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ABSTRACT 

Life cycle assessment is a relatively new—although decades old—method for assessing the 

environmental impacts of goods and services.  It seeks to quantify these impacts in such a 

manner as to facilitate informed decisions regarding different, yet equally viable, options.  

However, this aim must be conditional on the notion that these impacts are measured with a 

number of associated qualifications or caveats, two of which is subject of this work.  As subject 

matter, temporality and spatiality in life cycle assessment are both very broad, although this 

dissertation focuses specifically on temporality and spatiality due to age of data.  The structure of 

the dissertation follows three distinct phases.  The first phase contextualized the subject matter 

and its relation towards standardization of life cycle assessment methods.  In doing so, it 

identifies and contextualizes the subject matter.  The second phase identified Greenhouse gases, 

Regulatory Emissions, and Energy use in Transportation 2 as an ideal model on which to assess 

temporality and spatiality due to age of data since it models the life cycle assessment of an 

assortment of different vehicles.  This phase also involved data collection, and uses a platform of 

assessment tools including Monte Carlo simulations, analysis of variance, F tests, regression 

analysis, and tests for non-normality (kurtosis and skewness).  Building on the second phase, the 

third phase moved beyond the original phases by more than doubling the amount of materials of 

manufacture to be studied and adding further tools for assessment, the mainstay of which are 

regression analyses.  Overall, this study found that the use of Monte Carlo simulations and 

analysis of variance are useful for identifying long term variation in energy intensity of 

materials.  F-tests were useful in identifying which materials showed effects owing to spatiality.  

Although not in all instances, tests for non-normality identified which circumstances merit log 

transformation to bring about more accurate results.  Linear regression techniques were used as a 

posterior test to confirm the origins of the variation seen in the Monte Carlo simulations and the 
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analysis of variation.  Moving ahead, this study pointed to the need for more concerted efforts in 

data promulgation.  

  



 

v 
 

 

ACKNOWLEDGEMENTS 

 

I wish to thank Dr. Cory Searcy for his kind, thoughtful, and enthusiastic navigation throughout 

this process. 

 

I would also like to thank Dr. Andrew Laursen for introducing me to the potential benefits of 

Monte Carlo simulations and further assistance with their statistical analysis. 

 

I would also like to thank the department of Chemistry and Biology for kindly giving me the 

opportunity to work and gain teaching experience:  Drs. Lynda McCarthy, Andrew Laursen, Kim 

Gilbride, Martina Hausner, Noel George, Vadim Bostan, Dérick Rousseau, Andrew McWilliams, 

Monica Sauer and Charlotte de Araujo, as well as staff members Karen Puddephatt, Liberty 

Victorio-Walz, Mariam de Jong, and Stephanie Grouios all of whom made my life easier. 

  



 

vi 
 

 

DEDICATION 

 

 

This work is dedicated to my mother Alexandra Yaroslava without whom this would not have 

been possible. 

  



 

vii 
 

 

Table of Contents 

 

            Page 

 

Author’s Declaration           ii 

Abstract            iii 

Acknowledgements           v 

Dedication            vi 

Table of Contents           vii 

List of Abbreviations           x 

List of Tables            xiii 

List of Figures           xvi 

 

CHAPTER 1. Introduction.         1 

 

1.1 Life Cycle Assessment: An Outline      1 

1.2 Sources and Sinks         4 

1.3 Uncertainty and Variance        7 

1.4 Problem Identification        12 

1.5 Research Objectives and Methodological Approach    13 

1.5.1 Model Choice        13 

1.5.2 Data Collection        16 

1.5.3 Monte Carlo Simulations      19 

1.5.4 Analysis of Variation and F tests     21 

1.5.5 Regression Analysis       22 

1.5.6 Tests for Non-normal Data      23 

 1.6 Glossary of Key Definitions       23 

1.7 Structure of the Dissertation       28 

 

CHAPTER 2. Life Cycle Assessment and the progress towards standardization  30 

and normalization. 

 

2.1 Overview of LCA Development and Standardization    30 

2.2 Pre-2006          31 



 

viii 
 

 

2.3 Post-2006          35 

 2.4 Conclusions         42 

 

CHAPTER 3. Analysis of how energy intensities from vehicle manufacturing   44 

materials vary with the age of data and the region they represent. 

 

3.1 Introduction         44 

3.2 Methods          49 

3.2.1 Monte Carlo Simulations      50 

3.2.2 Data collection and utilization      55 

3.2.3 Coefficient of variance (CV), standard error (SE), and ANOVA 61 

3.2.4 Skewness and Kurtosis       63 

3.2.5 Limitations        63 

3.3 Results and Discussion        64 

 3.3.1 Monte Carlo simulations and analysis of variance (temporality) 64 

 3.3.2 Discussion related to the use of intervals for Monte Carlo  72 

  Simulations 

 3.3.3 Discussion on the possibility of non-normality in the temporality 76 

  Results 

 3.3.4 Monte Carlo simulations and analysis of variance (spatiality)  76 

3.4 Conclusions          78 

 

CHAPTER 4. Monte Carlo simulations and regression analysis for assessing   82 

temporality due to age of data. 

 

4.1 Introduction         82 

4.2 Methods          86 

4.2.1 Data collection        86 

4.2.2 Monte Carlo simulations and analysis of variation   87 

4.2.3 Regression analysis        90 

4.2.4 Skewness and kurtosis       92 



 

ix 
 

 

4.2.5 Limitations        93 

 4.3 Results and Discussion        94 

 4.3.1 Monte Carlo simulations and analysis of variance   94 

 4.3.2 Regression analysis       109 

 4.3.3 Skewness and kurtosis       110 

 4.3.4 Caveat regarding data availability     112 

4.4 Conclusions         114 

 

CHAPTER 5. Conclusions.         115 

 

5.1 General Conclusions        115 

 5.1.1 Contributions        116 

 5.1.2 Implications        119 

5.2 Limitations of This Study        120 

5.3 Future Work         122 

 

Appendix A. References for Body of Dissertation      126 

Appendix B. References for Data Collection       143 

Appendix C. Complete List of Countries in Figures 3.12 and 3.13    163 

 

REFERENCES          164 

 

  



 

x 
 

 

LIST OF ABBREVIATIONS 

 

ABS  Acrylonitril Butadiene Styrene 

 

ANOVA Analysis of Variance 

 

BOE  Barrels of Oil Equivalents  

 

CFRP  Carbon Fibre Reinforced Plastic 

 

CIEEDAC The Canadian Industrial Energy End-Use Data and Analysis Centre 

 

CIRAIG Interuniversity Research Centre for the Life Cycle of Products, Processes and  

  Services (Canada) 

 

CSR  Corporate Social Responsibility 

 

CV  Coefficient of Variance 

 

EA  Environmental Assessment 

 

EIO-LCA Economic Input-Output—Life Cycle Assessment 

 

EOL  End-of-life 

 

EPA  US Environmental Protection Agency 

 

EPDM  Ethylene Propylene Diene Monomer 

 

EV  Electric Vehicle 

 

FCV  Fuel Cell Vehicle 

 

GFRP  Glass Fibre Reinforced Plastic 

 

GHG  Green House Gas 

 

GPPS  General Purpose Polystyrene 

 

GREET Greenhouse gases, Regulated Emissions, and Energy use in Transportation  

(Argonne National Laboratory) 

 

GWP  Global Warming Potential  

 

HDPE  High-Density Polyethylene 

 



 

xi 
 

 

HIPS  High Impact Polystyrene 

 

HEV  Hybrid Engine Vehicle 

 

ICE  Inventory of Carbon and Energy (University of Bath, UK) 

 

ICEV  Internal Combustion Engine Vehicle 

 

ISO   International Organization for Standardization 

 

kWh  Kilowatt hours 

 

LAR  Least Absolute Residuals (regression) 

 

LCA  Life Cycle Assessment 

 

LCI  Life Cycle Inventory 

 

LCIA  Life Cycle Impact Assessment 

 

LDPE  Low-Density Polyethylene 

 

LLDPE Linear Low-Density Polyethylene 

 

LS  Least Squares (regression) 

 

PC   Polycarbonate 

 

PET  Polyethylene Terephthalate 

 

PFSA  Perfluorosulfonic Acid 

 

PHEV  Plug-in Hybrid Engine Vehicle 

 

POCP  Photochemical Ozone Creation Potentials 

 

PNRG  Pseudo-random Number Generator 

 

PTFE  Polytetrafluoroethylene 

 

PUR(F) Flexible Polyurethane 

 

PUR(R) Rigid Polyurethane 

 

PUT  Pick-up Truck 

 



 

xii 
 

 

PP  Polypropylene 

 

PVC  Polyvinyl Chloride 

 

SD  Standard Deviation 

 

SPINE  Sustainable Product Information Network for the Environment (Sweden) 

 

SUV  Sport Utility Vehicle 

 

  



 

xiii 
 

 

LIST OF TABLES 

 

            Page 

CHAPTER 1            

 

Table 1.1  Types of Uncertainty (by study author).     9 

Table 1.2  Details related to the simulation phases of the dissertation.   15 

Table 1.3  Principle Classifications of Life Cycle Inventory Data.   18 

Table 1.4  Breakdown of Types of Documents Used in Phase 3 of the Dissertation. 18 

 

 

CHAPTER 2           

 

Table 2.1  Summation of pre-2006 critiques of the ISO 14040 series.   34 

Table 2.2 Summation of Recommendations Since 2006 and Their Potential   37 

Viability. 

 

CHAPTER 3  

 

Table 3.1  An exhaustive list of background effects and their relevance to this study. 51 

Table 3.2  The raw materials of manufacture directly from GREET2 model and their 54 

corresponding weights in kilograms. 

Table 3.3 The types of fixed distributions used by SimaPro to model uncertainty 54 

 (adapted from Goedkoop et al., 2013). 

Table 3.4  The total energy (E) per vehicle in kWh, standard deviation (SD),   65 

standard error (SE) and coefficient of variation (CV) using regular and  

lightweight materials. 

Table 3.5  The total energy (E) per vehicle (sedan) in kWh, standard deviation  65 

(SD), standard error (SE) and coefficient of variation (CV) according to  

geographic location. 



 

xiv 
 

 

Table 3.6  Comparison of total energy of vehicle (cradle-to-gate) from other studies. 66 

Table 3.7  A breakdown of the total energy (E) of a regular vehicle (sedan) in kWh  69 

and in terms of individual materials of manufacture (i). 

Table 3.8  A breakdown of the total energy (E) of a lightweight vehicle (sedan) in  69 

kWh and in terms of individual materials of manufacture (i). 

Table 3.9  A breakdown of the total energy (E) of a regular vehicle (sedan) in kWh  69 

and in terms of individual materials of manufacture (i) by geographical  

region. 

Table 3.10  Log transformed version of Table 3.9.     69 

 

CHAPTER 4  

           

Table 4.1  An updated list of materials used in Greenhouse gases, Regulatory   85 

Emissions, and Energy use in Transportation 2 as of 2012. 

Table 4.2  Weight in kg of individual materials in Greenhouse gases, Regulatory  85 

Emissions, and Energy use in Transportation 2. 

Table 4.3  Weight in kg of individual plastics used in Greenhouse gases, Regulatory 85 

Emissions, and Energy use in Transportation 2. 

Table 4.4  Weight in kg of materials specific to fuel cell vehicles used in   86 

Greenhouse gases, Regulatory Emissions, and Energy use in  

Transportation 2. 

Table 4.5  Time over which the available data on energy intensity (kWh/kg) of  89 

individual materials spans.  

Table 4.6  Average energy totals, standard deviations and coefficient of variation  89 

for various power train configurations (kWh). 

Table 4.7  Means and standard deviations of materials for regular and lightweight  99 

sedans with different power trains (kWh). 

Table 4.8  Means and standard deviations of materials for regular and lightweight  99 

sedans with different power trains (kWh). 

Table 4.9  Means and standard deviations of fuel cell specific materials for regular  99 

and lightweight sedans (kWh). 



 

xv 
 

 

Table 4.10  Table of kurtosis values for each material.      111  

Table 4.11  Table of skewness values for each material.     111 

Table 4.12  Regression analysis for energy intensities of materials of manufacture 111  

using least absolute regression and least squares regression methods. 

Table 4.13  Number of years for a one percent change in energy intensity (kWh/kg).  113 

Table 4.14  A comparison of total energy per vehicle before and after log   113 

transformation (kWh).  



 

xvi 
 

 

LIST OF FIGURES 

 

            Page 

 

CHAPTER 1            

 

Figure 1.1  A visual overview of temporality in LCA Studies.    5 

Figure 1.2  Overall Structure of the Dissertation.      14 

Figure 1.3  GREET1 and GREET2 models as adapted from     16 

Tan et al. (2004b). 

 

CHAPTER 2 

 

Figure 2.1. Life cycle assessment framework adapted from ISO (1997).   32 

Figure 2.2  The ISO 14040 standards in relation to other ISO platforms at   32 

the time of their development (adapted from Fet, 1998). 

Figure 2.3  LCA from the design perspective (adapted from     33 

Gasafi et al., 2003). 

 

CHAPTER 3 

 

Figure 3.1  An overview of Chapter 3 and the Monte Carlo simulation.   50 

Figure 3.2  Raw data of historic energy intensity (kWh/kg) for primary steel.   60 

Figure 3.3  Historical raw data of energy intensity (kWh/kg) of     60 

primary aluminum.  

Figure 3.4  An example of a single Monte Carlo distribution for the total   68  

energy of an internal combustion engine sedan.  

Figure 3.5  A sample probability distribution for the energy intensity of copper.  70 

Figure 3.6  A sample cumulative probability distribution for the energy   70  

intensity of copper.  

 



 

xvii 
 

 

Figure 3.7  A one-way ANOVA of an internal combustion engine sedan using   71 

regular materials. 

Figure 3.8  A one-way ANOVA of an internal combustion engine sedan using   71 

lightweight materials. 

 Figure 3.9  Histogram of PET energy of a regular sedan for the Five Year Period  73 

(2007-2012). 

Figure 3.10  Histogram of PET energy of a lightweight sedan for the Five Year   73 

Period (2007-2012). 

Figure 3.11  Energy intensity (kWh/kg) for steel over various time intervals.  74 

Figure 3.12  Countries studied for temporality due to age of data.        80  

Figure 3.13 Countries involved in the spatiality analysis.     81 

 

CHAPTER 4 

 

Figure 4.1  The structure of the study for Chapter 4.     87 

Figure 4.2  An example Monte Carlo distribution for an all electric vehicle.  95 

Figure 4.3  An example Monte Carlo distribution for a lightweight all electric   95 

vehicle. 

Figure 4.4  Box plots of an analysis of variance results for an all electric vehicle. 97 

Figure 4.5  Box plots of an analysis of variance for an all electric vehicle   97 

(plastics only).  

Figure 4.6  Box plots of an analysis of variance for a lightweight all electric vehicle. 98 

Figure 4.7  Box plots of an analysis of variance for a lightweight all electric   98 

vehicle (plastics only). 

Figure 4.8  Box plots of an analysis of variance results for an internal combustion  101 

engine vehicle. 

Figure 4.9  Box plots of an analysis of variances results for an internal combustion  101 

engine vehicle (plastics only). 

Figure 4.10 Box plots of analysis of variance results for a lightweight hybrid   102 

electric vehicle. 

 



 

xviii 
 

 

Figure 4.11 Box plots of analysis of variance results for a lightweight hybrid   102 

electric vehicle (plastics only). 

Figure 4.12  Box plots of an analysis of variance results for a hybrid electric vehicle. 103 

Figure 4.13  Box plots of an analysis of variance results for a hybrid electric vehicle  103 

(plastics only). 

Figure 4.14  Box plots of analysis of variance results for a lightweight hybrid electric  104 

vehicle. 

Figure 4.15  Box plots of analysis of variance results for a lightweight hybrid electric  104 

vehicle (plastics only). 

Figure 4.16  Box plots of an analysis of variance results for a plug-in hybrid electric  105 

vehicle. 

Figure 4.17  Box plots of an analysis of variance results for a plug-in hybrid electric  105 

vehicle (plastics only). 

Figure 4.18  Box plots of an analysis of variance results for a lightweight plug-in  106 

hybrid  electric vehicle. 

Figure 4.19  Box plots of an analysis of variance results for a lightweight plug-in  106 

hybrid electric vehicle (plastics only). 

Figure 4.20  Box plots of an analysis of variance results for a fuel cell vehicle.  107 

Figure 4.21  Box plots of an analysis of variance results for a fuel cell vehicle   107 

(plastics only). 

Figure 4.22  Box plots of an analysis of variance results for a fuel cell vehicle (fuel  107 

cell materials). 

Figure 4.23  Box plots of an analysis of variance results for a lightweight fuel cell  108 

vehicle. 

Figure 4.24  Box plots of an analysis of variance results for a lightweight fuel cell  108 

vehicle (plastics only). 

Figure 4.25  Box plots of an analysis of variance results for a fuel cell vehicle (fuel  108 

cell materials). 

  



 

1 
 

 

 

CHAPTER 1—INTRODUCTION 

 

 

1.1 Life Cycle Assessment: An Outline 

 

The central purpose behind the development and use of Life Cycle Assessments (LCA) was to 

promote informed decisions in the design and manufacture of products and services in order to 

assess their overall environmental impacts.  This design tool has allowed for the introduction of 

design modifications such as the substitution of materials and methods in manufacturing so that 

more cost-effective and green-oriented products and services are brought about.  However, the 

limitations of the process of LCA studies are mired in an ongoing debate over a multitude of 

facets within LCA methodology and principles.  These problems include the issues of allocation, 

impact categories and streamlining processes.  One issue not significantly addressed is that of the 

potential temporal effects (“distortions”) on the validity of the results derived from LCA studies.  

What existing published material there is on this subject centres on the issue of the long-term 

effects of various emissions (carbons, NOX, SOX, etc.) characterized by their GWP (global 

warming potential) and, in turn, how they are discounted into present valuations.  Consequently, 

the total sum of work in this area focuses on a narrow facet of the externalities arising from the 

output (sink) stage of the LCA.  What has received little attention surrounds the input (source) 

stages of an enclosed industrial process.  These latter input effects arise from temporal shifts 

within resource bases, technology dynamics, system complexity, system efficiency and 

alterations to environmental services.  In this sense, it will complement discussions on 

uncertainty and variation in LCA literature.  It is hypothesized that hitherto studies affected by 

temporality will have a much shorter longevity than previously assumed. 

 

The process by which environmental impacts are quantified is termed environmental assessment 

(EA).  LCA is one of the influential methodologies in environmental assessment.  This 

methodology enables the quantification of environmental impacts of products and services across 

their entire lifespan, ranging from the raw material extraction/reuse, manufacture, usage and final 

disposal/recycling.  In sustainability studies, the terminology most frequently used to describe 
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this cycle is “cradle-to-grave” or, when more vigorous recycling is employed, “cradle-to-cradle.”  

The main reason behind the usage of LCA is to gauge the environmental burdens and resources 

used, as well as examine design alternatives (Cooper and Fava, 2006).  Consequently, the 

purpose of LCA may be seen to augment existent internal information regarding certain 

processes (Ibid.).  A succinct definition of what this entails is given by Dreyer et al. (2006): 

 

The product system encompasses all the processes involved in the different stages 

of the product's life from the extraction of raw materials, through manufacture, 

use and maintenance, to the final disposal of the product. When the focus is on 

environmental impacts, there is a natural link between the physical input or output 

of a process and a change in quality of the surrounding environment. The 

performance of the processes is thus the main driver behind the product's 

environmental impacts [...] (p. 89) 

 

Nevertheless the balance of material dealing with inputs and outputs within LCA is slanted 

towards the output phases of industrial processes.   

 

During the last twenty years, LCA has seen a growing presence within both the field of 

environmental studies and amongst practitioners.  LCA has made possible the assessment of both 

manufactured goods and services.  In doing so, it has allowed for the rationale of business 

decisions and design modifications for less environmentally deleterious outcomes.  Furthermore, 

LCA has facilitated more holistic approaches to environmental issues.  For example, economic 

analysis of environmental problems is hampered by difficulties associated with valuation and 

“market failures,” while ecotoxicology solely examines the ecological impacts—that is, the end 

products—of anthropogenic activities.  Nevertheless, the process of LCA has undergone some 

modifications during the last twenty years and has been largely codified by the International 

Organization for Standardization (ISO) under the ISO14040:2006 document Environmental 

management—life cycle assessment—principles and framework.  Consequently, LCA is broken 

down into four separate but distinct stages: 
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1. Goal Definition and Scope  

This phase of the LCA process determines the type of information that will inform and 

augment the decision making process.  Consequently, this step can be used to determine 

the resources needed and, in turn, how the resources will shape the final results.  This is 

also useful in establishing the required specificity and how the data should be organized 

and the results displayed.  Lastly, the ground rules of how to go about the work can be 

established. 

 

2. Life Cycle Inventory (LCI)  

The inventory is the part of the overall process which seeks to quantify and account for 

the entirety of each aspect of a product or service lifecycle from raw material extraction 

and processing, through to all the externalities such as emissions, releases and wastes.  

The LCI serves as the basis for the determination of environmental impacts and/or design 

improvements.  Typically, this process includes developing a flowchart of the unit 

processes that make up the total product or service.  This is followed by forming a 

strategy to collect data and subsequently followed by the actual collecting of data.  

Lastly, the results of the data collection are evaluated and reported.  

 

3. Life Cycle Impact Assessment (LCIA) 

The impact assessment phase of an LCA attempts to assess whether there may be a link 

between a product or service and its potential for environmental impacts.  At this 

particular phase, it may be possible to establish the difference between products by their 

different potential impacts.  The stages of the LCIA involve the selection and definition 

of impact categories, classification of impact categories, characterization of LCI results, 

normalization of variables, grouping or sorting different categories, weighting the 

potential impacts and, lastly, reporting and evaluating the final results.  Classification of 

impact categories involves assigning LCI result to impact categories such as global 

warming, acidification, etc.  On the other hand, characterization of LCI results involves 

modeling the impacts with categories by science-based conversion factors.   
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4. Life Cycle Interpretation  

Life cycle interpretation is the final phase of the entire LCA process.  At its core, 

interpretation involves explaining and communicating conclusions.  This could involve 

quantitative (statistics) or qualitative analysis (such as valuation, preference, weighting, 

etc.).  Study limitations and recommendations should be included in this phase as part of 

an overall process of transparency.   

 

Nevertheless, the process of LCA continues to be encumbered by a number of drawbacks which 

call into question the validity of some aspects of the process and findings.  This includes the fact 

that the data used in LCA is spatially and temporally dependent.  This work seeks to address this 

knowledge gap in a normative sense with regard to energy intensity. 

 

1.2 Sources and Sinks 

 

Hofmeister and Kümmerer (2009) note that the separation of inputs and outputs during a process 

allows for their characterization as sources and sinks.  Figure 1.1 presents a graphic 

representation of this is more detail.  In turn, this has led to the treatment of inputs and outputs as 

two wholly separate parameters or factors with no relation to each other (Ibid.).  For example, in 

Yuan et al. (2009), temporality was studied in relation to the environmental performance of an 

automobile with its production of greenhouse gases (GHGs) during its lifecycle.  In this case, a 

performance evaluation was conducted using deterministic data rather than a stochastic 

distribution since the preliminary qualities of the study precluded the complexity involved in the 

latter case.  All the sequential time frames in the study were added together, beginning with raw 

materials and continuing on to manufacturing, usage and, finally, disposal.  Discount rates were 

pegged at five and ten percent (see Figure 1.1).  Discount rates may be explained as the rate 

required by the Treasury Board of Canada for discounting future costs and benefits from public 

projects.  Thus, the higher the discount rate, the more diminished will be the future costs and 

benefits derived from public projects.  The use of discount rates in LCA is intended to augment 

the decision making process.  In Steen (1997), the issue of temporality was solely in relation to 

GHG emissions—in this case, those coming from 1 kg of newspaper.  Here, a linear relation of  



 

 
 

 

Figure 1.1 A visual overview of temporality in LCA Studies 

Note: For the most part, the extant work on the issue of temporality in LCA focuses on the impact of emissions on GWP (Global 

Warming Potential) indicators.  The centre of the diagram is a where the LCA traditionally focused on a steady-state, cradle-to-grave 

system.  The right hand side of the diagram illustrates that temporality has been traditionally characterized as an output or sink.  The 

plot on the right side is taken from Yuan et al. (2009), which shows the trajectory of cumulative CO2 emissions over a twelve year 

period according to various discount rates.  What have been ignored are the inputs or sources which enter the LCA from the left side 

of the figure.  What is shown here is a temporal decrease in the electric power requirements (kWh/tonne) from 1980 to 2010 

(International Aluminum Institute, 2011).  Obviously, this would have significant ramifications for an LCI whose impact indicators 

include power usage.

5
 

Product or Service Cycle

LCA Focus

Outputs/SinksInputs/Sources

14,000

15,000

16,000

17,000

18,000

1980 1985 1990 1995 2000 2005 2010

Electric Power Aluminum (kWh/tonne)



 

6 
 

 

 

inputs was used instead of a non-linear relation, in spite of the inherent inaccuracies involved in 

the former.  Coupled with this was the use of scenario analysis wherein one scenario involved 

recycling and the other incineration.  Steen (1997) claimed that the uncertainty arises both from 

the use of data which is flawed in itself and from the aging of the database which holds the data.  

Also implicated in this promulgation of uncertainty was the problem of allocation (Steen, 1997), 

which relates to how impacts are assigned to individual processes in manufacturing processes 

which have multiple outputs.  While it is usually preferred that allocation issues be consigned to 

a mass basis, other parameters such as weight, volume, (market) value, energy and demand can 

be used (Curran, 2007).  In yet another example employing GHG, Huijbregts (1998b) examined 

temporality according to future GHG impacts arising from two different designs of a roof gutter.  

Along with scenario analysis, probabilistic modeling was used in his model.  This was based on a 

matrix method originally proposed by Heijungs (1994, 1996).  Lastly, Leroy and Froelich (2010) 

performed an LCA to study the GWP for both high-density polyethylene (HDPE) and low-

density polyethylene (LDPE) grocery bags in order to study uncertainty propagation.  They 

employed a mixture of qualitative methods and quantitative methods (Monte Carlo simulation) in 

their study.  

 

As mentioned earlier, temporality has been studied because of its ability to track chemical fate 

and aid in risk analysis, although risk analysis is not the same as LCA.  For example, Hertwich et 

al. (2000) studied the potential doses of 336 different chemicals from emission sources, 

including both wet and dry deposition.  They used a model developed by Finkel (1990) for the 

analysis of uncertainty in risk assessment and risk management.  Key to the model framework 

was the distinction of uncertainty arising from the model, decision rules and the input 

parameters, the last of which are also characterized as subject to variability.  For example, 

variability characterizes combustion fuels in that they release energy somewhere within the 

lower and higher heating values (LHV/HHV).  At any rate, Hertwich et al. (2000) employed 

three different sets of input parameters, each of which were characterized by both uncertainty 

and variability.  The data sets included chemical specific data, landscape data and exposure data.  

A dominant exposure route was determined for each of the chemicals released into the air.  For 

the 336 different chemicals, two sets of Monte Carlo analyses were conducted, such that one set 
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employed the variance in chemical-specific parameters and the other employed the variance in 

all three parameters listed above.  Then a sensitivity analysis was performed which evaluated the 

contribution to variance of each input parameter which ranged from 0.5 to 3.0 orders of 

magnitude in variance, but in most cases only 1 order of magnitude.  The main reason for citing 

this work is that it employed a viable method for addressing uncertainty and variability which 

will be applied in this study with LCA.  Lastly, Huijbregts et al. (2006) related the emissions 

arising from product manufacture to their environmental impacts, specifically through the study 

of the release of halogens from plastics manufacture and their consequential implication in ozone 

depletion.  Subsequently, Huijbregts et al. (2006) were able to demonstrate through LCA that the 

cumulative energy demands of a product during the course of its lifecycle are a useful indicator 

of their environmental impacts.   

 

1.3 Uncertainty and Variance 

 

Uncertainty is implicated in many aspects of LCA.  As defined in ISO 14040:2006 (s. 3.33), 

uncertainty analysis is a “systematic procedure to quantify the uncertainty introduced in the 

results of a life cycle inventory analysis due to the cumulative effects of model imprecision, 

input uncertainty and data variability.”  Embedded in this notion is that LCA implies some level 

of “value judgments” (Mining, Minerals, and Sustainable Development, 2002, p.275).  For 

example, in the case of metals, there is “uncertainty over the specification and integration of 

impact categories, the relative importance of different environmental impacts, and the boundaries 

of impacts over both time and space” (Ibid.).  Mining, Minerals, and Sustainable Development 

(2002) go so far as to claim that temporality is not an issue with metal LCAs since the physical 

state of metals never declines or alters.  Rather, they contend that metals are subject only to 

impurities and can be recycled indefinitely.  Because of claims such as these, traditionally 

“model uncertainties, such as a lack of temporal and spatial variability in the assessment, have 

not been quantified in LCAs” (Huijbregts, 1998b, 350). 

