Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2005
FPGA based computing platform with temporal
partitioning mechanism

Valeri Kirischian
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Kirischian, Valeri, "FPGA based computing platform with temporal partitioning mechanism" (2005). Theses and dissertations. Paper
38s.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/385?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F385&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

FPGA BASED COMPUTING PLATFORM WITH
TEMPORAL PARTITIONING MECHANISM

Valeri Kirischian

B.Sc. University of Toronto,
Toronto, 2004

A Thesis
Presented to Ryerson University
In partial fulfillment of the requirement
Of the degree of Master of Applied Science
In the program of Electrical and Computer Engineering

Toronto, Ontario, Canada, 2005

© Valeri Kirischian, 2005

PROPERTY OF
RYERSEAHAIVRRITY LiRARY

UMI Number: EC53761

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53761
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, Ml 48106-1346

Declaration of Authorship

I hereby declare that I am the sole author of this thesis

7

I authorize Ryerson University to lend this thesis to other institution or individuals for the
purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by
other means, in total or in part, at the request of other institutions or individuals for the
purpose of scholarly research.

ii

Borrower’s Page

Ryerson University requires the signatures of all persons using or photocopying
thesis. Please sign below, and give address and date.

this

Name

Signature

Address

Date

iii

FPGA-based Computing Platform with Temporal Partitioning
Mechanism

Valeri Kirischian,
Master of Applied Science, 2005,
Electrical and Computer Engineering,
Ryerson University

ABSTRACT

In the presented work the FPGA based run-time reconfigurable platform with
temporal partitioning of hardware resources is proposed. This platform is based on the
Field Programmable Gate Array (FPGA) device that can be reconfigured “on-fly” to
provide the optimal adaptation of a processing architecture to the algorithm and data
structure by utilization of developed mechanisms of temporal partitioning of
computational / logic resources. It was shown that the proposed approach allows reaching
very high cost-effectiveness of the computing platform oriented on processing of framed
data-streams. On the other hand, the hardware programming and compilation processes
could be simplified by utilization of library of precompiled Virtual Hardware
Components stored in the on-board FLASH memory. Paper presents theoretical proof of
the proposed approach by analytical comparison of the performance that could be reached
on the conventional processors and FPGA platform with Temporal Partitioning
Mechanism (TPM) of hardware resources. The implementation of the proposed TPM on
the basis of Xilinx Spartan-3 and Xilinx Virtex II FPGA devices is described.
Experimental results gained on the prototype of the FPGA based platform with TPM are

discussed and analyzed.

Keywords: Reconfigurable computing, Data-stream processing, FPGA, Run-Time

Reconfiguration, Temporal partitioning.

iv

Acknowledgements

The author would like to thank his supervising professor, Dr. Vadim Geurkov, for
providing his guidance, knowledge and support as well as the Department of Electrical
and Computer Engineering for providing facilities and resources needed for the research.

The author would also like to thank the members of the review committee for
their participation.

The author also would like to express his gratitude for Mr. Jim Koch and
members of the Embedded Reconfigurable Systems Lab (ERSL): Mr. Peter (Pil Woo)
Chun and Mr. Sergei Zhelnakov for their technical assistance during the implementation

stage of the project.

Table of Contents

1.

INTRODUCTION.....eitiiiieiieiieee ettt reaeneeeneaees 1

Y (YA 151) | VT 1
1.2 Project OBJECHIVES «euiiuiuniniininiiieiei et 3
1.3 Original contributions...........cooiiiiiiiiiiiiiii s 3
1.4 Thesis Organization.c.oeuviuininiiiiniiiieiieieiiieeee e eeeenees 5
OVERVIEW OF COMPUTING SYSTEMS WITH ADAPTIVE............... 7
ARCHITECTURE

2.1 Correspondence between algorithm/data structure and computing......... 8
architecture

2.2 Processors with fixed hardware architecture and procedural adaptation...9

2.3 Processors with reconfigurable architecture..............oooooiiiiiiin, 11

2.4 Existing reconfigurable platforms with temporal partitioning of............ 17
resources

2.5 Virtex Family Architecture... R RMTIE 19

2.6 General approach to designing partially reconfigurable 20

processing system
2.7 Cores library and database............ccoeuveiiiniiiiiiiiiiiii 23

2.8 Configuration bit-stream transfer mechanism..................c.coeein 24

vi

3.

4.

ARCHITECTURE OF FPGA BASED PLATFORM WITH RUN-TIME.... 27
TEMPORAL PARTITIONING MECHANISM

3.1 The concept of Run-Time temporal partitioning of hardware resources...27

3.1.1 Performance of the conventional microprocessor..................... 30

3.1.2 Performance of the processor with instruction processing.......... 31
pipeline

3.1.3 Performance of FPGA platform with temporal partitioning.........33
of resources

3.2 Performance comparison between the FPGA platform with TPM and
platforms based on processors with fixed architecture........................ 36
3.3 Architecture Organization of an FPGA based Platform with Run-Time
Temporal Partitioning Mechanism.............cccoeveiiiiiiiiiiiininininenan.. 39
3.3.1 Temporal Partitioning Mechanism: Components and Principle of
(0115211 10) 1 FO U PPN 42
3.3.2 Temporal Partitioning Mechanism: Reduction of hardware

LS OUTCES. . v vveeereennnnnnnneeseaesasasssssasssssssnnssnnssssesssssessssessssssasssssssnnn 46

IMPLEMENTATION OF THE FPGA BASED PLATFORM WITH.......... 49

TEMPORAL PARTITIONING MECHANISM

4.1 Selection of the platform FPGA device for the real-time TPM............. 50
4.2 Development and test the hardware architectural components.............. 52
4.3 Hardware design of the platform prototype..........ccccveiiiniiniinin 58
4.4 Development of soft-core interfaces..........co.oeuveienieniiiiiiinenininnann 61

vii

4.5 Windows Agent development..........cccovuiuiiiiiiiiiiiiiiiiiiieieeeenenenn. 66

4.6 Integration of the platform onto Xilinx Virtex II FPGA platform.......... 69

5 EXPERIMENTS AND RESULTS. ... e 73
5.1 Implemented Algorithms.........cccooiiiiiiiiiiiiiiiiiii e 74

5.1.1 Laplacian Image enhancement algorithm.............................. 74

5.1.2 Sobel Edge detection algorithm.............cooeveiiiiiiiiiiii .. 75

5.1.3 Image Histogram Statistic Algorithm....................coooiiiini.l. 75

5.2 Experimentation on the TPM platform..............c.coooiiiiiiiiiiinn. 76

5.3 Implementation of the algorithms on the RISC Microcontroller

PlatformL.. .. e e 81

5.4 Implementation of processing algorithms on a PC platform................. 83

5.5 Results and analysis........ccoeeeiniiiiiiiieiiiiiii i 85

5.6 System Advantages and Limitations...........ccveveveinineniniineneenennennnnn. 87

6. CONCLUSIONS AND FUTURE WORK......cccoceiiiiiiiiiiineineneenennen. 90

6.1 Major CONtriDULIONS. .. .vuenieineie i r e eeee e eaeeaaens 90

6.2 Future WOrk.........oouiiiiiiiii 93
BIBLIOGRAPHY ...ttt ettt e et e e e e e aas 94

viii

List of Figures

Figure 2.1: Diagram of Virtex II FPGA organization. Reproduced from
WWW.XIINX.COM tuiiiiiiiiiiii et e e aene 20
Figure 2.2: FPGA organization for partial reconfiguration.............cc..ccvveinenen. 21
Figure 3.1: Data-Flow Graph (DFG) of a task and associated schedule of data-frame
capturing and processing combined with reconfiguration of FPGA resources 29
Figure 3.2: Pipeline processing of Program Instructions without hazards.............. 31
Figure 3.3: Organization data processing path in the FPGA platform with TPM34
Figure 3.4: Block Diagram of the FPGA based platform with Temporal Partitioning
Mechanism. Soft-core (loaded into the FPGA) modules are shown as dotted

DOXES. . etninntnniiiiiriertrt ettt sttt b s b et b e e sa s eb e s b et st s ntesaaeeneeens 43

Figure 3.5: Pipelining of three processes: Data-frame capturing, processing using TPM

and output data-frame tranSMiSSION.c.vuvuininiiiiiiiiiiiiiiiiiiie e 45
Figure 4.1: Platform organization — reconfiguration component........................ 54
Figure 4.2: Block diagram of the first prototype of the platform with TPM............ 56

Figure 4.3: Evaluation board of the first prototype of the FPGA platform

WIth TPM. ottt et et s e e e e e eaeaan 57
Figure 4.4: First prototype of FPGA platform with Temporal Partitioning

MECRANISIN .ottt ettt e e eee e naeaeas 60
Figure 4.5: Timing diagram of the PIC-CPLD SPI communication protocol.......... 63
Figure 4.6: Timing diagram scheme for avoiding coupling glitches on SRAM........64
Figure 4.7: Flow chart of the FPGA configuration process...........cccoevvenenennnn.. 65

Figure 4.8: Graphical User Interface for PC Windows Agent...............c.c..c..o.e.e. 67

ix

Figure 4.9: Virtex I1 FPGA based platform with ability for partial reconfiguration... 69
Figure 4.10§ Flow chart for sample platform operation...............cccevvvivieinennnnnn. 71
Figure 5.1: Setup of the TPM platform and its interconnection with the other
peripheral boards running the eXperiments.cccceveeveeevierereienenreseeressessereessesaeeens 76
Figure 5.2: TPM platform operation flowchart................cooooiiiiiiin 78
Figure 5.3: Timing capture of the Logic Analyzer attached to the TPM platform

a) Shows whole data transmission and b) shows the zoomed data transmission...... 79
Figure 5.4: Microcontroller setup for the experiments.............ccceeeveveinenninnnnnn. 81
Figure 5.5: Flowchart for the microcontroller platform operation....................... 82
Figure 5.6: a) Original Image b) Laplacian enhancement image c) Sobel Edge detection
image d) Histogram of the image...........c.ccoiniiiiiiinnccriieerecceececereeceee e eeeens. 84

Figure 5.7: Logarithmic representation of platform’s speedups..............cccenen..n 85

List of Tables

Table 2.1: Core compilation time depending on amount of available logic resources in

the Field Programmable Gate Array (FPGA) devices..........ccccvueenenn.. 15
Table 4.1: List of Commands.........cccvuiuiiininiiiiiiiiiiiiiiiiieerereeee e eee e eaa 62
Table 5.1: Results acquired from the algorithms experimentation........................ 85

xi

List of Acronyms

ASIC - Application Specific Integrated Circuit

BRAM - Block Random Access Memory

CAD - Computer Aided Design

CLB - Configurable Logic Block

CPLD - Complex Programmable Logic Device

CPU - Central Processing Unit

CISC - Complex Instruction Set Computer

DSP - Digital Signal Processor

EEPROM - Electrically Erasable Programmable Read Only Memory
ERSL - Embedded Reconfigurable Systems Lab (at Ryerson University)
FPGA - Field Programmable Gate Array

FPSLIC - Field Programmable System Level Integrated Circuit
GUI - Graphic User Interface

HDL - Hardware Description Language

ICAP - Internal Configuration Access Port

I0B — Input /Output Block

ILP — Instruction Level Parallelism

JTAG - Joint Test Action Group (Test Access Port)

MIPS — Million Instructions per Second

OTS - Off-The-Shelf

PCB - Printed Circuit Board

PCI — Peripheral Component Interconnect

PIC - Peripheral Interface Controller

PLCC - Plastic Leaded Chip Carrier

RAM - Random Access Memory

RISC — Reduced Instruction Set Computer

RTR - Run-Time Reconfigured

RTHOS - Real-Time Hardware Operating System

SPI — Serial Peripheral Interface

SRAM - Static Random Access Memory

TPM — Temporal Partitioning Mechanism

UART - Universal Asynchronous Receiver — Transmitter
USART - Universal Serial Asynchronous Receiver — Transmitter
USB — Universal Serial Bus

VHC — Virtual Hardware Component

VHDL — Vhsic(Very high speed integrated circuits) Hardware Description Language
VLIW - Very Long Instruction Word

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years demand for high speed processing systems that can perform
manipulations with large volumes of data increased tremendously and several
developments have been made in different technological fields. Most demanding fields
that require such processing are video and image processing applications that are
beginning to fill the market in forms of entertainment systems, portable players, cell
phones etc. As well as Video/Audio recognition in fields of security and military
applications, which became so demanding in resent years. On the other side of spectrum,
we have to consider field of digital communication and broadcasting, and associated with
it dz;ta integrity, encryption/decryption and sccurity, and at last, but not least in industrial
applications such as intelligent manufacturing and advanced robotics on manufacturing
plants of many large companies. In most of those areas a solution was to try to
accommodate such requirements with PC solutions or embedded control systems.
However, in certain cases these solutions are becoming not suitable due to fact of not
being able to be fast enoﬁgh, or due to limitation of power consumption, which is
becoming much more critical in modern mobile as well as space oriented environment.
On behalf of embedded solution it is important to note that most of the household devices
include one or more processing units which are usually RISC microprocessors or
microcontrollers, and they serve quite an important role. Disadvantage of these systems is

that their execution cycles are quite slow and do not give enough of processing power for

higher demanding application. In the case of high speed processing application usual
approach for the embedded solution was Application Specific Integrated Circuit (ASIC)
and it is currently the leading solution. However, the downside to ASICs is long time-to-
market, costly development which is only profitable in case of production of many
thousands of units and in most of the cases it consumes same amount of power even if it
is not really used. On the other hand, implementation of such tasks on the Field
Programmable Gate Array devices (FPGA), doesn’t only decrease the time-to-market but
also has a broad range of sevéral advantages. In latest studies it was found that current
cost-effectiveness of development of product / platform on FPGA has increased to the
point where manufacturing of particular chip has to be in quantities of more then 100,000
pieces in most of the cases. In addition to this, modification / upgrades of the FPGA
operation core is very simple and inexpensive since it requires modification of code
written on one of the Hardware Description Language (HDL), recompilation and in most
cases remote update of the platform. In case of ASIC it is simply not possible and
requires remanufacture of the whole chip and physical replacement on the platform.

By using FPGA type devices it is possible to achieve highest cost-effectiveness by
varying cores with partial configuration that is by means of spatial and temporal
partitioning on an FPGA chip. At a poiht of execution when system is sitting idle or real-
time task requires very slow response it is possible to load core which will not use much
resources of the chip and therefore consumes much less power. Therefore the proposed
work is oriented on development of FPGA based platform with run-time (dynamic)
reconfiguration of internal FPGA recourses while task is executing, which allows

reusability of the same computational recourses for different sections of the task and does

dramatic minimization of hardware recourses and associated complexity, cost, and power

effectiveness. This required development of spatial and temporal partitioning mechanism

which allows run-time partial reconfiguration of FPGA device.

1.2 Project Objectives

Objective of this project was to research and develop Temporal Partitioning
Mechanism (TPM) for the FPGA computing platform based on partially configurable
SRAM FPGAs.

The Temporal Partitioning Mechanism should allow automatic run-time
reconfiguration of the SRAM based FPGA resources (Logic, routing and Input / Output
resources) for different segments of application algorithm and thus minimization of
FPGA resources for a task.

This would require solving several problems- starting from theoretical analysis to
actual TPM development and implementation of the system in hardware and software

followed by analysis of performance and resources consumption.

1.3 O;iginal Contributions
Main contributions for this work consist of several parts that subdivided into three
main categories:
1. Analysis of existing computing platforms with fixed and reconfigurable
architectures which allows software or hardware adaptation on task algorithm and

/ or data structure. The focus was made on reconfigurable (FPGA based) systems

with ability for partial reconfiguration of its computational and interface
resources. In addition to that theoretical comparison of the proposed approach to
the existing solutions that are available on the market and developed by different
research groups, the development of algorithms and procedures for the TPM was
done.

2. As per completion of the theoretical component of the project, development of
three prototypes of the platform with Temporal Partitioning Mechanism was
conducted. This part of the project include development of the following parts:

a. Hardware: platforms that allowed run-time partial reconfiguration of
SRAM based FPGA with partially reconfigurable architecture (Xilinx
Virtex II XC2V1000 FPGA) and all associated controllers and embedded
cores including simulation, hardware verification and integration with
firmware part and associated peripherals.

b. Firmware: that consist of first version of Real-Time Hardware Operating
System (RTHOS) and its FPGA resident, interface drivers and
communication utilities which would control the peripherals such as
Microcontroller and CPLD for correct platform operation

c. Software Agent: special GUI / interface component running on the host-
PC to perform operations such as communication with the platform, user
interface, and data/core management.

3. Upon completion of the TPM implementation it became possible to run tests and
experiments for comparison of proposed idea to already existing platform

solutions based on different processors with architecture organization: Superscalar

architecture (e.g. PC-platform) and RISC with Harvard architecture (e.g.
Microchip RISC controller). This allowed obtaining practical proof of the

proposed concept of the FPGA platform with TPM.

