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ABSTRACT 

Dictionaries and Algorithms for Sparsity Constrained Image Reconstruction 

Master of Applied Science 

 Electrical and Computer Engineering 

Mathiruban Tharmalingam 

Ryerson University, 2013 

 

There has been a growing interest in the different types of dictionaries that can 

be used in image processing applications.  We propose a hybrid dictionary composed 

of transform based atoms and additional nonlinear atoms generated using the 

polynomial, rectangular and exponential functions.  The additional nonlinear atoms 

improve signal reconstruction quality for both transient and smooth signals.  To 

further improve signal reconstruction quality, we optimize the hybrid dictionary using 

training samples from the signal.  We also propose a signal coding algorithm that 

generates additional atoms by performing a circular shift on the provided dictionary 

prior to coding the signal.   

We have evaluated the proposed methods against existing predefined 

dictionaries by visually examining the reconstructed images as well as evaluating the 

peak signal to noise ratio of the reconstructed signal.  All methods proposed in this 

thesis improved signal reconstruction quality however; we require an in-depth cost 

analysis study to evaluate its limitations.  



 

 iv 

ACKNOWLEDGEMENTS 

First and foremost, I would like to express my deep gratitude to my research 

supervisor Dr.Kaamran Raahemifar, for his patient guidance, enthusiastic 

encouragement and useful critiques of this research work.  I would also like to thank 

Dr. Raahemifar, for his advice and assistance in keeping my progress on schedule 

throughout my academic years at Ryerson.  

 

I would like to thank Mathi for his input and supportive criticism towards the 

thesis and continued support in all my endeavors. 

 

Finally, I wish to thank my parents, Manonmany and Tharmalingam, and my 

wife Kasthuri for their continued love, support and encouragement in all my 

endeavors. 

 



 

 v 

TABLE OF CONTENTS 

Author’s Declaration ............................................................................................. ii 

Abstract .................................................................................................................iii 

Acknowledgements .............................................................................................. iv 

Table of Contents .................................................................................................. v 

List of Figures ...................................................................................................... ix 

List of Tables ........................................................................................................ xi 

List of Algorithms ................................................................................................ xii 

Abbreviation ....................................................................................................... xiii 

CHAPTER 1 Introduction .................................................................................... 1 

1.1 Motivation ........................................................................................................ 4 

1.2 Research objective .......................................................................................... 6 

1.3 Thesis Outline ................................................................................................. 9 

CHAPTER 2 A Survey: from transforms to dictionaries ................................... 12 

2.1 Discrete Cosine Transform (DCT)............................................................ 13 

2.1.1 2-D DCT Transform................................................................................ 14 

2.2 Wavelet Transform based dictionaries ...................................................... 16 

2.2.1 The Haar wavelets .................................................................................... 17 

2.2.2 Gabor wavelet ........................................................................................... 18 

2.2.3 Ricker Wavelet .......................................................................................... 19 



 

 vi 

2.3 The Benefits of a Dictionary ...................................................................... 19 

2.4 Image-based adaptive dictionaries ............................................................. 20 

2.5 Other Dictionary Learning Algorithms..................................................... 22 

2.6 Chapter summary ......................................................................................... 22 

CHAPTER 3 Sparse constrained signal coding algorithms .............................. 23 

3.1 Matching pursuit (MP) ................................................................................ 24 

3.2 The orthogonal matching pursuit .............................................................. 25 

3.3 Other under-determined system solvers ................................................... 26 

3.4 Chapter Summary ........................................................................................ 26 

CHAPTER 4 The hybrid dictionary with nonlinear atoms ............................... 28 

4.1 The limitations of the DCT and wavelet based dictionaries .................. 29 

4.2 Addition of nonlinear atoms ...................................................................... 35 

4.2.1 The 1-D polynomial dictionary atom generator ................................... 36 

4.2.2 The 2-D polynomial dictionary atom generator ................................... 38 

4.2.3 The rational atoms .................................................................................... 38 

4.2.4 The root function atoms .......................................................................... 39 

4.2.5 The boxcar and the shifted square wave function................................ 40 

4.2.6 The generic exponential and logarithmic atoms ................................... 41 

4.3 The hybrid dictionary .................................................................................. 42 

4.4 Evaluation of the hybrid dictionary ........................................................... 43 

4.4.1 Sparse constrained reconstruction of simple function ........................ 44 



 

 vii 

4.4.2 Sparse constrained image reconstruction using small patches ............ 48 

4.4.3 Sparse constrained image reconstruction using large patches ............ 53 

4.5 Hybrid dictionary robustness test .............................................................. 58 

4.5.1 The Primate image .................................................................................... 58 

4.5.2 The bell pepper image .............................................................................. 61 

4.6 Limitations of the Hybrid dictionary ......................................................... 66 

4.7 Chapter Summary ........................................................................................ 71 

CHAPTER 5 Optimized Predefined Dictionary ................................................ 73 

5.1 Parameter optimization using Particle Swarm Optimization ................. 74 

5.2 The parameter screening fitness function ................................................. 76 

5.3 Optimized predefined dictionary results ................................................... 79 

5.4 Chapter summary ......................................................................................... 84 

CHAPTER 6 Optimized Hybrid Dictionary ...................................................... 86 

6.1 Multi-dictionary OMP algorithm ............................................................... 86 

6.2 Optimized hybrid dictionary algorithm..................................................... 88 

6.3 Performance gain of the optimized hybrid dictionary ............................ 92 

6.4 Chapter Summary ........................................................................................ 96 

CHAPTER 7 Compression using Time-shifted OMP algorithm ..................... 97 

7.1 Time-shifted OMP signal coding algorithm ............................................. 97 

7.2 Evaluation of the Time-shifted OMP algorithm ..................................... 99 



 

 viii 

7.3 Chapter Summary ...................................................................................... 102 

CHAPTER 8 Conclusion and future work ........................................................ 104 

8.1 Conclusion .................................................................................................. 104 

8.2 Future work ................................................................................................ 109 

Bibliography ....................................................................................................... 111 



 

 ix 

LIST OF FIGURES 

Figure 2-1 Sample 8x8 pixel patches using 1D DCT Atoms .......................................... 15 

Figure 2-2 Sample 8x8 patches using 2D DCT Atoms ................................................... 16 

Figure 4-1 Normalized Ricker function with alpha = pi/4 ............................................. 31 

Figure 4-2 Normalized Gabor function with alpha = pi and theta = 0 ........................ 31 

Figure 4-3 Normalized Gabor function with varying alpha ............................................ 32 

Figure 4-4 The discrete polynomial test signal ................................................................. 34 

Figure 4-5 PSNR of the reconstructed harmonic test signal .......................................... 46 

Figure 4-6 PSNR of the reconstructed exponential test signal ....................................... 47 

Figure 4-7 PSNR of the reconstructed polynomial test signal........................................ 48 

Figure 4-8 PSNR of the reconstructed Lena image ......................................................... 50 

Figure 4-9 Reconstructed Lena test image ........................................................................ 52 

Figure 4-10 PSNR of the reconstruct Man test image with 16x16 pixel patches ......... 54 

Figure 4-11 Original 1024x1024 Man test image .............................................................. 55 

Figure 4-12 Reconstructed Man test image using 13-terms per patch with  a DCT 

dictionary ............................................................................................................................... 56 

Figure 4-13 Reconstructed man test image using 13- terms per patch with hybrid 

dictionary ............................................................................................................................... 57 

Figure 4-14 PSNR of the reconstructed primate image .................................................. 59 

Figure 4-15  Reconstructed primate images using 5 terms per patch with the DCT and 

hybrid dictionaries ................................................................................................................ 60 

Figure 4-16 PSNR of the reconstructed bell pepper image ............................................ 62 

Figure 4-17 Original bell peppers test image .................................................................... 63 



 

 x 

Figure 4-18 Reconstruction using 5 terms per patch with a DCT dictionary ............... 64 

Figure 4-19 Reconstruction using 5-terms per patch with a hybrid dictionary ............ 65 

Figure 4-20 5-term bell pepper image reconstruction magnified ................................... 66 

Figure 4-21 Signal Coding time for the Lena test image ................................................. 70 

Figure 4-22 Time required to reconstruct the encoded lena image ............................... 71 

Figure 5-1 Predefined dictionary optimization feedback system ................................... 78 

Figure 5-2 PSO optimized DCT dictionary vs. DCT dictionary in image 

reconstruction ....................................................................................................................... 80 

Figure 5-3 PSO optimized Polynomial dictionary tested on the Lena image ............... 81 

Figure 5-4 Optimized Gabor dictionaries ......................................................................... 83 

Figure 6-1 Lena image reconstruction using the optimized hybrid dictionary ............. 94 

Figure 6-2 Primate image reconstruction using the OHD .............................................. 95 

Figure 7-1 PSNR or reconstructed Lena image using Time-shifted OMP algorithm 101 

Figure 7-2  Lena image code time using the Time-shifted OMP algorithm ............... 102 



 

 xi 

LIST OF TABLES 

Table 4-1 Mean square error of the reconstructed polynomial test signal .................... 34 

Table 4-2 MSE of reconstructed polynomial test signal with hybrid dictionary .......... 36 

Table 4-3 Dictionary Generating Parameters for 64 data points ................................... 43 

Table 5-1 Dictionary and tunable parameters ................................................................... 77 

Table 6-1 Dictionary and number of atoms used for test ............................................... 89 

Table 6-2 OHD dictionary and parameters ...................................................................... 93 

 

  



 

 xii 

LIST OF ALGORITHMS 

Algorithm 2-1 Dictionary learning algorithm ................................................................... 20 

Algorithm 3-1 Matching Pursuit pseudo algorithm ......................................................... 24 

Algorithm 3-2 The orthogonal matching pursuit algorithm ........................................... 25 

Algorithm 5-1 Particle Swarm Optimization Algorithm ................................................. 74 

Algorithm 6-1 Pseudo Algorithm for Multi-dictionary OMP ........................................ 87 

Algorithm 7-1 Ad-hoc pseudo algorithm for the Time-shifted OMP ........................... 98 

 

  



 

 xiii 

ABBREVIATION 

1D One-dimensional 

2D Two-dimensional 

DCT Discrete Cosine Transform 

DFT Discrete Fourier Transform 

JPEG Joint Photographic Experts Group 

K-SVD K – Singular Value decomposition 

MOD Method of Optimal Directions 

MP Matching Pursuit 

MPEG Moving Picture Experts Group 

MSE Mean Square Error 

OHD Optimized Hybrid Dictionary 

OMP Orthogonal Matching Pursuit 

PSNR Peak Signal to Noise Ratio 

PSO Particle Swarm Optimization 

RGB Red-Green-Blue color scheme 

TsOMP Time-shifted Orthogonal Matching Pursuit 

http://en.wikipedia.org/wiki/Joint_Photographic_Experts_Group


 1 

CHAPTER 1                                                                

INTRODUCTION 

 

Sparse representation modeling is the ability to describe a given data set as a 

combination of a few building blocks.  Sparse representation assumes that the data set 

is inherently sparse.  Fortunately, sparse representation is achievable in majority of the 

data found in the scientific fields using the appropriate building blocks.  The most 

obvious application of sparse representation modeling is in compression.  To 

successfully compress a signal such as an image, audio or any other arbitrary data set, 

we need to define a set of rules to capture the large energy portion of the signal with 

only a few building blocks. The Discrete cosine transform (DCT) is a good building 

block for natural images because most of the information in natural images is 

captured with a few coefficients. The realization of this property in natural images has 

led to the success of lossy compression standards like JPEG.  Even today, the most 

widely used compression techniques are based on DCT such as JPEG for still images, 

MP3 for audio and MPEG4 for video[1,2].  One of the reasons behind the success of 

the DCT based techniques is the availability of fast algorithms to encode the signal 

[3,4].  

One can view the collection of these building blocks as a dictionary, where 

each building block is an atom in the dictionary.  Many smooth continuous signals can 

be sparsely represented using discrete Fourier transform (DFT) analysis.  The DFT 

dictionary can be created by selecting distinct frequency component of the Fourier 

transform as the atoms of the dictionary.  Given this DFT dictionary a continuous 

signal can be sparsely represented but we are unable to sparsely represent an impulse 
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function using the DFT dictionary.  Similarly, if the atoms of the dictionary were the 

time shifted impulse function; we can represent transient signals but sparse 

representation of smooth continuous functions would provide poor results.  

Intuitively, this indicates a single transform-based dictionary is not capable of 

representing all signals in a sparse manner, thus better reconstruction quality can be 

achieved using a hybrid dictionary.  We can add all the transform based atoms to form 

a hybrid dictionary which may be able to sparsely represent a variety of signals but this 

will increase the dictionary size and effectively increase the storage requirements and 

signal coding time.  Therefore, it is important to select the atoms of the hybrid 

dictionary in such a way that the given signal can be represented in a sparse manner 

with a reasonably sized dictionary.   

Currently, most of the image processing applications still use transform-based 

processing but there are benefits to dictionary based modeling.  The most significant 

benefit is the separation of the dictionary designing task from the signal coding 

task[5].  Since the ideological change that occurred in the last few decades that 

separated the two tasks, there has been an influx of scholarly research on the different 

types of dictionaries that can be used in image processing applications.  The two 

prominent types of dictionaries in image processing are the image-based adaptive 

dictionary and the predefined dictionaries generated through mathematical models.  

The image-based adaptive dictionaries are generated through sparse coding algorithms 

that process training samples and create a structured dictionary that is capable of 

sparsely representing the given training set and similar data outside of the training set.  

Two such sparse coding algorithms in literature are the method of optimal directions 

(MOD), and k- singular value decompositions (K-SVD) [6]. Both the image-based 
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adaptive dictionaries and the predefined dictionaries have found success in many 

image processing applications including compression, image de-noising, pattern 

recognition, feature extractions, background subtraction, image reconstructions, and 

image restoration.  However each dictionary makes a compromise between 

robustness, computational cost, implementation complexity, and signal representation 

quality.  The choice of the dictionary depends on the application and its constraints.  

For example, in real time signal processing application such as video playback the 

computation cost and signal reconstruction time may supersede the improvements 

gained in signal reconstruction quality and compression.  However, the compression 

ratio is more important than the signal coding time when transferring data over a 

network because the computational cost can be easily absorbed by the sending and 

receiving nodes.  The reduced file size will increase the transmission capacity and 

reduce the transmission time which is especially useful on wireless networks with 

limited bandwidth.  

The objective in image compression is to compress the image. The successful 

dictionary based compression coding algorithm will use the given dictionary, either a 

predefined dictionary or image-based adaptive dictionary, and find an optimal sparse 

solution to the signal representation problem shown in equation (1.1).  The sparsity is 

measured using L0-norm, which counts the number of non-zero coefficients in the 

representation vector.   However, the dictionary that provides the sparsest solution 

may not necessarily be the best dictionary for compression because the cost of storing 

the dictionary must also be included.  Thus the predefined dictionary is preferred for 

compression applications because the predefined dictionary can be stored more 



 

 4 

efficiently than an image-based dictionaries and it is likely to have a better 

compression ratio. 

