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ABSTRACT 

Model Predictive Controllers (MPC) in building Heating Ventilation and Air Conditioning 

(HVAC) systems have demonstrated significant energy savings when compared to typical on/off 

controllers. MPCs require information about the building’s thermal dynamics which is challenging 

to model, especially for older structures without buildings specifications. This research 

investigates the ability to develop a grey box thermal dynamic model that can determine the net 

thermal dynamics, without any building construction information. Sensors were installed within a 

test cell to monitor the building automation system (BAS) points, and collect building element 

surface temperature data. The simulation program Simulink was used to develop and test iterations 

of grey box models. The final model, that relies solely on BAS points, is able to predict the ambient 

temperature for a 3-hour Prediction Window to within 1.7% accuracy. This model demonstrates 

the potential for more buildings to implement HVAC MPC systems with grey box thermal 

dynamic modeling. 
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1 Introduction 

Climate change is one of the greatest challenges of our generation. This issue is caused by an 

increase in greenhouse gas (GHG) emissions caused by human activity [1]. The 

Intergovernmental Panel on Climate Change (IPCC) reports that buildings are responsible for 

32% of total global energy use and 19% of energy-related GHG emissions [2]. This energy 

consumption is only expected to increase in the coming years due to growing population, and 

lifestyle changes. It is estimated that by 2035, energy consumption in the building sector will 

increase by 28% [3]. Therefore, as our society moves forward, it is crucial for our buildings to 

be constructed to higher standards so that we can reduce the GHG emissions from the building 

sector and help mitigate global climate issues. 

The energy breakdown for the building sector demonstrates space heating accounting for 

between 32 and 34% of the overall energy consumption in both residential and commercial 

buildings [2]. New building regulations encourage the use of high-performance equipment 

however, it has been shown that most modern heating systems are not properly used and are 

not adjusted to the thermal demands of the building [4]. A study released by the National 

Renewable Energy Laboratory (NREL) [5] identified the principal challenge in achieving 

energy efficient buildings is the “lack of innovative controls and monitoring systems”. 

Therefore, research interest in more advanced control systems has started to increase. Model 

predictive control (MPC) for building control systems is one type of “smart” control system 

that has been widely reported as a promising alternative to current HVAC control strategies 

[4]. This can be seen in the study by Carrascal et al. [6], where the implementation of MPC in 

the HVAC system of a municipal housing building resulted in 15% energy savings compared 

to using typical PID controllers.  

Model predictive control systems utilize predictions of disturbance effects such as weather, 

solar radiation, and occupancy, along with, knowledge of the building’s thermal dynamics to 

determine the necessary HVAC output. The greatest advantage of this system compared to 

other HVAC control systems is information on the building’s thermal behaviour [7]. The 

building dynamics however, can be difficult to model as the thermal dynamics increase in 

complexity with the number of modeling zones and are subject to uncertain disturbances such 
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as occupancy and weather [4]. For MPC, three modeling types are used to represent the thermal 

dynamics: white box models, black box models, and grey box models. 

White box models are detailed physical representations of the building and are typically 

simulated using software such as EnergyPlus [8,9]. These models are very accurate 

representations of the thermal behavior as they have extensive knowledge of the properties and 

parameters of the building [8]. However, white box models are not widely used for thermal 

dynamic modeling within MPC systems due to their high computational time and the 

considerable expense involved in creating the model [8].  

Black box models stand in contrast with white box models as they have no physical knowledge 

of the building, but are instead completely data-driven, using linear or non-linear mathematical 

functions  [9]. It is common to see artificial neural network (ANN) black box models as MPC 

thermal dynamic models due to their ability to handle multivariable and nonlinear modelling 

issues, such as building thermal dynamics [7]. The prediction accuracy of this type of model 

however, is limited to the data it is presented; this leads to large forecasting errors when the 

model is introduced to data outside the training domain space. Therefore, to train black box 

models to the level of accuracy required for MPC, large data sets covering all seasons are 

required. 

Grey box models integrate the physical representation of white box models with the data 

analytics properties of black box models. These models use the physical information of the 

space to create the model structure and data measurements to solve for unknown parameters. 

This reduces the challenges associated with both model types, lowering the computation costs 

and time needed to create the models and reducing the size of the training data sets. Grey box 

models commonly represent the physical structure using resistor-capacitance (RC) networks. 

