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ABSTRACT 
PERFORMANCE ANALYSIS OF MULTISPECTRAL LIDAR IN LAND COVER 

CLASSIFICATION  

Master of Engineering, 2017 

Khakan Zulfiquar  

Civil Engineering 

Ryerson University  

 

The Optech Titan is the world’s first multispectral airborne Light Detection and Ranging 

(LIDAR) sensor, a revolutionary sensor that includes three active imaging channels of different 

wavelengths for day or night mapping of complex environments. Multispectral imagery and 

monochromatic LIDAR have long existed as independent technologies and both systems have 

developed workflows to perform land cover classification. This project was undertaken to 

analyze the performance of Optech Titan’s three active imaging channels and LIDAR attributes 

in land cover classification. By processing selective parameters through the multispectral image 

land cover classification process, we can determine the accuracy performance of individual 

channels and attributes in land cover classification. The outcome of this process will measure 

the effectiveness of combining LIDAR attributes with multispectral imagery for land cover 

classification.  The test site was a 600m x 600m residential neighbourhood in Oshawa, Ontario 

captured at point-spacing of 0.5 meter. 

 

Multispectral imagery had an overall accuracy result of 77%. The most accurate land 

cover classification result from our testing was 77.5%. This was produced as a special index 

scenario by using the three intensities along with the nDSM. It is apparent from the results that 

the intensity-attribute provides the most useful information in land cover classification. The 

highest monochromatic LIDAR accuracy result of 70% came from Channel 2 (NIR - 1024 mm). 

Channel 2’s accuracy is only 7% lower than multispectral imagery result. Channel 1 and 3 had 

less-favorable results at 59.5% and 58% respectively. Individual land cover classification tests 

on Z-attribute and N-attribute produced unfavorable results of 37% and 47.5% respectively. 

 

Keywords: multispectral, LIDAR, land cover classification, Optech Titan, nDSM, point-to-raster, 

IDW, and Kriging.  
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1. INTRODUCTION 

1.1. Optech Titan Multispectral LIDAR System 

“The Optech Titan is the world’s first multispectral airborne Light Detection and Ranging 

(LIDAR) sensor, a revolutionary sensor that includes three active imaging channels of different 

wavelengths for day or night mapping of complex environments.” (Teledyne Optech, 2017). This 

high precision environmental mapping tool is the first of its kind to capture data in three different 

wavelengths referred to as channels. There are two key advantages of the sensor. First, by 

combining three independent channels, operators can produce high resolution false-colored 

Red-Green-Blue (RGB) images. Second, by comparing variations in intensity of various surface 

targets, operators can conduct finer material differentiation to aid in land cover classification. As 

seen in Figure 1, materials such as vegetation, water and soil reflect or absorb different 

wavelengths of light in different ways; vegetation strongly reflects near-infrared light but absorbs 

visible green light, whereas soil responds significantly differently to the same wavelengths 

(Teledyne Optech, 2017). By utilizing these natural reflective properties of Earth’s surfaces, we 

can enhance the ability to conduct material differentiation leading to better land cover 

classification. 

 

 

Figure 1. Spectral reflectance signatures for Water, Vegetation, and Soil with Optech Titan’s standard 

channels (courtesy of Teledyne Optech, 2017). 

 

The Optech Titan’s three channels capture data using three active beams with 

independent wavelengths of 532 nm, 1064 nm and 1550 nm. The latter two wavelengths are 

outside of the visible RGB range mainly to leverage the intensity variation of Earth’s surfaces 

and are the reason for false-colored images. Additional specifications of the Optech Titan can 
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be seen in Table 1. Optech Titan is at the forefront of revolutionizing applications to vegetation 

mapping, shallow-water bathymetry, dense topography, and 3D land cover classification. This 

project took a deep dive into the implementation of multispectral LIDAR in land cover 

classification. 

 

 

Table 1. Optech Titan Laser and Camera Specifications (courtesy of Teledyne Optech, 2017). 
 

1.2. Multispectral Imagery and Land Cover Classification 

Although Optech Titan is the world’s first multispectral airborne Light Detection and 

Ranging (LIDAR) sensor, airborne multispectral imagery and monochromatic LIDAR have long 

existed as independent systems. Multispectral image land cover classification relies on the 

reflectance from earth’s surfaces, such as vegetation or water, to differentiate between 

materials in order to determine land cover. Remote sensing satellite sensors such as Landsat, 

IKONOS, and SPOT are common sources of multispectral imagery. Image classification refers 

to the task of extracting information classes from a multiband raster image. Depending on the 

interaction between the analyst and the computer during classification, there are two common 
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types of classifications: supervised and unsupervised (ArcMap Help, 2013). This project only 

examined supervised classification. In this process, the operator selects pixels that represent 

patterns or land cover features that can recognized, or that can be identified with help from 

other sources, such as aerial photos, ground truth data, or maps. Knowledge of the data, and of 

the classes desired, is required before classification. By identifying patterns, the operator can 

instruct the computer system to identify pixels with similar characteristics. If the classification is 

accurate, the resulting classes represent the categories within the data that operator originally 

identified (PCI Geomatics, 2015). An example of image classification for a multiband image into 

a thematic image is shown in Figure 2. Land cover refers to the surface cover on the ground, 

whether vegetation, urban infrastructure, water, bare soil or other. Identifying, delineating and 

mapping land cover is important for global monitoring studies, resource management, and 

planning activities. 

 

 
 

Figure 2. Example of test-site’s multispectral image (C2-I,C3-I,C1-I = RGB) being classified into 5 
information classes; Vegetation (green), Water (blue), Buildings (yellow), Roads (red), and Ground 
(pink). 