 Y DX  (1.1) 

Feature extraction, classification and pattern recognition applications require a 

dictionary that will highlight relevant features of the signal and diminish insignificant 

features.  In these applications the complexity of the dictionary generation is generally 

not a concern and the image-based adaptive dictionaries may be the best choice.   

The success of the application depends on selecting the best suited dictionary 

for the application which may be an image-based adaptive dictionary generated 

through sparse coding methods or a predefined dictionary generated using 

mathematical functions. 

1.1 Motivation 

Signal processing applications such as compression, image de-noising, and 

pattern recognition are embracing algorithms and methods using dictionaries in hopes 

of improving the performance of the application.  This has led to the growing interest 

into the types of dictionaries that can be used for each application. There are two 

categories of dictionaries, the predefined dictionary and the signal-based adaptive 

dictionary. Currently, existing predefined dictionaries are primarily based on 

transforms such as the DCT, Haar, Gabor, Ricker and other wavelet dictionaries.  The 

signal-based adaptive dictionary resulting from sparse coding algorithms have shown 

improved signal reconstruction quality when compared to the DCT dictionary [6] in 

image de-noising application.  However, the signal-based adaptive dictionaries are 
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neither robust nor simple to create when compared to the predefined dictionaries.  

Due to the time consuming learning process, the computational complexity involved 

in creating the dictionary and the added storage requirements involved with 

representing the entire dictionary; the signal-based adaptive dictionaries should be the 

last resort where a suitable predefined dictionary is not available to provide the 

expected results.  The advantage of a predefined dictionary is that unlike the signal-

based dictionary, the entire predefined dictionary does not have to accompany the 

representation vector to reconstruct the signal.  Therefore, it is effective in 

compression and data transmission applications since the predefined dictionary can be 

recreated at the receiving side with minimal information. This has contributed to the 

success of the predefined DCT dictionary in image compression. There is still a high 

demand to improve the compression ratio and image reconstruction quality in high 

resolution images. This demand has increased interest in the signal processing 

community on the type of dictionaries and algorithms that can be used to improve the 

compression performance by: 

1. Increasing the signal reconstruction quality. 

2. Improving the compression ratio.  

3. Reducing the signal coding time. 

In this thesis, we will examine predefined dictionaries and signal coding 

algorithms that can be used for image compression.  The main objective of the thesis 

is proposing alternatives to existing techniques to improve compression and signal 

reconstruction quality at the expense of signal coding time.  
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1.2 Research objective 

Signal compression can be achieved by solving the sparse constrained signal 

representation problem which can be stated as an optimization problem.  Given any 

signal Y, and a dictionary D, the objective is to find a representation vector X with the 

minimal number of non-zero coefficients that minimizes the signal representation 

error.  A suitable minimization problem that imposes a sparse constraint is shown in 

equation (1.2) for an approximation of the signal.  The sparse constraint is achieved 

by minimizing the L0-norm of the representation vector subject to the additional 

constraint of minimizing the signal representation error.  The L0-norm counts the 

number of non-zero coefficients in the vector.  The number of non-zero coefficients 

is also referred to as the number of terms in this thesis.  The sparse constraint can be 

relaxed by using the L1 or L2 norm instead of the L0 norm, which has been used in 

Lasso signal coding algorithms but in this thesis we will maintain the strict L0 norm 

constraint used in the OMP signal coding algorithm.  

 
0 2

min     such that   x x Y DX    (1.2) 

Given the optimization problem the following four objectives arise: 

1. Find a dictionary that allows the signal to be sparsely represented. 

2. Increase the signal representation quality by minimizing the error in the 

reconstructed signal. 

3. Minimize the computational cost involved in finding the required 

dictionary. 
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4. Minimize the computational cost of finding the signal representation vector 

for given the dictionary. 

Image-based adaptive dictionaries using sparse coding algorithms will satisfy 

the first two objectives since the sparse representation constraint is inherently 

included in the dictionary learning process.  The image-based adaptive dictionary is 

expected to reproduce the signals within the training set and other similar signals 

outside the training set with exceptional reconstruction quality which would satisfy the 

second objective [7].  However, the cost of producing the image-based adaptive 

dictionary using sparse coding is the major setback and it may not be worth the time 

and resources required if the desired signal representation quality can be achieved with 

a predefined dictionary.   

Thus we have proposed alternatives to the existing predefined dictionary and 

image-based adaptive dictionaries to alleviate some of the limitations of the existing 

techniques. The main contribution of the thesis can be summarized as follows: 

1. The existing predefined dictionary such as the DCT dictionary is 

inefficient at representing transient signals while the Haar dictionary is 

inefficient at representing smooth signals.  We propose a hybrid 

dictionary composed of the DCT atoms and additional nonlinear 

function such as the polynomial, boxcar, exponentials, and rational 

functions.  The hybrid dictionary with the additional nonlinear atoms is 

able to reconstruct not only images but also harmonic and non-

harmonic signals efficiently.  The hybrid dictionary makes a good 

compromise between the number of atoms in the dictionary and its 
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ability to reconstruct a variety of signals.  It is also able to make a good 

compromise between its ability in representing smooth signals and 

transient signals.  The drawbacks of the hybrid dictionary are the 

additional storage cost to describe the dictionary, the additional 

computation cost to generate the dictionary and code the signal. 

2. The second contribution of the thesis is the optimized predefined 

dictionary.  We present an evolutionary algorithm to optimize the 

dictionary generator to maximize the peak signal to noise ratio on the 

training set.  The optimized DCT dictionary has improved signal 

reconstruction quality compared to the existing over complete DCT 

dictionary generated through fixed phase shifts. The optimized 

dictionary is intended as an alternative to image-based adaptive 

dictionaries.  The benefit of the optimized dictionary is that the entire 

dictionary is not required to reconstruct the image; instead we only 

require a few additional parameters to describe the dictionary.  The 

optimization process increases the cost of generating the dictionary and 

should be used in applications that emphasize the reconstruction quality 

over the computational cost.  The optimized dictionary does not incur 

additional cost to code the signal. 

3. The third contribution is the optimized hybrid dictionary generated 

using the optimized predefined dictionaries along with a dictionary 

filtering algorithm.  Heavy computation cost is incurred to produce the 

optimized hybrid dictionary but the optimization process significantly 

reduces the size of the dictionary. The optimized hybrid dictionary 
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improves the signal coding time because the signal coding time is 

proportional to the number of atoms in the dictionary. This alternative is 

proposed for applications that emphasize signal reconstruction quality 

over computational cost. 

4. The forth contribution is the time-shifted orthogonal matching pursuit 

(TsOMP) signal coding algorithm. The TsOMP is inspired by the phase 

shifting methods used in the DCT dictionaries.  Initially, we generated 

the time-shifted polynomial functions to form a hybrid dictionary.  

However, this requires a time-shifted implementation for all the different 

types of atoms in the hybrid dictionary such as the rational and 

exponential function atoms.  To ease implementation and allow for 

greater flexibility, we generated the time-shifted atoms in the signal 

coding algorithm instead of the dictionary generation algorithm.  During 

our experiments, the TsOMP algorithm has shown improvements in 

both hybrid dictionary and a simple image-based dictionary.   

 

1.3 Thesis Outline 

The thesis can be split into 3 sections; the first part will include a literature 

review on existing techniques and algorithms that can be used to solve the sparse 

constrained image reconstruction problem.  The second part containing the major 

contributions of the research work will include the algorithms and methods to 

produce the hybrid dictionary and evaluate its effectiveness.  Finally the third section 
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will conclude the thesis by suggesting future extension of this work.  The detailed 

chapter overview of the thesis is as follows.   

The first section is composed of 2 chapters.  Chapter 2 will include background 

information on the influential research works that have contributed to the evolution 

from transform based signal processing to dictionary based signal processing 

including a survey on commonly used dictionaries such as the DCT dictionary, the 

wavelet based dictionaries, and image-based adaptive dictionaries.  Chapter 3 will 

continue the literature review with a brief discussion of two prominent signal coding 

algorithms, the matching pursuit algorithm (MP) and the orthogonal matching pursuit 

(OMP) algorithm. 

The second section is composed of 4 chapters containing the major 

contribution of the thesis.  Chapter 4 will provide an intuitive reasoning for adding 

the additional nonlinear atoms to the DCT dictionary to form a hybrid dictionary. 

Chapter 4 will also contain experiments to evaluate the effectiveness of the hybrid 

dictionary.  Chapter 5 will introduce the particle swarm optimization technique that 

will be used to optimize the predefined dictionaries. Chapter 6 will propose the hybrid 

dictionary optimization algorithm that can be used to reduce the size of the dictionary 

and improve signal coding time.  The time-shifted OMP algorithm is presented in 

chapter 7.  The time-shifted OMP algorithm can be used in conjunction with either 

the predefined or signal-based dictionaries to improve signal representation quality.  

We have suggested both dictionaries and algorithms that improve compression 

and image reconstruction quality but all of our algorithms incur additional cost.  Our 

proposed technique can be used in applications like medical image compression where 

the main concern is the quality of the image reconstruction and not the computational 
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cost of the algorithms.  We have shown through image-reconstruction experiments 

that the proposed techniques are superior to existing methods because of the 

improved image reconstruction quality verified by the peak signal to noise ratio and 

through visual inspection of the reconstructed image.  However we require an in-

depth cost analysis study to determine the limitations of the proposed algorithms.  

 Section 3 contains chapter 8 that will present a summary of the presented 

work and extensions of the thesis. 
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CHAPTER 2 

A SURVEY: FROM TRANSFORMS TO DICTIONARIES 

 

There are two types of dictionaries, a predefined dictionary and the signal-

based adaptive dictionary.  

1. The predefined dictionaries use mathematical models or signal specific 

properties to construct the atoms of the dictionary.  The atoms of the 

dictionary are usually generated through frequency analysis, or wavelet 

based transforms that extract the harmonic nature of signal. The 

frequency analysis based dictionaries usually lack the ability to sparsely 

represent asymptotic and transient signals.  

2. Signal-based adaptive dictionaries are generated using training samples 

from the signal in conjunction with a sparse coding algorithm. The 

dictionaries are capable of sparsely representing the training data and 

similar samples outside of the training set.  Examples of training data for 

the learning process are small patches of an image or a collection of 

images. 

Many of the image processing applications still rely on predefined dictionaries. 

However in the recent years; the adaptive dictionaries have been gaining popularity in 

scholarly research. The following sections will provide a brief overview of some of the 
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predefined dictionaries based on transform analysis starting with the discrete cosine 

transform. 

2.1 Discrete Cosine Transform (DCT) 

The DCT is used in a wide variety of science and engineering applications, 

from lossy compression of audio (e.g. MP3) and images (e.g. JPEG) to spectral 

methods for the numerical solution of partial differential equations.  The DCT 

dictionary is ideal because it can be easily implemented by collecting the discrete 

cosine functions of varying frequency.  There are 4 common variation of the DCT 

transform of which DCT-II is the most prominent introduced by N.Ahmed, 

T.Natarajan and K.R.Rao [8]. The DCT-II is shown in equation (2.1), where the signal 

y has a finite length m and the maximum number of non-zero coefficients is limited 

by N.  The DCT-II transform can be organized in the form of a dictionary matrix by 

selecting the cosine function as the column vectors.  The dictionary is a matrix of size 

mxNR  where m is the number of rows determined by the size of the signal to be 

represented and N dictates the number of atoms in the dictionary.  

 

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The DCT can now be restated as a linear combination of the DCT dictionary 

without any loss of information.  The coefficients of the DCT transform can be 

grouped together in a column vector.  Thus equation (2.1) and equation (2.3) are 

http://en.wikipedia.org/wiki/Lossy_compression
http://en.wikipedia.org/wiki/Audio_compression_(data)
http://en.wikipedia.org/wiki/MP3
http://en.wikipedia.org/wiki/Image_compression
http://en.wikipedia.org/wiki/JPEG
http://en.wikipedia.org/wiki/Spectral_method
http://en.wikipedia.org/wiki/Spectral_method
http://en.wikipedia.org/wiki/Partial_differential_equations
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identical.  An over complete dictionary requires additional constraints such as 

minimizing the number of non-zero coefficients in the representation vector to 

provide a unique solution.  The benefit of an over complete dictionary is the increased 

flexibility and improvements in the reconstructed signal quality.  There are two ways 

to generate an over complete DCT dictionary the first method is to take small 

frequency steps and the second method is to perform a phase shift. A simple 

implementation of the phase shifted DCT is shown in equation (2.4), which allows for 

the frequency step size and phase step size to be selected independently.        

    1 2 1 2[ ...] ...DCT DCTY y y D a a D A  (2.3) 

 ( , )

1 2
cos   where np =0,1.N 1

2pPI DCT k nN n p pD n k n
N Np

 
 

  
     

  
(2.4) 

2.1.1  2-D DCT Transform 

One dimensional DCT dictionary is useful for signals such as audio but still 

images are 2 dimensional and may be handled better with a 2D DCT dictionary.  

Since most image processing application usually works on small square patches, the 

2D DCT dictionary may perform better.  The typical size of a patch is an 8x8 pixel 

block. Intuitively, the one dimensional function is unable to capture the correlation 

along the two axes of the image patch as well as a two dimensional function.  The 

atoms of a 2D DCT dictionary is generated using eq. (2.5).  The 2D DCT atom needs 

to be reshaped into a column vector, just like the image patches, to format the signal 

and dictionary in the desired form shown in equation (2.3).  



 

 15 

 1 1 2 2

1 2

1 1
cos cos

2 2
PI DCTD n k n k

N N

 


      
        

      
 (2.5) 

The standard 1D DCT dictionary atoms with 64 elements reshaped into an 8x8 

patch is shown in Figure 2-1 and Figure 2-2 shows the 2D DCT dictionary atoms as 

8x8 patches.   The patches generated using the 2D DCT atom have slower transition 

than the corresponding 1D DCT atoms and it captures the correlation between the 

neighboring pixels better.  The slow transitioning behavior may help the 2D DCT 

dictionary in reconstructing smooth continuous patches but it may hinder its ability to 

represent sharp transitions around the boundaries of the patches.  The harmonic 

behavior of the DCT atoms may also cause poor signal reconstruction quality around 

each patch boundaries.  Akin to the 1D DCT dictionary one can produce an over 

complete 2D DCT dictionary by applying the same principles. 

 

 

Figure 2-1 Sample 8x8 pixel patches using 1D DCT Atoms 



 

 16 

 

 
Figure 2-2 Sample 8x8 patches using 2D DCT Atoms 

 

2.2 Wavelet Transform based dictionaries 

Prior to 1930, signal processing applications primarily used Fourier analysis. 