RC networks represents the thermal dynamics as an electrical circuit with lumped 

representative resistors and capacitors [7]. The resistors represent the building’s thermal 

resistance, and the capacitors represent the building’s thermal capacitance. These values are 

commonly found from building construction drawings and specifications. One of the greatest 

challenges with creating grey box thermal dynamic models is determining these values when 

the building no longer has the construction specifications. Previous research has solved this 

issue by using parameter estimation techniques to determine the resistance and capacitance 
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values [5,6,8, 10,11,12,13,14,15,16,17]. The parameter estimation techniques used within these 

studies include Matlab Optimization Toolbox using hill climbing algorithm [10], Matlab 

Optimization Toolbox using interior point algorithm [11], Matlab greyest function [12], and 

linear fitting using least squares method [13]. The study conducted by Berthou et al. [11] used 

an interior point algorithm to solve for the RC parameters in the grey box model, resulting in 

an ambient temperature prediction error of less than 2% for both heating and cooling seasons. 

The use of parameter estimation tools to solve for unknown building property values allows for 

the creation of grey box thermal dynamic models for older structures. This in turn expands the 

number of buildings that can use MPCs with grey box thermal dynamic modeling in their 

HVAC system. 

Parameter estimation tools are one solution for the issue surrounding thermal dynamic 

modeling for older structures. This research aims to explore the potential of a different 

modeling technique. This thesis investigates the ability to create a grey box model without 

building information where the model is able to determine the net thermal dynamics using only 

building automation system (BAS) points. This is the first observed study attempting to 

eliminate the resistance and capacitance values within grey box thermal dynamic models.  

1.1 Research Objective 

The objective of this study is to create of a grey box thermal dynamic model that has no building 

parameter information, relying solely on building automation system points to determine the 

net thermal dynamics. This research also determines the suitability of this model type for use 

within MPC HVAC systems. The final model is analyzed for its ability to predict the test cell’s 

indoor ambient temperature, and the generalisation ability of the model in terms of required 

training period and performance in other seasons. 

1.2 Research Questions 

1. Can a grey box thermal dynamic model be developed with the ability to accurately 

determine the net thermal dynamics without any building construction information, 

relying solely on the Building Automation System (BAS) points? 

2. Does a model of this type have the generalisation ability to predict temperatures with 

reasonable accuracy in new conditions? 



 21 
 

2 Background 

2.1 Model Predictive Control 

HVAC systems are one of the largest contributors to the overall energy consumption of 

commercial building’s [2]. The implementation of advanced and predictive control systems has 

significant potential in reducing energy consumption, with energy savings as high as 25% [13]. 

Despite the research dedicated to developing more advanced HVAC controls, the most 

common HVAC control systems installed within commercial buildings remains a combination 

of proportional-integral derivative (PID) control and on/off control [19]. These systems control 

actuators within the HVAC system based on the current and previous ambient temperature. It 

has been stated that HVAC systems controlled with PID/on-off controllers often result in over-

heating or over-cooling of a building due the fact that their control algorithm does not consider 

thermal dynamics, delaying their response to the indoor temperature [19]. This results in a 

building with poor thermal comfort and excess energy consumption.  

In recent years, Model Predictive Control (MPC) has been the subject of increasing research 

interest. MPC systems demonstrate the potential to improve the efficiency of HVAC system 

performance by considering both available passive gains and time-of-use electricity rates [21]. 

MPC systems use inputs of: the current conditions of the space, along with, relevant disturbance 

effects such as weather, solar radiation, and occupancy [19]. For each sampling interval of the 

model a finite-horizon optimal control problem is formulated using the prediction data to create 

a heating / cooling plan that satisfies both the dynamics and the building constraints [20]. The 

success of MPC is due to its simplicity and its ability to handle complex systems with hard 

control constraints and many inputs and outputs [22]. The improvement of MPC controllers 

over typical PID controllers can be witnessed in many research studies including the work 

conducted by Dong and Lam [23], who achieved 30% heating energy and 17.8% cooling energy 

savings in a solar decathlon house with the implementation of Nonlinear MPC instead of 

setpoint control. In a similar study of 1960’s social housing, researchers compared the use of 

