the 

immersed body, which can be defined by: 

 ( , )
( , )IMS

s t
s t

t






X
U

 
(3.21) 

IMSU  can be numerically determined using: 

 ( , ) ( , )
( , )IMS

s t s t t
s t

t





 


X X
U

 
(3.22) 

with s denoting the Lagrangian parametric coordinate. Note that, for a stationary immersed body, 

IMS  0U  as ( )sX X when the body does not move in the fluid. 
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Step 3: Find the restoring force RSTf at Eulerian points ijx  

After
l

RSTF  is available at the Lagrangian points, the restoring force RSTf at Eulerian points, ijx

can be computed with the aid of continuous kernel distribution, as described in Eq. (3.17) and 

(3.18), as shown below: 

  ( , ) ( , )l l l

RST ij RST B ij ij B l

l

t t D s  f x F X x X

 
(3.23) 

where ls  is the arc length of the boundary segment.  

Step 4: Embed the restoring force RSTf  in LBM 

In order to invoke RSTf in the LBM framework, the following transformation is employed: 

 
 𝑓𝑖 =  (1 −

1

2𝜏
) 𝑤𝑖 (

𝑐𝑖 − 𝑢

𝑐𝑠
2

+
𝒄𝒊 ∙ 𝒖

𝑐𝑠
4

) ∙  𝒇𝑅𝑆𝑇 (3.24) 

where iw  represents the coefficients in the equilibrium distribution function mentioned in Eq. 

(3.13). 

The inclusion of 𝑓𝑖̃ leads to the following revised LBE[39]: 

 
𝑓𝑖  ( 𝑥 +  𝑐𝑖𝛿𝑡, 𝑡 + 𝛿𝑡) −  𝑓𝑖  ( 𝑥, 𝑡 ) =  −

1

𝜏
 [𝑓𝑖( 𝑥, 𝑡) −  𝑓𝑖

𝑒𝑞 ( 𝑥, 𝑡 )] +  𝑓𝑖̃ 𝛿𝑡  (3.25) 

Finally, the velocity in the LBM framework has to be updated by including RSTf as follows: 

 
 

8

0

1

2
i i RST

i

= f t 


u c f  (3.26) 
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Chapter 4 - Important Parameters, Numerical Experiments, and 

Computational Domain Setup 

4.1. Definitions of Important Parameters 

4.1.1. Orientation Angle 

One of the major subjects of this research is to investigate the wind-loadings on the 7-cyinder 

model at different orientation angles. Before the investigation, the orientation angle has to be 

defined first. Figure 4.1 shows the arrangement of seven cylinders and the definition of the 

orientation angle, 𝜃. The orientation angle is defined as the angle between the line of symmetry of 

the 7-cylinder arrangement passing through the center of middle cylinder and the initial 

translational direction of the path of tornado and is measured counter-clockwise. Due to concurrent 

translation and rotation, the translation direction of the tornado keeps varying. As the tornado 

rotates anticlockwise and translates to the right as shown in the Figure 4.1, it would be moving 

upwards and to the right. Therefore, the translation direction of the tornado during its initial setup 

in the computational domain has been taken as the reference for the calculation of orientation 

angle.  

 

 

 

 

 

 

 
 

Figure 4.1 Illustration of orientation angle 
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4.1.2. Force Coefficient in X – direction 

 Force coefficient in X-direction, 𝐶𝑥, is defined as the ratio of the summation of forces acting 

on the body in the X-direction, 𝐹𝑥, to the product of the dynamic pressure and the reference length 

of the body. Here, the diameter of the cylinders, D, used in the model is taken as the reference 

length. Eq. (4.1) shows the mathematical definition of 𝐶𝑥 as given below:    

𝐶𝑥 =  
𝐹𝑥

0.5𝜌𝑉𝑡
2𝐷

 (4.1) 

4.1.3. Force Coefficient in Y – direction 

 Eq. (4.2) shows the definition of the force coefficient in Y-direction, 𝐶𝑦, as given below: 

𝐶𝑦 =  
𝐹𝑦

0.5𝜌𝑉𝑡
2𝐷

 (4.2) 

where 𝐹𝑦 is the summation of forces on the body in the Y-direction. 

4.1.4. Moment Coefficient 

 The definition of moment coefficient, 𝐶𝑚, is given by the Eq. (4.3) and it differs from the 

definition of force coefficients in such a way that the reference area of the body has replaced the 

reference length of the body. Here, the reference area is taken as the cross-sectional area of the 

cylinders used in the model. The resultant moment, M, acting on the body is termed positive when 

it is counter-clockwise and vice-versa. The resultant moment on the 7 cylinders are calculated 

about their own centers.   

 𝐶𝑚 =  
𝑀

0.5𝜌𝑉𝑡
2(𝜋 𝐷2 4⁄ )

 (4.3) 
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4.1.5. Resultant Coplanar Force Coefficient 

Another important parameter that needs be defined and discussed which concerns the total 

force acting on the buildings is the resultant coplanar force coefficient, 𝐶𝐹, and is given by the 

following Eq. (4.4): 

𝐶𝐹 = √
𝐹𝑥

2 + 𝐹𝑦
2

(0.5𝜌𝑉𝑡
2𝐷)2

 (4.4) 

The higher the value of 𝐶𝐹 in Eq. (4.4), the greater is the value of resultant force acting on the 

building. The greater resultant force is an indication of the severity of the tornado on the building 

and it necessitates the buildings to be constructed with a proper design which accommodates both 

the rotational and translational components of the tornado.                                                       

4.2. Numerical Experiments 

As already mentioned, the building model used in the numerical experiments of this research 

is a 7-cylinder model with the seven cylinders arranged in a semi-circle and are separated by an 

angle of 30 degrees. The cylinders are numbered clockwise from 1 to 7 with line of symmetry 

passing through the center of cylinder 4. The numerical experiments include seven test cases with 

the model placed at orientation angles from 0° to 180°. Figure 4.2 shows the schematic of the test 

cases A to G and the initial direction of the path of the tornado along with the value of orientation 

angles for each case. It is obvious that the initial translation direction of the tornado is parallel to 

one cylinder in every test case. In the series of numerical experiments, all the four wind-loading 

coefficients have been recorded for all the seven test cases A to G. 
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4.3. Computational Domain Setup 

Figure 4.3 illustrates the setup of the computational domain. It is important to realize that five 

mesh resolutions at 1/40, 1/50, 1/60, 1/80, and 1/100 were tested to confirm that the 1/50 grid 

resolution remains a suitable choice, reiterating the conclusion the conducted grid independence 

study[40]. The LBM framework is operated on a [-40, 40] × [-15, 15] square lattice. The flow 

field parameters Reynolds number, defined based on the translational velocity of the tornado and 

the diameter of the cylinder, and density have been assigned the values of 1000, and 1 unit 

respectively. The radius of the core of the tornado, 𝑟𝑐, is chosen as 150 units with the center fixed 

at (0, 0). The angular velocity, 𝜔, of the tornado is taken as 0.00068 rad/s in the anticlockwise 

direction in order to obtain the rotation intensity of 3.0. Using the immersed boundary approach, 

the seven cylindrical buildings are constructed with a diameter, D, of 50 units each and there are 

 

Figure 4.2 Illustration of 7 test cases A to G and their orientation angles 
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200 Lagrangian points taken around each building, which is given a translational velocity,𝑉𝑡, of 

0.034 units/s towards the tornado. As per the numerical procedure, the translational velocity of the 

building is equal in magnitude and opposite in direction to the translational velocity of the tornado. 

The seven buildings are arranged in a semi-circle with the center initially placed at (34, 0) and a 

diameter of ‘3D’ units, which is equal to the diameter of the tornado. 

 

    

 

 

 

 

 

 

 

Figure 4.3 Setup of the computational domain 
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Chapter 5 - Test A Case Study 

5.1. Three Stages of Tornado – Structure Interaction  

Before explaining the numerical results, three important stages of the tornado-building 

interaction have to be defined, which is the key to the understanding of the interaction. The three 

stages are as follows: 1) Pre-Interaction stage, 2) Primary interaction stage, and 3) Post-Interaction 

stage. Pre-Interaction stage, as the name suggests, represents the time period before the buildings 

enter into the core of the tornado. The primary interaction stage represents the time period in which 

the building is encircled by the core of the tornado. In this stage, the building is expected to 

experience the higher wind-loadings that makes this stage to be analyzed more in detail. It is 

important to remember that the actual interaction between the tornado and the buildings 

commences well before the primary interaction stage, i.e., in the pre-interaction stage itself. 

Finally, the post-interaction stage starts once the building comes out of the core of the tornado. In 

this stage, the effect of tornado on the building subsides and its deteriorating action is likely to be 

abated.  

