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Abstract

Robust Affine Invariant Shape Descriptors

Ye Mei

Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University, Toronto, 2010

With the increasing number of available digital images, there is an urgent need of image

content description to facilitate content based image retrieval (CBIR). Besides colour and

texture, shape is an important low level feature in describing image content. An object can

be photographed from different distances and angles. However, we often want to classify

the images of the same object into one class, despite the change of perspective. So, it is de-

sired to extract shape features that are invariant to the change of perspective. The shape of

an object from one viewpoint to another can be linked through an affine transformation, if

it is viewed from a much larger distance than its size along the line of sight. Those invariant

shape features are known as affine invariant shape representations. Because of the change

of perspective, it is more difficult to develop affine invariant shape representations than

normal ones. The goal of this work is to develop robust affine invariant shape descriptors.

Through shape retrieval experiments, we find that the performance of the existing affine

invariant shape representations are not satisfactory. Especially, when the shape boundary

is corrupted by noise, their performance degrades quickly. In this work, two new affine

invariant contour-based shape descriptors, the ICA Fourier shape descriptor (ICAFSD) and
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the whitening Fourier shape descriptor (WFSD) have been developed. They perform bet-

ter than most of the existing affine invariant shape representations, while having compact

feature size and low computational time requirement. Four region-based affine-invariant

shape descriptors, the ICA Zernike moment shape descriptor (ICAZMSD), the whitening

Zernike moment shape descriptor (WZMSD), the ICA orthogonal Fourier Mellin moment

shape descriptor (ICAOFMMSD), and the whitening orthogonal Fourier Mellin moment

shape descriptor (WOFMMSD), are also proposed, in this work. They can be applied to

both simple and complex shapes, and have close to perfect performance in retrieval experi-

ments. The advantage of those newly proposed shape descriptors is even more apparent in

experiments on shapes with added boundary noise: Their performance does not deteriorate

as much as the existing ones.
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Chapter 1

Introduction

1.1 Motivation and background

A picture is worth a thousand words. Images often contain quite a lot of information.

Nowadays, with the advent and development of digital photography, capturing images is

easier than ever before. They are widely used in different areas, such as retail catalogs, news

media, medical diagnosis, remote sensing, and etc.. With the decreasing cost of digital

storage media, the number of digital images stored around the world is also increasing

rapidly. However, the huge amount of images, makes the efficient search of those images a

challenging work.

One common way of searching images is by textual indexing. For example, Google

image search [3] is done through textual indexing. When the word ’flower’ is used as the

searching keyword, Google images will show the images that are linked with the word

’flower’. For example, most of the search results will return image files that have the word

’flower’ in their filenames or in the surrounding text. That works fine, sometimes. The

problem is that images with a flower in them may not be retrieved, if the word ’flower’ is

neither in the filename nor in the surrounding text. Also, the amount of work required to

annotate all the images correctly is daunting. In fact, most of the images around the world

are not annotated.

Thus, it is desirable to have a technology that can retrieve images based on their vi-

sual content. Such technology is commonly referred to as content-based image retrieval
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(CBIR). The term CBIR was most likely coined by T.Kato in 1992 [4], when describing

automatic retrieval of images from a database based on colour and shape. Since then, CBIR

has attracted the attention of many researchers in the fields of computer vision, image pro-

cessing and pattern recognition and thus many related research works have been published

[5, 6, 7, 8, 9, 10, 11, 12, 13].

Recently, Google is trying to extend from textual-based search to visual content-based

search, such as the ’Google Goggles’, which allows one to use pictures to search the web

[14]. When the user captures an image, Google extracts features from it, compares those

features against every item in its image database and returns the results to the user, ordered

by rank [15].

In CBIR, essential features are extracted from images to represent image content. Low

level features such as colour [16, 17, 18, 19, 20, 21], texture [22, 23, 24, 25], shape [26,

27, 28] or a combination of them [29, 30, 31, 32, 33], can be extracted directly from

images and have been found effective in representing image content. Shape, in particular,

is an important and effective low level feature. For example, the shape of a horse and the

shape of a flower is easily distinguishable. In real life, objects in images are not always

photographed from the same position, distance or angle. Therefore, the shapes of an object

in two photos taken from different perspectives are related, but not exactly the same (Figure

1.1 and Figure 1.2). However, it is desirable to classify those related images of the same

object into one class, even though the images were taken from different perspectives.

(a) (b)

Figure 1.1: Images of a flag, taken from two different perspectives
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(a) (b)

Figure 1.2: Images of a stop sign, taken from two different perspectives

1.2 Objective

As we can see from the background review, shape is an important and effective feature in

representing image content in CBIR. Objects are often photographed from different per-

spectives, yet we still want to classify the same objects into one class, despite the change

in perspective. Therefore, it is desirable to extract shape features that are invariant to the

change of perspective. The shape of an object from one viewpoint to another can be linked

through an affine transformation, if it is viewed from a much larger distance than its size

along the line of sight [34]. Those invariant shape features are known as affine-invariant

shape representations. The objective of this research is to develop effective affine-invariant

shape representations that have strong discrimination power, compact size, and low com-

putational requirement. Since current image segmentation techniques are not perfect, there

is often noise on shape boundaries. Therefore, the newly developed affine-invariant shape

representations should also be robust against shape boundary noise.

1.3 Contributions

The contributions of this dissertation are listed below:
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1.3.1 Proposal of new contour-based affine-invariant shape descrip-
tors

Two contour-based affine-invariant shape descriptors are presented:

1. ICA Fourier shape descriptor (ICAFSD)[35]: The independent component analysis

(ICA) [36] and the discrete Fourier transform (DFT) [37] are both utilized in develop-

ing the proposed ICAFSD. ICA is used to transform a shape contour into one of eight

possible canonical shape contours. Those eight possible canonical shape contours are

different only by a rotation of 90, 180, or 270 degrees, and/or a reflection. The DFT

is then applied on the centroid distance of the canonical shape contour. Since a rota-

tion of the canonical shape contour will only cause phase changes in the frequency

domain, but no magnitude changes, the magnitudes of the DFT coefficients are used

as the newly proposed ICAFSD. The ICAFSD has a compact size, and low computa-

tional time requirement, and out performs most of the existing affine-invariant shape

descriptors in retrieval experiments.

2. Whitening Fourier shape descriptor (WFSD) [35]: The studies on ICA show that

whitened data and the ICA-ed data are different only by a rotation and/or a reflection,

which the ICA algorithm needs to estimate. The newly proposed WFSD also first

transforms a shape contour into its canonical one, but doesn’t further estimate that

rotation and/or the reflection of the shape contour, since the DFT will anyway be used

later to extract rotation and reflection invariant features. Because of that, the WFSD

has even lower computational time requirement than the ICAFSD, but maintains the

same compactness and retrieval accuracy as the ICAFSD.

1.3.2 Proposal of new region-based affine-invariant shape descriptors

Four region-based shape descriptors are presented:

1. ICA Zernike moment shape descriptor (ICAZMSD) [38, 39]: Comparing with affine-

invariant contour-based shape descriptors, which can only be applied to simple

shapes, the region-based ICAZMSD can be applied to both simple and complex
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shapes. ICA is applied to the coordinates of the shape pixels, instead of the coor-

dinates of the shape contour, to transform the shape into a canonical shape. There are

eight possible positions of the canonical shape, which are different by a 90, 180, or

270 degree rotation, and/or a reflection. Zernike moments (ZMs) are then extracted

from the canonical shape, and the magnitudes of the ZMs are the newly proposed

ICAZMSD. Because the magnitudes of the ZMs are rotation and reflection invariant,

the value of the ICAZMSD will be the same, regardless which of the eight possible

positions the canonical shape takes. The proposed ICAZMSD has a compact size,

and acceptable computational time requirement. It performs far better than existing

affine-invariant shape descriptors in retrieval experiments. And it is very robust under

noisy condition.

2. Whitening Zernike moment shape descriptor (WZMSD) [39]: The WZMSD uses

whitening to transform a shape into its canonical shape and extracts the magnitudes

of the ZMs from the canonical shape, as the affine-invariant shape descriptor. As

whitening is used, instead of ICA, the WZMSD has lower computational time re-

quirement than the ICAZMSD, but maintains the same compactness and high re-

trieval accuracy as the ICAZMSD.

3. ICA orthogonal Fourier Mellin moment shape descriptor (ICAOFMMSD): The or-

thogonal Fourier Mellin moments are relatively new type of moments. It has been

found that the OFMMs have better performance than the ZMs in image recon-

struction. In this work, the OFMMs are used together with ICA to develop the

ICAOFMMSD. ICA is also used to transform shapes into their canonical form. The

magnitudes of the OFMMs are then extracted from the canonical shape as the pro-

posed ICAOFMMSD. The proposed ICAOFMMSD, can also be applied to both sim-

ple shape and complex shapes. It has a compact size and acceptable computational

time requirement. Its retrieval perform is far better than those of the existing affine-

invariant shape descriptors.

4. Whitening orthogonal Fourier Mellin moment shape descriptor (WOFMMSD): It has

similar feature extraction steps as the ICAOFMMSD. But, whitening, instead of ICA,

is used to transform shapes into their canonical shapes. The WOFMMSD requires
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less computational time than the ICAOFMMSD, while still having the same com-

pactness and high retrieval accuracy as the ICAOFMMSD.

1.4 Outline

In Chapter 1, the background, objective and contributions of this research were presented.

Chapter 2, provides a general picture of what shape representations are and how they

are extracted. It reviews many of the existing regular shape representations. The reviewed

shape representations include: the 1D function shape signatures, the chain codes, the chain

code histogram, the boundary moments, the simple shape descriptors, the curvature scale-

space representation, the Fourier-wavelet descriptor, the generic Fourier descriptor, the R-

transform, the geometric moment descriptor and the complex moment descriptor. The

chapter also explains the difference between simple shape and complex shape, and the

difference between contour-based shape representations and region-based shape represen-

tations.

Chapter 3, gives the definition of the affine transformation. Several of the existing

affine-invariant shape representations are then reviewed and studied in detail in the chapter.

Those include: the affine-invariant Fourier shape descriptor, the affine-invariant wavelet-

based shape representation, the affine-invariant curvature scale space shape descriptor, the

affine moment invariants by Taubin and Cooper and the affine moment invariants by Flusser

and Suk. These affine-invariant shape representations are tested and compared in shape

image retrieval experiments.

Chapter 4, studies an important statistical tool, ICA, which is used to transform shape

contours or shapes into their canonical forms. The estimation principles of ICA, and the

relationship between ICA and whitening, are discussed. Two examples of ICA on random

data are used to illustrate the principles and the relationship.

Chapter 5, introduces the two proposed contour-based affine-invariant shape descrip-

tors, the ICAFSD and the WFSD. How ICA is able to transform shape contours into their

canonical forms, and how the DFT is able to extract invariant shape descriptors from the

centroid distances of the canonical forms, are explained. Given the relationship between

6



whitening and ICA, the WFSD is further proposed to reduce the computational time re-

quirement of the ICAFSD. The computational time, compactness, and retrieval accuracy of

the two proposed affine-invariant shape descriptors are compared with those of the existing

ones. Shape retrieval experiments show that the proposed affine-invariant shape descriptors

perform better than most of the existing ones, while having low computational requirements

and compact sizes.

Chapter 6, introduces the four proposed region-based affine-invariant shape descriptors

the ICAZMSD, the WZMSD, the ICAOFMMSD and the WOFMMSD. How ICA is able

to transform shapes into their canonical forms, and how ZMs and OFMMs can be used

to extract invariant region-based shape descriptors, are explained. The WZMSD and the

WOFMMSD are further proposed to reduce the computational time requirements of the

ICAZMSD and the ICAOFMMSD, respectively. The computational time, compactness,

and retrieval accuracy of the four proposed affine-invariant shape descriptors are compared

with those of the existing ones. Shape retrieval experiments show that the proposed affine-

invariant shape descriptors perform far better than the existing ones, while having accept-

able computational time requirements and compact descriptor sizes.

Chapter 7, concludes the thesis and recommends future research directions.
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Chapter 2

Review of Shape Representation and
Their Extractions

2.1 Introduction

Shape representations can be generally categorized into two classes, i.e., contour-based

and region-based. Contour-based shape representations, which utilize only the contour

information of the shape, have their limitations, i.e., they can describe only simple shapes

with a single connected region as those shown in Figure 2.1, but not complex shapes with

holes in the shape or consisting of several disjoint regions, as those in Figure 2.2. By

contrast, region-based shape representations, which utilize all the pixels of a shape, have

no such limitations. They can describe both simple and complex shapes. Although, the

goal of this work is to develop robust affine invariant shape representations and retrieval

methods, we need to first review those regular shape representations that are not affine

invariant, since some of the affine invariant ones are inspired by, or are related to them.

Such a review will also give a general picture of shape representations.

A shape representation can usually be a vector or a 1D function. Those vector rep-

resentations are usually called “shape descriptors”, while those function ones are usually

called “shape signatures”. One kind of shape representation can use different similarity

measures. For example, shape descriptors can be compared using one of many commonly

used distance measures, such as the sum of absolute difference and the sum of Euclidean
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Figure 2.1: Simple shapes

Figure 2.2: Complex shapes

distance. The review in this chapter will focus on shape feature extraction. In Section 2.2,

the contour-based shape representation will be reviewed; In Section 2.3, the region-based

shape representations will be reviewed; Section 2.4 summarizes this chapter.

2.2 Contour-based shape representations and their ex-

tractions

Contour-based shape representations only require shape boundary information in feature

extraction. In this section, the following commonly used contour-based shape representa-

tions will be reviewed:

1. 1D function shape signatures [40]: These capture the perceptual feature of the shape

and turn 2D shape contours into 1D functions. Centroid distance signature, tangent

angle signature and complex coordinates signature are commonly used 1D function

shape signatures.

2. Chain codes [41, 42]: These are a sequence of numbers that represent the directions

of each steps of movements along the shape contour.
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3. Chain code histogram [43]: It is a histogram calculated from the chain code and

reflects the probabilities of different directions present in a shape contour.

4. Boundary moments [44]: These are 1D moments extracted from complex coordinates

signature to give a more concise representation.

5. Simple shape descriptors [45]: There are the simple geometric features that can be

used to discriminate shapes with large differences.

6. Curvature scale-space representation [46]: This is a shape descriptor calculated from

the curvature of an evoluting shape, using scale space theory.

Besides these aforementioned contour-based shape representations, the Fourier shape de-

scriptor [47] is also a contour-based shape representation, which is also used in developing

the affine invariant ICA Fourier shape descriptor and the affine invariant whitening Fourier

shape descriptor [35]. It will be discussed in Chapter 5.

2.2.1 1D function shape signatures

A one-dimensional function that is extracted from a shape contour to represent a shape, is

usually called a shape signature. Commonly used shape signatures are centroid distance

signature, tangent angle signature and complex coordinates signature, which we will dis-

cuss briefly here.

2.2.1.1 Centroid distance signature

The centroid distance signature d(n) is calculated by the distance of the shape boundary

points to the shape centroid(cx,cy) [40]:

d (n) =
[
(x(n)− cx)

2 +(y(n)− cy)
2
]
. (2.1)

The subtraction of the centroid makes the signature translation invariant. The centroid

(cx,cy) is calculated as:

cx =
1
N

N

∑
n=1

x(n) , (2.2)
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and

cy =
1
N

N

∑
n=1

y(n) , (2.3)

where N is the number of sampled points on the shape boundary.

2.2.1.2 Tangent angle signature

The tangent angle signature θ (n) at a point is defined as [40]:

θ (n) = θn = arctan
y(n)− y(n−w)
x(n)− x(n−w)

, (2.4)

where (x(n) ,y(n)) is the position of the point and w is a step of selected length. The tangent

angle signature represents changes in the shape boundary directions, which are important

to the human visual system.

2.2.1.3 Complex coordinates signature

The complex coordinates signature transform coordinates of boundary points,

Pn(x(n),y(n)) into a complex function [40]:

z(n) = [x(n)− cx]+ i [y(n)− cy] . (2.5)

The complex coordinates signature is also translation invariant, because of the subtraction

of the centroid.

2.2.2 Chain code and chain code histogram

The chain code representation [41] is a sequence of numbers that represents the directions

required to trace the contour of the shape. The most common chain code representations

are 4-directional or 8-directional. As shown in Figure 2.3, the direction of each movement

along the shape contour is encoded by the numbering scheme, where i = 0,1,2,3 or i =

0,1, ...,7 represent the directions of a counter-clockwise angle i · π

2 or i · π

4 regarding the
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positive x-axis. A more general chain code representation, which is N-directional (N > 8

and N = 2k), has also been proposed in [42, 48].

(a) (b)

Figure 2.3: Chain code direction (a) Chain code in eight directions ; (b) chain code in four
directions

The chain code histogram (CCH) [43] is a shape representation closely related to the

chain code. In calculating CCH, an n-directional chain code is transformed into an n-

dimensional histogram to reflects the probabilities of different directions present in a shape

contour. Similarity measures such as, the Euclidean distance and the sum of absolute values

can be used for comparing CCH shape descriptors.

2.2.3 Boundary moments

Moments contain important information about a function. The boundary moments are

moments of the complex signature z(n) = x + iy , where x and y are the coordinates of the

shape contour. The kth moment mk and central moment µk are [44]:

mk =
1
N

N

∑
i=1

[z(i)]k (2.6)

and

µk =
1
N

N

∑
i=1

[z(i)−m1]
k . (2.7)
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2.2.4 Simple shape descriptors

Five simple shape descriptors have been introduced in [45]. They are convexity, ratio of

principal axes, compactness, circular variance, and elliptic variance.

2.2.4.1 Convexity

The minimal convex covering of an object is called a convex hull, as shown in Figure 2.4.

Convexity is defined as the ratio of perimeters of the convex hull Pconvexhull over that of the

original contour P [45]:

Convexity =
Pconvexhull

P
. (2.8)

Figure 2.4: Shape contours and convex hulls

2.2.4.2 Ratio of principle axes (Eccentricity)

When the sampled points xi =

(
xi

yi

)
of the shape contour are treated as statistical data,

the principle component direction and the secondary principle component direction of the

data can be found, as shown in the samples in Figure 2.5. The covariance matrix C of those

statistical data can also be calculated. The ratio of the principle axes or eccentricity, Rpr_ax

is defined as the ratio between the lengths of the principle axes or the ratio between the two

eigenvalues λ1,2 of the covariance matrix C. If we denote the elements of the covariance

matrix C as [45]:
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C =

(
cxx cxy

cyx cyy

)
, (2.9)

the ratio of principle axes can also be calculated as[45]:

Rpr_ax =
cyy + cxx−

√
(cyy + cxx)

2−4
(
cxxcyy− c2

xy
)

cyy + cxx +
√

(cyy + cxx)
2−4

(
cxxcyy− c2

xy
) . (2.10)

This makes it possible to avoid the computation of eigenvalues.