1.4 Thesis Organization
This thesis consists of six Chapters and their organization is presented in the
following manner.

o First Chapter introduces the concept of the work done, as well as, why this
topic presented research interest. It also states, what were the objectives of
work, and contributions that were made. Chapter concludes with a Chapter
breakdown.

o Second Chapter consists of the literature overview from several journal

publications, as well as books, internet sources and product datasheets. Based
on this information, classification was made of major classes of existing
platforms with different types of architectures. In addition their advantages
and disadvantages were presented, as well as, their real world implementation.
This Chapter gives overall background information on run-time
reconfigurable computing platforms.

o Chapter three gives the observation of different computational schemes, and
also presents comparative analysis to prove the concept of FPGA based
platform with temporal partitioning of its computational resources. As well as
analysis on minimization of hardware resource utilization in the FPGA based

platforms with TPM vs. non-TPM FPGA platforms.

o Chapter four describes in detail the implementation of the Temporal
Partitioning Mechanism platform in particular it describes all the aspects of
the hardware used including the reasoning for usage of particular parts and
their brief explanation. In addition to that all of the implemented prototypes
are presented including the protocols and interfaces. On the software side,
operation of the windows software agent is presented, in particular its
graphical user interface, communication and data/core management.

o Chapter five talks about the results acquired from the experiments that were
performed on the embedded system, PC, and Temporal Partitioning platform.
It also presents quantitative comparison between the platforms and
conclusions regarding the project.

o At last Chapter six concludes this thesis with recap on all of the done work
and achieved results.

At the beginning of the work Table of contents and list of figures gives reader an
ability to quickly navigate thought the thesis, and at the end of the thesis bibliography

of the used materials is presented as well.

CHAPTER 2

OVERVIEW OF COMPUTING SYSTEMS WITH ADAPTIVE ARCHITECTURE

Introduction

In today’s world, all of the personal and most of the computers in general are
based on statically fixed architecture processors[1]. As we know, processors remain
unchanged throughout their operational life and their operation is controlled by the
software algorithms. Due to the fact that it was possible to change software algorithms or
in other words programming of the processor, it was possible to achieve execution of the
wide range of different types of tasks. On the other hand, this kind of approach presents a
problem which currently is only resolved by technological advances. As tasks become
more and more complicated and require complex operations such as Fourier
Transform([2] it takes substantially longer for an ordinary processor to process it. For
some applications a solution was found in a form of additional dedicated functional units
(e.g. Float-Point Multipliers in case of DSP[3]) in order to accelerate the execution of the
task. However, these types of processors are not very flexible and are application
oriented. Therefore, in case if completely different type of task is given to the DSP
processor its cost-effectiveness might be even worse then a general purpose processor[2].

In the following sections overview of several topics will be discussed regarding
computer system architectures, sequential processors, as well as reconfigurable hardware,

In particular processors with reconfigurable architecture.

2.1 Correspondence between algorithm / data structure and computing architecture.
Relation between the types of algorithm/data to be executed on a system and systems
hardware architecture determines. the performance of the system[4]. Therefore, if system
was designed to perform only certain specific task it will have the highest performance
for that particular task. However, if slightly different task is needed to be processed it
may be much less effective. All though, if system is well adapted for several different
types of operations it may be possible to perform wider range of operations but with
much lower effectiveness. As an example of it, we can consider performing processing
the 64-bit data on an 8-bit microprocessor [5]. Instead of single operation on a specific
64-bit processor it would take 16 or more cycles of operations using means of software
algorithms. So we can identify that effectiveness of the system is closely related to the
complexity of the system’s components and correlation between the task algorithm and
hardware architecture that is designed for processing the task, as well as sofiware
algorithms, which supplement hardware deficiency.
Therefore, choosing appropriate combination of complexity of system components,
their correlation with the tasks directly results in the effectiveness of the system.
Generally there are two possible approaches that can be used in designing of
processing systems: |
e Sequential processors with fixed hardware architecture (components and links)
and procedural adaptation to the application algorithm and data structure by
reprogrammable software based on Instructions.
e Reconfigurable processors with hardware that can reflect algorithm and data

structure of the application in its architecture at point of execution.

2.2 Processors with fixed hardware architecture and procedural adaptation.
Processors with fixed hardware architecture with no strict real-time time
requirements are widely available on the market and generally classified as micro-
processors and baéed on micro-processors different types of industrial microcontrollers,
which are used in most of industrial applications. During the last decade when
performance requirements for computing platforms have increased two architectural
approaches have become the most popular solutions: Superscalar [6] and VLIW (Very
long Instruction Word) types of processors [7]. Each of them has its advantages and
pitfalls. Both of the architectures exploit a parallel instruction processing scheme, which
means they run small number of the instructions (2-4) in parallel to be able to process
application(s) faster. The idea of Instruction Level Parallelism (ILP)[7] is based on
execution of instructions simultaneously and / or on a short pipeline (3-5 stages), which
ideally allows increasing performance of processor. However it still doesn’t achieve the
desired instruction per clock cycle operation. This is due to a fact that several clock
cycles are still wasted on control and service operations that are required to coordinate
the operation of the processor. In addition clock cycles are also wasted in case of
different hazards, which are divided on data, control and structural hazards. As an
example branches cause huge amount of hazards [8] since if a branch is required
especially if it is conditional branch whole pipeline has to be cleared and reloaded with
the instructions that follow after branch, due to that problem there is no essential
acceleration with using pipeline. Several complex control schemes such as branch
predictors have been developed to be able to predict branches and avoid loosing clock

cycles which can increase the productivity. Nowadays, superscalar processors are quite

common and superscalar architectures are used in high performance systems as well as
personal computers and latest hand held devices. Their high processing capability comes
from the multiple internal processing units that accelerate specific functions such as
floating point processing, and it is possible to have several of the same type of processing
units, which allows pipelining the instructions without stalls. Some of the examples of the
superscalar processors are MIPS R10000, DEC21164 [6]. Control units of the superscalar
operate independently and user doesn’t require knowing the architecture of the
processors. Very complex control units embedded to the processor have their own bus
which can access instructions and data independently which gives big acceleration of
these processors comparing with traditional microprocessors.

However, the drawback of complex control units in the superscalar processors
requires more hardware, power, as well as much longer design, testing and verification
periods. Therefore, this kind of approach generates much more costly design.

Very Long Instruction Word [7] processors have a slightly different approach to
increase productivity. Even though, they are similar in some sense to the superscalar
architecture by having separate processing units that can execute several instructions
simultaneously, it is necessary to place instructions in the program in specific order to
simplify parallel issuing of instructions for execution. This approach allows dramatic
simplification of control unit in VLIW processor and‘thus, reduction of its cost. If the
program is well scheduled it is possible to achieve high performance with the minimum
cost. That is why, in order for VLIW processor to work effectively, programmer has to
program it in a way which will reflect not only algorithm and data specifics but also the

hardware architecture of processor. Thus, this presents a problem since programming

-10-

becomes very complex. The only area where VLIW processors seem to be very popular

is the area of DSP application (e.g. TI TMS3206x [9]).

2.3 Processors with reconfigurable architecture.

Over past 15 years there has been an increasing demand for reprogrammable and
reconfigurable computing devices[10]. Makimoto’s wave — a prediction done in early
nineties indicated that most of the computing technologies nowadays will need to include
field programmability[8]. Reconfigurable platforms are gradually filling the gap between
the ASICs that are oriented for high performance of one dedicated application and
microprocessors, which can be easily adapted (programmed) to any application but has
physical restrictions for their performance (sequential processing nature).

Several different types of reconfigurable architectures were developed and some
are still in development, which mostly concentrated of having hybrid architectures of
processing and configuration of communicating busses. Main distinction between

reconfigurable processors is static and dynamic reconfigurability.

Static configurable systems are generally used in cases of rapid prototyping of
ASICs since it is possible to design test and then make modification without involving
manufacturing steps as it is done in case of real ASIC design [11]. Also, it is
advantageous in cases of small production volumes of computing platforms when
manufacturing of ASIC may be too costly[12][13]. In addition, rapid prototyping with
reconfigurable devices allows shorting time-to-market, which is critical in current

competitive environment. Usually statically configurable processors had a fine grain

-11-

organization and such as Splash-2 [14][15], Achillies[16]. Most of the statically
conﬁguréd adaptive processors require long loading time due to the fact that routing as
well as combinational logic has to be initialized. On the other hand, course grain
architecture processors did not need to be configured for extensive periods of time since

they have fewer connections and therefore could be dynamically reconfigured[17].

Dynamically reconfigurable processors are much more promising for the future
implementation of most high performance systems due to several key features. An ability
to reconfigure the device while other parts of it continue to operate allows reusing the
hardware of the device for different types of functions. This gives a possibility of having
a notion of non-fixed hardware or in other words virtual hardware, where virtual
hardware is described in the Hardware Description Language (HDL) [19]. Dynamic

reconfigurable processors can be divided onto three subcategories:

1. Processor with reconfigurable co-processor(s) [18].
2. Reconfigurable Processor with spatial partitioning [20].

3. Reconfigurable Processor with temporal partitioning [21].

Processor with reconfigurable co-processor creates so-called hybrid architecture
[17][22][23][24] and allows reconfiguring the connection or routing from the main
processing unit to several different components (co;processors), which than can perform
the functional processing. However, there are still bottlenecks of performance related to
the actual co-processors that are linked to the main processor. Considering that co-
processors can not be fully adapted for the task it will probably loose some clock cycles

on that operation. Some of the examples of such processors were the ones with

-12-

reconfigurable busses: KressArray Family of processors, as well as: RAW
(Reconfigurable Architecture Workstation) which incorporated MIPS superscalar
processors; DReAM Array which was used in communication for mobile systems [25],

PipeRench [26] and RaPid [17][27].

Reconfigurable processors with spatial partitioning of resources are systems that
allow flexible distribution of hardware components in space of the homogeneous field of
configurable logic and routing resources [26]. Reconfigurable processors with spatial
partitioning of computing resources gives a possibility to increase the flexibility of the
system by being able to select components that are required for the particular task and
loading them in a FPGA. If different type of task is needed to be processed system
doesn’t need to be hélted, it can be simply reloaded with different type of components
which will be exactly suited for that particular task. As well as all of the components
could be checked for correct operation, this will increase the fault tolerance of the system

[28].

Alternatively, a reconfigurable processor with temporal partitioning of computing
resources exploits reusing of the same computing resources of the system in different
periods of time for different tasks or segments of a task. This allows minimization of
hardware resources per task while keeping high performance for certain types of
applications such as: data-flow tasks or streamed data processing applications
(video/audio processing[29][30], DSP and digital communication and broadcasting, etc.).
In this approach processing of a task is divided onto several stages. After completion of

each stage temporal results are stored in memory and new core reconfigures computing

-13 -

resources for the new segment of algorithm to be executed. Since it is possible to have a
division obf the cores inside an FPGA, some of the cores can be reloaded often to perform
certain tasks, where as others might stay there longer to perform completely independent
tasks. Also it is possible to dedicate more resources if sudden requirement for a particular
task has appeared either in the data flow graph (DFG)[31] or as an external event. These
systems are more dynamic and reflect behavior of the natural world. Some of the
examples of such systems could have been found even in the previous years (PipeRench
[30][32][26], KressArray) [17], however they had much more course architecture and did
not allow fine tuning for the algorithm at hand, and therefore were not used in the manner
of partial configuration. More detailed explanation of the implementation of temporal
partitioning system as Run-Timé Reconfigurable (RTR) systems is presented in the next

section.

Another big advantage of the pre-compiled cores is that since they are completely
“Of-The-Shelf” (OTS) virtual units, internal routing is already embedded in these units.
This fact can dramatically simplify virtual assembling of soft-cores on-chip by simple
loading in different moment of time. Alternatively, the software compilation of different
soft-cores and their mapping in space of logic and routing resources is a must. As it turns
out from the experimental results, routing of the FPGA takes the most time for creation of
the completely assembled core and even though right now it does not present a big
problem since sizes of chips are still relatively small. However, as sizes of the FPGAs
will continue to increase in their volume and complexity, it will be more and more

complex to perform core compilation. As an example, Table 2.1 below indicates the core

-14-

generation times and chip size predictions based on a 3Ghz Dual core CPU machine (PC-

workstation) with a 1 GB of RAM.

Table 2.1: Core compilation time depending on amount of available logic resources in

the Field Programmable Gate Array (FPGA) devices

Time of core
FPGA family and Part number Number of logic gates

generation
Xilinx Virtex-E (XCV-50E) 50,000 30 seconds
Xilinx Virtex II Pro (XC2V1000) 1,000,000 3.5 minutes
Xilinx Virtex 4 (XC4VLX200) 10,000,000 ~1.0 hour
Virtex 4 100M system gates (in near future) | 100,000,000 ~10 hours.

As it can be seen from the table, as the size of the FPGA device increases, it will be
more and more difficult to get completely compiled bit stream for and System-on-Chip
(SoC) design. However, it will be much more advantageous to use already configured
cores since routing and configuration outputs are fixed and was done before. In case of
reconfigurable processor generation of design is going to be much simpler and the rest of
the process will be left up to creating well scheduled reconfiguration scheme. Even if
generation of specialized cores will be required it will not take that much time either
since usually processing cores do not need to use whole chip and by restricting the
routing only to a small area it will be able to achieve result in reasonable amount of time

as it occurs nowadays.

-15-

However, to implement reconfigurable processors with spatial and / or temporal
partitioning of computing resources it is mandatory to have appropriate hardware FPGA,
which allows partial reconfiguration of its logic and routing resources. Partial
reconfiguration in this consideration means that FPGA architecture allows
reconfiguration of a part of the FPGA resources without suspension or interruption of

operations conducting on the rest of FPGA device.

Currently on the market there is very limited availability of FPGA devices that
allow partial reconfiguration. Atmel Inc. is producing FPSLIC (Field Programmable
System Level Integrated Circuit) [33], which also combines a microcontroller, and FPGA
and EEPROM. Downside of that particular device is that size and complexity of the
FPGA which is included is quite small, only up td 40K system gates and not suited for
high speed or complex designs. The only company that produces such family of FPGA
devices is Xilinx Corp. Starting from Xilinx Virtex family and moving to Virtex 1I[34]
and recently to Virtex 4, Xilinx fully captured the market for partially reconfigurable
devices. That is why for further utilization of the unique features of these FPGA devices
it is necessary to give some background regarding architecture organization of the above
mentioned families of Xilinx FPGAs, and it is done in section 2.5. However, it is also
important to reflect on already existing works and some implementations of the temporal

partitioning for FPGA type systems, which is done in the next section.

-16 -

2.4 Existing reconfigurable platforms with temporal partitioning of resources

In past couple of years several developments have been made in the FPGA
temporal partitioning field and this section will talk about some of them giving a general
overview and their approaches and implementations. Most of the works that have been
found to be concentrated mostly on the actual approaches of division of tasks for the
platforms allowing temporal partitioning of its resources, and had a very brief
explanations of the actual hardware systems that were implemented or used for the

temporal partitioning experiments.

One of the research groups from Cergy Pontoise University in France[35],
proposed a very similar approach to the one presented in this thesis where actual
algorithms were divided in the different cores. Based on the schedule of execution of the
task, those algorithms were loaded one after another for execution on the ARDOISE
FPGA platform, which they developed for the experiments. However, there are several
disadvantages associated with this approach, which can cause major processing delays.
Their implementation uses a host PC for scheduling of reconfiguration and a hard drive to
store the precompiled cores. In addition to that they are using a technique of preloading
the scheduled cores into a SRAM “core cache”, and during the reconfiguration system’s
operation is halted. As it was mentioned previously a disadvantage of being tied to the PC
for core storage doesn’t give ability of being able to have the platform which is
completely embedded and used in areas where PC can not be placed. In addition storage
of cores on a hard drive can introduce significant stalls since the initial seek time of the

hard drive is measured in milliseconds, where if it was implemented on board of the

-17 -

platform in FLASH memory avoiding all the communications channels access time of the
required core is measured in max of 25 microseconds[36]. Also, it would not depend on
the location of the core in FLASH memory, as well as, seek time would be exactly the
same at any time of operation. In this thesis it is proposed to first develop the temporal
partitioning mechanism and implement it in a first stage, which will give it capability of
being completely embedded and only then move to the implementation of platform with
embedded FPGA.

Another main disadvantage of the ARDOISE platform is that it was implemented
on Atmel FPGA with 40K system gates[38][31] which allows only implementations of
the very limited algorithms and this can cause a problem of requirement to divide task in
much finer segments. This fact in turn would cause longer down-times of the FPGA
platform during the reconfiguration cycles. If the implementation was done on the Xilinx
Virtex II FPGA it would be possible to implement much more complicated algorithms
since the sizes of Xilinx FPGAs are much bigger (eg. 8,000,000 system gates) [37]and
can operate on much higher clock frequencies. In addition reconfiguration of the Atmel
FPGAs is preformed at maximum frequency of 33MHz[31], where Xilinx FPGA
reconfiguration can be performed at S0MHz[39], and this is very crucial in case of
minimization of down-time for the processing platform.

Some of the works were more concentrated on development of tools [21] which
would be able to perform the task partitioning for DSP type applications and not on the
design of the actual hardware platforms. Similarly, there were other proposed approaches
and applications[40] [35], [29],[21] which explored the theories behind divisions of the

tasks as well as their use in areas of multi-media processing. As it was stated in the L.

-18-

Kessal paper [38] and this thesis proposed approach the temporal reconfiguration was
suggested to be using an external data storage memory, as well as, “Stored Circuit
Configuration Memory”, however the emphasis was placed more on the software division
of the tasks in to groups for later scheduling and processing. Most of the implementations
were done on the simulators, and the actual implementations of the temporal partitioning
platform were not discussed in detail. Some of the works related to the capability of
implementation of the temporal partitioning platforms on an Atmel 4000 FPGAs for non-
complex implementations, as well as Virtex family FPGA for much larger designs, as it
was proposed for the final stage of implementation in this thesis. Therefore, it is
important to briefly explain the organization of the Virtex Family FPGAs, which is done

in the next section.