However in 1909, Alfred Haar first introduced a sequence of rescaled discrete square 

wave functions now known as the Haar wavelet.  The Haar sequence was later used in 

1930 by Paul Levy, a physicist, to represent small complicated signals.  Paul Levy’s 

work showed that the Haar sequence is able to represent the Brownian motion more 

accurately than the Fourier series[5]. In 1984, the signal processing community had a 

breakthrough with the pioneering work done by Grossman and Morlet [9], in which 

they proposed to expand and create a family of functions by translation and dilation 

of a single function referred to as the mother wavelet.  Additional work by Stephane 

Mallet, Yves Meyer and Ingrid Daubechies became the corner stone of wavelet 
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analysis.  The basic theory of the wavelet analysis is to take an elementary wave 

function and create a family of functions by dilation and translation.   The family of 

discrete wavelet functions is generated using eq. (2.6) for the selected elementary 

function  .  The detailed discussion of the wavelet analysis, such as the prerequisites 

of the elementary function and discussion on the scaling functions is well beyond the 

scope of this thesis and the reader is directed to the literature [10-13].  However, 

choosing the right mother wavelet enables sparse representation of transient signals 

such as percussion sounds in audio and sharp transitions in images.   Thus, this report 

will limit itself to some examples of wavelets used in image processing applications 

like the Haar, Gabor, and Ricker wavelets.   

 , /2

1
( )   where =a b m

k b
k t

aa


  

 
  

 
 (2.6) 

2.2.1 The Haar wavelets 

The Haar sequence was first introduced by Alfred Haar in 1909 and is the 

simplest of the wavelets.  The elementary function is a square wave shown in equation 

(2.7).  For practical implementation the general discrete Haar transform matrix ith row 

is usually generated via equation (2.8) [14].  The Haar dictionary is produced by 

transposing the Haar transform matrix.  There is limited literature on generating an 

over complete Haar dictionary, and the basic Haar dictionary may not be adequate for 

sparse representation of all signals.  Thus, we had added sampled atoms using 

equation (2.7) to generate the over-complete Haar dictionary. The Haar wavelets have 

http://en.wikipedia.org/wiki/Transient_(acoustics)
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shown promising results in image compression and image processing applications 

[15].  


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 (2.8) 

2.2.2 Gabor wavelet 

The second wavelet of interest is the Gabor wavelet which has been 

successfully used in corner detection, pattern extraction, blob detection, facial 

recognition and various other image processing  applications [16] but the ability of the 

Gabor wavelets in compression has not been fully explored.  The simplified 1D 

Gabor wavelet is shown in eq. (2.9) where only the real part of the Gabor wavelet is 

used to simplify implementation.  The DCT atoms can be easily produced using the 

Gabor wavelet by setting alpha to 0; however to verify the value of the Gabor atoms, 

the DCT atoms will not be included in the Gabor dictionary.  The over complete 
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Gabor dictionary is generated by sampling the time-shifted Gabor functions at a 

specified sampling rate.  

 
2 2 2 22( ) ( ) cos(2 )a t j ft a tt real e e e ft     (2.9) 

2.2.3 Ricker Wavelet 

The Ricker wavelet uses the second derivative of the Gaussian function as the 

elementary function. The Ricker wavelet has had limited use in image processing 

applications, it has been used in blob detection and feature extraction. However, just 

like the Gabor wavelets the Ricker wavelets has not been used in compression.  The 

mother wavelet function is shown in equation (2.10).  The over-complete Ricker 

dictionary will be generated by sampling the time-shifted Ricker function at a 

sampling rate.   

  
221

( ) 1 att t e
a

    (2.10) 

2.3 The Benefits of a Dictionary 

The transition from transform based processing to dictionary based processing 

started in the 1990’s.  The work done by Mallet and Zhang in 1993 showed a novel 

scheme of sparse representation by using a subset of functions from a general over 

complete dictionary of functions [17].  The paper on Basis Pursuit by Chen, Donoho 

and Saunders proposed an algorithm that can code a signal using a given dictionary, 

effectively separating the task of designing the dictionary from the task of coding the 



 

 20 

signal [18].  Since the two tasks were separated, many dictionaries and signal coding 

algorithms have been proposed.  The initial dictionaries were inspired by the existing 

transforms like the DCT, and Haar transforms.  Currently, one of the most popular 

research topics in image processing is the generation of image-based adaptive 

dictionaries.   However, the predefined dictionaries are still widely used in many image 

processing applications and remain the benchmark for scholarly research due to their 

simplicity, efficiency and performance.   

2.4 Image-based adaptive dictionaries 

The pioneering work in the area of dictionary learning was provided by 

Olshausen and Field in 1996 [19], where the authors trained a dictionary, from a 

number of natural images, capable of sparsely representing small image patches from 

the training set.  The advantage of image-based adaptive dictionary is its ability to 

provide a signal specific dictionary that can achieve excellent results.  However, the 

dictionary learning process is a time consuming process and the new developments in 

the field are focusing on algorithms to produce a structured dictionary quicker.  The 

dictionary learning process is an iterative process that can be decoupled into 2 parts. 

The first part of the dictionary learning process is the sparse coding of the signal using 

an initial dictionary and the second part is to update the dictionary using the sparse 

vector from the first step.  The generic dictionary learning algorithm is shown in 

Algorithm 2-1. 

Algorithm 2-1 Dictionary learning algorithm 

1. Initialize a dictionary with N atoms 

2. Use an algorithm to represent the signal over the given dictionary and 



 

 21 

cost constraint. 

3. Use an algorithm to update the dictionary using the signal 

representation vector from step 2. 

4. If dictionary has not converged go to step 2. 

 

The method of optimal directions (MOD) algorithm was introduced in 1999 by 

Engan et al. [20] and is among the earliest algorithms to solve the dictionary learning 

problem.  The MOD algorithm solves the minimization problem in eq. (2.11) where xi 

is the ith column of X.  The MOD algorithm specifies the dictionary update rule as the 

analytical solution to the quadratic problem given by D YX  where X 
is the 

Moore-Penrose pseudo-inverse of X.  The MOD does not specify the signal coding 

algorithm.  The MOD algorithm suffers from the high computational cost required 

for the matrix inversion used to update the dictionary.  Since the introduction of the 

MOD algorithm there has been a variety of algorithms introduced to speed up the 

learning process.  In 2005, M. Ahoran, M. Elad, and A. Bruckstein [21] presented the 

K-SVD algorithm which solves the same minimization problem as the MOD 

algorithm but reduces the computational cost by avoiding the matrix inversion by 

opting to update the dictionary one atom at a time.  The K-SVD algorithm improves 

the speed of the learning process but it does not overcome all the drawback of the 

MOD algorithm.  The high non-convexity nature of the dictionary learning problem 

can trap both the MOD, and K-SVD algorithms in local optimums and saddle points 

producing inefficient dictionaries.  Also, the algorithms have been shown to be 

effective in small image patches but the effectiveness of adaptive dictionaries in  large 

data sets have not been extensively studied yet.   
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2

, 0
min   subject to  D X iY DX x L i    (2.11) 

2.5 Other Dictionary Learning Algorithms 

There has been a growing interest in dictionary learning algorithms that can 

handle large data set.  The online algorithm presented by J. Mairal, et al. in [22] used 

the L1-norm minimization for the sparse coding problem and it was capable of 

handling large data set.  The report showed a dictionary that was learnt from a large 

12Mp image for inpainting.  Inpainting is the process of removing text from images.   

The algorithm presented in [23] solves the dictionary learning problem using 

the linear gradient and adaptive gradient approach however the proposed algorithm 

suffers from some stability and convergence issues.   

Currently existing learning algorithms take a long time to generate the 

dictionary and the resulting dictionaries are not robust which limits its ability in 

compression.   

2.6 Chapter summary    

Chapter 2 contained a literature review highlighting some of the influential 

work from the image processing community.  It also described the transform based 

signal processing and the dictionary based signal processing techniques.  The first 

section of the chapter was dedicated to the DCT, Haar, Gabor and Ricker transforms.  

The later sections of the chapter discussed the current research topics in the field of 

dictionary learning.  
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CHAPTER 3                                                                          

SPARSE CONSTRAINED SIGNAL CODING ALGORITHMS  

 
 Dictionary based signal processing has decoupled the task of finding a 

dictionary from the signal coding task.  Chapter 2 described some of the dictionaries 

that are currently being used in sparse image modeling.  This chapter will focus on the 

sparse signal coding algorithms.  Suppose a signal  my R  has a sparse representation 

in the dictionary  mxpD R , then it can be represented by y Dx  where x has fewer 

than m nonzero coefficients.  If the dictionary has more columns than rows (p >> m), 

then the dictionary is over complete.  An over complete dictionary contains additional 

atoms allowing for many solutions.  The sparsity constraint reduces the number of 

possible solutions but it does not enforce a unique solution.  The sparsity constrained 

signal representation problem is a combinatorial and NP-hard problem. In order to 

save time, we accept suboptimal solution and make a compromise between 

computational cost and solution quality.  There is a high demand for fast, reliable, 

robust, and numerically efficient sparse signal coding algorithms. The two prominent 

approaches are the L1-norm minimization and the greedy algorithms based on L0-

norm minimization.  The L1-norm minimization based algorithms are generally 

slower and more robust compared to greedy algorithms. 
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3.1 Matching pursuit (MP) 

In 1993 Mallat and Zhang proposed a greedy algorithm, known as the 

matching pursuit algorithm, capable of finding a representation vector for signals 

from a large over complete wavelet dictionary [17].  Following that paper in 1995, 

Mallat and Bergeaud successfully showed the matching pursuit algorithm was able to 

sparsely represent an image using a given dictionary [24].  The matching pursuit 

pseudo algorithm to solve the problem of finding L non-zero coefficients to represent 

the signal y, given a dictionary D with p atoms is shown in Algorithm 3-1.   

Algorithm 3-1 Matching Pursuit pseudo algorithm 

1. Initialization vector : x[ 1:p ] = 0 

2. Initialize residual error,  r = y 

3. While 
0

x L  

a. i = max ( ( ))T

i iabs d r  

b. [ ] [ ] T

ix i x i d r   

c. ( )T

i ir r d r d   

4. End while 

 

The MP algorithm is a bottom up search that finds locally best solution at each 

stage for the minimization problem 
2

02
min   s.t. x y Dx x L  ; however it does 

not guarantee an optimal solution.  The algorithm may get trapped in a local optimal 

solutions and saddle points especially if the dictionary is an over complete non-

orthogonal dictionary. The additional atoms in the dictionary increases the chances of 
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the algorithm getting trapped in local optimal solutions but the matching pursuit 

algorithm has a good compromise between signal coding time and solution quality.  

3.2 The orthogonal matching pursuit 

The orthogonal matching pursuit algorithm was presented by Krishnaprasad, 

Rezaiifar and Pati in 1993 inspired by the matching pursuit algorithm [25].  The main 

contributions of the OMP algorithm are: 

1. The residual and the coefficients are recalculated prior to the next 

iteration. 

2. Each atom can only be selected once. 

 The OMP algorithm is an improvement to the MP algorithm since it runs 

faster, and consistently provides better results.  The OMP pseudo algorithm is shown 

in Algorithm 3-2.  

Algorithm 3-2 The orthogonal matching pursuit algorithm 

1. Initialize vector :  x[ 1:p ] = 0 

2. Initialize residual error :  r = y 

3. Initialize selected set S = {Null set} 

4. Initialize unused set { } for all i=1:punS i  

5. While 
0

x L  

a. 
2

2
 i s.t min  for all i i unfind ad r i S   

b. Add i to the selected set: { }S S i   
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c. Remove selected atoms from available set: 
C

unS S  

d. Find best fit x from selected set:  ( )[ ] min Sx i y D x   

e. Find remaining error : 
( )sr y D x   

6. End while 

 

3.3 Other under-determined system solvers 

Other notable variations of the matching pursuit algorithm in the recent years 

are the stage-wise orthogonal matching pursuit (StOMP) [26] and regularized 

orthogonal matching pursuit (ROMP).  The greedy pursuit algorithms build up the 

signal approximation one step at a time, selecting the locally optimal solution on each 

step. The matching pursuit and its variation is not the only type of algorithms that can 

be used to solve the signal coding problem.  There are many algorithms in literature 

that use the L1-norm minimization such as the FOCUSS algorithm, to solve the 

sparse representation problem.  

3.4 Chapter Summary 

Chapter 3 introduced the MP and OMP signal coding algorithms that can be 

used to code a signal using a dictionary.  The MP algorithm is among the first 

algorithms to offer a solution to the sparse coding problem.  Both MP and OMP is a 

bottom up search algorithm that can offer an optimal solution provided the dictionary 

is orthogonal.  The OMP algorithm has a well-balanced compromise between signal 

coding quality and execution time when dealing with large over complete dictionaries.  
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Since the introduction of the MP algorithm in 1993, many algorithms have been 

proposed to solve the sparsity constrained signal representation problem; however the 

OMP algorithm is still widely used in literature.  
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CHAPTER 4                                                                                

THE HYBRID DICTIONARY WITH NONLINEAR ATOMS 

 
 Chapters 2 and 3 highlighted some key contribution to the signal processing 

community, from the early innovation in transform based signal processing to the 

current techniques based on dictionaries.  The dictionary based signal processing is 

still in its infancy, and many scholars are still experimenting with different types of 

dictionaries.  There have been two competing ideas for the dictionary generation: the 

adaptive dictionary and the predefined dictionary.  One of the growing interests is to 

generate a hybrid dictionary that combines the benefits of both the predefined 

dictionaries and adaptive dictionaries.  The signal-based adaptive dictionaries have 

outperformed predefined dictionaries when tested on the training samples but it has 

not been extensively studied in large problems.  The undesirable traits of adaptive 

dictionaries are: 

1. The high computational cost incurred in producing the dictionary. 

2. The dictionary may not represent signals outside the training set with the 

same reconstruction quality.  Existing adaptive dictionaries have not 

been extensively studied, thus we cannot make a claim on how robust 

they are.  

3. The dictionaries are not flexible because they cannot easily expand to 

accommodate varying problem size.   For example a dictionary that is 
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trained to produce 8x8 pixel patches cannot be used to represent 16x16 

patches or 4x4 pixel patches without retraining the dictionary. 

4. In order to recreate the signal the entire dictionary must accompany the 

sparse vectors.  This increases the storage requirements and reduces the 

compression efficiency. 

The benefits of a predefined dictionary are: 

1. Simple mathematical functions to generate the dictionary, which can be 

encoded as an algorithm allowing the encoded signal to be reconstructed 

with only a few  additional parameters to identify the type of dictionary 

and the signal representation vector. 

2. Predefined dictionaries such as the DCT and Haar are robust. 

3. Since the dictionaries are mathematical functions, they can be easily 

modified to accommodate varying problem size.  