 

1.3. LIDAR and Attributes 

 Light Detection and Ranging (LIDAR) is a remote-sensing technique that uses laser 

light to densely sample the surface of the earth, producing highly accurate x, y, z 

measurements. The point data is post-processed after the LIDAR data collection survey into 

highly accurate georeferenced x, y ,z coordinates by analyzing the laser time range, laser scan 
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angle, GPS position, and INS information (ArcMap Help, 2013). Additional information is stored 

along with every x, y, and z positional value. The following LIDAR point attributes are 

automatically generated for each laser pulse recorded: intensity, return number, number of 

returns, GPS time, scan angle, and scan direction. In addition to these LIDAR point attributes, 

information regarding point classification values, points that are at the edge of the flight line, and 

RGB values can be stored as well. The latter attributes require manual input or generation and 

are subject to frequent change depending on the operator’s application. This project will utilize 

the core LIDAR attributes of x, y, z, intensity, and number of returns to differentiate land cover 

for classification. 

 

 

 

Figure 3. Typical LIDAR data collection survey being conducted and how the emitted laser pulse would 

produce multiple returns as it interacts with Earth’s surfaces (courtesy of ArcMap Help, 2013). 

 

The positional data of x and y are essential to ensuring that a point in an image or on 

Earth gets referenced correctly. The intensity data is the key factor in LIDAR land cover 

mapping. The intensity data produced from LIDAR survey is similar to reflectance data 

referenced in Section 1.2 describing how reflectance is used in supervised land cover 

classification. The other two main attributes of LIDAR that hold any significant information in 

differentiating land cover are ‘elevation’ (Z) and ‘# of returns’ (N). The data contained within the 

Z-attribute holds all the elevation information for the scene. This information is critical in 

producing digital surface models (DSM) and digital elevation models (DEM). This is useful 

because different land covers tend to have different heights (e.g. low = ground and high = tree/ 
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building) and therefore can be used to assist in land cover differentiation. Figure 3 shows a 

typical LIDAR data collection survey being conducted and how the emitted laser pulse would 

produce multiple returns as it interacts with Earth’s surfaces. The N-attribute is a LIDAR 

exclusive attribute that records the number of splits by the emitted laser pulse as it travels and 

interacts with surfaces. One emitted laser pulse can return to the LIDAR sensor as one or many 

returns. The first returned laser pulse is the most significant return and will be associated with 

the highest feature in the landscape (e.g. a treetop or the top of a building). The first return can 

also represent the ground, in which case only one return will be detected by the LIDAR system 

(ArcMap Help, 2017). Likewise, the last return will almost always be from the ground. These 

inherent properties of LIDAR can be used to assist in differentiating land cover. 

 

1.4. Raster Images and Interpolators 

Traditional Light Detection and Ranging (LIDAR) data is stored as point clouds, which 

are different than standard aerial imagery format. Regardless of the format extension, typical 

aerial imagery is stored as a raster format - e.g. .IMG, .PNG, .JPEG, and etc. Typically any 

raster-image representations of LIDAR data will have gone through an interpolation that 

converts the point-data into cell-data. Two mainstream point-to-raster interpolators are Inverse 

Distance Weighting (IDW) and Kriging. IDW is widely used for its fast computation, sound 

theory, and favorable results while Kriging is a highly regarded interpolator that is 

computationally heavy but produces highly accurate results. The main use of interpolators is for 

producing DSMs and DEMs. The most commonly produced visual representation of LIDAR data 

is an ‘intensity image’. Intensity images are the product of only x, y, and intensity attributes from 

LIDAR data while all information about other attributes will not be used. This is an ingrained 

restriction when using raster type data. Traditional LIDAR systems were only able to produce 

monochromatic images from LIDAR intensity data whereas Titan Optech can produce 

multispectral images due to its three different channels. Figure 4 shows the test-site’s LIDAR 

data converted into monochromatic images for each channel and a combined false-color-image 

using IDW interpolator. It is evident visually that each channel provides different information 

about the same area which when combined provides more valuable information. 
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Figure 4a. C1: 532 nm Figure 4b. C2: 1084 nm 

  

Figure 4c. C3: 1550 nm Figure 4d. False-color-image (C2,C3,C1 = RGB) 

Figure 4. Test-site’s LIDAR data converted into intensity images using IDW for each channel and a 

combined false-color-image. The test site was a 600m x 600m residential neighbourhood in Oshawa, 

Ontario captured at point-spacing of 0.5 meter. 

1.5. Problem Statement 

This project was undertaken to analyze the performance of Optech Titan’s three active 

imaging channels and LIDAR attributes in land cover classification. By processing selective 
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parameters through the multispectral image land cover classification process, we can gauge the 

accuracy performance of individual channels and attributes in land cover classification. The 

outcome of this process will measure the effectiveness of combining LIDAR attributes with 

multispectral imagery for land cover classification. 

 

2. LITERATURE REVIEW 

 Research into the subject matter yielded a wide range of studies conducted on 

multispectral imagery and LIDAR separately for land cover classification, but comparatively 

fewer studies discussed the combined results of multispectral LIDAR. This is because the 

Optech Titan is a new system that has only been field-operational in recent years while 

multispectral imagery and monochromatic LIDAR have long existed as independent 

technologies and both systems have developed workflows to perform land cover classification. 

Multispectral image land cover classification relies on the reflectance from earth’s surfaces, 

such as vegetation or water, to differentiate between materials in order to determine land cover 

while LIDAR land cover classification relies on a geometric calculation of ‘return number’, 

‘number of returns’ (N) and ‘elevation’ (Z) to determine ground, buildings, and vegetation. 