Figure 5.1, Figure 5.2, and Figure 5.3 show the variation of the aerodynamic coefficients, Cx, 

Cy and Cm, with X, respectively, for the test case , where ‘X’ indicates the distance between the 

center of the tornado and the center of the cylindrical building; X = 0 indicates the time instant at 

which the centers of the tornado and the virtual circle on which the 7 cylinders are placed coincide 

when the translational velocity of the tornado alone is taken into account; in the intervals X < 0 

and X > 0, the tornado is approaching and leaving the building, respectively. 
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Figure 5.1 Variation of 𝐶𝑥 with X for case A 

 

 

 

 

Figure 5.2 Variation of 𝐶𝑦 with X for case A 
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5.2. Analysis of 𝑪𝒙 Curves 

In Figure 5.1, Cx vs X curve, it is observed that the cylinder 1 experiences the highest 

magnitude of Cx compared to other cylinders and there are four major turning points on cylinder 

1 curve marked as points ① to ④. In the pre-interaction stage (X < -3), the Cx curve of cylinder 

1 decreases very gradually in the initial stages (X < -10) and then decreases abruptly, as the 

cylinder 1 gets closer to the tornado in the final stages (-10 < X < -3) and reaches the local 

minimum at point ①, just before X = -3. This difference in slopes in the pre-interaction stage can 

be explained according to the RCVM Eq. (2.1) and (2.5), 𝑉𝛾 =
𝑟𝑐

2𝜔

𝑟
=  𝛽𝑉𝑡

𝑟𝑐

𝑟
 , where 𝑟𝑐, 𝛽, and 

𝑉𝑡 are constants and , 𝑉𝛾 is inversely proportional to 𝑟. In the pre- interaction stage, 𝑟 >  𝑟𝑐; when 

X = -3, 𝑟 becomes equal to 𝑟𝑐, approximately. As the cylinder 1 moves towards the tornado, 𝑟 

 

Figure 5.3 Variation of 𝐶𝑚 with X for case A 
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value decreases and 𝑉𝛾 increases. Thus, the increase in upward tangential velocity of the tornado 

increases the magnitude of Cx abruptly that produces the steep slope in the final phase of the pre-

interaction stage. Negative value of Cx indicates that the cylinder is pulled towards the center of 

the tornado in the negative X-direction. After reaching the local minimum at point ①, the Cx curve 

increases and achieves a local maximum at point ②, after which Cx drops again to attain a global 

minimum at point ③, where X = -2; then, it re-rises monotonically to achieve a local maximum 

value at point ④, just a bit before X = 2. After the point ④, the curve decreases for a shorter 

while and then becomes almost steady. The four turning points, ① to ④, are examined on the 

basis of flow visualization using velocity magnitude contours represented in the Figure 5.4, Figure 

5.5, Figure 5.6, and Figure 5.7 respectively. 

In Figure 5.4, Figure 5.5, and Figure 5.6, it can be easily seen that the cylinder 1 enters the 

right upper core region of the tornado. The left half of the cylinder 1 encounters a higher tangential 

velocity than the right half as per the Eq. (2.1) in the RCVM and therefore the cylinder 1 

experiences a negative Cx at the three points ①, ②, and ③. But the values of Cx at these three 

points are not same and that can be explained on the basis of the relative positions of cylinder 1 

with the tornado and the interference effects of other cylinders on cylinder 1. A careful comparison 

of the Figure 5.4 and Figure 5.5 unveils that the cylinder 1 at point ② is closer to the tornado 

center than at point ①. It is expected that the magnitude of Cx increases further from point ① to 

②, but the scenario is exactly opposite. The decrease in magnitude of Cx at point ② is attributed 

to the interference effects of essentially the cylinders 2 and 7 on cylinder1, which can be 

corroborated from Guo[41], in which the Cx curve does not show any bump in the primary 

interaction stage for a cylinder in a tornado. The more tornado core flow rate deflected off the 

cylinders 2 and 7 has passed around cylinder 1 and created a vaguely-defined, wide-spread loop 
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of relatively lower velocity region in front of cylinder 1 in Figure 5.5 when compared to a well-

defined loop of relatively higher velocity region in Figure 5.4. This difference in the high velocity 

loop region is responsible for the higher Cx magnitude associated with cylinder 1 at point ①. An 

observation of the Figure 5.6 tells that the cylinder 1 is very closer to the center of the tornado and 

there is a clear cut existence of high velocity and low velocity wake regions in the front and rear 

of the cylinder 1, which leads to the global minimum Cx at point ③. The magnitude of the velocity 

in the wake region behind the cylinder 1 is slightly lower in the case of point ③, when compared 

to point ①, and this little velocity difference gives a higher pull on cylinder 1 at point ③ and 

makes it the global minimum point. Finally, in Figure 5.7, corresponding to point ④, the cylinder 

1 lies in the lower left core portion of the tornado. The left portion of the cylinder 1 is exposed to 

a lower tangential velocity than the right portion as per Eq. (2.1) and this is clearly evident in 

Figure 5.7 and thereby, cylinder 1 experiences a push force in the positive X-direction at point ④. 

But the distorted velocity pattern of the tornado core shows its inability to produce higher loading, 

but a very low positive value of Cx. 

 

 

 

                    Figure 7.4 Velocity magnitude contour corresponding to point ① of figure 7.1  

 

 

Figure 7.5 Velocity magnitude contour corresponding to points 1) ② of figure 7.1 2) ⓑ of fig 

 

 

 

 

Figure 5.4 Velocity magnitude contour corresponding to point ① of Figure 5.1 (Pg. No. 27) 
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Figure 5.5 Velocity magnitude contour corresponding to points 1) ② of Figure 5.1 (Pg. No. 27) 2) ⓑ 

of Figure 5.2 (Pg. No. 27) 

 

 

 

 

Figure 5.6 Velocity magnitude contour corresponding to points 1) ③ of Figure 5.1(Pg. No. 27) 2) ⑤ 

of Figure 5.1(Pg. No. 27) 3) ⓐ of Figure 5.2 (Pg. No. 27) 4) Ⓐ of Figure 5.3 (Pg. No. 28) 
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After investigating the Cx characteristics of cylinder 1, the focus is now moved on to the Cx 

characteristic of cylinder 2. In Figure 5.1, the Cx curve of cylinder 2 does not show any trace of 

the characteristics shown by cylinder 1. The Cx curve increases very slowly and achieves global 

maximum at point ⑤ and then decreases to a local minimum, after which it attains a steady value. 

An observation of the cylinder 2 curve divulges a lot of oscillations on it and these oscillations are 

attributed to the interference effects of the other cylinders on cylinder 2, especially cylinder 1. 

Moreover, these oscillations are achieved by the incorporation of Large Eddy Simulation 

(LES)[42] turbulence model in the Lattice Boltzmann Method. Recalling Figure 5.6, 

corresponding to point ⑤, shows the cylinder 2 lying in the upper right core portion of the tornado. 

Cylinder 2 is anticipated to experience higher pull force as per the Eq. (2.1), but it experiences a 

push force of smaller magnitude at point ⑤. A careful observation of Figure 5.6 clearly shows 

 

Figure 5.7 Velocity magnitude contour corresponding to point ④ of Figure 5.1 (Pg. No. 27) 
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some right portion of the core of tornado completely distorted and destroyed by the interference 

of cylinders 1 and 7 and moreover, the cylinder 2 lies in the wake of the cylinder 1, which created 

the push force. 

A similar examination of the Cx curves of the cylinders 3 to 5 also reveals a plethora of 

oscillations on those curves, which is a clear indication of the interference phenomenon. An 

examination of the Figure 5.4 and Figure 5.7 discloses the fact there are no appreciable velocity 

differences created on the front and rear of the cylinders 3 to 5. This is due to the fact that the core 

of the tornado has been completely distorted by the other cylinders before the cylinders 3 to 5 

entered into the core. 