 

Uncertainty in LCA studies is a broad topic eliciting a variety of opinion and methodology from 

practitioners.  The most salient feature of this ongoing debate deals with the origins and types of 

uncertainty.  Indeed, since the first Society of Environmental Toxicology and Chemistry 
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(SETAC) workshop on uncertainty can be traced back to 1992 (Heijungs and Huijbregts, 2004), 

it is puzzling that, among other things, there has been no agreement on the origins and principles 

of general concepts such as uncertainty and variability.  How broad or disparate this debate is 

may be elicited from the variety of opinions from the various works in Table 1.1.  Furthermore, 

according to Heijungs and Huijbregts (2004), part of this confusion over what are uncertainty, 

variability and sensitivity is due to the lack of definition standardization for these terms, 

institutional or otherwise.  An attempt to distinguish uncertainty from variability was made by 

these two authors:   

 

Uncertainty relates to a lack of knowledge: no data is available, or the data that is 

available is wrong or ambiguous. Variability, in contrast, is a quality of data that 

is essentially of a heterogeneous nature. (p. 333) 

 

An earlier attempt was made by Huijbregts (1998a) to explain the difference between uncertainty 

and variability as follows: 

 

Variability is understood here as stemming from inherent variations in the real 

world, while uncertainty comes from inaccurate measurements, lack of data, 

model assumptions, etc. that are used to “convert” the real world into LCA 

outcomes. (p. 273) 

 

The lack of agreement in this area makes it necessary in this study for the establishment of a high 

degree of specificity with regard to these terms and how they are elicited during the study of both 

LCA and temporality.    

 

For example, according to Huijbregts (1998a), uncertainty in LCA can arise from the model, 

from practitioner choices, spatial considerations, temporality, and “variability between sources 

and objects” (276).  For example, model uncertainty arises out of situations where there is a lack 

of inclusion of spatial and temporal characteristics within the LCA.  Uncertainty due to choices 

occurs within an LCA when there are invariably choices made by necessity.  These can include 

choices of weighting, allocation and methodology.  Spatial uncertainty relates to emissions or  
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Table 1.1 Types of Uncertainty (by study author). 

 

 

 

Note: Some material partially adapted from Heijungs and Heijbregts (2004). Some types of 

uncertainty (from separate studies) were placed in similar categories where properties were 

prima facie similar. 

  

Morgan & Henrion (1990) 

US EPA (1989) Funtowicz & Ravetz (1990) Bevington & Robinson (1992) Hofstetter (1998) Pohl et al. (1996) Huijbregts (1998a)

Model X X X X

Choices X X

Spatial X X X

Temporal X X

Technology X

Trajectory X

Lack of data X X X X

Parameters Data inaccuracy X X X

Unrepresentative data X X X

Epistomology

Mistakes (Calculation) X X

Metadata

Scenario X

Completeness X

Systematic X X

Random X X

Statistical methodology X

Linguistics X

Disagreement X

Ambiguity/Vagueness X

Bedford & Cooke (2001) Huijbregts et al. (2001) Björkland (2002) Heijungs & Huijbregts (2004) Baker & Lepech (2009) 

Model X X X

Choices X X X

Spatial X

Temporal X X

Technology

Trajectory X

Lack of data X X X X X

Parameters Data inaccuracy X X X X X

Unrepresentative data X X X X

Epistomology X X

Mistakes (Calculation) X

Metadata X

Scenario

Completeness

Systematic

Random X

Statistical methodology

Linguistics

Disagreement

Ambiguity/Vagueness X
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effluent and how potential geographic and physical aspects (e.g., wind velocity) might shape the 

fallout.  Temporal uncertainty occurs when “...temporal variation over short time periods is not 

made operational in the inventory analysis” (p. 276) because it is incongruous with inventory 

data.  Thus, the determination of timeframe is of the utmost importance.  According to 

Huijbregts (1998a), variability between sources and objects arises when there are different 

technologies used in manufacturing the same product.  As well, this situation arises when there 

are variations in local characteristics such as variations in the physical environment, human 

population, etc. (flora and fauna).  For reasons of simplicity, in Table 1 this particular faculty is 

termed “trajectory”.  Other authors such as Huijbregts et al. (2001) simply divide uncertainty 

arising in LCA according to either a lack of data or inaccuracy of data, which are termed by 

some authors as “parameters”.  Björkland (2002) provides a more comprehensive list of 

uncertainties by adding to material from Huijbregts (1998a) and Huijbregts et al. (2001).  This 

includes epistemological uncertainty which arises from the lack of knowledge of system 

behaviour.  As well, Björkland includes mistakes in calculation, either before or during the LCA, 

and metadata errors.  Some minor additions to this area were later made by Baker and Lepech 

(2009), which include model uncertainty, statistical/measurement error, uncertainty in 

preferences and uncertainty in a future physical system relative to the designed system.  In the 

last case, this would include future changes in the system design. 

 

Opinion on the methodology for dealing with uncertainty is also equally diverse.  Huijbregts et 

al. (2001) state:  

 

Lack of temporal, geographical and further technological correlation between the 

data used and needed may be accounted for by applying uncertainty factors to the 

non-representative data. (p. 128) 

 

By non-representative data, Huijbregts et al. (2001) refer to data not captured because of spatial 

and temporal variability.  Rather than variability, they also use the term “temporal correlation” 

(cited in Weidema (1998)) to express the degree of accordance of the data in the year the data 

was collected and the year the LCA study was conducted.  Unfortunately, Huijbregts et al. 

(2001) contend that:  
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Although a quantitative assessment of the uncertainty related to the use of 

unrepresentative data within an LCA study may be preferable, it is also extremely 

difficult. (p. 129) 

 

What is meant by parameter uncertainty is explained by Huijbregts (1998a) as “empirical 

inaccuracy (imprecise measurements), unrepresentativity (incomplete or outdated measurements) 

and lack of data (no measurements)” (p. 274).  In Table 1, this triad is intentionally cordoned off 

to reflect Huijbregts’ contribution.  Huijbregts (1998b) discusses this further and comments that 

choice of allocation, functional unit and environmental burdens has an effect on the overall 

uncertainty of the LCA study.  Consequently, to compound the problem, “in practice it will be 

very difficult to underpin the uncertainty ranges for the huge number of parameters involved in 

the inventory analysis” (Huijbregts, 1998b, p. 350).  Referring to Kennedy et al. (1996), in his 

earlier paper Huijbregts proposes that a complementary strategy to address this would be to 

“implement uncertainty ranges for accumulated environmental interventions rather than 

individual parameters in LCA inventories” (p. 350).  Nevertheless, in a later paper, Huijbregts et 

al. (2001) proposed the following uncertainty factor correction formula: 

    

𝐸’𝑥,𝑘 = 𝑈𝐹𝑡,𝑘 ∗ 𝑈𝐹𝑔,𝑘 ∗ 𝑈𝐹𝑡,𝑘 ∗ 𝐸𝑥,𝑘  

 

Where  E’x,k is the corrected emissions of substance x per unit process k (kg); UFt,k is the 

uncertainty factor representing the temporal correlation between the data used and needed for 

unit process k (dimensionless); UFg,k is the uncertainty factor representing the geographical 

correlation between the data used and needed for unit process k (dimensionless); UFft,k is the 

uncertainty factor representing the further technological correlation between the data used and 

needed for unit process k (dimensionless); and Ex,k is the initial emission of substance x per unit 

process k (kg).  However, this proposed method of dealing with temporal conditions, which is 

based in classical uncertainty modelling, is somewhat dated.  In addition, the same authors 

contend that the use of Monte Carlo simulations is a valid way of employing stochastic modeling 

to make data inaccuracies in LCIs operational. 
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1.4 Problem Identification 

 

The process of establishing an international standard for LCA studies saw the emergence of 

ISO14040 in 2006.  While ISO14040 sets out the guidelines and requirements for conducting 

LCAs, it does so in broad terms while leaving the mechanics of the assessment up to the LCA 

practitioner.  This dissertation identified and concentrated on a specific niche related to the 

requirements of ISO14040 which had not previously been systematically examined or assessed.  

As will be discussed at length in Chapter 3, the issues of temporality and spatiality are broad 

subject areas of concern in LCA.  Björkland (2002) goes into more detail about the effects of 

temporal variability.  He states that,  

 

...variations over time are relevant in both the inventory and impact assessment, as 

processes and factors in the receiving environment vary naturally over short and 

long time scales. Examples are process emissions, wind speed, and temperature. 

Another aspect is the chosen time horizon to integrate potential effects, which, for 

instance, applies to global warming potentials (GWP), photochemical ozone 

creation potentials (POCP)…, and emissions from landfills… (p. 65)   

 

This introduces a paradox in that LCA should move towards greater overall simplification while 

bringing about greater resolution to reduce uncertainty and variability: 

 

...model simplifications are common and necessary in LCA. The use of non-linear 

models, dynamic models, and multi-media models can reduce model uncertainty 

and address temporal and spatial variability. (p.66) 

 

To specifically address temporal variability, Björkland states that higher resolution models 

should include sensitivity analysis, uncertainty importance analysis, classical statistical analysis, 

Bayesian statistical analysis, and scenario modeling (to be discussed in Methodology). 

In summation, this study seeks to find whether the historic shifts in power consumption during 

the raw material acquisition and refining stages shift in a consequentially temporal manner so as 
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to significantly affect the overall power consumption of manufactured goods.  To this end, the 

following research questions will be addressed:  

 

1) Are there issues of temporality and spatiality due to age of data topics meriting concern?  

If so, how will it be possible to ascertain this? 

2) What is the best method for assessing temporal and spatial age of data?  Should it be 

done at the level of the functional unit, or should it be done at the resource level; that is, 

at the production level (primary production)? 

3) What types of methods should be utilized to specifically deal with temporality and 

spatiality due to age of data? 

4)  What lessons could be learned from this, and how do they apply to life cycle 

assessments? 

 

1.5 Research Objectives and Methodological Approach 

 

Figure 1.2 provides the overall structure of this dissertation.  Consequently, it can be seen that 

both phases 2 and 3 build on previous work, with the overall aim of establishing a base platform 

on which potential future investigations and assessments of temporality and spatiality due to 

aged data may be possible.  For the purposes of this study, aged data is defined as data which is 

rooted in a specific time (by year) and place (by country or geographic location).  As the 

methods employed in this study are detailed in depth in their respective chapters, it will be the 

aim here to merely present an outline of the methods employed.  Table 1.2 has also been 

provided as supplementary information to Figure 1.2. 

 

1.5.1 Model Choice 

 

Greenhouse gases, Regulatory Emissions, and Energy use in Transportation 2 (GREET2) is a 

freely available and complete LCA developed by the Argonne National Laboratory, US 

Department of Energy.  GREET2 models the full life cycle (cradle-to-grave) of sedans, sport 

utility vehicles and pick-up trucks, as well as different power trains:  internal combustion,  
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Figure 1.2 Overall Structure of the Dissertation 
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Table 1.2 Details related to the simulation phases of the dissertation. 

 
Stage Number of 

Raw Materials 

Vehicle Formats Power Train 

Configurations 

Regions 

Covered 

Methods 

Phase 2 17 Sedan 

Sport utility (SUV) 

Pick-up Truck (PUT) 

ICEV Global 

North 

America 

Europe 

Oceania 

Monte Carlo 

ANOVA1 

F-test 

Kurtosis/skewness 

Phase 3 36 Sedan ICEV 

EV 

HEV 

PHEV 

FCV 

Global Monte Carlo 

ANOVA1 

Regression 

Kurtosis/skewness 

 

 

hybrids, plug-in hybrids, fuel cells and full electric vehicles.  The purpose behind using this 

particular model was that the sponsoring agency behind GREET2 (US Department of Energy) 

had significant traction.  Consequently, this brings confidence to this dissertation since GREET2 

provides the weight of the individual materials of manufacture.  Furthermore, each aspect of the 

life cycle of the vehicles is modelled on a gate-to-gate basis.  Gates consist of distinct stages 

during a product’s life cycle and can include raw material acquisition, ore refining, product 

assembly, use, and disposal. As such, this modularity allows for the breakdown of the model to 

the exclusion of unnecessary stages such as the usage portion of the life cycle, as well as the final 

disposal portion of its life cycle.  Nevertheless, while there is considerable merit behind the 

GREET2 model, it must be noted here that the vehicles presented by the model are 

representative; that is, they are generic and do not refer to any specific make or model. 

 

The first version of GREET (GREET1) was released in 1996 and has since been updated and 

expanded to version 1.8c.  As may be seen in the horizontal loop of Figure 1.3, the primary 

purpose of this platform was to fully evaluate energy and emission impacts of advanced vehicle 

technologies and new transportation fuels, from the raw material acquisition stage (e.g., drilling) 

on through to its usage during the vehicle’s operational lifecycle (combustion).  The second 

series of GREET (GREET2) deals with the manufacturing aspects of the vehicle, also from raw 

material acquisition to the end of its lifecycle.  Included in this model are configurations for the 

actual physical dimensions of the vehicle and lifecycle components to account for primary and 

secondary manufacturing.  Contrary to other databases such as ecoinvent, this database is public 
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domain knowledge and can be used by anyone.  GREET is broken down into discreet modules 

(gates) dealing with the acquisition and processing of each raw material (metals, plastics, etc.).  

Power consumption, effluents, emissions and other outputs are simultaneously calculated and 

graphed accordingly.  As a spreadsheet, GREET is designed so that alterations to inputs can be 

treated as discreet variables.  However, the size and complexity of GREET in Excel is so 

unwieldy that modeling such as the Monte Carlo simulations has to be done externally in 

MATLAB.  Consequently, only the framework of GREET will be used.  Energy intensity of the 

various inputs (kWh/kg) with particular emphasis on metals with high energy requirements will 

be treated as the discreet variable in this instance.   

 

Figure 1.3 GREET1 and GREET2 models as adapted from Tan et al. (2004b). 

 

 

1.5.2 Data Collection 

 

Data collection on the energy intensity of materials for manufacture was a time-intensive process 

and took over a year to conclude for this dissertation.  The particulars of why this process took so 

long was owing to the sheer volume of source documents (much more than are listed in the Data 

References appendix) as well as the amount of data contained within each of them.  For example, 

individual source documents from the International Aluminum Institute and the International 

Iron and Steel Institute often contain data from all five continents which are furthermore broken 

Feedstock 

Recovery
Vehicle OperationFuel Production

Vehicle Production

Vehicle Disposal

GREET v1.8c

GREET v2.7
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down into multiple countries (see Figure 3.11 for a full visual breakdown of countries in this 

study).  Naturally, because virtually all the source documents were in paper format, this required 

many hours of data entry.  As well, often the units used in the source documents required very 

time consuming conversion, such as millions of British Thermal Units per pound (mmBTU/lb), 

barrels of oil equivalents (BOE) or tons variously expressed in United States tons (907.2 kg), 

United Kingdom tons (1016.1 kg) or metric tonnes (1000 kg).  Another aspect implicated here is 

the fact that many of the early source documents were split into two separate documents, one 

specific to the manufacturing sector and another specific to the energy sector.  For example, steel 

production in the European Union during the initial recorded decades (1960s and onwards) was 

often listed in one document by the amount per country (tons) while another  document had to be 

referenced in order to get the total energy used specifically by the steel sector.  Another recurring 

problem which was highly time intensive was owing to the source of data used in various 

published LCAs.  In fact, often was the case that a published LCA did not use original source 

data, but used data from another published document.  In turn, this second document also did the 

same and used data from yet another source.  Consequently, a chain of as many as three or four 

papers would have to be back-checked to find the original source document and, as was often the 

case, the original source document was already entered into the database for this study.  Lastly, 

with very few exceptions, many source documents published prior to the mid-1990s are not 

digitized.  Thus, physical copies of these source documents had to be found.  This was not 

particularly facile given that many of the physical copies of these documents are either archived, 

library collections are not always exhaustive and the institute with a physical copy is not willing 

to lend. 

 

Data collection is an important facet of this study because, as a subset of the overall life cycle 

assessment process, life cycle inventory (LCI) is the aspect of LCA which seeks to quantify and 

account for the entirety of each aspect of a product or lifecycle from raw material extraction and 

processing, through to all the externalities such as emissions, releases and wastes.  Thus, LCI 

serves as the basis for the determination of environmental impacts and/or design improvement.  

The process of data collection was exhaustive and drew on a diverse body of sources.  As 

selection criteria, two particular qualities are relevant.  Firstly, where possible, original 
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documents were utilized in order to find their corresponding temporal and spatial origins.  As 

mentioned earlier, often data used in some LCA studies were, in fact, far removed both spatially  

Table 1.3 Principle Classifications of Life Cycle Inventory Data. 

Type of Data Definition 

Class I Comprehensive data from direct measurements. 

Class II Data from theoretical mass and energy balances. 

Class III Data from literature and databases.  

Surrogate data.  

Data estimated from experience. 

 

Table 1.4 Breakdown of Types of Documents Used in Phase 3 of the Dissertation. 

Type of Document Number 

International Databases 151 

Published Papers 60 

Congresses, Proceedings, Technical Papers 44 

Government Reports 16 

LCA/LCIs 25 

CSR Reports 46 

Books, Book Chapters 26 

 

 

and temporally from their source and, hence, are non-representative.  Secondly, given the 

technical scope of the subject, all the data used in this study came from primary and secondary 

sources to the virtually complete exclusion of all other potential sources.  Hence, although there 

are non-governmental organizations interested in the energy profile of certain industries, it is 

certainly beyond their capabilities to provide the means for in situ measurements or access to 

data equivalent to in situ measurements.  Certainly, the ability to generate this type of data is 

beyond the capabilities of anyone not attached to a research institute, university, corporation or 

representative industrial associations.  Consequently, by the very nature of the type of data 

collected, the scope limitations on data exclusion from this study are fairly narrow.  Referencing 

Tan et al. (2002), data collected could be classified according to all three principle classes of 
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data, including direct measurements, theoretical mass and energy balances, as well as data from 

literature and databases (see Table 1.3).  As well, the typology of documents used in this study 

were far reaching and attempted to be as exhaustive as possible.  The types of documents and the 

amount utilized are given in Table 1.4.  Phase 2 of this dissertation used 323 source documents, 

while Phase 3 used 368 documents, as is reflected in the totals of Table 1.4.  While it can be seen 

that around 41% of the documents are from international databases, there is no one particular 

source which dominate the field of source material.  Further detail regarding data collection can 

be found in Chapters 3 and 4. 

 

1.5.3 Monte Carlo Simulations 

 

Monte Carlo simulations are a probabilistic based method of analysis for the assessment of both 

variation and uncertainty.  This method offers numerous advantages over extant methods of 

analysis.  For example, sensitivity analysis typically examines end points, or highest and lowest 

values across a data range while largely ignoring patterns between these points.  When using a 

linear membership function, the same can be said of fuzzy interval analysis.  However, fuzzy 

interval analysis also introduces the problem of what particular membership function should be 

chosen in the first place.  Often, as is the case, this choice appears largely subjective.  When a 

probability distribution is available (sometimes this is not the case), Monte Carlo simulations can 

precisely draw statistical inferences across the entirety of the probability distribution.  Monte 

Carlo simulations can do this by exactly mapping out the probability distribution with a large 

randomly generated data set.  However, this comes with the trade-off of time intensity.  Even 

with the latest series microprocessor (Intel Core i7 3630QM @ 2.40 GHz) and streamlined 

programming, each individual Monte Carlo simulation used in this study took up to two days to 

complete.  

 

Consequently, Monte Carlo simulations have been central to the analysis of uncertainty in LCA 

(Hendrickson et al., 2006; Leroy and Froelich, 2010).  As Baker and Lepech (2009) explain, this 

has consistently been one of the most popular methods.  Monte Carlo simulation as a significant 

tool in the analysis of uncertainty in LCA is cited by Björkland (2002), Huijbregts et al., (2003), 
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Heijungs and Frischknecht (2005), as well as Baker and Lepech (2009).  As stated by Huijbregts 

(1998a): 

 

Stochastic modelling, which can be performed by Monte Carlo or Latin 

Hypercube simulation, seems to be an especially promising technique for making 

uncertainty in model output operational. An advantage in relation to the other 

methods mentioned is that, dependent on the available information, various 

parameter distributions, such as uniform, triangular, normal [or Gaussian], or 

lognormal distributions, can be used in the model. (p. 274) 

 

The use of various parameter distributions is repeated by Heijungs and Huijbregts (2004), as well 

as Heijungs and Frischknecht (2005), who claim that the choice is difficult as to which statistical 

distribution to use.  However, in the case of Heijungs and Frischknecht (2005), no information 

how to go about this is provided.  Consequently, to date only uniform and triangle distributions 

appear to characterize the available data.  However, as will be discussed within Chapter 3, 

probability distributions were constructed based on available data (see below).  That aside, 

Monte Carlo simulation takes the following form (Hendrickson et al., 2006, p. 48): 

 

1. The underlying distribution, correlations, and distribution parameters are 

estimated for each input-output coefficient, environmental impact vector, and 

required sector output.  Correlations refer to the interaction of the uncertainty 

for the various coefficients. 

2. Random draws are made for each of the coefficients in the Economic Input-

Output-LCA (EIO-LCA) model. 

3. The environmental impacts are calculated based on the random draws. 

4. Steps 2 and 3 are repeated numerous times. Each repetition represents another 

observation of a realized environmental impact. Eventually, the distribution of 

environmental impacts can be reasonably characterized.   

 

Lo et al. (2005) have examined the potential for global warming effects of alternative municipal 

waste treatment strategies using a Bayesian Monte Carlo simulation.  However, this case study 
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was used strictly to quantify and reduce parameter uncertainty in LCA.  It did not include 

“structural uncertainties” such as those arising from variability of input parameters and other 

models (Lo et al., 2005, 32).  This can be useful when there is stochastic randomness in data sets. 

 

While Monte Carlo simulations form the centrepiece of this study, other methods were 

considered at the start of this research.  However, many of these methods had drawbacks that 

were decisive in their rejection.  Bootstrap methods were considered, but there was no identified 

necessity for resampling from the data set.  Fuzzy methods posed the problem of which type of 

membership function to choose.  Furthermore, choosing a set distribution—as identified later in 

the text of Chapter 3.2.1—is antithetical to the purpose of this study.  Similarly, the same issue 

was apparent with Taylor series analysis since this would have to use an indeterminate number 

of Taylor series expansions in order to create the probability density functions (which appears to 

be a considerable amount of unnecessary work which is equally antithetical to the Fuzzy 

methods approach).  Bayesian analysis was also rejected because there was no apparent 

requirement for posterior probabilities.  EIO-LCA methods presented further difficulties with 

regard to accessing economic data and, as explained in Chapter 3.2.2, the data collection for this 

research was already considered excessively time-consuming.  Lastly, sensitivity analysis was 

deemed to be substandard to Monte Carlo analysis since sensitivity analysis does not render as 

much statistical detail.  Thus, Monte Carlo methods were chosen on the basis of their simplicity 

of computation (albeit with the trade-off that they are time-intensive) and the depth of statistical 

analysis facilitated. 

 

1.5.4 Analysis of Variation and F tests 

 

A one-way analysis of variance is a general method for analyzing data from designed 

experiments whose objective is to compare two or more group means.  That is, there is only one 

independent variable.  The object is to present the variance within groups that results from a 

single treatment (or, in this case, the mass of individual materials of manufacture which make up 

the functional unit or vehicle).  As such, ANOVA1 makes possible the comparison of quantities 

by examining the differences between them (Weiss, 2005).  The results of the ANOVA1 in this 

dissertation are presented as box plots so that visualizations of the variance resulting from Monte 
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Carlo simulations can be explicitly examined.  As such, it will provide a means for examining 

the degree to which each individual material of manufacture contributes to overall variance.  For 

example, this would enable a comparison between how much variance steel contributed versus 

the amount of variance that polyvinyl chloride contributed within the functional unit.  Because 

the functional unit has different masses of each of these materials, as well as different energy 

intensities of manufacture, the ANOVA1 will be able to answer this question by expressing the 

variance in terms of pure energy (kWh). 

 

Also used here is the F test, which is an ANOVA that examines the variance between groups 

(Ibid.).  It does so by calculating the F value, which is the ratio of variances between groups to 

the variance within groups.  This had import for the spatiality portion of this dissertation which 

tested for differences in energy distributions by geographic region.  Consequently, it will be 

possible to see whether the differences in energy distributions by geographic area are significant 

or not.  Naturally, higher F values would signal that these are significant and small F values 

would indicate that the group means are not reliably different.  Whether the derived F values are 

significant or not is determined on the basis of the critical value associated with its significance 

level, or p-value.  The critical level chosen for these studies was one percent since this has a 

lower threshold for rejecting insignificant differences (as opposed to the five percent significant 

level). 

 

1.5.5 Regression Analysis 

 

The purpose of regression analysis is to establish whether there exists a relationship between a 

dependent and independent variable.  In this dissertation, regression analysis serves primarily as 

an ancillary method to the Monte Carlo simulations and ANOVA.  Because Monte Carlo 

simulations are a probabilistic based method and ANOVA’s purpose is to measure differences 

within and between groups, it was felt that the addition of regression analysis was useful to see 

whether the variance arising from both the probability distribution in the Monte Carlo 

simulations and ANOVA were due to actual temporal relations or the product of scatter data.  

Two types of regression analysis were utilized, both the least squares and the more robust least 

absolute residuals.  Their utility is assessed as per their functionality in this type of study. 
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1.5.6 Tests for Non-Normal Data 

 

It was assumed in the early stages of this dissertation that there would be no instances of non-

normal data.  Nevertheless, the ongoing research process had to give way to examining this 

subject owing to the particular shape (skew) of the distributions used in the Monte Carlo 

simulation, as well as the witnessed phenomenon of non-scalability.  Consequently, this was an 

add-on during the later stages of the dissertation.  As is well known, data which does not display 

normality has implications in establishing regression lines and correct mean values.  In the case 

of the latter, non-normal data would require the use of log transformations in order to get correct 

means.  The effects of non-normal data have ramifications for the findings of F tests (Markowski 

and Markowski, 1990), which is a method used in this dissertation. 

 

 

1.6 Glossary of Key Definitions 

 

Although somewhat intuitive, terminology relevant to the field of life cycle assessment has 

specific implications associated with their overall structure, functionality and design as outlined 

in Chapters 1.1 and 2.1.  Consequently, a purposeful glossary of key definitions has been 

provided as supplementary material to the main body of the text.  Unless specified, all terms are 

derived from the International Organization for Standardardization (ISO) document 

Environmental management—life cycle assessment—principles and framework (2006). 

 

Allocation: Partitioning the input or output flows of a process or a product system between the 

product system under study and one or more other product systems. 

 

Ancillary Input: Material input that is used by the unit process producing the product, but which 

does not constitute part of the product. 

Characterization Factor: Factor derived from a characterization model which is applied to 

convert an assigned life cycle inventory analysis result to the common unit of the category 

indicator. 
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Co-product:  Any of two or more products coming from the same unit process or product 

system. 

 

Cut-off Criteria: Specification of the amount of material or energy flow or the level of 

environmental significance associated with unit processes or product system to be excluded from 

a study. 

 

Data Quality: Characteristics of data that relate to their ability to satisfy stated requirements. 

 

Elementary Flow: Material or energy entering the system being studied that has been drawn 

from the environment without human transformation, or material or energy leaving the system 

being studied that is released into the environment without subsequent human transformation. 

 

Energy Flow: Input to or output from a unit process or product system, quantified in energy 

units. 

 

Functional Unit: Quantified performance of a product system for use as a reference unit. 

 

Impact Category: Class representing environmental issues of concern to which life cycle 

inventory analysis results may be assigned. 

 

Input: Product, material or energy flow that enters a unit process. 

 

Intermediate Flow: Product, material or energy flow occurring between unit processes of the 

product system being studied. 

 

Intermediate Product: Output from a unit process that is input to other unit processes that 

require further transformation within the system. 

 

Life Cycle: Consecutive and interlinked stages of a product system, from raw material 

acquisition or generation from natural resources to final disposal.  
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Life Cycle Assessment (LCA): Compilation and evaluation of the inputs, outputs and the 

potential environmental impacts of a product system throughout its life cycle. 

 

Life Cycle Impact Assessment (LCIA): Phase of life cycle assessment aimed at understanding 

and evaluating the magnitude and significance of the potential environmental impacts for a 

product system throughout the life cycle of the product. 

 

Life Cycle Interpretation: Phase of life cycle assessment in which the findings of either the 

inventory analysis or the impact assessment, or both, are evaluated in relation to the defined goal 

and scope in order to reach conclusions and recommendations. 

 

Life Cycle Inventory Analysis (LCI):  Phase of life cycle assessment involving the compilation 

and quantification of inputs and outputs for a product throughout its life cycle. 

 

Output: Product, material or energy flow that leaves a unit process. 

 

Process: Set of interrelated or interacting activities that transforms inputs into outputs. 

 

Process Energy: Energy input required for operating the process or equipment within a unit 

process, excluding energy inputs or production and delivery of the energy itself. 

 

Product: Any goods or service.  

 

Product Flow: Products entering from or leaving to another product system. 

 

Product System: Collection of unit processes within elementary and product flows, performing 

one or more defined functions, and which models the life cycle of a product. 

 

Raw Material: Primary or secondary material that is used to produce a product. 
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Reference Flow: Measure of the outputs from processes in a given product system required to 

fulfill the function expressed by the functional unit. 

 

Releases: Emissions to air and discharges to water and soil. 

 

Sensitivity Analysis: Systematic procedures for estimating the effects of the choices made 

regarding methods and data on the outcome of a study. 

 

System Boundary: Set of criteria specifying which unit processes are part of the product 

system. 