Further investigation into the subject matter proved using LIDAR’s attributes with multispectral 

land cover classification process to be advantageous as highlighted by our references who used 

normalized-DSM (nDSM) as an added parameter (aka band) to increase the overall accuracy by 

up to 10%; M. Sitar (2015), Morsy et al. (2017), Miller et al. (2016), and Huang et al. (2011) 

were able to significantly increase their classification results by utilizing the elevation attribute. 

This signifies that LIDAR’s Z-attribute (elevation), and possibly other attributes, hold valuable 

information for land cover classification.   

 

Furthermore, a common trend in the references was to use spectral indices to aid and 

improve the classification results. Spectral indices are simple band ratio used to enhance 

spectral properties of reflective surfaces on Earth. Spectral indices were developed to highlight 

the spectral properties of vegetation at different stages of growth and senescence. Recent years 

have seen the development of new spectral indices for applications other than vegetation health 

- e.g. indices for burned area assessment and fire severity.  

 

The references used the generic multispectral imagery classification process to perform 

land cover classification along with an additional step: interpolation. As mentioned in Section 
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1.4, the standard format of LIDAR data is point-clouds. These point-clouds must be interpolated 

into rasters in order to use them in the multispectral imagery classification process. A summary 

of the reference’s land cover classification accuracy results are summed up in Table 1.  

 

ARTICLE TITLE AUTHOR YEAR 
# OF 

CLASS 
OVERALL 

ACCURACY 
NOTES 

Towards Automatic Single-
Sensor Mapping by 
Multispectral Airborne Laser 
Scanning 

Ahokas et al. 2016 3 

91% Multispectral  

93.5% 
Multispectral + 
nDSM 

Testing Of Land Cover 
Classification From 
Multispectral Airborne Laser 
Scanning Data 

Bakula et al. 2016 6 90% 
Multispectral + 
nDSM 

Multispectral Lidar Point 
Cloud Classification: A Two-
step Approach 

Chen et al. 2017 5 81% 

Test was 
performed on 5 
different targets, 
rather than land 
cover 

Capability Assessment And 
Performance Metrics For The 
Titan Multispectral Mapping 
Lidar 

Fernandez-
Diaz et al. 

2016 5 90% 

Average of 
multiple studies  
conducted over 
2 years 

Fusion Of High Resolution 
Aerial Multispectral And 
Lidar Data: Land Cover In 
The Context Of Urban 
Mosquito Habitat. 

Hartfield et al. 2011 8 

82.5% Multispectral 

84% 
Multispectral + 
spectral 
indices 

89.2% 

Multispectral + 
spectral 
indices + 
nDSM 

80.9% 

Multispectral + 
spectral 
indices + 
nDSM + Z 

71.1% 
Multispectral + 
spectral 
indices + Z 

83.5% 

Multispectral + 
spectral 
indices + 
nDSM + I 
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Information Fusion Of Aerial 
Images And Lidar Data In 
Urban Areas: Vector-
stacking, Re-classification 
And Post-processing 
Approaches 

Huang et al. 2011 5 

82.5% Multispectral   

95% 
Multispectral + 
nDSM 

Application Of Image 
Classification Techniques To 
Multispectral Lidar Point 
Cloud Data 

Miller et al. 2016 unk. +10% 
Multispectral +  
Z + N 

Multispectral Lidar Data For 
Land Cover Classification Of 
Urban Areas 

Morsy et al. 2017 4 

77% Multispectral 

89% 
Multispectral + 
nDSM 

Airborne Multispectral Lidar 
Data For Land-cover 
Classification And 
Land/Water Mapping Using 
Different Spectral Indexes 

Morsy et al. 2016 

3 96% 
site I - aided by 
spectral indices 

3 83-92% 
site II - aided by 
spectral indices 

Beyond 3d - Multispectral 
Optech Titan Opens New 
Applications For Lidar 

Sitar, M. 2015 6 69-78% 
aided by DSM 
as added band 

New, Flexible Applications 
with the Multi-Spectral Titan 
Airborne Lidar 

Swirski et al. 2015 6 78% 
aided by DSM 
as added band 

Evaluating The Potential Of 
Multispectral Airborne Lidar 
For Topographic Mapping 
And Land Cover 
Classification 

Wichmann et 
al. 

2015 5 99% 
Geometrical 
Classification 

3d Land Cover Classification 
Based On Multispectral Lidar 
Point Clouds 

Xiaoliang et 
al. 

2016 9 91% 
aided by 
spectral indices 
and filtering 

Table 1. Summary of Reference’s Overall Classification Accuracy, # of Classes, Year, and Reference 
Title. 

 

Accuracy assessment is an important part of any land cover classification project. It 

compares the classified image to another data source that is considered to be accurate or 

ground truth data (ArcMap Help, 2013). The highest classification accuracy of multispectral 

LIDAR was 95% achieved by Huang et al. (2011) who also tied Morsy et al. (2017) for the 

largest increase in classification accuracy, ~12%, by using LIDAR’s Z-attribute. M. Sitar (2015) 

and Miller et al. (2016) were able to increase their results by ~9% when using LIDAR attributes 

with multispectral imagery but Ahokas et al. (2016) was only able to increase their result by 

2.5%. Ahokas et al. (2016) were performing a much more difficult classification by distinguishing 

three different vegetation in a scene and therefore only had a minor improvement in 
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classification accuracy between multispectral imagery and multispectral LIDAR. Even though 

Wichmann et al. (2015) and Morsy et al. (2016) have higher classification accuracies at 99% 

and 96% respectively, their results were omitted because one of them used geometrical 

classification rather than multispectral image classification and the other did not utilize LIDAR’s 

attributes - Z or N. The reason for omitting results not using LIDAR attributes is because the 

Optech Titan can simulate and isolate the multispectral imagery result by selecting only the 

intensities from the three different channels. The test-site data was classified using geometrical 

classification via LAStools into 3 classes - ground, building, and vegetation - but had uncertain 

results. The classified data could not be exported into a raster for further testing and the point-

on-point accuracy checks had unconfirmed results.  