After analyzing the cylinders 3 to 5, the attention is now on the Cx characteristics of the cylinders 

6 and 7. In Figure 5.1, the Cx curves of cylinder 6 and 7 follows a similar trend of decreasing 

gradually in the pre-interaction stage; after which they reach local minimum at points ⑥ and ⑧; 

then, they increase and attain local maximum at points ⑦ and ⑨; but, the cylinder 6 experiences 

lesser Cx values than the cylinder 7. Figure 5.8 and Figure 5.9 represent the velocity magnitude 

contours at the points ⑥ and ⑦ of Figure 5.1, respectively. A careful examination of the Figure 

5.8 shows the cylinder 6 lying in the lower right portion of the core of tornado and experiences a 

pull force as expected at point ⑥. But the very low Cx value is due to the fact that the cylinder 6 

has not entered the core of the tornado and the interference of cylinder 7 that deflects the core flow 

away from the cylinder 6 which is evident in Figure 5.8. In Figure 5.9, corresponding to point ⑦, 

the cylinder 6 lying away from the core of the tornado experiences a very small push force in the 

positive X-direction. In Figure 5.10, the cylinder 7 occupies the lower right portion of the core. As 

per Eq. (2.1), the cylinder 7 experiences higher pull force towards the core of the tornado at point 
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⑧. In Figure 5.11, corresponding to point ⑨, the cylinder 7 is approximately lying at the edge of 

the core and right below the center of tornado and very low positive Cx is experienced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8 Velocity magnitude contour corresponding to points 1) ⑥ of Figure 5.1 (Pg. No. 27) 2) ⓔ 

of Figure 5.2 (Pg. No. 27) 

 

 

 

 

Figure 5.9 Velocity magnitude contour corresponding to points 1) ⑦ of Figure 5.1 (Pg. No. 27) 2) 

ⓓ of Figure 5.2 (Pg. No. 27) 3) Ⓑ of Figure 5.3 (Pg. No. 28) 
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Figure 5.10 Velocity magnitude contour corresponding to points 1) ⑧ of Figure 5.1 (Pg. No. 27) 2) 

Ⓒ of Figure 5.3 (Pg. No. 28) 

 

 

 

 

Figure 5.11 Velocity magnitude contour corresponding to points 1) ⑨ of Figure 5.1 (Pg. No. 27)    

2) ⓒ of Figure 5.2 (Pg. No. 27) 
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5.3. Analysis of 𝑪𝒚 Curves 

After explaining the salient points in the Cx vs X graph, the focus is now on the Cy vs X curve 

depicted in Figure 5.2. An observation of the curves in Figure 5.2 just reveals that the overall trend 

of the Cy curves is in complete contrast with the trend observed by the Cx curves. The Cy curves, 

in general, increases gradually in the pre-interaction stage and then rises steeply to achieve local 

maximum in the primary interaction stage, after which the curve falls and finally flattens out in 

the post-interaction stage. A careful study of the curves tells that the cylinder 1 again has suffered 

the maximum followed by cylinder 7 with the second highest maximum. As already seen with Cx 

curves of cylinders 3 to 5, the Cy curves of cylinders 3 to 5 also have lot of fluctuations, but the 

fluctuations are more severe in the case of Cy curves that corroborates the interference phenomenon 

explained already in the previous section. 

An observation of Figure 5.6, corresponding to point ⓐ in Figure 5.2, shows the cylinder 1 in 

the upper right portion of the core of the tornado. Due to the anti-clockwise rotation of the tornado, 

the cylinder 1 experiences upward tangential velocity on its lower portion that produces high 

pressure region at its bottom which in turn creates an uplift in the positive Y-direction at point. It 

is noted that the global minimum Cx and global maximum Cy values experienced by cylinder 1 at 

points ③ and ⓐ respectively happen at the same time step. 

After looking at the cylinder 1 characteristics, the attention is now on the Cy characteristics of 

cylinder 2. An observation of the cylinder 2 curve in Figure 5.2 unveils a local maximum point, 

marked as ⓑ. An examination of the Figure 5.5, corresponding to point ⓑ, clearly shows the 

upper portion of the cylinder 2 lying in the wake region of the cylinder 1. This wake region creates 

a low pressure region on top of cylinder 2 that creates an uplift on cylinder 2 at point ⓑ.  
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An inspection of the cylinder 3 curve reveals a local maximum at point ⓒ of Figure 5.2. 

Figure 5.11, corresponding to point ⓒ, apparently shows a low pressure region on top of cylinder 

3 in the form of a vortex created by cylinder 2 and this accounts for an uplift in the Y-direction. 

After cylinder 3, the analysis is made on the cylinder 6 curve in which the fall characteristic is 

more pronounced than the rise characteristic and a salient point is marked as point ⓓ, a local 

minimum point. After scrutinizing the Figure 5.9, corresponding to point ⓓ, it is noted that the 

cylinder 6 lies outside the core of the tornado and in the region below the tornado. As per Eq. (2.1), 

the bottom portion of the cylinder 6 is exposed to higher tangential velocity than the top portion, 

thus creating a down lift on cylinder 6 at point ⓓ. 

A careful observation of the cylinder 7 curve in Figure 5.2 reveals a local maximum point at 

point ⓔ. Figure 5.8, corresponding to point ⓔ, shows cylinder 7 lying in the lower right portion 

of the core of the tornado. As per Eq. (2.1), the top portion of the cylinder 7 is exposed to the 

higher tangential velocity than the bottom portion and this creates an uplift on cylinder 7 at point 

ⓔ. 

5.4. Analysis of 𝑪𝒎 Curves 

The Cm curves, in general, follows the same trend as the Cx curves. The Cm curve decreases 

gradually in the pre-interaction stage and then decreases abruptly in the primary interaction stage; 

after which it increases to achieve maximum and then decreases again for a while before it becomes 

steady. 

The Cm curve of cylinder 1 shows a global minimum point marked as point Ⓐ in Figure 5.6. 

It shows the cylinder 1 lying in the upper right portion of the core of the tornado. As per Eq. (2.1), 
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the local upward tangential velocity component (due to counterclockwise rotation of the tornado) 

for the left half of cylinder 1 is larger than the right half, leading to a larger uplifting force exerted 

in the left half of the cylinder than that for the right half. This yields the overall clockwise twisting 

effect at point Ⓐ. 

An inspection of Cm curve of cylinder 2 opens up a global maximum at point Ⓑ of Figure 5.3. 

With the Figure 5.9 showing cylinder 2 on the upper right portion of the core of the tornado, it is 

expected to experience clockwise moment. But due to the interference of cylinders 1 and 3, an 

anticlockwise moment of higher magnitude is been produced on cylinder 2 at point Ⓑ. The Cm 

curve of cylinder 7 displays a local minimum point marked as Ⓒ. With the Figure 5.10, 

corresponding to pointⒸ, showing the cylinder 7 in the lower right core region of the tornado, an 

anticlockwise moment is been created as expected as per Eq. (2.1).   
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Chapter 6 - Summary of the Numerical Results for Case A to G 

 6.1. Tabulation of Case A Results 

After the detailed study on test case A, the numerical values of the maximum and minimum 

aerodynamic coefficients obtained on each cylinder of case A have been summarized and the case 

A, as already mentioned, corresponds to the orientation angle of 180°. Table 6.1 clearly affirms 

that the cylinder 1 is the most affected one experiencing both the highest magnitudes of force and 

moment coefficients. It also indicates that the cylinder 2 holds the second highest magnitudes of 

the same coefficients. A careful examination of the numbers tells that the force on cylinder 1 is 

more than twice on cylinder 2 and almost 9 times bigger than cylinder 5, which experiences the 

least force coefficient. Since the tornado moves towards the upper half of the model due to its anti-

clockwise rotation, the wind-loadings are higher on the top 3 cylinders in the case A orientation, 

i.e., cylinders 1, 2, and 3. But, the cylinder 7, which is at bottom, also experiences higher 

coefficients because it is exposed to tornado’s unperturbed velocity pattern.        

Table 6.1 Summary of Wind – Loading Coefficients for case A 

Cylinder 𝑪𝑭 Maximum 𝑪𝒎 Maximum 𝑪𝒎 Minimum 

Cylinder 1 88.8559 3.5600 - 11.0728 

Cylinder 2 24.8198 3.9407 - 3.2458 

Cylinder 3 27.8759 1.7370 - 3.5837 

Cylinder 4 12.7055 0.7059 - 0.8964 

Cylinder 5 10.4635 0.7471 - 1.1765 

Cylinder 6 12.5392 0.9629 - 1.4437 

Cylinder 7 36.7258 3.1099 - 5.1005 
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6.2. Tabulation of Case B Results 

The numerical values of the wind-loading coefficients of case B, which has the orientation 

angle of 150°, have been encapsulated in the Table 6.2  It is obvious from the numbers that the 

cylinder 1 again experiences the highest values of the force and moment coefficients. But, this 

time, the cylinder 2 becomes the second most affected as opposed to cylinder 7 in case A. Further, 

the force coefficients on the top 3 cylinders exhibit higher values compared to case A. In particular, 

the maximum force coefficient that occurs on cylinder 1 has shown a tremendous increase of 15% 

approximately.  

Table 6.2 Summary of Wind – Loading Coefficients for case B 

Cylinder 𝑪𝑭 Maximum 𝑪𝒎 Maximum 𝑪𝒎 Minimum 

Cylinder 1 102.6730 4.3316 -12.2445 

Cylinder 2 45.2495 3.7761 -6.7055 

Cylinder 3 30.7134 1.5234 -4.8149 

Cylinder 4 16.0812 2.6964 -2.2625 

Cylinder 5 10.0977 0.9218 -1.7163 

Cylinder 6 7.0389 0.4312 -1.8488 

Cylinder 7 18.7627 2.1354 -3.3987 

 

 Figure 6.1 and Figure 6.2 represent the velocity magnitude contours at time instances when 

the total force coefficients on cylinder 1 peaked for the cases A and B respectively. An 

investigation on both the figures reveals the fact that cylinder 1 in case B, corresponding to Figure 

6.2 , has higher velocity in its front portion compared to cylinder 1 in case A, corresponding to 
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Figure 6.1 This difference is mainly due to two factors; the undistorted velocity pattern of the 

tornado in case B, relative to case A, when the cylinder 1 achieved its maximum force coefficient; 

reduced interference effects of cylinder 7 on cylinder 1 in the event of case B. The above-stated 

two factors can be indubitably ascribed to the decrease in the orientation angle from 180° to 150°. 