We propose a set of rules to generate a predefined hybrid dictionary that improves the 

signal representation quality when compared to a DCT and wavelet based dictionaries.   

4.1 The limitations of the DCT and wavelet based dictionaries 

The DCT dictionary is apt at sparse representation of harmonic signals.  The 

Haar and the Gabor dictionaries are well suited for representing transient signals.  The 

DCT and Haar functions are easily visualized thus the Ricker and Gabor function are 

shown in Figure 4-1 and Figure 4-2 respectfully.  All of the dictionaries are composed 

of functions that have adjustable parameters and depending on the selected 

parameters the resulting dictionary atoms will change.  This can be seen in Figure 4-3 
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showing the Gabor atoms generated by varying alpha without changing the frequency 

or region of interest.  The performance of the dictionaries can be improved with the 

careful selection of these parameters.  The Gabor function is unique because: 

1. It is able to create a family of harmonic functions by setting alpha to 0 

with a non-zero theta.  This is the DCT dictionary atoms. 

2. It can create a family of exponentials by setting theta to zero and setting 

a nonzero alpha. 

3.  It can create a growing harmonic or shrinking harmonic signal by 

selecting the appropriate region of interest, alpha and theta parameters. 

One of the difficulties in using the Gabor dictionary is selecting the optimal 

parameters to generate the Gabor atoms.  Since, the harmonic functions are already 

included with the DCT dictionary the Gabor dictionary will not include the DCT 

atoms. The Gabor and Ricker dictionaries are generated by selecting a range of values 

because well-established parameter set is not available for compression application in 

literature for these two transforms. 
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Figure 4-1 Normalized Ricker function with alpha = pi/4 

 

Figure 4-2 Normalized Gabor function with alpha = pi and theta = 0 
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Figure 4-3 Normalized Gabor function with varying alpha 

 

To illustrate the limitation of the existing dictionaries, consider reconstructing a 

non-harmonic signal such as a polynomial, exponential or logarithmic function using 

only harmonic functions such as the DCT atoms.  Intuitively, the harmonic atoms will 

not be efficient.  We can verify this limitation through an example.  Let us consider 

the sparse representation of the discrete test signal 

3
10 50

[ ] 4 5 5cos
64 64

k k
y k

   
      

   
 for the first 64 elements using only 4 non-zero 

coefficients in the representation vector.  The discrete test signal is shown in Figure 

4-4.  The performance of the dictionaries is measured using the mean square error 

(MSE) of the reconstructed signal which is also shown in Table 4-1.  The mean square 

error is calculated using equation (4.1).  The MSE is a good indicator of the dictionary 

performance because it calculates the average error per data point.  The Ricker 
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dictionary had a MSE of 325.04 while the DCT dictionary had an MSE of 10640, 

which is more than 3273%.  The DCT dictionary performed poorly because it was 

unable to represent the quick transient behavior at the signal boundaries. The DCT 

dictionary is superior to the Haar dictionary at representing smooth harmonic signals 

but it is inefficient at representing transient signals. The Gabor and Ricker dictionaries 

lack a well-defined parameter set to create a structured dictionary for compression 

application.  Both the Ricker and Gabor dictionary were generated using a wide range 

of parameters increasing the overall size of both dictionaries.  The Gabor and Ricker 

dictionaries have more than 500 atoms while the DCT dictionary has 129 atoms 

making the Gabor and Ricker dictionaries approximately 4 times larger than the DCT 

dictionary.  The increased dictionary size will increase computational cost effectively 

increasing the time required to generate the dictionary and code the signal. The 

additional computation cost is insignificant on a mid-range desktop computer, but it 

may become significant if implemented on processors with limited processing power 

such as Asics or microcontrollers. 

 
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Figure 4-4 The discrete polynomial test signal 

  

Table 4-1 Mean square error of the reconstructed polynomial test signal  

Dictionary Type Number of Atoms MSE  

Dct 129 10640 

Gabor 513 5731.5 

Haar 128 430.09 

Ricker 557 325.04 

Combined 1263 325.04 
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4.2 Addition of nonlinear atoms  

The same test signal 
3

10 50
[ ] 4 5 5cos

64 64

k k
y k

   
      

   
 can be sparsely 

represented by including a polynomial dictionary.  The simplest polynomial atoms are 

in the form of 
ct . The polynomial atoms can easily grow out of bounds for large 

values of t and this problem is alleviated by limiting the values of t between a 

reasonable range such as -2 and 2.  The sparse representation test is repeated again but 

with the addition of the polynomial atoms to the existing dictionaries.  Each 

dictionary has 10 new polynomial atoms generated using 
2 3 10, , ,...t t t t , for equally 

spaced t between -1 and 1 to create 64 points.  The test are shown in Table 4-2 

highlighting the improvements in signal reconstruction quality especially for the DCT-

polynomial hybrid dictionary which can reconstruct the signal with an MSE of 3.53.  

The DCT dictionary without the polynomial atoms had an MSE of 10640.  The 

polynomial function is versatile because low order polynomials are able to describe 

many non-harmonic smooth signals, and the higher order polynomials can handle 

transient signals.  The inclusion of the polynomial atoms to the DCT dictionary 

improves the DCT-polynomial hybrid dictionary’s ability to handle smooth non-

harmonic signals.  The following sections will formulate an algorithm to generate a 

structured polynomial dictionary.  
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Table 4-2 MSE of reconstructed polynomial test signal with hybrid dictionary 

Dictionary Type Number of Atoms MSE  

DCT-Polynomial Hybrid 139 3.53 

Gabor-Polynomial Hybrid 523 12.1 

Haar-Polynomial Hybrid 139 11.26 

Ricker-Polynomial Hybrid 567 12.16 

Polynomial alone 10 11.70 

 

4.2.1 The 1-D polynomial dictionary atom generator 

The basic polynomial dictionary is composed of polynomial atoms without any 

translation or dilation, generated by the function 
ct , where we are able to limit the 

maximum polynomial order and region of interest depending on the data set.  This 

ensures that any polynomial function with a lower order can be represented using the 

basic polynomial dictionary.  Once the basic polynomial functions are included, we 

propose to add a few dilated and translated polynomials generated using the generic 

polynomial generator shown in equation (4.2).  The flexibility of the generic 

polynomial function generator adds additional storage and computation cost because 

to describe the polynomial dictionary, we now require each coefficient that was used 

to generate the polynomial dictionary.  For example if there are 100 quadratic 

polynomials with 2 coefficients each in the dictionary, then we require a minimum of 

200 coefficients to describe the dictionary.  This inefficiency affects its ability in 

compression. 
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We propose using a list of coefficients with a circular shifting algorithm to 

generate a family of polynomial atoms. The shifting algorithm will increase the cost of 

generating the dictionary but it allows for the inclusion of vital functions without the 

need of describing each polynomial in the dictionary.  The storage requirements could 

be further reduced, if we generated the list of coefficients using an incremental step 

size scheme such as 0ia a  .  By using the fixed incremental step size scheme to 

generate the list of coefficients in conjunction with a shifting algorithm to generate 

the polynomial function; we can describe the entire polynomial dictionary with the 

following information: 

1. The number of data points in the atom. This is required for any dictionary, 

thus it is not an additional requirement if more than one dictionary is added. 

2. The starting coefficient value a0. 

3. The coefficient step size . 

4. The coefficient final value. 

5. The starting region of interest value t0. 

6. The end region of interest value. 

7. The maximum order of the polynomials to be generated. 

The algorithm should create polynomials of the maximum order by selecting 

the coefficients from the list in sequential order.  This will create a structured 

dictionary that can be used in sparse representation model of many smooth signals.  
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The polynomial atom generator is flexible allowing for vital functions to be included 

while minimizing the storage requirements to describe the dictionary. 

4.2.2 The 2-D polynomial dictionary atom generator 

The one dimensional polynomial function generator can be easily modified to 

generate 2D polynomial atoms which may be more efficient at representing images.  

Similar to the 1D polynomial, the basic 2D polynomial function generator will be in 

the form of 
c dx y and to ease implementations x and y will have the same region of 

interest.  Once the basic 2D polynomial functions are generated, more complex 

polynomials can be added using eq.(4.3).  The 2D polynomials will be generated using 

a coefficient selector algorithm which would select the polynomial coefficients from a 

list of numbers. If the hybrid dictionary already contains 1D polynomials than the 2D 

polynomials can use the same set of parameters which would reduce storage 

requirements.  If computation cost is a concern then either the 1D polynomial or 2D 

polynomial dictionary should be selected depending on the cost of the dictionary. 

  

( /2)
( ( /2))

( /2)

( , )
floor c c

i j floor c

i j

i o j floor c

P x y a x a y 

 

  
   
  
   (4.3) 

4.2.3 The rational atoms 

The inclusion of rational functions will aid the polynomial dictionary in sparsely 

representing asymptotic signals.  All polynomials are rational functions but it is 

intentionally distinguished here because this separation allows for the rational 

dictionary to be defined and included without affecting the polynomial dictionary. If a 
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polynomial dictionary is included in the hybrid dictionary, the easiest rational 

functions is generated with the polynomial atoms using equation (4.4).  Furthermore, 

the rational function in the generic form shown in eq. (4.5)  can be created using the 

same strategies used to create the 2D polynomial atoms.  The coefficients for the two 

polynomials are selected by the coefficient selector algorithm.  The rational function 

has asymptotic behavior which is helpful in representing sharp transitions but it must 

be handled with care to avoid invalid numbers and infinite value.  We resolve this 

issue by limiting the asymptotic points to a predefined maximum and minimum value 

making the function continuous.  
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4.2.4 The root function atoms 

The hybrid dictionary composed of rational and polynomial functions will be 

able to handle a variety of signals with the inclusion of the square root and cubic root 

functions.  The square root dictionary generator is shown in equation (4.6) where the 

absolute value of the polynomial or rational function is used to avoid handling 

complex numbers.  The root function generates a slow moving signal that can help 
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represent smooth gradual signals. The cubic root function generator is shown in 

equation (4.7) and it does not need to take the absolute value of the rational function 

because we restricted all rational functions to be real valued.  
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4.2.5 The boxcar and the shifted square wave function  

The boxcar function is an extension of the delta function that can be used in 

representing transitions and small complicated signals where the rational functions are 

not applicable.  Unlike the delta function which is nonzero at a single point, the 

boxcar function is non-zero within a region which enables it to efficiently represent 

transitions within a small region.  There is a minor difference between the Haar 

wavelet and the step function.  The step function shown in eq (4.8) can be generated 

by translation and dilation of the Haar wavelet in conjunction with the correct 

sampling rate but the generally used Haar wavelet matrix does not include all of these 

functions.  Also separating the boxcar function from the Haar wavelet simplifies the 

implementation of the dictionaries.  The basic boxcar dictionary of a specified width 

can be generated by performing N-circular shifts on the elementary boxcar function 

to produce the remaining atoms of the dictionary. An over complete Boxcar 

dictionary can be generated by combining multiple boxcar dictionaries with distinct 

widths together which is expected to improve its ability in representing transient 
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signals.  However the boxcar dictionary will perform poorly when dealing with 

smooth functions and thus the boxcar dictionary is always used together with either 

the polynomial or DCT dictionary and it is not intended to be used alone. 

The moving square wave dictionary is a dictionary with shifted square waves.  

The dictionary is created by performing N-circular shits on the elementary square 

wave of fixed width.  The moving square wave dictionary is generated just like the 

boxcar dictionary and will contain some atoms from the Haar dictionary.  The 

inclusion of the moving square wave dictionary allows for specific Haar wavelet atoms 

to be included without including the entire Haar dictionary. Occasionally, both the 

boxcar and moving square wave dictionaries will be used together.  The moving 

square wave dictionary is used to aid the polynomial and DCT dictionaries and it is 

not intended to be a standalone dictionary. 
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4.2.6 The generic exponential and logarithmic atoms 

The generic exponential elements are created by taking the exponential value of 

any given function.  Inspired by the Gabor wavelets that have been applied in image 

processing, we decided to produce a dictionary composed of generic exponential 

functions.  The generic exponential elements will be generated using equation (4.9) for 

the polynomial dictionary atoms. Akin to the exponential dictionary atoms, the 

generic logarithmic dictionary atoms are generated using equation (4.10).  The 

inclusion of both the exponential and logarithmic dictionary atoms may aid in 
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representing some complex signals.  However adding the polynomial, rational, 

exponential and logarithmic functions to the hybrid dictionary will increase the size of 

the dictionary and increase the signal coding time.  Therefore, the value of the 

exponential and logarithmic dictionary should be evaluated prior to inclusion.   

 
( )( ) f tt e   (4.9) 

  ( ) log( ( ))t f t  (4.10) 

4.3 The hybrid dictionary  

The important contribution of our work is the hybrid dictionary for sparse 

constrained image reconstruction.  The hybrid dictionary is created by including 

additional nonlinear functions such as the DCT, polynomial, rational, logarithmic, 

boxcar, exponential and the root functions.  The inclusion of the additional functions 

increase the computational cost compared to a DCT dictionary but it is less expensive 

than the image-based adaptive dictionaries.  The hybrid dictionary can select to 

include the proposed functions by providing the parameters to generate the atoms. To 

improve signal coding time, duplicate atoms are removed from the hybrid dictionary. 

The proposed hybrid dictionary can be recreated using a few additional parameters 

making it more efficient than the signal-based adaptive dictionary.  The hybrid 

dictionary outperformed the predefined DCT and Haar dictionaries during our testing 

by providing better signal representation while using fewer non-zero coefficients in 

the representation vector.   
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4.4 Evaluation of the hybrid dictionary 

This section will compare the hybrid dictionary against existing predefined 

dictionaries.  Both harmonic and non-harmonic signals will be used to evaluate the 

dictionaries.  The dictionaries will be simulated using the Matlab on a quad core 2.85 

GHz computer with 16 GB of Ram operating at 1066 MHz.  All algorithms are 

sequential and did not fully harness the parallel computing power that was available. 

The OMP signal coding algorithm was used to evaluate the dictionaries because it has 

a well-balanced compromise between execution time and solution quality when 

dealing with large dictionaries.  The over complete dictionaries used to reconstruct the 

signals are generated using the parameters defined in Table 4-3.   