 

Although Hartfield’s et al. (2011) paper does not mention Optech Titan and/ or 

multispectral LIDAR, their concept for testing multispectral imagery and LIDAR attributes 

together closely resembles the scope proposed by this project to analyze the performance of 

Optech Titan in land cover classification. They identified five parameters to be used in 

conjunction with each other to gauge the performance of multispectral imagery and LIDAR: 

multispectral imagery, spectral indices, nDSM, Z-attribute, and monochromatic intensity. A 

series of land cover classifications were done with various combinations of the parameters 

mentioned above to see how individual parameters will increase or decrease the result. 

Summary of Hartfield’s et al. (2011) results are available in Table 2. Their multispectral image 

was classified at 82.5% accuracy. The addition of spectral indices and nDSM positively 

increased the accuracy results by up to ~7% together while the Z-attribute and the 

monochromatic intensity decreased the accuracy.  The lowest accuracy of 71% was achieved 

by a combination involving multispectral imagery + spectral indices + Z, where it can be derived 

that the Z-attribute effectively lowered the accuracy by 13%. The average accuracy of Optech 

Titan’s sensor from our references is 85%. 

 

3. METHODOLOGY 

In order to gauge the performance of Optech Titan’s three active imaging channels and 

LIDAR attributes in land cover classification, three key steps were identified based on the 

lessons learned from our references: Interpolation, Supervised Classification, and Accuracy 

Assessment. Sample Optech Titan data was put through a series of trials to determine best 

practices for the steps mentioned above. ArcMap was used to perform the point-to-raster 



 

11  
 

interpolations. ArcMap was chosen to interpolate because of its robust performance and its 

exclusive Empirical Bayesian Kriging interpolator that automatically adjusts settings to the data 

being processed. Two different interpolators were used on the data: IDW and Kriging. IDW is 

widely used for its fast computation, sound theory, and favorable results while Kriging is a highly 

regarded interpolator that is computationally heavy but produces highly accurate results. The 

performance of these two interpolators were consequently tested as a result of the overall 

analysis performed. The next step is supervised classification. 

 

3.1. Technical Background 

Prior to determining the best practices for supervised classification, the parameters 

being used in the classification process should be clearly outlined. The Optech Titan has three 

active imaging channels and each channel has the following attributes: x, y, z, intensity, return 

number, number of returns, GPS time, scan angle, and scan direction. Based on our research 

and sample trials, it was determined that only intensity (I), number of returns (N) and elevation 

(Z) would be used in the classification process. Three parameters from three different channels 

equals to a total of nine parameters; C1 - I / N / Z, C2 - I/ N/ Z, and C3 - I / N / Z. These 

parameters can be used in combinations with each other to simulate the following systems: 

monochromatic LIDAR (individual channels), multispectral imagery (intensities only), and 

multispectral LIDAR. By analyzing the land cover classifications of the systems mentioned 

above, we can gauge the performance effects of these systems in comparison to each other. 

Additionally, spectral indices and nDSM are derivatives of the parameters mentioned above and 

have shown to be valuable in the land cover classification process. Spectral indices are simple 

band ratio used to enhance spectral properties of reflective surfaces on Earth while nDSM is the 

product of DEM subtracted from DSM. PCI Geomatics - Focus (software) was chosen to 

perform supervised classification because of its test–retest reliability. PCI Geomatics - Focus 

provided the optimal interface to add or remove parameters (aka bands) during supervised 

classification. The same program was used to perform accuracy assessment as well. 

 

3.2. Step- By- Step Procedure 

This project was undertaken to analyze the performance of Optech Titan’s three active 

imaging channels and LIDAR attributes in land cover classification. By processing selective 

parameters through the multispectral image land cover classification process, we can gauge the 

accuracy performance of individual channels and attributes in land cover classification. The 
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outcome of this process will measure the effectiveness of combining LIDAR attributes with 

multispectral imagery for land cover classification. Through combining the lessons learned from 

the references and operator experience using LIDAR data, a standardized workflow was 

produced to impartially compare land cover classification results of monochromatic LIDAR, 

multispectral imagery, Optech Titan sensor, and spectral indices. The steps within the process 

and their standard description is as follows: 

 

1. Collect LIDAR data; 
○ Collect LIDAR data using Optech Titan in three different wavelengths - C1, C2, 

C3; 
2. Interpolate LIDAR attributes into raster; 

○ Interpolate individual LIDAR attributes (I - N - Z) for each channel using IDW and 
Kriging; 

3. Compile rasters; 
○ Compile C1/ C2/ C3 - IDW - I/ N/ Z rasters; 
○ Compile C1/ C2/ C3 - Kriging - I/ N/ Z rasters; 

4. Perform supervised classification on various combination of rasters; 
○ Perform supervised classification on individual channels; 
○ Perform supervised classification on intensities; 
○ Perform supervised classification on elevation; 
○ Perform supervised classification on number of returns; 
○ Perform supervised classification on intensities + elevation; 
○ Perform supervised classification on intensities + number of returns; 
○ Perform supervised classification on intensities + elevation + number of returns; 
○ Perform supervised classification using all parameters; 
○ Perform supervised classification on combinations of spectral indices; 

5. Execute accuracy assessment; and 
○ Isolate monochromatic LIDAR results; 
○ Isolate multispectral results; 
○ Isolate Optech Titan (multispectral + LIDAR) results; 
○ Isolate spectral indices and special cases; 

6. Compare results. 
○ Gauge Optech Titan’s performance; 
○ Compare to traditional multispectral; 
○ Compare to traditional LIDAR; and 
○ Compare to references. 