2.5 Virtex Family Architecture

Main components of the Virtex FPGAs are Configurable Logic Blocks (CLBs)
[41], Input Output Blocks (IOBs), memory blocks (BRAMsS), clock and configurable
routing. Configuration of the components is based on configuration SRAM memory
therefore it can be easily reconfigured by loading of configuration bit-stream to the
configuration SRAM. In Figure 2.1 the general organization of the Virtex Family FPGA
devices is presented. As it can be seen, CLBs placement is structured in rows and
columns as well as intermixed with the BRAM (Block RAM) columns. I0Bs are located
on the perimeter of the chip and can be configured to different part of chip over a very

complex routing network.

-19-

oCM DCM 108
ot Chack Mue— -« v [T TITTT I Illm_
e I o o =
o O0|||D000| 052
z I O =
| DollEacallen
I W)
(LI D0 0o
T N L0 OIC W[l
Cordiguratie Logic \\ D DE Bl DD
\Ni
Pinqgrammable LO2 /]
CLB Block SekxtRAM Multplier

ol A Rl g

Figure 2.1: Diagram of Virtex Il FPGA organization (courtesy of Xilinx Corp.)

As it was stated before Virtex FPGA devices have a capability of reconfiguration
of its parts while other parts of FPGA are still in operation, however there are some
restrictions associated with that feature. For example Virtex II devices can be partially
reconfigured since frames (columns of CLBs) can be configured as a group. However, it
is not possible to configure single CLB individually since the frames belonging to a given
CLB are common to all other CLBs in the column. On the other hand, Virtex 4 devices

have a capability of addressing and reconfiguration of individual CLBs.

2.6 General approach to designing partially reconfigurable processing system

An approach that was used in number of cases [42],[12] and also recommended by the
Xilinx Corp.[43] suggests developers to divide the application of the design in a few
parts. First, a controller has to be designed which will be able to perform the
reconfiguration of the FPGA device. It can be an external controller such as
Microcontroller or CPLD, as well as an internal controller. Xilinx Virtex II / II Pro
FPGAs actually include an internal configuration access port (ICAP) [41] which can

reconfigure frames of the FPGA during its operation using a embedded SelectMAP

-20-

(Byte-parallel) protocol [44]. ICAP transfers data over an 8-bit parallel configuration data
bus, which allows configuration at a speed of 400 M bits per second. Organization of the
FPGA has to be done in a specific way, similarly to how it was suggested by the group
from Montpellier University (France) [42] in order to allow the partially configured units
to communicate with each other. Figure 2.2 illustrates a suggested setup where several
processing units represent the possible positions for activated cores and main controller

resides at the bottom side of the chip.

Peripheral 1/0 devices, Memory and Ports

¥ 3 :

FPGA
Device

UNIT 1 UNIT2 || UNITN
CORE CORE CORE
AREA AREA AREA

A A
T T

FPGA Controller
ICAP

Figure 2.2: FPGA organization for partial reconfiguration

Communication between the units is done using the tri-stated interconnection with the
main controller. Controller itself contains three cores: communication bus, which
connects the unit cores; arbiter, which allows data transmission between units on a given
data-line and master core, which is responsible for the communication with an external

world. Due to the limitation of the development kit it is necessary to include an empty

-21-

unit cores in the original design including all the tri-state buffers and routing, since it is
not possible to restrain the wire routing positions.

Another essential part of the partial reconfigurable system that University of Montpellier
group developed is a CAD tool which is called core unifier which generates loading bit-
streams by combining different partial cores, which user has selected. The CAD tool
basically automates the process that usually has to be done manually by the developer
since Xilinx ISE CAD system doesn’t directly support this feature. Essentially Core
Unifier opens a default template with the dummy empty units and allows developer to
insert the desired core into a specific spot instead of one of the dummy units. Following
that procedure CAD tool creates the partial bitstream which can be loaded into the FPGA
device. However in order to make sure that all the cores will operate correctly they have
to be initially generated with the restriction of the area and also generated with all the tri-
state buffers fixed, otherwise partial design that would be inserted into the operating
device will cause incorrect operation and may even require complete re-initialization. But
there still exists a possibility that the design will not operate correctly according to the
paper that was submitted by Montpellier [42] group. The problem lays in actual Xilinx
ISE CAD, which can not fully constrain core logic to reside in the bounding box defined
by floor planning, as well as it can not fully constrain the routing of the chip within the
floor planer, and at last but not least it is not possible to define exactly the same routing

between the tri-state buffers.

-22-

2.7 Cores library and database

In order to implement truly dynamic partial reconfigurable system it is necessary
to have a set of generated cores that can be loaded as a partial bitstream into the FPGA to
perform certain function[45], based on the research paper by National Institute of
Astrophysics Optics and Electronics in Puabla Mexico. A database of cores is classified
by the type of core such as: communication, processing, testing, etc. Also, since cores are
device dependant it will be needed to have classification based on the type of the device
as well. In some cases different versions of the core can be made depending on their
speed and power usage which can be classified in this database. This kind of organization
opens up a lot of possibilities for development groups, since a platform can be used by
several users and doesn’t even have to be located at the developer’s station. There is
additional benefit which relates to the safety of the intellectual property, which is a big
issue due to the problems of reverse engineering. With the capability of remote upgrade
or remote partial configuration [46], product that was sold to a customer can contain only
hardware and its base core could be kept completely empty. At the point of installation of
the hardware by the user a secure link is established by the system with the request for a
specific core which client has license to. This way it becomes practically impossible to
perform reverse engineering on the device. As an additional benefit, a new update to the
system can be loaded without user’s knowledge and system interruption. The other
possible scenario how remote partial configuration can be beneficial is that the hardware
can be sold before the firmware part is completed and loaded to the target hardware only

after its shipment and installation, which sometimes takes several weeks.

=23 -

2.8 Configuration bit-stream transfer mechanism

The other issue that has to be addressed is a transfer mechanism, which will
perform the actual loading of cores from the source server to the target platform. In order
to do this task a communication link has to be established between the server and the
platform, however that doesn’t cause a big problem since target hardware usually has
some means of communication with the outside world and can use the same channel to
do so. In order to guarantee security of the transfer it is possible to use already existing
encrypting algorithms for protecting the so-called IP (Intellectual Property) from being
copied or tampered with. As a suggestion of implementation from article from Xilinx
[43] it is beneficial to have an EEPROM/FLASH memory on the designed platform due
to the fact that transmitted core has to check errors and compare the computed CRC to
the CRC of the transmitted bit-stream configuration file. Another benefit of on-board
EEPROM / FLASH memory appears when the system has to be powered down but the
initial configuration still resides in the EEPROM memory. When system is powered up
again it will be loaded locally from the EEPROM using microcontroller or CPLD over a
parallel SelectMAP port [41]. On the other hand, in the project described in this paper, it
was decided to extend the Xilinx recommendation to a system that will allow the user to
load all the required cores and instead of retransmitting the cores from the source to the
target FPGA, to be able to transmit the identification of the core that is needed to be
loaded. Updates or new cores could be loaded to the EEPROM in non-critical time which
would not cause delay in the operation. Currently sizes of EEPROM or FLASH memory
increased to the amount where thousands of configuration bit-streams of processing soft-

cores could be stored in a single FLASH chip. Considering that cores for partial

-24 -

configuration require much less configuration bits than a bit-stream for the complete
FPGA device, it could be assumed that it is possible to hold any combination of cores for
the FPGA operation. With the capability of using partial reconfiguration and all
necessary functional cores in FLASH memory, adaptation of the reconfigurable processor
to any data-flow application requires iny proper scheduling of core loading to the
FPGA. Further data execution could be done automatically under control of either a
controller or a source server which could control the sequence of core transfer process.

Detailed this concept will be discussed in the next Chapter 3.

Summary '

In conclusions it is important to note that fixed architecture systems are widely used
and still under development and improvement as we can see from a PC CPUs, and
probably stay for a long time, as well as small embedded microcontroller systems that are
everywhere from household appliances to space probes. We also should mention that
processor architectures such as Superscalar and VLIW allowed to increase the
productivity of the systems by employing Instruction Level Parallelism (ILP), however,
their productivity closely depends on a software algorithm programming, and therefore
do not perform at their peak performance. Although fixed architectures processors are
beneficial in certain application, they lack flexibility of reconfiguration for completely
different types of tasks. Reconfigurable processors have an advantage that they can be
well adapted for different types of tasks/algorithms by supplying them with one or other
configuration core and there are several distinctions between the reconfigurable

processors. Statically configurable processors are used in cases of rapid-prototyping and

-25-

are oriented for small scale production. Dynamic reconfiguration processors present an
attractive opportunity for most of the applications since its functionality can be changed
real-time without processing interruption of the other parts of the processor. Especially it
is useful in cases of temporal partitioning where the execution of the algorithm is based
not on generation of specific core, but on actually creating a data flow graph from the
selection of existing cores; as well as new cores, which can be quickly generatéd for

performing of specific task.

-26-

CHAPTER 3
ARCHITECTURE OF FPGA BASED PLATFORM WITH RUN-TIME

TEMPORAL PARTITIONING MECHANISM

Introduction

In this Chapter the examination of different computational schemes is presented.
The general analytical maodels are created for performance estimation of different data
processing platforms based on conventional microprocessors and processors with
instruction processing pipelines. The comparative analysis was done to prove the concept
of FPGA based platforms with temporal partitioning of hardware resources. Based on the
above, the architecture organization of the FPGA platforms with embedded Temporal
Partitioning Mechanism (TPM) is described. Finally, the comparative analysis is done
regarding minimization of hardware resources utilization in the FPGA based platforms

with TPM comparing with regular FPGA platforms.

3.1 The Concept of Run-Time Temporal Partitioning of Hardware Resources

In most of industrial applications FPGAs are dedicated to one particular task, and
do not change configuration of digital circuits while working. However, SRAM based
FPGAs by its nature can perform run-time reconfiguration (RTR) and thus, reuse of
internal hardware resources for different tasks or parts of a task. This approach allows

fast optimization of the cost-performance characteristics of FPGA-based platform.

-27 -

There are two possible mechanisms for reusing hardware resources of the SRAM

based FPGA:

a) Spatial partitioning of resources — sharing the area of uniformed logic and routing

resources between tasks inside the FPGA and

b) Temporal partitioning of resources — sharing the same resources between tasks or their

segments in different periods of time.

In this project the research was focused on the research, development, and
implementation of the temporal partitioning mechanisms for data-stream processing,

implemented in partially reconfigurable FPGA devices.

Scheduling of an application begins from the analysis of the Data Flow Graph
(DFQG) of a task and performance parameters (response time, data rate, latency, etc.). For
example in case of video-processing application, there is given time period when video-
frame(s) should be processed. This period depends on frame rate, GUI (Graphical User
Interface) requirements, etc. In case of network communication this period depends on
network bandwidth, packet size, etc. Let us consider an example of video-processing task
where stereo video-frame (2 x 640 x 480 pixels) has to be captured and processed with 30
frames / s (within 33 ms / frame). Let us also consider that maximum resources are given
to the task and internal clock frequency is equal to 200 MHz (clock rate = 5 ns).
Assuming that one pixel is processed within 1 clock cycle and all pixels are progressively
processed, the video-frame processing time will be equal to: 2 x 640 x 480 x 5 ns = 3.072

ms.

The difference between video-frame capturing period (33 ms) and video-frame
processing time (~3 ms) is about 11 times. Obviously, this difference will increase when
clock frequency increases. Therefore, having data-acquisition time or real-time control
timing requirements much longer than processing time of the associated data block, the
idea of temporal partitioning of hardware resources would look very attractive. In the
Figure 3.1 it is shown the example of task DFG and simple data-frame processing
schedule. This schedule consists of data processing periods (according to DFG statements
-Si) and reconfiguration periods for the next DFG statement (RSi+1). This example
shows that utilization of FPGA resources can be improved by pipelining of the

reconfiguration and computation processes while next data-frame is capturing.

Data Frame Resources
A |

RS1

RSi RSn RSI

5

sy | | S | S0 | s | sk s

Frame #j - Capturing Data-Frame #+1

|
‘ : 1. l .
l— Processing Data-Frame #jand ! Time

: Canturing Data-Frame # j+/ '
a) b)

Figure 3.1: Data-Flow Graph (DFG) of a task and associated schedule of data-frame
capturing and processing combined with reconfiguration of FPGA resources

Let us compare performance of data-paths in the following computing architectures:

i) Conventional microprocessor [8],

-29.-

ii) Processor with instruction processing pipeline [5],

iii) Proposed FPGA platform with temporal partitioning of resources.

In all of the above cases we assume that the same task is executed. In other words same
data-frame is processed by the same procedure presented on the Data-Flow Graph — DFG

(Figure 3.1 a).

3.1.1 Performance of the conventional microprocessor

In case of conventional microprocessor the data-frame processing time will be equal
to the sum of processing times of each element of data-frame (e.g. pixel) on each DFG
statements — Si, when each statement in general case is implemented as a linear segment
or subroutine in the program. Thus, we can consider each statement —Si, i =/,2, ..nas a
list of instructions (machine code). In this case processing time of a statement —T'si (uP) is
equal to the sum of execution times of all instruction in the procedure associated with

statement - Si, i =1,2, ...n and can be calculated by the following formula:
Ki
Tsiup)= ., CC x 7, G.1)
j=1 ,

where j =1,2,...Ki is instruction number in the procedure of a statement —Si,

CCj — is number of clock cycles needed for execution of the instruction #j and

T .. - is the clock cycle period

Thus, a data-frame computation time - Tor (uP)can be calculated by formula assuming
that each data element (e.g. pixel or packet element) should pass (in worst case) all

statements in associated DFG:

-30-

n Ki

Torp)=1D, (O, CCj x7_)]x Nd (.2)
1

i=1 j=

Where Nd — is number of data elements in a data-frame (e.g. number of pixels in the

video-frame equal to resolution of camera).

3.1.2 Performance of the processor with instruction processing pipeline

In case of the processor with architecture that exploits Instruction Level Parallelism
(ILP) the instruction processing pipeline should be considered [5]. In general case there
are several stages of instruction pipeline: IF- Instruction fetch, ID — Instruction decode,
RD — Read data or “Read Operands”, EXE- Execution and WR- Write result [8].

Definitely, there are different variants of pipeline architectures that are utilizing
different of instruction processing schemes and hazards elimination circuits (e.g. Harvard
architecture, forwarding, etc.). In this consideration we can simplify this case to the
system that sequentially process instructions (one after another) when each instruction

execution process consists of the above 5 stages. This process is illustrated in Figure 3.2.

l »
Instruction1 | -}-»| IF| ID| RD| EXE |WR Time
Instruction2 | -f----- » | IF | ID| RD| EXE WR
Instruction i |-f------"--- » | IF| ID| RD| EXE WR
Instruction n | [~"" """ "°°°°7°°° > IF | ID| RD| EXE WR

_JA
Si -Procedure Instruction
Subroutine Y Count

Figure 3.2: Pipeline processing of Program Instructions without hazards

-31-

Let us assume that instruction execution process is close to ideal situation when no
data dependency between data elements in the data-frame and no structural hazards
occurs. Let us also assume that each statement — Si procedure is organized as a loop and

each stage of instruction execution requires same time for any instruction in the Si
procedure. In this case we can estimate data frame processing time —1Si (pipeline) on

each statement — Si, by the following formula (3.3):

S Kj
Tsi (pipeline) =[Z CCp + CCsrancr + Nd x (Z CCstall (j) +CCoutput)] x 7,
p=I1

J=1

where: CCp — is a number of clock cycles for p — stage of the pipeline (e.g. IF, ID, RD,

etc.).

s
In case shown in Figure 3.2 - Z CCp = CCir+ CCip + CCor + CCexe + CCwr - is

p=1
simply a sum of clock cycles of all stages of the instruction execution process, which is
equal to initial time delay (latency) caused by filling of the pipeline.

CCrinch - is a number of extra clock cycles spent for a branch instruction assuming
that branch predictor is ideal and control hazard appears only once in the Si procedure.
CCistall(j) - is a number of stall clock cycles caused by the instruction #j, where
J =1,2,..Ki is instruction number in the procedure loop of a statement — Si,

CCoutput — is a number of clock cycles for the output stage of the instruction cycle (e.g.

WR-stage in Figure 3.2).

INd — is number of data elements in data-frame.

-32-

U,

g A Gt

T .. - is the clock cycle period

Considering the Si execution procedure as a subroutine (function) we can define

the formula of complete data-frame execution time, which is the sum of all data frame
processing time —1'Si (pipeline) of each statement — Si, i=1,2, ...n

3.4

n S K
Tor= Z [z CCp +cCranch + (Nd—1)x (Z CCstall (j) + CCoutput)] x t,,
j=1

i=l p=l

As it was shown in [8] it is very difficult to create general analytical model for
instruction level pipeline because it strongly depends on many architectural factors as
well as organization of the instruction set itself. However, the above model may be useful
tool for comparison the performance of existing computing platforms with the proposed

FPGA based platform with temporal partitioning of hardware resources.

3.1.3 Performance of the FPGA platform with temporal partitioning of resources

In case of the FPGA based computing platform with temporal configured resources
each statement Si could be represented by respective configuration file of the Virtual
Hardware Component (VHC) — soft core of application specific circuit with architecture
optimized on data processing by the algorithm of the DFG statement — Si. Thus, instead
of pipelines oriented to processing the instruction word the data processing pipeline is
used [47]. Long pipelines of application specific data-paths in each virtual hardware
component - VHC (e.g. FFT, Edge Detector, Matrix Multiplier, etc.) associated with each

statement Si of the DFG, allows processing data-frames with the speed comparable to

-33-

ASIC performance. Thus, loading the virtual hardware components from the
configuration memory according to the processing schedule (Figure 3.1 b) will allow the
FPGA based platform reaching required high performance with minimum computational
resources. At the same time “programming” of a task (application) can be simplified by
development of only the processing schedule. This becomes possible because Virtual
Hardware Components are already precompiled and stored in the library of VHCs
(similar to Instruction Set in regular microprocessor).