The 30° decrease in the orientation angle has completely altered the flow features of the tornado’s 

interaction with the individual cylinders as well their interference effects on one another. 

Therefore, the decrease in the orientation angle initially from case A to case B has produced an 

increase in the magnitudes of the force as well as moment coefficients. The remaining test cases 

will explore the characteristics of the coefficients by further decreasing the orientation angle until 

it reaches 0° in case G. 

 

 

 

 

 

 

 

 

  

 

 

Figure 6.1 Velocity magnitude contour at (𝐶𝐹)𝑚𝑎𝑥 on cylinder 1 for case A 
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6.3. Tabulation of Case C Results 

Table 6.3 summarizes the numerical values of the coefficients on each cylinder of case C that 

pertains to the orientation angle of 120°. From the data available in Table 6.3 it is found that the 

maximum force coefficient persists with the cylinder 1, despite another decrease in the orientation 

angle of 30°. But the value of maximum force coefficient on cylinder 1 is lower compared to both 

the cases A and B. As far as the maximum force coefficient on cylinder 1 is concerned, it initially 

increased (case A to B) and then decreased (case B to C) when the orientation angle was decreased 

from 180° to 120°. Similar to case A and B, the top 3 cylinders again experiences higher force 

coefficients compared to the rest of the cylinders. An interesting trend that can be observed in the 

 

Figure 6.2 Velocity magnitude contour at (𝐶𝐹)𝑚𝑎𝑥 on cylinder 1 for case B 
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cases B and C is that the maximum force coefficient decreases from cylinder 1 to 6 and then 

increases on the cylinder 7. 

Table 6.3 Summary of Wind – Loading Coefficients for case C 

Cylinder 𝑪𝑭 Maximum 𝑪𝒎 Maximum 𝑪𝒎 Minimum 

Cylinder 1 81.7222 4.3647 -10.1254 

Cylinder 2 59.5170 2.6335 -13.5647 

Cylinder 3 38.8101 3.4255 -8.9511 

Cylinder 4 25.6097 4.5111 -5.9899 

Cylinder 5 18.6537 4.7871 -6.4698 

Cylinder 6 15.6025 7.7926 -5.9221 

Cylinder 7 18.0256 1.9169 -1.9828 

 

Turning to the consideration of the moment coefficient, the greatest magnitude occurs on the 

cylinder 2, as opposed to cylinder 1 in the cases A and B. It is important to realize that the greatest 

magnitude has not only jumped from cylinder 1 to cylinder 2, but also achieved a higher value in 

comparison to the first two test cases A and B. Further, the magnitude of the moment coefficient 

on cylinder 2 has shown an enormous increase of 102% approximately from case B to case C, i.e., 

for an increase of 30° orientation angle. 

Figure 6.3 and Figure 6.4 represent the velocity contours that correspond to time instances 

when the cylinder 2 achieves its highest magnitude of moment coefficients for the cases B and C 

respectively. As per Eq. (2.1), the local upward tangential velocity on the left portion of cylinder 

2 is higher than on the right portion and therefore a clockwise moment has been produced on 
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cylinder 2 in both the cases. But the clockwise moment produced in the event of case C is higher, 

for the difference in orientation angle has modified the amount of interference caused by cylinder 

1 on cylinder 2. The cylinder 1 in Figure 6.4 is seen to be obstructing more core flow from the 

bottom region of the tornado than in Figure 6.3. Consequently, a large local region of low velocities 

can be apparently seen on the right portion of the cylinder 2 in Figure 6.4 and this leads to the 

higher clockwise moment in case C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Velocity magnitude contour at 1) (𝐶𝑚)𝑚𝑖𝑛  on cylinder 2 for case B 2) (𝐶𝐹)𝑚𝑎𝑥 on 

cylinder 1 for case C 
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6.4. Tabulation of Case D Results 

Table 6.4 summarizes the numerical values of the wind-loading coefficients on each cylinder 

of case D that has the orientation angle of 90°. It clearly shows that the maximum force coefficient 

has been shifted to cylinder 2, as opposed to cylinder 1 in all the previous three cases A to C. But, 

the magnitude of the force coefficient has achieved a lower value when compared to the cases A 

to C. For a decrease in orientation angle from 120° to 90°, the maximum force coefficient has 

exhibited a massive decrease of 25%. It is also noted that the moment coefficient of greatest 

magnitude has been displaced from cylinder 2, as in case C, to cylinder 3 and has shown a slight 

decrease.  

 

Figure 6.4 Velocity magnitude contour at (𝐶𝑚)𝑚𝑖𝑛 on cylinder 2 for case C 
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Table 6.4 Summary of Wind – Loading Coefficients for case D 

Cylinder 𝑪𝑭 Maximum 𝑪𝒎 Maximum 𝑪𝒎 Minimum 

Cylinder 1 48.8437 3.4320 -7.3155 

Cylinder 2 61.5281 3.2932 -6.2029 

Cylinder 3 46.1234 2.2248 -11.9023 

Cylinder 4 52.0965 2.1562 -9.7535 

Cylinder 5 34.4174 2.9705 -7.6407 

Cylinder 6 21.8735 6.6159 -7.2873 

Cylinder 7 21.4915 8.0970 -6.1180 

 

Figure 6.3 and Figure 6.5 represent the velocity magnitude contours which correspond to 

(𝐶𝐹)𝑚𝑎𝑥 on cylinders 1 and 2 for the test cases C and D respectively. As per Eq. (2.1) and (2.5), 

the tangential velocity, 𝑉𝛾, is inversely proportional to the radial distance from the centre of the 

core of the tornado. The cylinder 2 in Figure 6.5 is closer to the core than the cylinder 1 in Figure 

6.3 and hence higher force coefficient is expected on cylinder 2. But the lesser orientation angle 

in case D has reformed the flow around cylinder 2 by improving the interference effects of cylinder 

1 on cylinder 2. Also, the concurrent translation and counterclockwise rotation moves the core of 

the tornado more towards the cylinder 3 than cylinder 2 and thereby creates a lesser maximum 

force coefficient on cylinder 2. It is important to note that the cylinders that are exposed to core of 

the tornado, cylinders 1 to 4, experience the higher force coefficients. It is clearly evident that the 

change in orientation angle, besides modifying the maximum force coefficient, brings about the 

change in the force coefficients on all the cylinders in the model.   
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8.5. Tabulation of Case E Results 

Table 6.5 gives the summary of the numerical values of the wind-loading coefficients of each 

cylinder of case E which pertains to the orientation angle of 60°. It can be easily seen that the 

maximum force coefficient has been transferred to occur on cylinder 3, as opposed to cylinder 2 

in case D, with a slight decrease in magnitude. Again, the cylinders lying above the initial line of 

fire of the tornado, cylinders 2 to 5, experience the higher force coefficients which is evident from 

the data in Table 6.5 Despite a decrease in the orientation angle of 30° from case D to E, the 

maximum force coefficient almost remains unchanged. Therefore, it is expected that the maximum 

force coefficient remains lower in the range of 60° to 90°. 

 

 

Figure 6.5 Velocity magnitude contour at (𝐶𝐹)𝑚𝑎𝑥 on cylinder 2 for case D 

 



Chapter 6- Summary of the Numerical Results for Case A to G 

[48] 
 

Table 6.5 Summary of Wind – Loading Coefficients for case E 

Cylinder 𝑪𝑭 Maximum 𝑪𝒎 Maximum 𝑪𝒎 Minimum 

Cylinder 1 15.9242 2.0148 -3.4926 

Cylinder 2 48.8331 2.7955 -6.7715 

Cylinder 3 61.0558 3.6812 -5.8865 

Cylinder 4 35.6085 2.7397 -7.7835 

Cylinder 5 30.3534 1.9423 -7.2055 

Cylinder 6 19.2962 3.7754 -5.5305 

Cylinder 7 25.9808 5.8935 -8.3162 

 

 As far as the moment coefficient is concerned, the occurrence of greatest magnitude has 

moved from cylinder 3 to cylinder 7 from case D to E. Also, it has shown a decrease of 30% 

approximately for a decrease of 30° in the orientation angle. Figure 6.6 and Figure 6.7 depict the 

velocity magnitude contours that correspond to greatest moment coefficient on cylinders 3 and 7 

for the test cases D and E respectively. The decrease in moment coefficient on cylinder 7 of case 

E is principally due the completely distorted velocity pattern of the tornado observed in Figure 6.7 

produces the lower upward tangential velocity on the left portion of cylinder 7 compared to the 

higher upward tangential velocity on the left portion of cylinder 3 in Figure 6.6. The distorted 

velocity pattern in Figure 6.7 is primarily created by the interference effects of the cylinders 1, 2, 

and 3 on cylinder 7, which in turn is attributed mainly to the decrease in the orientation angle from 

90° to 60°.  