Figure 2.5: Principle and secondary axes of the shape contours

2.2.4.3 Compactness

The compactness of a contour is defined as the ratio of the squared perimeter of the contour

and the area enclosed by the contour [45]. When the contour is a circle, the contour will

have the smallest compactness value (2πr)2

πr2 = 4π . Figure 2.6 shows shape contours and the

circle with equal amounts of area enclosed.
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Figure 2.6: Shape contour and the circle with equal amount of area enclosed

2.2.4.4 Circular variance

The circular variance is a measure of the proportional mean-squared error with respect to

solid circle. It is defined as [45]:

cvar =
1

Nµ2
r
∑

i
(‖pi−µ‖−µr)

2 , (2.11)

where N is the number of sample points, µ = 1
N ∑pi

i
is the centroid, and µr = 1

N ∑
i
‖pi−µ‖

is the mean variance. The circular variance of a circle is zero.

2.2.4.5 Elliptic variance

Elliptic variance is a measure of how much the shape fits in an ellipse with the same co-

variance matrix as that of the shape, i.e., C = Cellipse. It is defined as:

evar =
1

Nµrc
∑

i

(√
(pi−µ)T C−1 (pi−µ)−µrc

)2

, (2.12)

where

µrc =
1
N ∑

i

√
(pi−µ)T C−1 (pi−µ). (2.13)

Table 2.1, show shapes and their simple shape descriptor values. As we can see from

the table, simple shape descriptors have their limitations: different shapes could have very
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similar simple shape descriptor values. Simple shape descriptors can only be used to dis-

criminate shapes with large differences. However, as they are simple and easy to extract,

they are suitable to be used as prefilters, and to be used together with other shape descrip-

tors.

Circular Elliptic
Convexity Eccentricity Compactness Variance Variance

0.8375 0.6957 18.0863 0.0248 0.0398
0.8074 0.3342 38.4434 0.1683 0.1697
0.4499 0.4271 96.6635 0.1665 0.2017
0.8833 0.6436 21.4946 0.0351 0.0375
0.7275 0.5099 34.2587 0.0999 0.1047
0.8827 0.0472 31.6433 0.2423 0.2641
0.9693 0.0963 28.8950 0.1811 0.0459
0.9038 0.1791 24.7461 0.1186 0.0327
0.6925 0.4609 42.5661 0.1965 0.1967
0.6091 0.3782 36.4780 0.0770 0.0843
0.8884 0.2532 22.9290 0.0951 0.0294
0.6721 0.1776 38.7590 0.2212 0.1702
0.6975 0.2761 30.0804 0.1078 0.1079
0.9525 0.1942 21.9372 0.1088 0.0297
0.6411 0.6001 34.0558 0.0956 0.1274
0.8999 0.1161 24.3948 0.1543 0.0309
0.7207 0.2277 37.1684 0.1270 0.0747
0.8322 0.1945 26.3032 0.1216 0.0498
0.9691 0.2367 20.9168 0.0971 0.0535
0.5892 0.5135 38.9036 0.1229 0.1712
0.7059 0.6821 24.0706 0.0805 0.1100
0.4528 0.3269 56.4532 0.1012 0.1133
0.6887 0.9882 53.5000 0.1144 0.1531
0.8141 0.9888 26.7089 0.0249 0.0348
0.4826 0.9578 98.9508 0.0918 0.1240

Table 2.1: Shapes and their simple shape descriptor values
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2.2.5 Curvature scale space (CSS) representation

The curvature scale space shape representation [46] was introduced by Abbasi et al. Based

on the scale space theory, the contour of a shape is convoluted with 1D Gaussian functions

with increasing variances. The curvatures of the evoluting shape contour are calculated to

form the CSS image. The maxima of the CSS image is the CSS shape representation.

2.2.5.1 CSS representation

The curvature of a plane curve is defined as

κ (s) = lim
h→0

φ

h
, (2.14)

where φ is the angle between t(s) and t(s+h). t represents the tangent vector and s is the

arc length parameter. Curvature-zero crossings of a curve are points where κ = 0.

When the curve of the shape contour is represented as:

Γ(u) = (x(u) ,y(u)), (2.15)

where u is an arbitrary parameter. The curvature function is calculated using the following

formula:

κ (u) =
ẋ(u) ÿ(u)− ẍ(u) ẏ(u)(

ẋ2 (u)+ ẏ2 (u)
) 3

2
, (2.16)

where ẋ(u), ẏ(u) are the first and ẍ(u), ÿ(u) are the second derivatives of the components

x(u) and y(u) with respect to the parameter u.

In extracting the CSS representation, curve smoothing is performed prior to curva-

ture measurement to reduce the effects of noise. Each coordinate of the curve is con-

volved with a 1-D Gaussian function g(u,σ). The resulting smoothed contour is Γσ (u) =

(X (u,σ) ,Y (u,σ)), where

X (u,σ) = x(u)∗g(u,σ) (2.17)

and
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Y (u,σ) = y(u)∗g(u,σ) . (2.18)

According to the properties of convolution, the first derivative of the components,

Xu (u,σ) and Yu (u,σ), can be calculated as:

Xu (u,σ) = x(u)∗gu (u,σ) (2.19)

and

Yu (u,σ) = y(u)∗gu (u,σ) , (2.20)

where gu (u,σ) is the first derivative of the Gaussian function. Similarly, the second deriva-

tive of the components, Xuu (u,σ) and Yuu (u,σ), can be calculated as:

Xuu (u,σ) = x(u)∗guu (u,σ) (2.21)

and

Yuu (u,σ) = y(u)∗guu (u,σ) , (2.22)

where guu (u,σ) is the second derivative of the Gaussian function. The curvature of the

smoothed curved can be calculated as

κ (u,σ) =
Xu (u,σ)Yuu (u,σ)−Xuu (u,σ)Yu (u,σ)(

Xu (u,σ)2 +Yu (u,σ)2
) 3

2
. (2.23)

Figure 2.7 shows the curve Γσ of the contours, corresponding to the two duck shapes.

These two duck shapes are actually the rotated version of each other. The curve Γσ are

smoothed after being convolved with Gaussian functions of increasing width σ . As the

value of σ increases the curve Γ shrinks and becomes smoother. That process is called the

evolution of Γ.

The CSS image of the curve is generated by displaying the locations of curvature zero-

crossings of every Γσ in the (u,σ) plane, where u is the normalized arc length and σ is
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the width of the Gaussian function. In a CSS image, the intersection of a horizontal line

with the contour indicates the location of the curvature zero-crossings on the corresponding

evolved curve. Figure 2.8 shows two CSS images, corresponding to the two duck shapes

used in Figure 2.7. On each of the contours in a CSS images, there are usually two curvature

zero-crossing points. As σ increases, the two curvature zero-crossing points of a contour

merge to one point at the top of the contour. That point is called the CSS maximum. The

maxima in a CSS image are used to represent the corresponding shape. Those maxima

less than one sixth of the largest maximum of the same CSS image, are excluded in the

CSS shape representation, as they are usually related to noise or small ripples of the curve.

Each maximum will need two integer numbers to represent the height and the location.

The CSS shape representation usually consists of several pairs of integer numbers. The

examples in Figure 2.8 will need seven pairs of integer numbers. The size of the CSS

representation is relatively small in comparison with other representations. If a shape is

rotated, its corresponding CSS representation will shift circularly, as shown in the examples

in Figure 2.8. Because of the arc length normalization and the same number of sampling

points are used, scaling will not affect the CSS representation.
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(a)

(b)

Figure 2.8: The CSS images and the maxima (the maxima are indicated using red squares)
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2.2.5.2 CSS distance measure

In calculating the distance between two CSS shape representations, the two sets of CSS

maxima are horizontally circular shifted to make the best possible match. The summation

of the Euclidean distances between the relevant pairs of maxima is the matching value. The

effect of mirroring is also considered, by flipping one of the CSS image horizontally and

calculating the CSS image matching value again. The smaller one of the two CSS image

matching values is chosen as the final CSS descriptor distance value.

2.3 Region-based shape representation and their extrac-

tions

Contour-based shape representation and retrieval methods can be used for simple shape im-

age retrieval, but not for complex shape image retrieval. Region-based methods, however,

do not have such limitations. In this section, the following commonly used region-based

shape representations will be reviewed:

1. The Fourier-wavelet descriptor (FWD) [49]: It plots the polar image of a shape into

Cartesian coordinates, and treats the radial and angular axes as the new x and y axes.

In order to extract the shape descriptor, FWD applies the 1-D Fourier transform and

the 1-D wavelet transform along the new angular-axis and along the new radial-axis,

respectively.

2. The generic Fourier descriptor (GFD) [50]: It also plots the polar image of a shape

into Cartesian coordinates, and treats the radial and angular axes as the new x and y

axes. Different from the FWD, the GFD applies 2-D Fourier transform on the new

image to extract the shape descriptor.

3. The R-transform [51] shape representation: It is based on the 2D Radon transform

[52], and is the integral of the square of the the 2D Radon transform of a shape image.

4. The geometric moment descriptor (GMD) [53]: It is extracted by projecting shape

image as a 2D function onto real polynomial bases
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5. The complex moment descriptor (CMD) [54]: It is extracted by projecting a shape

image onto complex polynomial bases, instead of onto real polynomial bases as in

extracting GMD.

The Zernike moment shape descriptor [55, 56], is a special case of complex moment de-

scriptor, and has shown robust performance as a shape descriptor. As it is also used in

developing the affine invariant ICA Zernike moment shape descriptor [38, 39], it will be

discussed in Chapter 6.

2.3.1 Fourier-wavelet descriptor

The Fourier-wavelet descriptor (FWD) [49] is a shape descriptor in the transformed do-

main. To obtain the shape descriptor, the Fourier transform and wavelet transform are

applied once along the angular direction and along the radial direction, respectively. There

three major steps in extracting the Fourier-wavelet descriptor from shape image [49] :

1. Transform the shape image f (x,y) into polar image g(r,θ);

2. Plot the polar image g(r,θ) into Cartesian coordinate, as shown in Figure 2.9 and

Figure 2.10.

3. Apply 1-D Fourier transform on g(r,θ) along the axis of polar angle θ and get its

spectrum: G(r,φ) = ‖FTθ (g(r,θ))‖.

4. Apply 1-D wavelet transform on G(r,φ) along the axis of radius r and get the wavelet

coefficients: WF (r,φ) = WTr (G(r,φ)).

The wavelet coefficients extracted at step 4 are the final shape descriptor, and is used for

shape similarity comparison.
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(a)Complex shape image (b)Polar image in Cartesian coordinates

Figure 2.9: Complex shape image and its corresponding polar image in Cartesian coordi-
nates

(a)Simple shape image (b)Polar image in Cartesian coordinates

Figure 2.10: Simple shape image and its corresponding polar image in Cartesian coordi-
nates

2.3.2 Generic Fourier descriptor

The steps of extracting the generic Fourier descriptor (GFD) [50] is similar to the steps of

extracting the FWD. In extracting the GFD, the shape image is also first transformed into a

polar image, and then plotted into Cartesian coordinates. The difference from the previous

method is that rather than performing a 1D Fourier transform and a 1D wavelet transform
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along the two coordinate axes, a single 2D Fourier transform is performed instead, on the

polar image in Cartesian coordinates.

2.3.3 R-transform representation

R-transform [51] is a shape representation, based on the 2D Radon transform [52]. The

2D Radon transform includes the integral of a function over straight lines. If we define

TR f (ρ,θ) as a 1-D projection of a function f (x,y) at an angle θ , TR f (ρ,θ) is the integral

of the function f (x,y), along a line l that is distance ρ from the origin and at angle θ off

the x-axis, i.e.,

TR f (ρ,θ) =
∫

l
f (x,y)dl. (2.24)

Figure 2.11: Radon transform, projection along line l

Since all points on the line satisfy the equation :

ρ = xsinθ − ycosθ , (2.25)
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the projection function TR f (ρ,θ) can be rewritten as

TR f (ρ,θ) =
∫

∞

−∞

∫
∞

−∞

f (x,y)δ (xsinθ − ycosθ −ρ)dxdy. (2.26)

The R-Transform is defined as:

R f (θ) =
∫

∞

−∞

T 2
R f

(ρ,θ)dρ, (2.27)

and is the integral of the square of the projection function TR f (ρ,θ). Figure 2.12 and

Figure 2.13, show examples of simple images, their corresponding Randon transform and

their corresponding R-transform. Figure 2.14 and Figure 2.15, show examples of complex

images, their corresponding Randon transform and their corresponding R-transform.

2.3.4 Geometric moment descriptor

Moments are used to characterize a function and to capture its significant features. They

can be obtained by projections of a function onto a polynomial basis. In 2D shape repre-

sentation, the most commonly used polynomial basis is xiy j, which leads to the geometric

moments [53]:

mpq =
∫∫

G
xpyq f (x,y)dxdy. (2.28)

Their corresponding central moments are:

µpq =
∫∫

G
(x− xc)p(y− yc)q f (x,y)dxdy. (2.29)

And the discrete forms are:

µpq = ∑
x
∑
y

(x− xc)p(y− yc)q f (x,y). (2.30)

Low order geometric moments often have physical meanings. For binary shape images,

m00 is the area of the shape image; m10 and m01are the centroid of the shape; m20 and m02
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are the variance of the shape along the two coordinates; m11 are the covariance between

them.

In his pioneering work, Hu [53] derived seven famous moments:

Φ1 = ν20 +ν02, (2.31)

Φ2 = (ν20−ν02)2 +4ν11, (2.32)

Φ3 = (ν30−3ν12)2 +(3ν21−ν03)2, (2.33)

Φ4 = (ν30 +ν12)2 +(ν21 +ν03)2, (2.34)

Φ5 = (ν30−3ν12)(ν30 +ν12)[(ν30 +ν12)2−3(ν21 +ν03)2]

+ (3ν21−ν03)(ν21 +ν03)[3(ν30 +ν12)2− (ν21 +ν03)2], (2.35)

Φ6 = (ν20−ν02)[(ν30 +ν12)2− (ν21 +ν03)2]

+ 4ν11(ν30 +ν12)(ν21 +ν03), (2.36)

Φ7 = (3ν21−ν30)(ν30 +ν12)[(ν30 +ν12)2−3(ν21 +ν03)2]

+ (3ν12−ν03)(ν21 +ν03)[3(ν30 +ν12)2− (ν21 +ν03)2], (2.37)

where νpq = µpq/(µ00)(2+p+q)/2 for p+q = 2,3, .... Those seven moments are invariant to

rotation, translation and scale change.
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2.3.5 Complex moment descriptor

Another popular choice of the polynomial basis is (x+ iy)k (x− iy) j, which leads to the

geometric moment descriptor [54]:

cpq =
∫∫

G
(x+ iy)p(x− iy)q f (x,y)dxdy. (2.38)

Complex moments can be expressed using the geometric moments of the same order as

cpq =
p

∑
k=0

q

∑
j=0

(
p

k

)(
q

j

)
(−1)q− j � ip+q−k− j �mk+ j,p+q−k− j, (2.39)

and vice versa

mpq =
1

2p+qiq

p

∑
k=0

q

∑
j=0

(
p

k

)(
q

j

)
(−1)q− j � ck+ j,p+q−k− j. (2.40)

2.4 Summary

In this chapter, previously known shape representations and their extractions have been re-

viewed. Generally speaking, they can be divided into two categories: contour-based and

region-based. Shape signatures, chain code histograms and contour scale-space are all ex-

amples of contour-based shape representations while the Fourier-wavelet, generic Fourier,

R-transform and the moment descriptors are examples of region-based representations.

Contour-based shape representations can only describe simple shapes, while region-based

shape representations can describe both simple and complex ones. Both contour-based and

region-based shape representations have been reviewed in this chapter to give a general

picture of shape features and their extraction.

Although regular shape representations are not affine invariant, they have inspired the

development of affine invariant ones. Some affine invariant shape representations are mod-

ified from regular shape representations. This will be evident, when we review and evaluate

previously known affine invariant shape representations, in the next chapter.
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Chapter 3

Review and Performance Study of
Previous Affine-Invariant Shape
Representations

3.1 Introduction

In the last chapter, we reviewed different regular shape representations. Although those

representations are not affine-invariant, they are sometimes related to the affine-invariant

ones. As the goal of this research is to develop new and robust affine-invariant shape

representations, previously known ones need to be studied and evaluated first.

Various affine-invariant shape representations have been proposed in the past. In [57,

58, 59], affine-invariant shape descriptor have been derived from the Fourier transform of

the object contour. In [1, 60, 61], wavelet transform of the object contour has been used

to derive affine-invariant functions. In [62, 63], curvature scale space was used in affine-

invariant shape-based retrieval. In [64, 65], independent component analysis was used to

derive affine-invariant shape signatures. In [66, 67, 68, 69, 70], different affine-invariant

moments were developed.

The rest of the chapter is organized as follows: In Section 3.2, we will first review

the definition of the affine transformation; In Section 3.3, we will review two important

affine-invariant parametrization methods. From Section 3.4 to 3.8, five previously known
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affine-invariant shape representations are described in detail. Section 3.9, compares the

retrieval experiment performances of those representations. The last section summarizes

this chapter.

3.2 Affine transformation

A shape image of the object taken from a view point could be linked with another shape

image of the same object approximately by an affine transformation, if it is viewed from

a larger distance than its size along the line of sight [34]. Since images in a database are

often geometrically distorted by the change of viewpoints, the affine transform is of great

importance in image analysis.

Using a vector-matrix notation, an affine transformation can be defined as:

xa = Ax+T, (3.1)

where x = [x,y]T and xa = [xa,ya]
T are the vectors that contain the coordinates of the

original and the affine transformed shape images, respectively. The 2×2 nonsingular matrix

A can be decomposed as follow:

A =

[
sx 0

0 sy

][
1 α

0 1

][
cosθ −sinθ

sinθ cosθ

]
, (3.2)

where s, α and θ represent scale, skew and rotation, respectively. Sx and sy are the scaling

factors in the x and the y directions, respectively. When sx and sy are of different signs, it

corresponds to a reflection. The 2×1 vector T = [Tx,Ty]
T represents the translation. When

the effect of translation is eliminated by setting the origin of the coordinate system to the

centroid of the shape, Equation 3.1 reduces to:

xa = Ax. (3.3)
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3.3 Affine-invariant parameters

The arc length parameter, which is normally used in regular contour-based shape repre-

sentations, is transformed non-linearly under an affine transformation. However, most of

the contour-based affine-invariant shape recognition methods will require a parameter that

is linear under an affine transformation. For example, the affine-invariant Fourier shape

descriptor [57], utilizes the property of the Fourier transform that preserves the linearity of

affine transform. That property is valid, if and only if the parameter transformation is also

linear. Therefore, the arc length parameter that is not linear under affine transformation,

is not suitable to parametrize shape contours under affine transformation. To overcome

that problem, affine-invariant parameters need to be used. There are two kinds of affine-

invariant parameters that are linear under an affine transformation: One is the affine arc

length [71], the other is the enclosed area parameter [57].