 

3.3. Execution 

In this section, the execution of the workflow (shown in Figure 5) used to gauge land 

cover classification accuracy of monochromatic LIDAR results vs. multispectral imagery vs. 

Optech Titan vs. spectral indices will be explained. Step-by-step visual walkthrough of the 

workflow being executed is available in Appendix A. 
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Figure 5. Workflow to impartially compare classification results of monochromatic LIDAR, multispectral 

imagery, Optech Titan sensor, and Spectral Indices. 

 

STEP TOOLS / 
SOFTWARE 

EXPLANATION 

STEP 1:  
Collect LIDAR 
data 

Optech Titan 
Sensor 

● Sample Optech Titan LIDAR data was provided by 
the manufacturer 

● The sample data was for a residential 
neighbourhood in Oshawa, Ontario; 

● The footprint of the scene was 600m x 600m; 
● The point spacing for the data was 0.5m; 
● There were three separate files - one for each 

channel on the Optech Titan sensor; 

STEP 2:  
Interpolate LIDAR 
attributes into 
raster 
 

ArcMap 10.4.1 for 
Desktop to execute 
commands. 

● The point clouds must be converted into rasters 
because this is the format required by standard 
multispectral image classification methods; 

● ArcMap was used to apply IDW and Kriging 
interpolators to the point cloud data from Step 1; 

● Each attribute of interest - intensity, elevation, and 
# of returns - were interpolated individually using 
IDW for each channel; 

● 9 files were produced; 
● Each attribute of interest - intensity, elevation, and 

# of returns - were interpolated individually using 
Kriging for each channel; 

● 9 files were produced; 

STEP 3:  
Compile rasters 

PCI Geomatics - 
Focus 

● The 9 files from IDW interpolations were stacked 
together for future testing; 

● The 9 files from Kriging interpolations were stacked 
together for future testing; 

STEP 4:  
Perform 
supervised 
classification on 
various 

PCI Geomatics - 
Focus 

● Supervised classification was carried out in PCI 
Geomatics - Focus; 

● Training areas were manually collected on false 
color image of the test-site (C2-I, C3-I, C1-I = 
RGB); 

● The training areas were clustered into 4 classes - 
Vegetation, Ground, Roads, and Building;; 
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combination of 
rasters 

● A signature file was created for the combo C2-I, 
C3-I, C1-I; 

● Supervised classification using maximum-likelihood 
was performed; 

 
● A signature file was created for the combo C1-I, 

C1-N, C1-Z using the same training areas from the 
previous execution; 

● Supervised classification using maximum-likelihood 
was performed; 

 
● The two steps above were repeated until all desired 

combinations of channels and attributes were 
achieved. 

 
● EASI Modelling tool in PCI Geomatics - Focus was 

used to create spectral indices for testing; 
● All spectral indices were produced from IDW 

rasters; 
● A signature file was created for the spectral indices 

combos using the same training areas from the 
previous executions; 

● Supervised classification using maximum-likelihood 
was performed; 

STEP 5:  
Execute accuracy 
assessment 

PCI Geomatics - 
FOCUS 

● 200 point checks were carried out in PCI 
Geomatics - Focus for every classification combo 
from Step 4; 

● The 200 points were randomly distributed; 
● The same 200 points distribution were used in each 

accuracy assessment; and 
● Results were compiled. 

 

4. RESULTS 

4.1. Inverse Distance Weighting (IDW) 

IDW 

Band Attribute Stack 1 Stack 2 Stack 3 Stack 4 Stack 5 Stack 6 Stack 7 Stack 8 Stack 9 Stack 10 

C1 

I  X     X X X X X 

N  X   X      X 

Z  X    X     X 

C2 

I  X     X X X X X 

N   X  X   X  X X 

Z   X   X   X X X 

C3 

I   X    X X X X X 

N    X X      X 

Z    X  X      X 
Overall Accuracy % 59.5 70 58 47.5 37 77 74.5 71.5 75 71 
Kappa Coefficient 0.45 0.59 0.43 0.25 0.19 0.69 0.66 0.61 0.66 0.61 

Table 2. Accuracy assessment results for land cover classification using IDW interpolator. 

 

● Stacks 1 to 3: monochromatic LIDAR 
○ Monochromatic LIDAR is when only one channel actively collects data; 
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○ These stacks represent and simulate results for monochromatic LIDAR; 
○ The highest accuracy of 70% was achieved by C2/ Stack 2; 
○ The lowest accuracy of 58% was obtained by C3/ Stack 3; 

 
● Stacks 4 to 5: LIDAR attributes 

○ These stacks represent and isolate results for LIDAR attributes - elevation (Z) 
and # of returns (N); 

○ N-attribute achieved better accuracy at 47.5% than Z-attribute;  
 

● Stack 6: multispectral imagery 
○ This stack represents and simulates result for multispectral imagery; 
○ This combination produced the most accurate result at 77% compared to all 

other combinations;  
 

● Stacks 7 to 9: Optech Titan sensor 
○ This stack represents and isolates results for Optech Titan sensor’s exclusive 

combinations; 
○ These combinations are exclusive to Optech Titan because monochromatic 

LIDAR has only one channel and multispectral imagery do not have Z-attribute 
and N-attribute; 

○ It should be noted that these stacks produced lower accuracy results than Stack 
6 even though the same intensities data are used along with additional attributes 
information;  

○ Stack 9 produced the highest accuracy at 75% by utilizing all-intensities, C2-Z, 
and C2-N; 

 
● Stack 10: All parameters 

○ This stack represents the result for land cover classification using all parameters 
produced using IDW interpolator; and 

○ The resultant accuracy for the stack was 71%. 
 