The performance of the FPGA platform with Temporal Partitioning Mechanism
(TPM) strongly depends on organization of reconfiguration scheme and VHC
architecture. Considering VHC architecture as a single data path with single (global)
clock synchronization and dual-port data-memory read / write interface (Figure 3.3) we
can find out the time of data-frame processing on VHC associated with respective DFG

statement — Si.

Component (soft core)
Read data form < Input data for DFG statement Si
the Data Memory (was output data for previous

statement(s) in DFG)
Operation # 1

Output data for DFG statement

Operation # 2 3
- Si (is input data for the next
Operation #j statement(s) in DFG)
Operation # Ki A
Write data to the
Data Memory

Figure 3.3: Organization data processing path in the FPGA platform with TPM

-34 -

T —————S 8 o

In this case data-frame processing time (in worst case when all elements of data

frame should be processed) can be calculated using the following formula:

Ki)
Tsi M) = [D CCj + (Nd - 1) x max{CC}] x .., (3.5)

=
Where:
C(Cj - is a number of clock cycles for Operation #;, J=1,2, ...Ki of the VHC associated
with DFG statement — Si. (Figure 3.3).

INd — is number of data elements in data-frame.

T . - is the clock cycle period

Ki — number of operations to be executed on the soft-core of DFG statement Si. [=1,2,...n

Assuming that TPM provides effective pipelining of the reconfiguration and data

computation processes while next data-frame is capturing, we can determine the complete

data-frame computation time as a sum of TSi (TPM), i=1,2,... n

n

n Ki
Tor aery =3 TsiTPM)=(2L 2 CCl (Nd-1) x max{CGfl) x 7. (3.6)
i=1

=l j=l

The above formula may be used for performance estimation of data-frame
processing on the FPGA based computing platforms with Temporal Partitioning
Mechanism. This mechanism should provide pipelining of the reconfiguration and data
computation processes and the Data Flow Graph (DFG) of a task should be acyélic (or

can be converted to acyclic form).

-35-

3.2. Performance comparison between the FPGA platform with TPM and platforms
based on processors with fixed architecture
To compare performance of FPGA platform with TPM and performance of

conventional microprocessor formulas (3.6) and (3.2) should be analyzed:

n Ki
Tor (TPM)=(Z[ZCCJ+ (Nd -1) x max{CCj}]) x . (3.6)
i=1 =l
n Ki
And Tor@uP) = [Z (Z CG xt,)]x Nd | (3.2

i=1 j=1

The above formulas shows that pipelining of data path in the FPGA based platform
with TPM gives very high performance acceleration comparing to microprocessor with
fixed achitecture. Obviously, data-frame processing time in case of FPGA platform

linearly depends on number of data elements multiplied on longest operation cycle —

(max{CCj}) x . That is true in most of cases because number of stages in the data-

path for each statement Si. I=1,2,...n, is negligibly small comparing with number of data

Ki
elements in a data frame. In other words: ZCCJ <<(Nd -1) x max{CCj}. Thus,
=

n Ki n
TDF(TPM) = (Z[> CC) +(Nd-1) xmax{CCi)x 7., = (Z [Na x maxfccip= =,
i=1

=l =l

Therefore, assuming that clock period -7, is the same for both platforms, the FPGA

based platform with TPM gives performance acceleration comparing to conventional

microprocessor equal to:

- 36 -

n Ki

Amp s up) = [2 (Z CG xrt.)]x Nd /(Z[Nd x max{CCj})x r,,
i=l

i=1 j=1
Ki
=2 COwp)y / max{CCjarm}
=

Thus, acceleration does not depend on number of elements in data frame as well as
number of statements in DFG but is proportional to the number of instructions in each
DFG statement Si and number of clock cycles spent for each -instruction in the
microprocessor and longest operation cycle in the FPGA based platform.

For example if average number of instructions in each statement execution procedure
is equal to 100 and average number of clock cycles per instruction is equal to 10 c.c.
when the longest operation cycle in the FPGA platform usually does not exceed 1 c.c.

than the acceleration will be equal to:

Amp /upP) = 100 instructions x 10 c.c. / 1 c.c. = 1000.

Thus for most of real applications FPGA based platform with TPM can give

performance acceleration from 2 to 3 orders of magnitude.

Let us now compare the proposed FPGA based TPM platform with the processor
exploiting Instruction Level Parallelism (architecture with instruction processing
pipeline). Using formulas 3.4 and 3.6 the acceleration of FPGA based platform with TPM

can be determined:

-37-

n S
A(TMP/Pipeline) = Z [Z CCp +CCorancrt(Nd-1) x
p=1

i=1

Kj n Ki)
(> CCstall (j)+ CCoupu)lx =., | (DL 2CCl+ (Na-1) x max{CCif)xx.,
Jj=1 =l j=

s
In data frame processing applications initial latency of instruction pipeline - Z CCp ,as
p=l

well as, number of clock cycles required for branch execution is negligibly small

comparing to number of clock cycles needed for data processing in pipelined processing

procedure for any of DFG statements. Therefore, the above formula for A (TMP/Pipeline)

can be simplified as follows:

n Kj n
A rmP/Pipeline) = Nd x Z [Y CCstall (j)+ CCoutput] / Z [Na x max{CCj}]
i=1

=l j=I

K
= (Z CCstall () + CCoutput) / max{CCj}

j=1
Thus, acceleration value depends on number of clock cycles in the output stage of the
pipeline plus additional clock cycles when the pipeline has been stalled.
Let us consider the ideal situation when no stall cycles appears in no one statement
processing procedure (subroutine) and number of clock cycles for each instruction
processing pipeline stage is equal to the number of clock cycles for longest operation in

the FPGA based platform with TPM. In this case acceleration of the FPGA platform will

be: A(TMP/Pipeline) = (0 + CC) / CC = 1. In other words, FPGA base platform with TPM

always has higher performance than the platform based on processor instruction

-38-

processing pipeline. If we consider more realistic case there are 20% - 30% of stall cycles
in every loop of data element processing procedure. On the other hand the number of
output clock cycles associated with Write Result stage (writing to memory or cache) is
about 4 — 20 clock cycles. Thus, if consider the example with 100 instructions in the
statement processing loop and 20% of stall cycles in average loop as well as 4 clock

cycles per WR stage of the pipeline the acceleration of the FPGA based platform will be:

A MP/Pipeline = (20 c.c. +4 c.c.)/ 1 c.c.=24.

* Therefore, for real applications FPGA based platform with TPM can give performance
acceleration in a range of one order of magnitude comparing with most popular
processing architectures that utilizes Instruction Level Parallelism in their architecture.

In the Chapter 5 the results gained on the prototype of the FPGA platform with TPM
are discussed and performance acceleration comparing with RISC embedded

microcontroller and AMD 3000+ based platform is estimated.

3.3 Architecture Organization of an FPGA based Platform with Run-Time

Temporal Partitioning Mechanism

The concept of run-time temporal partitioning of hardware resources in the SRAM
based FPGA devices described in the Section 3.1 and organization data processing path
in the FPGA platform with temporal partitioning mechanism (Figure 3.3), dictates the

architecture organization of the FPGA based platform with TPM.

Major components to be included into this architecture should be as follows:

-39-

[1] Reconfigurable Field of Operating Resources based on the FPGA device with
partially reconfigurable architecture. FPGA micro-architecture consists of blocks of
uniformed Configurable Logic Blocks (CLBs), reconfigurable routing resources,
dual-port Blocks of RAM (BRAM) and reconfigurable Input / Output Blocks.
Additionally modern FPGA devices include different types of embedded hardware
cores such as: conventional processor(s), multipliers, Gigabit serializers, etc. [34].
Partial reconfiguration of internal hardware resources allows reconfiguration of any
part of the FPGA hardware resources without suspension or interrupt of the rest
circuits in the FPGA device [39]. This unique feature of the recent families of
XILINX Virtex FPGA devices allows allocation of all Reconfigurable Field of
Operating Resources inside the FPGA. This component should contain the following
major elements:

i) Reconfigurable data-processing area (Data Processing Slots - DPS) for
Virtual Hardware Components (VHCs) - soft-cores associated with
DFG statements of each task (application);

ii) Configuration controller for run-time reconfiguration of Data
Processing Slots (arrays of Configurable Logic Blocks with associated
local routing and BRAM) and proper interfacing to the internal and
external hardware components;

iii) Resident of the Real-Time Hardware Operating System (RTHOS) —
soft-core of the RTHOS that allows keeps track of current situation in

the Reconfigurable space and provides control information regarding

-40 -

next cycle(s) of reconfiguration in accordance to the temporal
partitioning schedule.

[2] Reconfigurable Field of Memory Resources based on static random access memory

(SRAM) devices interfaced to FPGA. This part of architecture in conjunction with
Block RAM modules embedded in the FPGA is divided on the following
components: i) Memory for raw data collected from input data-frame sources (e.g.
video-cameras), ii) Buffers for processed data frames between DFG statement
processing procedures, iii) Memory for output data-frames to be sent via output ports
or communication links, iv) Cache for configuration bit-streams for Virtual Hardware

Components (VHC), requested by the active task (application);

[3] Soft-Core Memory based on flash memory devices and contains the Library of soft-
core configuration bit-streams of all Task Initial Architectures with associated Virtual
Hardware Components;

[4] Real-Time Hardware Operating System (RTHOS) is a soft-core loadable to the

FPGA. This component performs the following functions:
i) Real-time scheduling and monitoring of data-frame processing operations,
ii) Real-time performing FPGA partial reconfiguration operations (configuration bit-
stream transfer from flash to memory and from memory to FPGA,
iii) Synchronization of data transfer and computation processes;
[5] Reprogrammable Controller-Loader is responsible for the following operations:
i) Loading initial soft-core (resident) of the Real-Time Hardware Operating System,
ii) Loading task (application) schedule — Task Schedule File (TSF) to the RTHOS

Resident - TSF-buffer allocated in the FPGA Block RAM,

-41 -

iii) Reprogramming of Soft-Core Memory,
iv) Communication with Design center for updating task schedules and / or Virtual
Hardware Components Library if requested.

[6] Reconfigurable Input / Output Interface allows flexible configuration of input / output

operations with custom data transfer protocols and programmable bit-rates.

3.3.1. Temporal Partitioning Mechanism: Components and Principle of operation
Temporal Partitioning Mechanism (TPM) consists of the components located inside
the FPGA device and external devices. The Block diagram of the Platform with Temporal
Partitioning Mechanism is presented in Figure 3.4. In this diagram the hardware

partitioning of the FPGA based Re-configurable Field of Operating Resources is shown.

Initial architecture consist of the following soft-cores: i) Data Frame Acquisition Module
- DFAM, ii) Data Processing Slot 0 — DPSO0, iii) Data Processing Slot 1 — DPSI, iv)
Configuration Controller for Data Processing Slots, v) RTHOS Resident with Task
Schedule File Buffer (TSF - Buffer).

The initial architecture is loaded to the FPGA by the Reprogrammable Controller-

Loader through the standard configuration port (JTAG). The initial architecture is task
specific and is stored in the Soft-Core Memory together with associated Virtual Hardware
Components associated with task DFG. When initial architecture is loaded into the
FPGA. the input data-frames, starts to come to the data-frame acquisition module -
DFAM. This module is application specific soft-core that includes hardware (electrical)
interface to the data-stream source and associated with this interface data transfer

protocol (i.e. I2C. UART, Firewire, Centronics, etc.). Data Frame Acquisition Module is

-40 -

responsible for receiving, pre-processing input data (e.g. decompression, decryption, etc.)

and storage data in required order in one of memory bank (Raw Data Bank).

Input Data-Stream Interface

Input / Output Blocks Data Memory

__

fo o m e m e 5 '____Il____ Address 13 Raw Data Bank 1

-

i Data Processing Slot #0 N

|l [

........................ - \ Data m’\; Tcmpom’l Data E
{ Memory ! Bank 0 :

K DATA Out

' Configuration — E N ' Temporal Data ;
: o Bank :
i Controller DPS ' q B wk | .
e ' Address | 777 TTTTIIIIIIY
.---f-------i----l t Output Data
i RTHOS Resident . ' i < i
T ;El' =0 ! Cache u DataOutput : ,—_—_-_-_—_-_E_}-?-?-_l:_(-)_ ----------- !
' TSF-Buffer E—’E Interface EE Module E t Output Data |
------------ Input/Output Blocks L. Baokl
| JTAG
t ﬁ 1 VHC # i Output Data-Stream
Reprogrammable N VHC Output |
Controller-Loader |—— 1 Cache Interface |

II T_bl\\/ Soft-Core Memory u

Figure 3.4: Block Diagram of the FPGA based platform with Temporal Partitioning

Mechanism. Soft-core (loaded into the FPGA) modules are shown as dotted boxes.

At the same time Reprogrammable Controller-Loader transfers the Task Schedule File

(TSF) to the RTHOS Resident. The RTHOS Resident stores TSF in the TSF-buffer

(BRAM-based) and initiates loading DPSO and DPS1 with the requested VHC. The

-43 -

number of this VHC is encoded in the first TSF word. The TSF-word contains the
physical address of the VHC, which determines the place of the requested VHC in the
Soft-Core Memory (Library of Virtual Hardware Components). The proposed approach
assumes that VHC location (initial address of the VHC in the Library) is known for the
programmer or compiler. Using the information in the first TSF-word retrieved from the
TSF-Buffer, the RTHOS Resident gives command to the DPS Controller-Loader and it
starts to loading the requested VHCO (associated with the first task DFG-statement) from
the VHC-Cache to the DPSO slot. After finishing this operation the RTHOS initiates
loading the second VHC1 from the VHC-Cache to the DPS1 slot. When the first and
second VHCs are configured in the FPGA the “Data In” and “Data Out” multiplexers in
the Data Memory Interface core are switched to the DPSO slot. After capturing of the first
data-frame in the Raw Data Bank0, RTHOS switches multiplexer connected to the Data
Frame Acquisition Module (DFAM) to the Raw Data Bank]1. Starting from this moment
of time the processing cycle starts. While the DFAM captures the next data-frame in the
Raw Data Bank1, VHCO starts processing data from the Raw Data Bank0 and stores the
temporal results in the Temporal Data Bank0. After processing of all elements of the
data-frame RTHOS switches the multiplexer bf Data Memory Interface from the DPSO to
DPS1 slot which means from the VHCO to VHC1 and “Data In” switches to Temporal
Data Bank0 when “Data Out” is connected to Temporal Data Bank1 of the Data Memory.
At the same time RTHOS initiates loading the next VHC2 from the VHC-Cache to the
DPSO instead of VHCO. Therefore, the data processing and VHC reconfiguration
processes are pipelined. This process continues while all VHCs listed in Task Schedule

File (TSF) are completed. In the end of the process the last VHC stores output data in one

-44 -

»

of available Output Data Banks in the Data Memory and the Data Output Module start

transmission of the output data via the Output Interface. Two Output Data Banks are

necessary because output data-stream frequency or data rate could be different than input

data-stream frequency or data rate. Thus, three parallel processes simultaneously are

running on the Platform while TPM works (Figure 3.5): i) Capturing the data-frame #

(i+1), ii) Processing data-frame # i and iii) Transmission data-frame # (i-1).

} Data-Frame capturing

b

Data-Frame # (i-1) Data-Frame # i Data-Frame # (i+1)
Processing Data-Frame E E Time
Processing-Frame # (i-2) E Processing-Frame # (' i-1) E Processing-Frame # i

. Output Data-Frame E E Time
Transmission ' '

Data-Frame # (i-3) E Data-Frame # (i-2) E Data-Frame # (i-1)

Time

Figure 3.5: Pipelining of three processes: Data-frame capturing, processing using TPM

and output data-frame transmission.

Thus, Temporal Partitioning Mechanism allows reaching high performance on the data-

frame processing applications and at the same time dramatically reduces FPGA resources

needed for the task, which means smaller size and lower cost of the FPGA device and

platform itself. The architecture organization of the FPGA based platform with TPM and

-45-

its cost-effective application for intelligent manufacturing was presented at AMT 2005

(Advanced Manufacturing Technologies) and published in [48]

3.3.2 Temporal Partitioning Mechanism: Reduction of hardware resources

In this section the utilization of hardware resources in the FPGA platform equipped
with TPM will be analyzed. As per description of the FPGA platform with TPM the
architecture could be broadly divided on three parts: i) Input / Output and Memory
Interfacing part, ii) RTHOS and reconfiguration control part and iii) Data processing part.

Let us compare the hardware resources utilization in' the proposed approach and
regular FPGA platform where complete design is loaded to the FPGA from the
beginning.

Obviously, the Input / Output interfaces as well as Memory interface will be the same
in both cases because the amount of hardware used for the interface part depends on the
type of data-frame sources and receivers as well as type of memory modules. Thus, in
general case, there is no reduction of hardware resources for the first part of architecture.

The second part of platform architecture, associated with dynamic control of run-time
reconfiguration (RTHOS) does not exist in tﬁe regular FPGA platform. That is why this
part brings hardware overhead to the platform with TPM comparing with regular FPGA
platforms.