3.3.1 Affine arc length

The affine arc length τ is defined as [71]:

τ =
∫ b

a

3
√

ẋ(t)ÿ(t)− ẍ(t)ẏ(t)dt, (3.4)

where ẋ(t), ẏ(t) are the first derivatives and ẍ(t), ÿ(t) are the second derivatives of the

components of x(t) and y(t) with respect to the arc length parameter t. The limits a and b

denote the beginning and the end of a segment of the contour. It can be made completely

invariant by normalizing it with respect to the total affine arc length of the contour. The

main disadvantage of the affine arc length is that its computation requires second order

derivatives, which are susceptible to noise. A more stable and popular affine-invariant

parameter is the enclosed area parameter.

3.3.2 Enclosed area parameter

The enclosed area parameter is derived based on the property of the affine transform that all

areas are changed by the same ratio under an affine mapping [72]. For example, in Figure

3.1, the areas of all the sectors in the transformed object are transformed by the same ratio
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Figure 3.1: All areas are changed in the same ratio under an affine mapping (Figure from
[1])

to the areas of the corresponding sectors in the original object, while the segments of the

contour are not transformed in the same ratio to the the segments of the original contour.

The enclosed area parameter η , which is linear under an affine transformation, is de-

rived [57]:

η =
1
2

∫ b

a
|x(t)ẏ(t)− y(t)ẋ(t)|dt, (3.5)

where x(t) and y(t) are the coordinates of the points on the contour. The origin of the

coordinate system is set at the centroid of the contour. The enclosed area parameter η is

a sum of the triangular areas which are created by linking the two points on the contour

and the origin. It can be made completely invariant by normalizing it with respect to the

total enclosed area of the contour. Since calculating the enclosed area parameter does not

require the use of the second derivative, it avoids all the shortcomings and it is currently

more widely used in contour-based affine-invariant shape representations.

3.4 Affine-invariant Fourier shape descriptor

The affine-invariant Fourier shape descriptor (AIFSD), which uses the enclosed area pa-

rameter, was first proposed in [57]. When the effect of translation is eliminated by setting

the origin of the coordinate system to the centroid of the object contour, we have:

36



[
xa(n)

ya(n)

]
=

[
a11 a12

a21 a22

][
x(n)

y(n)

]
. (3.6)

After applying the Fourier transform to both side of Equation3.6, we have[
Xa

k

Y a
k

]
=

[
a11 a12

a21 a22

][
Xk

Yk

]
, (3.7)

where Xk and Yk represent the kth Fourier coefficients resulting from the Fourier transform

on x(n) and y(n). Similarly, we can get the equation for the pth Fourier coefficients:[
Xa

p

Y a
p

]
=

[
a11 a12

a21 a22

][
Xp

Yp

]
. (3.8)

Combining Equation 3.7 and Equation 3.8, we can get:[
Xa

k

Y a
k

(Xa
p)∗

(Y a
p )∗

]
=

[
a11 a12

a21 a22

][
Xk

Yk

X∗p
Y ∗p

]
. (3.9)

After taking the determinants of both sides of Equation 3.9, we have:

det

[
Xa

k

Y a
k

(Xa
p)∗

(Y a
p )∗

]
= det

[
a11 a12

a21 a22

]
�det

[
Xk

Yk

X∗p
Y ∗p

]
. (3.10)

When k = p, from Equation 3.10, we have:

det

[
Xa

p

Y a
p

(Xa
p)∗

(Y a
p )∗

]
= det

[
a11 a12

a21 a22

]
�det

[
Xp

Yp

X∗p
Y ∗p

]
. (3.11)

Combining Equation 3.10 and Equation 3.11, we have
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Qk =

det

[
Xa

k

Y a
k

(Xa
p)∗

(Y a
p )∗

]

det

[
Xa

p

Y a
p

(Xa
p)∗

(Y a
p )∗

] =

det

[
a11 a12

a21 a22

]
�det

[
Xk

Yk

X∗p
Y ∗p

]

det

[
a11 a12

a21 a22

]
�det

[
Xp

Yp

X∗p
Y ∗p

] =

det

[
Xk

Yk

X∗p
Y ∗p

]

det

[
Xp

Yp

X∗p
Y ∗p

] .

(3.12)

or

Qk =
Xa

k Y a∗
p −Y a

k Xa∗
p

Xa
pY a∗

p −Y a
p Xa∗

p
=

XkY ∗p −YkX∗p
XpY ∗p −YpX∗p

. (3.13)

As the determinant of the affine transform matrix:

det

[
a11 a12

a21 a22

]
is canceled out and not included in Qk, Qk is affine-invariant.

Figures 3.2-3.5 show shape images and their corresponding AIFSDs. The shape images

in Figure 3.2 and Figure 3.3 are affine related, so are the shape images in Figure 3.4 and

Figure 3.5. As we can see, the AIFSDs of the affine related shape images are almost the

same, while the AIFSDs of the unrelated shape images are not the same. So, the AIFSD

can be used to discriminate between affine related shape images and unrelated ones.

(a)shape image (b)affine-invariant Fourier shape descriptor

Figure 3.2: Shape image and its corresponding AIFSD
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(a)shape image (b)affine-invariant Fourier shape descriptor

Figure 3.3: Shape image and its corresponding AIFSD

(a)shape image (b)affine-invariant Fourier shape descriptor

Figure 3.4: Shape image and its corresponding AIFSD
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(a)shape image (b)affine-invariant Fourier shape descriptor

Figure 3.5: Shape image and its corresponding AIFSD

3.5 Affine-invariant wavelet-based shape representation

The affine-invariant wavelet-based shape representation (AIWSR) was first introduced in

[1], and has since been modified to other wavelet based representations, such as those in

[61].

In extracting the AIWSR, the origin of the coordinate system is first moved to the

centroid of the object contour, so that the effect of translation is eliminated. This results

with: [
xa(n)

ya(n)

]
=

[
a11 a12

a21 a22

][
x(n)

y(n)

]
(3.14)

By applying undecimated wavelet transform [73, 74, 75, 76] to both sides of Equation 3.14,

we have: [
Axa

j (k)

Aya
j (k)

W xa
j (k)

W ya
j (k)

]
=

[
a11 a12

a21 a22

][
Ax

j(k)

Ay
j(k)

W x
j (k)

W y
j (k)

]
, (3.15)

where A j and Wj denotes the approximation and the detail wavelet coefficients at a partic-

ular resolution level j . Similarly, we can also get the equation at resolution level p:
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[
Axa

p (k)

Aya
p (k)

W xa
p (k)

W ya
p (k)

]
=

[
a11 a12

a21 a22

][
Ax

p(k)

Ay
p(k)

W x
p (k)

W y
p(k)

]
, (3.16)

By taking the determinants on both sides of Equation 3.15 and Equation 3.16, and combin-

ing the results together, we can get the wavelet based affine-invariant shape representation:

M j(k) =
Axa

j (k)W ya
j (k)−Aya

j (k)W xa
j (k)

Axa
p (k)W ya

p (k)−Aya
p (k)W xa

p (k)
=

Ax
j(k)W

y
j (k)−Ay

j(k)W
x
j (k)

Ax
p(k)W

y
p(k)−Ay

p(k)W x
p (k)

. (3.17)

Figure 3.6 and Figure 3.7 show a pair of affine related shape images and their cor-

responding AIWSR; Figure 3.8 and Figure 3.9 show another pair of affine related shape

images and their corresponding AIWSR. As we can see, the AIWSRs of the affine related

shape images are very similar, while the AIWSRs of the unrelated shape images are not. So,

the AIWSR can be used to discriminate between affine related shape images and unrelated

ones.

(a)shape image (b)wavelet based affine-invariant shape
representation (Level of wavelet used,

j=5,p=6.)

Figure 3.6: Shape image and its corresponding AIWSR
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(a)shape image (b)wavelet based affine-invariant shape
representation(Level of wavelet used,

j=5,p=6.)

Figure 3.7: Shape image and its corresponding AIWSR

(a)shape image (b)wavelet based affine-invariant shape
representation(Level of wavelet used,

j=5,p=6.)

Figure 3.8: Shape image and its corresponding AIWSR
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(a)shape image (b)wavelet based affine-invariant shape
representation(Level of wavelet used,

j=5,p=6.)

Figure 3.9: Shape image and its corresponding AIWSR

3.6 Affine-invariant curvature scale space shape descrip-

tor

The affine-invariant curvature scale space shape descriptor (AICSSSD) [62, 77] is extended

from the curvature scale space shape descriptor (CSSSD) [78, 79]. In [77], Abbasi and

Mokhtarian show that the CSSSD has only minor changes after a shape undergoes affine

transformation. And the change is even smaller, when affine-invariant parametrization is

also applied. Figures 3.10-3.13, show the shape images and their corresponding AIC-

SSSDs.

After eliminating the translation effects by centering the shape to the origin, the affine

transformation can be represented as:[
xa(u)

ya(u)

]
=

[
a11 a12

a21 a22

][
x(u)

y(u)

]
, (3.18)

where xa(u) and ya(u) represent the coordinates of the shape after affine transformation,

and x(u) and y(u) represent the coordinates of the shape before the affine transformation.

Since differential operations are linear operations, we have:
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ẋa(u) = a11ẋ(u)+a12ẏ(u), (3.19)

ẏa(u) = a21ẋ(u)+a22ẏ(u), (3.20)

ẍa(u) = a11ẍ(u)+a12ÿ(u), (3.21)

and

ÿa(u) = a21ẍ(u)+a22ÿ(u). (3.22)

Since the curvature of a contour is calculated as:

κ (u) =
ẋ(u) ÿ(u)− ẍ(u) ẏ(u)(

ẋ2 (u)+ ẏ2 (u)
) 3

2
, (3.23)

the curvature of the contour of an affine transformed shape is

κa (u) =
ẋa (u) ÿa (u)− ẍa (u) ẏa (u)(

ẋ2
a (u)+ ẏ2

a (u)
) 3

2
. (3.24)

Combining Equation3.19-Equation3.22 and Equation3.24, we have

κa (u) =
˙(a11a22−a12a21)(x(u) ÿ(u)− ẍ(u) ẏ(u))(

(a11ẋ(u)+a12ẏ(u))2 +(a11ẋ(u)+a12ẏ(u))2
) 3

2
. (3.25)

As the zero crossings of κ (u) in Equation3.23 and κa (u) in Equation 3.25 are both deter-

mined by ẋ(u) ÿ(u)− ẍ(u) ẏ(u) in the numerators, the locations of the zero crossings on

the curvatures of both the original and the affine transformed shapes are the same.

Figure 3.10 and Figure 3.11 show a pair of affine related shape images and their corre-

sponding AICSSSDs. Figure 3.12 and Figure 3.13 show another pair of affine related shape

images and their corresponding AICSSSDs. The AICSSSDs of the two affine related but-

terfly shapes match very well. The AICSSSDs of the two affine related pentagon shapes
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match less well. The AICSSSD in Figure 3.12(b) has less components than the one in Fig-

ure 3.13. The reason is that these components with small values have been discarded. We

can recall from Subsection 2.2.5.1, that those components less than on sixth of the largest

components of the same CSS image are excluded in the shape representation. Overall, the

affine-related AICSSSDs are similar and the affine-unrelated AICSSSDs are not similar.

Therefore, the AICSSSDs can be used to discriminate between affine related shape images

and unrelated ones.

(a)shape image (b)its corresponding AICSSSD

Figure 3.10: Shape image and its corresponding AICSSSD

(a)shape image (b)its corresponding AICSSSD

Figure 3.11: Shape image and its corresponding AICSSSD
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(a)shape image (b)its corresponding AICSSSD

Figure 3.12: Shape image and its corresponding AICSSSD

(a)shape image (b)its corresponding AICSSSD

Figure 3.13: Shape image and its corresponding AICSSSD

3.7 Affine moment invariants by Taubin and Cooper

The affine-invariant representations we have discussed so far, are all contour-based and are

limited to simple shapes. But many times, we would prefer to have region-based ones,

since they are not limited to simple shapes.

The affine moment invariants, proposed by Taubin and Cooper (AMI-TC) [69], are

region-based affine-invariant shape representation. They are eigenvalues of moment matri-

ces. Altogether, there are eight proposed AMI-TCs, which consist of two eigenvalues of the

symmetric 2×2 moment matrix M′[1,2]M
′
[2,1] , three eigenvalues of the 3×3 moment matrix
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M′[2,2], two eigenvalues of the 2×2 moment matrix M′[1,2]M
′
[2,2]M

′
[2,1] , and the value of the

1×1 moment matrix M′[0,2]M
′
[2,2]M

′
[2,0]. These matrices of centered moments are computed

not with respect to the original coordinate system, but with respect to the coordinate sys-

tem defined by x′ = Lx , where L is a 2× 2 lower triangular matrix of the results of the

Cholesky decomposition [80] of M[1,1], and M[1,1] is the 2×2 matrix of centered moments

with respect to the original coordinate system.

The steps of calculating those AMI-TCs could be summarized as following:

1. Calculate M[1,1] =

[
µ2,0 µ1,1

µ1,1 µ0,2

]
, where µpq are the centered moments defined in

Equation3.34;

2. Calculate the 2×2 lower triangular matrix L of the Cholesky decomposition of M[1,1];

3. Calculate the coordinates of pixels of the shape in the new coordinate system, using

x′ = Lx , where x′ =

[
x′

y′

]
and x =

[
x

y

]
are the coordinates of pixels of shape in

the new and the original coordinate systems;

4. Calculate µ ′pq , the centered moments in the new coordinate system, using x′;

5. Calculate M′[1,2]M
′
[2,1] , M′[1,2]M

′
[2,2]M

′
[2,1], and M′[0,2]M

′
[2,2]M

′
[2,0], the matrices of the

the centered moments in the new coordinate system, where

M′[1,2] =

 1√
2
µ ′3,0 µ ′2,1

1√
2
µ ′1,2

1√
2
µ ′2,1 µ ′1,2

1√
2
µ ′0,3

 , (3.26)

M′[2,1] = M′[1,2], (3.27)

M′[2,2] =


1
2 µ ′4,0

1√
2
µ ′3,1

1
2 µ ′2,2

1√
2
µ ′3,1 µ ′2,2

1√
2
µ ′1,3

1
2 µ ′2,2

1√
2
µ ′1,3

1
2 µ ′0,4

 , (3.28)

and

M′[0,2]M
′
[2,2]M

′
[2,0] =

1
4

µ
′
4,0 +

1
4

µ
′
0,4; (3.29)
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6. Calculate the eigenvalues of M′[1,2]M
′
[2,1] , M′[1,2]M

′
[2,2]M

′
[2,1], and M′[0,2]M

′
[2,2]M

′
[2,0] as

the AMI-TCs.

In [69], the retrieval experiment using the AMI-TC is limited to a seven image database,

which is rather too small to support its effectiveness. This shape representation doesn’t

work well under large testing databases, as we will see in Section 3.9.

3.8 Affine moment invariants by Flusser and Suk

In [66, 67, 68], Flusser and Suk proposed four affine moments invariants (AMI-FS), which

are also invariant to affine transformations. They are:

I1 =
1

µ4
00

(µ20µ02−µ
2
11), (3.30)

I2 =
1

µ10
00

(µ
2
30µ

2
03−6µ30µ21µ12µ03 +4µ30µ

3
12 +4µ03µ

3
21−3µ

2
21µ

2
12), (3.31)

I3 =
1

µ7
00

(µ20(µ21µ03−µ
2
12)−µ11(µ30µ03−µ21µ12)+ µ02(µ30µ12−µ

2
21)), (3.32)

and

I4 =
1

µ11
00

(µ
3
20µ

2
03−6µ

2
20µ11µ12µ03−6µ

2
20µ02µ21µ03

+9µ
2
20µ02µ

2
12 +12µ20µ

2
11µ21µ03

+6µ20µ11µ02µ30µ03−18µ20µ11µ02µ21µ12

−8µ
3
11µ30µ03−6µ20µ

2
02µ30µ12

+9µ20µ
2
02µ

2
21 +12µ

2
11µ02µ30µ12

−6µ11µ
2
02µ30µ21 + µ

3
02µ

2
30), (3.33)
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where

µpq =
∫∫

G
(x− xc)p(y− yc)q f (x,y)dxdy, (3.34)

and (xc,yc) is the centroid of the shape.

The AMI-FS works better than the AMI-TC, which we will see from the experimental

results in Section 3.9.

3.9 Experimental results

In the above sections, many previously known affine-invariant techniques have been de-

scribed. In this section, we test and compare them in retrieval experiments.

3.9.1 Test database

Because contour-based affine-invariant shape representations can be applied only to simple

shapes, retrieval experiments were only done on simple shape databases. On the other hand,

region-based shape representations can be applied to both simple and complex shapes, so

they were tested on both simple and complex shape databases. As current image segmenta-

tion techniques are not perfect, segmented shapes are often corrupted with boundary noise.

In order to test the performance of the shape representations under noisy conditions, re-

trieval experiments have also been done on simple shape databases with noise added to the

shape boundaries. The test shape database is given in details in the following:

• Complex shape database: Each of the 50 complex shape silhouette images, shown

in Figure 3.15, were affine transformed using 80 different transformation matrices,

creating a 50 × 80 = 4000 image complex shape test database. The parame-

ters of the transformation in the experiments were: θ ∈ [0,π/6,3π/5,6π/7] ,α ∈
[0,0.25,0.5,0.75,1] ,(sx = sy = 1) ,(sx = 0.7,sy =−0.7) ,(sx = sy = 2) ,(sx = 1,sy = 2),

where the relationship between the transformation matrix A and those parameters

are:

A =

[
sx

sy

][
1 α

1

][
cosθ −sinθ

sinθ cosθ

]
.
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• Simple shape databases (noise free): 70 different simple shape silhouette images of

different classes, were selected from the MPEG-7 CE Shape-1 Part-B data set [81]

(Figure 3.14). Each of them are affine transformed using the same 80 transformation

matrices used in creating the complex shape database. Altogether, there are 70×80 =

5600 shape images in the simple shape database.