 

Spatiality:  In life cycle assessments spatiality is a vast subject area and can refer to multiple 

phenomena such as: 

 the geographic dispersion and spatial implications of pollutants such as 

emissions into the environment (Krewitt et al., 2001; Newell and Vos, 2011; 

Dresen and Jandewerth, 2012)  

 considerations specific to waste management (Ekvall et al., 2007) 

 resource usage and extraction by geographic area (Pfister et al., 2009) 

 spatial implications of production in different geographic areas (Steinberger et 

al., 2009) 

 land use (Geyer et al., 2010; Saad et al., 2011) 

 differences arising from using LCI databases based in different countries and 

geographic regions (Suh et al.. 2013) 

 

Temporality:  In life cycle assessments temporality is a vast subject area and can refer to 

multiple phenomena such as: 

 Age of data utilized, the lifespan of a product (from cradle to grave), the use 

and renewal of resources (Klöpper, 2000) 

 The timespan of the goal and scope definitions used in LCA (Phungrassami, 

2008) 
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 The dynamics of emissions to the environment (Levasseur et al., 2010; 

Säynäjoki et al., 2012; Levasseur et al., 2012) 

 The temporal dependence of data (Fleisher et al., 2004) 

 The flow of materials across time in Dynamic LCAs Hendrickson et al., 2006; 

Stasinopoulos et al., 2012; Beloin-Saint-Pierre et al., 2014) 

 

Uncertainty:  With regard to life cycle assessment, uncertainty relates to a lack of knowledge, 

be it the non-availability of data or that the data is wrong or ambiguous (Heijungs and 

Huijbregts, 2004).  It can also refer to circumstances arising from inaccurate measurements, 

model assumptions, etc. which are used to “convert” the real world into life cycle assessment 

outcomes (Heijbregts, 1998a).  For the central purposes of this study, uncertainty refers to the 

lack of available data. 

 

Uncertainty Analysis: Systematic procedure to quantify the uncertainty introduced in the results 

of a life cycle inventory analysis due to the cumulative effects of model imprecision, input 

uncertainty and data variability. 

 

Unit Process: Smallest element considered in the life cycle inventory analysis for which input 

and output data are quantified. 

 

Variability:  Relates to a quality of data such that the data is homogeneous in nature (Heijungs 

and Huijbregts, 2004). This means that data is both varied and dissimilar.  This variability arises 

through innate variations in the real world (Heijbregts, 1998a).  Hence, variability may represent 

the true diversity or heterogeneity of a properly representative population (U.S. Environmental 

Protection Agency, 1997). 

 

Waste: Substances or objects which the holder intends or is required to dispose of. 
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1.7 Structure of the Dissertation  

 

This dissertation is organized around the four chapters as follows: 

 

Chapter 2 (Life Cycle Assessment and the progress towards standardization and normalization) 

addresses Phase 1 of the research. The chapter is based partly on the paper: 

 

Pryshlakivsky, J., Searcy, C.: ‘Fifteen years of ISO14040: a review’, Journal of Cleaner 

Production, 2013, 57, DOI: 10.1016/j.jclepro.2013.05.038 

 

The primary author of the paper is Mr. Jonathan Pryshlakivsky.  Mr. Pryshlakivsky’s 

involvement in the development of the paper includes: primary research, concept development, 

exposition, and correspondence with the journal with regard to revisions and publication matters.  

As the secondary author, Dr. Cory Searcy’s involvement with the development of this paper 

includes:  identification of research viability, concept development, research supervision and 

review of the manuscript prior to publication.  The goal of this paper is to identify the context of 

ongoing problems in the area of life cycle assessment and the research gap that this dissertation 

seeks to address.  Hence, this chapter is the basis for moving forward in the critical areas 

developed in chapters 3 and 4 of this dissertation.   

 

Chapter 3 (Analysis of how energy intensities from vehicle manufacturing materials vary with the 

age of data and the region they represent) addresses Phase 2 of the research. The chapter is 

based on a revised manuscript resubmitted for publication as follows:   

 

Pryshlakivsky, J., Searcy, C.: ‘Analysis of how energy intensities from vehicle manufacturing 

materials vary with the age of data and the region they represent,’ Journal of Cleaner Production. 

 

The primary author of the manuscript is Mr. Jonathan Pryshlakivsky. Mr. Pryshlakivsky’s 

involvement in the development of the manuscript includes:  primary research and data 

collection, computer programming, testing of programming (accuracy), methods development 

and recommendations.  As the secondary author, Dr. Cory Searcy’s involvement in the 
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manuscript includes:  supervision of the research process, and review of the paper for 

publication.   

 

 

Chapter 4 (Monte Carlo simulations and regression analysis for assessing temporality due to age 

of data) addresses Phase 3 of the research. The chapter is based on a revised manuscript 

resubmitted for publication as follows:   

 

Pryshlakivsky, J., Searcy, C.: ‘Monte Carlo simulations and regression analysis of the effects of 

temporality due to age of data using the Greenhouse gases, Regulatory Emissions, and Energy 

use in Transportation 2 model,’ Journal of Cleaner Production. 

 

 

The primary author of the manuscript is Mr. Jonathan Pryshlakivsky. Mr. Pryshlakivsky’s 

involvement in the development of the manuscript includes:  data collection, computer 

programming, simulation running, regression analysis, methods development and 

recommendations.  As the secondary author, Dr. Cory Searcy’s involvement in the manuscript 

includes:  supervision of the research process, and review of the paper for publication.  This 

paper further explores concepts developed in Phase 2 of the research.  It more than doubles the 

amount of materials of manufacture studied and broadens the level of analysis to include 

regression analysis with the aim to making recommendations regarding data updating in life 

cycle inventory.  It also identifies problems and makes recommendations for future analysis in 

this area. 

 

The dissertation closes with Chapter 5 (Research Summary and Conclusions). This final chapter 

builds on the research phases that are presented in Chapters 2, 3, and 4: to summarize the results 

and list the key findings; to present the conclusions and recommendations; to identify the 

research limitations and areas for future research; and to review the contributions of the 

dissertation.   
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CHAPTER 2—LIFE CYCLE ASSESSMENT AND THE PROGRESS TOWARDS 

STANDARDIZATION AND NORMALIZATION. 

 

 

The purpose of this chapter is to contextualize the subject of life cycle assessment (LCA) and the 

emergence of the theme of this dissertation within the process of standardization.  To this end, it 

is informative in illustrating just how nascent life cycle assessment is, the scope of problems 

posed in this area, and the progress made with LCA research methods towards more robust 

outcomes and performance.  Concerted progress has been made in this area over a very short 

period of time (less than twenty years), including establishing methods for analysis of LCA 

objectives arising out of the standardization process.   

 

2.1 Overview of LCA Development and Standardization 

 

Life Cycle Assessment (LCA) is a methodology by which manufacturers or service providers 

can analyse the environmental impacts and effects of their products and services.  The duration 

of this assessment extends across the entire life cycle of products and services (“cradle-to-

grave”).   This process allows for product comparison and strategic decision making with regard 

to systemic inputs and outputs, as well as the development and incorporation of End-of-Life 

(EOL) design strategies.  Environmental Management Systems (EMS) such as ISO 14001 

provide a platform which guides the overall process towards achieving institutional 

environmental compliance.  In a similar manner, the family of ISO 14040 standards frames the 

requirements for conducting Life Cycle Assessments (LCA) while leaving the actual mechanics 

of analysis—data collection, normalization, calculation, interpretation, etc.—to the practitioner.   

A systemized framework for conducting LCAs was released by the International Organization 

for Standardization (ISO) during the period 1997-2000, resulting in the standards ISO 14040, 

14041, 14042 and 14043.  Updates to these standards were completed in 2006 so that the 

previous standards were amalgamated into ISO 14040 and 14044.  Certainly much comment and 

critique concerning LCA methodology itself is extant (e.g., see Reap et al., 2003).  It is also 

reasonably well known in this field that full-scale LCAs are data and time intensive (Capello et 

al., 2008).   
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2.2 Pre-2006 

 

LCA standardization began at ISO Technical Committee (TC 207) Subcommittee SC 5 in Paris 

in November 1993 (Marsmann, 1997).  The standard was directly inspired by the Code of 

Practice developed by SETAC, the Society of Environmental Toxicology and Chemistry 

(Lecouls, 1999).  The need for these standards was based on a growing recognition “of the 

usefulness of LCA as a methodological tool for the continuous process in identifying 

environmental aspects within the framework of environmental management systems according to 

ISO 14001” (Ryding, 1999, p. 307).  The now well-known four box framework of the ISO 14040 

series took shape around four distinct stages which include the Goal and Scope Definition, 

Inventory Analysis, Impact Assessment and Interpretation (see Figure 2.1).  Not surprisingly, 

these four stages informed the texts of each of the ensuing documents:  14040 General 

Principles in 1997, 14041 Life Cycle Inventory Analysis (LCI) in 1998, as well as both 14042 

Life Cycle Impact Assessment (LCIA) and 14043 Interpretation in 2000 (Salmone et al., 2005).  

Internally, the structure of ISO 14040 follows the pattern established with ISO 14001 (i.e., 

Scope, Normative References, Terms and Definitions, and so forth).  Another purposeful reason 

behind the drafting of the standard lay in its position vis-a-vis the overall ISO 14000 family of 

standards (see Figure 2.2).  As may be seen, the ISO 14040 series was conceived as a 

supplementary tool of an overall environmental management system (EMS) platform centred on 

ISO 14001.  It may be stated that a useful goal of ISO 14040 series is to inform ISO 14001 with 

regard to the latter standard’s requirement of continuous improvement to maintain compliance 

with the standard.  Subsequently, Figure 2.3 demonstrates how the results of an LCA can 

contribute to design modifications of an existing product.  This feedback loop can make 

contributions towards eventual product or service certification in ISO 14040.  The ISO 14041 

section on inventory analysis may use standardized data sets for industrial processes.  However, 

using a database of processes introduces a level of standardization which does not address 

questions arising from uncertainty with local conditions or natural variation (UNEP, 2005).   

This can have the effect of compiling systemic errors and result in unacceptable levels of 

variance between LCA practitioners.  Therefore, this allowable flexibility of permitting LCA 



 

32 
 

 

Goal and 
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Definition

Interpretation
Inventory 

Analysis

Impact 

Assessment

Life Cycle Assessment Framework

 

Figure 2.1. Life cycle assessment framework adapted from ISO (1997). 

 

Environmental 

Management 

Systems (EMS) 

ISO 14001-14004

Environmental Performance 

Evaluation (EPE) ISO 14031

Environmental Auditing (EA) 

ISO 14010-14012

Life Cycle Assessment (LCA) 

ISO 14040-14043

Environmental Labelling (EL) 

ISO 14020-14024

Environmental Aspects In 

Product ISO Guide 64

Evaluation and Auditing Tools Management Systems Product-Oriented Support Tools

 

Figure 2.2 The ISO 14040 standards in relation to other ISO platforms at the time of their 

development (adapted from Fet, 1998). 

 

 

practitioners to use whatever database they choose in the inventory analysis can produce 

different results, even when similar functional units are under consideration (Klüppel, 1998).  As 

will be seen in Chapters 3 and 4, this is precisely the case since data taken from the same year 

can have widespread variance depending on location or technology used.  In turn, this can have 

further consequences with regard to uncertainty arising from the determination of the effects of  
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Life Cycle Assessment:

1.  Goal and Scope Definition

2.  Inventory Analysis

3.  Impact Assessment

4.  Interpretation
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Creation of Alternatives

Modification of Subsystems

1 32 4 5

Impact Categories

 

Figure 2.3 LCA from the design perspective (adapted from Gasafi et al., 2003). 

 

compounding processes (Marsmann, 2000).  This has pertinence to this study since there are 

implications for the data used in this study and how they are influenced by background processes 

(see Table 3.1).  A similar sentiment was levelled against ISO 14042 that too much preference 

was given to the weighting (termed “valuation” in earlier documents) of impacts within impact 

categories (Udo de Haes and Jolliet, 1999; Ryding, 1999).  The consequence of this could 

preferentially reduce the impacts of certain processes and introduce a degree of relativism into 

the LCA study (see Table 2.1 for a summary of critiques and whether the 2006 standard 

addresses them).  So concerned with this problem was the German Federal Environmental 

Agency that they standardized this entire process in 1999 (Schmitz and Paulini, 1999).  Ekvall 

and Finnveden (2001) also discuss this same problem with allocation in ISO 14041.  Allocation 

arises when the complexity of a process results in multiple or different outputs (products) whose 

individual burdens are difficult to understand.  However, Kim and Overcash (2000) noted that 

ambiguities in both the definition of unit process and system boundaries compound the problem 

of allocation and, hence, outcomes. 

 

One aspect of the Life Cycle Inventory (LCI) variously discussed in lieu of ISO 14040 was its 

lack of accounting for “ecological effectiveness” and “ecological balances” of various 

comparative technologies (Bárzaga-Castellanos et al., 1999, p. 335).  For example, a situation 

could exist where two products can have similar performance characteristics or functional units,  

yet one product has “least harmful option”, it contributes little to measure the progress towards 
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Table 2.1 Summation of pre-2006 critiques of the ISO 14040 series. 

Nature of Issue Addressed? Comments 

LCA is too nascent [Hertwich 

andPease, 1998]. 

No The earliest LCA studies date back to the 1970s 

(Jensen et al., 1997). 

Peer review process not 

similar to extant peer review 

[Klöpffer, 1997]. 

No This was addressed to some extent in 2006 by 

the addition of the critical review definition and 

sections; however, this process need not be peer 

reviewed and is not necessarily within the 

purview of an international standard. 

Lack of clarity in language 

[Hertwich and Pease, 1998; 

Lecouls, 1999; Lee and Xu, 

2005; Tsoutas et al., 2010]. 

Yes Substantive revisions and additions to literature. 

Too many value judgments, 

not enough normative or 

scientific factors [Hertwich 

and Pease, 1998]. 

No This can have consequences, but these are 

acknowledged with normalization (s. 4.4.3.2), 

grouping (s. 4.4.3.3), and weighting (s. 4.4.3.4). 

Weighting is not to be used in comparative 

assertions for public disclosure (s. 4.4.5). 

Limit the development and 

emergence of new 

technologies [Hertwich and 

Pease, 1998]. 

No This could be a problem within LCA in general.  

Hertwich and Pease (1998) do not quantify this. 

Does not address: 

1. Uncertainty [UNEP, 

2005]. 

2. Weighting [Udo de 

Haes and Jolliet, 1999; 

Ryding, 1999]. 

3. Valuation [Udo de 

Haes and Jolliet, 1999; 

Ryding, 1999]. 

4. Allocation [Ekvall and 

Finnveden, 2001]. 

 

Yes 

 

Yes 

 

 

No 

 

 

Yes 

 

The allocation, uncertainty and weighting are 

addressed within the new standard and revised in 

some instances. Valuation is an economics 

technique such that it is not necessarily within 

the purview of LCA. Normalization is a facet of 

LCIA. 

Does not contain any metrics 

or indicators of sustainability 

(Ny et al., 2006]. 

No This is the purview of environmental 

performance evaluation, environmental impact 

assessment and risk assessment (s. 4.4.1). 

Economic analysis [Norris, 

2001; Reich, 2005]. 

No Not within the purview of LCA. However, s. 

4.3.4.3.4 makes reference to economic values of 

recycled materials for purposes of allocation. 
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sustainability (Ny et al., 2006).  Along this line, concerning methodology, Lee and Xu (2005, 

p. 22) state: 

 

It has also been propositioned that LCA investigates burdens on the environment, 

rather than impacts because there is as yet no universally-acceptable method to 

assess impact on the environment. This may explain why current LCAs are also 

struggling with how to assess multiple product life cycles.  

 

This was similarly expressed by Gasafi et al. (2003) in the context that the ISO 14043 standard 

did not establish a platform for identifying parameters which determine significant or remarkable 

effects.  To address this, Gasafi et al. (2003) proposed the usage of a dominance analysis, even 

though after examination this appears to be remarkably similar in methodology to allocation 

itself.  Nevertheless, as will be discussed later, there is a concerted need for ascertaining 

significance levels. 

 

2.3 Post-2006 

 

One of the chief aims of the new ISO 14040 series was “to provide a description of LCA 

principles and framework that is readable and accessible not only for LCA practitioners, but also 

a broader target audience” (Finkbeiner et al., 2006, p. 81).  As mentioned earlier, the basis for the 

new series was a “principles and framework” document (ISO 14040), as well as a 

“requirements” document (ISO 14044)—that is, a “general guidance” and a “specific guidance” 

document.  However, with this in mind, it should be stated here that ISO 14040 requires 

compliance with ISO 14044.  Furthermore, as stated by Finkbeiner et al. (2006), it was crucial to 

the new series that comparative assertions be released to the public in order to protect third party 

reviewers and the potential misuse of comparative assertions.   

 

It is quite noticeable that many sections of the ISO 14040: 2006 are copied verbatim from ISO 

14040: 1997.  This is in keeping with the objectives to maintain the original technical content, 

consensus and requirements (Finkbeiner et al., 2006).  However, the differences are worth 

commentary.  The new standard removed an entire section from the Introduction which  

dealt with the limitations of LCA techniques.  These limitations included (ISO, 1997):  
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 the nature of choices and assumptions made in an LCA, inventory analysis 

and environmental impacts; 

 how local conditions can incur a level of relativism; 

 the limitations imposed by data availability; and 

 how the lack of spatial and temporal dimensions in the LCA adds to the 

level of uncertainty in the impact assessment. 

 

Instead, the LCA limitations in the new document are relegated to an element of the scope of the 

international standard (s.1).  That is, the standard makes no specific reference to these 

limitations.  As all of these limitations have impacts for this study, it may be interesting to know 

where specifically in the standard do these issues become addressed.   Not surprisingly, they now 

fall under the purview of data quality requirements (s. 4.2.3.6).   Hence, in so doing, it will be 

seen that this dissertation becomes largely an issue of data quality. 

 

Perhaps most remarkable are the number of additions to the s.3 definitions.  The original 

standard had only twenty definitions (left column), while the new standard has forty-six.  Some 

of the noteworthy additions include a definition for “product”, which is here defined as any 

goods or services.  Unlike other definitions in the standard, the definition of product includes 

several examples of what constitutes goods or services.  In general, the additions increased the 

amount of physical characteristics (Material) and methodology (Method) while making 

substantial revisions to boundary characteristics.  These revisions included a broadening of the 

analysis process to include elements such as uncertainty and sensitivity analyses.  More weight 

was also given to account for the system contributions to goods and services.  Also, there are a 

number of new terms which add a higher degree of specificity to the new platform.  Among 

others, these would include specifications for endpoints and impact effects.  The definitions for 

“allocation” and “waste” were revised and expanded, while only the term “practitioner” was 

dropped altogether from the new standard.  

 

Even after the implemented changes in 2006, there is still some concern whether ISO 14040 is 

being used correctly (Cooper et al., 2008).  Indeed, Table 2.2 contains a comprehensive list of   
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Table 2.2 Summation of Recommendations Since 2006 and Their Potential Viability. 

Recommendations Viability 

Toxicity assessment [Eckelman et al., 2008]. Not within the purview of LCA. Classically, 

this has been the function of risk assessment. 

Functional unit:  

 

1. ISO standard data quality criteria are 

difficult to meet when presented with 

complex systems such as farms which 

have a diversity of inputs resulting in 

the same output (e.g., potatoes) [Usva 

et al., 2009].  

 

2. Significant increases in functionality 

[Collado-Ruiz and Ostad-Ahmad-

Ghorabi, 2010].  

 

3. Functional unit inconsistencies, 

including unforeseen uses of the 

functional unit [Moberg, 2010]. 

4. Arbitrary in certain circumstances 

such as pavement [Santero et al., 

2011a]. 

 

 

1. Section 4.2.3.6.2 makes a number of 

data quality requirements including 

consistency, reproducibility, as well as 

precision (variance) and uncertainty. 

Hence, this must be documented 

where implicated in methodology, the 

model studied and the assumptions 

made.  

2. Ostensibly, this would result in a new 

functional unit. However, this may be 

a useful amendment to system 

expansion rules under allocation. 

3. Full LCAs may not always be 

practical or required when making 

comparative assertions. 

4. Points 1 and 3 are implied here.  Also, 

results should be scalable when based 

on a unit of weight [e.g., kWh used to 

treat one litre of sewage]. 

Stifles creativity which necessitates pragmatic 

system process adjustments in order to bring 

about synergistic benefits [Sheate, 2010]. 

In principle, the nature of LCA is supposed to 

be iterative such that it may inform changes in 

the study scope (see s. 4.2.1).  Additionally, 

part of the purpose of LCA is to inform 

design modification [see Gasafi et al., 2003]. 

Allocation:  

 

1. The application of the ISO rules of 

allocation are either not applicable or 

they do not present easily discernible 

choices. The authors were not able to 

avoid allocation such that it broke 

down or expanded the system but 

chose to allocate environmental 

burdens based on the inputs or 

outputs, primarily through economic 

value [Ayer et al., 2007]. 

2. Carbon footprint is difficult to 

establish [Finkbeiner, 2009]. 

 

 

 

 

1. As per s. 4.3.4.2, the requirement that 

a partition be made which reflects 

underlying physical relationships is 

not elaborated.  Supplementary best 

practices might be a useful addendum 

to this area.       

 

 

 

 

2. Depends on the system boundaries 

and environmental significance of 

process. 
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3. Allocation based on the absence of 

physical relationships (e.g., economic) 

do not result in information on the 

consequences of human actions [Renó 

et al., 2011]. 

4. System expansion as per allocation is 

made murky when there is no 

definitive end-of-life scenario: in this 

case, old pavement is used as a base 

for new pavement [Santero et al., 

2011b]. 

 

 

5. Not always possible to stick with one 

method of allocation when conducting 

a study. Physical results are useful for 

one audience, economic for another 

[Svanes, et al., 2011]. 

 

 

3. This issue is largely intractable since 

economic valuation, preference, etc., 

can be value-based. 

 

 

4. This is addressed to some extent in            

s. 4.3.4.3.2 where reuse and recycling 

of a product implicates more than one 

product system (this must be 

“elaborated”).  Similarly, alterations in 

product properties must be “taken into 

account”. None of these address the 

uncertainty inherent in this situation. 

5. This relates to the requirement that 

allocation methods be “uniformly 

applied to similar inputs and outputs 

in the system under consideration” 

(s.4.3.4.2).  This promotes adherence 

to s. 4.2.3.6.2 regarding data quality. 

Critical review:  

 

1. Independence not required [Chanaron, 

2007].  

2. Insufficiency of detail regarding the 

critical review [Chomkhamsri et al., 

2011]. 

 

 

1. This is in keeping with the principles 

of standards as “soft law.”  

2. Expansion of this area (s. 6) seems 

credible.  

May result in studies with no basis in science 

[Elcock, 2007]. 

This is acknowledged as a “limitation” in 

LCIA.  However, it may not be a part of the 

Goal and Scope of the study to find scientific 

answers.  Also, as stated in s. 4.4.3.3, ranking 

is based on value-choices, as is weighting (s. 

4.4.3.4).  This may be necessary when 

reflecting the preferences of individuals or 

groups in a strategic decision making 

platform.  

Ecology: 

 

1. No account of biological causality 

[Schau and Fet, 2008]. 

 

 

 

 

 

 

 

1. Depends on system boundaries and 

cut-off criteria (s. 4.2.3.3), especially 

if they are of “environmental 

significance.”  Also, whether an LCIA 

is the stated purpose of the study [see 

Udo de Haes et al., 2002]. 
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2. Does not account for ecological goods 

and services, the impacts of renewable 

resource usage, or make comparisons 

against biocapacity and availability 

[Fiksel, 2010].  

2. Some of this may be implicated in 

LCIA [see Udo de Haes et al., 2002]. 

Persistency of uncertainty even with 

adherence to the standard [Leroy and 

Froelich, 2010]. 

Uncertainty must be documented as per the 

rules of data quality (s. 4.2.3.6.2) and is a 

pervasive issue regardless of the area of 

study. 

Cut-off rules are redundant in current LCA 

practices (because unit processes are 

standardized in software) [Weidema et al., 

2008]. 

Their inclusion (s. 4.2.3.3) should be 

maintained owing to ongoing concerns with 

temporal and spatial variability. 

System boundaries entirely up to the 

discretion of the analyst [Whitehead et al., 

2010]. 

According to s. 4.3.3.4, the system boundary 

must be based on significance as per a 

sensitivity analysis.   

 

 

further recommendations for expanding the standard.  Yet, perhaps the most positive element to 

come out of the revision process is that the new ISO 14040 series has coincided with the 

maturation of the LCA studies (Parker et al., 2007).  Some have recently gone so far as to state 

that the ISO 14040: 2006 series “has proved a suitable tool for sustainability assessment” 

(Sablayrolles et al., 2010, p. 232).   Fava et al. (2009) have claimed that ISO 14040 should be the 

basis for future LCA studies.  Indeed, the growing public presence of ISO 14040 is worth noting.  

Klöpffer (2009) reported an LCI study of the aluminum smelting operations of the European 

Aluminium Association (EAA).  This assessment, which was kept almost entirely within the 

parameters of the new ISO 14040 series, facilitated incremental environmental performance 

improvements over the time period of years 2000 to 2008.  Nevertheless, a number of concerns 

of varying gravity still persist (see Table 2.2).  Heijungs et al. (2010) have gone so far as to state 

that the classical model of LCA should be dispensed with in order to render a more broadly 

based format for assessment that takes into consideration both the empirical and normative 

attributes of LCA and the concomitant process of standardization.  This is contrary to the original 

document where “under ISO guidelines for LCA, normalization is conceived of as taking place 

at the stage of impact assessment” (Upham et al., 2011, p. 353).   
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Thus, it may be seen that some wish to extend the standard’s functions into other areas such as 

ecology, economics, etc.  This opinion coincides with a sentiment that the standard is lacking in 

the degree of specificity.  For example, one study of nanotechnology found that the new ISO 

series was valuable in its application to this particular field but that the series did little to tackle 

issues of toxicity assessment (Eckelman et al., 2008).  While changes were made to how 

different products are compared in the new standard, there are still problems how to go about a 

comparison when functionality is significantly enhanced (Collado-Ruiz and Ostad-Ahmad-

Ghorabi, 2010).  Other concerns regarding the functional unit still centre on its presumed lack of 

definition or potential for ambiguity, in spite of the fact that the functional unit by definition 

must be quantified.  Similar sentiments also pervade the issue of allocation.  In many of these 

cases, there appears to be the absence of a metric or hermeneutic which brings about clear 

choices that can be readily identified in a classical decision making framework (Ayer et al., 

2007; Renó et al., 2011; Santero et al., 2011b; Svanes et al., 2011; Elcock, 2007; Whitehead et 

al., 2010).  It appears unlikely these issues will be resolved owing to the inherent complexity of 

many systems approaches and, as noted by Leroy and Froelich (2010), the persistence of 

uncertainty.  There remains concern whether the standard contributes to stifling creativity when 

bringing about synergistic benefits in systems (Sheate, 2010).  In principle, the iterative nature of 

LCA and informed design modifications (Gassafi et al., 2003) should reduce the potential for 

stifling creativity.  It is apparent that there is a lack of detail with regard to the critical review 

portion of the standard, and this probably should merit some attention at some future time.  Also 

of importance here is the issue of a lack of ecological consideration for causality, biocapacity, 

renewable resource usage and environmental goods and services (Schau and Fet, 2008; Fiksel, 

2010).  A not inconsiderable amount of attention has been given to this subject in LCIA (e.g., see 

Udo de Haes et al., 2002), yet ISO 14040 does not outline how to deal with these sorts of 

problems unless they have “environmental significance.”  On the other hand, it would be correct 

to also claim these areas as the purview of a broader field such as industrial ecology.  However, 

with that in mind, Upham et al. (2011) assert that LCA “methods…have become increasingly 

codified and some have been commercialised, so that complete standardization is now unlikely 

and in some respects not even desirable” (p. 353).   
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Klöpffer (2009) reported an LCI study of the aluminum smelting operations of the European 

Aluminium Association (EAA). This assessment, which was kept almost entirely within the 

parameters of the new ISO 14040 series (except for the critical review), facilitated steady 

environmental performance improvements over the time period of years 2000 to 2008. The 

steady improvements took the form of energy savings and emissions reductions. The aluminum 

refining industry has been involved with the ISO 14040 series since its inception in 1997 owing 

to the high energy intensities (sometimes termed “embedded energy”) involved in converting 

alumina (Al2O3) to pure aluminum (de Schrynmakers, 2009; Klöpffer, 2009). Consequently, 

there is a vested economic and environmental interest in the aluminum industry to see the 

refining process improved. Because aluminum presents such difficulties in refining in terms of 

required energy (e.g., see the comparative study done by Norgate et al., 2007), a high degree of 

aluminum recycling is usually evidenced in manufacturing because of the potential for reducing 

production costs and environmental burdens (de Schrynmakers, 2009). The allowance for system 

expansion and material substitution in ISO 14044 is of particular importance since it allows 

aluminum LCA practitioners a high degree of necessary flexibility, especially with regard to 

allocation methods and system boundary definitions (European Aluminium Association, 2007). 

This is reflected in the new standard by the purposeful changes to some definitions. For example, 

Product System saw the phrase “materially and energetically connected unit processes” changed 

to “unit processes with elementary and product flows” (ISO, 1997, ISO, 2006a). This allowed for 

the differentiation between virgin materials (“elementary flows”) and recycled materials 

(“product flows”) as is necessary for aluminum recycling. Likewise, the definition of System 

Boundary was changed so that it no longer needs to be between the product system and the 

environment. Rather, the new definition allows the practitioner the ability to choose which unit 

processes make up the System Boundary. Certainly, this makes sense in the case of aluminum 

recycling since the initial production stages of mining bauxite and chemically reducing alumina 

are to be excluded.  Similarly, the definition of waste was altered to accommodate the recycling 

process by narrowing the definition from “any output” to materials or objects which the producer 

intends or is required to dispose of. 
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2.4 Conclusions 

 

In summary, this chapter has outlined that the ongoing issue with LCA and standardization is a 

balancing act between greater calls for more specificity (which necessitates more robustness) and 

the flexibility of methods.  Naturally, this problem largely turns into a trade-off issue since more 

specificity comes at the expense of flexibility and vice versa.  As will be shown in Chapters 3 

and 4, greater specificity also introduces a number of problems—mainly in the form of 

complexity—beyond the scope of simple trade-offs. 