 



Chapter 6- Summary of the Numerical Results for Case A to G 

[49] 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Velocity magnitude contour at (𝐶𝑚)𝑚𝑖𝑛 on cylinder 3 for case D 

 

 

Figure 6.7 Velocity magnitude contour at  (𝐶𝑚)𝑚𝑖𝑛 on cylinder 7 for case E 
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6.6. Tabulation of Case F Results 

The numerical values of the coefficients on each cylinder of case F have been summarized in 

the Table 6.6 and case F corresponds to the orientation angle of 30°. It clearly indicates that the 

value of the maximum force coefficient has undergone a slight change, but it has been moved to 

occur on cylinder 4 rather than cylinder 3, as in the previous case E. It is important to note that the 

cylinders which lie above the initial line of fire of the tornado, cylinders 3, 4, and 5, experience 

the higher force coefficients since they pass through the core of the tornado. Regarding the greatest 

moment coefficient, a particular trend is not observed while decreasing the orientation angle 

every 30°. From case E to F, the greatest moment coefficient has moved from cylinder 7 to cylinder 

5 without any appreciable change. Despite the decrease in the orientation angle of 30°, neither the 

maximum force coefficient nor the greatest moment coefficient shows any substantial change and 

this can be explained with the help of the Figure 6.8 and Figure 6.9.      

Table 6.6 Summary of Wind – Loading Coefficients for case F 

Cylinder 𝑪𝑭 Maximum 𝑪𝒎 Maximum 𝑪𝒎 Minimum 

Cylinder 1 6.4497 0.6877 -2.2259 

Cylinder 2 17.8142 1.6493 -3.4297 

Cylinder 3 49.8475 2.8567 -6.8275 

Cylinder 4 60.3844 3.7586 -5.8721 

Cylinder 5 37.9057 2.5845 -8.0780 

Cylinder 6 31.6175 1.9383 -5.5579 

Cylinder 7 16.3676 3.8797 -2.6011 
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 Figure 6.8 and Figure 6.9 depict velocity magnitude contours at the time instances when the 

cylinders 3 and 4 achieve (𝐶𝐹)𝑚𝑎𝑥 for the cases E and F respectively. In both the figures, it is clear 

that the cylinders which lie above the initial line of fire of the tornado faces the core region of the 

tornado. It can be easily seen that the velocity magnitudes around the top 3 cylinders are essentially 

the same in both the depictions. Due to the right-upward path of the tornado, the interference 

effects of the cylinders below the line of fire, cylinder 1 and cylinders 1 and 2 in the case of E and 

F respectively, on the top cylinders have produced no significant alterations in the flow field and 

thereby the Figure 6.8 and Figure 6.9 bear a complete resemblance to each other. The 

aforementioned factors lead to the same values of the maximum force coefficients for the cases E 

and F, despite a considerable change in the orientation angle.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Velocity magnitude contour at (𝐶𝐹)𝑚𝑎𝑥 on cylinder 3 for case E 
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6.7. Tabulation of Case G Results 

 The numerical values of the wind-loadings on each cylinder of case G which corresponds to 

the orientation angle of 0° has been tabulated and given in Table 6.7 . It is obvious that the 

maximum force coefficient has been progressed from cylinder 4, as in case F, to cylinder 5. 

Concerning the maximum force coefficient, a trend can be observed such that, for the first three 

test cases A to C, the cylinder 1 experiences the maximum force coefficient, and for the next four 

test cases D to G, the maximum force coefficient progresses from one cylinder to another in the 

clockwise direction, i.e., from cylinder 2 to cylinder 5 for the four subsequent cases respectively. 

The highest magnitude of moment coefficient has jumped from cylinder 5, as in case F, to cylinder 

6 with no noticeable change in its value. 

 

 

Figure 6.9 Velocity magnitude contour at (𝐶𝐹)𝑚𝑎𝑥 on cylinder 4 for case F 
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Table 6.7 Summary of Wind – Loading Coefficients for case G 

Cylinder 𝑪𝑭 Maximum 𝑪𝒎 Maximum 𝑪𝒎 Minimum 

Cylinder 1 6.4011 0.6423 -2.4604 

Cylinder 2 7.0299 0.6242 -2.2440 

Cylinder 3 18.8910 1.5865 -3.5952 

Cylinder 4 50.5740 2.7057 -6.8752 

Cylinder 5 61.0870 3.3294 -5.8842 

Cylinder 6 38.1875 1.7919 -8.2213 

Cylinder 7 24.3360 5.0154 -7.5701 

 

6.8. The Unluckiest or Most Affected Building 

In this section, the building which is at the highest risk in the tornado is going to be found. 

Table 6.8 has been created from the data depicted from Table 6.1 to Table 6.7 and it shows the 

most affected cylinders of the test cases A to G. The rule of thumb used here to find the unluckiest 

building is that, the more the frequency of the cylinder number in Table 6.8, the higher the risk the 

cylinder faces. By that rule, the cylinders 1 and 7 appear seven and six times respectively in the 

table and it tells that the buildings at the extreme ends of the arrangement encounter greater 

damages in the tornado flow. Strictly speaking, the cylinder 1 is at the greatest risk in the 

arrangement as per the rule of thumb. The physical significance of this result is that the cylinder 1 

is exposed to higher wind-loadings for just less than fifty percent of the total range of the 

orientation angles. 
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Table 6.8 The Most affected Cylinders of the test cases A to G  

Case 𝑪𝑭 Maximum 𝑪𝒎 Maximum 𝑪𝒎 Minimum 

A 1 2 1 

B 1 1 1 

C 1 6 2 

D 2 7 3 

E 3 7 7 

F 4 7 5 

G 5 7 6 
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Chapter 7 - Optimization Procedure 

7.1. An Overview of Optimization Procedure Using Polynomial Fitting  

This section basically deals with two aspects that are mentioned as follows: a) polynomials of 

order 6, 7, and 8 have been fitted to each of the coefficients, (𝐶𝐹)𝑚𝑎𝑥 , (𝐶𝑚)𝑚𝑎𝑥 , and (𝐶𝑚)𝑚𝑖𝑛 as 

a function of orientation angle for the unluckiest building, cylinder 1, b) polynomials of order 6, 

7, and 8 have been fitted to each of the coefficients, (𝐶𝐹)𝑚𝑎𝑥 , (𝐶𝑚)𝑚𝑎𝑥 , and (𝐶𝑚)𝑚𝑖𝑛 as a function 

of orientation angle in the overall sense, i.e. the maximum and minimum coefficients are chosen 

irrespective of the cylinders on which those values occur. The values of the coefficients have been 

taken from the tables provided in Chapter 8 and the polynomials have been fitted using 

“Lagrangian Interpolation Formula”.  

7.2. Optimization of Cylinder 1 

7.2.1. Polynomial for (𝑪𝑭)𝒎𝒂𝒙 on Cylinder 1 

 Table 7.1 represents the variation of (𝐶𝐹)𝑚𝑎𝑥 of cylinder 1 with the orientation angle. In Table 

7.1 , the first seven values are obtained from the seven test cases A to G and the procurement and 

usage of the next two values will be explained later in this section. 

Table 7.1 Variation of (𝐶𝐹)𝑚𝑎𝑥 with 𝜃 for cylinder 1 

Orientation 

angle 𝜽 

(rad) 

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416 0.633 0.155 

(𝑪𝑭)𝒎𝒂𝒙 6.4011 6.4497 15.9242 48.8437 81.7222 102.6730 88.8559 7.3245 4.8077 

  

Using the first seven values in Table 7.1 , the polynomial of sixth degree for (𝐶𝐹)𝑚𝑎𝑥 of 

cylinder 1 has been found and given by: 
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 (𝐶𝐹)𝑚𝑎𝑥 = −4.8329𝜃6 + 48.3594𝜃5 − 187.8819𝜃4 + 337.5149𝜃3

− 245.2826𝜃2 + 59.5166𝜃 + 6.4011 

(7.1) 

In Eq. (7.1) as well as the all polynomial equations, the orientation angle 𝜃 is expressed in 

terms of radians. The polynomial curve given in Eq. (7.1) has been represented graphically in 

Figure 7.1. 