• Simple shape databases with boundary noise: Because shape segmentation tech-

niques are often not perfect, the boundary of the shape is often corrupted by white

Gaussian noise. To see the effect of boundary noise on the performance of the shape

representations, simple shape databases with boundary noise were also used in the ex-

periments. Based on the noise free simple shape database, zero-mean Gaussian noise

with SNRdB = 30dB, 26.9897dB, 26.0206dB, 24.7712dB, 23.0103dB, and 20dB,

were added to the shape boundaries to create additional simple shape databases with

boundary noise. Each of the database includes 5600 shape images. Some sample

shapes are shown in Figure 3.16. Zero-mean Gaussian noise is statistical noise that

has a probability density function (pdf) of the zero-mean Gaussian distribution, i.e.,

pd f (x) = 1√
2πσnoise

e
− x2

2σ2
noise , where σnoise is the standard deviation of the noise. The

signal-to-noise ratio (SNR) is defined as the power ratio between the shape centroid

distance and the shape boundary noise: SNR = Pcd
Pnoise

= (Acd)2

(σnoise)
2 , where Pcd and Pnoise

are the average power of the centroid distance function and the noise, respectively,

Acd is the root mean square amplitude of the centroid distance function. In decibels,

the SNRdB is defined as: SNRdB = 10log10
Pcd

Pnoise
= 20log10

Acd
σnoise

.

In [69], the retrieval experiment is limited to a seven image database. In [60] and [65],

the testing databases include only twenty shape images. In [67], the size of the testing

database is twenty-five. In [61], the test database consists of 1400 shape images. In [62],

the test database consists of 5000 shape images. It’s always prefered to use a large database

for retrieval experiments, since shape representations that work well under small testing

databases, may not work well under large ones.

The testing databases used in this work are far larger than most of those used in the ex-

periments of other works. In addition, different amounts of affine distortion are included in
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the testing shape images, and different levels of noise have been added to the shape bound-

ary, to test the performance of the shape representations under noisy conditions. Thus, the

experimental sets are more complete and rigid than those in other works.

3.9.2 Distance measure

In comparing two shape features, different distance measures will be used, depending on

the kind of shape representation used.

• For the AIWSR, where the shape representation is a discrete function or a long dis-

crete sequence of values, the normalized cross-correlation coefficient [61] are used in

the experiments to measure the similarities between two shape representations. The

normalized cross-correlation coefficient Rab(l) is defined as [61]:

Rab(l) = ∑l ∑k akbk−l√
∑k a2

k ∑k b2
k

, (3.35)

where ak and bk are two sequences under comparison, k is the index of the elements

in the sequence, l is the step size of a circular shift. Since the cross-correlation

coefficient is not translation invariant, one of the sequences, ak or bk , is shifted

circularly step by step, the value of the correlation under each shift is calculated, and

the maximum is selected as the similarity between two shape representations. Such a

procedure is used to solve the problem caused by the variation of the shape boundary

starting point.

• For those shape descriptors, the AIFSD, the AMI-TC, and the AMI-FS, where the

shape representations are vectors, each of them will be tested using two different

distance measures. The two distance measures are the Euclidean distance and the

sum of absolute distance.
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Figure 3.14: 70 Benchmark shape images from MPEG-7 Shape B
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Figure 3.15: 50 Benchmark shape images
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(a)Fish

(b)Elephant

(c)Tree

Figure 3.16: Sample shape images with zero-mean Gaussian noise added to the shape
boundaries
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– The Euclidean distance between two vectors p = [p1, p2, ..., pN ] and q =

[q1,q2, ...,qN ] is defined as:

DEucliedean(p,q) =
√

(p1−q1)2 +(p2−q2)2 + · · ·+(pN−qN)2

=

√
N

∑
i=1

(pi−qi)2 (3.36)

– The sum of absolute differences (SAD) between two vectors p = [p1, p2, ..., pN ]

and q = [q1,q2, ...,qN ] is defined as:

DSAD(p,q) = |p1−q1|+ |p2−q2|+ ...+ |pN−qN |

=
N

∑
i=1
|pi−qi| (3.37)

• For the AICSSSD, the distance measure is the same as the CSSSD distance measure,

which was described in Subsection 2.2.5.2.

3.9.3 Retrieval accuracy

The average precision-recall graphs are used as the measure of retrieval accuracy to see the

effectiveness of the affine-invariant shape representations. Precision is defined as:

Precision =
Number o f Retrieved Relevant Images

Number o f Retrieved Images
;

Recall is defined as:

Recall =
Number o f Retrieved Relevant Images

Number o f Relevant Images
.

For example, as shown in Figure 3.17, when the number of the relevant images is R, the

number of retrieved images is K, and the number of the retrieved relevant images is G, the

precision rate is:

Precision =
G
K

,
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Figure 3.17: Calculation of precision rate and recall rate.

and the recall rate is:

Recall =
G
R

.

The precision rate at each level of the recall is calculated and recorded, for each query.

The average precision rate using a shape descriptor is the average precision rate of all the

query retrievals using that shape representation. A precision-recall curve that is closer to

the top-right corner of the graph, indicates a better performance.

3.9.3.1 Comparison of the AMI-TC and the AMI-FS

The retrieval performance of the two affine-invariant region-based shape descriptors, the

AMI-TC and the AMI-FS, are compared in Figures 3.18 - 3.25. The experiments have

been done on both the complex shape database, the simple shape database without noise,

and the simple shape database with different levels of noise. The Euclidean distance and

the sum of absolute differences have been used for these experiments. From those average

precision-recall graphs, we can see that the average precision-recall curves of the AMI-FS

are much closer to the upper-right corners of the graphs than the AMI-TC, which indicts

a much better performances of the AMI-FS than the AMI-TC. We can also see that the

performance of the AMI-FS is better, regardless of the distance measure or database. From

Figures 3.19 - 3.25, we can see that the retrieval performances of the shape descriptors

degrade relative to the amount of noise added to the shape boundaries.
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Figure 3.18: Average precision-recall graphs for 4000 objects using different affine-
invariant region-based shape descriptors on the 4000 shape complex shape database.

Figure 3.19: Average precision-recall graphs for 5600 objects using different affine-
invariant shape descriptors on simple shape database without noise.
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Figure 3.20: Average precision-recall graphs for 5600 objects using different affine-
invariant shape descriptors on simple shape database with Gaussian noise at SNRdB=30dB.

Figure 3.21: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=26.9897dB.
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Figure 3.22: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=26.0206dB.

Figure 3.23: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=24.7712dB.
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Figure 3.24: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=23.0103dB.

Figure 3.25: Average precision-recall graphs for 5600 objects using different affine-
invariant shape descriptors on simple shape database with Gaussian noise at SNRdB=20dB.
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Figure 3.26: Average precision-recall graphs for 5600 objects using different affine-
invariant shape descriptors on simple shape database without noise.

3.9.3.2 Comparison of the AIFSD, the AICSSSD, and the AIWSR

The retrieval performances of the three affine-invariant contour-based shape representa-

tions, the AIFSD, the AICSSSD, and the AIWSR, are shown in Figures 3.26 - 3.32. Since

those are contour-based shape representations, they are tested on simple shape databases

with and without noise. The AIWSR performs the worst out of all of the shape represen-

tations in all of the tests. The performance of the AIFSD is better than that of AICSSSD,

on the simple shape database without noise while the performance of the AIFSD is worse

than the AICSSSD on the simple shape database with noise.
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Figure 3.27: Average precision-recall graphs for 5600 objects using different affine-
invariant shape descriptors on simple shape database with Gaussian noise at SNRdB=30dB.

Figure 3.28: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=26.9897dB.
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Figure 3.29: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=26.0206dB.

Figure 3.30: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=24.7712dB.
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Figure 3.31: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=23.0103dB.

Figure 3.32: Average precision-recall graphs for 5600 objects using different affine-
invariant shape descriptors on simple shape database with Gaussian noise at SNRdB=20dB.
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Figure 3.33: Average precision-recall graphs for 5600 objects using different affine-
invariant shape descriptors on simple shape database without noise.

3.9.3.3 Comparison of the AIFSD, the AICSSSD, and the AMI-FS

Here, we compare the performances of the region-based and the contour-based shape rep-

resentations. The AMI-TC and the AIWSR are not included in the comparison, because of

their poor retrieval performances. The performances of the AIFSD, the AICSSSD, and the

AMI-FS, on simple databases, are compared in Figure 3.33 - Figure 3.39.

The region-based AMI-FS, generally performs better than the contour-based AIFSD

and the contour-based AICSSSD, on shape databases with noise. The contour-based shape

descriptors, which rely solely on the contour information of the shape, are more vulnerable

to noise added to the shape boundaries. The region-based shape descriptor, which relies on

the statistical information of all the shape pixels, is less vulnerable to the noise added only

to the shape boundaries.
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Figure 3.34: Average precision-recall graphs for 5600 objects using different affine-
invariant shape descriptors on simple shape database with Gaussian noise at SNRdB=30dB.

Figure 3.35: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=26.9897dB.
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Figure 3.36: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=26.0206dB.

Figure 3.37: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=24.7712dB.
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Figure 3.38: Average precision-recall graphs for 5600 objects using different
affine-invariant shape descriptors on simple shape database with Gaussian noise at
SNRdB=23.0103dB.

Figure 3.39: Average precision-recall graphs for 5600 objects using different affine-
invariant shape descriptors on simple shape database with Gaussian noise at SNRdB=20dB.
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3.9.4 Comparison of extraction time, distance calculation time, and
compactness

Besides the accuracy of the retrieval performance of the shape representations, the compu-

tational time required to extract the shape representations (Table 3.1 and Figure 3.40), the

computational time required to calculate the distance of two features (Table 3.2 and Figure

3.41), and the compactness of the shape representations (Table 3.3 and Figure 3.42) are

all important criteria in evaluating them. The experiments were done on a Linux (Ubuntu

9.04) machine with Intel Core 2 Duo E6600 processor and 4G of RAM memory. The

programming language is Matlab.

From Table 3.1 and Figure 3.40, we see that the AICSSSD requires much more compu-

tational time to extract than other shape representations. From Table 3.2 and Figure 3.41,

we see that the AIWSR requires much more time to calculate feature distance than other

shape representations. From Table 3.3 and Figure 3.42, we see that the AIWSR also has a

much bigger feature size than other shape representations.

Shape Extraction Shape Extraction Shape Extraction
representation time(s) representation time(s) representation time(s)

AIFSD 0.0136 AICSSSD 13.9972 AMI-FS 0.1835
AIWSR 0.1377 AMI-TC 0.0521

Table 3.1: Feature extraction time (seconds)
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Figure 3.40: Comparison of feature extraction time (seconds)

Shape Extraction Shape Extraction
representation time(ms) representation time(ms)
AMI-TC-SAD 0.021 AMI-TC-EUC 0.006
AMI-FS-SAD 0.013 AMI-FS-EUC 0.005
AIFSD-SAD 0.009 AIFSD-EUC 0.006

AICSSSD 18.999 AIWSR 120.478

Table 3.2: Feature distance calculation time (milliseconds)
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Figure 3.41: Comparison of feature distance calculation time (milliseconds)

Shape Size Shape Size Shape Size
representation representation representation

AIFSD 36 AICSSSD (average) 5 AMI-FS 4
AIWSR 512 AMI-TC 8

Table 3.3: Size of the shape representations

Figure 3.42: Comparison of the size of the shape representations
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3.10 Summary

In this chapter, previously developed affine-invariant shape representations have been

reviewed and compared in several different retrieval experiments. For affine-invariant

contour-based shape representations, affine-invariant parameters, instead of the arc length

parameter, are often used, as they are linear under an affine transformation. In the contour-

based category, the AIFSD and the AICSSSD show better retrieval performance than the

AIWSR, while in the region-based category, the AMI-FS performs better than the AMI-TC.

The region-based shape descriptor, the AMI-FS, also show better retrieval performance

than the two contour-based shape descriptors, the AIFSD and the AICSSSD, on simple

shapes with boundary noise. Feature extraction time, feature distance calculation time, and

feature compactness of the shape representations were also tested and compared. The AIC-

SSSD requires the most of feature extraction time. The AIWSR, which is a shape signature,

requires more computational time to calculate the feature distance and is less compact than

those shape descriptors that are in a vector form.
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Chapter 4

Independent Component Analysis

4.1 Introduction

In the previous chapter, we studied different affine-invariant shape representations and

found that their performance is not satisfactory. In this work, several new affine-invariant

shape techniques that have very good retrieval performance and are very robust under noisy

conditions, have been developed. Since those new techniques are all related to the tech-

nique of independent component analysis (ICA), it will first be reviewed in this chapter.

ICA is a relatively new statistical technique and was first introduced in the early eighties

by J.Herault, C.Jutten, and B. Ans [82]. The ICA model first came up in a neurophysiolog-

ical setting, where it was used to extract the position and velocity signals, s1(t) and s2(t),

of a moving joint from the two signals of muscle contraction, x1(t) and x2(t). Since then,

ICA has been applied in different areas. One of the most famous application of ICA is

to solve the Cocktail Party Problem [83, 84], where the original speakers’ voices can be

separated using the received stereo sounds in a noisy cocktail party environment. Similar

applications include separating useful signals from undesired noise signals in electroen-

cephalography (EEG) [85], in magnetoencephalography (MEG) [86], in electrocardiogram

(ECG) [87][88], and in electrogastrogram (EGG)[89]. In image processing, ICA has been

used to extract image bases for sparse code shrinkage based image denoising [90, 91, 92].

In financial applications, ICA has been used to find hidden factors in financial data [93],
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and to forecast financial time series data [94]. In this work, a totally new usage of ICA for

affine-invariant feature extraction is introduced.

In Section 4.2, we introduce the ICA model, the ambiguities of ICA, its relationship

with whitening and the criteria used in ICA estimation. After that, in Section 4.3, examples

using two statistically different types of data will be used to illustrate the theories discussed

in Section 4.2. Section 4.4 summarizes this chapter.

4.2 ICA, its ambiguities, its relationship with whitening,

and its estimation criteria

4.2.1 The ICA model

ICA is a statistical technique that extracts independent source signals from their observed

linear mixtures. Using a vector-matrix notation, the ICA model could be defined using the

following equation:

x(t) = M · s(t), (4.1)

where x(t) = [x1(t), ...,xN(t)]T is one sample of the observed signals, s(t) =

[s1(t), ...,sM(t)]T is one sample of the independent source signals, and M is the mix-

ing matrix. For simplicity , we can assume N = M and the unknown mixing matrix M
is square. The task of ICA is to compute its inverse, say W, and obtain the independent

components by:

y(t) = W ·x(t), (4.2)

where y(t) = [y1(t), ...,yN(t)]T is one sample of the estimated independent signals. To sim-

plify the notation, from now on, we ignore the time index t in the ICA model, so Equation

4.1 appears as:

x = M · s, (4.3)

and Equation 4.2 appears as:
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y = W ·x. (4.4)

4.2.2 Ambiguities of ICA

ICA can find out the underlining independence components, but cannot determine their

variances, signs, or order. This is known as the ambiguities of ICA [95].

We can see from Equation 4.3, as both M and s are unknown, multiplying any scalars

βi to the independent sources si and divide the corresponding columns mi in the mixing

matrix M by the same scalars βi, will still keep the equation valid:

x = M · s = ∑
i

mi · si = ∑
i

(
mi

βi

)
· (siβi) . (4.5)

So, the variances or the energies of the independent component sources si cannot be de-

termined. In most ICA algorithms, by convention, the sources si are assumed to have unit

variance: E
{

s2
i
}

= 1 and the unknown mixing matrix M is adapted to the assumption.

Similarly, there is the ambiguity of the sign: multiplying any independent sources si

with -1 and multiplying the corresponding columns ai with -1 at the same time, will not

affect the balance of Equation 4.3.

The ambiguity of the order, can be proved by modifying Equation 4.3 with a permuta-

tion matrix P and its inverse P−1 as:

x = M · s = MP−1Ps =
(
MP−1) · (Ps) . (4.6)

Then, MP−1 is the new unknown mixing matrix and Ps contains the new independent

component sources s j with different order.

Those ambiguities of ICA will appear again later, when we discuss how ICA will be

used in extracting affine invariant shape descriptors.

4.2.3 Whitening as a preprocessing step in ICA

In most of the ICA algorithms, whitening is an important and useful preprocessing step in

ICA. Whitening the observed data, which includes decorrelating it and normalizing it along
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its principle component directions. will make the ICA estimation easier. To see that, we

will first review the concepts of independence, uncorrelatedness and whiteness.

4.2.3.1 Independence

Two scalar random variables x and y are independent, if and only if their joint density

pxy(x,y) can be factorized into their marginal density px(x) and py(y):

pxy(x,y) = px(x) · py(y). (4.7)

4.2.3.2 Uncorrelatedness

Two scalar random variables x and y are uncorrelated, if their covariance is zero:

cxy = E
{
(x−mx)(y−my)

}
= 0, (4.8)

where mx and my denote the mean of x and y. If different components of a random vector

z = (z1,z2,, ...,zn)T are uncorrelated, then the covariance matrix of z is diagonal:

Cz = E
{

(z−mz)(z−mz)
T
}

= D, (4.9)

where mz is the mean of the random vector z. D is a n×n diagonal matrix:

D = diag(c11,c22, ...,cnn) = diag(σ2
z1

,σ2
z2

, ...,σ2
zn

), (4.10)

where ith (i = 1,2, ...,n) diagonal elements of of the matrix are the variances σ2
zi

of the com-

ponents, zi. A common way to decorrelate data is to perform principle component analysis

(PCA) [96] on them. Uncorrelatedness is a weaker form of independence. Uncorrelated

random variables are not necessarily independent, on the contrary, independent random

variables must be uncorrelated.

4.2.3.3 Whiteness

Whiteness is a stronger condition than uncorrelatedness, but a weaker condition than inde-

pendence. Random vector z is white, when it has zero mean and unit covariance matrix:
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mz = 0, (4.11)

and

Cz = I, (4.12)

where I is the n×n identity matrix. Data whitening goes one further step than decorrelat-

ing, and can be done by normalizing the uncorrelated data along its principle component

directions.

4.2.3.4 Whitening simplifies the ICA estimation

Suppose z is the whitened random vector and V is the whitening matrix, we have:

z = V·x = V·M · s =M̃ · s, (4.13)

where M̃ = V·M is the n× n, new mixing matrix. Since z is already whitened, and the

components in s is independent of each others and fixed to unit variance, we have:

E
{

zzT}= M̃ ·E
{

ssT} ·M̃T = M̃ ·M̃T = I. (4.14)

That means the new mixing matrix M̃ and its inverse matrix W̃ that needs to be estimated

are orthogonal. An n× n orthogonal matrix has n(n−1)/2 degrees of freedom. On the

another hand, the demixing matrix W will need n2 elements to describe. So, using the

whitened vector z, instead of using the observed vector x, to estimate the independent com-

ponents s, will reduce the number of parameters that need to be estimated. For example,

in a two dimensional case (n = 2), four parameters describing W need to be estimated,

but only one parameter describing M̃, or equivalently its inverse matrix W̃, needs to be

estimated. Since an orthogonal transformation is either a rigid rotation or a rotation fol-

lowed by a flip [97], the difference between the whitened variables and the final estimated

independent component is either only a rotation or a rotation followed by a flip.