On the other hand the Data processing part of platform architecture could give
reduction of hardware resources per task if TPM is used. Let us assume that each VHCi
associated with each DFG statement - Si requires the same amount of hardware resources

(logic gates and routing) — Ri, i= 1,2 ...n, when it is loaded to the FPGA one after

-46 -

another (TPM-case) or loaded as the complete design (regular FPGA platform). In this
case the maximum amount of hardware resources for the data-path - Ror is equal to:
. In case of TPM system needs to have two DPS, where each slot must accommodate
VHC with the maximum hardware resources. Thus, Ropary = 2 x max{Ri}
e Incase of regular FPGA platform the data-path requires hardware resources close to
n
the sum of hardware resources of each VHCi. Thus, RprrpG4) = zl Ri
i=
Therefore, the complete amount of hardware resources in case of FPGA platform
with TPM will be equal to: Rrev = Rivo + RrrHos + 2 xmax{Ri}, when the complete
amount of hardware to be used for application processing in the regular FPGA platform
is:
n
RrrG4 = Rio + ZI Ri , where Ryo - is amount of the hardware required for Input /
i
Output and Memory interfacing part of architecture and RrrHos — is amount of extra

hardware needed for the RTHOS and reconfiguration control part.

Let us analyze the reduction of the hardware resources in accordance to the number of
Virtual Hardware Components. In case of regular FPGA platform » = 1. Thus, in case of
FPGA platform with TPM, the number of VHCs — n >1. In case of »n = 2, there is no
reduction of hardware because even if designer can bind the design in two hardware
components with pretty equal amount of hardware resources — R1 = R2 = R, total amount

of resources required for a task will be: R7es = Ryo + RrrHos + 2 xR. However, the

-47 -

amount of resources needed for regular FPGA platform with combined parts running
simultaneously is equal to:
n
RFpGa = Rio + Zl Ri — Ryo +2 xR <Ruo + Rrrros + 2 xR = Reu
i=
Therefore, TPM can be effective in reduction of hardware resources only in cases
when design can be divided on 3 or more components to be loaded sequentially one after
another. Furthermore, the utilization of TPM makes system more cost-effective when
number of VHCs — n increases. For example, if » = 4 and all VHCs require same amount
of hardware resources - R , regular FPGA platform needs twice more hardware resources
for the data processing part:
n
RrprGa = Rio + Z:, Ri = Ryo +4 xR > Ruo + Rrrros + 2 xR = Rpu
i=
However, the extra hardware needed for RTHOS implementation could mitigate the
reduction of total hardwaré resources. Also, if specification (DFG) allows division of a
task algorithm on 10 statements, the reduction in hardware needed for data processing
will be 5 times smaller than in regular FPGA platform. The detailed analysis of
experimental results regarding reduction of h;clrdware resources when TPM is used will be

presented in Chapter 5.

Summary
The proposed FPGA platform with run-time Temporal Partitioning Mechanism (TPM)
allows reaching performance in data processing of framed data-streams (e.g. video-

frames, communication packages, etc.) in orders of magnitude higher than platforms

-48 -

based on regular microprocessors and processors with instruction processing pipelines.
The proposed approach allows dramatic reduction of hardware resources comparing to

regular FPGA platforms in most of real cases.

-49 -

CHAPTER 4
IMPLEMENTATION OF THE FPGA BASED PLATFORM WITH

TEMPORAL PARTITIONING MECHANISM

Introduction

In this Chapter the implementation of the FPGA platform with embedded run-time
Temporal Partitioning Mechanism (TPM) is described including platform FPGA device
selection, platform prototype design and test. Based on the developed and manufactured
prototype of the FPGA platform for run-time TPM, the major architectural components
implemented in a form of real hardware and on-chip soft-cores were emulated, loaded to

the FPGA and tested. Results of the above tests has been analyzed and discussed.

4.1 Selection of the platform FPGA device for the real-time TPM

In order to implement system that would allow running experiments for temporal
partitioning of hardware resources it was required to have a specific platform that would
have particular characteristics. As it was described in Chapter 3, platform has to be able
to have processing capabilities on a FPGA type device, as well as different types of
inputs and outputs. However, in order to be able prove the effectiveness of the proposed
approach it is necessary to select the appropriate type of the FPGA device that would
ideally work for the platform with TPM.

As it is known that there are several manufacturers of FPGA devices such as
Xilinx [37], Altera [49], Actel [50], and Lattice [51], each having a wide range of choices

on the market. As per description of system architecture provided in the Section 3.3, the

-50-

concept of embedded TPM dictates necessity of run-time reconfiguration of the part of

FPGA micro-architecture reserved for Data processing slots (DPS) without suspension

the rest of running soft-cores (e.g. RTHOS, I/O Interfaces, etc.). The only FPGA device

family which allows the requested features is Xilinx Virtex families of FPGA devices

[34]. However, Xilinx Virtex devices are complex high-end and thus, relatively

expensive. The recent Virtex II and Virtex II Pro families of these FPGAs are available

only in ball-grid (BGA) packages. This makes very difficult to manufacture and rework
these devices in case of damage or prototype board defects. Thus, it seemed more suitable
to divide implementation process in four separate parts (stages):

i) Development and test the hardware components of the proposed architecture using
inexpensive FPGA device without partial reconfiguration but similar in its
architecture to Xilinx Virtex II FPGA. The best candidate for Virtex FPGA
replacement was Xilinx Spartan-3 FPGA. Thus, the first prototype of the test-
platform was done on this FPGA device.

ii) Development of soft-cores of on-chip architectural components (e.g. RTHOS
resident, I/0 and Memory interfaces, etc.) and further simulation and test each of
them on the first prototype of the test-platform. The soft-cores have to be
developed on VHDL using Xilinx ISE Foundation CAD. This will allow easy
migration of these cores from Spartan-3 to Virtex 11/ II Pro FPGAs.

iii) Development of Windows Agent for communication with the platform to perform
several tasks such as: loading cores from a PC local drive to platform’s FLASH,
core readback -and verification, scheduling core loading into the FPGA,

maintenance of existing cores, and general system check.

-51- PROPRRTY OF
RYERSG U ENGERITY LIDRARY

iv) Integration of the above into complete prototype based on Xilinx Virtex II FPGA,
emulation of complete system and test. After this stage all necessary experiments
and real-time task execution could be done and performance parameters could be

collected for further analysis.

4.2. Development and test the hardware architectural components

As per FPGA device selection in the Section 4.1, Xilinx Spartan 3 XC3S400
FPGA device [52] with 400,000 system gates was selected for the first platform
prototype. Xilinx Spartan-3 FPGA is closely compatible with the high level FPGA
devices such as Virtex II / II Pro and further Xilinx Virtex-4 families, and if needed all
soft-cores developed for Spartan-3 could be easily implemented in these high end
FPGAs.

On the other hand, an essential function of the system was to be able to provide
temporal partitioning capability and that would encompass reconfiguration of the FPGA
depending on the particular processing core required at that instant. For achieving such a
result there are several development platforms that are available on the market [53], [54],
[55], however the main drawback of these piatforms is that they either have a capability
of reconfiguring FPGA over the communication interface such as JTAG from a PC, or
reconfiguration of FPGA of only one core from the on onboard EEPROM over the 8-bit
configuration bus. The main drawback to all of those systems is that it is impossible to
provide constant dynamic reconfiguration of the FPGA devices, since a new

configuration file or core has to be loaded from a PC, which is relatively slow process.

-52-

This particular requirement forced to be able to store all of the required VHC soft-
cores on board and be able to load them as fast as possible into FPGA. As per proposed

in the Section 3.3 architectural solution, the Soft-Core Memory has to be implemented in

an on-board FLASH memory device. Nowadays the volume of FLASH memory devices
increased up to 8 Gigabits per chip and would be able to store up to 4818 complete FPGA
cores of Spartan-3 with 400,000 system gates. Programming of such FLASH memory
module can be done off-line (before the operation of the platform) to store all necessary
VHC:s and all possible their variants. As well as, it can be loaded during the operation of
the FPGA, at the time when FLASH memory is not being accessed for FPGA
reconfiguration.

At the same time loading of the VHC-cores onto a FLASH memory, as well as

from flash to FPGA has to be conducted under control of Reprogrammable Controller-

Loader (Section 3.3). There are several possibilities of implementation of this kind of
controller, some of which include software and hardware solutions. In case of software
solutions we are again required to be linked to the PC and this will slow down operation
of the embedded system. In addition, it will not allow having a stand alone embedded
platform, which is necessary in lots of applications (i.e. remote and space applications)
and also is necessary for real-time performance analysis. Therefore, it was required to
have an on-board controller-loader. This device would manage number of functions. It
would be responsible for communication between the PC and FLASH memory, as well as
it would act as a scheduler which will load certain cores in sequence if it is needed to be

done, and it would have the knowledge about the types of cores and their locations on

-53-

FLASH memory. Thus, it should perform functions of on-chip Configuration —

Controller of DPS (Section 3.3.1)

Therefore after analyzing initial requirements of the platform the general setup of

the platform looked like it is shown in Figure 4.1.

Host PC with Windows Peripheral Interface
Agent @ Controller (PIC)

Configuration Reprogrammable FPGA
Memory (FLASH) <::> Controller-Loader ’::)

Figure 4.1: Platform organization — reconfiguration component

For the choice of the controller there are several possibilities that could have been
selected. However, due to the requirements it was needed to have a controller with non-
volatile program memory, and at the same time fast enough to be able to manage
communication and file exchange processes in real-time with range of 20-50 ns. These
requirements narrowed down the possibility to Reduced Instruction Set Controllers
(RISC-controllers) or Complex Programmablé Logic Devices (CPLD). Each having its
own disadvantages caused to reconsider structure of the system. Problem with EEPROM
based CPLDs was that it is needed to write all the communication drivers for
communicating with PC which would require a lot of logic resources. Problem with the
RISC controllers is that they usually are operating at about 1-5 MIPS (Mega Instructions
per Second) and will not be able to provide maximum transfer rate from FLASH memory

to the FPGA device during loading VHC soft-cores. Therefore, RISC controller may slow

-54-

down reprogramming at least by 10 times, since programming speed for Spartan 3 is
about 50 MB/s . Another problem is that a typical microcontroller has about 30 I/O
pins[56], which clearly would not be enough for communication with PC, FLASH, and
FPGA in parallel mode. In order to solve this problem it would be good to combine two
components RISC-controller and CPLD to take advantages of each of them. CPLD can
provide a lot of I/O lines (up to 130 configurable I/O channels) and will be able to
communicate in real time with FLASH, RISC-controller and the FPGA. CPLD also could
provide custom interface to other components and operate at relatively high frequencies
(up to 250 MHz). Therefore, CPLD can reconfigure the FPGA at the maximum allowable
rate. At the same time controller will be able to communicate with PC using embedded
communication interfaces (e.g. UART) and also be able to coordinate and schedule
loading process of the appropriate VHC-cores, since it has enough internal memory to
store the index table as well. Development of the firmware for both CPLD and RISC
controller was slightly complicated due to the fact that development had to be done in a
manner that will allow both communications with each other and at the same time not
interfere with their operation. For that purpose the Microchip Peripheral - Interface
Controller (PIC) was selected because in addition to RISC architecture and 10 MIPS
performance it is equipped with many embedded hardware cores including most of
communication subsystems (UART, I12C, SPI, Byte-parallel and PWM). Then, a special
PIC-CPLD protocol was designed and communication was done in SPI (Serial Peripheral
Interface) type protocol. Since the platform embeds many different components and
design needs to be tested before complete integration, the development cycle was divided

on number of stages:

-55-

First stage was to develop and build an embedded system which would perform storage,
management and loading of FPGA cores. This system was required to have:

i) Communication interface with PC over RS232 / USB using USART
module in the RISC controller (PIC)

ii) Communication interface between RISC controller and CPLD as well
as between CPLD and FLASH memory to be able to access and save
transmitted cores and load them onto the Spartan 3 FPGA device.

Also, it was needed to develop an Agent application for managing cores on the PC side

and communication protocol for data exchange with the developed embedded system.
The block diagram of the first prototype of the platform with Temporal Partitioning

Mechanism is shown in Figure 4.2. In Figure 4.3 the image of the actual board of this

prototype is displayed.

PC with MICROCHIP
Windows <:_—_> PIC18LF452
Agent

FLASH

Memory CPLD SPARTAN 3 SRAM
128 MBit XC95144 XC3S400 FPGA Memory

110 (Eg. VIDEO interface)

Figure 4.2: Block diagram of the first prototype of the platform with TPM

-56-

Even thought the first stage of the development of this platform was successful,
after running several tests and experiments a problem was identified, which required for
slight redesign of the loading mechanism, which was included in the second stage of
development. It was found that even though the FLASH memory was outputting data at a
rate of 8 bits per every 25ns, but it would have to wait after every 527 bytes for 50us in
order to address the correct block of memory and copy it to its local SRAM register. This
is 2000 times longer then regular period and creates a substantial delay of the system
reconfiguration. Due to that fact maximum loading time for Spartan 3 XC3S400 FPGA
device was limited to:

207 KB (size of configuration bit-stream) / 527 B * (25 ns * 527 + 50 us) = 25.41 ms

per core.

FLASH
Memory
128 MBit

MAX232
RS232 Driver

FPGA
Configuration
Port

PIC18LF452
Microcontroller

£5—-98 *
W 0302
tO10~-00%
AOYH

CPLD
Oscillator

Microcontroller’s
Oscillator JTAG PORT

Voltage
Regulator

Figure 4.3: Evaluation board of the first prototype of the FPGA platform with TPM.

-57-

However, the maximum speed at which Spartan can be configured is: 207 KB (size of
configuration bit-stream for XC3S400) / S0 MB /s (speed of configuration) = 4.2 ms per
core. This is more than 6 times faster, and that is considering that the FLASH was able to
access the right block in 50 us and did not cause more delay. To solve this problem I have
decided to create a buffer SRAM memory, which would be preloaded with the next
required core in 25.41ms or longer. At the time when new core has ‘to be loaded into the
FPGA device it will be able to output data at a rate of up to 12 ns, therefore, it would be
able to surpass the maximum speed of FPGA configuration, and will not cause stalls in
configuration due to the addressing and timing issues.

As a second stage of implementation was to integrate the first stage with the
additional SRAM module (buffer), as described previously and also add FPGA. At this
stage requirement was to be able to fill the FLASH with library of cores, and set a
reprogramming sequence on the RISC-controller side to direct particular core to SRAM

block and eventually to the FPGA.

4.3 Hardware design of the platform prototype

This section will present the description of hardware design of the first prototype
of FPGA platform with TPM. As it was mentioned in the Section 4.2, scheduling and
indexing of FPGA cores had to be done using a RISC-controller — Microchip PIC
families. The Microchip PIC18F452 was selected in a 44-pin PLCC package. It is a 16-
bit (instruction) pipelined RISC-processor with Harvard architecture, running at
maximum clock speed of 40MHz, and has 32K or internal instructions EEPROM (the

biggest in family), which is enough to store all of the cores indexes [56]. It also has

-58-

UART interface for possible serial interface to the PC and number of built-in protocols
for communication with other peripherals, such as I°C and SPI to communicate with
CPLD. This would greatly decrease the development time since it has almost all required
protocols and embedded device drivers in it.

Initially selected CPLD was Xilinx XC9572XL in a 44-pin PLCC package since it
had to be a bridge between RISC-controller, FLASH memory, and Xilinx FPGA device.
The amount of logic gates and Flip-Flops was quite sufficient for development of
communication between all of above devices. However, the number of I/0s was enough
only for the first stage. At a point when second stage was designed and additional SRAM
module had to be added. At the initial schematic it was clear that 44 1/O pins are not
sufficient si;lce only one SRAM module required 16 data pins, 17 address pins, and 5
control pins; therefore a larger CPLD package was chosen to be XC95144XL with 117
/O pins and twice more logic gates.

Regarding the FLASH memory which would contain FPGA cores, a Toshiba
128Mbit TC58DVM72A1FT1 was selected since its communication protocol and
package was compatible with larger memory sizes.

As it was stated before, for the choice of FPGA, the SPARTAN-3 XC3S400 in a 208
PQFP (Plastic Quad Flat Pack) IC package was selected, since it was the largest one
before the BGA (Ball Grid Array) packages. Besides the main components there were
peripheral components such as oscillators, voltage regulators and indication LEDs, etc.
For this particular setup it was needed to have several well stabilized voltages since just
FPGA alone required 3.3 V, 2.5 V and 1.2 V supplies. When all of the components were

chosen general design of schematic had to be done according to the block diagram

-59.

presented above. All of the schematics of all the boards that were made through this
project was done on Cadence OrCAD Schematic 9.2. Printed circuit board (PCB) layout
was made using Cadence OrCAD Layout Plus 9.2 design tools which was advantageous
since number of components were provided as schematic and footprint symbols. As the
schematic was done verified (See Appendix A) with datasheets of all the components it
was possible to begin routing process. However, there were several factors that had to be
carefully considered during routing, which otherwise could become a huge obstacle in
further work such as laying thick power lines, as well as routing out extra test points for
easier debugging. Especially important was the routing of the FPGA which would not
operate correctly in case of incorrect placements or complete omittance of decoupling

capacitors. The hardware setup of the first platform prototype is shown in Figure 4.4.

Microcontroller
QOscillator

SPARTAN 3
XC3S5400

FPGA
Configuration

PIC18LF452
Microcontroller

EEPROM
128 MBit

CPLD
Oscillator core buffering XC95144 Regulator

SRAM Modules
for data processing

Figure 4.4: First prototype of FPGA platform with Temporal Partitioning Mechanism

- 60 -

Due to the fact that this platform is an experimental one, it was important to choose
types o parts that are easiest for removal and replacement and also pin compatible to
other parts with similar functionality. Example of this is PIC-controller which is pin
compatible not only to the ones in its family but also to PIC16F8XX family (dew to it’s
widely use of 44- PLCC package). At the same token CPLD can be increased in its logic

cells from 144 to 288 since the package and pins are compatible as well [57].