 

Certainly, in its Requirements and guidelines document, ISO14040 does state in section 4.2.3.6 

that a number of data quality requirements should be addressed. The first relates to time-related 

coverage, which includes the age of data and the minimum length of time over which data should 

be collected.  The second data quality requirement which should be addressed is the geographic 

coverage, or the geographical area from which data for unit processes should be collected to 

satisfy the goal of the study.  In addition to this, the following statement is made further on in the 

standard in section 4.5.1.2 dealing with interpretation of results: 

 

[...] uncertainty is introduced into the results of an LCI due to the compounded 

effects of input uncertainties and data variability.  One approach is to characterize 

uncertainty in results by ranges and/or probability distributions.  Whenever 

feasible, such analysis should be performed to better explain and support the LCI 

conclusions. 

 

This passage has pertinence to this study in that Monte Carlo simulations will be used to 

construct probability distributions.  But, this is also pertinent as part of the ISO14040 

requirements, which include a sensitivity check and a consistency check.  The purpose of the 

sensitivity check (s. 4.5.3.3) is to assess reliability of the LCA final results, while the consistency 

check (s. 4.5.3.4) determines the consistency of methods, assumptions, and data.  Consistencies 

include both the representativeness of age of data, as well as the geographical coverage (s. 

B.3.4).  In the appendix of the requirements document (s. B.3.3), the sensitivity for variations in 

data can be expressed in terms of a range, percentage of change, or absolute deviation.  
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Consequently, it can be seen that ISO14040 requires that the issue of temporality and spatiality 

due to age of data be a subject to be documented and assessed.  However, these assessments are 

both internal and for individual LCAs.  They are neither a systematic analysis of these issues, nor 

an examination of methods.  Nevertheless, it may be seen that the basis for the ensuing chapters 

finds its roots within the ISO14040 standard, with its simultaneous desire for more robust 

explanations and conclusions to LCA studies. 
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CHAPTER 3— ANALYSIS OF HOW ENERGY INTENSITIES FROM VEHICLE 

MANUFACTURING MATERIALS VARY WITH THE AGE OF DATA AND REGION 

THEY REPRESENT 

 

 

3.1 Introduction 

 

Life cycle assessment (LCA) is a cradle-to-grave approach to assessing industrial systems by 

presenting a comprehensive view of environmental aspects associated with products and 

services.  As such, LCA makes possible informed decision making with regard to trade-offs and 

selection of processes (Scientific Applications International Corporation, 2006).  LCA also 

facilitates comparisons between alternative functional units (Fleet et al., 2000). However, 

purposeful decision making is rooted in the accuracy and completeness of information.  Life 

Cycle Inventory (LCI) databases have been characterized by a lack of completeness such that the 

corresponding impacts of this deficiency bring into question the reliability of overall LCA 

findings (Khasreen et al., 2009).  Indeed, utilizing six different databases to perform an LCA on 

polyvinyl chloride, Peereboom et al. (1999) found significant quantitative differences in certain 

impact categories owing to data uncertainty.  Further discussion on the subject of uncertainty 

will follow below in the Methods section. 

 

One particular area that calls into question the dependability of decisions and outcomes in LCA 

is the effect of temporality and spatiality on study findings.  Classically, temporality issues 

within LCA were ignored because of concerns regarding economy (cost), information security 

and the cumbersome nature of centrist (top-down) management organizations (Schaltegger, 

1996).  Similarly, the inclusion of temporality in LCA poses a problem with regard to data 

collection since suppliers lack environmental performance data (Ibid.).  As stated by Udo de 

Haes (2006), LCA is a steady-state tool due to the fact that all processes have different time 

characteristics.  However, as Reap et al. (2003) pointed out, the consideration of a steady state 

activity in an industrial process has little connection with events which happen in an ecosystem 

where the primary effects (externalities) are time dependent.  As suggested by Field et al. (2001), 

perhaps the reasoning behind this trend stems from the fact that the inclusion of temporality into 
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LCA would necessitate the consideration of not only a single product (functional unit), but the 

sum total of all products whose emissions enter an ecosystem.  Naturally, for the purposes of 

LCA, this may not be feasible given the high number of individual products whose emissions 

collectively enter a given ecosystem. 

 

As a subject area within LCA, temporality is broad. According to Held and Klöpffer (2000), time 

related issues in LCA may consist of: the age of data; the period of use of products (duration); 

the time scales of recycling; the time horizons of ecological effects (impact assessment); the time 

scales of exploitation of non-renewable resources; the regeneration rate of renewable resources; 

and the time horizon for waste management, landfills, etc. In the case of the last group, this can 

also relate to toxicity (acute versus long-term), nuisances (e.g., noise), radiation decay, global 

warming, photochemical smog, acidification, and so forth (Ibid.). Time can also be involved in 

the time frame of the goal and scope definition, as well as the LCI from resource extraction, to 

manufacture, to end of life stages, further on to landfill emissions (Phungrassami, 2008). 

Naturally, this extends to the time period over which the impacts are integrated in LCIA (Ibid.).  

Temporality may also relate to the interrelations between processes in a product system, the 

profile of the emissions arising from the product system, as well as the dynamic characteristics of 

the impacted areas (Pinsonnault et al., 2014). These are further elaborated below. 

 

Previous consideration of temporality within LCA studies has been in regard to the definition of 

the system boundaries so that it took into account atypical system behaviours such as downtime, 

set-up and/or fluctuations in input materials volume flows (Ciambrone, 1997).  Accordingly, this 

was adjudged to last no longer than between nine and twelve months.  However, by and large, 

according to Goedkoop et al. (1998) and Udo de Haes et al. (2004), temporal and spatial 

information is lacking in almost all LCAs.  Similarly, Graedel (1998) notes that “analytical 

approaches that tend to emphasize temporal difference tend to be discounted” (p. 74).  The 

shortcomings of LCA with regard to temporality and spatiality have been noted in several works 

(Reap et al., 2003, 2008a, 2008b).  As stated by Reap et al. (2008b), the most important aspect of 

temporality and spatiality was that potentially important industrial dynamics were ignored (Reap 

et al., 2008b).  Furthermore, they stated that traditional life cycle assessment could not account 

for environmental and industrial dynamics because of a lack of dynamic modeling or historical 
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data (Ibid.).  For example, anthropogenic emissions have their own time scale, as do their 

associated impacts (Collet et al., 2011). To address this, Owens (1997) states that characterizing 

toxicity of particular activities necessitates that, whether true or not, all emissions must be 

accounted for under the assumption that they will cause effects.  Thus, within the LCA, threshold 

limits are eliminated and a linear dose-response is assumed.  The reason for this rendering of 

time-dependence into simultaneous exposure (or aggregation) is the ability to consider what may 

be deemed a worst-case scenario of exposure to potentially toxic substances. However, this has 

had the effect of producing inaccuracies owing to the compressed time scale in the inventory 

analysis and the subsequent results/findings (Levasseur et al., 2010). 

 

The domain of LCIA has utilized time more explicitly than any other dimension of LCA, 

particularly in the characterization and normalization steps (Phungrassami, 2008). Here, 

characterization models the impacts of LCI by using science-based conversion factors in impact 

categories and normalization entails facilitating comparison of potential impacts (Scientific 

Applications International Corporation, 2006). Therefore, it is perhaps not surprising to find that 

ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework 

makes specific reference in section 4.3(i) to the non-inclusion of temporality (ISO, 2006a): 

LCA addresses potential environmental impacts; LCA does not predict absolute or precise 

environmental impacts due to: 

 

 the relative expression of potential environmental impacts to a reference unit, 

 the integration of environmental data over space and time, 

 the inherent uncertainty in modeling of environmental impacts, and 

 the fact that some possible environmental impacts are clearly future impacts 

 

In this instance, this means the aggregation of effects occurring over space and time. Most extant 

temporality studies in LCA focus strictly on the output of greenhouse gases (GHGs) and their 

associated global warming potential (GWP) (Levasseur et al., 2010; Säynäjoki et al., 2012; 

Levasseur et al., 2012).  In this instance, GWP is the cumulative radiative force arising from the 

emission of a unit mass of a greenhouse gas (GHG) within a specific time horizon and measured 

against CO2 (Levasseur et al., 2010).  This recent work was necessary owing to the fact that 
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traditional LCA studies ignored the temporal profile of emissions (Säynäjoki et al., 2012; 

Levasseur et al., 2012).   

 

In many instances, the extant LCA literature focuses solely upon the issue of temporality from 

the perspective of an externality.  In this way, temporality is thought of as an adjunct of the 

central LCA.  Thus, inputs into the system which are characterized by temporality are not 

currently well defined.  Hofmeister and Kümmerer (2009) note that the separation of inputs and 

outputs during a process allows for their characterization as sources and sinks.  In turn, this has 

led to the treatment of inputs and outputs as two wholly separate parameters or factors with no 

relation to each other (Ibid.).  Temporality is also implicated in the dynamics of material 

availability.  At any given time in a production phase, the amount of virgin material available 

(stocks and inventory) can vary according to how much similar recycled material is available and 

at what cost.  Consequently, a dynamic analysis of material flows in a temporal dimension has to 

be incorporated with a feedback loop through the series of unit process models (Hendrickson et 

al., 2006).  As may be suspected, this has further implications for process truncation and system 

boundaries as system complexity increases. This has been the subject of some research in the 

area of dynamic LCAs. For example, Stasinopoulos et al. (2012) considered the temporal 

impacts of new products entering and old product exiting from a fleet of vehicles. Beloin-Saint-

Pierre et al. (2014) performed a dynamic analysis by linking together elementary unit processes. 

Dynamic LCAs, however, have nothing to do with this study as the data under study here is 

composed of discreet data points in space and time. Thus, the system of manufacture is internally 

static even though changes in energy intensity may be attributed to efficiency improvements or 

changes in technology. 

 

The age of data relates to the temporal dependency of data Fleisher et al. (2004) and, as such, 

constitutes the major focus of temporality in this study. Perhaps this was not originally thought to 

be a considerable problem as indicated by De Smet and Stalmans (1996) because every LCI 

practitioner uses the best available data at the time of the study and, if necessity requires it, the 

study could be updated at a future time when new data becomes available.  Age of data issues 

have been previously characterized through the use of data quality indicators, vectors, and 

characterization factors (Weidema and Wesnaes, 1996; Kennedy et al., 1997; Pinsonnault et al., 
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2014). However, as this consists of the addition of metadata, the problem of age of data is not 

being addressed but only characterized.  As such, the metadata is purely a qualitative metric and 

not a quantitative measurement of the depth of the problem, which is an aim of this study.  Time-

series studies such as Memary et al. (2012) which consider solely the impacts on LCA findings 

of time-varying parameters in historical data are rare. 

 

Studies of spatiality largely mirror that of temporality, although the breadth of pollutants is not 

restricted to emissions (Ekvall et al., 2007; Steinberger et al., 2009; Helmes et al., 2012).  Most 

of these studies deal with the “end of pipe” spatial implications arising from emissions (Krewitt 

et al., 2001; Newell and Vos, 2011; Dresen and Jandewerth, 2012).  Only in one instance is there 

spatial consideration of waste management (Ekvall et al., 2007).  However, Pfister et al. (2009) 

do consider the spatial implications at the input stages of production as they relate to water 

consumption resource extraction by geographical region.  Also, Steinberger et al. (2009) 

compare the energy consumption spatial implications of production in India versus China, as 

well as product usage in Germany.  Therefore, only in the case of Steinberger et al. (2009) does 

this study bear some semblance, although the breadth of materials and time frame under 

consideration are much larger.  Also, efforts to address spatiality issues in LCA historically 

exceed that of temporality issues.  On the one hand, these studies can be divided mainly into 

spatiality issues related to emissions (Nigge, 2001; Potting and Hauschild, 2006; Roy et al., 

2013).  On the other hand, they may refer to land use (Geyer et al., 2010; Saad et al., 2011). Only 

Suh et al. (2013) deal with the spatial implications arising from different LCI databases located 

in different continents (Europe, North America, Asia, etc.). As such, none of these papers have 

implications for this study. 

 

One subject area which must be discussed in light of this study is the effect of background 

processes which may or may not contribute to differences in energy intensity data. Some 

differences were found in data on similar processes originating from separate databases, as well 

as whether a process-based or economic input-output based approach was pursued for compiling 

and reporting the data (Peereboom et al., 1999; Mongelli et al., 2005; Miller and Theis, 2006). 

The most notable differences in the above studies were seen in the output elements of the LCA 

relating to emissions.  Remarkably, with all three of these above studies, the differences in the 
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input data of the LCA were found to be relatively small (as compared with outputs).  Only a 

study by Takano et al. (2014) saw a mixed quality to the input data.  A study by Cellura et al. 

(2011) also tested the gross energy requirements for a Sicilian tile utilizing data from three 

different databases.  Like Takano et al. (2014), there were smaller differences emerging from the 

input data (±7.6%) while output data differences ranged from inconsequential to substantial.  

However, some of the causes of differences found in data are not applicable to this study, 

especially those relating to emissions profiles, while others do have relevance. That is, their 

relevance lies in that the effects of these causes are precisely what are being measured in this 

study.  To this end, Table 3.1 provides explanations of which of these causes have relevance 

(duplicates of causes were eliminated from later papers for succinctness). 

 

In summary, issues with temporality due to age of data and spatiality have largely omitted the 

study of input materials in LCA.  It is an aim of this study to present a general overview at the 

subject of temporality and spatiality in LCA.  In doing so, this allows for the context of this study 

to be understood.  The sector focus of this study is mainly the vehicles field and the materials for 

their manufacture.  It is also an aim to fill a knowledge gap that has hitherto been unstudied.  

Further to this end is to examine whether there are any significant effects arising out of 

temporality and spatiality due to age of data.  It does so by analyzing the effects of changes in 

total energy for internal combustion engine vehicles (ICEV) composed of regular and 

lightweight materials of manufacture.  Compiling and utilizing a vast body of literature and data, 

this study examines whether this problem merits further attention.  In accordance with this will 

be the development of methods for dealing with these issues and bringing about more reliable 

results to LCA.   

 

3.2 Methods 

 

An overview of this study is provided in Figure 2.1.  As such, this figure augments the text of 

this chapter.  Processes (calculations) are represented by rectangular boxes while parallelograms 

consist of data, whether raw or the result of a specific process.  It may be noted that the 

components which comprise the Monte Carlo simulations are in the central column.  It consists 

of the pseudo-random number generator which creates the random uniform distribution below 
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this (in the parallelogram), as well as the reproduction of the probability distribution at the 

bottom of the column.  Thus, all other processes are ancillary to the Monte Carlo simulation. 
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Figure 3.1 An overview of Chapter 3 and the Monte Carlo simulation. 

 
 

3.2.1 Monte Carlo Simulations 

 

Monte Carlo simulations are an established method for studying uncertainty and variability in 

LCA (Hertwich et al., 2000; Björkland, 2002; Heijungs and Frischnecht, 2005).  Indeed, this 

methodology has been used before in some practical studies (Kennedy et al., 1996; Huijbregts et 

al., 2003), as well as the Monte Carlo variant known as Latin Hypercube sampling (Huijbregts, 

1998b).  In this instance, variability may be understood to be the product of inherent variation 

observed in the real world (Huijbregts, 1998a).  Stated another way, this variability may 

represent the true diversity or heterogeneity of a properly representative population (U.S. 

Environmental Protection Agency, 1997). Uncertainty may consist of data arising from 

measurement inaccuracy or a lack of data, whereby lack of data may be understood to consist of 

gaps in data or unrepresentative data (Huijbregts et al., 2001). However, in this case, Huijbregts 

et al. (2001) mean data that is missing between inter-process stages which may be dealt with, for 

example, using a mass balance approach to fill these gaps. However, this does not have any  
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Table 3.1 An exhaustive list of background effects and their relevance to this study. 

Background Process Cause Relevance to this Study 

Hendrickson et al., 1997 

Comprehensiveness of process inclusion 

(i.e., system boundaries) 

System boundaries (e.g., transportation) are included in the 

data utilized. 

Differences in the energy mix of each 

country 

Are included and have relevance to this study. 

Differences in energy efficiency Are included and have relevance.  

Comprehensiveness of impact inclusion This relates to LCIA and has no relevance here. 

Differences in end of pipe treatment due 

to distinct regulatory requirements 

Not relevant. This refers to emissions. 

Temporal differences Are relevant. 

Differences in definitions of outputs This has relevance to this study. However, this was 

accounted for by eliminating secondary industrial processes 

(e.g., galvanising, pickling, extrusion, etc.) and focusing on 

primary process energy. 

Comprehensiveness of measurement 

and error in reporting 

This pertains to differences arising from whether a process-

based or economic input-output format for reporting was 

used. Hence, this has no application to this study since only 

a process-based format data was used. 

Level of aggregation (of data) This relates to differences in definitions of outputs arising 

from whether process-based or economic input-output 

methods were used and has no relevance here. 

Peereboom et al., 1999 

The geographical, temporal, and 

technological representativeness 

All of these are relevant to this study and are part of the 

study’s findings. 

Level of categorization of data This pertains to the level of specificity in data. For example, 

data on the energy intensity of steel may mean many 

different things since there are many different types of steel. 

Again, this was compensated for by the focus on primary 

production and not finished products. 

Allocation method This may have some influence on the results; however, it is 

assumed that this has been addressed by the data compiler. 

Each inventory data set contains data 

from different data sources 

LCA studies may use data from other studies. Every effort 

was made to track down the original data source to prevent 

duplication. 

Differences exist in level of aggregation 

of processes 

In this instance, this means whether the data has been 

aggregated over many individual unit processes. Again, it is 

assumed that the original data compiler has accounted for 

this. 

Lack of metadata Not relevant here. Only discreet data points were used. 

Lack of metainformation Not relevant here. 

Takano et al., 2014 

Number of construction material data This refers to the problems posed by missing data which 

must to be compensated for in the final results of an LCA. 

For example, if data on product A was missing, substitute 

product B with similar characteristics would have to be used 

instead. Consequently, this is not relevant here. 
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relevance to this study.  Therefore, in this study, uncertainty refers strictly to missing data, as 

will be illustrated and further elaborated below. 

 

Maurice et al. (2000) outline the procedure for a Monte Carlo simulation.  A probability 

distribution for the input data must be determined such that the distributions of the output data 

are calculated using the Monte Carlo simulation.  The latter involves randomly sampling the 

probability distribution such that the input data’s probability distribution is reproduced.  In this 

study, Monte Carlo simulations were built in MATLAB (versions 2013b through 2014a) and 

utilized 108 iterations each to generate the randomized data set of estimators for finding the 

energy totals in Table 3.3. That is, 10,000 simulations were run, each with 10,000 iterations 

(point estimations) for each simulation.  Past prohibitions of this type of study were based on the 

fact that data was not readily available for these kinds of assessments.  In turn, this necessitated 

making assumptions regarding the type of probability distribution utilized. For example, 

Kennedy et al. (1996) utilized a beta probability distribution and Raynolds et al. (1999) used a 

normal probability distribution in the absence in sufficient data to generate an actual probability 

distribution. In the case of this study, probability distributions were assembled using available 

data from a number of literature sources (see below).  However, it should be mentioned here that 

there is an underlying assumption regarding making inferences from distributions produced from 

a low number of data points.  Namely, when there are a low number of data points, the measured 

variance distribution enters into territory which can be identified as uncertainty analysis.  

 

Some discussion must be made here regarding the phenomenon of error propagation in Monte 

Carlo simulations.  A standard definition of error propagation in simulations is given by Ogilvie 

(1984) where for m inputs (I1, I2, ...,Ii,....,Im) and n outputs (O1,O2,...,Oj,....,On), small variations 

or deviations δIi in individual Ii values will result in corresponding effects δOj on Oj output 

parameters such that: 

 

𝛿𝑂𝑗 = ∑ 𝛿𝐼𝑖

𝑚

𝑖=1

𝜕𝑂𝑗(𝐼1, 𝐼2, … , 𝐼𝑚)

𝜕𝐼𝑖
 

 

Here, the calculation of the m+1 derivatives 𝜕𝑂𝑗/𝜕𝐼𝑖 are given as the following individual terms: 
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     O(I1, I2,.....,Im) 

     O(I1+ε1, I2,....,Im) 

     O(I1, I2+ε2,...,Im) 

     ......................... 

     O(I1, I2,...,Im+εm) 

 

where εi= δIi/ Ii.  MATLAB utilizes a Mersenne Twister pseudo-random number generator 

(PRNG) known as MT19937.  Tests conducted on MT19937 have shown consistent results such 

that the standard error of this PRNG does not exceed their error bars (Hongo et al., 2010; Hongo 

and Maezono, 2011).  Consequently, the MT19937 is deemed to be an unbiased estimator (Ibid.).  

This means that there is no error in the form of bias originating from the PRNG.  This is evident 

from the fact that the Mersenne Twister has a very large period at 219937-1 and a 623-dimensional 

equidistribution up to 32-bit accuracy (Matsumoto and Hishimura, 1998).  Hence, the outputs are 

free from long-term correlations.  Also, although 95% confidence intervals were calculated for 

the inputs in Table 3.2, there are no variances of these data sets in the model during the 

simulation (e.g., as would be seen in bootstrapping methods).  These 95% confidence intervals 

were used merely to characterize the data sets of energy intensity for individual materials.  

Furthermore, the same function (ksdensity) is used to calculate the probability distributions (e.g., 

Figure 3.5 and 3.6)1.  This study also uses a very large number of iterations (108) which is 

conducive of robust results.  This is evidenced by the closeness of the median to estimation of 

the mean, as well as the very small standard errors (SE) as seen in Table 3.3.  Because of these 

factors, error propagation as defined by Ogilvie (1984) does not have pertinent effects on the 

findings of their study. 

 

Additional reasons why MATLAB software was chosen over other professional LCA software 

platforms such as GaBi or SimaPro are important.  As shown in Table 3.3 below, SimaPro’s 

literature indicates that their Monte Carlo simulations only allow for four types of probability 

distribution: normal, lognormal, range (constant), and triangular (Goedkoop et al, 2013).  Hence, 

SimaPro does not allow for the construction of individual probability distributions from raw data.   

                                                      
1 See Appendix A for all the probability distributions for individual materials of manufacture. 
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Table 3.2 The raw materials of manufacture directly from GREET2 model and their 

corresponding weights in kilograms. 

 

 

Table 3.3 The types of fixed distributions used by SimaPro to model uncertainty (adapted 

from Goedkoop et al., 2013). 

Distribution Data Needed Graphical Presentation 

Range 

(Uniform) 

Min and max value 

 

Triangular Min and max value plus best guess value 

 

Normal 

distribution 

Standard deviation and best guess value 

 

Lognormal 

distribution 

Standard deviation and best guess value 

 

 

The reason for this is that SimaPro uses these distributions to model uncertainty, and not 

variance.  SimaPro also does not have the ability to test for non-normal distributions by 

measurements of skewness or kurtosis.  As well, there is no public literature available on the 

pseudo-random number generator (PNRG) used by SimaPro; hence, an analysis of the PNRG’s 

error propagation (bias) is impossible. Many of the available software platforms in LCA were 

not utilized in this study owing to the limited ability to assess their functionality from available 

Mean Std dev 95% Conf Regular (kg) Lightweight (kg)

Data range (kWh/kg) (kWh/kg) Interval Sedan SUV PUT Sedan SUV PUT

Cast iron 1973-2012 7.51 2.96 1.03 142.7 178.2 221.8 27.8 38.1 46.2

Copper 1968-2012 12.22 7.49 2.60 24.9 24.6 27.1 23.9 10.7 25.4

Lead 1973-2012 10.02 8.06 2.79 16.3 16.3 16.3 7.3 7.3 7.3

Steel 1960-2011 5.34 4.10 1.42 600.1 725.5 844.6 180.2 211.5 275.2

Recycled steel 1981-2009 5.07 5.51 1.91 215.3 260.2 303 64.6 75.9 98.7

Stainless steel 2003-2011 13.19 9.12 3.16 8.5 10.1 9.7

Magnesium 1983-2012 87.82 26.65 9.23 3.1 2.7 2.7

Aluminum 1968-2012 23.00 17.41 6.03 28.8 29.5 40.4 63.0 55.1 68.9

Recycled aluminum 1983-2009 13.16 12.86 4.46 54.3 75.0 88.9 101.5 168.3 271.1

HDPE (high density polyethylene) 1973-2012 23.19 6.68 2.31 30.2 31.8 33.7 22.2 27.2 26.9

PP (polypropylene) 1973-2011 23.76 7.66 2.65 71.3 76.3 81.1 53.3 65.5 64.6

PET (polyethylene terephthalate) 1979-2012 22.77 6.79 2.35 42.4 44.6 47.3 31.1 38.2 37.7

CFRP (carbon fibre reinforced plastic) 1990-2013 60.63 11.95 4.14 116.6 151.4 139.2

GFRP (glass fibre reinforced plastic) 1983-2012 22.6 7.74 2.68 13.9 16.9 21.1

Rubber 1968-2012 5.94 7.69 2.66 30.1 31.6 48.7 30.1 34.4 38.5

Glass 1968-2012 5.11 4.53 1.57 38.0 49.2 47.7 23.2 36.3 31.8

Paint 1993-2012 19.62 21.31 7.38 11.8 11.8 11.8 5.9 5.9 5.9

1306.2 1554.6 1812.4 776.17 955.5 1170.9
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literature and demo software versions.  For example, very little public information exists of the 

GaBi platform’s Monte Carlo simulations.   

 

3.2.2 Data collection and utilization 

 

After reviewing several different LCA software platforms for this research (such as SimaPro, 

GaBi, and Umberto), it was decided that the GREET2 model would be utilized.  Greenhouse 

gases, Regulatory Emissions, and Energy use in Transportation (GREET) is a complete, stand-

alone LCA by the Argonne National Laboratory, United States Department of Energy.  It is a 

freely available LCA in Microsoft Excel format that can be modified to test specific design 

issues with the aim of informing comparative assertions.  GREET1 comprises the fuel cycle of 

automobiles from raw material acquisition, refining and, finally, usage.  Similarly, GREET2 

comprises the manufacture and usage of an automobile from raw material acquisition, 

manufacture, usage and disposal.  For the purposes of this study, only the raw material extraction 

and manufacture phases of GREET2 were investigated, while the vehicle use and final disposal 

phases were disregarded.  This promotes the furtherance of comparative assertions.  Further 

information on specifics related to GREET2 modelling can be found in Hawkins et al. (2013). 

 

Energy intensity (kWh/kg) of materials for manufacture was chosen as the metric for this study 

as there were a number of benefits behind their usage.  First, unlike other monetary-based 

analyses of time-series data (e.g., economic input-output studies), the effects of inflation and 

valuation do not obscure the results.  There are also benefits to using energy intensity as an 

impact category.  Other common impact categories in LCA are either dependent on the stock of 

available materials/resources or are dose dependent (see Pelletier et al., 2007).  Hence, as a 

physical metric, energy intensity is subject to real-world variability which is not affected by 

erroneous background processes (see Table 3.1).  The last benefit was that there were known 

databases of energy intensity of materials of manufacture extending back in time. 

 

The 17 individual raw materials GREET2 used for manufacture and their corresponding mass by 

vehicle type are listed in Table 3.2.  It will be noted that the values for lead and paint are 

consistent.  In the case of lead, this is owing to the use of a standard battery.  With the latter, the 
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same value is used because GREET2 only specified the weight of paint used in a sedan.  Energy 

intensity of the raw materials consisted of the extraction of raw materials onwards to primary or 

secondary manufacture (cradle-to-gate).  With few exceptions, most of the data on energy 

intensity was gathered from the following types of sources (full references in Appendix A): 

 

 International databases (World Steel, International Aluminium Association, etc.) 

 Peer-reviewed papers 

 Congresses, proceedings and technical papers 

 Government reports 

 CSR (Corporate Social Responsibility) reports 

 Life Cycle Assessment findings 

 Books (selection and manufacture of materials) and book chapters 

 

For the preliminary findings presented here, approximately 323 documents served as the source 

for all data utilized.  The data search and collection was exhaustive with the aim of utilizing as 

much data as possible.  The data collected here exceeds any publicly available database on 

energy intensity of production, including the Inventory of Carbon and Energy (ICE) from the 

University of Bath (UK), the Interuniversity Research Centre for the Life Cycle of Products, 

Processes and Services (CIRAIG) of Canada, SPINE (Sustainable Product Information Network 

for the Environment) of Sweden, and the Centre for Building Performance Research of New 

Zealand (to cite a few).  For example, the ICE database has 247 documents but has roughly 189 

different materials and products, many of which are not used in this study:  asbestos, carpet, 

ceramics, clay, concrete, fly ash, plaster, stone, straw, timber, vermiculite, and so forth 

(Hammond and Jones, 2008).  For this study, it follows that there is intrinsic value in collecting 

such a large body of data as this can serve as the basis for more accurate and conservative 

estimations of variability.   

 

After data was collected, consolidation ensued by reviewing the source documents.  Data 

consolidation was necessary due to the fact that some data from the fields of Building Science 

and Architecture had to be discarded as the units of energy intensity were expressed in terms of 

the area of the building (e.g., J/m2) and, in some rare cases, in units of volume (e.g., J/m3).  The 
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data used in this study was geographically specific to varying degrees.  Some sources provided 

the exact location of a smelting operation while others merely mentioned the country of origin or 

a general area (e.g., the EU).  Hence, this is why it was decided to frame the spatiality element of 

this study to the continental level.  The data sources provided sufficient information so that they 

could be classified either by primary or secondary processes.  By and large, secondary process 

data were capable of being classified according to process method such as cold or hot rolled, 

extruded, drawn, galvanized, etc., or product such as wire, plate, ingot, etc. Unfortunately, 

confidence intervals on the source data of energy intensity were very rare and this made their 

assessment from the input perspective impossible.  Nevertheless, an assessment was made of the 

data on energy intensity in Table 3.2.  However, it should be noted that the calculated means, 

standard deviations, and 95% confidence intervals in Table 3.2 are based on the size of the pool 

of collected data (i.e., number of data points).  Hence, these calculations are meant to 

characterize the pool of collected data, not to assess their representativeness.  With this in mind, 

it can be seen that although the distribution (standard deviation) of energy intensity around some 

materials (recycled aluminum and steel) is large, the 95% confidence intervals for most of the 

materials indicates a good representation for repeated multiple samples.  Other materials such as 

magnesium, aluminum, recycled aluminum, and paint see higher confidence intervals due to 

either small sample size or large variance. 