Table 4-3 Dictionary Generating Parameters for 64 data points 

Dictionary 
Parameter Number of Atoms 

DCT 
Np = 2 129 

Haar 
N/A

 
64 

Gabor 3
0, , , ,

4 2 4
f

  


 
 
 

 

 0.1,0.6,1.1,...4a    

1281 

Ricker  2, 1.5, 1,..., 2a      577 

1D Polynomial  1, 0.5,...1a     

Order = 2 

204 
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Boxcar  2,3width   128 

Hybrid 
DCT :  Np =1 

Polynomial, boxcar, rational 

600 

 

The dictionaries will be evaluated using the peak signal to noise ratio (PSNR) of 

the reconstructed signal calculated using equation (4.11).  The PSNR is the standard 

benchmark ratio used to measure the quality of the reconstructed signal in lossy 

compression methods.  The original data to be compressed is the signal, and the noise 

is the error introduced by the sparse coding process. The PSNR is a good indicator of 

the human perception of the reconstructed signal. In general, a higher PSNR will 

indicate that the reconstructed signal has fewer errors but in some cases it may not 

lead to the best visual image.  This can happen if the large error portions occur in 

patches that are not of interest.  However the PSNR remains a good evaluation tool 

to compare the performance of the dictionaries since all dictionaries are 

reconstructing the same contents.  The second measurement tool is the number of 

non-zero coefficients, referred to as the number of terms, used to represent the signal.  

The compression ratio is inversely proportional to the number of terms in the 

representation vector. 

  10 1020log 255 10log ( ) PSNR MSE  (4.11) 

4.4.1 Sparse constrained reconstruction of simple function  

The three functions shown below are selected to evaluate the dictionaries; the 

first function is a harmonic function, while the last two are non-harmonic function. 
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1. 1( ) cos(9 )y t t  

2. 2

ty te  

3. 2

3 cos(5 )cos(9 )y t t t  

All the test signals are confined between -5 and 5 and are sampled at equal 

spacing to create 64 data points.  Figure 4-5 shows the PSNR of the first test signal a 

smooth harmonic function.  As expected the DCT and the hybrid dictionary that 

contains some DCT atoms perform well.  The first test signal reconstructed with 15 

or more non-zero coefficients using the hybrid dictionary has a PSNR that is 

approximately 20 dB better than the DCT dictionary.  The Haar, Ricker and Gabor 

dictionaries require 45 non-zero terms to reconstruct the test signal with a PSNR of 

65 dB but the DCT and hybrid dictionary can reconstruct the test signal with equal 

quality using only 3 non-zero terms.  When the peak signal to noise ratio is over 50db, 

the error is not readily distinguished by the naked eye. Therefore, the DCT dictionary 

outperforms the hybrid dictionary on this test signal because the DCT dictionary is 

smaller. However the limitation of the DCT dictionary is evident in Figure 4-6 

showing the reconstruction of the second test signal, a non-harmonic smooth signal. 

The hybrid dictionary is able to achieve a PSNR of 60 dB using 20 non-zero terms 

and a maximum of 120 dB using 43 terms but the DCT dictionary is unable to keep 

up as it starts to plateau around 60 dB.  The Ricker and Gabor dictionaries improve 

rapidly and perform better than the other dictionaries as expected because the test 

signal is highly correlated with the dictionary.  The third test signal is a polynomial 

function and as expected the hybrid dictionary obtains the best PSNR as seen in 

Figure 4-7. 
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In conclusion, the DCT dictionary is capable of sparse representation of 

harmonic signals but is inferior compared to both Gabor, and Ricker dictionaries 

when representing exponentials.  The Haar dictionary has difficulties representing 

smooth continuous functions.  However the hybrid dictionary composed of the 

boxcar, DCT, and polynomial functions is able to sparsely represent both transient 

and smooth functions.  These three test signals alone do not validate the hybrid 

dictionary, but it shows that the hybrid dictionary has a good composition of transient 

and smooth signals. 

 

Figure 4-5 PSNR of the reconstructed harmonic test signal 
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Figure 4-6 PSNR of the reconstructed exponential test signal 
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Figure 4-7 PSNR of the reconstructed polynomial test signal 

 

4.4.2 Sparse constrained image reconstruction using small patches 

Inspired by the success of the hybrid dictionary on the tests with simple 

discrete signals, the hybrid dictionary was tested on images.  The first test image is the 

Lena 512x512 pixel image.  The test image is broken into smaller 8x8 pixel patches 

and each patch will contain 64 integers to represent the 8-bit grey tone pixel data.  To 

use the OMP algorithm, each test patch matrix is reshaped into a column vector and 
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sequentially aligned to form the signal matrix.  The sparse representation problem of 

the image is now in the form Y Dx , and the OMP signal coding algorithm can be 

applied. The image can be reconstructed by reshaping the column vectors into image 

patches and then aligning the patches sequentially. 

The peak signal to noise ratio for the reconstructed Lena image is shown in 

Figure 4-8.  The DCT and the hybrid dictionary obtain the best image reconstruction 

when using fewer than 15 non-zero coefficient per patch.  The Haar dictionary 

performs better than the DCT dictionary when using more than 15 terms per patch 

by achieving a PSNR difference of at least 1 dB and a maximum of 7 dB when 

reconstructing the image using 43 terms. The Ricker and Gabor dictionaries plateau 

early and the reconstructed image quality does not improve as the number of non-

zero coefficients in the representation vector is increased.  The Haar, DCT and 

Hybrid dictionaries provide better PSNR as the number of non-zero terms used in the 

reconstruction vector is increased. The PSNR of the reconstructed Lena image using 

the hybrid dictionary is 2dB better than the image reconstructed using the DCT 

dictionary with 4 non-zero coefficients per patch and the PSNR difference between 

the two dictionaries is 18 dB when using 43 non-zero coefficients per patch.  A PSNR 

of 35-50 dB is considered good quality image reconstruction. The hybrid dictionary 

obtains a PSNR of 35 dB using only 10 non-zero terms per patch but the DCT 

dictionary requires approximately 22 non-zero terms per patch.  The DCT dictionary 

requires twice as many coefficients to achieve the same image reconstruction quality. 



 

 50 

 

Figure 4-8 PSNR of the reconstructed Lena image 

 

The Lena image is reconstructed for visual verification of the PSNR plot.  The 

reconstructed Lena image using the DCT and hybrid dictionaries are shown in Figure 

4-9 using 3 non-zero terms and 5 non-zero terms per patch.  The difference in quality 

is easily evident in the 3-term reconstruction and slightly evident in the 5 term 

reconstruction.  The image reconstructed using the DCT dictionary with 3-terms per 

patch has more pixilation around the shoulder, chin and retina area compared to the 

image reconstructed using the hybrid dictionary with 3 non-zero terms per patch.  
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The 5-term DCT dictionary based reconstruction is slightly lighter and has more 

pixilation in the background. 

  

(a) Original Image 
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(a) 3-term DCT reconstruction (c ) 3-term Hybrid reconstruction 

  

(d) 5-term DCT reconstruction (e) 5-term hybrid reconstruction 

Figure 4-9 Reconstructed Lena test image  
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4.4.3 Sparse constrained image reconstruction using large patches 

This following test will measure the impact of increasing the patch size. The 

512x512 grey-tone Lena image was segmented into 8x8 pixel patches for a total of 

4096 patches with 64 integers representing the pixel data per patch.  The hybrid 

dictionary obtained an image reconstruction with a PSNR of 40 dB using only 13 

terms per patch.  However, we may achieve better compression by using larger 

patches because it reduces the total number of patches that need to be encoded.  This 

section will evaluate the effectiveness of the hybrid dictionary on images with larger 

patch size.  This section also demonstrates the benefit of the hybrid dictionary’s ability 

to accommodate varying problem size easily.  Figure 4-10 shows the PSNR of the 

reconstructed image using the DCT and hybrid dictionaries.  The hybrid dictionary is 

the only dictionary that is able to produce a reconstructed image with a PSNR of 40 

dB while using fewer than 62 non-zero coefficients.  The difference in reconstruction 

quality is easily evident when comparing the images that are reconstructed using 13 

non-zero coefficients per patch.  The reconstructed image using the DCT and hybrid 

dictionary is shown in Figure 4-12 and Figure 4-13 respectively.  The image 

reconstructed using the DCT dictionary has pixilation within the patch that is 

transferring from black to light gray.  The patches around the shoulder are a good 

example of this scenario. 

Dividing the image into larger patch size did not improve the compression 

ratio.  We were able to reconstruct the Lena image with a PSNR of 40 dB using 13 

non-zero terms in the representation vector when the image was divided into 8x8 

pixel patches which equates to an equivalent of 52 non-zero terms for an image 
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divided into 16x16 pixel patch.  The larger patches have too much transition causing 

our linear signal coding model to fail.  All remaining tests will have the images divided 

into 8x8 pixel patches.  This experiment showed that the hybrid dictionary maintained 

its performance in larger problems. 

 

Figure 4-10 PSNR of the reconstruct Man test image with 16x16 pixel patches 
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Figure 4-11 Original 1024x1024 Man test image 
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Figure 4-12 Reconstructed Man test image using 13-terms per patch with  a DCT 

dictionary 
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Figure 4-13 Reconstructed man test image using 13- terms per patch with hybrid 

dictionary 
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4.5 Hybrid dictionary robustness test 

Two additional test images are selected to test the robustness of the hybrid 

dictionary.  The first image is a grey-tone image of a primate and the second is an 

RGB image of bell peppers. Both images are 512x512 pixel image and are divided into 

8x8 pixel patches.   

4.5.1 The Primate image 

The PSNR of the primate image reconstruction indicates a similar pattern. The 

hybrid dictionary performs better than the DCT and Haar dictionaries and the Ricker 

and Gabor dictionaries stagnate early and little improvements are seen as the number 

of non-zero terms in the representation vector is increased.  The Haar, DCT and 

hybrid dictionaries all improve the image reconstruction quality as the number of non-

zero terms per patch is increased.  The hybrid dictionary is able to reconstruct the 

primate image with a PSNR of 35 dB using 19 non-zero terms per patch while it takes 

the DCT dictionary 32 terms per patch and the Haar dictionary 37 terms per patch to 

reconstruct the primate image with a PSNR of 35 dB.  The PSNR plot for the 

reconstructed primate image is shown in Figure 4-14.   

Also the original primate image along with the 5-term per patch 

reconstructions using both the DCT and the hybrid dictionaries are shown in Figure 

4-15. One can easily notice the quality difference in the reconstructed image when 

examining the retina of the primate.  The image reconstructed using the DCT 

dictionary has more pixilation while the hybrid dictionary produces a sharper image.  

Also the reconstructed primate image using the hybrid dictionary has a closer 
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resemblance to the original image because it contains more details in the face with 

defined hair lines and a closer color pallet match.  

 

Figure 4-14 PSNR of the reconstructed primate image 
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(a) Original test image of the primate 

  

(b)5-term DCT reconstruction (c) 5-term Hybrid reconstruction 

Figure 4-15  Reconstructed primate images using 5 terms per patch with the DCT and 

hybrid dictionaries 
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4.5.2 The bell pepper image 

The bell pepper test image is a 512x512 pixel RGB color image.  This image 

tests the dictionaries ability to represent sharp transitions.  The original image is 

shown in Figure 4-17.  The image reconstructed using 5 non-zero terms per patch 

with the DCT dictionary is shown in Figure 4-18 and the image reconstructed using 5 

non-zero terms per patch with the hybrid dictionary is shown in Figure 4-19. The 

image reconstructed with the DCT dictionary is inferior to the image reconstructed 

with the hybrid dictionary, especially in the region where the bell pepper creates a 

shadow and the colors are transitioning quickly.  The difference is clearly evident 

when examining the magnified segments of the reconstructed image shown in Figure 

4-20. The PSNR of the reconstructed image also indicates a similar pattern showing 

the hybrid dictionary being able to reconstruct the image with a PSNR of 35 dB using 

only 12 non-zero terms per patch but the DCT and Haar dictionaries both require 20 

non-zero term per patch.   The PSNR of the reconstructed bell pepper image for the 

varying degree of sparsity is shown in Figure 4-16. 
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Figure 4-16 PSNR of the reconstructed bell pepper image 
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Figure 4-17 Original bell peppers test image 
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Figure 4-18 Reconstruction using 5 terms per patch with a DCT dictionary 
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Figure 4-19 Reconstruction using 5-terms per patch with a hybrid dictionary 
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(a) 5-term DCT reconstruction (b) 5-term Hybrid reconstruction 

  

(c) 5-term DCT reconstruction (d) 5-term Hybrid reconstruction 

Figure 4-20 5-term bell pepper image reconstruction magnified  

 

4.6 Limitations of the Hybrid dictionary 

The hybrid dictionary is able to reconstruct a variety of test signals and images 

with better reconstruction quality while using fewer non-zero terms per patch 

compared to both the DCT and Haar dictionaries. The performance gain is due to the 

inclusion of additional nonlinear functions such as the polynomial, boxcar, rational, 

and exponential function.  The inclusion of these functions comes with additional 
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computation cost.  The success of the discrete cosine transform is due to the 

availability of fast algorithms to code the signal.  The DCT can also be implemented 

using hardware because of the well-defined atoms used in the DCT which frees up 

computing power for other tasks.  This is one of the reasons why the DCT-based 

JPEG compression standard is widely used on application-specific circuitry such as 

digital cameras, DVD players, mobile phones, and other applications requiring fast 

response with low computing power.  The DCT is a cost effective solution since the 

cost of additional storage is less than the cost of processing power.  The hybrid 

dictionary will not be a suitable solution for hardware based application such as 

cameras because of the difficulty involved with computing the polynomial, 

exponential, and rational functions using limited computing power.  The hybrid 

dictionary is very flexible and does not have a well defined set of parameters like the 

DCT dictionary which will make it harder to implement on Asic, micro-controllers 

and other low-end microprocessors that are used in portable devices.  

However, there are applications where the hybrid dictionary can be used such 

as archival applications where the emphasis is on compression ratio and not on 

compression time.  The hybrid dictionary can also be used in high quality image 

compression applications such as medical imaging where the reconstruction quality is 

more important than the speed and computational cost of the compression algorithm.  

Another application is in transmission over wireless and other slow networks.  The 

reduced file size allows the file to be transmitted quicker through the network 

reducing the required bandwidth and increasing the transmission capacity effectively 

reducing cost.  The encoding and decoding of the signal can be easily offloaded to the 

computers with reasonable computing power.   
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A simple cost analysis is performed in this section to validate the hybrid 

dictionary. There are costs associated with generating the dictionary, coding the signal, 

and decoding the signal.  We are going to evaluate the cost by measuring the average 

time required to complete each task. Both dictionaries are tested on the same test 

computer, a Quad core 2.85 Ghz computer with 16 Gb of RAM running at 1066 

Mhz.  The DCT dictionary was generated in 80 microseconds with an error tolerance 

of 10 microseconds and the hybrid dictionary took 29 milliseconds with an error 

tolerance of 4 milliseconds.  The time to generate the hybrid dictionary is at worst 33 

milliseconds longer than the time needed to create the DCT dictionary.   