As we have seen, whitening is an important preprocessing step in ICA, as it reduces

the number of parameters that need to be estimated, from n2 to n(n−1)/2 and greatly
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simplifies ICA algorithms. The core part of ICA algorithms begins after the whitening of

the data. In the following sections, principles used in estimating ICA will be discussed.

4.2.4 ICA by maximization of non-gaussianity

We know from the the Central Limit Theorem that the sum of non-gaussian variables tends

to be more gaussian-distributed than the original ones [98]. So, the problem of estimating

the inverse matrix W̃ that makes yi as independent of other values as possible can be turned

into finding the new data projections where the data yi are the most non-gaussian.

4.2.4.1 Measuring non-gaussianity by kurtosis

Since non-gaussianity is so important in estimation ICA, we need to have quantitative mea-

sures of non-gaussianity of a random variable. A classic measure of non-gaussianity is

the fourth-order cumulant, or kurtosis. The kurtosis of a random variable y , denoted by

kurt(y), is defined as [36]:

kurt(y) = E
{

y4}−3
(
E
{

y2})2
. (4.15)

When the variable y has been normalized, i.e. E
{

y2}= 1, the kurtosis of y is simplified

to:

kurt(y) = E
{

y4}−3. (4.16)

The kurtosis of a gaussian random variable is zero, while that of a nongaussian ran-

dom variable is either bigger or smaller than zero. Random variables with positive kurtosis

values are called supergaussian, and those with negative kurtosis values are called subgaus-

sian. Supergaussian random variables have typically a spiky distribution, while subgaus-

sian random variables have typically a flat distribution. The Laplacian distribution and the

uniform distribution are typical examples of supergaussian and subgaussian distributions,

respectively.

Since the gaussian distribution has a kurtosis value of zero, estimating ICA by the

maximization of non-gaussianity, is equivalent to estimating the inverse matrix W̃ that
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maximizes the absolute value of the kurtosis of the estimated independent components

[36].

4.2.4.2 Measuring non-gaussianity by negentropy

Although kurtosis is an important measure of non-gaussianity and is simple to calculate,

it is not a robust measure. That is because kurtosis is very sensitive to outliers and the

value of kurtosis can depend on only a few outliers. Negentropy, the normalized version of

differential entropy, is a robust estimator of non-gaussianity. The differential entropy H of

a random variable y is defined as [99]:

H(y) =−
∫

py (η) log py (η)dη , (4.17)

where py (η) is the probability distribution of y. Differential entropy is a measure of the

randomness of the variable. The less structured a distribution is, the larger its differential

entropy is. Since the distribution of gaussian variable is the least structured , its differential

entropy is the largest among the distributions of all the random variables that has the same

variance. The negentropy J of multidimensional random vector y is defined as:

J(y) = H(ygauss)−H(y), (4.18)

where ygauss is a gaussian random vector that has the same covariance matrix as that of

random vector y. Since the gaussian distribution has the largest differential entropy, negen-

tropy is always non-negative and is equal to zero if, and only if, the random vector has a

gaussian distribution. To look for the projection that generates the least gaussian distributed

data is to look for the projection that generates the data with the highest negentropy value.

In [100], where the objective function utilized negentropy, the inverse matrix W̃, which

is the solution to ICA, was found at the maxima of the objective function. The advantage

of using negentropy over kurtosis is that it is more robust. The disadvantage is that the

calculation of negentropy by definition is computationally complicated. However, some

simpler approximations of negentropy have been developed in [101, 100].

79



In addition to its robustness, negentropy has an interesting and useful feature in that

it is invariant to linear transforms. We will see this, when discussing its relationship with

mutual information.

4.2.5 ICA by minimization of mutual information

An alternative to estimating ICA by maximization of non-gaussianity, is estimating ICA

by minimization of mutual information. The mutual information I between scalar random

variables yi(i = 1..N), is defined as [99]:

I(y1, ...,yN) =
N

∑
i=1

H(yi)−H(y), (4.19)

Mutual information is a measure of dependence between random variables. It is always

non-negative, and equals zero if and only if the random variables are statistically indepen-

dent. Thus, mutual information could be used as a measure of dependence in ICA algorithm

[102, 100]. Since the estimated independent components yi should be independent of each

other, they should also have the smallest mutual information. In [100], objective function

through mutual information was also used, the inverse matrix W̃, which was the solution

to ICA, was found at the minima of the objective function.

The relationship between mutual information and negentropy is [95]:

I(y1, ...,yN) = J(y)−∑J(yi)+
1
2

log
∏cii

detCy , (4.20)

where J is the negentropy, Cy is the covariance matrix of y, and the cii are its diagonal ele-

ments. Since the observation is already whitened in the preprocessing step, the correlations

in the data are removed and the third term in Equation 4.20 equals zero. Equation 4.20

reduces to:

I(y1, ...,yN) = J(y)−∑J(yi). (4.21)

Since negentropy is invariant to linear transforms, J(y) is a fixed term. Thus, the minimiza-

tion of mutual information is equivalent to the maximization of negentropy.
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4.3 Illustration of ICA

Depending on whether their distributions are flatter or spikier than the gaussian distribu-

tion, random variables can be generally categorized into three categories: subgaussian,

gaussian, and supergaussian variables. Because ICA cannot separate mixtures of gaussian

variables [103], we will illustrate the theories discussed in the previous subsection, using

experiments on mixtures of subgaussian data and on mixtures of supergaussian data.

4.3.1 With subgaussian data

Random variables that have a negative kurtosis are called subgaussian. A typical example

of subgaussian distribution is the uniform distribution p(y):

p(y) =

 1
2b if −b≤ y≤ b

0 elsewhere
, (4.22)

where the parameter b determines the width of the probability density function. Let’s con-

sider two independent components si with uniform distribution:

p(si) =


1

2
√

3
if −
√

3≤ si ≤
√

3

0 elsewhere
, (4.23)

where the value of the parameter b is chosen as
√

3, so that si will have unit variances. The

joint distribution of those independent source components s1 and s2, are shown in Figure

4.1(a). As we can see from the figure, the joint distribution of two uniform distributed

components s1 and s2, appears as a square. The marginal histogram of s1 and that of s2

are shown in Figure 4.1(b) and Figure 4.1(c), respectively. They are much more “flat” in

comparison with the gaussian distribution. The two components also have negative kurtosis

values.

After the independent components are mixed using Equation 4.3, the newly mixed

observations, x1 and x2, shown in Figure 4.2.(a), no longer have the square shape. The

marginal histogram of x1 and x2, are shown in Figure 4.2.(b) and Figure 4.2.(c), respec-

tively. Note they are closer to the gaussian distribution than those of s1 and s2. That is in
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accordance with the central limit theory that mixed data tends to be more gaussian. The

two mixtures also show kurtosis values closer to zero as expected.

The joint distribution of the whitened data, z1 and z2, is shown in Figure 4.3.(a). We can

see that the joint distribution of the whitened data has a square shape as in Figure 4.1(a),

but it is rotated. Therefore, the degree of that rotation is the only thing remains to be esti-

mated, given the already whitened data, z1 and z2. We can recall from Subsection 4.2.3.4,

that whitening reduces the degree of freedom, or equivalently, the unknown parameters to

n(n−1). In this case, n = 2 and there is only one remaining unknown parameter: the

degree of rotation of the orthogonal matrix M̃ , or equivalently, that of its inverse W̃.

Using one of the estimation criteria discussed in Subsection 4.2.4 and Subsection 4.2.5,

the degree of rotation can be estimation. The joint distribution of the estimated independent

components y1 and y2, are shown in Figure 4.4.(a). Because of the ambiguities of ICA, we

cannot tell, if y1 corresponds to s1 or s2.

(a)The joint distribution of the independent components
s1 and s2 with uniform distributions. Horizontal axis: s1

, vertical axis: s2 .

(b)Kurt =−1.2195

(c)Kurt =−1.2171

Figure 4.1: (a)The joint distribution of the independent components s1 and s2 with uniform
distributions; (b)Histogram of s1, in comparison with gaussian distribution with unit vari-
ance (shown in red colour); (c)Histogram of s2, in comparison with gaussian distribution
with unit variance (shown in red colour).
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(a)The joint distribution of the mixtures x1 and x2.

Horizontal axis: x1 , vertical axis: x2.

(b)Kurt =−0.8428

(c)Kurt =−1.1300

Figure 4.2: (a)The joint distribution of the mixtures x1 and x2; (b)Histogram of x1, in com-
parison with gaussian distribution with unit variance (shown in red colour); (c)Histogram
of x2, in comparison with gaussian distribution with unit variance (shown in red colour).

(a)The joint distribution of the whitened mixtures z1
and z2. Horizontal axis: z1 , vertical axis: z2 .

(b)Kurt =−0.5892

(c)Kurt =−0.6352

Figure 4.3: (a)The joint distribution of the mixtures z1 and z2 ; (b)Histogram of z1, in com-
parison with gaussian distribution with unit variance (shown in red colour); (c)Histogram
of z2, in comparison with gaussian distribution with unit variance (shown in red colour).
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(a)The joint distribution of the estimated independent
components y1 and y2 with uniform distributions.

Horizontal axis: y1 , vertical axis: y2 .

(b)Kurt =−1.2174

(c)Kurt =−1.2186

Figure 4.4: (a)The joint distribution of the estimated independent components y1 and y2
with uniform distributions; (b)Histogram of y1, in comparison with gaussian distribution
with unit variance (shown in red colour); (c)Histogram of y2, in comparison with gaussian
distribution with unit variance (shown in red colour).

4.3.2 With supergaussian data

Random variables with a positive kurtosis are called supergaussian. A typical example of

a supergaussian distribution is the Laplacian distribution p(y):

p(y) =
λ

2
exp(−λ |y|) , . . .(λ > 0) (4.24)

where the parameter λ determines the width and the height of the peak of the probability

density function. Let’s consider two independent components si with Laplacian distribu-

tion:

p(si) =
√

2
2

exp
(
−
√

2 |si|
)

, (4.25)

where the value of the parameter λ is chosen as
√

2, so that si will have unit variances. The

illustration of ICA on supergaussian data, is similar to those on subgaussian data. Figures
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4.5-4.8 show the joint distribution and the marginal histograms, of the original independent

components, the mixtures, the mixtures after whitening, and the final estimated indepen-

dent components, respectively. We can see again the marginal histograms of the variables

become more gaussian when mixed, and become less gaussian after ICA estimation. Also,

whitening transform the data into its original shape and the estimation of the rotation matrix

W̃ will transform the data back to its original position.

(a)The joint distribution of the independent components
s1 and s2 with Laplacian distributions. Horizontal axis:

s1 , vertical axis: s2 .

(b)Kurt = 2.8108

(c)Kurt = 2.9974

Figure 4.5: (a)The joint distribution of the independent components s1 and s2 with Lapla-
cian distributions; (b)Histogram of s1, in comparison with gaussian distribution with unit
variance (shown in red colour); (c)Histogram of s2, in comparison with gaussian distribu-
tion with unit variance (shown in red colour).
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(a)The joint distribution of the mixtures x1 and x2.

Horizontal axis: x1 , vertical axis: x2 ;

(b)Kurtosis=1.9348

(c)Kurtosis=2.5664

Figure 4.6: (a)The joint distribution of the mixtures x1 and x2; (b)Histogram of x1, in com-
parison with gaussian distribution with unit variance (shown in red colour); (c)Histogram
of x2, in comparison with gaussian distribution with unit variance (shown in red colour).

(a)The joint distribution of the mixtures z1 and z2.

Horizontal axis: z1 , vertical axis: z2 ;

(b)Kurt = 1.5840

(c)Kurt = 1.3603

Figure 4.7: (a)The joint distribution of the mixtures z1 and z2 ; (b)Histogram of z1, in com-
parison with gaussian distribution with unit variance (shown in red colour); (c)Histogram
of z2, in comparison with gaussian distribution with unit variance (shown in red colour).
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(a)The joint distribution of the estimated independent
components y1 and y2 with Laplacian distributions.

Horizontal axis: y1 , vertical axis: y2 ;

(b)Kurt = 2.8119

(c)Kurt = 2.9940

Figure 4.8: (a)The joint distribution of the estimated independent components y1 and y2
with Laplacian distributions; (b)Histogram of y1, in comparison with gaussian distribution
with unit variance (shown in red colour); (c)Histogram of y2, in comparison with gaussian
distribution with unit variance (shown in red colour).

4.4 Summary

ICA is a relatively new statistical technique that has many useful applications. ICA can

find the underlining independent components from mixtures but cannot determine their

variances, signs or order. Whitening, as an important preprocessing step, greatly simplifies

the ICA estimation. After whitening, instead of having to estimate the matrix W with n2

unknown elements, only the orthogonal matrix W̃ with n(n−1) degrees of freedom has

to be estimated. Since an orthogonal transformation is either a rigid rotation or a rotoin-

version, the difference between the whitened variables and the final estimated independent

components are either only a rotation or a rotation followed by a flip. The core part of the

ICA algorithm begins after the whitening of data. To estimate the final rotation matrix W̃,

different principles, such as maximization of non-gaussianity and minimization of mutual

information, are used to construct the objective functions in the estimation algorithms. Both
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ICA and whitening are used in developing new affine invariant shape descriptors, which we

will discuss in the next chapters.
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Chapter 5

Novel Contour-Based Affine Invariant
Shape Descriptors

5.1 Introduction

In the previous chapter, we have reviewed ICA, its estimation principles and its relationship

with whitening. In this chapter, we introduce two newly developed affine invariant contour-

based shape descriptors, the ICA Fourier shape descriptor (ICAFSD) and the whitening

Fourier shape descriptor (WFSD). These two affine invariant descriptors utilize either ICA

or whitening, and are more powerful than most of the existing ones. The rest of the chapter

is organized as follows: Section 5.2 explains how a shape contour can be canonicalized

into a standard position by ICA. Section 5.3 explains how the new ICAFSD is extracted

from the canonicalized shape contour. In Section 5.4, the WFSD is introduced. Section 5.5

shows the results of the retrieval experiments using those newly developed shape descrip-

tors. Section 5.6 summarizes this chapter.

5.2 Canonicalization of shape contour by ICA

The extraction of the ICAFSD, has two major steps. The first is the canonicalization of

shape contour by ICA.
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In order to compare shapes from a database where they may be affine related, we can

first transform the shape contours into their canonical form using ICA. Let us consider a

two source, two mixture ICA mixing model:

x [k] = M · s [k] , (5.1)

where s[k] = [s1[k],s2[k]]T represent the vectors of the two independent, unit variance,

source data, x[k] = [x1[k],x2[k]]T represent the vectors of the two mixtures, k is the data

index, and M is a 2× 2 mixing matrix. Given the observed mixtures x1[k] and x2[k], ICA

can extract the two concealed "independent components" s1[k] and s2[k], regardless of what

mixing matrix M was used. If the two mixtures x1[k] and x2[k] are the pixel coordinates of

the shape contour, and xa[k] = [xa1[k],xa2[k]]
T are the pixel coordinates of an affine related

shape contour, related by the transform matrix A, from Equation 3.3 and Equation 5.1, we

have

xa[k] = A ·x[k] = A ·M︸ ︷︷ ︸
Ma

·s[k] = Ma · s[k], (5.2)

where Ma is a new mixing matrix, combined of A and M. ICA will extract the same

independent components s[k], whether M or Ma is the mixing matrix, and whether x[k]

or xa[k] are the observed mixtures. The extracted independent components are the same

only in a general sense, their orders and signs cannot be determined. That is because of

the order, sign and scale ambiguities of ICA [95], which are reduced to the order and

sign ambiguities as the source components are fixed to have unit variance. The extracted

independent components, s[k] = [s1[k],s2[k]]T , are used as the pixel coordinates of the shape

contour in its canonical form.

Figures 5.1 (a) and (b), show the contours of two affine related helicopter shapes. Fig-

ures 5.2 (a-h) show eight possible ICA-canonicalized shape contours transformed from the

shape contour in Figure 5.1 (a). Those eight possible ICA-canonicalized shape contours

are the results of different trials of ICA estimations. We can see that those contours are

related by a n · 90 (n=1, 2, or 3) degree of rotation. For example, Figure 5.2 (a), (c), (d)

and (h) are 90, 180, or 270 degree rotated version of each others. The reason for the vari-

ation is the order ambiguity of ICA, i.e., the x and y coordinates of the ICA-canonicalized
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(a) Helicopter 1 (b)Helicopter 2

Figure 5.1: Contours of two affine-related shapes (helicopter)

shape contour can be switched. Similarly, because of the sign ambiguity of ICA, the ICA-

canonicalized shape contour can be flipped against the x axis and/or y axis. For example,

Figure 5.2 (a) is an x-axis flipped version of (f). When the effects of the sign and order

ambiguities combine, two ICA-canonicalized shape contours transformed from the same

shape contour are related by a rotation and flips. Because of the two ambiguities of ICA,

for each shape contour, there are in total eight possible variations of ICA-canonicalized

shape contours related by a n ·90 (n=1, 2, or 3) degree rotation and/or flips.

Figures 5.3 (a-h) show eight possible ICA-canonicalized shape contours transformed

from the shape contour in Figure 5.1 (b). As we expect, the shape contours in Figures

5.2 and in Figures 5.3, which are the ICA-canonicalized shape contours of the two affine

related shapes in Figures 5.1 (a) and (b), are very similar. Each contour in Figure 5.3 is

practically identical to those in Figure 5.2; the only difference is a flip or rotation.

Figures 5.4 (a) and (b), show the contour of a horseshoe shape, and one of its ICA

canonicalized shape contour, respectively. We can see that the ICA canonicalized shape

contour of the horseshoe, is very different from those of the helicopter.

5.3 ICA Fourier shape descriptor

In the last section, we saw that ICA can transform shape contours into canonical shape

contours, eliminating the scaling and skew effect of any affine transforms. However, the

contours in the canonical form are not yet ready for comparison, because of the following

problems:
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.2: ICA canonicalized shapes corresponding to the shape in Figure 5.1 (a)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.3: ICA canonicalized shapes corresponding to the shape in Figure 5.1 (b)
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(a) (b)

Figure 5.4: (a) Shape contour of a horse shoe, and (b) its ICA-canonicalized shape contour

1. The sample points of two canonical shape contours do not correspond to each other

exactly, even though they are affine related.