4.4 Development of soft-core interfaces.

In this section there will be a detailed explanation about the development of
firmware and soft-cores for FPGA platform with Temporal Partitioning Mechanism.
Development had to be done in several stages since every component of the system
required separate testing and integration. In case that component was not suited for the
system it could be replaced without need of whole system redesign. As it was described
before for the first prototype of the system it was needed to establish communication
between the PC and the Peripheral Interface Controller (PIC). This would allow
performing the loading of FLASH memory with soft-cores configuration bit-streams,
control of the CPLD and therefore execution of FPGA reconfiguration. Serial
communication interface was the most attractive solution since it was supported by the
PIC microcontroller and also serial port function exists in the MS Visual Studio CAD
environment which allowed access to Windows operating system. In this case high
bandwidth of the communication channel was not an issue because FLASH memory
loading could be done before real-time data processing. However, in case of higher speed

requirements a USB interface would be more preferable and in order to account for this

-61 -

possibility a test development board was designed using and FTDI 245 USB interface
chip [58]. After manufacturing of the prototype board, tests has shown that upload speed
is about 8 Mb / s, however this could be needed in case of use of large number of cores or
much bigger FLASH memory. A set of commands was developed for identifying what
kind of data after an identification flag byte was designated to perform. List of commands

is shown in Table 4.1.

Table 4.1: List of Commands

Command | Action Additional
parameter(s)
01110111 | Write a core into a specific FLASH memory location Location 0-63
01110010 | Read a core from a specific FLASH memory location Location 0-63
01010111 | Write an array of 528 bytes into a specific FLASH address 3 address bytes
01010010 | Read an array of 528 bytes from a specific FLASH address 3 address bytes
01100101 | Erase a core from a specified location in FLASH Location 0-63
01000101 | Erase a specific page of FLASH 2 address bytes
01000110 | Full FLASH erase N/A
01110000 | Program core from the FLASH location into the FPGA Location 0-63

Additional Commands after merging with Virtex II Pro platform

01101100 | Load core from specific FLASH location to SRAM module Location 0-63
01110011 | Read back SRAM module contents to PC for core verification
01011000

Program FPGA from the SRAM module

After the reception and decoding of the command the PIC-controller performs the

associated operation either by communicating with the FPGA or with the CPLD.

In order to communicate with a CPLD a protocol had to be written and there were

several options to choose from. However, due to a fact that serial communication with a
PC creates a transfer bottleneck it was decided that SPI (Serial Peripheral Interface)
protocol will be sufficient solution. That would save another 7 I/O pins without loosing

any bandwidth, since with a clock speed of 20 MHZ it was possible to transmit

-62-

information at a rate of 20 Mb/s where maximum possible speed of RS232
communication was 115 Kb/s. For the SPI protocol three lines were used: Data,
Transmission enable, and Clock. Timing diagram for PIC-CPLD communication is

shown in Figure 4.5.

woanlien oo e d e i b o beon booedboonc bneea Do b b

;T;ansfl;is.slbn”Enahle : L

“Cleck
-DATABIT 4

LR G E PV IR S e M b M e X s il fop e tans e) ——

Figure 4.5: Timing diagram of the PIC-CPLD SPI communication protocol

In case of communication with the FLASH memory it was required to be closely
compliant with the datasheet [36]. Therefore a controlling mechanism had to be written
for the CPLD to make sure it can perform writes and reads with maximum allowable
speed. As it was stated before for this particular platform a 128Mbit FLASH was used
and it was decided to divide it into 64 units for storage of soft-cores of VHCs. Since all of
the FLASH chips are compatible by communication interfaces it is possible to expand the
size of memory simply by replacing the FLASH chip. The reason for division on equal
core units was due to the fact that they easily can be accessed from the microcontroller
since their positions are just the increments of top 6 bits of the address and therefore can
be directly accessed without keeping the extensive table of core location addresses. Since
the microcontroller itself has 1024 bytes of EEPROM memory it is possible to store ID
numbers of the cores in first 64 locations so maintenance of cores could be left onto
microcontroller and just an ID number has to be supplied from PC to erase, read back, or

write FLASH, as well as reconfiguring the FPGA. In addition to the communication with

-63 -

the FLASH it was needed to make an interface to the SRAM IDT71v416 chip [59],
which on its own has 39 pins connected to the CPLD and was required to be an FPGA
core buffer. As it was mentioned before EEPROM had one disadvantage, which was the
50us delay between every 528 bytes which would significantly decrease the speed of
reconfiguration. Therefore another addition had to be made in CPLD firmware to be able
to integrate the communication protocol with SRAM. Closely following the timing from
SRAM datasheet [59] it was possible to achieve the maximum speed of load from
FLASH to SRAM, and from SRAM further to the FPGA and replicated port. However,
there were several issues related to the SRAM load. Due to the fact that the memory was
operating at a high speed of around S0MHz during the transmission, some random errors
were introduced which did not resemble any pattern. As it was found out this was
occurring mostly during the transition of all the lines from all ones to zeros. Control lines
even though being separated with the “Ground” were triggered to glitch and thus either
register an incorrect data, or even restart the whole programming process. In order to
overcome this problem it was decided to switch data on data line not all at once but only

half of them at a time first doing odd and then even bits.

‘Command O

Prvontondobeodbon tonadboncd oocboroon e boo Do lico becodbenncbonor boordere s o

Datavalid ©

Datal ; X
Datat @ X .,ﬁéx*?éi,. R TS € ~ X

Dam2 O e X DN Y ? X
Data3. o T Y :
‘Daad . O X)
Datas @ X

Data8 O ya ')
‘D§h7 w T : Y

Figure 4.6: Timing diagram scheme for avoiding coupling glitches on SRAM

-64 -

Since, SRAM memory is rated to have a response time of 7 ns it was enough time
to have data smoothly placed on the data lines without causing any glitches on the control
lines, since requirement for the FPGA reconfiguration was 20ns per byte. Modified data
writing protocol and SRAM access timing diagram is displayed in the Figure 4.6.

As this problem was overcome, only FPGA reconfiguration procedure had to be

implemented, which is described in the flow chart shown in Figure 4.7.

i

Device PowerUp

. v
Transfer data from
Assert PROG SRAM along with the
line for at clock to FPGA.
least 300 ns

Transmit extra 8
clock cycles to
initiate startup
sequence

Wait until INIT
line goes high

Check if DONE
pinis “1”

Timeout
occurred?

YES

@evice is reconﬁgure(D @nﬁguration Failed)

Figure 4.7: Flow chart of the FPGA configuration process

-65 -

4.5 Windows Agent development

One of the essential parts of this project was the ability to manage and upload
cores to the platform from the PC and the rest of the operation is left up to the
microcontroller. However, PC side would be capable to collect information, upload new
cores, and change the core reload schedule. For this purpose an application had to be
build since simple simulation through hyper terminal is not sufficient for this purpose.
There were several choices of either to make it based on MATLAB [60] GUI generator
and use it’s built in serial port communication protocol, or choose more traditional
approach of Visual Basic or Visual C++/C#. MATLAB GUI generator was an attractive
option due to its ease of programming, however, after implementing one of the first
prototypes it was found that even though graphics application operates quite stably, when
using communication port such as serial it causes halts and application “freezes”. One of
possible explanation is that it is based on Java virtual machine, and a serial driver
included with it is not stable for large uploads. As a second option it was decided to
develop an application in Microsoft Visual Studio, which proved to be a success since it
was very stable in working with the serial driver that was included with it. An application
in itself has two parts to it: GUI interface, and core manager [61]. Core manager keeps
track which cores were loaded into which locations of the FLASH memory as well as
assigning the ID numbers, which it exchanges with the microcontroller as it was
mentioned previously in the Section 4.5. As stated before, UART protocol was used for
communication between PC and the platform. That is done because MS Visual Studio
embeds UART drivers for COM ports and also applicable for the USB interface. Since,

USB serial driver is included in the package of the FTDI 245 USB chip it will not require

- 66 -

any modifications in programming.. Actual GUI interface is displayed in the Figure 4.8

and has several features.

EBFPGA;"MWLMW Agent, 2% FREETEY &«mwg.&ﬁ@;\ R ;[Qj_’ﬂ
:* Sciptpanel - T Sciipt Window
I I INSERT !

: Generate I

FI.ASHmanaoemed T -

Start l Upload Script |
l :] hom EEPRON
FLASH management
- " WiteDataTo
: [caem I :J EEPAOM Block
- Read Data T

: [coteLleadbadtbul [1 _'_| EEPROM sb:k R

r——-—-:] Elase EEPROM I

jyr Ulﬂy p“ [P

oo o 3] TouRexd
Program FPGA

 [500000 fo =] homEEPROM

. SRAM tooutput I SRAM to PIC I Sedia |

Slop ‘ g [, o

Figure 4.8: Graphical User Interface for PC Windows Agent

Control section of the application allows the user selection of the COM port and
baud rate at which system should be operated. On a short distance (~2-3 m), with well
shielded cable it is possible to get up to 115200 baud and operate without problems,

however, if distance is longer, baud rate has to be much lower otherwise it misses some

-67 -

bytes. Second set of controls relates to actual core management. First option that exists is
to either browse file to be sent to the specified location in the FLASH or directly specify
the file in the text window. Second control is responsible for downloading the core to the
file on the hard drive, similarly, it can be either browsed or a filename can be specified.
Similarly as it was described in the Table 4.1, it has a capability of erasing specific UNIT
in FLASH. The rest of controls are related to the programming of the FPGA. There are
essentially two options: it can either be configured using the immediate reconfiguration
by sending command that points from which FLASH location it has to be reconfigured,
or a script can be written by selecting the desired core and inserting with an INSERT
button (on the PC keyboard) into the list. A delay in microseconds is specified is inserted
in the same manner, and will indicate how long microcontroller will wait until reloading
the next core. Essentially list with core locations and delays is uploaded to the
microcontroller and at the instant as the list is uploaded microcontroller begins to execute
the list. There is also option of the loop and operation can be interrupted any moment,
since, RS232 communication will interrupt the operation of reconfiguration and based on
the request could either terminate the process, or reload a new sequence. As an addition it
is also possible to get current status of the platform by requesting it from the
microcontroller and displaying it in the status window.

In case of “freeze” up for example, agent will specify actions to be performed to
restart it or to recover it. Also in case of power failure it is possible to record the log of
what happened and when, since microcontroller can scene that voltage has fallen bellow
3.3V and have enough time to record it. This is possible since PIC18LF452 only stops its

operation at 1.5-1.7 V, which was proven by several experiments.

-68 -

4.6 Integration of the platform on to Xilinx Virtex II FPGA platform.

As a last stage of prototyping it became possible to integrate the all above developed
and tested components onto a FPGA platform based on partially reconfigurable Xilinx
Virtex II FPGA that was developed in the Embedded Reconfigurable Systems Lab as the
uniform evaluation system with ability for partial reconfiguration. The platform hardware
consists of: Xilinx Virtex II XC2V1000 FPGA with one million system gates, as well as
four SRAM modules with 7 nanosecond access time and total capacity of 4 MB. The

Controller-Loader is built on the Xilinx XC95144XL CPLD. The platform is displayed in

the Figure 4.9.
LVDS /0 Xilinx Virtex Il Parallel interface to
Drivers PORT XC2V1000 FPGA PCI Interface Board

.
»

SNSRI SIS SIS ALK AN

j PP AAPS S PSS LSS S P A

SRAM CPLD SRAM Voltage
Bank #2 XC95144 Bank #1 Regulators

Figure 4.9: Virtex II FPGA based platform with ability for partial reconfiguration

-69 -

The advantage of this system is ability for spatial and temporal partitioning of the
application in the on-board FPGA using partial reconfiguration of the FPGA device [62].
In addition to that it is possible to interface this platform to a PCI-bus since one of the
implemented tasks of that platform was connectivity to a PCI passed platform with a PLX
5030 PCI BUS controller [63]. In order to be able to interface the existing platform
developed in the stage 2 it was required to have a communication channel from the
CPLD which would be able to transmit new core to the FPGA for the its partial
reconfiguration. For that purpose the top I/O communication port was used and
communication was organized in 8-bit channel with a transmission enable and strobe
signal. On the CPLD side a configuration data bus was used to communicate with the
Virtex II platform since it was not used for Spartan 3 configuration and had a special
extension header reserved on the Spartan 3 platform. Data was routed directly to FPGA
and then could be used for various tasks. First of all a communication protocol with the
command structure had to be established closely related to the one designed for the
CPLD, which required designing a monitor on the Virtex II FPGA. FPGA conducts tasks
monitoring, data-frame reception and storage onto a SRAM module, read back of data
from the SRAM onto the microcontroller directly, and the most important one is
reconfiguration of the other part of FPGA. As it was mentioned in Chapter 2 it is possible
to reconfigure the Virtex FPGA using an internal built-in module called ICAP (Internal
Configuration Access Port)[62].It resides in the lower right hand side of the FPGA and
can be easily accessed using modular design in Xilinx ISE CAD system. Therefore, for
the design of FPGA organization it was decided that whole right side of the FPGA

including the ICAP module will be dedicated for the controller and will not be changed

-170 -

except from the time of configuration at the beginning of operation. In addition to that,
for verification purposes it was needed to have direct access to the data that was uploaded
to SRAM prior to partial reconfiguration of FPGA, and it was decided to use some of the
remaining 1/O pins of the FPGA to upload data back to the microcontroller and in turn
follow it by the upload to a PC Windows Agent. Read back from SRAM ensured that the
transmission of the data to the FPGA will be correct and configuration will not cause
FPGA to malfunction. Since read back of the data from SRAM was not time critical it
was possible to use microcontroller to perform this operation and significantly decrease

the coding complexity for CPLD. Flowchart of sample operation of the platform is

displayed bellow in Figure 4.10. r
@tform PowerU;D Microcontroller begins the

FPGA configuration cores

in a sequence as described

/ User selects cores an in Figure 4.7
their sequence of
execution in GUl Agent 1
Cores are uploaded
over the RS232 to the
TPM Platfoml

Cores are received and
saved to FLASH
memory and sequence
is stored in the
Microcontroller

Check if core
loaded correctly?

Begin processing of
the core algorithm

When finished send
command to
Microcontroller for

User sends command next core ore to
from the Agent to repeat the sequence
readback and verify cores

cores verified?

Figure 4.10: Flow chart for sample platform operation

-71-

Summary

In conclusion it can be said that the development of the project went through
several important stages that consisted of design of the hardware components such as
PCBs schematics and layout. It also required development of first stage platform which
allowed to test and design interfaces to such peripherals as PIC microcontroller, FLASH
memory module, and CPLD which served as a bridge between the PIC microcontroller,
Flash, and target FPGA. In addition, soft-cores had to be developed for the CPLD in
order for communication with FLASH and other peripherals, along with Firmware which
was developed for PIC18LF452 Microcontroller to communicate with the PC over the
RS232 interface and the CPLD. On the PC side a Windows Agent had to be developed in
order to give user capability of communicating with the platform and manage the created
cores on the FLASH memory, as well as acquire the status of the platform. It was done
using the Microsoft Visual Studio and had a GUI interface for simplification of user
interaction. At last, integration of the second stage platform onto the Virtex II platform,

as well as, implementation of mechanism for partial reconfiguration on the Virtex II

FPGA.

-72 -

CHAPTER 5

EXPERIMENTS AND RESULTS

Introduction
This Chapter will describe the experiments that were run on the actual FPGA
platform with TPM with comparison to conventional platforms based on RISC
microcontroller and PC with Superscalar architecture. All of the obtained results were
scaled down to the same frequency of operation in order to have a reasonable comparison
of the platforms. In case of FPGA platform with TPM, the XC2V1000 FPGA (1 Million
system gates) was used. The microcontroller platform was based on RISC controller
similar to the chip which was used on the stage 2 platform (see Chapter 4). For the
experiments on the PC an AMD 3000+ based system was used with 1 GB of SDRAM.
All the testing algorithms were implemented on a Visual C# .NET development studio.
For testing the data-frame processing procedures, the image enhancement using the
Laplacian algorithm was implemented as well as Sobel Edge Detection algorithm which
was implemented using matrix manipulation over nine neighboring data points. At last, a
histogram process was implemented to collect the statistical data about the video image.
Most of those algorithms are used in the application of video navigation as well as
surveillance and unmanned autonomous robot operations.
Experiments on each of the platforms with the analysis of results are described in the

following sections.

-73 -

5.1 Implemented Algorithms
In the following subsections each of the implemented and tested algorithms is

briefly described.

5.1.1 Laplacian Image enhancement algorithm
Laplacian image enhancing algorithm is commonly used filter for sharpening the

image at question. Generally Laplacian of an image f(x,y), is denoted as second

derivative of an image V£ (x,y)

Where V2 f(x,y) = 0*f(x,9) + 0’ f(x,5)

~ 5 (1
This equation can be approximated to
Vi =[fe+ L)+ f(x=Ly)+ f ey + D+ f(x,y-D]-41(x.) {2}

This expression is directly translated into a 3x3 matrix with coefficients:

0 1 0
1 -4 1
0 1 0

If diagonal elements will be considered as well

v?f=[f(x+1’y)+f(x_l’y)+f("’y“)+f(x’y-l)+f(x+1,y+1)+

Fx=Ly+D)+ f(x+Ly-1+ f(x=1,y-1) :|"8f(x,J/) {3}

which is translated into the following matrix:

-74 -

In order to use Laplacian enhancement algorithm the original image has to be added to

the filtered, which would generate the enhanced image: g(x,y) = f(x,y)+ c[Vif(x,)],

Where f(x,y) is original image, V2 £ (x,y) is filtered image, and c is coefficient +1 or

-1, depending if mask is positive or negative.