 

Historic data on the energy intensity of individual materials i was imported from Microsoft Excel 

according to various filters set up in the MATLAB Monte Carlo simulation program (e.g., time 

frame, country, production process, etc.).  An example of raw historic energy intensity (kWh/kg) 

for a single material is illustrated in Figure 3.2.  The figure shows the energy intensity of steel as 

a function of time.  Here, a first order least square linear regression was performed as higher 

order regressions resulted in poorer fits.  The regression analysis line can be seen indicating the 

relationship between energy intensity and time.  This regression analysis indicates a downward 

trend in energy intensity.  However, this regression line is used purely for the purpose of 

illustration.  As explained below, the determination of a probability distribution was based on 

individual data points.  Figure 3.3 displays the energy intensity of aluminum manufacture.  

Uncertainty can be seen in the plot by sparse or missing data between the years 1970 and 1990 

even though, once again, the regression analysis line indicates a general downward trend of 
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energy intensity.  Also of concern with regard to the uncertainty are the outliers as shown in 

Figure 3.2.   

 

Utilizing MATLAB’s kernel smoothing function estimate (ksdensity) allowed for this historical 

data to be converted into a probability distribution (e.g., see Figure 3.5).  Subsequently, using 

this probability distribution, a cumulative probability distribution was constructed (e.g., see  

Figure 3.6) by which the randomized set could be fit to generate an energy per mass (kWh/kg) 

distribution di for each individual material. Then, using known masses mi specified by GREET2 

for each corresponding individual material i (steel, aluminum, copper, etc.), the total energy per 

vehicle was calculated from the individual material distributions.  Thus, the total energy per 

vehicle (E) equation would be: 

 

𝐸 = ∑ 𝑚𝑖𝑑𝑖

𝑁

𝑖=1

 

 

An energy total was calculated by Monte Carlo simulation for each different vehicle type (see 

Table 3.4).  The total number of materials N under study here is 17 individual materials (see 

Table 3.2).  Different vehicle types given by GREET2 were a sedan, sport-utility vehicle (SUV), 

and pick-up truck (PUT).  GREET2 also models lightweight vehicles which use less traditional 

materials such as steel and cast iron and more alternative materials such as aluminum, carbon 

fibre reinforced plastic (CFRP), glass fibre reinforced plastic (GFRP), and magnesium.  

Naturally, the underlying motive for lightweight vehicles is the promotion of greater fuel 

efficiency. When traditional materials such as steel and cast iron are substituted for more 

unconventional materials such as aluminum, carbon fibre reinforced plastic (CFRP), glass fibre 

reinforced plastic (GFRP) and magnesium, the total mass of the sedan vehicle is reduced by 

526kg.  The purpose of performing Monte Carlo simulations on these types of vehicles is to 

provide comparative scenarios to other functional units constructed of different materials.  In 

doing so, this makes possible the comparison of the individual contributions of each material to 

examine whether the ICEV sedan results are anomalous. These different vehicle configurations 

became the basis for further comparative assertions (see below). 
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One basis for making comparative assertions was that the variance of the full time scale be 

compared to a smaller time frame with the assumption that the latter would see significant 

reductions in both variance and total average energy.  As a result of this, the choice of the 

smaller five year time interval was based on two factors: 

 

1) Data quality indicators—also known as a pedigree matrix—were developed by Weidema 

and Wesnaes (1996) to indicate five time intervals for consideration according to their 

pedigree score (in brackets): less than 3 years (1); less than 6 years (2); less than 10 years 

(3); less than 15 years (4); and more than 15 years or date unknown (5).  Weidema and 

Wesnaes (1996) indicate that a level 2 (less than 6 years) temporal correlation was less 

likely to be susceptible to large advances in technological progress.  Furthermore, with 

the exception of industrial sectors such as electronics and the pulp and paper industry, 

Weidema (1998) indicated that a temporal correlation score of 2 (less than 6 years) was 

not indicative of rapid industrial technological development. 

2) The minimum number of data points necessary for a kernel density estimator for a 

univariate data set.  Silverman (1998) proposed that, for a single point kernel density 

estimate (i.e., at x), the mean square error (MSE) be given as follows: 

 

𝑀𝑆𝐸 = [𝑓(𝑥) − 𝑓(𝑥)]
2
 

 

where 𝑓 is the density estimator and 𝑓 is the true density.  Silverman (1998) then goes on 

to state that a desirable objective would be to keep the relative mean square error (RMSE) 

less than 0.1 at a single point (0).  Stated formally yields the following expression: 

 

𝑅𝑀𝑆𝐸 =
[𝑓(𝟎) − 𝑓(𝟎)]

2

𝑓(𝟎)2
< 0.1 
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Figure 3.2 Raw data of historic energy intensity (kWh/kg) for primary steel. 

 

 

Figure 3.3 Historical raw data of energy intensity (kWh/kg) of primary aluminum. 
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In accordance with this, Silverman calculated that at least four data points (sample size) 

would be necessary to meet this criterion for a univariate data set.  For the majority of 

materials in this study, the sample size for a five year time interval exceeded the 

minimum sample size.  However, for materials such as PET, HDPE and cast iron, the 

sample size was equal to the minimum criterion of a five year interval.  Hence, this 

factored into the choice to model the variance for the smaller time frame at five years. 

 

3.2.3 Coefficient of variance (CV), standard error (SE), and ANOVA 

 

The main benefit behind the usage of the coefficient of variation (CV) is that the standard 

deviation increases or decreases in proportion to increases or decreases in the mean value of a 

distribution (Reed et al., 2002).  Hence, this has the effect of reducing the effect of changes in the 

mean such that variability can be assessed in comparative terms (Ibid.).  The formula for CV is: 

 

𝐶𝑉 =
𝜎

�̅�
 

 

where σ is the standard deviation and �̅� is the mean.  Comparative assertions regarding CV 

values will follow methods used in Wang and Shen (2013), Escobar et al. (2014), as well as 

Chen and Corson (2014).  As such, variation in CV values will be measured in relative 

percentage changes to the five year time frame (2007-2012) since the full time frame includes 

the five year time frame.  This is further articulated in the Results chapter (3.3). 

  

Similarly, standard error (SE) will be calculated using 

 

      𝑆𝐸 =
σ

√𝑛
 

 

where σ is the standard deviation and n is the number of iterations (measurements), which is 108 

for each vehicle type.  Consequently, the 95% confidence intervals can be calculated from these 

measurements of SE by multiplying SE by 1.96 (under the assumption the data are normally 

distributed).   
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Lastly, a one-way analysis of variance (ANOVA) was utilized in order to detect which of the 

materials of manufacture was contributing the greatest to the measured variance.  The ANOVA 

was done using MATLAB.  Box plots of the ANOVA are given in Figures 3.7 and 3.8.  In the 

box plot the centre line of each box represents the median, while the vertical edges of the box are 

the 25th and 75th percentiles.  The outer whiskers represent (+/-) 2.7 standard deviations or 99.3 

percent coverage for a normal distribution.  Extreme outliers beyond the whiskers are 

represented by individual data points.  Alongside these box plots, an F-test was conducted of the 

Monte Carlo distributions in order to make comparisons of the effects of changes in time frame.  

Consequently, the F-ratio was calculated by dividing the treatment mean square (MSTR) by the 

mean square error (MSE): 

𝐹 =
𝑀𝑆𝑇𝑅

𝑀𝑆𝐸
 

where  

𝑀𝑆𝑇𝑅 =
𝑆𝑆𝑇𝑅

𝑘 − 1
 

and  

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛 − 𝑘
 

The sum of the squares for treatment (SSTR) and the sum of the squares for error (SSE) are 

calculated using  

𝑆𝑆𝑇𝑅 = ∑ 𝑛𝑗(�̅�𝑗 − �̅�)2 

and 

𝑆𝑆𝐸 = ∑(𝑛𝑗 − 1)𝑠𝑗
2 

where  k=number of populations 

n=total number of observations 

𝑛𝑗=size of sample from population j 

�̅�=mean of all n observations 

�̅�𝑗=mean of sample from population j 

𝑠𝑗
2=variance of sample from population j 
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Lastly, the F critical values (Fcrit) were calculated using a specified significance level (1-α) on 

simple Excel spreadsheet. 

 

3.2.4 Skewness and Kurtosis 

 

As this chapter examines the potential distorting effects of the raw data (energy intensity), a log 

transformation method (base 10) is utilized in order to test whether the original distribution is 

non-normal.  Log transformation is a simple method of converting normal in situ data into a 

logarithmic distribution for the purposes of bringing about greater visual clarity and to see 

whether the original data displays a log-normal distribution (National Institute of Science and 

Technology, 2012).  If the original data proves to be non-normal, this would have implications in 

utilizing variance to analyze temporality and spatiality due to aged data.  Skewness can be 

understood as the overall lack of symmetry of a distribution while kurtosis is the flatness of a 

distribution (Ibid.).  It is expected that when normal data is log transformed, that there will be an 

overall increase in skewness (the distribution will become more symmetrical) and decrease in 

kurtosis (the distribution will become more flat).  The typical formulas for skewness and kurtosis 

are given as: 

 

skewness=
∑ (𝑥𝑖−�̅�)3/𝑛𝑛

𝑖=1

𝜎3  

 

kurtosis=
∑ (𝑥𝑖−�̅�)4/𝑛𝑛

𝑖=1

𝜎4  

 

where, as with above, �̅� is the mean and 𝜎 the standard deviation.  Furthermore, n denotes the 

number of measurements in this distribution, which in this case is ten thousand. 

 

3.2.5 Limitations 

 

Limitations of the study include a lack of data from Asia for most of the materials under study.  

Sufficient data from Japan, China, Korea, etc., can be found for steel and aluminum, but is highly 
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lacking outside of these two materials.  Other studies on energy intensity which were not English 

or German language based were excluded.  Furthermore, as there are a multitude of final 

products and processes which secondary processes could bring about, the data used was 

restricted to primary process energy for steel, aluminum and copper (except in instances where 

recycled material is substituted).  Nevertheless, as comparative assertions are the main focus of 

this study, this was deemed a necessary trade-off.  Also, recycled materials used in this study 

were limited to data where 100% recycled matter was used instead of some pre-formatted 

combination or mixture (e.g., 70% virgin, 30% recycled).  Temporal comparisons of magnesium, 

stainless steel, CFRP, and GFRP could not be made owing to limited data.  Nevertheless, their 

energy contributions have been included in the total energy calculations for the lightweight 

vehicles. 

 

Only internal combustion engine vehicles (ICEV) are the subject of this study.  Other types of 

power trains will be the subject of chapter 4.  Spatiality comparisons are limited to regular 

sedans and to general geographies such as North America, Europe, and Oceania (Australia and 

New Zealand).  Consequently, the areas they cover are vast and this must be kept in mind when 

examining the results.  Spatial calculations had to exclude cast iron, recycled steel, and recycled 

aluminum as there was not sufficient data to enable analysis.  Also, not all data used in this study 

spans the years from 1960 to 2012.  Only primary steel has data that stretches that far back in 

time. Most of the other data ranges are variegated (see Table 3.2).  This has important 

consequences when examining the total energy results of temporality due to age of data. 

 

3.3 Results and Discussion 

 

3.3.1 Monte Carlo simulations and analysis of variance (temporality) 

 

Tables 3.4 and 3.5 outline the results of the Monte Carlo simulations for total energy of an 

internal combustion engine vehicle in three different vehicle classes.  Table 3.4 can be broken 

down into vertical and horizontal axes.  The horizontal axis denotes vehicles composed of 

regular materials and lightweight vehicles manufactured with substitute materials (see Table 

3.2).  Hence, it can be seen that the lightweight vehicles have a smaller mean total energy (kWh) 
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as compared to regular vehicles.  The vertical axis contains vehicles with the full time scale (see 

Table 3.2) and the five year time scale (2007-2012).  It will be noted that individual material  

 

 

Table 3.4 The total energy (E) per vehicle in kWh, standard deviation (SD), standard error 

(SE) and coefficient of variation (CV) using regular and lightweight materials. 

 

 

 

Table 3.5 The total energy (E) per vehicle (sedan) in kWh, standard deviation (SD), 

standard error (SE) and coefficient of variation (CV) according to geographic location. 

 

 

time scales in the full time scale scenario are not the same.  For example, steel data ranges from 

1960 to 2011 while cast iron data ranges from 1973 to 2012.  The reason for this is the desire to 

see what the full range of variance in each individual material was and compare that to the five 

year time frame (2007-2012).  (This will figure in the recommendations for future analysis 

below.)  It will be noted that the heavier the vehicle, the higher the mean total energy and the 

corresponding standard deviation (SD), standard error (SE), and coefficient of variation (CV).  

This is owing to the use of more amounts of material in the SUVs and PUTs:  more cast iron, 

steel, recycled steel, aluminum, recycled aluminum, plastics, as well as rubber and glass.  

Furthermore, it may be seen that all of these measurements decrease in the five year time frame. 

 

North Am Europe Oceania

Mean 11,047          10,347          10,463        

Median 11,047          10,346          10,463        

SD 5,868             5,874             6,081          

SE 0.587 0.587 0.608

CV 0.531 0.568 0.581
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For the purposes of comparison, the total energy of ICEV sedan vehicles from cradle-to-gate for 

the materials production phase is presented in Table 3.6 below.  For the most part, these studies 

were compiled using industry-sourced data, while Schweimer and Levin (2000) used GaBi  

 

Table 3.6 Comparison of total energy of vehicle (cradle-to-gate) from other studies. 

Study Year of 

Vehicle 

Vehicle Weight 

(kg) 

Processes Total Energy 

(kWh) 

Barry and Fels 

(1971) 

1967 1,555 Primary 22,823 

Stodosky et al. 

(1995) 

1994 1,314 

 

Primary 20,240 

Sullivan and Hu 

(1995) 

1995 1,157 Primary 18,609* 

Schuckert (1996)  1996 1,160 Primary 18,611* 

Dhingra et al. 

(1999) 

1994 1,474 Primary   9,322 

Scheweirmer and 

Levin (2000) 

1999 1,059 (1.4L petrol) Primary 13,333 

Scheweirmer and 

Levin (2000) 

1999 1,181 (1.9L diesel) Primary 14,222 

Schexnayder et al. 

(2001) 

1994 1,474 

 

Primary   9,322 

Zamel and Li 

(2006) 

1999 1,324  Primary 26,036* 

Chester and 

Horvath (2008) 

2005 1,452 Primary and 

Secondary 

27,778* 

Li et al. (2012) 2006 1,192 Primary 16,622* 

*LCA does not include any recycled material. 

 

software, and Chester and Horvath (2008) used SimaPro software.  As can be seen, there is a 

marked amount of divergence in the results.  The reasons for this stem from four central factors:  

1) differences in the total weight of vehicles; 2) differences in the weight of individual materials 

of manufacture; 3) differences in system boundaries (e.g., the inclusion of transportation energy); 

and 4) whether or not recycled materials were used.  As can be seen, the majority of the studies 

do not use recycled material (as indicated by an asterisk) and, hence, their energy totals are 

higher.  As well, there are discrepancies in the materials which are recycled.  For example, 

Schweimer and Levin (2000) only consider recycled aluminum in their study. 
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In addition, in terms of the overall life cycle of a vehicle, variance appears to significantly affect 

the materials production phase of the life cycle.  It is generally accepted that the use phase of a 

vehicle’s LCA shows the largest consumption of energy at over 200MWh per vehicle (McLean 

and Lave, 1998; Schweimer and Levin, 2000; Chester and Horvath, 2008).  However, using the 

time-series data and modeling in GREET1.8 (Wang, 2012)—which models the fuel cycle phase 

of a vehicle’s life cycle—shows a coefficient of variance of only 5.48% for the period of 1990 to 

2010.  This is due to GREET1.8 modeling crude oil refining efficiency as steady across this same 

period at 98%.  Also steady over this period are the lower heating value of gasoline at 32MJ/L 

and a fixed 260,000km total distance travelled during the life cycle.  Hence, the only factor 

which contributes to energy variance in this period is the change in vehicle fuel economy which 

ranged between 9.23 to 10.55 km/L.  Additionally, Sullivan et al. (2012) found that the vehicle 

assembly phase of the vehicle life cycle inventory shows a coefficient of variance of 8.4% for 

energy intensity.  Lastly, the end-of-life portion of the vehicle’s life cycle usually has the least 

total energy consumption.  Keolian et al. (1997) give energy estimates of 801kJ/kg for the end-

of-life portion, while Staudinger and Keoleian (2001) estimate 1005kJ/kg.  Thus, for a 1,500kg 

vehicle, energy total yields are 334kWh and 419kWh, respectively.  As such, these energy are 

minor in lieu of the overall energy burden across the vehicle’s life cycle.  Furthermore, most of 

the end-of-life cycle technology for vehicles (dismantling, shredding, material separation, etc.) 

has remained largely static (Sakai et al., 2014).  Consequently, the most variance in the life cycle 

of the vehicle is seen in the materials production phase. 

 

With the regular sedan model the mean total energy (�̅�) is 10,908kWh and the standard deviation 

(σ) is 6,225kWh over the full time frame.  This yields a coefficient of variation (CV) of 57.1%, 

which is large.  The CV indicates that there is a considerable amount of variation in this 

distribution.  Of course, the variance reflects the probability distribution which was constructed 

from all the historical data.  The corresponding values for the sedan on the five year time frame 

sees �̅� =9,578kWh, σ=4,539kWh, and CV=47.4%.  Hence, there is a 12.2% reduction in total 

energy usage relative to the full time frame mean (10,908kWh).  However, it should be noted 

here that some of the individual materials of manufacture saw their total energy rise from the full 

time frame to the five year time frame (discussed below).  Furthermore, there is also a 17.0% 

reduction in the coefficient of variation relative to the full time frame value (57.1%).  For the 
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SUV and PUT, there are 12.5% and 12.7% reductions in mean total energy (respectively), as 

well as 16.6% and 16.1% reductions in coefficients of variation.  The F-test conducted on the full  

 

 

Figure 3.4 An example of a single Monte Carlo distribution for the total energy of an 

internal combustion engine sedan. 

 

 

time scale and the five year time scale (2007-2012) for the regular sedan found an F-ratio of 

297.6 and, at an α of 0.01, an Fcrit of 6.64 (from Excel).  As the F-ratio is significantly larger than 

the Fcrit, this indicates that the two distributions are very different. 

 

However, when comparing the two time frames, the lightweight vehicles saw much lesser 

reductions in mean total energy.  The sedan model saw a reduction of 3.85% in mean total 

energy and a 13.3% reduction in the coefficient of variation.  The lightweight SUV and PUT 

models saw reductions of 2.20% and 2.07% for the mean total energy, as well as 5.52% and 

5.22% reductions in their coefficient of variation.  An F-test conducted on the full time scale and  

the five year time scale (2007-2012) for the lightweight sedan found an F-ratio of 35.3 and, at an 

α of 0.01, an Fcrit of 6.64 (from Excel).  As the F-ratio is larger than the Fcrit, this indicates that 

the two distributions are different.  However, it will be noted that the difference is much less than  
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Table 3.7 A breakdown of the total energy (E) of a regular vehicle (sedan) in kWh and in 

terms of individual materials of manufacture (i). 

 
 

 Table 3.8 A breakdown of the total energy (E) of a lightweight vehicle (sedan) in kWh and 

in terms of individual materials of manufacture (i). 

 
 

Table 3.9 A breakdown of the total energy (E) of a regular vehicle (sedan) in kWh and in 

terms of individual materials of manufacture (i) by geographical region. 

 
 

Table 3.10 Log transformed version of Table 3.9.   

 

Regular

Rubber Paint Glass HDPE PP PET Cast Iron Lead Copper Steel Steel (R) Al Al (R)

Full range Mean 178.8 202.7 197.0 692.5 1657.4 935.8 1075.8 141.8 304.9 3206.5 1115.3 475.3 724.1

Std Dev 231.0 128.5 174.2 205.2 471.9 216.8 465.6 43.3 191.6 2478.8 1177.0 117.2 587.6

CV 129.2 63.4 88.4 29.6 28.5 23.2 43.3 30.5 62.9 77.3 105.5 24.7 81.1

2005-2012 Mean 117.4 112.1 188.6 702.2 1676.6 922.8 1030.6 138.6 290.2 3028.4 988.7 473.2 732.9

Std Dev 76.7 116.5 172.7 185.1 470.6 204.4 460.2 47.4 182.1 2531.5 591.5 133.6 565.3

CV 65.3 104.0 91.6 26.4 28.1 22.1 44.7 34.2 62.8 83.6 59.8 28.2 77.1

F 634.87 2728.58 11.66 12.24 8.30 18.88 47.67 24.81 30.93 25.27 92.36 1.39 1.18

Fcrit 6.64

Lightweight

Rubber Paint Glass HDPE PP PET Cast Iron Lead Copper Steel Steel (R) Al Al (R)

Full range Mean 178.8 101.3 120.3 508.0 1215.9 686.5 209.6 63.6 293.5 962.8 334.9 1039.7 1353.2

Std Dev 231.0 64.2 106.3 150.5 346.2 159.0 90.7 19.4 184.5 744.3 353.4 256.4 1098.1

CV 129.2 63.4 88.4 29.6 28.5 23.2 43.3 30.5 62.9 77.3 105.5 24.7 81.1

2005-2012 Mean 117.4 33.6 102.1 508.0 1321.8 683.6 204.1 60.6 266.8 650.4 268.7 1065.8 1481.8

Std Dev 76.7 34.8 17.7 74.2 338.9 75.1 97.5 28.7 180.0 603.9 134.2 416.7 1056.4

CV 65.3 103.8 17.3 14.6 25.6 11.0 47.7 47.3 67.5 92.8 50.0 39.1 71.3

F 634.9 8593.6 283.0 0.0 477.8 2.6 17.2 70.9 107.6 1062.5 307.0 28.5 71.2

Fcrit 6.64

North America Rubber Paint Glass HDPE PP PET Lead Copper Steel Al

Mean 170.2 144.2 192.7 703.8 1648.8 948.6 138.1 276.7 3117.0 478.9

Std Dev 208.9 119.0 226.9 196.6 485.4 207.3 34.9 173.2 2539.1 117.8

CV 122.7 82.5 117.8 27.9 29.4 21.9 25.3 62.6 81.5 24.6

Europe Rubber Paint Glass HDPE PP PET Lead Copper Steel Al

Mean 141.2 94.0 186.6 682.5 1690.3 942.4 141.7 281.6 2772.1 476.4

Std Dev 172.5 96.0 176.0 191.8 391.8 176.7 51.7 191.0 2326.7 131.1

CV 122.1 102.1 94.3 28.1 23.2 18.8 36.5 67.8 83.9 27.5

Oceania Rubber Paint Glass HDPE PP PET Lead Copper Steel Al

Mean 150.8 148.8 177.2 696.7 1693.9 938.5 136.1 278.8 2819.9 477.1

Std Dev 195.3 118.3 174.5 195.5 396.8 185.8 49.3 185.8 2492.3 135.7

CV 129.5 79.5 98.5 28.1 23.4 19.8 36.2 66.6 88.4 28.5

F 58.6 742.3 16.2 30.9 34.5 7.2 37.6 1.84 58.0 1.01

Fcrit 4.61

North America Rubber Paint Glass HDPE PP PET Lead Copper Steel Al

Mean 2.69 2.17 2.09 2.87 3.21 2.99 2.12 2.36 3.45 2.70

Std Dev 0.22 0.43 0.46 0.13 0.16 0.12 0.02 0.27 0.18 0.05

Europe Rubber Paint Glass HDPE PP PET Lead Copper Steel Al

Mean 2.04 1.93 2.23 2.83 3.22 2.97 2.13 2.32 3.39 2.68

Std Dev 0.31 0.48 0.29 0.16 0.10 0.09 0.22 0.42 0.28 0.10

Oceania Rubber Paint Glass HDPE PP PET Lead Copper Steel Al

Mean 2.06 2.17 2.20 2.86 3.22 2.97 2.09 2.31 3.39 2.68

Std Dev 0.35 0.43 0.27 0.13 0.12 0.10 0.20 0.41 0.28 0.10

F 15400.2 904.2 423.7 233.3 37.8 135.1 137.2 49.8 215.9 113.7

Fcrit 4.61
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Figure 3.5 A sample probability distribution for the energy intensity of copper. 

 
Figure 3.6 A sample cumulative probability distribution for the energy intensity of copper. 
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Figure 3.7 A one-way ANOVA of an internal combustion engine sedan using regular 

materials. 

 

 

Figure 3.8 A one-way ANOVA of an internal combustion engine sedan using lightweight 

materials.   
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the regular sedan vehicle.  Part of this is owing to the negligible temporal differences in energy 

contributions from magnesium, stainless steel, CFRP, and GFRP.   Yet, for the remaining 

materials, the shifts in total mean energy and coefficients of variation have a lot to do with the 

types of materials selected and their corresponding weight.  In terms of weight, the regular 

vehicles use three times as much steel, recycled steel and stainless steel than the lightweight 

vehicles.  Regular vehicles also use more than four times as much cast iron.  Conversely, 

lightweight vehicles use more aluminum, recycled aluminum, and plastics than the regular 

vehicles.  This subject is further elaborated below. 

 

Utilizing box plots derived from a one-sided ANOVA indicates that for a regular sedan in the 

full time frame, the key contributor to this variance in regular vehicles comes from virgin steel 

with polypropylene (PP), recycled steel, cast iron, and recycled aluminum, also adding a fair  

amount to the size of the distribution (Figure 3.7).  Furthermore, the ANOVA also reveals that 

the skewness of the Monte Carlo distribution in Figure 3.4 (the shift in the plot towards the 

vertical axis, or left) is due mainly to the large variance and high number of outliers seen in the 

steel box plot.  Steel is also a serious contributor to the variance of the total energy seen in 

heavier vehicles such as sport utility vehicles (SUVs) and pick-up trucks (PUT).  In the case of 

lightweight vehicles (Figure 3.8), the box plots reveal that the largest contributor to the variance 

in the full time frame was due to the amount of recycled aluminum.  Virgin steel and 

polypropylene were the second highest contributors to total energy.  The main reason for this 

reduction in energy is due to the high proportion of recycled aluminum in the vehicle’s body 

(13.1% versus 4.9% for the regular materials version).  This recycled aluminum by-passes 

primary production through the highly energy-intensive Hall-Héroult process of converting 

alumina (Al2O3) into elemental aluminum. 

 

3.3.2 Discussion related to the use of intervals for Monte Carlo simulations 

 

Nevertheless, when examining their individual contributions, materials such as aluminum, 

recycled aluminum and the plastics (HDPE, PP, PET) show not very significant changes between  

the two time frames in their mean energy values (kWh) in Tables 3.7 and 3.8.  Here, it can be 

seen that paint and rubber show the most reductions in mean energy (kWh) for both the regular  
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Figure 3.9 Histogram of PET energy of a regular sedan for the Five Year Period (2007-

2012). 

Figure 3.10 Histogram of PET energy of a lightweight sedan for the Five Year Period 

(2007-2012). 
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Figure 3.11 Energy intensity (kWh/kg) for steel over various time intervals. 

 

and lightweight vehicles.  (Note that for rubber, the mean energy values remain the same for both 

types of vehicles as they use the same weight.)  It will be seen that the standard deviations and  

coefficient of variation for the materials of manufacture are initially all the same in the full time 

scales, regardless of which vehicle type is considered.  However, this is not the case when 

examining the five year time frames for both regular and lightweight vehicles.  For example, 

PET has an initial CV of 23.2% for both vehicle types but, in the five year data range, has 22.1% 

and 11.0% for regular and lightweight vehicles respectively.  This would indicate that the effects 

of temporality in this instance are not scalable.  (The only exception found here is with rubber, 

which has the same weight for both lightweight and regular vehicles.)  That is, scalar reductions 

in mean energy values do not see corresponding scalar reductions in standard deviations.  This is 

problematic because the whole basis for using coefficients of variation is that changes in mean 

values correspond to scalable changes in standard deviations (Sørensen, 2002).  For example, 

this scalar quality was seen with the full time frame because the CV values were exactly the same 

in the regular and lightweight models.  Nevertheless, histograms of the energy contributions for 

each of the individual materials in the five year distributions for each of the regular and  

lightweight vehicles are identical and, thus, reproduce their probability distribution.  For 

instance, the histograms of the five year PET distributions are identical even though their CV 
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values are different.  Because the CV has the effect of eliminating variation in mean energy 

values, it would be expected that these final CV values were the same if the standard deviations 

were scalar to the mean.  Obviously they are not.  Also, there is no a priori evidence to suggest 

that this is expected.  Hence, analysis utilizing CV values between time intervals—especially 

small time intervals—is not a recommended method of analysis.  Thus, to return to the subject of 

time scale, the particular portions of Tables 3.7 and 3.8 which should be considered are those 

with the full time scale.  Doing so allows for comparison of CV values between different 

materials because they are scalable.  As such, it does not matter whether a regular or lightweight 

model is selected since the CV values are the same.  Thus, Tables 3.7 and 3.8 indicate that rubber 

has the most amount of variation (129.2%) and magnesium the least (21.4%).  Naturally, this 

comes with the caveat that each of these values corresponds to a different time frame in Table 

3.2.  Nevertheless, this is purposeful since it is an indicator of overall variation due to time and to 

what degree each material is affected by this variation.  The origins of this problem have partly 

to do with the particular intervals that the data are being filtered through.  The fact that the mean 

energy totals, standard deviations, and coefficients of variation are not significantly reduced (or 

increased) may have as much to do with the particular characteristics of the data in the time 

interval itself.  For example, Figure 3.11 shows four regression lines for four different time 

intervals for steel.  The horizontal length of the line corresponds to the years the interval covers.  