2. There are the coordinate and sign ambiguities in the canonical shape contours, which

are inherited from the order and sign ambiguities of ICA.

3. There is a mismatch of starting points since the original shape contours are different

and the contour extraction algorithms can start from any point.

To solve the first problem, the coordinate points are resampled along the length of the

shape contour in its canonical form. To solve the second and third problems, we extract the

centroid distance of the resampled contour and then perform the Fourier transformation on

the centroid distance. Let’s first review the Fourier transform (FT), and its discrete form -

the discrete Fourier transform (DFT).

5.3.1 FT and DFT

The FT is defined as [104]:

F(ω) =
∫

∞

−∞

f (x) e−2πixω dx, (5.3)

where f (x) is the original function, x is the variable in the time domain, F (ω) is the FT of

f (x), ω is the variable in the frequency domain and i =−
√

1. The inverse transform of the

FT is [104]:
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f (x) =
∫

∞

−∞

F(ω) e2πixω dω. (5.4)

As we are dealing with digital images, we need to used the discrete form of the FT, the

DFT [37], which is defined as [37]:

X [k] =
N−1

∑
n=0

x [n]e−
2πi
N kn (k = 0, . . . ,N−1), (5.5)

where x [n] is the original function, n is the index in the time domain, X [k] is the DFT of

x [n], k is the index in the frequency domain and i = −
√

1. The inverse transform of DFT

is [37]:

x [n] =
1
N

N−1

∑
k=0

X [k]e
2πi
N kn (n = 0, . . . ,N−1). (5.6)

The DFT has the following important properties [37], which we will later explore to

solve the ambiguities and the starting point mismatching problems mentioned before:

|X1[k]|= |X2[k]| , ifx1[n] = x2[((−n))N ], (5.7)

and

|X1[k]|= |X2[k]| , ifx1[n] = x2[((n−m))N ], (5.8)

where n and N are the index and the length of the sequence, respectively. ((n))N represents

modulo N for n, and m corresponds to a circular shift.

5.3.2 DFT on ICA-canonicalized shape contour

Figures 5.5 (a-h) show the centroid distances of the ICA-canonicalized shape contours

shown in Figures 5.2 (a-h), respectively. Because of the ambiguities of the canonical shape

contours, and because of the mismatch of starting points, the centroid distances of the

ICA-canonicalized shape contours are either the same or different by a circular shift and/or
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Centroid distances, corresponding to the ICA canonicalized shapes in Figure
5.2

96



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6: Centroid distances, corresponding to the ICA canonicalized shapes in Figure
5.3
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(a) (b)

Figure 5.7: ICAFSDs of the two affine-related shapes (helicopter) shown in Figure 5.1

a reflection. That can be observed, when we compare any two centroid distances xa and xb,

in Figure 5.5. Mathematically, their relationship can be expressed as:

xa[n] = xb[((n−m))N ] (5.9)

or

xa[n] = xb[((−(n−m)))N ]. (5.10)

Now, we will utilize the properties of the DFT and apply the DFT to the centroid dis-

tances. Because of Equation 5.7 and Equation 5.8, whether xa[n] = xb[((n−m))N ] or

xa[n] = xb[((−(n−m)))N ], |Xa[k]| always equals to |Xb[k]|. The magnitudes of the first

eight components of the DFTs, |X [k]|, are our proposed affine invariant ICA Fourier shape

descriptor (ICAFSD), and there is only one single ICAFSD for each shape, even through it

has eight possible ICA-canonicalized shape contours. Figure 5.7 (a) shows the ICAFSD of

the shape shown in Figure 5.1 (a).

As we know from Section 5.2, the ICA-canonicalized shape contours in Figure 5.2 are

related to the ICA-canonicalized shape contours in Figure 5.3, by a rotation and/or flip.

Because of that, any of their corresponding centroid distances shown in Figure 5.5 and

in Figure 5.6 are also related, either by Equation 5.9 or by Equation 5.10. Thus, the two

corresponding ICAFSDs of the two affine related helicopter shapes are also the same, as

we can observe from Figures 5.7 (a) and (b). At the same time they are different from the

ICAFSD of the horseshoe shape, shown in Figure 5.8. This can be seen more clearly, when
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Figure 5.8: ICAFSD of the horseshoe shape shown in Figure 5.4 (a)

Figure 5.9: Comparison of the ICAFSDs

we compare those three ICAFSDs in the same figure (Figure 5.9). Thus, the ICAFSD can

be used to discriminate between affine related shape images and unrelated ones.

5.4 Whitening Fourier shape descriptor

As we have discussed in Chapter 4, the difference between the whitened variables and

the final estimated independent components are either a rotation or a rotation followed by a

flip. Given the relationship between whitening and ICA, we further proposed the whitening

Fourier shape descriptor (WFSD) which has descriptor extraction steps, shown in Figure

5.11, similar to that of its ICA counterpart. The only difference is that only whitening

will be performed on the shape contour data and the whitened data are not further rotated

and/or flipped as in the ICAFSD. Figure 5.12(a) shows the same shape contour in Figure

5.1(b). Figure 5.12(b) shows its shape contour data whitened using PCA and normalization.

Comparing the whitened shape contour in Figure 5.12(b) and the ICA-ed shape contours in
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Figure 5.10: Diagram of ICA-Fourier shape descriptor extraction

Figure 5.11: Diagram of whitening-Fourier shape descriptor extraction

Figure 5.2, we find that the ICA-ed ones are the rotated, or rotated and flipped, version of

the whitened one. However, such a rotation and flip will not be necessary, as it will turn into

a circular shift of the index in the centroid distance and will not effect the magnitudes of

the Fourier transform. As we can compare the WFSD in Figure 5.12(d) and the ICAFSDs

in Figure 5.7 (b), they are almost the same. The proposed WFSD avoids the calculation

of the rotation, which is the most computationally costly step in ICA, while still having

similar performance as its ICA counterpart.
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(a) (b)

(c) (d)

Figure 5.12: (a) shape contour, (b) whitened shape contour, (c) centroid distance and (d)
WFSD

5.5 Experimental results

The newly developed ICAFSD and WFSD are tested and compared with those previously

known affine invariant shape representations, studied in Chapter 3. The AIWSR and the

AMI-TC are not included in the comparison of retrieval accuracy, because of their poor

retrieval performances.

The ICA shape signature (ICASS) [64, 65] is another affine-invariant shape represen-

tation that employs ICA. However, because of the inherited order and sign ambiguities of

ICA, and the mismatching of the starting points, an exhaustive trial approach needs to be

used to compare two ICASSs. That requires lots of computational time and is not suitable

for online retrieval applications. The ICASS is also tested and compared in the experi-

ments.
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5.5.1 Experimental data

The experiments use the same simple shape databases in Section 3.

5.5.2 Retrieval accuracy

Figure 5.13 shows the average precision-recall graph of the affine-invariant shape repre-

sentations tested on the noise free shape database. As we can see, the newly developed

ICAFSD performs better than the AMI-FS and the ACSSSD, but worse than the AIFSD

and the ICASS. Figures 5.14-5.19 show the precision-recall graphs of the affine-invariant

shape representations tested on the simple shape database with different levels of added

noise. The newly developed ICAFSD performs better than the AIFSD, on simple shape

database with noise.

Figure 5.13: Average precision-recall graphs of retrievals using different affine invariant
shape descriptors on the 5600 shape simple shape database without noise.
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Figure 5.14: Average precision-recall graphs of retrievals using different affine invari-
ant shape descriptors on the 5600 shape simple shape database with Gaussian noise at
SNRdB=30dB.

Figure 5.15: Average precision-recall graphs of retrievals using different affine invari-
ant shape descriptors on the 5600 shape simple shape database with Gaussian noise at
SNRdB=26.9897dB.

103



Figure 5.16: Average precision-recall graphs of retrievals using different affine invari-
ant shape descriptors on the 5600 shape simple shape database with Gaussian noise at
SNRdB=26.0206dB.

Figure 5.17: Average precision-recall graphs of retrievals using different affine invari-
ant shape descriptors on the 5600 shape simple shape database with Gaussian noise at
SNRdB=24.7712dB.
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Figure 5.18: Average precision-recall graphs of retrievals using different affine invari-
ant shape descriptors on the 5600 shape simple shape database with Gaussian noise at
SNRdB=23.0103dB.

Figure 5.19: Average precision-recall graphs of retrievals using different affine invari-
ant shape descriptors on the 5600 shape simple shape database with Gaussian noise at
SNRdB=20dB.
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The performances of the WFSD are not compared in the figures, as they have exactly

the same precision-recall curves as the ICAFSD and the two curves will overlap each others

in the graph. Figure 5.20 show the average precision-recall curve of the ICAFSD and that

of the WFSD, tested on the same shape database. The two average precision-recall curves

overlap each others, as expected.

Figure 5.20: Overlapping of the average precision-recall curve of the ICAFSD and
that of the WFSD (on the 5600 shape simple shape database with Gaussian noise at
SNRdB=20dB).

5.5.3 Comparison of extraction time, distance calculation time, and
compactness

The extraction time, distance calculation time, and compactness of the affine invariant

shape representations are compared in Tables 5.1 - 5.3 and Figures 5.21 - 5.23

From Table 5.1 and Figure 5.21, we see that the ICAFSD requires 0.1390 seconds for

extraction while the WFSD requires only 0.0164 seconds. From Table 5.2 and Figure 5.22,

we see that the ICAFSD and the WFSD require far less time for feature comparison, than

the AICSSSD, the ICASS and the AIWSD. From Table 5.3 and Figure 5.23, we see that
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the ICAFSD and the WFSD are far more compact than the ICASS and the AIWSD, which

are shape signatures instead of shape descriptors.

Shape Extraction Shape Extraction Shape Extraction
representation time(s) representation time(s) representation time(s)

AIFSD 0.0136 AICSSSD 13.9972 AMI-FS 0.1835
AIWSR 0.1377 AMI-TC 0.0521 ICASS 0.0178
ICAFSD 0.1390 WFSD 0.0164

Table 5.1: Feature extraction time(seconds)

Figure 5.21: Comparison of feature extraction time (seconds)
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Shape Extraction Shape Extraction
representation time(ms) representation time(ms)
AMI-TC-SAD 0.021 AMI-TC-EUC 0.006
AMI-FS-SAD 0.013 AMI-FS-EUC 0.005
AIFSD-SAD 0.009 AIFSD-EUC 0.006
ICAFSD-SAD 0.009 ICAFSD-EUC 0.009
WFSD-SAD 0.009 WFSD-EUC 0.009
AICSSSD 18.999 ICASS 148.886
AIWSR 120.478

Table 5.2: Feature distance calculation time(milliseconds)

Figure 5.22: Comparison of feature distance calculation time (milliseconds)

Shape Size Shape Size Shape Size
representation representation representation

AIFSD 36 AICSSSD (average) 5 AMI-FS 4
AIWSR 512 AMI-TC 8 ICASS 512
ICAFSD 8 WFSD 8

Table 5.3: Size of the shape representations
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Figure 5.23: Comparison of the size of the shape representations

5.6 Summary

In this chapter, the ICAFSD and the WFSD were introduced. In extracting the ICAFSD,

ICA is used first to transform the shape contour into canonicalized shape contour. The DFT

is then applied on the centroid distance of the canonicalized shape contour. The magnitudes

of the extracted DFT coefficients are the ICAFSD. Because of the relationship between ICA

and whitening, we further proposed the WFSD as a simplified, but faster, method. The

WFSD also solves the affine problem by transforming shape contours into canonicalized

ones. But it used whitening only, instead of ICA. That avoids the estimation of the rotation

in the ICA algorithm and saves computational time. The ICAFSD and the WFSD have

better retrieval performance in comparison with most of the other shape representations,

except the ICASS. However, both the ICAFSD and the WFSD are far more compact and

require far less computational time for feature comparison than the ICASS.
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Chapter 6

Novel Region-Based Affine Invariant
Shape Descriptors

6.1 Introduction

In the previous chapter, we have introduced two contour-based affine invariant shape de-

scriptors, which show robust performance in shape retrieval experiments. Contour-based

affine invariant shape descriptors are limited that they can only be applied to simple shapes.

In many situations, region-based affine invariant shape descriptors are preferred, as they can

be applied to both simple and complex shapes. As we saw in Chapter 3, the performance

of the previously known region-based affine invariant shape descriptors is not satisfactory.

Therefore, there is a need to develop new robust region-based affine invariant shape descrip-

tors. In this chapter, four new region-based affine invariant shape descriptors will be intro-

duced. They are the ICA Zernike moment shape descriptor (ICAZMSD), the Whitening

Zernike moment shape descriptor (WZMSD), the ICA orthogonal Fourier Mellin moment

shape descriptor (ICAOFMMSD), the Whitening orthogonal Fourier Mellin moment shape

descriptor (WOFMMSD). These four proposed shape descriptors show good performance

in comparison with existing ones. The rest of the chapter is organized as follows: Section

6.2 explains how a shape can be canonicalized into a standard position by ICA. Sections 6.3

to 6.5, introduce the four newly developed region-based affine invariant shape descriptors:
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the ICAZMSD, the WZMSD, the ICAOFMMSD and the WOFMMSD, respectively. Sec-

tion 6.6 shows the results of the retrieval experiments using those newly developed shape

descriptors. Section 6.7 shows the application of the newly proposed descriptors in traffic

sign recognition. Section 6.8 summarizes this chapter.

6.2 Canonicalization of shape by ICA

The extraction of the two newly developed ICA-based affine invariant shape descriptors,

have two major steps. The first step is the canonicalization of shape by ICA. In Chapter

5, we have seen how ICA can transform shape contours into canonical shape contours in

extracting affine invariant contour-based shape descriptors. In order to develop new robust

affine invariant region-based shape descriptors, it is natural also to think of using ICA as a

canonicalizing tool for shapes, instead of shape contours. Here, we explain how ICA can

turn shapes into their canonical shapes. The proof can be done in analogy to the proof for

the contour-based one.

In order to compare shapes from a database where they may be affine related, we can

first transform the shape into their canonical form using ICA. Let us consider a two source,

two mixture ICA mixing model:

x[k] = M · s[k], (6.1)

where s[k] = [s1[k],s2[k]]T represent the vectors of the two independent, unit variance,

source data, x[k] = [x1[k],x2[k]]T represent the vectors of the two mixtures, k is the data

index, and M is a 2× 2 mixing matrix. Given the observed mixtures x1[k] and x2[k], ICA

can extract the two concealed "independent components" s1[k] and s2[k], regardless of what

mixing matrix M was used. If the two mixtures x1[k] and x2[k] are the pixel coordinates

of all the pixels in the shape, and x[k] = [x1[k],x2[k]]T are the pixel coordinates of all the

pixels in an affine related shape, related by the transform matrix A, from Equation 3.3 and

Equation 6.1, we have

xa[k] = A ·x[k] = A ·M︸ ︷︷ ︸
Ma

·s[k] = Ma · s[k], (6.2)
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where Ma is a new mixing matrix, combined of A and M. ICA will extract the same

independent components s[k], whether M or Ma is the mixing matrix, and whether x[k]

or xa[k] are the observed mixtures. The extracted independent components are the same

only in a general sense, their orders and signs cannot be determined. That is because of

the order, sign and scale ambiguities of ICA [95], which are reduced to the order and

sign ambiguities as the source components are fixed to have unit variance. The extracted

independent components, s[k] = [s1[k],s2[k]]T , are used as the pixel coordinates of the shape

in its canonical form.

Figures 6.1 (a) and (b), show the two affine related eagle shapes. Figures 6.2 (a~h)

show eight possible ICA-canonicalized shapes transformed from the shapes in Figure 6.1

(a). Those eight possible ICA-canonicalized shapes are the results of different trials of ICA

estimations. We can see that they are related by a n ·90 (n=1, 2, or 3) degree rotation and/or

flips. For example, 6.2 (a), (b), (c) and (e) are 90, 180, or 270 degree rotated version of

each others. The reason for the variation is the order ambiguity of ICA, i.e., the x and y

coordinates of the ICA-canonicalized shape can be switched. Similarly, because of the sign

ambiguity of ICA, the ICA-canonicalized shape can be flipped against the x axis and/or y

axis. For example, 6.2 (a) is an x-axis flipped version of (h). When the effects of the sign

and order ambiguities combine, two ICA-canonicalized shapes transformed from the same

shape are related by a rotation and flip. Because of the two ambiguities of ICA, for each

shape, there are all together eight possible variations of ICA-canonicalized shapes related

by a rotation and/or flips. Figures 6.3 (a~h) show eight possible ICA-canonicalized shapes

transformed from the shape in Figure 6.1 (b). We can see that those ICA-canonicalized

shapes are very similar to the ICA-canonicalized shapes in Figures 6.2. Each of the shape in

Figures 6.3, can find a corresponding shape that is similar and in exactly the same position,

and seven other shapes that are different only by a rotation and/or flips, in Figures 6.2.

Figures 6.4 (a) and (b), show a pepper shape, and one of its ICA canonicalized shape,

respectively. We can see that the ICA canonicalized pepper shape, is very different from

the ICA canonicalized eagle shape.
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(a)Eagle-1 (b)Eagle-2

Figure 6.1: Two affine-related shapes (eagle)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.2: ICA canonicalized shapes corresponding to the shape in Figure 6.1 (a)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.3: ICA canonicalized shapes corresponding to the shape in Figure 6.1 (b)
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(a) (b)

Figure 6.4: (a) A pepper shape, and (b) its ICA-canonicalized shape

6.3 ICA Zernike moment shape descriptor

While ICA can transform a shape into one of eight possible canonicalized shapes, we need

a tool that can further extract shape descriptors from the canonicalized shapes. Moments

have been used in image analysis and pattern recognition before [53, 54, 66, 105, 106, 107,

108, 109, 110, 111, 112, 113, 114]. Among them, orthogonal moments are projections of

an image function to a set of mutually independent basis functions. Thus, the orthogonal

moment features extracted from an image function are independent of each others, and

have the least amount of information redundancy. Since redundancy is undesired in pattern

recognition, orthogonal moment features have advantages over other moment features.

Based on the domains of their orthogonal basis functions, orthogonal moments can be

divided into two groups: moments orthogonal on a unit disk [55, 115, 116, 117, 118],

such as the Zernike moments [55], and moments orthogonal on a unit square [105, 108,

113], such as the Legendre moments [105]. Moments orthogonal on a unit disk usually

have the rotation and reflection invariant properties, while moments orthogonal on a unit

square usually do not have these invariant properties. Because the eight possible ICA-

canonicalized shapes are rotation and/or reflected versions of each others, the moments
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orthogonal on a unit disk will be chosen to further extract the shape descriptor, so that there

will be only a single shape descriptor to represent the original shape, regardless of which

of the eight canonicalized shapes is generated by ICA.