MPC HVAC controller to a traditional PID controller [6]. Switching the HVAC control to 

MPC, without any other form of building upgrades, resulted in energy savings between 10-15% 

[6]. Similarly, research for a newly constructed building comparing the performance of MPC 

HVAC system to a typical PID controller demonstrated 12.7% savings in the summer months 
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and 2% savings in the winter when using the MPC HVAC system [24]. Finally, a summary 

written by Afram et al. [25] comparing classical on/off PID control and MPC systems 

concluded that MPC had the greatest energy and cost savings, more robustness to dynamic 

disturbances, and better peak load shifting ability. The findings from these comparative studies 

clearly demonstrate the superior energy saving performance of MPC over other HVAC control 

systems. 

2.1.1 Economic Model Predictive Control 

Economic MPC controllers’ function in the same manner as MPC controllers and have the same 

input information, with the addition of electricity pricing input, allowing the system to optimize 

both the HVAC system performance and energy costs. The optimization function for this MPC 

system uses information about on-peak and off-peak electricity hours along with the building’s 

active thermal storage properties to condition the building at off-peak times. In a study 

investigating the use of an MPC system in a test cell residential home, the model demonstrated 

savings of 50% in operating costs during the summer when compared to an on/off controller 

with fixed set point set at 24oC [26]. Similarly, a single room test bed study conducted by 

Soudari et al. [13] investigated the use of personalized energy management systems for HVAC 

control based on economic MPC in residential buildings. Their research concluded energy 

savings between 9.7% and 25% and cost savings between 8.2% and 18.2% can be achieved 

using this system, depending on the occupant behavior and external conditions [13]. Economic 

MPC systems have also been researched within commercial buildings, as shown in the study 

of a single storey commercial building in Chicago Illinois by Ma et al. [27]. The results from 

this study demonstrated the building used 25% less energy and saved 28% in energy related 

costs when using economic MPC in comparison to the baseline control system; the baseline 

system involved a temperature setpoint in the lower bound of the comfort region when the 

building was occupied and turning off the HVAC system when the building was unoccupied 

[27]. Unlike the studies mentioned previously, which used test cell measurements, this study 

was based entirely on simulated results from EnergyPlus (with connection to Matlab for HVAC 

control simulation). Although the studies above demonstrated strong performance results, the 

success and degree of cost savings for an economic MPC scheme is dependent on the buildings 

construction. Buildings constructed with lightweight materials do not have the necessary 
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thermal storage capacity to be as successful using this control system. As seen in the study 

conducted by Alhaj et al.[5], the savings from the Economic MPC were less obvious when 

compared to a PID controller due to the low thermal inertia qualities of the building. This is 

demonstrated again in the study by Široký et al. [20] when comparing the performance of 

economic MPC on insulated and uninsulated blocks of a building. The insulated blocks 

demonstrated energy savings of up to 29% while the uninsulated sections had energy savings 

of up to 17% [20] .  

2.1.2 Thermal Dynamic Modeling 

The thermal dynamic model in MPC systems give information on the thermal behavior of the 

space, determining the future ambient temperature based on the model inputs. The most 

challenging component of MPC implementation is modeling the thermal dynamics of the 

building [19]. The thermal dynamics are complex and vary greatly from building to building, 

as well as, increase in complexity with the number of zones in the building [4]. Some of the 

difficulties include having several uncertain disturbances such as weather and occupancy 

which, require the prediction of non-Gaussian distributed loads such as ambient temperature 

and occupancy load [19]. Further, the internal space of a building is divided into several zones 

that are conditioned by individual air handling units creating a multiple-input, multiple-output 

system [19]. The thermal dynamic model used within MPCs must therefore be able to describe 

the relations between the input and output variables. Additionally, the thermal dynamic model 

used within MPCs must have the ability to predict conditions when short term disturbances and 

long term accumulated changes in building temperature are known. For control purposes, it has 

been stated that models need to be simple enough that they can be solved in an adequate amount 

of time, while also having enough complexity to accurately model the thermal dynamics of the 

space [7]. To undertake the problem of modeling thermal dynamics for use in MPC three 

models can be used: physical white box models, statistical black box models, or grey box 

models.  