Thus, all the regression lines terminate at 2012 but commence at different times: 1960, 1972, 

1977, and 1987.  These particular intervals were selected to illustrate that there can be more 

variation in energy intensity (kWh/kg) even in smaller time intervals as by their vertical lengths.  

Thus, mean energy values and standard deviations for smaller time intervals can have reduced 

significance when compared to the full time scale.  Consequently, it is recommended that only a 

full interval analysis be done with the standard deviation of these intervals as the key metric of 

interpretation.  It should be noted here that, as an indicator of variation, the standard deviation is 

not relative to the arithmetic mean.  At the very least, this suggests that a parsimonious 

regression method should be employed on all individual materials first in order to characterize 

temporal changes in energy intensity values rather than primarily conducting an analysis from 

the perspective of the functional unit.  Such a method as the least absolute residuals (LAR) 

should be used in order to make recommendations with regard to updating LCI data, as well as to 

verify the source of the variance.  This will partly be the subject of the next chapter.  Naturally, 
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whether there is any benefit between LAR and more conventional methods such as least-squares 

will be examined.   

 

3.3.3  Discussion on the possibility of non-normality in the temporality results 

 

Another problem with analyzing these data has to do with the type of distributions resulting from 

the Monte Carlo simulation.  The visibly apparent skewness of the total energy distribution in 

Figure 3.4 suggests that the correct way to deal with the problem of lack of scalability is to log 

transform the data.  Indeed, when the data is log transformed, there is a significant reduction in 

the disparities between CV values in the two time frames (see Tables 3.9 and 3.10).  However, 

this is expected because log transforming the data has the effect of reducing the influence of 

outliers in the probability distribution.  This should have the effect of lowering F values by 

increasing the similarity in distributions.  However, this is not always the case.  In some 

instances, there is an increase in F values after the data has been log transformed.  This means 

that the log transformed distributions are less similar than the non-log transformed distributions.  

In such a case, this would mean that the original distribution is not log-normal to an appreciable 

degree (see below discussion on kurtosis and skewness).  Nevertheless, there is utility in doing 

this to test for the assumption of scalability for individual materials.  From a practical 

perspective, this should be done not only to see whether individual material distributions are 

skewed or not, but also to see whether the effects of these skewed distributions on the F values 

are significant or not.  This should be done by testing whether there is a reduction in the kurtosis 

and skewness of the distribution after the data has been log transformed.  As embedded functions 

in MATLAB, this is easily facilitated and will be discussed as an example in the spatiality results 

below.   

 

3.3.4 Monte Carlo simulations and analysis of variance (spatiality) 

 

Because of the aforementioned data limitations, spatiality in this preliminary study was limited to 

three geographical regions: North America, Europe and Oceania.  North America comprises 

Mexico, USA and Canada.  Europe consists of the European Union (EU), former Soviet Bloc 

countries, as well as Norway, Switzerland, Turkey and Serbia.  Lastly, Oceania consists of 
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Australia and New Zealand.  For convenience, the geographic zones covered under the 

temporality and spatiality studies are given below in Figures 3.12 and 3.13.  Countries covered 

are indicated in black.  Again, as with the above calculations, energy data from primary 

production was considered here only because of the ramifications of the many different types of 

secondary production.  Hence, there were no alterations in the characteristics between data 

coming from different regions. Regional results from Table 3.5 for a regular ICEV sedan are as 

follows:  North America (�̅�=11,047kWh, σ=5,868kWh), Europe (�̅�=10,347kWh, σ=5,874kWh) 

and Oceania (�̅�=10,463kWh, σ=6,081kWh).  The coefficients of variance (53.1%, 56.8%, and 

58.1%, respectively) indicate that there are effects owing to spatiality since the time frame under 

consideration is the same.  The F-test conducted on these three distributions indicated an F-ratio 

of 39.87 and, at an α of 0.01, the Fcrit was 4.61.  This indicates that the expected values in the 

three distributions are different.  The box plots derived from an ANOVA1 of the total energy 

(i.e., at the level of a functional unit) showed little difference from region to region and, for that 

reason, they are not included here. From Table 3.9, it will be noted that the differences in the 

total energy values in Table 3.5 are due to the cumulative simultaneous effects of individual 

materials.  It will be seen from the F values at the bottom of Table 3.9 that there is no significant 

difference in distributions for copper and aluminum.  However, at the same time, most of the 

differences between distributions occur with rubber, paint, and steel.  This indicates that the 

effects owing to spatiality are significant only in the case of some materials and not all.  

Moreover, this shows that any consideration of temporality due to age of data must be 

simultaneously framed in spatial terms as well.   

 

Turning to the prescribed log transformation issue, when the spatial distributions in Table 3.9 are 

log transformed in Table 3.10, there is an across the board increase in F values.  This would 

seem to suggest that the differences in the distributions are actually more significant.  

Unfortunately, this is not as clear as this would indicate, as an examination of kurtosis 

demonstrates.  A kurtosis greater than 3.00 indicates that the distribution is more outlier prone 

than a normal distribution (MathWorks, 2015).  Hence, greater kurtosis values indicate greater 

peaked distributions.  An examination of the kurtosis of the individual material distributions in 

Table 3.9 and 3.10 shows two different phenomena:  on the one hand, the kurtosis is increased 

following log transformation and, on the other hand, the kurtosis is decreased but remains at an 
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unacceptable high level.  Thus, an example of the former phenomenon sees the kurtosis increase 

from 3.04 to 5.06 for North American high density polyethylene (HDPE).  Conversely, an 

example of the latter phenomenon sees the kurtosis decrease from 21.2 to 8.40 for European 

steel.  Hence, while this is a reduction in the level of kurtosis for HDPE, this hardly brings about 

a desirable outcome.  The sole exception to either of these phenomena was with European 

polypropylene where the kurtosis decreased from 2.96 to 2.50 after being log transformed.  

Similarly, log transforming the spatiality data saw overall reductions in skewness of the 

distributions.  However, this was minimal in terms of its overall effect. For example, the 

skewness of the North American steel distribution was reduced from 6.41 to 1.12 when log 

transformed.  Conversely, other materials showed a shift from a positive skew to a negative skew 

when log transformed, such as European cast iron which saw a shift from 0.575 to -2.187.  

Ideally, log transforming data should result in bringing about a skewness closer to zero.  

Consequently, when analyzing the F values between different spatial least absolute residuals 

distributions, there is little added value in log transformed individual materials distributions 

unless there is a demonstrated correction for skewness.  This was not found to any significant 

level in this study. 

 

3.4 Conclusions 

 

This study contributed to the literature examining the potential for temporal and spatial effects in 

life cycle assessment due to age of data.  No previous study has directly examined this issue with 

the aim of assessing the potential impacts of using source data rooted in a specific time and 

place.  The consequence of this has been that life cycle assessment studies are tacitly accepted 

without any particular specification as to the duration of their validity.  This is not to state that 

any LCA suddenly becomes invalid, but that the issue of raw data upon which they are based has 

to be renewed.  This study also serves a preliminary normative platform for moving forward in 

examining the issue of temporality and spatiality in life cycle assessment.  It established that 

Monte Carlo simulations can provide a useful tool for examining the individual variance of 

materials used within a functional unit, which may be visually rendered in the form of box plots.  

All 17 materials of manufacture were found to show varying degrees of variation across their 
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respective time frames.  However, comparing the variance (including F values) across time 

intervals did not prove to be particularly useful since small time intervals were found to have just 

as much variance as larger intervals.  Coefficients of variation changed between intervals which 

is indicative of a non-scalability.  This lack of scalability was of particular concern since it is 

highly suggestive of non-normal data.  It should be noted here that scalability was present when 

the full time frame was under consideration because, although the mass of individual materials of 

manufacture was different for each vehicle type, their corresponding coefficients of variance 

remained the same.  Hence, a test for non-normality was conducted by log transforming the raw 

data and re-running the Monte Carlo simulations.  Utilizing skewness and kurtosis of the 

individual materials of manufacture distributions, showed that the log transformed distributions 

did not resolve any non-normality issues and, consequently, were of little use.  Nevertheless, this 

is recommended as part of the platform for further examinations in this area using Monte Carlo 

simulations since not all trend relationships are innately linear.  Arising from this conclusion is 

that a further regression analysis be utilized in order to test that the variance measured is actually 

due to a temporal trend.  For the spatiality portion of this study, differences between distributions 

were examined after Monte Carlo simulations were run for the three separate geographic regions: 

North America, Oceania and Europe.  By using analysis of variation (F tests), it was found that 

energy distributions of most materials do differ significantly by geographic region while copper 

and aluminum do not show any significant variation by region.   

  



 
 

 

 

Figure 3.12 Countries studied for temporality due to age of data (see Appendix C for complete list).     
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Figure 3.13 Countries involved in the spatiality analysis (see Appendix C for complete list). 
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CHAPTER 4—MONTE CARLO SIMULATIONS AND REGRESSION ANALYSIS FOR 

ASSESSING TEMPORALITY DUE TO AGE OF DATA 

 

 

4.1 Introduction 

 

Because life cycle assessments (LCA) are modelled under steady state conditions (Udo de Haes, 

2006), temporality has been lacking in traditional life cycle assessments. In this study, 

temporality relates to the age of data. Thus, temporality in this study does not relate to unit 

processes and their linked intermediate flows, as well as the integration of emissions to a single 

point in time.  That said, steady state systems operate under the assumption that its internal 

properties are non-transient and, thus, do not alter internal working conditions.  The study of 

temporality due to age of data has specific implications for the validity of LCA studies by the 

introduction of both variance and uncertainty. As stated in the previous chapter, variance stems 

from the innate heterogeneity evidenced within a population or in data.  Thus, a homogeneous 

population or group of data would imply that there is uniformity and, consequently, no variation.  

Conversely, uncertainty can be understood to stem from missing data, as well as errors in data 

such that the data could be thought to be non-representative (Ibid.).  Therefore, temporality due 

to age of data would mean that there is variance, and not uncertainty, occurring.  The lack of 

variance found in the regression analysis will be due to a lack of variance rather than uncertainty, 

since it is assumed that each data point is valid (in situ).  Or, the case may be, uncertainty is 

occurring, but this is due solely to missing or inadequate amounts of data. In fact, this will be 

seen below in some circumstances for individual materials of manufacture.  

 

As noted in the preceding chapter, temporality is a large subject area with numerous implications 

for LCA results and processes.  Held and Klöpper (2000) noted that temporality in LCA could 

include the age of data utilized, the lifespan of a product (from cradle to grave), the use and 

renewal of resources, and so forth. Phungrassami (2008) also notes that this could extend further 

into the goal and scope definitions used in LCA.  The specific focus of this study is on 

temporality due to the age of data, which is a very specific facet of temporality within LCA 
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studies.  The lack of inclusion of temporality and spatiality in LCA studies has been previously 

documented (Reap et al., 2003, 2008a, 2008b).  Existing studies of temporality in LCA focus 

primarily on emissions contributing to greenhouse gases or global warming potential (Levasseur 

et al., 2010; Säynäjoki et al., 2012; Levasseur et al., 2012).  More recently, temporality has 

figured in LCAs in what is termed dynamic LCAs (e.g., Hendrickson et al., 2006; Stasinopoulos 

et al., 2012; Beloin-Saint-Pierre et al., 2014).  However, dynamic LCAs consider the 

implications of material flows across time.  Thus, this is not reflected in this study as temporality 

due to the age of data consists of discreet data points. Stated another way, temporality due to age 

of data is the “temporal dependency of data” (Fleisher et al., 2004).  As such, this study focuses 

on the effects of this type of temporality during the input phases (cradle to gate) of the 

production of automobiles as modelled by GREET2.  Developed by the Argonne National 

Laboratory, Greenhouse gases, Regulatory Emissions, and Energy use in Transportation 

(GREET2) models the LCA of automobiles, sport-utility vans (SUV) and pick-up trucks (PUT) 

through their entire life cycle, from cradle to grave.  GREET2 also models different power train 

configurations, as further discussed below. 

 

The choice of the GREET2 LCA model was predicated on a number of conveniences it provided. 

Among other things, this included the fact that GREET2 was free, in Microsoft Excel format, 

and had a considerable body of supporting literature. However, more significantly, because of 

the number of different power train and material configurations, comparative analyses could be 

more easily facilitated. Also important was that GREET2 had sufficient complexity.  For the 

purposes of this study, complexity is related to the plurality of individual variables used in 

modelling (Weaver, 1948).  Hence, GREET2 may be considered complex by the substantial 

number of variables concerned.  Also relevant to this study is the notion that the amount of 

complexity in an object or system is inversely related to the probability that it could have arisen 

by chance alone (Dawkins, 1986).  Thus, an automobile as modelled by GREET2 is more 

complex as it has a much lower probability of having occurred randomly than, for example, 

wood chips or quarried gravel.  Both concepts of complexity described by Weaver (1948) and 

Dawkins (1986) are pertinent to this study in order to reduce the risk of anomalous and 

circumstantial findings.   
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The purpose of this study is to determine the effect of temporal variability in the energy intensity 

of raw materials which go into the manufacturing of automobiles as modelled by GREET2.  

Energy intensity, or energy use, is a common impact category in LCAs to measure performance 

and environmental impact (Pelletier et al., 2007).  Energy intensity encompasses the production 

of raw materials from cradle to gate.  As such, it is the measurement of the quantity of energy 

required per unit of output or activity (US Department of Energy, 2012b).  This may be 

compared with embodied energy, which is the amount of energy across the entire life cycle of a 

product, including manufacturing, transportation and disposal (US Department of Energy, 

2012a).  In some instances, embodied energy has also been construed to include energy recovery.  

These two terms, energy intensity and embodied energy, are sometimes used interchangeably, 

although that is technically not accurate.  This current study builds on the previous chapter which 

focused on internal combustion engine power trains and the manufacturing materials in the upper 

half of Table 4.1 (which also contains all the acronyms for the raw materials in this study).  

However, in 2012 GREET2 added a number of additional materials to their LCA platform which 

are documented in the lower half of Table 4.1.  Thus, this study more than doubles the number of 

materials studied from 17 to 35.  It was shown in the earlier chapter that the effects of 

temporality were large, given the breadth of time studied (roughly 1970 to 2012).  Many times 

data sources used in LCA studies are considered valid even though they may be dated.   

 

This study builds on methods developed in the earlier chapter, including regression, tests for 

non-normality and representations of variability.  This study also expands on the earlier chapter 

by including a number of different power train configurations.  Included in this study are internal 

combustion engines (ICEV), electric vehicles (EV), hybrids (HEV), plug-in hybrids (PHEV), as 

well as fuel cell vehicles (FCV).   Also under study in this chapter are the lightweight 

configurations for all of these different power train vehicles.  Lightweight configurations 

substitute more conventional materials such as steel and cast iron with carbon fibre reinforced 

plastic (CFRP), glass fibre reinforced plastic (GFRP) and aluminum.  Accordingly, light 

configurations see overall reductions in vehicle weight.  The contribution of this study lies in that 

no specific study has yet to focus on temporality owing to age of data, which has been the 

subject of concern with LCA practitioners.  Indeed, other than Memary et al.  
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Table 4.1 An updated list of materials used in Greenhouse gases, Regulatory Emissions, 

and Energy use in Transportation 2 as of 2012. 
Metals Plastics and Composites Miscellaneous 

Previous Materials 

Cast iron 

Copper 

Lead 

Steel 

Recycled steel 

Stainless steel 

Magnesium 

Aluminum 

Recycled aluminum 

HDPE (high density polyethylene) 

PP (polypropylene) 

PET (polyethylene terephthalate) 

CFRP (carbon fibre reinforced 

plastic) 

GFRP (glass fibre reinforced plastic) 

Rubber 

Glass 

Paint 

New Materials 

Platinum 

Nickel 

ABS (acrylonitrile butadiene styrene) 

EPDM (ethylene propylene diene monomer) 

Epoxy 

GPPS (general purpose polystyrene) 

HIPS (high impact polystyrene) 

LDPE (low density polyethylene) 

LLDPE (linear low density polyethylene) 

Nylon 6 

Nylon 66 

PC (polycarbonate) 

PUR(F) (flexible polyurethane) 

PUR(R) (rigid polyurethane) 

PVC (polyvinyl chloride) 

PTFE (polytetrafluoroethylene) 

PFSA (perfluorosulfonic acid) 

PFSA + suspension material 

Carbon Paper 

 

Table 4.2 Weight in kg of individual materials in Greenhouse gases, Regulatory Emissions, 

and Energy use in Transportation 2. 

 
 

Table 4.3 Weight in kg of individual plastics used in Greenhouse gases, Regulatory 

Emissions, and Energy use in Transportation 2. 

 

  

Rubber Paint Glass Cast Iron Lead Copper Steel Steel (R) Steel (S) Al Al (R) Mg Pt

ICEV Regular 30.5 11.8 38.7 147.2 16.33 25.3 619.3 222.1 35.9 56.5 0.24 0.007

Light 24.3 5.9 25.2 29.9 16.33 25.4 192.7 69.1 9.12 67.3 126.5 2.94 0.008

EV Regular 34.0 11.8 67.3 38.6 16.33 90.7 946.5 339.5 33.7 92.3 0.41

Light 32.0 5.9 43.0 34.9 16.33 73.6 187.6 67.3 86.4 178.7 5.37

HEV Regular 25.5 11.8 43.0 84.3 16.33 62.4 706.5 253.4 33.9 65.5 0.26 0.005

Light 22.3 5.9 27.8 29.0 16.33 49.0 218.2 78.3 6.36 70.1 114.6 3.34 0.004

PHEV Regular 25.8 11.8 45.1 79.2 16.33 64.7 706.5 253.4 33.9 65.5 0.28 0.005

Light 22.9 5.9 28.9 30.2 16.33 50.8 222.5 79.8 5.68 66.2 119.6 3.57 0.004

FCV Regular 26.4 11.8 47.8 26.2 16.33 74.0 715.0 256.5 81.0 54.3 0.29 0.097

Light 24.2 5.9 31.4 23.5 16.33 59.0 180.0 64.9 108.4 114.8 3.92 0.075

HDPE PP PET ABS EPDM Epoxy GPPS HIPS LDPE LLDPE Nylon6 Nylon66 PC PUR(f) PUR(R) PVC CFRP GFRP

ICEV Regular 2.10 27.2 2.55 11.4 10.7 16.1 1.05 1.05 2.10 2.10 1.65 10.5 5.3 18.3 17.4 20.7

Light 1.59 20.6 1.94 8.7 8.1 12.2 0.80 0.80 1.59 1.25 1.25 8.0 4.0 13.9 13.2 15.7 124.5 14.8

EV Regular 3.28 42.5 3.99 17.8 16.7 25.1 1.64 1.64 3.28 3.28 2.58 16.4 8.2 28.6 27.2 32.4

Light 2.53 32.8 3.08 13.8 12.9 19.4 1.27 1.27 2.53 2.53 1.99 12.7 6.3 22.1 21.0 25.0 254.2 31.5

HEV Regular 2.15 27.8 2.61 11.7 10.9 16.4 1.07 1.07 2.15 2.15 1.69 10.7 5.4 18.7 17.8 21.2

Light 1.60 20.7 1.94 8.7 8.1 12.2 0.80 0.80 1.60 1.60 1.26 8.0 4.0 13.9 13.3 15.8 147.3 17.6

PHEV Regular 2.15 27.8 2.61 11.7 10.9 16.4 1.07 1.07 2.15 2.15 1.69 10.7 5.4 18.7 17.8 21.2

Light 1.75 22.6 2.12 9.5 8.9 13.4 0.87 0.87 1.75 1.75 1.37 8.7 4.4 15.2 14.5 17.2 163.2 19.7

FCV Regular 2.46 31.9 2.99 13.4 12.5 18.8 1.23 1.23 2.46 2.46 1.94 12.3 6.2 21.5 20.4 24.3 134.2

Light 2.46 31.9 2.99 13.4 12.5 18.8 1.23 1.23 2.46 2.46 1.94 12.3 6.2 21.5 20.4 24.3 288.4 21.2



 

86 
 

 

Table 4.4 Weight in kg of materials specific to fuel cell vehicles used in Greenhouse gases, 

Regulatory Emissions, and Energy use in Transportation 2. 

 

(2012), literature specifically dedicated to time-series data analysis in LCA is lacking.  Because 

the implications of this research have import for one particular aspect of LCA implicated in more 

robust results, there is cachet in the findings of this study as to how serious a problem this is and 

what direction should be pursued in moving forward.   

 

4.2 Methods 

 

Because a number of different methods are used in concert with each other, this chapter will be 

broken down into individual sub-chapters, each with their respective subject matter.  Figure 4.1 

shows the overall layout of this study and, hence, the rationale for the structure and order of the 

following sections. 

 

4.2.1 Data collection 

 

As in with the earlier study, the data employed in this study was taken from publicly available 

reports (peer-reviewed or government), congresses, proceedings, technical papers, and LCAs 

(see Appendix A for full references).  Also used in concert with these data sources were 

international databases and corporate sustainability reports (CSR).  Among others, this would 

include public databases such as the Inventory of Carbon and Energy (ICE) from the University 

of Bath (UK), the Interuniversity Research Centre for the Life Cycle of Products, Processes and 

Services (CIRAIG) of Canada, SPINE (Sustainable Product Information Network for the 

Environment) of Sweden, and the Centre for Building Performance Research of New Zealand. 

Some data from architecture and building science publications was not incorporated as their units 

of energy were based on the area (footage) of the building under consideration (e.g., J/m2) and, 

hence, incompatible.  Nevertheless, there are 368 sources for the data and 2,824 data points.  

Collection and consolidation of this data was highly time consuming (more than a year) as it was 

scattered across many different published sources, a considerable number of which had to be 

Ni PTFE PFSA PFSA (S) C Paper

Regular 1.30 1.51 5.58 0.65 5.45

Light 1.01 1.17 4.51 0.50 4.26
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discarded as they were not the original source documents for the data.  Indeed, the archived 

databases maintained by the World Steel Association, for example, are very rare.  Lastly, with 

regard to the data used in this study, it should also be stated that certain background processes 

have relevance to this study (age of data, efficiency gains, power grid make up, etc.) to the 

exclusion of all  

Data

Collection

MATLAB

Monte Carlo 

Simulations

ANOVA

Regression 

Analysis

Least Angle 

Regression 

(LAR)

Least Squares 

(LS)

 

Figure 4.1 The structure of the study in Chapter 4. 

 

others.  Background processes are factors which explain some of the differences seen in data 

measurements of similar processes.  They are discussed and assessed in detail as to their 

relevance in Chapter 3. 

 

4.2.2 Monte Carlo simulations and analysis of variation 

 

This study utilizes Monte Carlo simulations to model the effects of temporality across a large 

time periods (see Table 4.5). Monte Carlo simulations are a suitable method for studying 

variance and uncertainty in LCA (Hertwich et al., 2000; Björkland, 2002; Heijungs and 

Frischnecht, 2005).  These simulations involve determining a probability distribution for each of 
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the inputs (energy intensities of materials in kWh/kg in Table 4.1), and using a randomly 

generated set to recreate the distributions as outputs (Maurice et al., 2000).  The Monte Carlo 

simulations were programmed in MATLAB 2013b to 2014a and utilized 108 total iterations.  

That is, there were 10,000 simulations, each with 10,000 data points.  As was found in the earlier 

study, this was deemed to be sufficiently robust as mean and median values were hardly different 

and the standard error was very small.  MATLAB utilizes a MT19937 Mersenne Twister pseudo-

random number generator (PRNG) which has proven to be non-biased (Hongo et al., 2010).  The 

importance of this PRNG is that it does not promote statistically significant error propagation, 

which is of concern in Monte Carlo simulations.  Individual probability distributions were 

determined using the kernel smoothing function estimate (ksdensity) embedded within 

MATLAB.  Historical data on the energy intensity of each individual material in kW/kg (see 

Table 4.1) was converted into individual cumulative probability distributions on which the 

randomized set consisting of ten thousand iterations created by the PRNG was fit, thus creating 

energy intensity probability distributions.  Individual material masses (kg) supplied by GREET2 

were multiplied by their corresponding energy intensity probability distributions (kWh/kg).  In 

turn, these individual distributions corresponding to individual materials were added up to get the 

total energy intensity (E) for a vehicle (kWh).    Thus, the total energy per vehicle may be 

expressed as follows:  

𝐸 = ∑ 𝑚𝑖𝑑𝑖

𝑁

𝑖=1

 

 

where m is the mass of the individual material, d is the energy intensity (kWh/kg), and N is the 

number of materials in Table 4.1.  The individual masses of the materials of manufacture are 

given in Tables 4.2, 4.3, and 4.4.  The time frame that the existing data spans is in Table 4.5 and, 

it should be noted, these time frames are dissimilar.  Other methods employed in this study, such 

as one way ANOVA (analysis of variance), also used embedded MATLAB software for their 

analyses (see Figure 4.1 for the overall structure of this study).  The results of the ANOVA were 

presented as box plots in order to visualize the variance in each material.  The vertical ends of 

each of the boxes represent the 25th and 75th percentiles while the whiskers represent 2.7 standard 

deviations, or 99.3 percent coverage of a normal distribution. 
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Table 4.5 Time over which the available data on energy intensity (kWh/kg) of individual 

materials spans. 

 

Table 4.6 Average energy totals, standard deviations and coefficient of variation for 

various power train configurations (kWh). 

 

  

Rubber 1968-2012 ABS 1991-2012

Paint 1993-2012 EPDM 1999-2012

Glass 1968-2012 Epoxy 1981-2012

Cast Iron 1973-2012 GPPS 1979-2013

Lead 1973-2012 HIPS 2003-2012

Copper 1968-2012 HDPE 1973-2012

Magnesium 1983-2012 LDPE 1979-2013

Steel 1960-2011 LLDPE 1981-2013

Steel (R) 1981-2009 PET 1979-2011

Aluminum 1968-2012 PP 1973-2011

Aluminum (R) 1983-2009 Nylon 6 1980-2012

PTFE 2000-2012 Nylon 66 1979-2012

Platinum 1979-2011 PC 1980-2012

PFSA 2000-2012 PUR (flex) 1991-2012

PFSA Suspension 2000-2012 PUR (rigid) 1980-2012

Carbon paper 2000-2012 PVC 1980-2013

Nickel 1989-2012 CFRP 1990-2013

GFRP 1983-2012

Mean SD CV

ICEV Regular 11,719           6,420         0.548

Light 8,938             4,326         0.484

HEV Regular 12,491           7,107         0.569

Light 9,389             4,553         0.485

PHEV Regular 12,494           7,119         0.570

Light 9,804             4,730         0.482

EV Regular 16,788           9,496         0.566

Light 12,970           5,998         0.462

FCV Regular 14,029           7,459         0.532

Light 11,978           5,102         0.426
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4.2.3 Regression analysis  

 

Regression analysis was utilized in the previous study, although it was merely used in an 

ancillary fashion to illustrate certain phenomena which led to suggestions regarding methods.  

Specifically, a simple least squared (LS) method was used to show the unfeasibility of using  

small time periods of five years as a basis for comparison of variation with other time intervals.  

LS regression solves the first order linear equation: 

𝑦 = 𝑝1𝑥 + 𝑝2 

 

by solving for the following coefficients:  

 

𝑝1 =
𝑛 ∑ 𝑥𝑖𝑦𝑖 − ∑ 𝑥𝑖 ∑ 𝑦𝑖

𝑛 ∑ 𝑥𝑖
2 − ∑(𝑥𝑖)2

 

and,  

𝑝2 =
1

𝑛
(∑ 𝑦𝑖 − 𝑝1 ∑ 𝑥𝑖) 

 

In this instance, n corresponds to the number of data points.  This method was used in the 

previous study, although it was recommended for the furtherance of study in this area that the 

least absolute residuals (LAR) be used. Simply put, in n-1 steps, LAR regression finds a fit such 

that it minimizes the residuals (ri) as given by: 

 

𝑟𝑖 = ‖𝑦𝑖 − ŷ𝑖‖ 

 

where yi is the data and ŷi is the fit (Mathworks, 2015).  In using this method, a more robust fit is 

realized by the fact that the extreme values have lesser influence in finding the fit. LAR can also 

be used for higher order polynomials, although no better fit was found when using higher order 

polynomials.  Hence, in order to provide a basis of comparison with LS, a first order polynomial 

was used with the LAR.  The rationale behind the use of LAR lies in that the trend identified by 

the slope of the regression fit (p1) in LS would be highly influenced by outliers or extreme 

values, as is immediately apparent in the above formulae since each data point figures in the 
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calculation of the above coefficients.  However, as discussed in the Results chapter, this has no 

bearing on the derivation of percentage increases of energy intensity (kWh/kg), but is purposeful 

in identifying or corroborating that observations of variance are not simply due to scattered raw 

data.   

  

Table 4.12 summarizes the results of both regression analyses.  However, an explanation of the 

various statistics utilized should be made at this point.  The +/- columns in Table 4.12 indicate 

the 95% confidence interval for the corresponding coefficients p1 and p2.  The R-square (R2) 

measure explains how well the fit of the data is explained by its variation.  The R-square value 

normally ranges between 0 to 1 and can be expressed as a percentage.  Consequently, an R-

square value of 0.95 or 95% means that 95% of the data explains the variation in the data about 

the mean.  Thus, the closer the value gets to 1 or 100%, the more the proportion of the variance 

is accounted for in the model.  R-square is commonly expressed as follows: 

 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 

 

where SSE is the sum of the squares for error and SST is the sum of the squares about the mean.  