 

 

 

 

 

 

 

 

 

The turning points marked in Figure 7.1 have been found by differentiating Eq. (7.1) with 

respect to 𝜃 and equating the first derivative to zero which is given below: 

 𝑑(𝐶𝐹)𝑚𝑎𝑥

𝑑𝜃
= 0 

(7.2) 

Eq. (7.2) gives three stationary orientation angles. But the interest is on the value of the stationary 

orientation angle that has the minimum value of (𝐶𝐹)𝑚𝑎𝑥. The stationary orientation angle that has 

the minimum coefficient is 0.633 rad. In order to find the polynomials of seventh order, another 

 

Figure 7.1 Variation of 6th order (𝐶𝐹)𝑚𝑎𝑥 polynomial of cylinder 1 with θ 
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data set is required and is found out by re-running the test case at 𝜃 = 0.633 rad and the obtained 

data set is included in Table 7.1 as 8th data set. The mathematical polynomial of seventh order 

corresponding to (𝐶𝐹)𝑚𝑎𝑥 on cylinder 1 is given by Eq. (7.3) as below and its graphical form is 

represented in Figure 7.2.                                                                                                                                                      

 (𝐶𝐹)𝑚𝑎𝑥 = −7.5911𝜃7 + 78.6384𝜃6 − 315.8687𝜃5 + 613.1344𝜃4

− 589.2269𝜃3 + 281.8122𝜃2 − 53.1352𝜃 + 6.4012 

(7.3) 

 

 

 

 

 

 

 

 

 

The Figure 7.2 has again the turning points marked on it and the stationary orientation angle 

corresponding to minimum (𝐶𝐹)𝑚𝑎𝑥 is 0.155 rad. For the eight order polynomial to be found, the 

test has been re-run with the orientation angle to be 𝜃 = 0.155 rad and the data set has been added 

as 9th data set. The polynomial of eighth order has been represented mathematically in Eq. (7.4) 

and graphically in Figure 7.3. 

 

Figure 7.2 Variation of 7th order (𝐶𝐹)𝑚𝑎𝑥 polynomial of cylinder 1 with θ 
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 (𝐶𝐹)𝑚𝑎𝑥 = −3.5343𝜃8 + 33.5083𝜃7 − 115.5301𝜃6 + 164.3720𝜃5

− 54.3309𝜃4 − 70.7746𝜃3 + 74.0617𝜃2 − 19.9511𝜃 + 6.4029 

(7.4) 

 

 

 

 

 

 

 

 

 

 

An observation of the Figure 7.1, Figure 7.2, and Figure 7.3 reveal that the (𝐶𝐹)𝑚𝑎𝑥 curves 

follow a similar pattern of having oscillations initially and then increases monotonically to achieve 

the maximum and then decreases. It can be easily seen that the maximum value increases as the 

order of the polynomial increases. From the figures, a safe zone can be ascertained in which the 

value of (𝐶𝐹)𝑚𝑎𝑥 is acceptable and not very high. Looking at the figures, the safe zone can be 

defined from 𝜃 = 0 rad to 𝜃 = 1.2 rad where the value of the coefficient is below 20 that is 

relatively low compared to the rest of the region. 

 

Figure 7.3 Variation of 8th order (𝐶𝐹)𝑚𝑎𝑥 polynomial of cylinder 1 with θ 
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7.2.2. Polynomial for (𝑪𝒎)𝒎𝒂𝒙 on Cylinder 1 

Table 7.2 shows the values of (𝐶𝑚)𝑚𝑎𝑥 obtained for cylinder 1 at different values of 

orientation angles. As already mentioned in the previous section, the first seven data sets are used 

to find the polynomial of sixth order and the next two data sets are found in order to find the 

polynomials of seventh and eighth orders respectively. 

Table 7.2 Variation of (𝐶𝑚)𝑚𝑎𝑥 with 𝜃 for cylinder 1 

Orientation 

angle 𝜽 

(rad) 

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416 0.222 0.285 

(𝑪𝒎)𝒎𝒂𝒙 0.6423 0.6877 2.0148 3.4320 4.3647 4.3316 3.9407 0.5175 0.9315 

                                 

The polynomials of orders six, seven, and eight for (𝐶𝑚)𝑚𝑎𝑥 on cylinder 1 has been found 

and given by the Eq. (7.5), (7.6), and (7.7) respectively and the graphical representations of those 

equations are depicted in the Figure 7.4,Figure 7.5, and Figure 7.6 respectively. 

 (𝐶𝑚)𝑚𝑎𝑥 =  0.1022𝜃6 − 0.9136𝜃5 + 3.3033𝜃4 − 6.8203𝜃3 + 8.4404𝜃2

− 2.8723𝜃 + 0.6423 

(7.5) 

 (𝐶𝑚)𝑚𝑎𝑥 = 0.1681𝜃7 − 1.7462𝜃6 + 7.1509𝜃5 − 14.4291𝜃4 + 13.6916𝜃3

− 3.2240𝜃2 − 0.3798𝜃 + 0.6423 

(7.6) 

 (𝐶𝑚)𝑚𝑎𝑥 = 8.3942𝜃8 − 93.9947𝜃7 + 421.4767𝜃6 − 967.9125𝜃5

+ 1206.8086𝜃4 − 796.5153𝜃3 + 250.6846𝜃2 − 28.0284𝜃

+ 0.6424 

 

 

(7.7) 
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Figure 7.4 Variation of 6th order (𝐶𝑚)𝑚𝑎𝑥 polynomial of cylinder 1 with θ 

 

 

 

 

Figure 7.5 Variation of 7th order (𝐶𝑚)𝑚𝑎𝑥 polynomial of cylinder 1 with θ 
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Figure 7.4 and Figure 7.5 follow a similar trend of exhibiting a small dip in the region before 

𝜃 = 0.5 rad and then increases monotonically to achieve maximum around 𝜃 = 2.4 rad and then 

falls to a minimum. But the Figure 7.6 shows a completely different pattern that has lot of ups and 

downs before reaching a relatively higher maximum and then falls to a very lower value being on 

the negative side, which is not the reality. But a careful examination of all the three curves shows 

a safe zone roughly in the range 𝜃 = 0 to 2.2 rad, where the value of (𝐶𝑚)𝑚𝑎𝑥 on cylinder 1 is  

below 5.0. 

7.2.3. Polynomial for (𝑪𝒎)𝒎𝒊𝒏 on Cylinder 1 

The data sets obtained for (𝐶𝑚)𝑚𝑖𝑛 on cylinder 1 for different values of orientation angles are 

given in Table 7.3 . Aforementioned procedure to obtain the polynomials of different orders are 

same, but the last two data sets are found by re-running the test cases at the maximum coefficient 

value, i.e. lowest magnitude values and not at the minimum coefficient values, which are used for 

the other two coefficients (𝐶𝐹)𝑚𝑎𝑥 , and (𝐶𝑚)𝑚𝑎𝑥. The last two stationary orientation angles in 

 

Figure 7.6 Variation of 8th order (𝐶𝑚)𝑚𝑎𝑥 polynomial of cylinder 1 with θ 
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the table (0.642 and 0.601 rad) are the maximum values of the polynomials of sixth and seventh 

orders respectively. 

Table 7.3 Variation of (𝐶𝑚)𝑚𝑖𝑛 with 𝜃 for cylinder 1 

Orientatio

n angle 𝜽 

(rad) 

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416 0.642 0.601 

(𝑪𝒎)𝒎𝒊𝒏 -2.4604 -2.2259 -3.4926 -7.3155 -10.1254 -12.2445 -11.0728 -2.2052 -2.2116 

 

The polynomials of three different orders for (𝐶𝑚)𝑚𝑖𝑛 on cylinder 1 are given in the Eq. (7.8), 

(7.9), and (7.10) below: 

 (𝐶𝑚)𝑚𝑖𝑛 =  1.0337𝜃6 − 9.9221𝜃5 + 36.0694𝜃4 − 59.9745𝜃3 + 41.1538𝜃2

− 9.1345𝜃 − 2.4604 

(7.8) 

 (𝐶𝑚)𝑚𝑖𝑛 = 0.4630𝜃7 − 4.0582𝜃6 + 12.2974𝜃5 − 12.7723𝜃4 − 3.4317𝜃3

+ 8.9923𝜃2 − 2.2604𝜃 − 2.4604 

(7.9) 

 (𝐶𝑚)𝑚𝑖𝑛 = −2.3242𝜃8 + 27.5126𝜃7 − 131.9905𝜃6 + 329.1829𝜃5

− 454.0806𝜃4 + 340.2642𝜃3 − 129.2117𝜃2 + 20.0422𝜃

− 2.5981 

(7.10) 

Figure 7.7, Figure 7.8, and Figure 7.9 represent the polynomial curves of (𝐶𝑚)𝑚𝑖𝑛 on cylinder 

1 of orders six, seven, and eight respectively. All the three figures follow a very much similar 

trend, except for a steep rise to a local maximum in the Figure 7.9 in its final stages. As opposed 

to the curves of (𝐶𝐹)𝑚𝑎𝑥 and (𝐶𝑚)𝑚𝑎𝑥 that increase in the most part of the curves with the 

orientation angle, the (𝐶𝑚)𝑚𝑖𝑛 curve, after initial ups and downs, decrease with the orientation 

angle for the major portion of the curve. Again a safe zone can be sensed roughly in the region 

between 𝜃 = 0 and 1.4 rad where the magnitude of the minimum moment coefficient is below 6.0. 
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Figure 7.7 Variation of 6th order (𝐶𝑚)𝑚𝑖𝑛 polynomial of cylinder 1 with θ 

 

 

 

 

Figure 7.8 Variation of 7th order (𝐶𝑚)𝑚𝑖𝑛 polynomial of cylinder 1 with θ 
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7.2.4. Safe Zone for Cylinder 1 

 With the individual safe zone detected for the three parameters, the complete safe zone for 

cylinder 1 can be identified. The safe zones of the three coefficients and the overall safe zone for 

cylinder 1 are mentioned in the Table 7.4 .   