4.2. Kriging 

KRIGING 

Band Attribute Stack 1 Stack 2 Stack 3 Stack 4 Stack 5 Stack 6 Stack 7 Stack 8 Stack 9 Stack 10 

C1 

I  X     X X X X X 

N  X   X      X 

Z  X    X     X 

C2 

I  X     X X X X X 

N   X  X   X  X X 

Z   X   X   X X X 

C3 

I   X    X X X X X 

N    X X      X 

Z    X  X     X 
Overall Accuracy % 61 73.5 59 49 36.5 76 75.5 73.5 76 71 
Kappa Coefficient 0.47 0.64 0.44 0.27 0.19 0.67 0.67 0.64 0.68 0.61 

Table 3. Accuracy assessment results for land cover classification using Kriging interpolator. 

 
● The overall accuracy results of using Kriging interpolation compared to IDW interpolation 

are indistinguishable; 



 

16  
 

 
● All aspects of the Kriging results - monochromatic LIDAR, LIDAR attributes, multispectral 

imagery, and Optech Titan exclusive combos - behave as they did for IDW interpolation; 
and 

 
● The highest accuracy of 76% was produced using only the multispectral intensities, 

similar to IDW but the latter had an accuracy of 77%. 
 

4.3. Spectral Indices 

SPECTRAL INDICES 

Spectral Index Stack 1 Stack 2 Stack 3 Stack 4 Stack 5 Stack 6 Stack 7 Stack 8 Stack 9 

nDSM        X X 

C1 X   X X X X X  

C1-C2/C1+C2  X        

C1-C3/C1+C3   X      X 

C2 X X X   X X X X 

C2-C1/C2+C1    X      

C2-C3/C2+C3     X     

C3 X X X X X   X X 

C3-C1/C3+C1      X    

C3-C2/C3-C2       X   
Overall Accuracy % 77 77 77.5 76.5 74.5 72 71 77.5 77.5 
Kappa Coefficient 0.69 0.69 0.67 0.68 0.66 0.62 0.61 0.70 0.70 

Table 4. Accuracy assessment results for land cover classification using spectral indices. 

 
● Stack 1: baseline accuracy 

○ This stack represents the most favorable result from our land cover classification 
achieved by using only intensities, aka multispectral imagery result; 

 
● Stacks 2 to 7: Spectral Indices 

○ These stacks represent and isolate results for spectral indices being used; 
○ Generic pseudo indices were created by comparing band ratios of the three 

channels with each other;  
○ The highest accuracy of 77.5% was achieved by Stack 3; 
○ This result is slightly better than the baseline accuracy but the result also had 

slightly lower kappa coefficient; 
○ The lowest accuracy of 71% was obtained by Stack 7; 

 
● Stack 8: baseline + nDSM 

○ This stack represents the most favorable result from our land cover classification 
achieved by using only intensities, aka multispectral imagery result, along with 
nDSM as mentioned by references; 

○ This combination produced a result of 77.5%, a 0.5% increase over the baseline 
accuracy along with 0.01 increase in kappa coefficient; 

 
● Stack 9: Stack 3 + nDSM 

○ Stack 3 represents the most favorable result from spectral indices combined with 
nDSM; and 
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○ This combination produced a result of 77.5%, same as Stack 3’s result but with 
0.03 increase in kappa coefficient. 
 

5. ANALYSIS 

5.1. Accuracy Assessment 

The intent of the study was to analyze the performance of Optech Titan’s three active 

imaging channels and LIDAR attributes in land cover classification. The most accurate land 

cover classification result from our testing was 77.5% with a 0.70 kappa coefficient. This was 

produced as a special index scenario by using the three intensities along with the nDSM (Table 

4 - Stack 8). The least accurate land cover classification result was 37% with a 0.19 kappa 

coefficient. This was produced by using only the Z-attribute (Table 2 - Stack 5). The subsequent 

sections will further analyze LIDAR attributes and spectral indices results while this section will 

concentrate on monochromatic LIDAR, multispectral imagery, and multispectral LIDAR results. 

 

Multispectral imagery has an overall accuracy result of 77% with a 0.69 kappa 

coefficient. This result is comparable to our references - M. Sitar (2015) and Morsy et al. (2017) 

- who had similar accuracy results when using the multispectral portion of the Optech Titan 

sensor in land cover classification. Their results were 69% and 77% respectively.  The result 

was achieved by using only the intensities from the three LIDAR channels and will be referred to 

as the baseline accuracy for remainder of the analysis sections. The reason for assigning 

multispectral imagery the ‘baseline’ title is because the land cover classification process utilized 

in this project is built specifically for multispectral images. Additionally, multispectral imagery 

represents the middle ground between monochromatic LIDAR and multispectral LIDAR.  

 

The highest monochromatic LIDAR accuracy result of 70% with a 0.59 kappa coefficient 

came from Channel 2 (NIR - 1024 mm). Channel 2’s accuracy is only 7% lower than baseline 

accuracy. There are two distinct reasons why Channel 2 achieved the highest accuracy result 

amongst other channels; the test-site has over 50% vegetation land cover and material 

distinction at NIR. Vegetation is highly susceptible to NIR wavelengths and therefore can be 

easily distinguished from other land covers. Channel 1 and 3 had less-favorable results at 

59.5% and 58% respectively.  