The hybrid dictionary incurs additional computation cost in the signal coding 

algorithm if it is required to encode the image using the same number of coefficients 

per patch.  For example, the hybrid dictionary requires approximately 176 seconds to 

code the Lena image using 46 non-zero coefficients while the DCT dictionary only 

requires 125 seconds.  The hybrid dictionary is computationally more expensive when 

using the same number of terms but the hybrid dictionary does not require 46 terms 

to reconstruct the Lena image.  The hybrid dictionary achieved a PSNR of 35 dB 

using 10 non-zero coefficients per patch equating to approximately 12 seconds to 

encode the image. The DCT dictionary achieved a PSNR of 35 dB for the Lena image 

using 15 non-zero coefficients per patch which requires approximately 18 seconds to 

encode.  The hybrid dictionary is approximately 6 seconds faster than the DCT 

dictionary in coding an image of equal quality. The signal coding time for both the 

DCT and hybrid dictionary is shown for varying degree of sparisty in Figure 4-21  

The Hybrid dictionary incurs an additional cost decoding the encoded signal. 

Shown in Figure 4-22 is the time required to reconstruct the image using the DCT 
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and hybrid dictionaries assuming the dictionary is already generated.  If the dictionary 

is not generated the reconstruction cost will be increased by the cost of generating the 

dictionary.  Once the dictionary is generated, the cost of reconstructing the signal is 

insignificant since there is a maximum difference of 10 milliseconds.  The total cost to 

encode a 512x512 image with the hybrid dictionary is 12.03 seconds and 

approximately 0.04 seconds to reconstruct the signal.  The DCT dictionary can 

encode and decode the same image with equal quality in approximately 18 seconds. 

The DCT dictionary generation and coding algorithm was not optimized for speed 

but there are optimized techniques available in literature for image-encoding with 

DCT.  The hybrid dictionary was not optimized and we strongly believe there are 

opportunities for performance improvements in the process. Thus, the hybrid 

dictionary is faster than the DCT dictionary if there is enough computing power to 

generate the additional functions.  The hybrid dictionary requires additional run time 

memory but it is ignored because it is insignificant on our testing equipment. 

The hybrid dictionary requires more parameters to completely define the 

dictionary and thus it incurs additional storage cost.  Assuming each dictionary 

parameter and coefficient is encoded using 16 bits and the dictionary index is encoded 

using 12 bits, then the cost of encoding the image is:  the Storage Cost in bits = 

(Number of parameters to define the dictionary)*16 + (Number of terms per 

patch)*(Number of patches per image)*28.  The hybrid dictionary has a total of 13 

parameters: 8 parameters to define the polynomial atoms, 1 parameter to define the 

DCT atoms, 2 parameters to define the rectangle atoms, 1 parameter to indicate what 

type of dictionaries are included and another to indicate the number of data points in 

each atom.  The DCT dictionary has only 2 parameters one to indicate the number of 
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data points in each atom and the second to indicate the number of additional phase 

shits.  To encode the Lena test image and achieve a PSNR of 30 dB, the hybrid 

dictionary requires only 4 non-zero terms and the corresponding storage cost is 

458,960 bits.  The DCT dictionary requires 8 non-zero coefficient per path and the 

storage cost is 917,536 bits.  The original image is encoded with an 8 bit integer 

representing a grey-tone image for a total of 2,097,152 bits.  The DCT dictionary 

reduces the file size by 56.25% while the hybrid dictionary obtains a 78.12% 

compression.  The additional cost to define the hybrid dictionary is overcome by its 

ability to reconstruct the signal using fewer non-zero coefficients per patch.  

 

Figure 4-21 Signal Coding time for the Lena test image 
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Figure 4-22 Time required to reconstruct the encoded lena image 

 

4.7 Chapter Summary 

Chapter 4 introduced the hybrid dictionary as a composition of the DCT, 

polynomial functions, rational functions, boxcar functions, root functions and a 

generic exponential function set.  Furthermore the hybrid dictionary was tested 

against the DCT, Haar, Gabor and Ricker dictionaries on various test signals and 

images. The Lena, primate, and bell pepper images were 512x512 pixel image 

segmented into 8x8 pixel patches.  The 1024x1024 Man test image was divided into 

16x16 pixel patches.  The hybrid dictionary produced better image reconstruction 
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compared to the DCT, Haar, Gabor and Ricker dictionaries because it was able to 

reconstruct the images with a PSNR of 35 dB or more using fewer number of non-

zero coefficients in the representation vector. Furthermore several images were 

reconstructed for visual verifications.   

 The hybrid dictionary is a predefined dictionary since all the atoms in the 

dictionary is generated using mathematical models without feedback from the signals. 

The proposed dictionary is novel due to the inclusion of additional nonlinear atoms 

that allowed the dictionary to sparsely represent both harmonic and non-harmonic 

smooth signals as well as transient signals and images.  However the hybrid dictionary 

has its limitations. The hybrid dictionary is applicable in applications such as large 

database archival and medical imaging applications where the compression ratio and 

reconstruction quality outweigh the cost of computing power and run-time memory.  

The ability to implement the DCT in hardware gives the DCT based compression 

techniques a major advantage over the hybrid dictionary in real-time application with 

limited computing power such as the digital cameras.   
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CHAPTER 5                                                                              

OPTIMIZED PREDEFINED DICTIONARY 

 

In chapter 4 we proposed a hybrid dictionary composed of cosine, polynomial, 

boxcar, rational, and exponential functions.  The hybrid dictionary was able to provide 

significant improvements in reconstruction quality using additional computing 

resources.  During our testing, both the DCT and the Haar dictionary showed 

improvements as the number of coefficients used in the representation vector 

increased but the Ricker and Gabor dictionaries stagnated.  The DCT and Haar 

dictionaries have a well-established set of parameters to generate the atoms but the 

Ricker and Gabor dictionary parameters were arbitrarily selected.  Could the 

parameters that generate the dictionary be optimized?  Have we been using the 

optimal parameters for the dictionaries? In this chapter we propose an evolutionary 

algorithm to optimize the dictionary generator parameters to examine if 

improvements can be made.  

The optimized dictionary differs from the signal-based adaptive dictionaries 

because the signal-based adaptive dictionaries use the training samples to learn the 

atoms. The learnt atoms are components of the signal and the atoms cannot be 

represented using a simple mathematical function without some kind of curve fitting 

algorithm.  The optimization process is different because it does not learn new atoms 

from the training samples instead it optimizes the dictionary parameters to find the 

best fit for the training samples.  The optimization process allows the optimized 
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dictionary to maintain the benefits of a predefined dictionary such as low storage cost 

while increasing its ability to represent complex signals.      

5.1 Parameter optimization using Particle Swarm Optimization 

We propose an evolutionary algorithm to find the parameters for the dictionary 

generators.  Traditional optimization algorithms like the gradient descent make 

assumptions about the fitness function which restricts the type of fitness functions 

that can be optimized.  Evolutionary algorithms such as the particle swarm 

optimization (PSO) method have the following benefits that are ideal for solving the 

dictionary generator parameter optimization problem:  

1. The algorithms make little assumption about the fitness function. 

2. The fitness function does not have to be continuous, or differentiable. 

3. The implementation is easy with low computational cost. 

4. The algorithm on average provides a good quality solution. 

The PSO algorithm was first introduced by James Kennedy, and Russell Eberhart in 

1995 IEEE convention [27].  The particle Swarm optimization algorithm is an 

evolutionary computation technique based on the motion of an individual in a swarm.  

The first PSO algorithm was used to model the movements of a flock of birds 

searching for food.  The PSO algorithm has been used to solve many engineering 

problems including optimization of PID controller gains for complicated nonlinear 

systems [28-31].  The PSO algorithm is shown in Algorithm 5-1. 

Algorithm 5-1 Particle Swarm Optimization Algorithm 

1. Initialize a population with particles.   
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2. While exit condition not met 

a. Update the swarm constriction factor using equation (5.1) 

b. For each particle 

i. Update particle velocity Vi(k) using equation (5.2) .  

ii. Ensure (Vmin < Vi < Vmax) 

iii. Update particle state Xi(k) using equation (5.3). 

iv.  Ensure (Xmin < Xi < Xmax) 

v. Current fitness = F(particle state) 

vi. If Current fitness is better than particle best fitness: 

1.  Set particle best state  = current state 

2. Set particle best fitness = Current fitness 

vii. If Current fitness is better than Global best fitness: 

1.  Set global best state  = current state 

2. Set global best fitness = Current fitness. 

c. End for 

3. End loop 

 

Many successful variations for the PSO algorithm have been suggested since its 

introduction in 1995 but the prominent variation is the constriction factor PSO [32]. 

The constriction factor allows the particles to aggressively search the solution space at 

the early stage of the algorithm and as the algorithm evolves the particles start to 

search locally around its current state. The swarm’s constriction factor is calculated 

using equation (5.1) where the minimum and maximum value is predetermined at the 

start of the algorithm and the suggested values in literature are 0.4 to 0.9.  Each 
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particle’s (k+1)th velocity is calculated using equation (5.2) where U(0,1) indicates 

random numbers from a uniform distribution and C1 and C2 are predetermined 

constants typically set to 2.05.  Also, since the problem is multi-dimensional the   

indicates an element by element multiplication.  The particle’s state is calculated using 

equation (5.3).  The PSO is a recursive algorithm and it does not guarantee an optimal 

solution.  Also due to the random nature of the particle’s movements within the 

solution space, the final solution is not exactly the same each time the algorithm is 

run.  However, the solutions are within a close range and on average the algorithm 

finds a good solution. 

 max min
max

max

 
  
 

k

w w
w w k

Iteration
 (5.1) 

    1 1 2(0,1) (0,1)       k k k gbest k Best kV w V C P X C XU PU  (5.2) 

 
1 1 k kkX X V  (5.3) 

5.2 The parameter screening fitness function 

Prior to suggesting the fitness function, the dictionaries and the parameters that 

can be optimized for each dictionary along with the expected solution space is 

presented in Table 5-1.  The Gabor, Ricker and Polynomial dictionaries all have 

multiple parameters that can be optimized.  Attempting to optimize all parameters is a 

time consuming process.  Thus a compromise is made by optimizing a limited set of 

parameters at any given time.  For example, the polynomial dictionary generator has 2 

sets of adjustable parameters the coefficients of the polynomial, and the region of 
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interest.  The PSO algorithm is used to optimize either the region of interest with a 

default list of polynomial coefficients or vise-versa.  Similarly for the Gabor and 

Ricker dictionaries, only one of the parameters will be optimized at any given time.  

The standard Haar dictionary presented in this thesis does not have any adjustable 

parameters and thus cannot be optimized.  The boxcar and moving square wave 

dictionaries have limited adjustable parameters. It is possible to optimize the width of 

the pulses however the intention of adding the boxcar and the moving square wave 

atoms is to aid the hybrid dictionary and it is not intended to be a standalone 

dictionary.    

Table 5-1 Dictionary and tunable parameters 

Dictionary Tunable Parameters Solution Space 

DCT 




  
    

  
1

1
cos 2   

2
DCT n k p

N

 

Phase = p1 p1 =[0, 1] 

Ricker Wavelet 

   
221

( ) 1 att t e
a

 

Scaling factor = a 

 Region = t 

a = [-5, 5] 

t= [-5, 5] 

Boxcar & moving square wave Width of impulse W= [1 , size] 

Polynomial, Rational, Roots 





 
1

( )
c

c i

c i

i o

P t t a t  

Coefficients = ai 

Region = t 

Order = c 

ai = [-1,1] 

Region = [-5,5] 

C = [1, 5] 

Gabor Scaling factor = a a = [0, 5] 
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 
2 2

cos 2   a tGabor e ft  
Frequency = f 

Region = t 

f= [0, 100] 

t= [-3, 3] 

 

The proposed optimization feedback system is shown in Figure 5-1.  The PSO 

algorithm should optimize the parameters to generate a dictionary that will maximize 

the PSNR of the test signal.  The fitness function will include the dictionary generator 

using the parameters proposed by the PSO algorithm.  The OMP algorithm will use 

the generated dictionary to code the test signal and the resulting PSNR of the 

reconstructed test signal is fed back to the PSO algorithm to be maximized.   

 

 

Figure 5-1 Predefined dictionary optimization feedback system 
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5.3 Optimized predefined dictionary results 

The preliminary testing clearly shows that the dictionaries were not optimized 

and we can gain significant improvements by optimizing each dictionary using the 

evolutionary algorithm.  The optimization of the dictionary generator was done by 

randomly selecting 1% of the image as a training sample and optimizing the 

parameters of the dictionary generator to achieve the highest PSNR for the training 

set.  The PSO algorithm ran with 15 particles for a maximum of 500 iterations or 5 

minutes to limit the optimization time.  The optimized results improve with the 

number of samples in the training set until about 10% for the Lena test image.  The 

PSO optimization algorithm does not provide better results when the training samples 

is greater than 25% of the entire image unless the number of iterations are 

significantly increased to approximately 10 000 counts or more.  The additional 

computation cost did not justify the performance gain.   

In Figure 5-2, the PSNR of the Lena test image using a DCT dictionary with 

129 atoms generated using the phase shifting method presented in Chapter 2 is shown 

against the PSO optimized DCT dictionary and the hybrid dictionary. Both, the DCT 

dictionary and the PSO optimized DCT dictionary is the same size and have similar 

storage requirements.  The optimization process took on average 3 minutes on the 

test computer.  The average solution to the optimization problem was found to be 

p1= 0 and p1 = 0.302.  The optimized DCT dictionary provides better PSNR 

compared to the standard DCT dictionary.  The hybrid dictionary is still better than 

the optimized DCT dictionary.  Once the optimized parameters are found, the 

dictionary does not incur any additional cost during the signal encoding and decoding 
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process.  The hybrid dictionary is able to encode the Lena image using 10 non-zero 

terms per patch and obtain a reconstructed image with a PSNR of 35 dB. The 

optimized DCT dictionary requires 11 non-zero coefficients per patch to obtain an 

image of equal quality.  The optimized DCT achieves a 72.3 % compression while the 

standard DCT dictionary only achieved 52.6% compression.  The initial computation 

cost can be easily absorbed even on low end desktop computers but the 

implementation of the optimization technique is too expensive on low end processors 

such as ASICs.  The optimized DCT dictionary does not have the added signal coding 

cost incurred by the hybrid dictionary. 

 

Figure 5-2 PSO optimized DCT dictionary vs. DCT dictionary in image reconstruction 
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Figure 5-3 shows the PSNR of the reconstructed Lena test image using a PSO 

optimized polynomial dictionary against the standard polynomial dictionary generated 

using the algorithm presented in Section 4.2. There are a few tunable parameters that 

can be optimized for the polynomial dictionary generator such as the region of 

interest, the coefficients of the polynomial and the highest order of the polynomial.  

Optimizing the region of interest for the polynomial dictionary generator provided 

the greatest improvements.  The standard region of interest was between -1 and 1 and 

the optimized region of interest for the Lena test image was between -1.5 and 1.5.   