5.1.2 Sobel Edge detection algorithm

The Sobel operator performs a 2-D spatial gradient measurement on an image.
Then, the approximate absolute gradient magnitude (edge strength) at each point can be
found. The Sobel algorithm operator uses a pair of 3x3 convolution masks, one which

performs it in vertical and second in horizontal direction. Matrices are shown bellow:

-1 0 1 +1 2 +1
Horizontal | -2 0 2|, Vertical| 0 0 O
-1 0 1 -1 -2 -1

To get edges in both direction and get a resulting image it is required to add the results

using following formula: g(x,y)= J (x,y) +v(x,y)

5.1.3 Image Histogram Statistic Algorithm

In order to get a histogram of the original image it is required to count number of
points that fall under each of the grayscale levels and than represent it in the graphical
form similar to the one in Figure 5.5 d). In some cases histogram is divided on much

course levels such as only 10 and it is done by summation of all the points that fall under

256 .
—ilevels.
10

=75 -

5.2 Experimentation on the FPGA platform with TPM

In order to obtain proper measurement of the TPM performance it was decided to
use at least three different processing procedures that can not correlate to each other and
therefore would require separate implementation in silicon (e.g. ASIC). On top of that, a
data loading / output cores had to be implemented and used as one of the separate tasks. It
should perform the loading of the video-image data into the memory from the video
capturing board connected to one set of I/Os according to TPM Block-diagram presented
in Figure 3.4 in the Section 3.3. Similarly, when video-data processing is completed, a
core would take care of data output onto the display board. Therefore, five separate non-
correlating cores had to be developed for the FPGA platform with TPM and loaded one
after another using the TPM. Diagram of the setup of the FPGA platform with TPM and

all links to the peripheral boards is presented in Figure 5.1.

PC with Image
Windows Capture
Agent Board
1 bit processing
comlete "\ /0 to Image 4 8 bit data line + I clock
Capture Board
Reprogrammable A\ Capture Boar 1 Data request
Controller-Loader .| MICROCHIP |_ \4
»| PIC18LF452 ™ 3 SRAM
RS232
ry @=p| Module
FPGA
oo ~— » XC2V1000 |yl sram
M o >
ey [P XCo5144 [t ICAP Module
8 bit|data lije 'Y
1 bit[strobe
8 bit data line + Clk+Vs
Image Display Board

Figure 5.1: Setup of the FPGA platform with TPM and links to the peripheral boards

-76 -

As it can be seen from the diagram, the platform consisted of microcontroller based
sub-system that performs core management and transmission to the Virtex II FPGA
device and also communicates with the PC to get the commands for reconfiguration.
General setup of the system including the interface between the Virtex II FPGA and
Reprogrammable Controller-Loader (Stage 2) is the same as it was described in the
section 4. However, in addition to the Stage 2 platform it was required to have a video
capturing board which would input an image data-frame over an eight bit bus
accompanied with the clock signal and data request. Upon the request of the Virtex II
FPGA by assertion of the request line video capturing board would transmit a frame with
a size of 640 x 480 using 8 bit resolution, which is converted into 640x480=307200 bytes
and it would be saved in to one out of four available SRAM modules on the Virtex II
FPGA board (Figure 4.9). The resulting data would be first saved in to the SRAM
modules and eventually transmitted to a display output board over similarly designed I/O
interface. However, the amount of data to be output is much larger (as it was described in
the Section 5.1) and equal to 640 x 480 x 2 + 256 x 3 = 615168 bytes.

After completion of each stage of processing, FPGA would assert the done signal to
the Microcontroller, which in turn would initiate the reconfiguration of the FPGA using
the next core and this loop would repeat until it wouldn’t be interrupted from the PC side.
Detailed operational diagram of the TPM platform with reconfiguration sequences is

presented in Figure 5.2.

-77 -

@atfonn PowcrUp)
v

User selects cores and
their sequence of
execution in GUI Agent

v

Cores are uploaded
over the RS232 to the
TPM Platform
|

|
Cores are received and
saved to FLASH
memory and sequence

is stored in the
Microcontroller

User sends command
to begin the processing
from GUI Agent

Mlcrocontroller begins the
FPGA configuration with

Laplacian algorithm core

in a sequence as described
in Figure 4.7

y

Check if core NO

'

Request for the next
processing core is sent
to Microcontroller

P

A 4
Microcontroller begins the
FPGA configuration with
Sobel algorithm core

Check if core is
loaded correctly?

Process Image using
Sobel algorithm

L
¥

Processing
comnlete?

Request for the next
processing core is sent
to Microcontroller

Microcontroller begins the
FPGA configuration with
Histogram algorithm core

loaded correctly?

Image acquired from
capturing board and
stored into SRAM

v
Process Image using
Laplacian algorithm

YES

Processing

Check if core NO

loaded correctly?

Gather a histogram
of the image and
save result to SRAM

Upload data from
SRAM to display

board and send request
restart the sequence

comnlete?

Figure 5.2: TPI%I gplatform operation flowchart

After running several tries of experiments it was determined that to process 307200
pixels by performing consecutively parallel 3x3 matrix manipulations each per clock
cycle it would take approximately 3 ms running at 105 MHz system clock. Similarly,
downloading the image from the image capturing board to the first SRAM module
required transmission of 307200 pixels and at a speed of 105 MHz it took about 3.4 ms as
it can be seen from the Figure 5.3 bellow. Timing of this process was photographed from

the screen of Logic Analyzer that was attached to the TPM platform.

3.4 ms

Figure 5.3: Timing capture of the Logic Analyzer attached to the TPM platform.
a) Shows whole data transmission process and
b) Shows the zoomed data transmission in details.

In case of processing the Laplacian image enhancement it was not possible to
process all of the pixels at once since an image had to be processéd in steps as it was
described in section 5.1.1 and this required to perform first the parallel 3x3 matrix
multiplication using the Laplacian matrix, which took ~3 ms, and temporary result was

saved in the third block of the SRAM. This operation took another ~3 ms cycles since

3x3 multiplication was done in one clock cycle (i) and on the next clock cycle (i+1])

-79-

resulting data from that multiplication was stored into the memory. The last operation
was to write the last resulting pixel into the SRAM. Following this operation, a pixel by
pixel subtraction of temporary result from the original image and saving the final result
" was performed which gave the enhanced result of the original image which required
another ~3 ms. For the Sobel algorithm implementation it was required to perform two
3x3 multiplications and storage of the sum of the two multiplication into an SRAM
location. Since multiplications were pipelined it is possible to perform the processing in
~6ms. At last, for the histogram of the image, it was important to consider that there is a
possibility that all of the pixels will have the same grayscale value and due to that fact
enough space had to be allocated per grayscale value to save number up to 307200. Since
two bytes would only give the maximum value of 65536 it was decided to use 3 bytes per
grayscale value, and since camera had an 8 bit grayscale resolution only 256 such
locations were required. To get a histogram it was required to go through the whole
image and using the pixel value as an index to the 256 location increment the location.
Similarly such procedure was preformed in approximately ~3ms for the case of going
through the whole image and another 768/105000000=7 us. As a final step was a
transmission of the original image, Laplacian enhanced image, edge detected image,
along with the histogram on to the displaying platform, which would perform the image
output to the user. Final transfer from the SRAM to the display board took about 9 ms to
perform and potentially could be increased if the data bus is increased to 16 bits of
parallel transfer.

In conclusion it is important to recap that all of those image processing operations

were made on a FPGA with a maximum size of the biggest core, and potentially could be

-80-

increased to as many cores as we want, the only limitation would be the size of the

external FLASH memory.

5.3 Implementation of the algorithms on the RISC Microcontroller platform

To compare execution of the FPGA platform with TPM and the platform based on
RISC controller, it was decided to develop and build a special microcontroller prototype
test platform. This platform is based on the PIC18F442 Microchip RISC controller in
conjunction with Xilinx Complex Programmable Logic Device (CPLD) XC95144XL —
TQ100, which was chosen for the purposes of custom interfacing to different peripherals
similar to peripherals interfaced to the FPGA platform with TPM. For example, due to
the fact that SRAM module needed 5 control lines along with 16 data lines, and 17
address lines, microcontroller with a total of 33 lines would not be able to handle even
one SRAM module, On the other hand CPLD with 77 1/0 lines would be able to
accommodate that need. Figure 5.4 depicts the experiment setup of the Microcontroller

platform.

8 bit data line
1 bit strobe
Image MICROCHIP Image
Display <4——7%»| PIC18LF452 |e > Capture
Board Board
A 2
RS232
PC with
SRAM <« > Xg:;DM »| Windows
Module Agent

Figure 5.4: Microcontroller setup for the experiments

-81-

Similarly to the FPGA platform with TPM, microcontroller would request the
information from the video capture board and following it by downloading the data into
the SRAM memory block through the CPLD. In case of the microcontroller it was
possible to implement ail of the algorithms and execute them one after another, however
running at a maximum 40 MHz clock, execution of multiplication of 3x3 matrix could
not be done in parallel and on top of that RISC architecture only allowed to perform the
multiplication in 20 instructions. In addition, execution of pipelined instructions on a
Microchip microcontroller with RISC Harvard architecture takes 4 clock cycles per
instruction cycle. Therefore, the actual execution speed is decreased to 10 MIPS (Million
Instructions per Second). Whole implementation of the program that would first receive
the data, transfer it onto the CPLD, perform the execution of Laplacian image
enhancement algorithm, Sobel edge detection, get the histogram of the image, and at last
transfer it onto a display board required 199,752,997 instruction cycles and execution
took 19.9752ms. There is a limit of functions that could be stored on the microcontroller
platform because of limited size of the program memory of the microcontroller.. The

flowchart is presented in the Figure 5.5.

v
Process Image using
@form PowerUp) / Sobel algorithm /
>
v v
Aquired from capturing Gather. a histogram
board and stored into of the image and
SRAM over CPLD save result to SRAM
1 - Upload data from SRAM
Proces§ Image using to display board restart the
Laplacian algorithm sequence

Figure 5.5: Flowchart for the microcontroller’s platform operation.

-82-

At last, for getting the perspective on algorithm execution performance it was

needed to implement the algorithms on the PC.

5.4 Implementation of processing algorithms on a PC platform

For the case of a PC implementation a system with an AMD 3000+ processor was
selected running at a 2.1 GHz clock speed. In addition to that a 1 GB of SDRAM was
present on the system and a Windows XP operating system was running on it. Image
processing algorithms were implemented on the MATLAB tool at first and in addition
they were also implemented in Visual C# NET development studio in order to get
realistic results that can be obtained in execution on a conventional PC. For the purpose
of measuring exact timing a time stamp was implemented which recorded the beginning
of the execution of the algorithm and its completion. All of the algorithms that were
implemented in previous two sections were implemented in MATLAB and Visual C# as
well and were run one after another in a one monolith program. Parts of reception of the
image from the image capturing board and its transmission of the processed images to the
display board was omitted since it was not critical for the experiment and in addition to
that MATLAB has only RS232 serial interface which is much slower and would not give
a reasonable comparison result, and in case of the Visual C# it required a USB interface
which was not present on a capturing board. A pre-captured and saved image was used
for the original image, and the resulting images were plotted to the screen and can be

seen in Figure 5.6 bellow.

-83-

Figure 5.6: a) Original Image b) Laplacian enhancement image c) Sobel Edge detection

image d) Histogram of the image

After running the experiments it was found that execution of Laplacian

enhancement algorithm on a 640x480 grayscale, Sobel Edge detection algorithm, and

histogram calculation took 550 ms.

-84 -

5.5 Results and analysis.
In the Table 5.1 all the acquired results from three platforms were summarized
and also the scaled results were presented as well to be able to have an equal comparison

between the execution times of FPGA platform with TPM and Microcontroller platform.

Microcontroller AMD 3000+
TPM platform platform PC

Algorithms executions 21ms running at | 19975ms running | 550 ms running
at particular Frequency 105MHz at 40MHz at 2100MHz

Scaled execution of

algorithms to 40Mhz 55.125 ms 19975ms 28875 ms

Acceleration in 523.80 times 1.45 times 1
comparison to PC

Table 5.1: Results acquired from the algorithms experimentation

As it can be seen from the above table initially performance of the TPM platform
running only at 105 MHz performs about 40 times faster than a PC running at 2100MHz
clock. However, in order to bring the values in the perspective results were scaled to the
frequency of Microcontroller which was 40MHz. As it is indicated on the Figure 5.7
which represents the speedup of the FPGA platform with TPM, it performs at least

523.80 times faster than a PC, and similarly 361.6 times faster then Microcontroller

latform.

P Speedup TPM platform
500 + \
50 T

Microcontroller|
Platform

Figure 5.7: Logarithmic representation of platform’s speedups

Considering that if more algorithms are required to be processed by the platform
it doesn’t require major modifications such as it would in case of a Microcontroller based
system and PC, the only change would be scheduling an additional core. In some cases
execution will be simply impossible since microcontroller based systems have limited
program space and can’t be dynamically reconfigured, to accommodate more cores,
where in case of FPGA platform with TPM it doesn’t cause a problem since cores are
resided in an external FLASH memory and is only a matter of adding another memory
chip. In addition as it can be seen from the Table 5.1 time considered for the processing
of the algorithms did not include reloading of the cores since for the Virtex II platform
core divisions can be organized in three section for example, where first is a monitor
which is responsible for reconfiguration and reception of data, and the other two are the
working cores. This enables to reload one core while the other one is performing the
algorithm computation. Considering that whole configuration file of Virtex II 1000
FPGA takes 511268 bytes, therefore one third will need about 170kB, and at the speed of
50MHz [39] it will need about 3ms, which is falls under the algorithm processing time.
Obviously it is possible to vary core sizes and therefore to decrease the time of
reconfiguration. At last, it is important to mention that in this scenario in order to
implement X algorithms on single platform with static configuration it would require to
have a X/3 times size of the FPGA than it was used for TPM platform, where in the TPM
scheme it’s a matter of adding another core into a schedule list. This gives huge
advantages for systems that have many steps of computation or different computing

algorithm requirements.

-86-

The results of the above experiments as well as the FPGA based platform for processing
video data-streams utilizing different algorithms (e.g. edge detection, stereo data-frame
combination, etc.) were presented on SVAR2005 (Space Vision and Advanced Robotics)
[65]. The platform was also used for experiments to prove the concept of self-restoration
mechanism for SRAM FPGA devices working in the radiation intensive

environment[66].

5.6 System Advantages and Limitations

The proposed platform architecture is oriented for the data-stream(s) processing
where large and framed volumes of data should be processed within speciﬁed period of
time. Therefore, as was shown in the Chapter 3, proposed approach is effective when
required period of complete processing of the data-frame is longer than reconfiguration
time of all involved processing cores. In this case the proposed architecture may provide
high cost-efficiency because of reuse of the same hardware resources for different parts
(cores) of processing pipeline. This is the biggest advantage of the proposed approach
because it allows minimization of hardware and power consumption and thus,
minimization of dimensions and weight of the system based on the above approach.

However, it is important to mention some limitations of this type of platform and
general applications that this particular system is best suited for. As it was stated before
in the Chapter 3, effective operation of the platform is possible only in the case when the
configuration (loading) time of the next processing core is shorter than data processing
period of the previous core. Therefore, if the data-frame associated with current core

requires less processing time than the loading time of the next core, it would cause a

-87-

delay in processing. This is the biggest limitation of this platform, and in turn does not
give a possibility of data-frames to be very small (e.g. > 30000 data words for Xilinx
Virtex Il FPGAs).

Another limitation of proposed approach comes from the sequential nature of
data-frame processing on the different processing cores (sub-processors). Obviously, if
cores are loaded one after another the peak performance of the system is lower or much
lower than in case when the complete processing core (for the entire FPGA device) is
utilized. In fact these algorithms were implemented on a platform with XCV2000e by a
group from University of Calabria in Italy [67] and based on their results the
implementation of the Laplace and Sbbel algorithm on a 1024x1024 image with 3x3
matrix convolution, similarly as it was done for the TPM platform, took 4.6ms.
Therefore implementation of both algorithms and their execution simultaneously is about
faster than the implementation using temporal partitioning mechanism.

However, this limitation can be avoided in cases when specification of the system
requires data-frame processing period (real-time requirements) longer than sum of
processing times of the data-frame on each of sub-processing cores (see Chapter 3). This
and only this case allows reuse in different periods of time the same hardware and thus,
minimization of hardware resources, physical dimensions of a system and power
consumptions. Furthermore, recently it became possible for many applications because
processing frequencies in the FPGA has increased dramatically when the real-time
specifications did not change much. Thus, it made possible hardware sharing in time
(temporal partitioning) of computing and communication resources between different

segments of a task and associated processing cores. Definitely, TPM has its drawbacks

-88 -

but the gain of the TPM approach is in flexibility of having non-static amount of
processing cores, which could be advantageous in wide range of applications where
framed data-streams (e.g. video-frames, communication data-packages, etc.) has to be

processed within certain periods of time.

Summary

In conclusion to this Chapter it can be said that in order to prove the benefits and
efficiency of the TPM mechanism it was decided to perform processing of the video
image processing algorithms on a FPGA platform with TPM, as well as AMD 3000+ PC,
and PIC18F452 based microcontroller platform. Three different algorithms were selected:
Laplacian image enhancement algorithms, Sobel Edge detection algorithms, ahd at last
histogram calculation algorithm. For the FPGA platform with TPM algorithms were
implemented as loading cores in VHDL language, and in Embedded C language for the
Microcontroller system. In case of PC, algorithms were run on a pre-captured image and
implemented on a Visual C# which in turn after compilation gives a realistic performance
of how it would operate in case of its use in an industrial application. Several results were
obtained that were presented in Table 5.1 and Figure 5.7 that indicated that FPGA
platform with TPM performed by far faster than Microcontroller based system or PC.
This proved that approach of TPM is much more efficient than RISC based embedded
systems as well as a conventional PC with superscalar architecture for the class of tasks

with big volumes of framed data (e.g. video data-frames).