Zernike moments [107, 109, 110, 111, 112, 119, 120] are moments defined on a unit

disk. Zernike moments have been used in modeling corneal surface [121, 122], image

segmentation [123], edge detection [124], image reconstruction [125], watermarking

[126].

Due to its robust performance, Zernike moments have also been a popular choice in

extracting regular shape descriptors [55, 56, 127, 128]. In this work, they are adopted to

extract affine invariant shape descriptors.

6.3.1 Zernike moments

Zernike moments are projections of a function to the Zernike polynomials, which were

first proposed in 1934 by Zernike [129]. The Zernike polynomials are a set of complex

polynomials that form a complete set of orthogonal bases defined on the unit disc, i.e.,

x2 + y2 ≤ 1. The Zernike polynomials {Vnm(x,y)} have the following form:

Vnm(x,y) = Vnm(r,θ) = Rnm(r)exp( jmθ), (6.3)

where

n is a positive integer or zero that defines the order.

m is a positive or negative integer constrained by the conditions: n−|m|= even and |m| ≤
n.

x is the horizontal distance in the Cartesian coordinate system.

y is the vertical distance in the Cartesian coordinate system.

r is the length of vector from the origin, in the polar coordinate system

θ is the angle between the vector and the x axis counterclockwise.
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Rnm(r) is the radial polynomial defined as:

Rnm(r) =
n−|m|

2
Σ

s=0
(−1)s �

(n− s)!

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
ρ

n−2s. (6.4)

Note that the Rn,−m(r) = Rn,m(r).

The orthogonal radial polynomials {Rnm(r)} of order 0 to 10 are shown in Table 6.1.

{Rnm(r)} of order 0 to 4 are plotted in Figure 6.5. More complete plots of {Rnm(r)} of

order 0 to 10 are shown in Appendix A.

The set of Zernike polynomials (the ZM bases) {Vnm(x,y)} of order n = 0 to 3, are

shown in Figure 6.6 - Figure 6.11. More complete plots of {Vnm(x,y)} of order n = 0 to

5, are shown in Appendix B. The Zernike polynomials {Vnm(x,y)}, which form orthogonal

bases, satisfy

∫∫
x2+y2≤1

Vnm(x,y)V ∗pq(x,y)dxdy =
π

n+1
δnpδmq (6.5)

with

δab =

1 if a = b

0 if a 6= b

Zernike moments {Znm} are the projection of a 2-D function to these orthogonal basis.

The Zernike moment of order n and repetition m for a continuous function f (x,y) defined

inside the unit circle is

Znm =
π

n+1

∫∫
x2+y2≤1

f (x,y)V ∗nm(x,y) dxdy

=
π

n+1

∫ 2π

0

∫ 1

0
f (r,θ)V ∗nm(r,θ)r drdθ . (6.6)

Note that the Z∗nm = Zn,−m.
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Order(n) Number of moments
in each order n

0 R0,0 = 1 1
1 R1,1 = r 1
2 R2,0 = 2r2−1,R2,2 = r2 2
3 R3,1 = 3r3−2r,R3,3 = r3 2
4 R4,0 = 6r4−6r2−1,R4,2 = 4r4−3r2,R4,4 = r4 3
5 R5,1 = 10r5−12r3 +3r,R5,3 = 5r5−4r3,R5,5 = r5 3

R6,0 = 2r4−30r4 +12r2−1,R6,2 = 15r6−20r4 +6r2,
6 R6,4 = 6r6−5r4,R6,6 = r6 4

R7,1 = 35r7−60r5 +30r3−4r,R7,3 = 21r7−30r5 +10r3,
7 R7,5 = 7r7−6r5,R7,7 = r7 4

R8,0 = 70r8−140r6 +90r4−20r2−1,
8 R8,2 = 56r8−105r6 +60r4−10r2, 5

R8,4 = 28r8−42r6 +15r4,R8,6 = 8r8−7r6,R8,8 = r8

R9,1 = 126r9−280r7 +210r5−60r3−5r,
9 R9,3 = 84r9−168r7 +105r5−20r3, 5

R9,5 = 36r9−56r7 +21r5,R9,7 = 9r7−8r5,R9,9 = r7

R10,0 = 252r10−630r8 +560r6−210r4 +30r2−1,
10 R10,2 = 210r10−504r8 +420r6−140r4 +15r2, 6

R10,4 = 120r10−252r8 +168r6−35r4,
R10,6 = 45r10−72r8 +28r6,R10,8 = 10r10−9r8,R10,10 = r10

Table 6.1: Zernike radial polynomials Rnm(r)
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Figure 6.5: Zernike radial polynomials Rnm(r),(n = 0,1,2,3,4)

Figure 6.6: Real and imaginary parts of the ZM base Vnm(r),(n = 0,m = 0)

Figure 6.7: Real and imaginary parts of the ZM base Vnm(r),(n = 1,m = 1)

120



Figure 6.8: Real and imaginary parts of the ZM base Vnm(r),(n = 2,m = 0)

Figure 6.9: Real and imaginary parts of the ZM base Vnm(r),(n = 2,m = 2)

Figure 6.10: Real and imaginary parts of the ZM base Vnm(r),(n = 3,m = 1)
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Figure 6.11: Real and imaginary parts of the ZM base Vnm(r),(n = 3,m = 3)

6.3.2 The invariant properties of the Zernike moments

The rotation and reflection invariant properties of the Zernike moments are utilized to ex-

tract invariant shape descriptors from ICA-canonicalized shapes that are different only by

a rotation and/or reflection. Here, we prove those two invariant properties of the Zernike

moments:

6.3.2.1 Rotation invariant

If the rotated image against the x axis is denoted by f Rotated , the relationship between the

rotated image and the original one in the same polar coordinates is:

f Rotated(r,θ) = f (r,θ −α). (6.7)

We have

Znm =
π

n+1

∫ 2π

0

∫ 1

0
f (r,θ)V ∗nm(r,θ)r drdθ

=
π

n+1

∫ 2π

0

∫ 1

0
f (r,θ)Rnm(r)exp(− jmθ)r drdθ , (6.8)

and

ZRotated
nm =

π

n+1

∫ 2π

0

∫ 1

0
f (r,θ −α)Rnm(r)exp(− jmθ)r drdθ . (6.9)
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By a change of variable θ1 = θ −α , we have

ZRotated
nm =

π

n+1

∫ 2π−α

−α

∫ 1

0
f (r,θ1)Rnm(r)exp(− jm(θ1 +α))r drdθ1

=
π

n+1

∫ 2π

0

∫ 1

0
f (r,θ1)Rnm(r)exp(− jm(θ1 +α))r drdθ1

= [
π

n+1

∫ 2π

0

∫ 1

0
f (r,θ1)Rnm(r)exp(− jmθ1)r drdθ1]exp(− jmα)

= Znm exp(− jmα), (6.10)

and

|ZRotated
nm |= |Znm|. (6.11)

6.3.2.2 Reflection invariant

Since a reflection against the y axis can be decomposed into a rotation, and a reflection

against the x axis, we only have to prove that the Zernike moments are reflection invariant

against the x axis.

If the reflected image against the x axis is denoted by f RF , the relationship between the

reflected image and the original one in the same polar coordinates is:

f RF (r,θ) = f (r,−θ) . (6.12)

By a change of variable θ1 =−θ , we have

ZRF
nm =

n+1
π

∫ 2π

0

∫ 1

0
f (r,−θ)Rnm (ρ)exp(− jmθ)r drdθ

= −n+1
π

∫ −2π

0

∫ 1

0
f (r,θ1)Rnm (r)exp( jmθ1)r drdθ1, (6.13)

and
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∣∣ZRF
nm
∣∣ =

n+1
π

∫ −2π

0

∫ 1

0
| f (r,θ1)Rnm (r)r| drdθ1

=
n+1

π

∫ 2π

0

∫ 1

0
| f (r,θ1)Rnm (r)r| drdθ1

= |Znm| . (6.14)

6.3.3 Zernike moments extraction from the ICA-canonicalized shape

To extract the Zernike moments from the ICA-canonicalized shape, we need to first shrink

the size of the shape so that most of its pixels are inside the unit disc, where the zernike mo-

ments are defined. Because ICA transforms the pixels to unit variance, most of the shape

pixels fall inside the circle that is centered at the origin of the axis and has a radius of 3.

That is in accordance with the "three-sigma" rule that 99.7% of the zero-mean Gaussian

distributed data lies within three standard deviations of the mean [130]. So, the canoni-

calized shapes are shrinked to one third of their original sizes, before the Zernike moments

are extracted from them. The magnitudes of the first thirty-six components of the ZMs are

the proposed ICAZMSD. Its extraction diagram is shown in Figure 6.12

Figure 6.12: Diagram of ICAZMSD extraction

Because of the rotation and reflection invariant properties of the Zernike moments, there

is only one single ICAZMSD for each shape, although each shape can have eight possible

ICA-canonicalized shapes. Figure 6.13 (a) and (b) show the ICAZMSDs of the two affine

related eagle shapes shown in Figures 6.1 (a) and (b), respectively.
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(a) (b)

Figure 6.13: ICAZMSDs of the two affine related eagle shapes shown in Figures 6.1

Figure 6.14: ICAZMSD of the pepper shape in Figure 6.4

We know from Section 6.2, the ICA-canonicalized shapes in Figure 6.2 are related

to those in Figure 6.3, by a rotation and/or flips. Because of the rotation and reflection

invariant properties of the Zernike moments, the magnitudes of their ZMs (ICAZMSDs)

are also the same. We can see that the ICAZMSDs (Figures 6.13 (a) and (b)) of the two

affine-related eagle shapes (Figures 6.1 (a) and (b)) are the same. On the other hand, they

are different from the ICAZMSD (Figure 6.14) of the unrelated pepper shape (Figure 6.4).

This can be seen more clearly, when we compare those three ICAZMSDs in the same figure

(Figure 6.15). So, the ICAZMSD can be used to discriminate between affine related shapes

and unrelated ones.
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Figure 6.15: Comparison of the ICAZMSDs

6.4 ICA orthogonal Fourier-Mellin moment shape de-

scriptor

The orthogonal Fourier-Mellin moments (OFMMs) [115, 131, 132, 133, 134] are relatively

new type of moments. In [115], it is argued that the OFMMs have better image reconstruc-

tion performance than the ZMs. Because of this, the ICAOFMMSD, which utilizes both

ICA and OFMMs, is proposed and investigated.

6.4.1 Orthogonal Fourier-Mellin moments

The orthogonal Fourier-Mellin moments [115] are defined as:

φmn =
1

2πan

∫ 2π

0

∫ 1

0
f (r,θ)Qn(r)exp(− jmθ)r drdθ , (6.15)

where

n is a positive integer or zero that defines the order.

m is a positive or negative integers constrained by the conditions:n−|m|= even and |m| ≤
n.

r is the length of the vector from the origin, in the polar coordinate system

θ is the angle between the vector and the x axis counterclockwise.
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The polynomial set of Qn(r) is defined as:

Qn(r) =
n

∑
s=0

ansrs, (6.16)

with

ans = (−1)n+s (n+ s+1)!
(n− s)!s!(s+1)!

. (6.17)

Table 6.2 shows Qn(r) from order 0 to 8.

Figure 6.16 shows the plots of Qn(r) from the order of 0 to 6.

Figure 6.16: Orthogonal Mellin radial functions, n=1-6.

The set of the OFMM bases {Pnm (r,θ) = Qn (r)exp( jmθ)} of order n = 1 to

3, are shown in Figure 6.17- Figure 6.22. A more complete plots of {Pnm (r,θ) =

Qn (r)exp( jmθ)} of order n = 1 to 5, are shown in Appendix C.
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Table 6.2: The polynomial set of Qn(r)
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Figure 6.17: Real and imaginary parts of OFMM base, (n=1,m=1)

Figure 6.18: Real and imaginary parts of OFMM base, (n=2,m=1)

Figure 6.19: Real and imaginary parts of OFMM base, (n=2,m=2)

6.4.2 The invariant properties of the orthogonal Fourier-Mellin mo-
ments

6.4.2.1 Rotation invariant

If the rotated image against the x axis is denoted by f Rotated , the relationship between the

rotated image and the original one in the same polar coordinates is:
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Figure 6.20: Real and imaginary parts of OFMM base, (n=3,m=1)

Figure 6.21: Real and imaginary parts of OFMM base, (n=3,m=2)

Figure 6.22: Real and imaginary parts of OFMM base, (n=3,m=3)
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f Rotated(r,θ) = f (r,θ −β ). (6.18)

We have

φmn =
1

2πan

∫ 2π

0

∫ 1

0
f (r,θ)Qn(r)exp(− jmθ)r drdθ , (6.19)

and

φ
Rotated
mn =

1
2πan

∫ 2π

0

∫ 1

0
f Rotated(r,θ)Qn(r)exp(− jmθ)r drdθ

=
1

2πan

∫ 2π

0

∫ 1

0
f (r,θ −β )Qn(r)exp(− jmθ)r drdθ . (6.20)

By a change of variable θ1 = θ −β , we have

φ
Rotated
mn =

1
2πan

∫ 2π−β

−β

∫ 1

0
f (r,θ1)Qn(r)exp(− jm(θ1 +β ))r drdθ1

=
1

2πan

∫ 2π

0

∫ 1

0
f (r,θ1)Qn(r)exp(− jm(θ1 +β ))r drdθ1 (6.21)

= [
1

2πan

∫ 2π

0

∫ 1

0
f (r,θ1)Qn(r)exp(− jmθ1)r drdθ1]exp(− jmβ )

= φmn exp(− jmβ ), (6.22)

and

∣∣∣φ Rotated
mn

∣∣∣= |φmn| . (6.23)

6.4.2.2 Reflection invariant

Here, we prove the reflection invariant property of the OFMMs, in an identical manner to

the ZMs. Since a reflection against the y axis can be decomposed into a rotation, and a

reflection against the x axis, we only have to prove the OFMMs are reflection invariant

against the x axis.
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If the reflected image against the x axis is denoted by f RF , the relationship between the

reflected image and the original one in the same polar coordinates is:

f RF (r,θ) = f (r,−θ) . (6.24)

By a change of variable θ1 =−θ , we have

φ
RF
mn =

1
2πan

∫ 2π

0

∫ 1

0
f RF(r,θ)Qn(r)exp(− jmθ)r drdθ

=
1

2πan

∫ 2π

0

∫ 1

0
f (r,−θ)Qn(r)exp(− jmθ)r drdθ

=− 1
2πan

∫ −2π

0

∫ 1

0
f (r,θ1)Qn(r)exp( jmθ1)r drdθ1, (6.25)

and

∣∣φ RF
mn
∣∣ =

1
2πan

∫ −2π

0

∫ 1

0
| f (r,θ1)Qn(r)r| drdθ1

=
1

2πan

∫ 2π

0

∫ 1

0
| f (r,θ1)Qn(r)r| drdθ1

= |φmn| . (6.26)

6.4.3 Orthogonal Fourier-Mellin moments extraction from the ICA-
canonicalized shape

Similar to extracting the ICAZMSDs, we need to first shrink the size of the shape so that

most of its pixels are inside the unit disc, where the OFMMs are defined. The canonicalized

shapes are first shrinked to one third of their original sizes, before the OFMMs are extracted

from them. The diagram of ICAOFMMSD extraction is shown in Figure 6.23.

Because of the rotation and reflection invariant properties of the OFMMs, there is only

one single ICAOFMMSD for each shape, although each shape can have eight possible

ICA-canonicalized shapes. Figure 6.24 (a) and (b) show the ICAOFMMSDs of the two

affine related eagle shapes shown in Figures 6.1 (a) and (b), respectively.
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Figure 6.23: Diagram of ICAOFMMSD extraction

(a) (b)

Figure 6.24: ICAOFMMSDs of the two affine related eagle shapes shown in Figures 6.1

We know from Section 6.2, the ICA-canonicalized shapes in Figure 6.2 are related

to those in Figure 6.3, by a rotation and/or flips. Because of the rotation and reflection

invariant properties of the OFMMs, the magnitudes of their OFMMs (ICAOFMMSDs) are

also the same. We can see that the ICAOFMMSDs (Figures 6.24 (a) and (b)) of the two

affine-related eagle shapes (Figures 6.1 (a) and (b)) are the same. On the other hand, they

are different from the ICAOFMMSD (Figure 6.25) of the unrelated pepper shape (Figure

6.4). This can be seen more clearly, when we compare those three ICAOFMMSDs in the

same figure (Figure 6.26). So, the ICAOFMMSD can be used to discriminate between

affine related shapes and unrelated ones.
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Figure 6.25: ICAOFMMSD of the pepper shape in Figure 6.4

Figure 6.26: Comparison of the ICAOFMMSDs
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Figure 6.27: Diagram of WZMSD extraction

6.5 Whitening Zernike moment shape descriptor and

whitening orthogonal Fourier-Mellin moment shape

descriptor

As we have reviewed from Chapter 4, the difference between the whitened variables and

the final estimated independent components are either only a rotation or a rotation fol-

lowed by a flip. Given the relationship between whitening and ICA, we further proposed

the whitening Zernike moment shape descriptor (WZMSD) and the Whitening orthogonal

Fourier-Mellin moment shape descriptor (WOFMMSD). Their extraction steps are shown

in Figure 6.27 and Figure 6.28, respectively. The only difference between them and their

ICA-based counterparts is that only whitening will be performed on the shape pixels and

the whitened data are not further rotated and/or flipped.

Figure 6.29 compares the WZMSDs and the WOFMMSDs of the two affine related

eagle shapes and the unrelated pepper shape. We see that the shape descriptors of the

two affine related eagle shapes looks the same while they are different from the shape

descriptors of the unrelated pepper shape. Comparing Figures 6.13, 6.14, 6.24, 6.25, and

6.29, we found that the WZMSD and the WOFMMSD are almost the same to their ICA

based counterparts. The proposed WZMSD and WOFMMSD avoid the calculation of the

rotation, which is the most computationally costly step in ICA, while still having the similar

performance as its ICA based counterparts.
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Figure 6.28: Diagram of WOFMMSD extraction

6.6 Experimental results

The four newly developed affine invariant shape descriptors are tested and compared with

those previously known affine invariant shape representations, studied before. The AIWSR

and the AMI-TC are not included in the comparison of retrieval accuracy, because of their

poor retrieval performances.

6.6.1 Experimental data

Both the simple and the complex shape database seen in Chapter 3 was used in the retrieval

experiments.