 

 

Figure 5-3 PSO optimized Polynomial dictionary tested on the Lena image 
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 The PSNR of the reconstructed Lena image using the PSO-optimized Gabor 

dictionary is shown in Figure 5-4.  In Figure 5-4, the default Gabor dictionary is 

compared with 3 PSO-optimized Gabor dictionaries.  The Gabor dictionary generator 

has 3 parameters, and each parameter was optimized while keeping the default values 

for the other 2 parameters.  The standard Gabor dictionary had 4 scaling factors, and 

2 frequency values to generate 512 atoms.  The optimized region of interest does not 

change the size of the dictionary.  Frequency and scaling factor optimization process 

only selects 2 values thus the optimized scaling factor dictionary is half the size of the 

standard Gabor dictionary.  The PSO optimized Gabor dictionaries are able to 

represent the signal better using fewer non-zero coefficients. However, the PSO-

optimized Gabor dictionaries still plateau without significant improvements if the 

number of non-zero coefficients in the representation vector is increased.  
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Figure 5-4 Optimized Gabor dictionaries 

 

We have demonstrated that the DCT, polynomial and Gabor dictionaries can be 

optimized to improve the signal reconstruction quality.  However optimization of 

some dictionaries may not produce significant improvements which will indicate one 

of the following scenarios has occurred: 

1. The dictionary is already optimized 

2. The PSO algorithm is stuck in a local optimal solutions or saddle points. 

3. The dictionary is not well suited for the current signal. 
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We can reduce the computational cost of the PSO optimization algorithm in 

the event the dictionary is not suited for the signal by terminating the process prior to 

the exit condition.  We can monitor the status of the global best state and if there is 

no change in the global best state for more than the preset number of consecutive 

iterations, the PSO algorithm is considered to be stuck in a saddle point and would be 

terminated.  This additional check to see if the algorithm is stuck in a local optimal 

solution or saddle points on average will reduce the overall computation cost.   

5.4 Chapter summary 

We proposed to optimize the predefined dictionary in hopes of improving the 

signal reconstruction quality.  The optimization process could be a time consuming 

process and thus we limited our algorithm to maximum of 5 minutes.  We also limited 

the number of samples from the image to reduce the computation cost.  Using more 

samples increases the computation cost per algorithm iteration, reducing the number 

of iterations and compromising the solution quality.  During our testing, we have 

found 1- 5% of the patches to be sufficient. The optimized DCT and polynomial 

dictionaries performed better than the corresponding dictionaries generated using 

arbitrarily parameters.  The Gabor dictionary showed improvements when using 

fewer non-zero coefficients but it did not sustain the improvements as the number of 

nonzero terms in the representation vector increased.  The predefined dictionary 

optimization is an effective solution because the additional computation cost is only 

incurred in the dictionary optimization process; it does not incur any additional cost 

when coding or reconstructing the signal.  The optimized predefined dictionary 
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contains all the other benefits of the predefined dictionary such as low storage cost, 

low signal coding and signal reconstruction cost. 

The PSO algorithm has its own drawbacks because the exact same solution is 

not repeatable.  However, the dictionary optimization problem is clearly a challenging 

multi-modal problem, and the PSO algorithm attempts to select one of these 

depending on the random evolution of the algorithm.  The PSO algorithm may get 

stuck between local optimum solutions and end up providing sub-optimal solutions. 

However, all optimization algorithms have similar limitations and compromises.  We 

believe the PSO algorithm makes a good compromise between computation cost and 

algorithm run time and average solution quality.  
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CHAPTER 6                                                                          

OPTIMIZED HYBRID DICTIONARY 

 

In chapter 5 we proposed to optimize the predefined dictionary parameters to 

improve signal reconstruction quality.  In this chapter, we propose to filter the 

dictionary types that are included in the hybrid dictionary, effectively reducing the cost 

of coding the signal. We anticipate that the optimized hybrid dictionary will be robust, 

which will allow us to absorb the initial cost of optimizing the hybrid dictionary.  To 

ease implementation we consider the hybrid dictionary as a list of smaller dictionaries 

instead of a single dictionary. Once we view the hybrid dictionary as a list of 

dictionaries, we can simply add or remove the smaller dictionaries from the list by 

adding and removing the corresponding parameters. We also suggest simple 

modifications to the OMP algorithm to enable the algorithm to better handle a list of 

dictionaries.   

6.1 Multi-dictionary OMP algorithm 

The added benefit of viewing the hybrid dictionary as a list of dictionaries is it 

allows us to determine the signal composition.  The underlying mathematical model 

of the signal can be seen by the number of atoms selected from each dictionary.  We 

can use this knowledge to optimize and filter the hybrid dictionary.  

The pseudo code of the modified OMP algorithm, referred to as multi-

dictionary OMP, to handle multiple dictionaries is shown in Algorithm 6-1. The 
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multi-dictionary OMP algorithm generates a list of atoms with the maximum 

projection of the signal residual from each dictionary type then it selects the atom 

from the generated list that minimizes the representation error.  The OMP algorithm 

only uses the projection of the residual onto the dictionary as a basis to select the best 

fit atom; this will provide an optimal solution if the atoms are orthogonal but since 

the hybrid dictionary is not orthogonal minimizing the error again aids in picking the 

best fit atom.  Just like the OMP algorithm, the multi-dictionary OMP algorithm does 

not guarantee an optimal solution.  The multi-dictionary OMP algorithms 

computation cost increases with the number of dictionaries in the list and the number 

of atoms in each dictionary.   

Algorithm 6-1 Pseudo Algorithm for Multi-dictionary OMP 

1. Given Dictionary D_list= {D1, D2, D3, .. Ddm} 

2. Initialize residual error :  r = y 

3. Initialize selected dictionary set S = {Null set} 

4. Initialize selected Atoms set AS = {Null set} 

5. Initialize selected dictionary Dsel = {Null Set} 

6. Initialize used Atoms Dused {1, 2 ,m} = {Null set} 

7. While 
0

x L  

a. For j = 1: dm 

i. D = D_mast{j} 

ii. UsedAtomList = Dused{j} 

iii. Find i s.t   
2

2
min  UsedAtomListi i iad r d   
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iv. Error (j) =
2

iad r  

v. SelectedAtom(j) = di; 

b. end 

c. find dictionary: min ( ( )) for i=1,..dmii error i  

d. Add i to the selected dictionary list:  { }S S i  

e. Add to atom list :  { ( )}AS AS SelectedAtom i  

f. Add selected atom:     (:, ( ))iDsel Dsel D SelecteAtom i  

g. Add atom to used set:  

        Dused {i} = { Dused{i}  U  SelectedAtom (i)}                                                           

h. Find best x:    minx y Dsel x  

i. Find remaining error :   r y Dsel x  

8. end while 

9. Provide sparse matrix for each dictionary that is used using S, AS. 

 

6.2 Optimized hybrid dictionary algorithm 

The optimization objective is to find a smaller dictionary that achieves similar 

signal representation quality while using fewer than the preset maximum number of 

nonzero terms in the representation vector.  The hybrid dictionary can be improved 

by optimizing the atoms that are best suited to represent the signal.  The optimization 

process could also remove redundant dictionaries which will improve the speed of the 

signal coding algorithm.  The efficiency ratio of the dictionary is defined in equation 
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(5.4) which gives a rough estimate of the redundancy in each dictionary.  The 

efficiency ratio indicates the percentage of the dictionary that is used by the multi-

dictionary OMP algorithm compared to the number of atoms in the dictionary.  The 

objective is to maximize the efficiency.   

 
1

1

 = 

 T  Number of terms used from Dictionary i

        N  Number of atoms in Dictionary i

Di
Di

dm
Di

Didm

i
Di

i

Di

Di

T

N
T

N

where







 
 
 
 
 
 






  (5.4) 

We will demonstrate the hybrid dictionary optimization process by optimizing 

the dictionary for the test signal  3( ) 4 5cos(5 )y t t t .  The test signal is a 

polynomial signal with some oscillatory behavior.  To test if the efficiency ratio can be 

used to select the appropriate type of dictionaries; all the dictionaries shown in Table 

6-1 are included in the list.  The premise is to include the dictionaries with high 

efficiency ratio.  The signal is reconstructed using 16 terms per patch which is about 

25% of maximum number of terms per patch.  

Table 6-1 Dictionary and number of atoms used for test  

Dictionary Type Total Atoms (NDi)  Terms Used (TDi) Efficiency ( ) 

Dct 129 4 5.21 
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Gabor 513 0 0 

Haar 64 0 0 

Ricker 557 0 0 

Basic Polynomial 10 3 50.06 

Linear 11 0 0 

Qudratic 110 0 0 

Cubic 990 0 0 

boxcar 195 8 444.5 

Square waves 192 1 0.86 

2D DCT 65 0 0 

Logarithmic 64 0 0 

Exponential 64 0 0 

Rational 64 0 0 

 

The efficiency ratio for each dictionary is also shown in Table 6-1.  The results 

are positive because even though the polynomial dictionary only used 3 atoms to 

represent the signal it is the second most efficient dictionary in the list. The filtering 

process correctly filtered out the Logarithmic, exponential, rational, Gabor, linear, 

quadratic and the Ricker dictionaries.  The filtering processes also correctly choose the 

1D DCT dictionary instead of the 2D DCT dictionary since the test signal is one 

dimensional.  The efficiency ratio can be used as a measure by the dictionary optimization 

algorithm to automatically expand the influential dictionaries while reducing the size of 

the ineffective dictionaries.   However, the dictionary filtering algorithm needs to be 

careful in eliminating dictionaries since the filtering process failed to select the cubic 



 

 91 

functions even though the dominant part of the test signal is a cubic polynomial.  The 

cubic dictionary may have been excluded because the dictionary is not optimized.  Prior 

to eliminating the dictionaries the optimization algorithm should optimize the parameters 

of the dictionary generator to find the best fit for the signals.  The predefined dictionary 

optimization process using the evolutionary algorithm was demonstrated in the previous 

chapter.  

The efficiency ratio alone does not provide enough information to remove a 

dictionary because even an inefficient dictionary may contain valuable atoms.  The peak 

signal to noise ratio gained by the inclusion of the dictionary is a good indicator of the 

dictionaries worth.   The Dictionary gain ratio is calculated using equation (5.5) using the 

following parameters: the PSNRDi+  is the PSNR achieved with the dictionary, the 

PSNRDi-  is the PSNR achieved without the dictionary.  The dictionary gain per atom 

ratio is shown in equation (5.6) where TDi is the total number of atoms in the dictionary.  

The dictionary gain ratio in conjunction with the dictionary gain per atom ratio could be 

used to remove a dictionary.  Deciding to remove a dictionary based only on the 

dictionary gain ratio or gain per atom ratio would not produce the optimal solution 

because a large dictionary can be incorrectly removed while providing the best results.  If 

a dictionary PSNR gain ratio and PSNR gain per atom ratio falls below a set minimum 

threshold then the dictionary should be removed.  

   = Di Di Di
PSNRGain PSNR PSNR  (5.5) 

 
 

 = Di Di
Di

Di

PSNR PSNR
GainPerAtom

T
 (5.6) 
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The objective of the hybrid optimization algorithm is to reduce the size of the hybrid 

dictionary.  The steps to generate the optimized hybrid dictionary are: 

1. Optimize all dictionaries in the list. 

2. Use the multi-dictionary OMP algorithm to code the signal with the optimized 

dictionaries. 

3. Calculate the efficiency ratio for all the dictionaries in the list. 

4. For any dictionary that has an efficiency ratio below the set threshold 

a. Calculate the dictionary PSNR gain ratio and PSNR gain per atom ratio.  

If both dictionary gain ratios are below the preset minimum threshold, 

remove the dictionary.  

The resulting optimized hybrid dictionary (OHD) will attempt to maintain the signal 

representation quality while reducing the size and storage requirements of the hybrid 

dictionary.  The smaller dictionary will speed up both the encoding and decoding 

process which may make up for the added cost of the optimization process.  The 

OHD may not be worth the additional cost for natural images that can be represented 

with DCT, Wavelet and the proposed hybrid dictionary but the OHD is an alternative 

to signal-based dictionaries for complex signals.   

6.3 Performance gain of the optimized hybrid dictionary 

The hybrid dictionary optimization algorithm is optimized on the Lena test 

image.  We compare the optimized hybrid dictionary with the DCT dictionary.  The 

OHD algorithm ran for 45 minutes optimizing each dictionary and removing 

inefficient dictionaries.  The final OHD composition had a DCT, polynomial, square 
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wave and boxcar dictionaries.  The OHD dictionary had a total of 449 atoms 

generated with the parameters shown in Table 6-2.  

The DCT dictionary (using Np =2) had 129 atoms and was the smallest 

dictionary.  The hybrid dictionary composed of the DCT, polynomial, Gabor, Haar, 

Ricker and boxcar dictionaries had a total of 1411 atoms. 

Table 6-2 OHD dictionary and parameters  

Dictionary Type Parameter Number of Atoms 

DCT p1 = 0.2816, 0.9532 128 

Polynomial Power = 3 

T= [-1.14, -0.78] 

64 

Square wave  Width = [1 , 2] 128 

Boxcar Width = [1 , 2,64] 129 

 

The PSNR of the reconstructed Lena test image is shown in Figure 6-1, 

showing the OHD performing on par with the hybrid dictionary.  The proposed 

hybrid dictionary had the best signal reconstruction when using fewer than 25 non-

zero coefficients per patch but the difference in PSNR is less than 0.5 dB.  The hybrid 

dictionary is more than 3 times as large as the OHD.  The OHD dictionary also has 

less storage cost than the hybrid dictionary and it will also be quicker at coding and 

decoding the signal because the cost of coding the signal is proportional to the 

number of atoms in the dictionary as seen in our cost analysis in chapter 4.  The 

OHD will be beneficial if it is robust.  Thus, the OHD optimized for the Lena image 

is tested on the primate image and the results are shown in Figure 6-2.  The OHD 
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performs slightly better than the hybrid dictionary that included all the smaller 

dictionaries on the primate image indicating the OHD is robust.  

 

 

Figure 6-1 Lena image reconstruction using the optimized hybrid dictionary 
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Figure 6-2 Primate image reconstruction using the OHD 

 

The drawback of the optimized hybrid dictionary is the time consuming 

optimization process.  However, there are many ways to improve the optimization 

process.  One way to speed up the optimization process is to add the dictionaries to 

the selected dictionary list instead of starting with all of the dictionaries and removing 

inefficient dictionaries from the list.  The bottom up build algorithm could use the 

same dictionary ratios to add the dictionaries one at a time imitating the OMP 

algorithm.  With some improvements to the optimization process the OHD would be 
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an alternative to large over complete dictionaries and signal-based adaptive 

dictionaries.   

6.4 Chapter Summary 

This chapter proposed an algorithm to generate an optimized hybrid dictionary.  