 

The highest accuracy produced by multispectral LIDAR (Optech Titan’s exclusive 

combinations) was 75% with a 0.66 kappa coefficient. This result was achieved by combining all 
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intensities with C2-Z-attribute and C2-N-attribute (Table 2 - Stack 9). The output is less 

favorable when compared to the multispectral imagery (using only intensities), which resulted in 

an accuracy of 77%. When adding only the N-attribute to the intensities in the classification 

process, the result drops down to 74.5%. Likewise, when adding only the Z-attribute to the 

intensities in the classification process, the result decreases to 71.5%. The N-attribute is 3% 

more accurate than the Z-attribute, however both attributes decrease the overall accuracy of the 

results when compared to the multispectral imagery result. Interestingly, when the Z-attribute 

and N-attribute are combined together with intensities, the result is 75%. To confirm this trend of 

adding additional parameters to increase the accuracy, an exploratory analysis was conducted 

using all nine attribute files (Table 2 - Stack 10) to see if additional dimensions of data would 

increase the overall accuracy result as observed in our earlier trials. The resultant overall 

accuracy was 71% when using all nine attributes. A possible cause for the deterioration in 

accuracy with additional data is due to over-parameterization. This is when same or similar data 

is used in an analysis and results in bias classification. It is apparent from the results that the 

intensity-attribute provides the most useful information in land cover classification. Other LIDAR 

attributes, elevation and # of returns, contribute very little or negative information to the land 

cover classification process and because these attributes were repeated in the over-

parameterization scenario, the resultant accuracy is lower than multispectral imagery and 

optimal multispectral LIDAR results. 

 

5.2. LIDAR Attributes 

 Individual land cover classification tests on Z-attribute and N-attribute produced 

unfavorable results of 37% and 47.5% respectively. It is not surprising that the accuracy results 

are low since the multispectral image classification methods rely on intensity as the decision 

variable. The intensity data for the test-site from C2 has a range from 1 to 4085. The elevation 

data (Z) and # of returns (N) from C2 for the test-site have a range of 73 to 126 and 1 to 4 

respectively. Visual representation of Z-attribute and N-attribute images from C2 are shown in 

Figure 6 below. These rasters may seem informative but a quick comparison of these images 

with respective intensity image shows exactly how much more information is stored within the 

intensity-attribute compared to elevation and # of returns attributes. This reduced range makes 

it more difficult for materials to be distinguished in images. For example, with a range of 1 to 4 

for C2’s N-attribute, theoretically only four different types of land cover can be distinguished at 

most whereas the intensity raster can distinguish up to 4085 different types. However, during 

testing the N-attribute produced better results than Z-attribute despite having shorter range of 
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data; e.g. 4 for N vs. 53 for Z. This strange trend has continued from our earlier tests. If 

attributes are not likely to increase classification results, perhaps attribute enhancement as used 

by our reference is the alternative solution to increasing accuracy.  

 

  

Figure 6a. C2 - N raster.  
Range: 1-4 

Figure 6b. C2 - Z raster.  
Range: 73-126 

  

Figure 6c. C2- intensity raster.  
Range: 1-4085 

Figure 6d. False-color-image (C2,C3,C1 = RGB) 
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5.3. Spectral Indices 

 Spectral indices are simple band ratio used to enhance spectral properties of reflective 

surface on Earth. Multiple classification scenarios were ran with generic band ratios to detect if 

any spectral index would significantly contribute to increase the accuracy of land cover 

classification. The highest overall accuracy of 77.5% was produced by combining C2-I, C3-I, 

and a band ratio involving C1 and C3. Although the result is better than our baseline accuracy of 

77%, the kappa coefficient is slightly lower. Another significant spectral index used during 

testing was the normalized-DSM (nDSM). This index is calculated by subtracting DSM from 

DEM. The inclusion of nDSM along with intensities used to perform classification produced the 

most favorable result of the project at 77.5% and kappa coefficient of 0.7, which is a 0.5% 

increase in accuracy and 0.01 increase in kappa coefficient from baseline. The nDSM is a by-

product of the elevation-attribute. The same elevation-attribute that decreased accuracy and 

kappa coefficient results in our earlier tests now yields better results. This result makes it 

plausible to assume other LIDAR attributes, elevation and # of returns, may be able to 

contribute information to the land cover classification process if used properly. The general 

consensus from our references was that the overall accuracy should increase by up to ~10% 

when nDSM is used as an additional parameter, however our project’s results confirm that 

nDSM had only a 0.5% increase in land classification accuracy. 

 

5.4. Interpolators 

Within our testing to determine advantages of multispectral LIDAR in land cover 

classification, a shallow dive was taken to test performances of the two most prominent point-to-

raster interpolation methods; inverse distance weighting and Kriging. The overall accuracy 

results of using Kriging interpolation seem slightly better all-around compared to IDW 

interpolation. Kriging has a maximum accuracy result of 76% while IDW has a maximum 

accuracy result of 77%. Both of these results were produced using only the intensities from the 

channels. The biggest difference between the two interpolators comes during the pre-

processing of the data as it is being converted to raster. IDW averaged ~1 minute per file to 

complete the conversion while Kriging took a healthy ~11 minutes per file. The slight 

improvement in results are not worth the processing time needed to perform Kriging, especially 

in land cover classification where minor variations in range of values are negligible. 
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Figure 7a. Test - site’s multispectral image being 
classified into 4 information classes; Vegetation 
(green), Buildings (yellow), Roads (red), and 
Ground (pink). 

Figure 7b. Test - site’s multispectral image being 
classified into 5 information classes; Vegetation 
(green), Water (blue), Buildings (yellow), Roads 
(red), and Ground (pink). 