6.6.2 Retrieval accuracy

From Figure 6.30, we see that the average precision-recall curves of the ICAZMSD

and those of the ICAOFMMSD are much closer to the up-right corner of the average

precision-recall graph than those of the AMI-FS are. That means, the ICAZMSD and

the ICAOFMMSD perform far better than the AMI-FS on complex shape database. From

Figure 6.31, we see that the ICAZMSD and the ICAOFMMSD also perform far better than

any other existing affine invariant shape representations on simple shape database. The

average precision-recall curves of those two new shape descriptors are almost horizontal

lines as the average precision rate nearly equals one hundred percent. That means that their

retrieval performances are almost perfect on shape databases without noise.
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(a)WZMSD of the eagle shape in Figure
6.1 (a)

(b)WOFMMSD of the eagle shape in
Figure 6.1 (a)

(c)WZMSD of the eagle shape in Figure
6.1 (b)

(d)WOFMMSD of the eagle shape in
Figure 6.1 (b)

(e)WZMSD of the pepper shape in
Figure 6.4

(f)WOFMMSD of the pepper shape in
Figure 6.4

Figure 6.29: (a)(b):WZMSD and WOFMMSD of the eagle shape in Figure 6.1 (a);
(c)(d):WZMSD and WOFMMSD of the eagle shape in Figure 6.1 (b); (c)(d):WZMSD
and WOFMMSD of the pepper shape in Figure 6.4.
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The robustness of the ICAZMSD and the ICAOFMMSD are even more apparent, when

the retrieval experiments are done on simple shape database with added boundary noise

(Figures 6.32 - 6.37) . Comparing Figure 6.31 with Figures 6.32 - 6.37, we see that the

performances of the two newly developed affine-invariant shape descriptors degrade much

more slowly than those of the existing ones, when noise is added to the shape boundary.

The ICAZMSD and the ICAOFMMSD are very robust on shape databases with or without

added boundary noise.

Figure 6.30: Average precision-recall graphs of 4000 retrievals using different affine in-
variant shape descriptors on complex shape database.
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Figure 6.31: Average precision-recall graphs of 5600 retrievals using different affine in-
variant shape descriptors on simple shape database with no noise.

Figure 6.32: Average precision-recall graphs of 5600 retrievals using different affine in-
variant shape descriptors on simple shape database with Gaussian noise at SNRdB=30dB.
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Figure 6.33: Average precision-recall graphs of 5600 retrievals using different affine invari-
ant shape descriptors on simple shape database with Gaussian noise at SNRdB=26.9897dB.

Figure 6.34: Average precision-recall graphs of 5600 retrievals using different affine invari-
ant shape descriptors on simple shape database with Gaussian noise at SNRdB=26.0206dB.
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Figure 6.35: Average precision-recall graphs of 5600 retrievals using different affine invari-
ant shape descriptors on simple shape database with Gaussian noise at SNRdB=24.7712dB.

Figure 6.36: Average precision-recall graphs of 5600 retrievals using different affine invari-
ant shape descriptors on simple shape database with Gaussian noise at SNRdB=23.0103dB.
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Figure 6.37: Average precision-recall graphs of 5600 retrievals using different affine in-
variant shape descriptors on simple shape database with Gaussian noise at SNRdB=20dB.

The precision-recall curves of the two whitening-based shape descriptors, the WZMSD

and the WOFMMSD, are not included in the above precision-recall graphs, as they will

overlap with those of their ICA-based counterparts. Figure 6.38 shows the average

precision-recall curve of the ICAZMSD and that of the WZMSD, tested on the same shape

database. The two average precision-recall curves overlap each others, as we expected.

Similarly, Figure 6.39 shows the average precision-recall curve of the ICAZMSD and that

of the WZMSD, tested on the same shape database. The two average precision-recall curves

also overlap each others, as we expected.
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Figure 6.38: Overlapping of the average precision-recall curve of the ICAZMSD and
that of the WZMSD (on the 5600 shape simple shape database with Gaussian noise at
SNRdB=26.9897dB).

Figure 6.39: Overlapping of the average precision-recall curve of the ICAOFMMSD and
that of the WOFMMSD (on the 5600 shape simple shape database with Gaussian noise at
SNRdB=26.9897dB).
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6.6.3 Comparison of extraction time, distance calculation time, and
compactness

The extraction time, distance calculation time, and compactness of the affine invariant

shape representations are compared in Tables 6.3 - 6.5 and in Figures 6.40 - 6.42.

From Table 6.3 and Figure 6.40, we see that the four newly developed shape descriptors

require a little bit more extraction time than previously known ones. From Table 6.4 and

Figure 6.41, we see that the four newly developed shape descriptors require little distance

calculation time. From Table 6.5 and and Figure 6.40 show their feature sizes are compact.

Shape Extraction Shape Extraction Shape Extraction
representation time(s) representation time(s) representation time(s)

AIFSD 0.0136 AICSSSD 13.9972 AMI-FS 0.1835
AIWSR 0.1377 AMI-TC 0.0521 ICASS 0.0178
ICAFSD 0.1390 ICAZMSD 0.7976 ICAOFMMSD 2.0178
WFSD 0.0164 WZMSD 0.5416 WOFMMSD 1.8155

Table 6.3: Feature extraction time(seconds)

Figure 6.40: Comparison of feature extraction time (seconds)
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Shape Extraction Shape Extraction
representation time(ms) representation time(ms)
AMI-TC-SAD 0.021 AMI-TC-EUC 0.006
AMI-FS-SAD 0.013 AMI-FS-EUC 0.005
AIFSD-SAD 0.009 AIFSD-EUC 0.006

ICAFSD-SAD 0.009 ICAFSD-EUC 0.009
WFSD-SAD 0.009 WFSD-EUC 0.009

ICAZMSD-SAD 0.013 ICAZMSD-EUC 0.008
ICAOFMMSD-SAD 0.010 ICAOFMMSD-EUC 0.008

WZMSD-SAD 0.009 WZMSD-EUC 0.008
WOFMMSD-SAD 0.009 WOFMMSD-EUC 0.008

AICSSSD 18.999 ICASS 148.886
AIWSR 120.478

Table 6.4: Feature distance calculation time(milliseconds)

Figure 6.41: Comparison of feature distance calculation time (milliseconds)
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Shape Size Shape Size Shape Size
representation representation representation

AIFSD 36 AICSSSD (average) 5 AMI-FS 4
AIWSR 512 AMI-TC 8 ICASS 512
ICAFSD 8 ICAZMSD 32 ICAOFMMSD 32
WFSD 8 WZMSD 32 WOFMMSD 32

Table 6.5: Size of the shape representations

Figure 6.42: Comparison of the size of the shape representations

6.7 Application in traffic sign retrieval

In this experiment, six pictures of a “Stop” sign taken from different viewpoints and dis-

tances, and another thirty-one pictures of other traffic signs were used as test database for

shape-based retrieval. The shapes of the traffic signs were then extracted using the SIOX

algorithm [135] and their ICAZMSDs were further extracted. As we can observe from

Figure 6.43, although the shapes of the “Stop” sign taken from different viewing angles

and distances are different, their corresponding ICAZMSDs are almost the same. At the

same time, they are different from the ICAZMSD extracted from the “No Left Turn” sign.

Differences were also observed in comparison with the ICAZMSDs of other traffic signs

146



in our experiment. Using any one of the six pictures of the “Stop” sign, taken from dif-

ferent viewpoints and distances, the ICAZMSD-based retrieval system was able to retrieve

all the other five related pictures in the top five matches without any error from the pic-

ture database. Figure 6.44 shows the retrieval results, using Figure 6.43(a) as the query

image. All the five “Stop” sign pictures are in the top matches. Using the WZMSD, the

ICAOFMMSD, or the WOFMMSD as shape feature descriptor, all the related pictures were

also retrieved in the top matches without any error.

6.8 Summary

In this chapter, four newly developed region-based affine invariant shape descriptors, the

ICAZMSD, the ICAOFMMSD, the WZMSD, and the WOFMMSD, have been introduced.

Either ICA or whitening is used in transforming shapes into canonicalized shapes, before

ZM or OFMM is applied to them to extract the descriptors. The newly developed shape

descriptors show far better performance than any existing ones and can be applied to both

simple and complex shapes. Their retrieval performance on shape database without noise,

are close to perfect. The robustness of those affine-invariant shape descriptors are also

apparent, when the retrieval experiments are done on simple shape database with added

boundary noise, as their performances degrade much more slowly than those of the exist-

ing ones. Those affine-invariant shape descriptors have also been applied successfully in

retrieving photos of traffic signs taken from different viewpoints and distances. Those de-

scriptors have compact sizes and acceptable computational time requirements. The whiten-

ing based descriptors require less computational time than their ICA-based counterparts

while have the same robust retrieval performance.
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(a1) (a2) (a3)

(b1) (b2) (a3)

(c1) (c2) (a3)

Figure 6.43: (a)Traffic signs, (b)their shape images, and (c)their ICAZMSDs
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work, existing shape representations have been reviewed and existing affine invariant

shape representations have been studied and compared using retrieval experiments on sim-

ple and complex shape databases. Experimental results show that the performance of the

existing affine invariant shape representations is not satisfactory and has room to improve.

The goal of this work was to find robust affine invariant shape representations that have

high retrieval accuracy, compact size, and low computational requirement. To achieve that

goal, two contour-based and four region-based affine invariant shape descriptors have been

developed. The two contour-based shape descriptors, the ICAFSD and the WFSD, can

be applied to simple shapes. They out perform most of the existing affine invariant shape

representations, have compact sizes and require low computational time. The four region-

based affine invariant shape descriptors, the ICAZMSD, the WZMSD, the ICAOFMMSD,

and the WOFMMSD, can be applied to both simple and complex shapes, which means less

restrictions on their applications. They perform far better than the existing affine invariant

shape representations, have compact sizes and acceptable computational time requirements.

The contributions of this dissertation are summarized as below:

• Two contour-based affine-invariant shape descriptors are presented:
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1. ICAFSD: In extracting the ICAFSD, ICA is used to transform a shape contour into

one of eight possible canonical shape contours, which are different only by a rota-

tion of 90, 180, or 270 degrees, and/or a reflection. The DFT is then applied on

the centroid distance of the canonical shape contour. Since a rotation or reflection

of the canonical shape contour will not change the magnitudes of the DFT coeffi-

cients, they are used as the newly proposed ICAFSD. The ICAFSD has a compact

size, and low computational time requirement, and out performs most of the existing

affine-invariant shape descriptors in retrieval experiments. Unlike some of the exist-

ing contour-based shape representations , which is vulnerable to the shape boundary

noise, the ICAFSD is much robust under noisy condition.

2. WFSD: Exploiting the relationship between the whitened and the ICA-ed data, the

WFSD was further proposed. It also first transforms a shape contour into its canon-

ical one, but doesn’t further estimate that rotation and/or the reflection of the shape

contour, as the DFT will anyway be used later to extract rotation and reflection invari-

ant features. Therefore, the WFSD has even lower computational time requirement

than the ICAFSD, while maintaining the same compactness and retrieval accuracy as

the ICAFSD.

• Four region-based shape descriptors are presented:

1. ICAZMSD: Unlike contour-based shape descriptors, which can only be applied to

simple shapes, the region-based ICAZMSD has no such limitation. ICA is applied

to the coordinates of the shape pixels, instead of the coordinates of the shape con-

tour, to transform the shape into a canonical shape. ZMs are then extracted from the

canonical shape, and the magnitudes of the ZMs are the newly proposed ICAZMSD.

Because the magnitudes of the ZMs are rotation and reflection invariant, the value of

the ICAZMSD will be the same, regardless which of the eight possible positions the

canonical shape takes. The ICAZMSD has a compact size, and acceptable computa-

tional time requirement. It performs far better than the existing affine-invariant shape

descriptors and is very robust even under noisy condition.

2. WZMSD: Exploiting the relationship between the whitened and the ICA-ed data, and

the invariant properties of the ZMs, the WFSD was further proposed. The WZMSD
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uses whitening to transform a shape into its canonical shape and extracts the magni-

tudes of the ZMs from the canonical shape, as the affine-invariant shape descriptor.

As whitening is used, instead of ICA, the WZMSD has lower computational time

requirement than the ICAZMSD, but maintains the same compactness and high re-

trieval accuracy as the ICAZMSD.

3. ICAOFMMSD: The OFMMs are relatively new type of orthogonal moments, which

has been found to have better performance than the ZMs in image reconstruction. In

this work, the OFMMs are used together with ICA to develop the ICAOFMMSD. The

magnitudes of the OFMMs are extracted from the ICA-canonicalized shape as the

proposed ICAOFMMSD. The ICAOFMMSD, can be applied to both simple shape

and complex shapes. It has a compact size and acceptable computational time re-

quirement. Its retrieval perform is far better than those of the existing affine-invariant

shape descriptors.

4. WOFMMSD: It has similar feature extraction steps as the ICAOFMMSD. But,

whitening, instead of ICA, is used to transform shapes into their canonical

shapes. The WOFMMSD requires less computational time than the ICAOFMMSD,

while still having the same compactness and robust retrieval performance as the

ICAOFMMSD.

The six proposed affine invariant shape descriptors have shown very good retrieval perfor-

mance. Among them, the four proposed region-based ones perform especially well. Their

performances are close to perfect in retrieval experiments on both simple shape and com-

plex shape databases without boundary noise. Their performances also do not deteriorate

as much as those of the existing affine invariant shape representations, when they are tested

on shapes with boundary noise.

7.2 Future work

The goal of developing robust affine invariant shape representations have been met. The

four proposed region-based shape descriptors, which have close to perfect retrieval perfor-

mance, are especially successful. At the same time, they also provide a way to describe
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and link two sets of affine-related two dimensional data. It would be interesting to extend

the methods to describe two sets of affine-related three dimensional data. For example,

colour under illumination change (Figure 7.1) can be modeled as three dimensional affine

transform [136, 137].

Figure 7.1: Images of a colour texture under different illumination condition (Image source:
Outex colour texture database [2])

So, the idea of orthogonal spherical-harmonics-mellin moments (OSHMM) has also

been investigated in my research. The OFMM can be decomposed into two parts: the

radial portion R(r) and the angular portion eimθ . We know from mathematics, that the an-

gular portion eimθ is also the angular portion of the solution in solving Laplace’s equation

in two dimensions [138]. The angular portion of the solution in solving Laplace’s equation

in three dimensions is the spherical harmonics, which can be used to describe a function

define on a sphere (Figure 7.2) [138]. Given the relationship between eimθ and the spher-

ical harmonics, the three dimensional OSHMMs are extended from the two dimensional

OFMMs by substituting eimθ with the spherical harmonics. The OSHMMs are three di-

mensional moments that can be used to describe a function defined in a unit ball. Figure

7.3 shows one of the OSHMM bases. The proposed OSHMMs also have their rotation

and reflection invariant properties as their two dimensional counterpart, the OFMM. They

can be used, together with ICA or whitening in three dimensions, to extract affine invariant

descriptors of three dimensional data. In the future, more investigation could be done to

exploit the use of OSHMM and ICA in solving affine invariant problems in 3D.
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Figure 7.2: The magnitude, phase angle, real, and imaginary parts of one of the spherical
harmonics (L = 5,M = 3), where L and M are the indexes.
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(a)r=0.3

(b)r=0.9

Figure 7.3: The magnitude, phase angle, real, and imaginary parts of one of the OSHMMs
(L = 5,M = 3) at radius, r=0.3 and r=0.9
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Appendix A

Plots of Zernike Radial Polynomials

Figure A.1: Zernike Radial Polynomials Rnm(r),(n = 0,1, ...,4)
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Figure A.2: Zernike Radial Polynomials Rnm(r),(n = 5)

Figure A.3: Zernike Radial Polynomials Rnm(r),(n = 6)
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Figure A.4: Zernike Radial Polynomials Rnm(r),(n = 7)

Figure A.5: Zernike Radial Polynomials Rnm(r),(n = 8)
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Figure A.6: Zernike Radial Polynomials Rnm(r),(n = 9)

Figure A.7: Zernike Radial Polynomials Rnm(r),(n = 10)
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Appendix B

Lists of Zernike Moment Bases

Figure B.1: Real and imaginary parts of the ZM base Vnm(r),(n = 0,m = 0)

Figure B.2: Real and imaginary parts of the ZM base Vnm(r),(n = 1,m = 1)
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Figure B.3: Real and imaginary parts of the ZM baseVnm(r),(n = 2,m = 0)

Figure B.4: Real and imaginary parts of the ZM base Vnm(r),(n = 2,m = 2)

Figure B.5: Real and imaginary parts of the ZM base Vnm(r),(n = 3,m = 1)
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Figure B.6: Real and imaginary parts of the ZM base Vnm(r),(n = 3,m = 3)

Figure B.7: Real and imaginary parts of the ZM base Vnm(r),(n = 4,m = 0)

Figure B.8: Real and imaginary parts of the ZM baseVnm(r),(n = 4,m = 2)
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Figure B.9: Real and imaginary parts of the ZM baseVnm(r),(n = 4,m = 4)

Figure B.10: Real and imaginary parts of the ZM baseVnm(r),(n = 5,m = 1)

Figure B.11: Real and imaginary parts of the ZM baseVnm(r),(n = 5,m = 3)

163



Figure B.12: Real and imaginary parts of the ZM baseVnm(r),(n = 5,m = 5)
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Appendix C

Lists of Orthogonal Fourier-Mellin
Moment Bases

Figure C.1: Real and imaginary parts of OFMM base, (n=1,m=1)

Figure C.2: Real and imaginary parts of OFMM base, (n=2,m=1)
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Figure C.3: Real and imaginary parts of OFMM base, (n=2,m=2)

Figure C.4: Real and imaginary parts of OFMM base, (n=3,m=1)

Figure C.5: Real and imaginary parts of OFMM base, (n=3,m=2)

Figure C.6: Real and imaginary parts of OFMM base, (n=3,m=3)
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Figure C.7: Real and imaginary parts of OFMM base, (n=4,m=1)

Figure C.8: Real and imaginary parts of OFMM base, (n=4,m=2)

Figure C.9: Real and imaginary parts of OFMM base, (n=4,m=3)

Figure C.10: Real and imaginary parts of OFMM base, (n=4,m=4)
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Figure C.11: Real and imaginary parts of OFMM base, (n=5,m=1)

Figure C.12: Real and imaginary parts of OFMM base, (n=5,m=2)

Figure C.13: Real and imaginary parts of OFMM base, (n=5,m=3)

Figure C.14: Real and imaginary parts of OFMM base, (n=5,m=4)
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Figure C.15: Real and imaginary parts of OFMM base, (n=5,m=5)
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