To evaluate each dictionaries performance, the efficiency ratio and dictionary PSNR 

gain ratios were introduced.  The efficiency ratio measured the redundancy of the 

dictionary.  The dictionaries that had an efficiency ratio below the preset threshold 

were further evaluated to measure if the cost of including the dictionary was more 

than the gain provided by the dictionary.  If the cost incurred was greater than the 

provided gain, the dictionary was removed from the hybrid dictionary list.  The 

proposed optimization algorithm generated an optimized hybrid dictionary which was 

3 times smaller than the arbitrarily selected hybrid dictionary and it was still able to 

provide equivalent reconstruction quality. We acknowledge the additional 

computation cost incurred in the optimization process and have suggested methods to 

improve the process. 
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CHAPTER 7                                                                              

COMPRESSION USING TIME-SHIFTED OMP ALGORITHM 

 

The DCT dictionary contains atoms that are phases shifted discrete cosine 

functions.  Wavelet analysis generates additional atoms using dilation and translation 

of the elementary function prior to coding the signal.  The hybrid dictionary does not 

have an equivalent time-shifting property.  Thus we propose an algorithm to 

implement the time-shifting property for the hybrid dictionary but instead of 

incorporating the time-shift into the dictionary generation phase we propose to 

include the time-shift in the signal coding stage.   

7.1 Time-shifted OMP signal coding algorithm 

The time-shifted OMP algorithm is an ad-hoc method shown in Algorithm 7-1 

that generates a list of time-shifted dictionaries by performing N-circular shifts to 

create N time-shifted variations of the dictionary before signal coding.  The multi-

dictionary OMP algorithm is used to code the signal using the dictionary list and the 

OMP algorithm will provide a sparse matrix for each time shifted dictionary that is 

used.   

We can reconstruct the signal by reversing the steps.  The first step is to create 

the time shifted version of the dictionary that is used in the encoded signal.  Then use 

the corresponding sparse matrix to reconstruct the signal as a linear combination of 

the time shifted dictionaries.  This method may improve the speed of the signal 
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reconstruction algorithm since only the time shifted dictionaries that were used need 

to be recreated and this can be done on demand.  Also, with the proper data coding 

and parsing techniques, the time shifted index and sparse matrix can be encoded as 

efficiently as a single large dictionary. Intuitively this modification would be most 

beneficial for signal-based adaptive dictionaries as it reduces the amount of data that is 

required to recreate the dictionary while providing the time-shifted versions of the 

learnt atoms which have not been considered before. The time-shifted OMP signal 

coding algorithm will improve the signal reconstruction quality for existing predefined 

dictionaries such as the hybrid dictionary and the optimized hybrid dictionary since 

many of the atoms of the hybrid dictionary do not have an implementation for the 

time-shift property. 

 

Algorithm 7-1 Ad-hoc pseudo algorithm for the Time-shifted OMP 

1. Given Dictionary D 

2. N = number of elements in dictionary atom 

3. Initialize D_masterList = {Null} 

4. for j= 1:N 

a. D_masterList = { D_masterList  U circular shift (D, j)  } 

5. End 

6. Multi-Dictionary OMP (D_masterList, y) 
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7.2 Evaluation of the Time-shifted OMP algorithm  

We test the time-shifted OMP algorithm on the existing dictionaries such as the 

DCT, optimized hybrid dictionary as well as a simple image-based dictionary.  We 

generate the simple image-based dictionary with 5 atoms.  The first atom is found by 

taking the average of the signal matrix column, and the rest of the atoms are the 

boxcar functions with distinct widths.  The image-based dictionary can be defined 

using 68 parameters, where the first 64 parameters are used to describe the image-

based atom; one parameter is used to identify the number of elements per atom, 

another 2 parameters to identify the boxcar atoms and finally a parameter to indicate 

the type of atoms available.  The DCT dictionary requires only 2 parameters and the 

optimized hybrid dictionary requires 11 parameters to be fully defined.   

We will evaluate the signal coding algorithm by coding each dictionary using 

both the OMP algorithm and the time-shifted OMP algorithm.  Shown in Figure 7-1 

is the PSNR of the reconstructed Lena test image.  The hybrid dictionary image 

reconstruction encoded using the time-shifted OMP algorithm achieves has a PSNR 

of 32.25 dB which is 5.9% better than the image encoded using the OMP algorithm.  

The time-shifted OMP algorithm also improves the signal reconstruction quality of 

the DCT dictionary, the PSNR for the image reconstructed using 4 non-zero 

coefficients is 30.18 dB which is 7.4% better than the image encoded using the DCT 

dictionary with the OMP algorithm.  The image-based dictionary only had 5 atoms, 

and the OMP algorithm is limited to using a maximum of 5 non-zero coefficients per 

patch however the TsOMP algorithm is able to use more than 5 nonzero coefficients 

per patch improving the signal representation quality.  The image-based dictionary 
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using the time-shifted OMP algorithm is able to reconstruct the Lena image with 11% 

better PSNR than the reconstructed image that is encoded with the OMP algorithm in 

conjunction with the image-based dictionary. The time-shifted OMP algorithm for the 

image-based adaptive dictionary had significant improvements as it is able to 

reconstruct the Lena image with a PSNR of 31 dB using only 4 non-zero coefficients 

per patch corresponding to a 68.14% compression.  The OMP algorithm is unable to 

obtain the same quality of reconstruction on the simple image-based dictionary.  The 

image encoded using the DCT dictionary with the OMP algorithm requires 9 non-

zero coefficients per patch to reconstruct the image with a PSNR of 29.8 dB which 

would be approximately 59% of the original size.  The image coding is also faster for 

the combination of the image-based dictionary with the time-shifted OMP algorithm 

since it only requires 27.12 seconds compared to 30.2 seconds to encode the image 

using the OMP algorithm and the DCT dictionary.  However for larger dictionaries 

such as the DCT and the hybrid dictionary the computation cost of the time-shifted 

algorithm is very expensive which is shown in Figure 7-2 and may outweigh the 

benefits.  The time-shifted OMP algorithm can be used for small dictionaries such as 

the image-based dictionary or in applications where the computational time is not a 

concern. 
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Figure 7-1 PSNR or reconstructed Lena image using Time-shifted OMP algorithm 
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Figure 7-2  Lena image code time using the Time-shifted OMP algorithm 

 

7.3 Chapter Summary 

This chapter presented a signal coding algorithm to improve sparse signal 

coding by utilizing the time shifted variation of the dictionary.  The time-shifted OMP 

algorithm generates (N-1) additional dictionaries using (N-1)-circular shift of the given 

dictionary.  Then the OMP coding process selects the time-shifted dictionary and the 

corresponding sparse vector that best represent the signal.  The time-shifted OMP 

algorithm improves the quality of the reconstructed signal by 5- 10% for the DCT, 
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and hybrid dictionary.  The image-based dictionaries will benefit the most from 

utilizing the time-shifted OMP algorithm because the image-based dictionaries are in 

general much smaller than the predefined dictionaries and the signal coding time will 

not outweigh the improvements in the signal reconstruction quality provided by the 

time-shifted OMP algorithm.  The TsOMP algorithm can also be used on existing 

dictionaries such as the DCT and the hybrid dictionary at the price of additional signal 

coding time.  
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CHAPTER 8                                                                      

CONCLUSION AND FUTURE WORK 

 

8.1 Conclusion 

In compression technology, the large energy components need to be 

represented using a few atoms.  The existing dictionaries such as the DCT dictionary, 

and wavelet based dictionaries are unable to provide the same signal reconstruction 

quality as signal-based dictionaries generated using sparse coding techniques.  

However the signal-based dictionaries have additional storage requirements and it has 

not been extensively studied on large problems.   The ideas, methods and algorithms 

proposed in this thesis attempt to solve some of the limitations of the predefined 

dictionaries.  The major contributions of the thesis are summarized below: 

1. The primary contribution of the thesis is the hybrid dictionary, generated 

by including additional nonlinear functions such as polynomial, boxcar, 

exponentials, and rational functions.  The inclusion of the additional 

nonlinear atoms allowed the dictionary to reconstruct not only images 

but also harmonic and non-harmonic test signals efficiently.  The hybrid 

dictionary was also robust and can be completely described using a few 

parameters.  The hybrid dictionary is larger than the DCT and Haar 

dictionaries that were used to compare the hybrid dictionary’s 

performance.  The signal coding time is proportional to the size of the 
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dictionary.  The larger hybrid dictionary required more time to encode 

the signal with the same sparsity level. However, the inclusion of the 

additional nonlinear functions allowed the signal to be represented more 

sparsely, thus a signal with equal quality measured by the PSNR of the 

reconstructed signal can be encoded faster using the hybrid dictionary 

than the DCT dictionary. The hybrid dictionary could be used in many 

applications that emphasis the signal reconstruction quality more than 

the signal coding time.  A few examples of applications that can benefit 

from the hybrid dictionary are listed below: 

a. Archival applications where large data set need to be stored. 

b. Medical imaging applications place high importance to the quality 

of the reconstructed image.  

c. Data transmission applications.  The reduced file size will increase 

the transmission capacity and reduce transmission time over 

limited resources. The signal coding and decoding is easily 

offloaded to the nodes. 

d. Portable devices with limited storage capacity. 

The hybrid dictionary is not well suited for real-time applications or 

applications running on limited resources.  Some of the limitations of the 

hybrid dictionary are: 

a. The dictionary requires additional time to encode the signal and 

generate the dictionary. 
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b. The dictionary lacks well-defined set of parameters to easily 

generate the functions set. 

c. Implementation is difficult in resource limited applications such as 

the digital cameras which use ASICs to reduce cost. 

2. The second idea presented in the thesis was the optimized predefined 

dictionary, where we proposed using the PSO algorithm to optimize the 

predefined dictionary generator to improve signal reconstruction quality.  

We were able to optimize the DCT, polynomial and Gabor dictionaries 

using a small sample from the image.  The optimized DCT and 

polynomial dictionaries provided significant improvements compared to 

the dictionaries that were generated using arbitrary parameters.  The 

optimization algorithm requires a training sample and additional time to 

optimize the dictionary.  This algorithm cannot be used on resource-

limited applications due to the added cost of implementing the 

optimization algorithm and the time required to optimize and code the 

signal.  The additional cost of optimizing the dictionary is incurred once 

and there is no additional cost when encoding and decoding the signal 

using the optimized dictionary.  Thus, the optimized dictionary is a good 

alternative to image-based adaptive dictionaries because it contains 

benefits of the predefined dictionary.  The optimized dictionary can be 

used to encode medical images such as X-rays and MRI images because 

the initial training cost can be absorbed by the large volume of images 

that need to be coded. 
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3. The third contribution is the proposal of the optimized hybrid 

dictionary.  The optimized hybrid dictionary is an extension of the 

optimization algorithm used to optimize the predefined dictionaries.  We 

used a dictionary filtering algorithm to reduce the size of the hybrid 

dictionary.  The optimized hybrid dictionary was able to provide 

comparable signal reconstruction quality with fewer atoms in the 

dictionary.  The optimized hybrid dictionary had better signal 

reconstruction compared to the optimized DCT dictionary and slightly 

inferior reconstruction quality compared to the hybrid dictionary.  Since 

the optimization process is a one-time cost for similar images, it can be 

applied successfully in place of the hybrid dictionary.  

4. We also proposed a simple signal-based dictionary with additional 

predefined dictionary atoms.  This idea was not fully developed in this 

thesis nor has it been extensively explored in other scholarly papers.  

This signal-based dictionary will contain a few signal-based atoms which 

will enable it to better represent the specific signal while the predefined 

dictionary atoms will represent signals that are not of the same type.  

This dictionary type makes a good compromise on the cost of generating 

the dictionary and the signal reconstruction quality.  

5. The forth contribution was the introduction of the time-shifted OMP 

algorithm used to code the signal using a given dictionary.  The time-

shifted OMP signal coding algorithm performs a time shift on the 

provided dictionary and uses the additional atoms to encode the signal.  

The TsOMP algorithm is innovative as it proposes a time-shift for 
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image-based dictionaries which effectively adds additional atoms without 

the additional storage cost.  The TsOMP algorithm execution time 

increases exponentially with the number of non-zero coefficients used in 

the signal representation vector and the size of the dictionary.  The 

TsOMP algorithm can be used to encode the images or other large data 

in an automated batch mode.  The batch mode allows the algorithm to 

run during off-peak time and minimize the usage of valuable resources.  

The time-shifted OMP algorithm is not applicable for real-time 

applications.  

All compression techniques make a compromise between the compression 

ratio, signal reconstruction quality and the computation cost of the algorithm.  We 

have suggested algorithms that improve compression by increasing the computation 

cost.  Our proposed technique can be used in applications like medical image 

compression where the main concern is the quality of the image reconstruction and 

not the computational cost of the algorithm. 

We have shown through image-reconstruction experiments that the proposed 

techniques are able to produce better quality reconstruction compared to the existing 

methods seen by visual inspection of the reconstructed image and the peak signal to 

noise ratio of reconstructed image.  However we require further study to identify if 

there are any ways to optimize the proposed methods and algorithms prior to 

understanding the limitations of the proposed techniques.  
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8.2 Future work 

Three dictionaries were presented in this thesis. The predefined hybrid 

dictionary and the optimized predefined hybrid dictionaries were extensively 

evaluated.  The third signal-based dictionary with predefined atoms was introduced 

and used by the time-shifted OMP algorithm.  The hybrid dictionaries were compared 

to the DCT dictionary.  Since the DCT dictionary is successful in many image 

processing application, future work could evaluate the effectiveness of the hybrid 

dictionaries in other image processing applications such as facial recognition, feature 

extraction, super resolution image compression. 

The signal-based dictionary with predefined atoms is an interesting idea worth 

dwelling into.  The signal-based atoms can be used to aid the predefined dictionary 

atoms.  This dictionary will have a few signal-based atoms which will reduce the cost 

of generating the dictionary and the dictionary will be robust.  The few signal-based 

atoms will allow the dictionary to adapt to the signal being represented.   

The optimized hybrid dictionary used the particle swarm optimization to 

optimize the parameters of the dictionary generator; future work can experiment with 

other optimization algorithms such as the genetic algorithm to improve the dictionary 

optimization process.  In the algorithm presented in the thesis each dictionary was 

optimized without the knowledge of the other dictionaries.  Also, we removed 

dictionaries sequentially based on their efficiency ratios.  It might be faster if the 

optimization algorithm actually built upon the dictionaries by including dictionaries 

that is needed instead of removing dictionaries that are not needed.  Also in the 

current method the dictionary that is currently being optimized may conflict with 
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existing dictionaries since the optimization algorithm does not know about the 

existence of the pre-selected dictionaries.  Future work can adjust the fitness function 

and the optimization parameters of the dictionary generator to represent the residual 

of the signal as each dictionary is added. This way the newly added atoms will aid the 

existing dictionaries and remove potential conflicts.  Future work can also improve 

signal coding time using the TsOMP and the multi-dictionary algorithms.  
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