In turn, each of these may be expressed such that: 

 

𝑆𝑆𝑇 = ∑ 𝑛𝑗(𝑥𝑗 − �̅�)2 

and  

𝑆𝑆𝐸 = ∑(𝑛𝑗 − 1)𝑠𝑗
2 

 

where 𝑛𝑗=size of sample from population j 

�̅�=mean of all n observations 

�̅�𝑗=mean of sample from population j 

𝑠𝑗
2=variance of sample from population j 

A negative R-square value is possible when there is no constant term in the equation (i.e., p2) and 

such cases suggest the addition of a constant term (Mathworks, 2015).  The root mean squared 
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error (RMSE) is a measure of the standard error of the regression.  As such, it is a measure of the 

standard deviation of the random component of the data such that a value closer to 0 gives an 

indication of a fit which is more useful for prediction.  Hence, the RMSE can be expressed in 

terms of the mean squared error (MSE) and, consequently, it can also be expressed in terms of 

the squares for error (SSE): 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √
𝑆𝑆𝐸

𝑛 − 𝑘
 

where  k=number of fitted coefficients 

n=total number of observations 

Naturally, with greater amounts of data, the more the RMSE tends towards zero. 

 

4.2.4 Skewness and kurtosis 

 

As with the previous chapter, this work looks at the skewness and kurtosis of distributions in 

order to determine whether the data is non-normal or, stated another way, shows logarithmic 

qualities.  The test for this requires the use of log transformations; that is, the logarithm (base 10) 

of the data is taken and changes in skewness and kurtosis are measured.  Skewness can be 

understood as the degree to which a distribution is symmetrical.  Non-symmetrical distributions 

tend to deviate away from normal distributions, where normal distributions are assigned a value 

of zero.  Kurtosis is the measurement of the flatness of a distribution, again with the normal 

distribution at a value of three.  Hence, a kurtosis greater than three is narrower that the normal 

distribution and less than three is more flat than a normal distribution.  Both skewness and 

kurtosis are embedded functions within MATLAB and are calculated using the following 

formulae: 

 

skewness=
∑ (𝑥𝑖−�̅�)3/𝑛𝑛

𝑖=1

𝜎3  

 

kurtosis=
∑ (𝑥𝑖−�̅�)4/𝑛𝑛

𝑖=1

𝜎4  
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where �̅� is the mean and 𝜎 the standard deviation.  Also, n denotes the number of measurements 

in this distribution, which in this case is ten thousand. 

 

4.2.5 Limitations 

 

As in the earlier chapter, energy intensities for primary processes of the metals were used to the 

exclusion of energy intensities of secondary processes as there are far too many secondary 

processes available in order to make baseline comparisons.  Energy intensity of primary 

processes consists of the energy required to take raw materials through to the smelting process, 

while the energy intensity of secondary processes (usually much less than primary) consists of 

finishing processes.  Hence, all secondary processes such as casting, rolling or extruding were 

ignored.  However, in that secondary energy intensities were ignored, this was applicable only 

for steel, aluminum and copper.  Also, this study focuses strictly on sedan models and, unlike the 

last study, does not include sport utility vehicles (SUVs) and pick-up trucks (PUTs).  

Alternatively, this study expands beyond just the ICEV power train to include HEVs, PHEVs, 

EVs and FCVs.  A limitation of the study is a lack of extensive data on key elements of the 

power train materials for FCVs.  This subject is explained further in the next section.  Another 

limitation of this study lies in that it does not purport to answer where temporality due to the age 

of data arises from, be it technology, efficiency gains, the make-up of national power grids, and 

so forth. 

 

There are also limitations arising from the use of the GREET2 model.  These include the lack of 

cross-correlation with other existing vehicular models of manufacture and LCA studies of 

vehicles, although there were no other publicly available LCAs of this kind four years ago at the 

start of this study.  Nevertheless, because of these factors, this study exists as a stand-alone piece.  

Many of the available software platforms in LCA were not utilized in this study owing to the 

limited ability to assess their functionality from available literature and demo software versions.  

For example, very little information exists of the GaBi platform’s Monte Carlo simulations.  

Similarly, SimaPro’s literature indicates that their Monte Carlo simulations only allow for four 

types of probability distribution: normal, lognormal, square, and triangular (Goedkoop et al, 
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2013).  Hence, SimaPro does not allow for the construction of individual probability 

distributions from raw data.  SimaPro also does not have the ability to test for non-normal 

distributions.  These were key reasons in the decision to use MATLAB.  Lastly, the direct 

measurement skewness and kurtosis to test for non-normal distributions was not the only option 

available.  Other tests for non-normality include the Jarque-Bera test and the D’Agostino’s K-

squared test.  However, since both of these tests utilize measurements of both skewness and 

kurtosis, there was deemed to be little added value in introducing these further measurements.  

Also, neither one of these tests give any insights into whether log transforming distributions will 

bring about greater clarity. 

 

 4.3 Results and Discussion 

 

4.3.1 Monte Carlo simulations and analysis of variance 

 

Monte Carlo simulations were programmed for the individual materials of manufacture which 

make up each of the individual power train configurations (ICEV, HEV, PHEV, EV and FCV).  

Also, a separate set of Monte Carlo simulations was programmed for lightweight configurations 

of the above power trains.  The sum contributions of each of the materials towards total energy 

per vehicle were then tallied up.  Results from all the Monte Carlo simulations are in Table 4.6 in 

terms of individual vehicles (functional units).  It is apparent that the larger the total energy sums 

found, the larger the corresponding standard deviation.  However, it may be seen that the 

coefficient of variation (CV) for regular vehicles and lightweight vehicles ranges between 0.531 

to 0.568 and 0.434 to 0.491, respectively.  Thus, it would seem that the vehicles with more 

traditional materials (steel, cast iron) experience the effects of variance more than they do for the 

lightweight vehicles, which use more aluminum than regular vehicles.  This is evidenced by the 

similar energy totals for regular ICEV (11,659kWh) and light FCV (11,889kWh), yet their 

corresponding CVs are 0.537 and 0.434, respectively.  Thus, the reasons for these differences in 

CVs are owing to the sum total of individual contributions as per each of the raw materials in 

both the regular and lightweight models.  A discussion further to this subject is in the regression  
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Figure 4.2 An example Monte Carlo distribution for an all electric vehicle. 

 
Figure 4.3 An example Monte Carlo distribution for a lightweight all electric vehicle. 
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analysis below.  The total power for lightweight configurations was less than regular materials, 

which is surprising since both CFRP and GFRP have high energy intensities of manufacture.  

However, this may be explained by the heavy usage of recycled aluminum versus virgin 

aluminum modeled in the GREET2 model, a fact which sees the amount of energy reduced 

roughly to one tenth.  Nevertheless, as mentioned above, only the ICEV power train was 

previously studied.  Thus, it was necessary to examine other power train configurations to make 

certain that nothing was anomalous in the GREET2 ICEV model specifications which may have 

influenced the outcomes of the study. 

 

A characteristic Monte Carlo distribution can be seen in Figure 4.2, which is the total energy for 

regular materials configurations, and in Figure 4.3 for the lightweight configurations.  A visible 

skewness towards the vertical axis (left) can be seen in both Figures.  It should be noted here that 

the choice of an EV power train for Figures 4.2 and 4.3 does not imply any significance in light 

of the other power trains under study and their corresponding findings.  In other words, the EV 

figures are merely representative examples (see below for other power trains).  The subsequent 

one way ANOVA analyses (energy intensity versus time) showed that in conventional material 

vehicles the main contributor to the variance was virgin steel followed by recycled steel, then 

plastics and finally recycled aluminum (see Figures 4.4 and 4.5).  With lightweight 

configurations, the highest contributor to variance was recycled aluminum, followed by virgin 

steel, plastics and then recycled steel (see Figures 4.6 and 4.7).  In the lightweight HEV, PHEV, 

EV and FCV configurations, copper was a close fifth overall.  Also surprising was that the main 

plastics contributors to variance were the same across all different material and power train 

configurations.  They ranked PP first, followed by Epoxy, PUR(F), PVC, EPDM, PUR(R), 

Nylon66 and, lastly, ABS.  Individual calculations of energy for each material can be seen in 

Tables 4.7, 4.8, and 4.9.  It will be noted that steel, recycled steel, aluminum, and recycled 

aluminum make up the bulk of the vehicle’s energy.  Plastics generally make up only a fraction 

of a vehicle’s total energy, but it is a significant portion.  For regular material vehicles, this can 

range between 30.8% and 35.0% while, for lightweight material vehicles, this can go from 

38.2% to 47.1%.  



 

97 
 

 

 

 
Figure 4.4 Box plots of an analysis of variance results for an all electric vehicle. 

 
Figure 4.5 Box plots of an analysis of variance for an all electric vehicle (plastics only). 
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Figure 4.6 Box plots of an analysis of variance for a lightweight all electric vehicle. 

 

Figure 4.7 Box plots of an analysis of variance for a lightweight all electric vehicle (plastics 

only). 
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Table 4.7 Means and standard deviations of materials for regular and lightweight sedans 

with different power trains (kWh). 
 

 
 

 

Table 4.8 Means and standard deviations of materials for regular and lightweight sedans with 

different power trains (kWh). 
 

 
 

Table 4.9 Means and standard deviations of fuel cell specific materials for regular and 

lightweight sedans (kWh). 
 

 

  

Rubber Paint Glass Cast Iron Lead Copper Steel Steel (R) Steel (S) Al Al (R) Mg Pt

ICEV Regular Mean 181.0 202.7 201.1 1109.8 141.8 309.8 3309.0 1150.9 591.7 753.0 8.2 0.20

SD 233.9 128.5 177.8 480.3 43.3 194.7 2558.0 1214.6 145.9 611.0 1.8 0.08

Light Mean 144.4 101.3 130.6 225.8 141.8 311.2 1029.5 358.1 134.8 1110.6 1686.5 101.0 0.22

SD 186.6 64.2 115.5 97.7 43.3 195.6 795.8 377.9 83.9 273.9 1368.5 21.6 0.09

EV Regular Mean 202.1 202.7 349.5 291.2 141.8 1111.5 5056.9 1758.9 556.9 1230.4 14.2

SD 261.2 128.5 309.1 126.0 43.3 698.6 3909.2 1856.2 137.3 998.4 3.0

Light Mean 190.1 101.3 223.0 263.1 141.8 902.1 775.0 348.7 1426.5 2382.0 184.4

SD 245.7 64.2 197.2 113.9 43.3 567.1 348.7 368.0 351.8 1932.9 39.5

HEV Regular Mean 151.4 202.7 223.2 635.5 141.8 764.9 3774.9 1313.0 559.8 873.6 9.1 0.14

SD 195.6 128.5 197.3 275.0 43.3 480.8 2918.1 1385.6 138.1 708.9 1.9 0.06

Light Mean 132.6 101.3 144.4 218.5 141.8 601.1 1165.8 405.5 94.0 1157.7 1526.9 114.7 0.11

SD 171.3 64.2 127.7 94.5 43.3 377.8 901.2 427.9 58.6 285.5 1239.0 24.5 0.05

PHEV Regular Mean 153.4 202.7 234.0 597.1 141.8 792.9 3774.9 1313.0 559.8 873.6 9.5 0.13

SD 198.3 128.5 206.9 258.4 43.3 498.4 2918.1 1385.6 138.1 708.9 2.0 0.06

Light Mean 135.8 101.3 150.1 228.0 141.8 622.7 1188.6 413.5 84.0 1093.2 1593.3 122.4 0.11

SD 175.4 64.2 132.7 98.7 43.3 391.4 918.8 436.3 52.3 269.6 1293.0 26.2 0.05

FCV Regular Mean 156.7 202.7 248.2 197.9 141.8 907.2 3820.0 1328.7 1337.2 723.3 10.1 2.76

SD 202.4 128.5 219.5 85.6 43.3 570.2 2953.0 1402.2 329.8 586.9 2.2 1.16

Light Mean 144.0 101.3 162.8 177.0 141.8 722.8 962.0 336.0 1790.4 1529.8 134.6 2.76

SD 186.1 64.2 143.9 76.6 43.3 454.3 743.6 354.6 441.5 1241.4 28.8 1.16

HDPE PP PET ABS EPDM Epoxy GPPS HIPS LDPE LLDPE Nylon6 Nylon66 PC PUR(f) PUR(R) PVC CFRP GFRP

ICEV Regular Mean 48.1 620.6 56.2 296.1 228.2 450.4 27.2 25.5 49.0 45.4 53.3 395.9 159.3 475.1 462.2 367.8

SD 14.3 176.7 13.0 38.8 100.5 156.3 7.2 7.2 11.3 9.8 6.5 53.0 26.9 112.5 96.2 108.8

Light Mean 36.4 470.5 42.8 224.6 173.0 341.4 20.7 19.4 37.1 34.4 40.4 299.9 120.8 360.3 350.3 278.9 274.7 336.4

SD 10.8 134.0 9.9 29.4 76.2 118.5 5.5 5.5 8.6 7.4 5.0 40.2 20.4 85.3 72.9 82.5 104.2 138.8

EV Regular Mean 75.2 969.0 88.0 462.4 356.3 703.3 42.5 39.9 76.5 70.9 83.4 617.9 248.6 741.8 721.8 574.5

SD 22.3 275.9 20.4 60.6 156.9 244.0 11.3 11.2 17.7 15.3 10.2 82.7 42.0 175.6 150.2 170.0

Light Mean 58.0 747.3 67.9 356.6 274.8 542.2 32.9 30.9 59.0 54.7 64.3 476.8 191.7 572.3 556.6 443.1 560.7 715.0

SD 17.2 212.8 15.7 46.7 121.0 188.1 8.7 8.7 13.7 11.8 7.9 63.8 32.4 135.5 115.8 131.1 212.7 295.0

HEV Regular Mean 49.3 633.9 57.6 302.6 233.1 459.9 27.7 26.0 50.1 46.5 54.6 404.1 162.6 485.5 472.2 375.8

SD 14.6 180.5 13.3 39.7 102.6 159.6 7.3 7.3 11.6 10.0 6.7 54.1 27.4 114.9 98.3 111.2

Light Mean 36.7 472.1 42.8 225.3 173.4 342.5 20.7 19.4 37.3 34.6 40.7 301.0 121.1 361.3 351.6 279.8 324.9 399.7

SD 10.9 134.4 9.9 29.5 76.4 118.8 5.5 5.5 8.6 7.5 5.0 40.3 20.4 85.5 73.2 82.8 123.2 164.9

PHEV Regular Mean 49.3 633.9 57.6 302.6 233.1 459.9 27.7 26.0 50.1 46.5 54.6 404.1 162.6 485.5 472.2 375.8

SD 14.6 180.5 13.3 39.7 102.6 159.6 7.3 7.3 11.6 10.0 6.7 54.1 27.4 114.9 98.3 111.2

Light Mean 40.1 515.2 46.8 245.8 189.5 373.9 22.5 21.1 40.8 37.8 44.3 328.5 132.3 394.5 383.7 305.4 359.9 447.3

SD 11.9 146.7 10.8 32.2 83.4 129.7 6.0 6.0 9.4 8.2 5.4 44.0 22.3 93.4 79.9 90.3 136.5 184.6

FCV Regular Mean 56.4 727.0 66.0 347.0 267.3 527.4 31.9 29.9 57.4 53.2 62.7 463.6 186.5 556.5 541.5 431.0 295.9

SD 16.7 207.0 15.3 45.5 117.7 183.0 8.4 8.4 13.3 11.5 7.7 62.1 31.5 131.7 112.7 127.5 112.2

Light Mean 56.4 727.0 66.0 347.0 267.3 527.4 31.9 29.9 57.4 53.2 62.7 463.6 186.5 556.5 541.5 431.0 636.0 480.5

SD 16.7 207.0 15.3 45.5 117.7 183.0 8.4 8.4 13.3 11.5 7.7 62.1 31.5 131.7 112.7 127.5 241.2 198.3

Ni PTFE PFSA PFSA (s) C Paper

Regular Mean 44.1 46.6 27.5 3.1 130.4

SD 10.7 13.1 9.0 1.0 70.5

Light Mean 44.1 46.6 27.5 3.1 130.4

SD 10.7 13.1 9.0 1.0 70.5
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For the other drive trains, the analysis of variance can be seen in Figures 4.8 through 4.25.  A 

complete breakdown of these figures is as follows: 

 

 ICEV    Figures 4.8, 4.9 

 ICEV (lightweight)  Figures 4.10, 4.11 

 HEV   Figures 4.12, 4.13 

 HEV (lightweight) Figures 4.14, 4.15 

 PHEV   Figures 4.16, 4.17 

 PHEV (lightweight) Figures 4.18, 4.19 

 FCV    Figures 4.20, 4.21, 4.22 

 FCV (lightweight) Figures 4.23, 4.24, 4.25 

 

As with the previous EV box plot figures, the first figure (e.g., Figure 4.8) gives a visual 

representation of all the materials in each vehicle, with all the plastics consolidated into one box.  

The second figure (e.g., Figure 4.9) gives a breakdown of all the plastics.  The additional third 

figures for the FCVs (Figures 4.22 and 4.25) are fuel cell vehicle specific materials.  It may be 

seen with Figures 4.22 and 4.25 that fuel cell specific materials do not significantly contribute 

towards total vehicle energy.   

 

One recurring theme with regular material vehicles (Figures 4.8, 4.12, 4.16, and 4.20) is to see 

the predominant variance in the same materials:  steel, recycled steel, recycled aluminum, and 

the plastics.  Within the plastics group (Figures 4.9, 4.13, 4.17, and 4.21), most of the variance is 

with PP, EPDM, epoxy, Nylon 66, the PURs, and PVC.  However, continuing with the plastics, 

this same trend of variance is evident in the lightweight models as well (Figures 4.11, 4.15, 4.19, 

and 4.24).  Nevertheless, comparing regular material vehicles with lightweight vehicles does 

yield some differences.  In regular vehicles, the variance in plastics is similar to the variance of 

steel.  However, in lightweight vehicles variance of plastics exceeds that of steel. Naturally, this 

is due to the shift in terms of weight in lightweight vehicles to the use of more aluminum, which 

has the predominant amount of variance (Figures 4.10, 4.14, 4.18, and 4.23). 
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Figure 4.8 Box plots of an analysis of variance results for an internal combustion engine 

vehicle. 

 

Figure 4.9 Box plots of an analysis of variances results for an internal combustion engine 

vehicle (plastics only). 
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Figure 4.10 Box plots of an analysis of variance results for a lightweight internal 

combustion engine vehicle. 

 
Figure 4.11 Box plots of an analysis of variance results for a lightweight internal 

combustion engine vehicle (plastics only). 

  



 

103 
 

 

  
Figure 4.12 Box plots of an analysis of variance results for a hybrid electric vehicle. 

 
Figure 4.13 Box plots of an analysis of variance results for a hybrid electric vehicle (plastics 

only). 
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Figure 4.14 Box plots of analysis of variance results for a lightweight hybrid electric 

vehicle. 

 
Figure 4.15 Box plots of analysis of variance results for a lightweight hybrid electric vehicle 

(plastics only). 
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Figure 4.16 Box plots of an analysis of variance results for a plug-in hybrid electric vehicle. 

 
Figure 4.17 Box plots of an analysis of variance results for a plug-in hybrid electric vehicle 

(plastics only). 
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Figure 4.18 Box plots of an analysis of variance results for a lightweight plug-in hybrid 

electric vehicle. 

 
Figure 4.19 Box plots of an analysis of variance results for a lightweight plug-in hybrid 

electric vehicle (plastics only). 
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Figure 4.20 Box plots of an analysis of variance results for a fuel cell vehicle. 

 
Figure 4.21 Box plots of an analysis of variance results for a fuel cell vehicle (plastics only). 

 

Figure 4.22 Box plots of an analysis of variance results for a fuel cell vehicle (fuel cell 

materials). 
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Figure 4.23 Box plots of an analysis of variance results for a lightweight fuel cell vehicle. 

 
Figure 4.24 Box plots of an analysis of variance results for a lightweight fuel cell vehicle 

(plastics only). 

 

Figure 4.25 Box plots of an analysis of variance results for a fuel cell vehicle (fuel cell 

materials). 
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4.3.2 Regression analysis 

 

As mentioned earlier, the reason for utilizing a regression analysis is to determine whether the 

variance found in the Monte Carlo simulations can be attributed to temporal trends in energy 

intensity, or their absence.  That is, what may appear as variance in a Monte Carlo simulation can 

merely reflect the condition of the data, namely a probability distribution which arises from a 

scattered data.  Hence, regression analysis confirms or refutes whether this uncertainty is owing 

to temporality alone.  The regression curve used here is of the first order format.  Thus, a 

negative coefficient p1 value indicates a downward slope that sees overall energy intensity 

(kWh/kg) reduced over time, while a positive coefficient sees energy intensity increasing over 

time.  Higher order polynomials (second, third, etc.) are not presented here as there were no 

corresponding gains in terms of overall robustness.  As mentioned earlier, a low root mean 

squared error (RMSE) is an indication of a good fit.  Materials which also show a high coefficient 

of determination value R-square (R2), a value close to 1.00 or 100%, are said to have better 

approximations of the regression line to the data.  Robust (LAR) analysis can construct a more 

trustworthy trend analysis; however, it must be said, this comes with the corollary assumption 

that outliers are non-representative.  Table 4.12 displays the results of the regression analysis, 

both for the LS and LAR methods.  Here, N represents the number of data points in the set and 

the “+/-” indicates the 95th percentile confidence interval bounds.  It can be seen overall that the 

LAR analysis leads to much better fitting, as evidenced by the improvement of the R-square 

values, which are brought closer to 1.00 or 100%.  This can also be seen in the overall reduction 

in the 95% confidence intervals and the RMSE.  However, it is not always the case that all of 

these act in concert. For example, EPDM sees better 95% confidence intervals and R-square 

values while showing no change in RMSE values. 

 

With the exception of PP and recycled steel, the LAR analysis found that most of the materials 

have a negative slope (p1 coefficient) indicating a decrease over time in energy intensity.  Given 

the small size of 95th percentile confidence bounds, R-square values close to 1.00 and low RMSE 

values, there is a considerable amount of assurance that the variance seen in some of the 

materials is owing to a historical trend.  This seems true for rubber, paint, glass, PET, PP, lead, 

copper, steel, recycled steel, aluminum, and recycled aluminum.  Conversely, the other materials 
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in Table 4.12 show less evidence of historical trends. For example, materials with a negative R-

square show no evidence of any historical trend.  This includes materials specific to the fuel cell 

vehicle (PTFE, PFSA, etc.), magnesium, nickel, ABS, EPDM, Epoxy, GPPS, HIPS, HDPE, 

LDPE, Nylon6, Nylon66, PC, PUR and GFRP (see Table 4.1 for acronyms).  Hence, it may be 

assumed here that, in these circumstances, there is uncertainty as defined in the Introduction 

chapter, specifically with respect to missing data.  Based on the LAR and LS regression 

techniques, it may now be possible to calculate the change in each of the materials in energy 

intensity (kWh/kg) by percent.  Accordingly, the number of years to see a 1% change in energy 

intensity values are listed by individual materials in Table 4.13.  Hence, for the materials listed 

above which showed an actual historical trend (steel, aluminum, rubber, glass, etc.), 1% changes 

in energy intensity occur roughly every two to five years.  The choice of the 1% level of change 

was based on the standard significance level, or p-value.  The derivation of these values did not 

depend on which regression technique was used because the time span in both cases of the LAR 

and LS was the same.  Hence, the utilization of more robust techniques of fitting merely serves 

to bring about greater confidence that temporal variation is being accounted for.  However, this 

does not mean that the other values in Table 4.13 (ABS, EPDM, etc.) should be ignored outright, 

but that some degree of caution should be exercised until further data is made available.  

Furthermore, this is not to suggest that the amount of variance in these materials should not be a 

matter of concern. 

 

4.3.3 Skewness and kurtosis 

 

As with the previous study, the data on individual materials was log transformed in order to test 

whether their distributions were non-normal.  Tables 4.10 and 4.11 show the values for kurtosis 

and skewness, respectively.  The row labelled “non-log” displays the kurtosis and skewness of 

the distributions prior to being log transformed while the “log10” row displays the kurtosis and 

skewness after log transformation.  It can be seen that in the majority of the cases the data 

distributions are not non-normal.  That is, their kurtosis values do not get closer to the ideal value 

of three and the skewness measure does not tend towards zero.  The exceptions are with ABS, 

LDPE, and PC; however, their improvement is very marginal, especially in terms of kurtosis.  

The only case in which log transformation of the distributions seems to have benefited was for  
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Table 4.10 Table of kurtosis values for each material. 

 

Table 4.11 Table of skewness values for each material. 

 

 

Table 4.12 Regression analysis for energy intensities of materials of manufacture using 

least absolute regression and least squares regression methods. 
 

 

Total Rubber Paint Glass Cast Iron Lead Copper Steel Steel (R) Steel (S) Al Al (R) Mg Pt

non-log 5.5 11.7 2.2 36.8 3.6 3.7 4.1 19.3 12.0 3.1 24.6 2.7 3.2 2.3

log10 3.5 5.1 9.8 13.3 20.2 3.8 10.2 7.7 8.2 11.1 23.2 7.1 29.8 19.5

HDPE PP PET ABS EPDM Epoxy GPPS HIPS LDPE LLDPE Nylon6 Nylon66 PC PUR(f) PUR(R) PVC CFRP GFRP

non-log 2.9 3.5 2.6 2.9 2.6 2.7 2.8 3.4 3.7 5.4 3.3 3.1 3.5 2.6 2.7 3.4 2.2 2.3

log10 4.0 4.1 3.0 2.7 19.9 30.5 3.8 3.8 3.1 4.5 3.4 4.4 3.3 4.5 2.8 56.1 11.7 20.7

Total Rubber Paint Glass Cast Iron Lead Copper Steel Steel (R) Steel (S) Al Al (R) Mg Pt

Non-log 1.35 2.99 0.37 5.00 0.57 0.82 1.23 3.30 2.92 0.66 3.86 0.88 -0.75 -0.59

Log10 0.01 1.68 -1.88 -1.56 -0.19 -1.04 -0.31 -0.69 -1.83 -1.06 -2.78 -3.03

HDPE PP PET ABS EPDM Epoxy GPPS HIPS LDPE LLDPE Nylon6 Nylon66 PC PUR(f) PUR(R) PVC CFRP GFRP

Non-log 0.26 0.59 0.23 0.16 0.02 -0.60 0.50 0.52 0.80 1.79 0.04 -0.68 0.66 -0.14 0.07 0.20 0.24 -0.13

Log10 -0.68 -0.44 -0.37 -0.23 -2.56 -3.57 -0.30 -0.61 0.12 1.39 -0.37 -1.06 0.14 -0.90 -0.45 -4.46 -0.80 -2.02

Least Absolute Residuals Least Squares

N p1 +/- p2 +/- R2
RMSE p1 +/- p2 +/- R2

RMSE

Rubber 175 -0.073 0.025 149 50 0.985 0.90 -0.799 0.166 1608 331 0.341 6.02

Paint 40 -1.524 0.458 3066 917 0.918 7.54 -1.550 1.518 3127 3040 0.077 25.00

Glass 91 -0.091 0.017 186 34 0.959 0.92 -0.064 0.083 132 165 0.015 4.49

ABS 18 0.174 1.224 1993 32 -0.101 7.95 0.012 1.167 2000 30 0.000 7.58

EPDM 7 -0.031 0.429 2002 13 -0.063 5.90 -0.149 0.380 2007 11 0.168 5.22

Epoxy 13 -0.098 0.680 2007 21 -0.090 9.55 0.196 0.639 1997 19 0.040 8.97

GPPS 44 -0.129 0.188 282 375 0.041 6.41 -0.166 0.185 357 368 0.050 6.30

HIPS 8 0.122 0.850 2001 21 -0.072 6.21 0.143 0.809 2003 20 0.030 5.91

HDPE 39 -0.120 0.226 264 450 -0.005 7.16 -0.054 0.224 132 447 -0.020 7.12

LDPE 25 -0.144 0.197 310 392 0.037 4.86 -0.100 0.196 223 391 0.005 4.84

LLDPE 9 0.032 0.240 -44 482 0.693 2.78 -0.014 0.433 49 869 -0.142 5.01

PET 34 -0.164 0.094 352 188 0.913 2.16 -0.364 0.290 751 580 0.144 6.65

PP 46 0.084 0.065 -146 130 0.921 2.24 -0.064 0.230 152 458 -0.016 7.92

Nylon 6 12 -0.025 0.599 83 1199 -0.045 8.05 -0.093 0.582 222 1165 -0.086 7.82

Nylon 66 12 -0.797 0.555 2035 26 0.367 10.07 -0.461 0.501 2020 23 0.296 9.09

PC 19 -0.494 0.848 2018 26 -0.015 9.58 -0.354 0.792 2011 25 0.050 9.27

PUR (flex) 9 0.323 0.590 -621 1182 -0.031 5.43 0.145 0.566 -264 1135 -0.086 5.22

PUR (rigid) 15 0.265 0.339 -503 679 0.042 5.44 0.167 0.332 -307 664 0.012 5.32

PVC 62 -0.621 0.419 2007 8 0.134 8.09 -0.642 0.419 2008 8 0.135 8.09

CFRP 9 -0.950 1.468 1958 2945 0.693 7.08 -0.136 2.646 334 5310 -0.140 12.76

GFRP 17 0.469 0.519 -915 1040 0.027 7.88 0.335 0.493 -649 987 0.064 7.49

Cast Iron 32 -0.129 0.106 264 211 -0.133 3.20 -0.045 0.098 98 196 -0.004 2.96

Lead 33 -0.018 0.082 43 164 0.892 2.69 -0.040 0.250 90 500 -0.029 8.17

Copper 129 -0.018 0.022 48 45 0.969 1.33 -0.072 0.125 155 250 0.002 7.48

Magnesium 18 -0.676 1.725 1449 3454 -0.005 27.54 -1.101 1.619 2291 3241 0.060 25.84

Steel 1402 -0.089 0.002 182 4 0.987 0.46 -0.077 0.015 158 30 0.066 3.96

Steel (Rec) 23 0.031 0.116 -60 232 0.873 2.01 -0.273 0.301 551 602 0.104 5.22

Steel (Stain) 29 0.179 0.850 -345 1705 0.002 9.28 0.119 0.850 -226 1704 0.003 9.25

Aluminum 411 -0.057 0.017 130 34 0.990 1.70 -0.140 0.174 303 348 0.004 17.28

Aluminum (Rec) 14 -0.097 0.270 197 540 0.845 3.70 -0.599 0.574 1202 1146 0.243 7.85

PTFE 4 1.452 5.591 -2877 11221 -0.394 12.60 0.440 4.542 -848 9116 0.080 10.23

Platinum 11 -4.533 3.600 9226 7154 0.379 62.81 -3.836 3.533 7834 7026 0.335 61.65

PFSA 2 0.158 -313 0.158 -313

PFSA Suspension 2 0.156 -308 0.156 -308

Carbon paper 2 -17.380 35160 -17.380 35160

Nickel 8 0.374 1.739 -699 3484 0.052 15.00 0.439 1.7322 -827 3469 -0.096 14.94
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the total energy of the vehicle (the column labelled “Total”) which saw its kurtosis and skewness 

reduced from 5.5 to 3.5 and 2.40 to 0.15, respectively.  Hence, this case would benefit from log 

transformation should it be desired to calculate the geometric mean of the distribution; that is, the 

mean calculated once the data has been transformed back to normal.  For example, the total 

arithmetic mean energy for a regular ICEV in Table 4.6 was 11,719kWh.  Once the data was log 

transformed (log10) and a Monte Carlo simulation run, the log transformed data was transformed 

back (using 10x or the power of ten), yielding a geometric mean of 10,356kWh.  Consequently, 

in cases such as these, new coefficients of variance can be calculated for more accurate results 

and, thus, yield better comparative assertions than were originally made in Table 4.6.  Therefore, 

Table 4.14 shows the corrected means after the log transformation of the total energy per vehicle.  