Table 7.4 Safe zone for cylinder 1 

Coefficient Individual Safe Zone 

(rad) 

Safe Zone for Cylinder 1 

(𝐶𝐹)𝑚𝑎𝑥 0 to 1.2 0 to 1.2 rad 

(𝐶𝑚)𝑚𝑎𝑥 0 to 2.2 (or) 

(𝐶𝑚)𝑚𝑖𝑛 0 to 1.4 0 to 69 degrees 

 

 The overall safe zone for cylinder 1 can be deduced from the three individual safe zones by 

taking the common range of orientation angles among them and it has been identified to be between 

 

Figure 7.9 Variation of 8th order (𝐶𝑚)𝑚𝑖𝑛 polynomial of cylinder 1 with θ 
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𝜃 = 0 and 1.2 rad, which is approximately equal to 0° to 69°. In other words, for a given 7-cylinder 

model, when a tornado approaches the model with an orientation angle between 0 and 69 degrees, 

the wind-loadings on cylinder 1 would be considerably lower compared to the rest of the 

orientation angles and Figure 7.10 shows the schematic of the safe zone of cylinder 1. 

 

 

 

 

 

 

 

 

 

 

7.3. Optimization of the Overall 7 – Cylinder Model 

7.3.1. Polynomial for Overall (𝑪𝑭)𝒎𝒂𝒙  

Table 7.4 The variation of the overall values of (𝐶𝐹)𝑚𝑎𝑥 with the orientation angles are given 

in Table 7.5 . It is noted that these maximum coefficient values listed in the table are indeed the 

overall maximum coefficients of the whole seven cylinder arrangement irrespective of the cylinder 

 

Figure 7.10 Safe zone for cylinder 1 
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on which the maximum coefficient occurs. In other words, for a specific orientation angle, this is 

the maximum coefficient experienced by the complete 7-cylinder model. 

Table 7.5 Variation of overall (𝐶𝐹)𝑚𝑎𝑥 with 𝜃  

Orientation 

angle 𝜽 

(rad) 

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416 0.1942 0.661 

(𝑪𝑭)𝒎𝒂𝒙 61.0870 60.3844 61.0558 61.5281 81.7222 102.6730 88.8559 65.8338 64.2261 

 

The polynomials for overall (𝐶𝐹)𝑚𝑎𝑥 of sixth, seventh, and eighth orders are given below in 

the Eq. (7.11), (7.12), and (7.13)respectively: 

 (𝐶𝐹)𝑚𝑎𝑥 =  5.5745𝜃6 − 56.5678𝜃5 + 208.7651𝜃4 − 341.9908𝜃3

+ 247.8789𝜃2 − 63.3076𝜃 + 61.0870 

(7.11) 

 (𝐶𝐹)𝑚𝑎𝑥 = 9.7246𝜃7 − 101.3528𝜃6 + 409.9919𝜃5 − 817.2557𝜃4

+ 845.0195𝜃3 − 427.2189𝜃2 + 80.9704𝜃 + 61.0869 

(7.12) 

 (𝐶𝐹)𝑚𝑎𝑥 = −42.7305𝜃8 + 487.8702𝜃7 − 2242.6986𝜃6 + 5316.5429𝜃5

− 6908.6189𝜃4 + 4824.3782𝜃3 − 1637.2785𝜃2 + 204.0945𝜃

+ 61.0852 

(7.13) 

Figure 7.11, Figure 7.12, and Figure 7.13 represent the graphical form of the above three 

equations. Again all the three figures follow an identical pattern, except for an enormous higher 

maximum value seen in Figure 7.13 in the closing stage of the curve. Furthermore, it shows a steep 

decrease achieving a minimum value in its last phase, which is not visible in the other two figures. 

It is noted that the difference in characteristics can be seen only in the concluding stages of the 

curves and thereby a safe zone exists approximately in the region between 𝜃 = 0 and 1.7 rad where 

the coefficients shuttle between the values 50.0 and 65.0. 
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Figure 7.11 Variation of 6th order overall (𝐶𝐹)𝑚𝑎𝑥 polynomial with θ 

 

 

 

 

Figure 7.12 Variation of 7th order overall (𝐶𝐹)𝑚𝑎𝑥 polynomial with θ 
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7.3.2. Polynomial for Overall (𝑪𝒎)𝒎𝒂𝒙  

The variation of overall (𝐶𝑚)𝑚𝑎𝑥 values with the orientation angles are given in Table 7.6  

and the Eq. (7.14), (7.15), and (7.16) represent the polynomials of orders 6, 7, and 8 respectively. 

It is important to remember that the values listed in it are maximum values at their respective 

orientation angles regardless of the cylinders on which those occurred.  

Table 7.6 Variation of overall (𝐶𝑚)𝑚𝑎𝑥 with 𝜃 

Orientation 

angle 𝜽 

(rad) 

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416 2.940 0.211 

(𝑪𝒎)𝒎𝒂𝒙 5.0154 3.8797 5.8935 8.0970 7.7926 4.3316 3.9407 4.4999 4.5635 

                                 

 (𝐶𝑚)𝑚𝑎𝑥 =  0.2049𝜃6 − 1.2309𝜃5 + 2.9389𝜃4 − 6.8803𝜃3 + 13.0844𝜃2

− 7.4711𝜃 + 5.0154 

(7.14) 

 

Figure 7.13 Variation of 8th order overall (𝐶𝐹)𝑚𝑎𝑥 polynomial with θ 
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 (𝐶𝑚)𝑚𝑎𝑥 = −1.6537𝜃7 + 18.3882𝜃6 − 80.5705𝜃5 + 177.4164𝜃4

− 208.7345𝜃3 + 127.8865𝜃2 − 32.0060𝜃 + 5.0154 

(7.15) 

 (𝐶𝑚)𝑚𝑎𝑥 = −0.8271𝜃8 + 9.8724𝜃7 − 48.0315𝜃6 + 123.3602𝜃5

− 180.1024𝜃4 + 145.5009𝜃3 − 53.1957𝜃2 + 4.0713𝜃

+ 5.0154 

(7.16) 

Figure 7.14, Figure 7.15, and Figure 7.16 represent the graphical curves of the equations (7.14), 

(7.15), and (7.16) respectively. A careful examination of all the three figures reveal two safe zones: 

a) 𝜃 = 0.2 to 1.2 rad, b) 𝜃 = 2.4 to 3.14 rad. In both the safe zones, the values of the overall 

(𝐶𝑚)𝑚𝑎𝑥 range between 2.0 and 6.0. In the non-safe zone, the coefficient increases with orientation 

angle and achieves the maximum which is around 8.0 in all the three figures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14 Variation of 6th order overall (𝐶𝑚)𝑚𝑎𝑥 polynomial with θ 
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Figure 7.15 Variation of 7th order overall (𝐶𝑚)𝑚𝑎𝑥 polynomial with θ 

 

 

 

 

Figure 7.16 Variation of 8th order overall (𝐶𝑚)𝑚𝑎𝑥 polynomial with θ 
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7.3.3. Polynomial for overall (𝑪𝒎)𝒎𝒊𝒏  

Table 7.7 shows the variation of overall (𝐶𝑚)𝑚𝑖𝑛 values with the orientation angle and the 

corresponding polynomials of orders 6, 7, and 8 are expressed in the Eq. (7.17), (7.18), and (7.19) 

respectively. 