-89-

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Major Contributions

In conclusion of this thesis it important to mention that motivation of this project
was to develop a mechanism and implement it in a form of operational platform, which
would allow fulfilling the growing demand for high speed processing systems that can
perform manipulations with large volumes of data. It is also important to note that this
type of solution became only possible in recent years due to technological advances in
reconfigurable logic and especially the capability of Active reconfiguration. Due to the
Xilinx FPGAs feature of Active reconfiguration it was possible to design a mechanism
which would allow reconfigurations of the part of the device, while it is still in operation.
The reasoning behind using FPGAs instead of Microprocessors, DSP processors, or
Superscalars was that the FPGA’s would be capable of having non fixed architectures
unlike the ones mention previously and it would in turn decrease the size of the platform
and make it suitable to be low cost a give a capability for future upgrades.

As an objective of this project was to develop Temporal Partitioning Mechanism
(TPM) and implement it in a form of a platform using latest SRAM based FPGAs, which
would require careful theoretical analysis, review of the existing system and of course
development of actual hardware, firmware, and software.

Major contributions of this work were divided into three parts: theoretical
analysis, development & design, and experimentation on the developed platform. Each of

the parts was described in thesis Chapters. Where, Chapter two was concentrated on the

-90 -

literature overview from different types of sources such as books, journal and conference
publications, as well as datasheets, and internet sources regarding the existing platforms
with classification of different types of architectures. Primarily it gave a comparison
between the advantages and disadvantages of fixed architectures of microprocessor,
Superscalars, VLIWs and reconfigurable architectures such as the ones on FPGAs and
earlier developments of RaPiD and Chess Array. In particular, the advances of employing
Instruction Level Parallelism which increased the productivity of the currently used
systems and flexibility that FPGAs offer with their reconfigurable processors. In addition
Chapter discussed statically and dynamically reconfigurable processors and the
capabilities they offer to the market. Following, the review of the works in current market
Chapter 3 concentrated mostly on the theoretical proof of the advantage of TPM system
and comparison of it to the other previously mentioned fixed architecture systems.
Chapter also gave theoretical comparison of actual case of video processing and its
comparison to the system implemented on microprocessor and Superscalar processor. In
addition it described a general operation of the RTHOS and how it could be interacting
with the Virtual Hardware Components (VHC), which at the implementation stage are
called cores.

Following the theoretical part design and implementation was described in
Chapter 4, which described several stages of the development beginning from the design
the schematics and layout of the PCB, which was later manufactured. Chapter goes in to
details of why particular parts such as Microcontroller, CPLD, Flash, and FPGA were
chosen and how they were interfaced between each other. In addition to development of

hardware, software component had to be added as well since interaction between the user

-91] -

and the platform had to be implemented on the PC in a form of Windows Agent
application. This required implementation of such an application in the graphical
interface which was done using Microsoft Visual Studio and allowed simplification of the
interaction between the user and the TPM platform. In addition to software, soft-cores
had to be developed for the CPLD and firmware had to be designed for the
Microcontroller which involved use of Xilinx ISE and Microchip MPLAB IDE software
packages. As the second stage of the platform development required several modification
due to the problems found in the testing of the first one allowed adding the Spartan 3
FPGA and also having additional SRAM memory modules which increased core loading
capability. At last, Chapter four concludes on an integration of stage 2 platform with the
existing Virtex II platform which was developed in previous years in ERSL. As a
continuation of the work Chapter five covers the experimental results that were obtained
on the TPM platform and several its components as well as the comparison of the test and
experiments that were run on the embedded microcontroller system and on a AMD
3000+ PC system implémented in Visual C#. Tests concentrated on gathering data of
core reloading using different means such as the one used in the platform as well as the
means of Microcontroller and PC interface. In addition results were also gathered from
the execution of the particular task of video edge detection using the Sobel [68] algorithm
running on the developed platform with use of TPM, as well as PC, and RISC
Microcontroller with special firmware program developed specifically for the
experimental purpose.

This Chapter concluded the work and recapped the Chapters included in this

thesis and presented future work that would follow upon the completion of this project.

-92-

6.2 Future Work

As a future work of this project it is important to note that Temporal Partitioning
Mechanism gave a great possibility in use of dynamically reconfigurable processor.
However, as the work progressed at the last stage of the development it was clearly seen
that combination of Spatial Partitioning Mechanism and Temporal Partitioning
Mechanism will clearly give a huge advantage and already possible to be implemented on
Xilinx Virtex II and Virtex 4 Families of FPGAs. This became obvious after
implementation of the monitor and the reconfigurable core, and possibility of having
more than one core if larger device is chosen. Also, for the future work it would be
important to continue work on Real-Time Hardware Operating System (RTHOS) that
incorporates the RTR capability. As a potential component base for future system Xilinx
Virtex 4 family will be considered and also incorporation of the stage 2 components into

one platform PCB for even higher performance and more compact design.

-93.

Bibliography

[1] Gerrit A. Blaauw, Frederick P. Brooks, “Computer Architecture: Concepts and
Evolution”, Addison-Wesley Professional, 1997

[2] John G. Proakis, Dimitris Manolakis, “Digital Signal Processing: Principles,
Algorithms and Applications”, Prentice Hall, 1995

[3] TigerSHARC Processor, Analog devices, Processor specifications
http://www.analog.com/processors/processors/tigersharc/, 1998

[4] Giovanni De Micheli, “Synthesis and optimization of digital circuits”, McGraw-
Hill. 1994

[5] Alan Clements, “Mlcroprocessor Systems Design: 68000 Family Hardware,
Software, and Interfacing”, 3" edition, Thomson-Engineering, 1997

[6] J.E.Smith G.S. Sohi, “The Micro-architecture of Superscalar Processors”,
Proceedings of IEEE Transactions on Parallel and Distributed Systems, Vol 83, pp.1609-
1624, Apr 1995

[71 BinuK. Mathew, “VLIW Processors and Trace Scheduling”,CRC Press, 2001

[8] J.Hennessy, D. Patterson,. “Computer Organization and Design”, Morgan Kaufman
Publishers, California, 1994

[9] Texas Instruments TMS3206x DSP processor http://focus.ti.com/pdfs/univ/3-
Wireless.pdf

[10] Stephen Brown, Zvonko Vranesic, ”Fundamentals of Digital Logic with VHDL
design”, McGraw Hill, 2000

[11] Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, “Digital Integrated
Circuits: A design Perspective”, Second Edition, Prentice Hall, 2003

[12] Richard C. Jaeger, “Introduction to Microelectronic Fabrication”, Second Edition,
Prentice Hall, 2002

[13] Gary S. May, Simon M. Sze, “Fundamentals of Semiconductor Fabrication”, Wiley
& Sons Inc., 2001

[14] Duncan A. Buell, Jeffrey M. Arnold, Walter J. Kleinfelder, “Splash 2: FPGAs in a
Custom Computing Machine”, Wiley — IEEE Press. , 1996

-94 -

[15] J.M. Amold, D.A. Buell and E.G. Davis, “Splash-2”, in Proc.SPAA1992, 4-th Annual
Symposium on Parallel Algorithms and Architectures, pp. 316-324, San Diego, June 1992

[16] John Morris, Gary A. Bundell, Sonny Tham. "A Scalable Re-Configurable

Processor," Proceedings of 5th Australasian Computer Architecture Conference, p. 64,
5th 2000.

[17] Reiner Hartenstein, “A decade of Reconfigurable Computing: a visionary
Retrospective”, Proceedings of the conference on Design, automation and test in Europe,
Munich, Germany, pp. 642 — 649, 2001

[18] J.R.Hauser, Wawrzynek, “GARP: A MIPS Processor with a Reconfigurable
Coprocessor”, Proc. of the IEEE Symposium on Field-Programmable Custom Computing
Machines, pp.16-18, April 1997

[19] Franco Fummi, Franco Fummi, Mirko Loghi, Stefano Martini, Marco Monguzzi,
Giovanni Perbellini, Massimo Poncino,”Virtual Hardware Prototyping through Timed
Hardware-Software Co-Simulation”, Proceedings of Design, Automation and Test in
Europe 05, Volume 2, pp. 798-803, 2005.

[20] “Xilinx MicroBlaze Soft Processor Core”, http://www.xilinx.com/xInx/xebiz/
designResources/ip_product_details.jsp?key=micro_blaze, Xilinx Press, 2002

[21] Meenakshi Kaul, Ranga Vemuri, Sriram Govindarajan, Iyad Ouaiss, “An
Automated Temporal Partitioning Tool for a class DSP application”, Proceeding of
International Conference on Parallel Architectures and Compilation Techniques,
PACT98, pp. 22-28, 1998

[22] P.M. Athans, H.F. Silverman, “Processor Reconfiguration through Instruction Set
Metamorphosis”, Computer, 26 (3), pp. 11-18, March 1993

[23] R.D. Wittig, P.Chow, “OneChip: An FPGA Processor with Reconfigurable Logic”,
Proc. of the IEEE Symposium on FPGAs for Custom Computing Machines pp. 126-135,
Los Alamitos, California, April 1996

[24] B. Kastrup, “Automatic Hardware Synthesis for a Hybrid Reconfigurable CPU
Featuring Philips CPLDs”, Proc. PACT 98 International Conference on Parallel
Architectures and Compilation Techniques, Workshop on Reconfigurable Computing, pp.
5-10, Paris, France, October 1998

[25] Ahmad Alsolaim, Janusz Starzyk, Jurgen Becker, Manfred Glesner. "Architecture

and Application of a Dynamically Reconfigurable Hardware Array for Future Mobile
Communication Systems”, Proceedings of the 2000 IEEE Symposium on Field-

-95.

Programmable Custom Computing Machines, p. 205, 2000

[26] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matt Moe,
R. Reed Taylor. "PipeRench: A Reconfigurable Architecture and Compiler," Computer,
vol. 33, no. 4, pp. 70-77, April 2000.

[27] C.Ebeling, D.C. Cronquist, P.Franklin, “RaPid — Reconfigurable Pipelined
Datapath”, in Proc. of Field Programmable Logic, pp. 126-135, Springer-Verlag,
Heidelberg, 1996

[28] Mahapatra N, Dutt S. , “ Efficient Network Flow Based Technique for Dynamic
Fault Reconfiguration in FPGAs”, Proc. Fault Tolerant Computing Symposium, pp.122-
129, Madison, Wisconsin, USA, 1999

[29] Aravind Dasu, Sethuraman Panchanathan, "Reconfigurable media processing",
Parallel Computing, Volume 28, Issues 7-8, pp 1111-1139 , August 2002

[30] H. Singh, M-H. Lee, G. Lu, F.J. Kurdahi and N. Bagherzadeh, “MorphoSys: A
Reconfigurable Architecture for Multimedia Applications”, in Proc. PACT’98
International Conf. on Parallel Architectures and Compilation Techniquies, Workshop on
Reconfigurable Computing, pp. 34-39, Paris, France, October 1998

[31] C. Tanougast, Y. Berviller, P. Brunet, S. Weber, H. Rabah, *Temporal partitioning
methodology optimizing FPGA resources for dynamically reconfigurable embedded real-

time system”, Microprocessors and Microsystems, Volume 27, Issue 3, pp115-130, April
2003

[32] R.D. Hudson, D.I. Lehn and P.M. Athanas, “A Run-Time Reconfigurable Engine
for Image Interpolation”, IEEE Symposium on FPGAs for Custom Computing Machines,
FCCM 98, April 1998

[33] Atmel FPSLIC (AVR with FPGA), http://www.atmel.com/products/FPSLIC/

[34] Xilinx Virtex II Platform FPGA Handbook VG002, December 6, 2000

[35] Farhad Mehdipour, Morteza Saheb Zamani, Mehdi Sedighi, “An integrated
temporal partitioning and physical design framework for static compilation of

reconfigurable computing systems”, Microprocessors and Microsystems, In Press, May
2005,

[36] Toshiba 128 Mbit FLASH memory TC58DVM72A1FT Datasheet
http://www.toshiba.com/taec/cgi-bin/display.cgi?table=ProductDetail&ProductID=10610

[37] Xilinx Inc. The Programmable Logic Company www.xilinx.com

- 96 -

[38] L. Kessal, N. Abel, D. Demigny, “Real-time image processing with dynamically
reconfigurable architecture”, Real-Time Imaging, Volume 9, Issue 5, pp 297-313,
October 2003

[39] Xilinx Inc, “Xilinx application note XAPP290”,
www.direct.xilinx.com/bvdocs/appnotes/xapp290.pdf, Xilinx Press, 2002

[40] Xuejie Zhang and Kam W. Ng, “A review of high-level synthesis for dynamically
reconfigurable FPGAs”, Microprocessors and Microsystems, Volume 24, Issue 4, 1,
pp199-211, August 2000

[41] Xilinx, Inc.:*Xilinx Virtex XCV400E Field Programmable Gate Array
Specification,” San Jose, CA, 2000.

[42] D. Mesquita, F. Moraes, J. Palma, L. Moller, and N. Calazans. “Remote and partial
reconfiguration of FPGAs: tools and trends”, Parallel and Distributed Processing
Symposium 2003. Proceedings. International, 22-26, April 2003.

[43] Carmichael, Carl., XAPP137, "Configuring Virtex FPGAs from Parallel EPROMs
with a CPLD", Xilinx Press, March 1999

[44] Kim Goldblatt, Xilinx application note XAPP178 “Parallel configuration protocol”,
Xilinx Press, 2001

[45] Mois’es P erez-Guti errez, Miguel Arias-Estrada,”Library of Hardware/Software
Components for Remote Secure Configuration”, Proceedings of International Conference
on Reconfigurable Computing and FPGAs, Santa Maria Tonantzintla, Puebla, M"exico,
2004

[46] Thomas Branca, Brant Soudan, Chris Stinson “Remote Field Upgrades Using
FPGAs”, Xilinx Press, 2000

[47] Peter Chun, Valeri Kirischian, Sergei Zhelnakov, Lev Kirischian, “Reconfigurable
Multiprocessor with Self-optimizing Self-assembling and Self-restoring Micro-
architecture”, Presentation on Workshop on Architecture Research using FPGA
Platforms, pp. 52, San Francisco, February, 2005

[48] Valeri Kirischian, Sergei Zhelnakov, Peter Chun, Lev Kirischian, Vadim Geurkov”,
Uniform Reconfigurable Processing Module for Design and Manufacturing Integration”,
Proceedings of Advanced Manufacturing Technologies 2005, London, Canada, pp. 77-82,
May 2005

[49] Altera Inc. FPGA, CPLD & Structured ASIC Devices www.altera.com

-97-

[50] Actel Inc. FPGA Programmable Logic Devices www.actel.com

[51] Lattice Semiconductor Inc. FPGA & CPLD Programmable Logic Devices
www.latticesemi.com

[52] Xilinx Spartan 3 XC3S400 Datasheet
http://direct.xilinx.com/bvdocs/publications/ds099.pdf

[53] Virtex II Pro Development http://www.digilentinc.com/info/XUPV2P.cfm

[54] AMIRIX Virtex-II PCI Platform FPGA Development Board
http://www.nuhorizons.com/services/development/amirix/

[55] Silica Xilinx Virtex-E Evaluation Kit
http://www.silica.com/en/products/evaluationkits/evaluationkit6.html

[56] Microchip PIC18FXXX Datasheet, www.microchip.com, Microchip Press., 2003
[57] “XC95288 High Performance CPLD Reference manual”, Xilinx Press, 2004

[58] FTDI Chips Inc. www.ftdichip.com

[59] IDT Semiconductor SRAM 4 Mbit 256x16 IDT71V416 Datasheet
http://www.idt.com/?app=search2&criteria=idt71v416

[60] Andrew Knight ,“Basics of MATLAB and Beyond”, Chapman & Hall/CRC, 1999
[61] www.msdn.com

[62] Carl Carmichael, Michael Caffrey, Anthony Salazar, XAPP216 “Correcting Single
Event Upsets Through Virtex Partial Configuration”, Los Alamos National Laboratories,

Xilinx Press, 2000

[63] “PLX CHIP Reference manual”, www.plxtech.com/products/io_accelerators/
PCI9030/, PLX Technologies Press., 2000

[64] Kate Gregory, “Special Edition Using Visual C# .NET”, QUE press, 2003

[65] Sergei Zhelnakov, Valeri Kirischian, Peter Chun, Lev Kirischian, Vadim Geurkov,
“FPGA-based Computing Platform for Stereo-Panoramic Vision”, Presentation at Space
Vision and Advanced Robotics Workshop, MDA Space Missions, SVAR 2005, May 19

2005

[66] Lev Kirischian, Vadim Geurkov, Irina Terterian, Valeri Kirischian, “Multi-level
Radiation Protection Mechanism Based on Self-Restoration of Partially Reconfigurable

-98.-

FPGA Devices”, Journal of Spacecrafis and Rockets (JSR), Revision 2, August 2005
[67] Stefania Perri, Marco Lanuzza, Pasquale Corsonello, Giuseppe Cocorullo, "A high-
performance fully reconfigurable FPGA-based 2D convolution processor",
Microprocessors and Microsystems, Volume 29, Issues 8-9, pp 381-391, November 2005

[68] Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, “ Digital Image
Processing using MATLAB?, First Edition, Pearson Prentice Hall, 2004

-99.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2005

	FPGA based computing platform with temporal partitioning mechanism
	Valeri Kirischian
	Recommended Citation

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112