Because of the positive skew of these distributions, there is the tendency to see a decrease in the 

mean values and their corresponding CVs.  However, it will be noted that this has significantly 

more importance, for example, with lightweight electric vehicles than it does for lightweight fuel 

cell vehicles.  Comparing CVs sees 28.6% increase for the former, while only a 3.8% increase 

with the later. 

 

4.3.4 Caveat regarding data availability 

 

Very little data exists on key fuel cell (FCV) materials such as PTFE (known commercially as 

Teflon®), PFSA (a.k.a., Naphion®), PFSA suspension and carbon paper (the gas diffusion 

layer).  The particular reasons for this lack of data are complicated. PFSA proton membranes 

require the use of platinum as a catalyst and, therefore, this increases the cost of production.  

Similarly, the poor conductivity performance characteristics of PFSA have been found to be 

deficient at temperatures above 80 degrees Celsius.  Consequently, a great deal of research 

currently focuses on attempting to find substitute proton exchange membrane materials and 

catalysts (Peighambardoust et al., 2010; Bose et al., 2011; Chandan et al., 2013).  Thus, there is 

the possibility that these materials (PTFE, PFSA, etc.) may never meet performance and cost 

targets as set by the U.S. Department of Energy (2013).  That said, the overall energy impact in 

the Monte Carlo simulation for these materials (including platinum) is approximately 1.81% 

(255kWh) and this is consequently deemed minor in terms of their effect on the findings of this 

study. 
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Table 4.13 Number of years for a one percent change in energy intensity (kWh/kg). 

 

 

Table 4.14 A comparison of total energy per vehicle before and after log transformation 

(kWh). 

 

  

ABS 4.76 Cast Iron 2.56

EPDM 7.69 Lead 2.56

Epoxy 3.23 Copper 2.27

GPPS 2.94 Magnesium 3.45

HIPS 11.11 Steel 1.96

HDPE 2.56 Steel (R) 3.57

LDPE 2.94 Steel (S) 3.03

LLDPE 3.13 Aluminum 2.27

PET 3.13 Aluminum (R) 3.85

PP 2.63 Rubber 2.27

Nylon 6 3.12 Paint 5.26

Nylon 66 3.03 Glass 2.27

PC 3.13 CFRP 4.35

PUR (flex) 4.76 GFRP 3.45

PUR (rigid) 3.13 PTFE 8.33

PVC 3.03 Platinum 3.13

PFSA 8.33

PFSA Suspension 8.33

Carbon paper 8.33

Nickel 4.35

Pre Log Transformed Log Transformed

Mean Std Dev CV Mean Std Dev CV

ICEV Regular 11,719         6,420         0.548 10,356         6,420         0.620

Lightweight 8,938           4,326         0.484 8,022           4,326         0.539

EV Regular 16,788         9,496         0.566 14,740         9,496         0.644

Lightweight 12,970         5,998         0.462 8,022           5,998         0.748

HEV Regular 12,491         7,107         0.569 10,947         7,107         0.649

Lightweight 9,389           4,553         0.485 8,429           4,553         0.540

PHEV Regular 12,494         7,119         0.570 10,947         7,119         0.650

Lightweight 9,804           4,730         0.482 8,806           4,730         0.537

FCV Regular 14,029         7,459         0.532 12,500         7,459         0.597

Lightweight 11,978         5,102         0.426 10,995         5,102         0.464
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4.4 Conclusions 

 

This study expands upon previous work by more than doubling the number of materials of 

manufacture from 17 to 36 and by further developing the normative platform for examining the 

issue of temporality due to age of data.  Again, Monte Carlo simulations were used in order to 

characterize the variance in each of the 36 individual materials of manufacture.  Regression 

analysis was also used alongside the simulations, both in the form of least angle regression and 

least absolute regression.  The purpose of the regression analysis was to serve as a confirmation 

whether the variance seen in the Monte Carlo simulations was a temporal correlation or purely 

variance.  Both regression methods did yield temporal relations for a number of materials such as 

aluminum, rubber and glass.  However, given that the least absolute regression method found 

much better fits to the data, this method is preferred in order to ascertain temporal relations with 

definitive confidence.  The regression analysis also served to measure the number of years over 

which percentage changes occurred.  Not surprising, the least angle regression and the least 

absolute regression methods did not yield any differences in terms of percentage change since 

they consider changes over the same time frame.  Hence, neither the slope of the regression line 

nor the robustness of fit come into consideration here.  That said, the percentage changes could 

be expressed as a significance level (i.e., one percent or five percent).  Nevertheless, many 

materials such as steel, aluminum and copper showed a one percent shift in values between two 

and three years.  This is purposeful in establishing future norms of practice regarding updating 

data life cycle assessment studies.  Again, the issue of non-normality was revisited by log 

transforming the energy distributions, re-running the Monte Carlo simulations and then retesting 

for changes in kurtosis and skewness.  For the individual materials of manufacture, only 

marginal improvements in kurtosis and skewness were seen form ABS, LDPE and PC.  Thus, 

there was little utility in log transforming for these materials.  However, at the functional unit 

level (the whole vehicle), there was significant reductions in kurtosis and skewness.  Hence, the 

log transformed energy distributions can be converted back in order to derive a new geometric 

mean (as opposed to the pre-transformed arithmetic mean).  This would be useful should more 

accurate comparative assertions be desirable by comparison of newly derived coefficients of 

variation.  
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CHAPTER 5—CONCLUSIONS  

 

5.1 General Conclusions 

 

This study identified a research gap which has implications for the robustness of life cycle 

assessments.  This gap was contextualized in the overall drive towards standardization of life 

cycle assessments as envisaged by the ISO14040 series of standards.  The specific target 

research area identified a lack of accounting for temporality and spatiality due to age of data.  

Consequently, an examination of the energy intensity of 36 individual materials of manufacture 

across several decades (roughly 1960 to 2012) was conducted to see whether there was a 

temporal relation which could impact the outcomes of life cycle assessment studies.  Similarly, 

the energy intensity of materials of manufacture originating from three different geographic areas 

across the same time spans were compared to see whether there were differences attributable to 

spatial origin.  This required the collection of data through a vast literature search which lasted 

over a year.  The model chosen to test whether these phenomena were real was the Greenhouse 

gases, Regulatory Emissions and Energy in Transportation 2 (GREET2) by the Argonne 

National Laboratory.  Since GREET2 model the entire life cycle of automobiles, this model was 

deemed sufficiently complex for testing the phenomena of temporality and spatiality due to age 

of data.  It also had a number of potential configurations which made possible comparative 

assertions:  lightweight versus regular material vehicles; sedans, pick-up trucks and sport utility 

vehicles; and different potential powertrain scenarios: internal combustion, hybrids, plug-in 

hybrids, electrical, and fuel cell.  Standard methods were used and consisted of Monte Carlo 

simulations programmed in MATLAB, as well as built-in statistical toolkits in MATLAB for the 

analysis of variance and regression analysis. 

 

Monte Carlo simulations allowed for the construction of a probabilistic distribution of the 

potential outcomes of energy intensity of individual materials of manufacture used in the 

GREET2 model across their full time frame.  Once the simulations were programmed and 

executed, statistical data was collected regarding their resultant distributions, including standard 

deviation, standard error, arithmetic mean, and coefficient of variance.  An analysis of variance 

was also conducted to render each of the variations in terms of individual materials of 
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manufacture within the prescribed physical properties of the GREET2 model.  This allowed for 

the ability to visualize how mass became involved in the overall amount of variance.  The 

filtering of data through geographic regions allowed for spatial comparisons once the Monte 

Carlo simulations were run.  Using another version of analysis of variance (F tests) allowed for 

the measurement of the degree of differences between groups (geographic areas).  Where 

differences were significant (critical), effects due to spatiality were seen.  Furthermore, 

regression analysis was conducted on the raw data used for the temporality studies in order to 

confirm whether the variance seen after the Monte Carlo simulations were run was due to an 

actual temporal phenomena, or just pure variance.  Both a least squares regression and a least 

absolute regression analysis were used to check for temporal phenomena and test the wellness of 

fit (robustness).  Additionally, both regression methods were used to find the amount of 

percentage change which occurred in the energy intensity of individual materials of manufacture.  

Lastly, because of the concern for non-normality in the energy distributions, further Monte Carlo 

simulations were conducted using log transformed data to test for non-normality.  The key 

metrics used in this testing for non-normality were skewness and kurtosis.                 

 

5.1.1 Contributions 

 

This study showed that the effects of temporality and spatiality owing to the age of data are not 

insignificant or ignorable.  This was demonstrated through the presence of large amounts of 

variance both on the basis of the functional unit as well as on an individual material basis.  On a 

functional unit basis, a significant variance was shown in the total amount of energy over the full 

time scale.  However, this study did show that—on the basis of the functional unit—these effects 

are dependent on the particular mixture (weight) of materials utilized, spatial location, as well as 

the time frame which is being examined.  Not surprising, heavier vehicles saw larger mean total 

energy values and larger variation in their distributions.  This indicates the importance of weight 

in characterizing the effects of aged data for a functional unit.  Thus, lightweight vehicles which 

use substitute materials such as aluminum to reduce overall vehicle weight saw much smaller 

mean total energy.  However, examining the effects of individual materials of manufacture 

reveals a more complicated image.  Using analysis of variation (ANOVA), the materials which 

saw the highest evidence of variation in the full time frame were steel (primary and recycled), 
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recycled aluminum, cast iron, copper, HDPE, PP and PET.  Furthermore, it was shown that 

spatial considerations are intertwined to varying degrees with temporal variation for some 

materials with the exception of copper and aluminum.  Consequently, temporal and spatial 

changes in the energy impacts of a functional unit should give more consideration to the energy 

intensity (kWh/kg) through more mixed methods (see below). 

 

This research is important in that it established that the input stages of a process captured by 

LCA, more specifically related to LCI, are just as important as the output stages in terms of the 

effects of the age of data and data quality.  The findings point to what has been a subject hitherto 

ignored in previous studies on the effects of age of data temporality and spatiality.  The 

implications of this research are not inconsequential.  While it is known that uncertainty 

characterizes the LCA process, these findings renew the need for further scrutiny of data such 

that data collection should be routinely updated in order to make properly informed functional 

unit comparisons, which—as was mentioned in the introduction—is one of the central purposes 

of LCA.  Depending on the type of material, the precise amount of time these updates should 

occur generally ranges between two and five years.  Furthermore, these updates should be 

investigated for the entire spectrum of materials (e.g., cement, timber, ceramics) as this does not 

appear to be isolated to a single material or class of materials (e.g., plastics, metals, etc.).  

Although no LCA study is lost to time, this dissertation shows that LCA studies remain rooted in 

a specific time.  But this time can be highly confusing when dealing with increased functional 

unit complexity which necessitates drawing upon many different sources of data.  Indeed, some 

LCA studies reviewed during research for this study revealed that some of their source data for 

energy intensity was dated, in some cases by more than a decade.  Thus, if data utilized in an 

LCA study stretches across a ten year interval, it is difficult to ascertain what reality the results 

reflect—the reality of year 1, year 5, or year 10? Or some range in between?  In turn, this can 

have consequences in terms of whether LCA will have any longevity as a viable assessment tool.  

Also, data promulgation and gathering is a very time-consuming process in this area of study; 

however, this is a necessary trade-off and should be a priority to bring about more robust results. 

 

In addition, the regression analysis indicated which of the materials are subject to uncertainty 

owing to missing data.  Regrettably, this is the case for 19 of the 35 materials in this study, 
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although their overall contribution in the Monte Carlo simulations for the total energy of a 

vehicle (as a functional unit) is small.  Consequently, work should be done to collect more in situ 

data from manufacturing sources.  The inconclusive regression analysis for some materials in 

Table 4.12 serves as evidence for much more aggressive data collection in this area.  This is 

largely due to the large amounts of variance seen in these materials in spite of the inability to 

make a definitive temporal association.  Yet, regardless of the condition of the data, the direct 

temporal correlations found for materials such as steel, aluminum, etc., make for a troubling 

situation concerning the usefulness and representativeness of some LCA results.  At a minimum, 

it should be obvious that metadata precisely on the age of data does not address this problem but 

only serves to denote the timeframe in which an LCA remains relevant.  This means that not only 

do data inputs (LCI) need to be updated regularly but, in turn, so must LCAs in order to make 

them relevant. 

 

One of the research questions this study sought to address was whether there is utility in 

analyzing temporality and spatiality due to age of data at both the functional unit level and at the 

individual materials of manufacture level.  Analysis at the level of the functional unit allows for 

comparative assertions with other similar functional units.  This is one of the explicit purposes as 

envisioned by ISO14040.  In the case of this study, the functional unit is an automobile.  The 

constituent materials of each automobile—as presented by weight composition in the beginning 

of chapters 3 and 4—vary not inconsiderably.  And, this seems amply true in the case of this 

study.  However, as was seen, more mass of materials merely means greater total energy and 

greater variance of a scalable nature.  As was presented, using the full time scale showed that the 

coefficients of variance were scalable.  Hence, differences between functional units mean that 

there are scalar fluctuations within the functional unit.  A more interesting phenomenon occurs 

when observing the individual materials of manufacture since some materials have vastly higher 

contributions to the overall variance than others.  For example, it was thought during the initial 

stages of this research that, given the very high energy intensity of glass and carbon fibre 

reinforced plastics, would make the lightweight vehicles consume much more energy than the 

regular vehicles.  In fact, this was not the case.  This means that much more attention must be 

given to the internal dynamics of a functional unit than the functional unit as a whole.  In order to 

bring this about requires a set of methods including Monte Carlo simulations, regression 



 

119 
 

 

analysis, analysis of variation, and tests for non-normality.  The precise usage of these methods 

are given below. 

 

5.1.2 Implications 

 

This study has a number of implications for what in life cycle assessments is referred to as 

quality of data issues.  However, this implication is highly specific.  The actual framework of a 

life cycle assessment is not being questioned here, nor are the findings which arise from the use 

of data rooted in a specific time and place.  Rather, what is implicated here is the degree to 

which, for example, an LCA conducted in 1990 (using data from the same year) is specific to 

1990.  As a competitor developing a similar product with similar functionality (say, in 1995), 

there would be considerable interest answering this question.  As such, this subject is a question 

of confidence, robustness and representativeness.  Because these questions have not previously 

been answered in the domain that is the subject of this study, guidelines should be developed in 

order to make answering these questions easier.  Subsequently, this study looked into the 

potential methods for examining temporal and spatial effects due to aged data in the life cycle 

assessment.  A number of recommendations resulted from this: 

 

1) Examining the effects of temporality and spatiality due to aged data should 

primarily be on the basis of individual materials of manufacture and not the 

functional unit. 

2) The variance arising from Monte Carlo simulations should be taken as the 

primary measurement of the effects of temporality due to age of data. As per 

1), these effects should be measured for each individual material and may be 

visually represented by box plots.  

3) The variance arising from the Monte Carlo simulations should be measured 

across the entire time span of available data as smaller time intervals can 

result in erroneous representations of variance. 

4) As a result of 3), comparison of coefficients of variance from different time 

intervals should be avoided, as well as analysis using F values (ANOVA) 

under the same conditions. 
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5) The effects of spatiality can be isolated by measuring differences through F 

values between separate geographic regions in the same time frame and the 

same weight for individual materials. 

6) In spite of apparent skewness in data, log transforming the data has little effect 

in bringing about the potential for more clarity.  Nevertheless, as a method, 

log transformation can be used to test the potential assumption of linear versus 

log-normal data sets by testing for skewness or kurtosis (both are embedded 

MATLAB functions). This would also be necessary should it be desirable to 

derive the geometric mean (as opposed to the arithmetic mean shown in the 

majority of the tables in this study). 

 

Some further recommendations with regard to methods also arose from this study.  Chief among 

these is the inclusion of a robust regression method (least absolute residuals) in order to confirm 

that the variance seen in the Monte Carlo simulations is due to actual temporal variation.  

However, neither the least absolute residuals nor the least squared method provided more 

accurate measurements of the changes in energy intensity (kWh/kg over time).  In either case, 

they proved equally useful since their regression lines spanned the same time period.  Another 

method tested whether the data was non-normal by measuring kurtosis and skewness before and 

after log transformation in base 10.  In all cases this was found not to be necessary for individual 

materials.  However, in the case of the total vehicle energy consumption, there was some utility 

in log transforming the data, rerunning the Monte Carlo simulation, and then transforming the 

data back in order to derive a new geometric mean and, hence, a corrected coefficient of 

variation.  Therefore, tests for kurtosis and skewness should be included as part of an overall 

mixed methods platform of analysis. 

 

5.2 Limitations of This Study 

 

According to Van den Berg (1999), with LCA there is no such thing as a feedback mechanism.  

Rather, the confidence in outcomes is based on the quality of the input data and the quality of the 
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models used.  As an issue, data quality analysis in LCA can be hampered by a number of factors 

(Ibid.):  

 

1) Lack of metadata which hampers calculation of error propagation. 

2) Differences in types of data input (e.g., weighting might have been employed). 

3) The model in LCA cannot be tested. Comparing data to in situ situations is 

cumbersome. Temporal and spatial characterizations are lacking. The character of 

a stead state model does not allow for predictions to be made.  

4) The number of inputs in an LCA is large (e.g., a medium LCA can consist of 500 

processes with 200 items per process), thus making independent reliability issues 

accumulate.  

5) Individual impact categories determine confidence in the results. Hence, one 

category can have a certain level of confidence which varies significantly with 

another category. 

 

This study implicates two impacts as outlined by Van den Berg (1999), namely points 3 and 5. It 

is affected by the fact that the model is testing temporal and spatial characterizations utilizing in 

situ data.  However, this operates under the assumption that the model is testable.  This 

assumption arises from the fact that Monte Carlo simulations are applicable to testing for 

uncertainty and variance (see Chapter 3.2.1).  Thus, although it was not the intention of this 

study to do so, it has made some normative assertions with regard to the testing of LCA models.  

Whether that can be generalized to other facets of LCA models is unknown and would require 

further investigation.  Also, the validity of the input data has implications as to whether the 

findings can be generalized to other environments or circumstances.  The work in this 

dissertation is limited to only one impact category within LCA:  energy intensity.  The effect of 

temporality due to age of data does not affect other general impact categories such as ozone 

depletion, abiotic resource use, biotic resource use, acidification, eutrophication, 

aquatic/terrestrial ecotoxicity, and human toxicity as outlined in Pelletier et al. (2007).  This is 

due to two fairly clear issues.  In the first case, resource use is an economic issue and, hence, is 

related to stocks and surpluses (amounts).  Although the stock of a particular resource may 

change over time, its functionality is retained on a per unit basis, be that mass, volume, etc.  In 
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the second case, all the other impact categories are dose dependent and, thus, have no temporal 

aspect due to the age of data.  As such, the toxicological potential of equivalent amounts of 

toxins does not alter over time.  

 

Further limitations of this study include the absence of data which limited the analysis to three 

geographic areas (North America, Europe, and Oceania) to the exclusion of Asia, Africa, as well 

as South and Central America.  Additionally, those spatial areas examined were on the 

continental basis and, thus, expand across vast distances.  This is of concern since, for example, 

Boustead and Hancock (1979, 1981) indicated that there does exist variance of energy intensity 

of manufacture (kWh/kg) within countries—in their case, across the UK.  Hence, more 

specificity can be brought to bear in this area.  Alongside this issue is that the studies, technical 

reports, etc., utilized here were all exclusively in English and German.  Thus, other potential 

sources of data were not examined, assuming they existed at all.  Further to this is that, for the 

materials of manufacture, only primary processes were examined for energy intensity, to the 

exclusion of secondary processes.  Thus, the energy totals derived on the basis of the functional 

unit (vehicle) do not purport to be the total energy up to the point of the user phase of the LCA.  

As a consequence, the tabulated totals are merely a fraction of the cradle-to-gate segment leading 

up to the user phase.  Also, this study does not purport to explain the sources of variance, be it 

changes in technology, power grid composition, etc. 

 

This study looked at temporality and spatiality due to age of data as individual subject matters.  

As such, this study did not cross-correlate the temporal and spatial findings.  At some point, this 

may be desirable but is easily accomplishable by conducting regression analysis on 

geographically specific data.  Thus, this is a minor limitation. 

 

5.4 Future Work 

 

Going forward, there are a number of challenges to overcome in studying this area further.  One 

particular challenge is the issue of the indeterminacy of the origins of variation in the data.  This 

is disquieting because the origins of this variation are not readily known or explainable.  Either 

these origins are valid and represent actual in situ realities, or they are due to unfathomable 
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conditions (e.g., error, which is a form of uncertainty).  However, this may all be irrelevant 

because the only solution to the issue—in either case—is the promulgation of more data.  This 

objective is obviously hampered by current circumstances in the market of knowledge.  Indeed, it 

is public knowledge that, through the 1930s to the late 1960s, DuPont invented Nylon, Teflon® 

(PTFE) and Nafion® (PFSA).  To date, DuPont does not provide any publicly accessible energy 

intensity data on the last two items in this list.  However, in the case of the energy intensities of 

both Nylon 6 and Nylon 66, DuPont published on its own website Boustead’s 2005 LCA studies 

(Boustead 2005a, 2005b) which were conducted on behalf of Plastics Europe, the Brussels-based 

institution. Naturally, Boustead’s results relate to manufacturing in Europe and not North 

America.  Why this situation with data persists is perplexing and whether it is indicative of this 

industry or is due to proprietary measures is unknown.  

 

Also of concern is the issue of the regression analysis utilized here because this method did not 

take into account theoretical energy intensity minimums.  This can have the effect of making the 

regression analysis appear as if it were not going to plateau at some imminent future period.  For 

example, the minimum theoretical limit for virgin steel is given to be 4.67kWh/kg (Worrell et al., 

1993) which is close to the terminal values found in the regression analysis used here.  

Conversely, the theoretical minimum for virgin aluminum is 6.34kWh/kg (Grjotheim et al., 

1995), a level which the regression analysis showed is a far distant goal.  Thus, this must be kept 

in mind when viewing the results of this study, and further modelling should be done.  That is, 

the regression lines should not be interpreted as a predictor of the trajectory of future events.  

Certainly, scenario analysis would be a much more sound line of inquiry into this subject, should 

it be done at some future time.  

 

One area that must be examined is the issue of metadata or, as it is known in more colloquial 

terms, “the data on the data.”  Metadata on the age and place of data could be purposeful in 

outlining the practical usefulness of energy intensity source data.  As part of the consistency 

check, ISO14040 requires life cycle assessments to make note of data sources, data accuracy, 

technology coverage, time-related coverage (how old is the technology being utilized), data age, 

and geographical coverage.  Hence, given the already heavy burden of data in life cycle 

assessments, this would seem at first hand to make life cycle assessment even more cumbersome.  
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At this time, it is not certain as to whether this would even be desirable, except beyond 

administrative purposes.  As such, this area is highly speculative at this time but is further 

elaborated below.   

 

During the data collection phase of this research, one particular observation which arose was the 

tendency of life cycle assessments to use data from different times.  For example, a life cycle 

assessment conducted in 2001 on a fictional Product A utilized data for polyvinyl chloride (PVC) 

from 1990 and steel data from 1997.  Consequently, the question here is in what space-time 

reality does the life cycle assessment for Product A exist.  Certainly, it is not 2001, and it is not 

an interpolation between 1990 and 1997.  This also poses a further quandary with quantitative 

implications if the functional unit in question is to be subject to comparative assertions with 

other functional units (say, Product B, also from 2001) using different materials with equally 

divergent data sources.  From an assessment perspective, this poses a number of difficult 

questions.  Should the data of the constituent materials of PVC and steel be adjusted to reflect the 

date of study in 2001 so that Product A and Product B can be compared?  This would seem to be 

the case if Product A and Product B were made of completely different materials.  But, this is 

only possible in the context of whether data on the constituent materials of manufacture for both 

Product A and Product B can be adjusted accordingly.  For example, this would not be the case if 

Product B is made of a material with no time adjustable data (no temporal relation was found in 

the linear regression) and is subject to large amounts of variance.  As such, this problem outlines 

a microcosm of a much bigger issue of the intersection between variance and uncertainty.  

Usually, these subjects are handled individually (see Huijbregts, 1998a), but an assessment of 

their synergistic affects should be made. 

 

Upon reflection, it is evident that a considerable effort must be made with regard to the question 

of data quality and data representativeness for the furtherance of more valid results in LCA.  As 

an assessment tool, LCA is naturally dependent on the quality of its data.  Currently, LCA is 

problematic due to—among other things—a lack of consolidated methods and the haphazard 

usage of data.  For example, Sutherland et al. (2008) use data from Boustead and Hancock 

(1979) as a source for the energy intensity of hydrochloric acid production.  It should be apparent 

that the use of nearly thirty year old data is neither ideal nor desirable.  Nevertheless, this should 
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have been fairly clear long before this present study was done.  However, moving forward from 

this study requires that LCA practitioners become more involved in the process of gathering data 

rather than relying on datasets which come with a set of largely unspoken assumptions regarding 

their source and representativeness.  Much more “site-specificity” is required; that is, data should 

be coming both directly from the source and with far more regularity.  This study also has further 

implications for a host of materials of manufacture not included here, along with the hundreds of 

unit processes used in LCAs.  The continued use of low numbers of data points and assumed 

probability distributions (normal, lognormal, etc.) for modeling physical parameters within LCA 

(e.g., electricity usage, waste generated, water usage, etc.) is highly conducive of erroneous 

findings.  These issues should be revisited with the aim of pursuing normative ends with respect 

to methods.  The overwhelming focus with modeling uncertainty during the last twenty years is a 

tacit admission of the undesirable current situation with regard to data.  Consequently, this 

should give way to moving away from “modeling” towards precision.  As such, this means more 

purist empirical approaches should be pursued at the expense of abstractions. 
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Figure A.1 Probability distribution of rubber. 

 

Figure A.2 Probability distribution of paint. 
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Figure A.3 Probability distribution of glass. 

Figure A.4 Probability distribution of ABS. 
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Figure A.5 Probability distribution of EPDM. 

Figure A.6 Probability distribution of epoxy. 

  



 

131 
 

 

Figure A.7 Probability distribution of GPPS. 

 

Figure A.8 Probability distribution of HIPS. 
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Figure A.9 Probability distribution of LDPE. 

 

Figure A.10 Probability distribution of LLDPE. 

  



 

133 
 

 

 

Figure A.11 Probability distribution of Nylon6. 

 

Figure A.12 Probability distribution of Nylon66. 
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Figure A.13 Probability distribution of PC. 

Figure A.14 Probability distribution of PUR(F). 
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Figure A.15 Probability distribution of PUR(F). 

 

Figure A.16 Probability distribution of PVC. 
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Figure A.17 Probability distribution of HDPE. 

Figure A.18 Probability distribution of PP. 
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Figure A.19 Probability distribution of PET. 

 

Figure A.20 Probability distribution of CFRP. 
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Figure A.21 Probability distribution of GFRP. 

 

Figure A.22 Probability distribution of cast iron. 
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Figure A.23 Probability distribution of lead. 

 

Figure A.24 Probability distribution of steel. 
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Figure A.25 Probability distribution of recycled steel. 

 

Figure A.26 Probability distribution of stainless steel. 
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Figure A.27 Probability distribution of aluminum 

 

Figure A.28 Probability distribution of recycled aluminum. 

  



 

142 
 

 

 

Figure A.29 Probability distribution of magnesium. 

 

Figure A.30 Probability distribution of platinum. 
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APPENDIX C—COMPLETE LIST OF COUNTRIES IN FIGURES 3.12 AND 3.13 
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