 

5.5. Testing Site 

During the execution of the workflow steps described in Figure 5, it was observed that 

the input scene greatly affects the land cover classification result. Ideally, a test-site would have 

evenly distributed land cover to aid in the classification process. If a test-site is predominately 

covered by vegetation then the classification process becomes biased and will more likely 

categorize pixels to the vegetation class over others. The sizable source of error contributed by 

the testing scene came during the supervised classification step. Figure 7a shows the test-site’s 

classified image along with the four classes it was categorized into. When using the fifth water 

class as seen in Figure 7b, approximately 50% of the buildings were incorrectly classified. As 

water is only ~3% of the test site's scene composition, the decision was made to move forward 

with four classes for the entirety of the project. By omitting the water class from the classification 

process, a more favourable outcome was produced. 
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6. CONCLUSIONS 

The intent of the study was to analyze the performance of Optech Titan’s three active 

imaging channels and LIDAR attributes in land cover classification. Multispectral imagery had 

an overall accuracy result of 77%. This result is comparable to our references - M. Sitar (2015) 

and Morsy et al. (2017) - who had similar accuracy results of 69% and 77% respectively when 

using the multispectral portion of the Optech Titan sensor in land cover classification. The most 

accurate land cover classification result from our testing was 77.5%, which was produced as a 

special index scenario by using the three intensities along with the nDSM. Although the 

consensus amongst our references was that nDSM would increase the classification results by 

up to ~10%, our testing only resulted in a 0.5% increase. It is apparent from the results that the 

intensity-attribute provides the most useful information in land cover classification. 

 

The highest monochromatic LIDAR accuracy result of 70% came from Channel 2 (NIR - 

1024 mm). Channel 2’s accuracy is only 7% lower than multispectral imagery result. There are 

two distinct reasons why Channel 2 achieved the highest accuracy result amongst other 

channels; the test-site has over 50% vegetation land cover and material distinction at NIR. 

Vegetation is highly susceptible to NIR wavelengths and therefore can be easily distinguished 

from other land covers. Channel 1 and 3 had less-favorable results at 59.5% and 58% 

respectively.  

 

Individual land cover classification tests on Z-attribute and N-attribute produced 

unfavorable results of 37% and 47.5% respectively. Other combinations using these exclusive 

LIDAR attributes with intensities resulted in disappointment. It is not surprising that Z-attribute 

and N-attribute contribute very little to multispectral imagery classification process since those 

methods rely on intensity values as the decision variable. In addition to testing spectral indices, 

a quick comparison of raster interpolators was carried out as well. 

 

IDW has a maximum accuracy result of 77% while Kriging has a maximum accuracy 

result of 76% even though Kriging has slightly better accuracy results all-around for stacks 

tested. Both of these results were produced using only the intensities from the channels. The 

biggest difference between the two interpolators comes during the pre-processing of the data 

where Kriging took 10x more time to process. The slight improvement in results are not worth 
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the processing time needed to perform Kriging, especially in land cover classification where 

minor variations in range of values are negligible. 

 

Future work on this topic would revolve around creating spectral indices using LIDAR’s 

exclusive elevation and # of returns attributes. Individually these attributes contribute very little 

to the multispectral image classification process but as observed with addition of nDSM to 

multispectral imagery, this attribute can be exploited to increase accuracy results. These 

attributes are best used with mathematical formulas as seen with LAStools to isolate bare-earth, 

trees, and buildings. Additional testing into creating spectral indices with mathematical formulas 

based around Z-attribute and N-attribute will provide further insight into performance of 

multispectral LIDAR in land cover classification. 
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APPENDIX A – EXECUTION WALKTHROUGH 
 

 
Workflow to impartially compare classification results of monochromatic LIDAR, multispectral 

imagery, Optech Titan sensor, and Spectral Indices. 

 

 

Test-site’s LIDAR survey data collected in three different channels - C1, C2, and C3.  
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LIDAR data being converted into text files using LAStools. 
 

 

LIDAR data in text-format loaded into ArcMap. 
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IDW interpolator used on LIDAR data to produce raster for X, Y, elevation. (Z value field = 3) 

 

 

IDW interpolator used on LIDAR data again to produce raster for X, Y, intensity. (Z value field = 

4) 
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IDW interpolator used on LIDAR data to produce raster for X, Y, # of returns. (Z value field = 5)

 

Kriging interpolator used on LIDAR data to produce rasters for intensity, # of returns, and 

elevation. 
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Results of IDW raster interpolations for C1 - intensity, # of returns, and elevation. 

 

 

Results of IDW raster interpolations for C2 - intensity, # of returns, and elevation. 

 

 

Results of IDW raster interpolations for C3 - intensity, # of returns, and elevation. 
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Results of Kriging raster interpolations for C1 - intensity, # of returns, and elevation. 

 

 

Results of Kriging raster interpolations for C2 - intensity, # of returns, and elevation. 

 

 

Results of Kriging raster interpolations for C3 - intensity, # of returns, and elevation. 
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Generic workflow of LULC classification. (Courtesy of ArcMap Help, 2013) 

 
 

IDW rasters for the test-site are loaded into PCI Geomatics - Focus. The screen capture above 
is the false color image representation using C2-I, C3-I, C1-I = RGB.  
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The first classification testing was performed only on the intensity rasters. 

 

Training areas for 4 distinct land covers were created. 
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Result of training areas and application of maximum likelihood classification. 

 

Result of supervised classification. 
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Initiating accuracy assessment of classified image. 

 

Overview of 200 point check distribution. 
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Accuracy assessment in progress. 

 

 

Sample Report Listing and Error Matrix were created for each accuracy assessment performed. 
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Accuracy statistics were also created for each accuracy assessment.  

 

 

Example of adding or changing raster(s) prior to other combination classification processing. 
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The new raster combination is put through the classification process using the same training 

areas and accuracy assessment point check to ensure standardized results.  

 

 

Accuracy Statistics for the new combination is recorded and then another combination is trialed. 
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After the combinations have been classified, the results are compiled for comparison. 

The same process was applied to Kriging rasters as well. 
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