 

Table 7.7 Variation of overall (𝐶𝑚)𝑚𝑖𝑛 with 𝜃 

Orientatio

n angle 𝜽 

(rad) 

0 0.5236 1.0472 1.5708 2.0944 2.6180 3.1416 0.764 0.166 

(𝑪𝒎)𝒎𝒊𝒏 -8.2213 -8.0780 -8.3162 -11.9023 -13.5647 -12.2445 -11.0728 -9.3637 -11.2004 

 

 (𝐶𝑚)𝑚𝑖𝑛 =  0.8407𝜃6 − 9.2395𝜃5 + 37.9628𝜃4 − 70.2431𝜃3 + 54.7234𝜃2

− 13.9100𝜃 − 8.2213 

(7.17) 

 (𝐶𝑚)𝑚𝑖𝑛 = 7.8563𝜃7 − 84.5315𝜃6 + 359.7358𝜃5 − 767.3547𝜃4

+ 856.0318𝜃3 + 469.8326𝜃2 + 97.8700𝜃 − 8.2213 

(7.18) 

 (𝐶𝑚)𝑚𝑖𝑛 = 15.4723𝜃8 − 174.5184𝜃7 + 791.4442𝜃6 − 1852.3608𝜃5

+ 2389.8387𝜃4 − 1680.3276𝜃3 + 589.1016𝜃2 − 79.0549𝜃

− 8.2214 

(7.19) 

The graphical representation of the three polynomials are depicted in the Figure 7.17, Figure 

7.18, and Figure 7.19 respectively. As far as the overall (𝐶𝑚)𝑚𝑖𝑛 is concerned, the safe zone is one 

in which the values of the coefficients are higher, i.e. the coefficients have lower magnitudes. All 

the three figures reveal a safe zone between 𝜃 = 0.5 and 1.2 rad, where the value of the coefficient 

ranges below -12.0. Once the safe is crossed, the values tend to rise very steeply in the negative 

region that is evident in Figure 7.19. 
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Figure 7.17 Variation of 6th order overall (𝐶𝑚)𝑚𝑖𝑛 polynomial with θ 

 

 

 

 

Figure 7.18 Variation of 7th order overall (𝐶𝑚)𝑚𝑖𝑛 polynomial with θ 
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7.3.4. Overall Safe Zone for the 7 - Cylinder Model  

Using the polynomials of orders 6, 7, and 8, safe zones are identified with respect to each 

defined wind-loading coefficients. In order to find a compromising safe zone with respect to the 

whole seven building model, the individual safe zones have been looked at carefully that are 

presented in Table 7.8 . After a serious examination of the individual safe zones, it is found that 

the safe zone is in the orientation angle range, 𝜃 = 0.5 to 1.2 rad or 29 to 69 degrees 

approximately. In the safe zone, all the three coefficients exhibit immensely lower magnitudes 

relative to the magnitudes experienced in the non-safe zone range. It leads to a great result that, in 

order to have lesser wind-loading coefficients, for a given tornado direction, the orientation angle 

should be maintained between 29 and 69 degrees, which is the overall safe zone for all the seven 

buildings in the model and the schematic of the overall safe zone is represented in Figure 7.20. 

 

Figure 7.19 Variation of 8th order overall (𝐶𝑚)𝑚𝑖𝑛 polynomial with θ 
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Table 7.8 Overall safe zone for the complete 7-cylinder model 

Coefficient Individual Safe Zone  

(rad) 

Safe Zone for Complete 

Model 

(𝐶𝐹)𝑚𝑎𝑥 0 to 1.7 0.5 to 1.2 rad 

(𝐶𝑚)𝑚𝑎𝑥 0.2 to 1.2 

& 

2.4 to 3.14 

 

(or) 

(𝐶𝑚)𝑚𝑖𝑛 0.5 to 1.2 29 to 69 degrees 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7.20 Overall safe zone for the complete 7-cylinder model 
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7.4. Comparison of the Overall and Cylinder 1 Safe Zones 

 The safe zone for cylinder 1 and overall safe zone for the complete 7-cylinder model are found 

to be 0° to 69° and 29° to 69° respectively. As already mentioned, the cylinder 1 experiences the 

maximum force and moment coefficients for the orientation angle between 90° and 180°. 

Therefore, it can be easily understood that the safe zone for cylinder 1 exists to be between 0° and 

69°. The safe range for the overall model is lesser than the safe range for the cylinder 1, for the 

other cylinders in the model experience the higher wind-loadings in the missing range 0° to 29°. 

Despite the fact that the cylinder 1 has found be the most affected cylinder in the model, cylinder 

1 alone should not be considered to minimize the wind-loadings in the entire model.   
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Chapter 8 - Conclusions 

8.1. Concluding Remarks 

In this study, the conventional Rankine Combined Vortex Model (RCVM) has been modified 

in order to ease the implementation of boundary conditions required to set up the tornado-like flow 

in the computational domain. The modification has been performed using the concept of “relative 

motion”, by which the translational component of the tornado, the root cause of the modification, 

has been detached from the tornado and attached to the seven cylinder building model and the 

modification has rendered the boundary conditions time-independent. The relative motion concept 

has been implemented via Immersed Boundary method (IBM) that modelled the buildings and its 

translation towards the tornado. Finally, the Lattice Boltzmann Method (LBM) has been integrated 

with the Immersed Boundary technique to form the complete numerical procedure, IB-LBM, to 

perform the whole simulation of investigating the tornado dynamics using the seven cylinder 

building model. 

The focus of this study was mainly placed on the investigation of the effects of tornado 

dynamics on multi-bodies arranged in a semi-circular pattern at a specific angle of the tornado, 

and at a specific Reynolds number. The impact of tornado on the model has been analyzed using 

four wind-loading coefficients  𝐶𝑥, 𝐶𝑦, 𝐶𝑚, and 𝐶𝐹. The coefficients are determined and salient 

points on the curves are discussed to understand the behavior of tornadic wind. Due to the 

concurrent translation and rotation, the tornado, which was in line of fire against cylinder 4 

initially, has moved more towards the cylinder 1 and has produced the greatest impact with very 

high wind-loading coefficients that was very evident from the Table 6.8. It also suggests that the 

buildings at the extreme ends are subjected to major destructions and needs to be have extra-
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ordinary wind resistance capability. Further by using an unconventional rule of thumb, the most 

affected or the unluckiest building has been identified to be the cylinder 1. 

The numerical results of this study gives a clear picture of the impact of the tornado on a group 

of buildings and the impact of buildings among themselves, called interference effects. 

Particularly, the effects of vortices produced by a cylinder on the wind-loadings of the other 

cylinders has been understood with the help of flow visualization pictures. The coefficient curves 

of the cylinders 4 to 6, which have lesser wind-loadings, reveals the already mentioned dual nature, 

brutality and gentleness, of the tornado on buildings, which is one of the major subjects of this 

study. 

A new parameter called “orientation angle” has been defined and the seven-cylinder building 

model has been tested at various orientation angles and the results of the test cases A to G have 

been tabulated and examined. Further, the results in those tables have given a clear picture of the 

variation of the wind-loading coefficients on each cylinder in the model with the orientation angles. 

A unique optimization procedure has been adopted to optimize the wind-loading coefficients 

experienced by the buildings in the model. The optimization method has greatly utilized “fitting a 

polynomial to a set of data” mathematical technique to find polynomials of three consecutive 

orders six, seven, and eight for the wind-loading coefficients. The same optimization procedure 

has been applied to both overall model and cylinder 1 wind-loading coefficients and identified safe 

zones for all the six wind-loading coefficients, three each for cylinder 1 and overall model.  

On the basis of individual safe zones, an overall safe zone has been identified where the 

orientation angle ranges from 29 to 69 degrees. It is suggested that, in order for the buildings to 
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experience lower wind-loadings, the orientation angle should be maintained between 29 and 69 

degrees. 

8.2. Contributions 

 The Immersed Boundary-Lattice Boltzmann Method has been successfully applied to 

investigate the interaction between a tornado and a multi-structure arrangement. 

 Building Orientation has been proved to be one of the main factors that affect the wind-

loadings on the structures. 

 Variation of wind-loadings with the building orientations has been studied. 

 The cylinder at one of the extreme end, cylinder 1, has been found to be the most affected 

building. 

 An optimization procedure has been developed and employed to detect the safe 

orientation zones. 

 The safe orientation zone for the most affected building has been detected to between 0° 

and 69°. 

 An overall safe orientation zone for the entire 7-buliding model has been identified to 

exist between 29° and 69°. 

8.3. Future Prospects 

The subsequent work aims to employ this current numerical procedure to optimize the present 

seven cylinder building model in a tornadic wind at different Reynolds numbers and to study the 

effects of Reynolds number on the wind-loadings. The future works intend to define a new and 

more appropriate Reynolds number that accommodates both the rotational and translational 

components of the tornadic wind. The succeeding works can apply the current 2-D IB-LBM 
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framework to analyze more complex geometries and more complicated flow situations. The 

ensuing works intend to employ different ideas to improve the accuracy of the present IB-LBM 

framework. In future, the current 2-D IB-LBM framework can be extended to 3-D and with the 

recent success in 3-D IB-LBM simulations[38]-[39], the extension looks promising to getting 

developed into a 3-D numerical scheme to represent a more realistic vortex-structure interaction.  
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