2.2 Use of Test Cells in Predictive Control Development 

The use of test cells for collecting site data, either for input (grey box or black box models) or 

validation (any model type), is widespread in the field of predictive control. Most studies will 
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either install sensors within a test cell [12], or use an existing building monitoring system 

(BMS) [16,29], building automation system (BAS) [20], or data acquisition system (DAQ) [23] 

to gather this data. On the rare occasion, such as in the study by Berthou et al. [11], the grey 

box model is trained using synthetic learning data to avoid noise and measurement 

uncertainties. Another method is using data from a simulation model, as conducted in the study 

by Gyalistras et al. [29] and in the study by Alhaj et al. [5]. Variables collected for the creation 

of grey box and black box models include the ambient and surface temperatures, HVAC system 

heat load, occupancy, weather, and solar conditions.  

2.2.1 Use of Temperature Sensors 

Both black box and grey box models require measurements of ambient temperature for model 

training, and validation. The indoor ambient temperature measurements are collected using 

ambient measurement devices, installed either at varying heights [23] or at an average room 

height [8].  

In addition to the ambient temperature measurements, grey box models also collect surface 

temperature measurements for parameter estimation or tuning purposes [13,18]. This is seen in 

the work of Terés-Zubiaga et al. [18] where the surface temperature measurements are used to 

adjust parameters in the grey box model to achieve more accurate surface temperature results. 

The sensors were installed with conductive paste for good surface contact and reflective tape 

to protect against solar radiation. Additionally, heat flux plates were installed on the walls of 

the building in this study to measure the value of the heat flux through the facades, floor, and 

ceiling elements.  

2.2.2 Internal Load  

Internal heat energy is included within predictive control models to account for the generation 

of sensible heat within the space. Lighting and plug load are often estimated using heat load 

values from ASHRAE 90.1 [10]. For studies that use simulation models to gather data, the 

internal load values are defined in the simulation program [14,27]. Some models choose to 

ignore these loads as negligible compared to the other heat loads, and thus leave them out of 

the thermal dynamic model [7,8]. Still other models install energy meters for monitoring plug 

load data [18,23,31].  
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2.2.3 HVAC Systems 

HVAC systems vary greatly between buildings depending on the climate and building type. 

Therefore, how they are modeled within thermal dynamic models and MPC systems vary. In 

order to effectively represent HVAC systems, data is collected to calculate the energy loads of 

the system. Sometimes the temperature and relative humidity of the supply air along with 

supply airflow rate is measured to calculate the ventilation heat loads, as seen in [7,10,31]. 

Other models collect data at the equipment level with sensors measuring the return and supply 

water temperature along with the water flow rate [7, 12,16,20]. To monitor test cells with 

electric heating electrical load data is collected [17,18]. In contrast, Hydronic heating systems 

are typically monitored with the supply and return water temperature sensors [20]. 

2.2.4 Occupancy Modeling 

Occupancy is one of the more challenging data points to capture for thermal dynamic models 

due to the sporadic behavior of occupants. Many models simplify the occupancy load as a set 

profile based on historic data [10,11,16]. An example of this can be seen in the study [10]  

where the occupancy load in the thermal dynamic model was assumed to be 85 people from 

8am to 10pm, Monday to Friday. The heat load of the occupants was found using ASHRAE 

90.1-2005 standards [10]. More complex occupancy data collection can be seen in [13] with 

limit switches measuring door-firings, along with, retro-reflective sensors and door-mat sensors 

measuring occupant movement to infer room occupancy. In other studies, carbon dioxide 

sensors were used to determine the occupancy based on the carbon dioxide ppm concentrations 

within the room [23,31,32]. The work conducted by Mustafaraj et al. [32], demonstrates the 

importance of including occupancy load within thermal dynamic models as their results 

demonstrate improved prediction performance of the black box model when incorporating 

occupant count from carbon dioxide data. Their conclusion was that future research should 

consider the full heat and humidity effects of occupants in thermal dynamic models for MPC 

[32].  
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2.2.5 Modeling of External Conditions  

Solar radiation affects the exterior of the modeling space, warming the façade, and the interior 

of the modeling space, with the radiation entering through the window. Most thermal dynamic 

models incorporate solar radiation and weather effects with significant variety in how these 

elements are considered. One method of determining the solar radiation value is using energy 

modeling simulation programs such as EnergyPlus to calculate the solar heat load and 

extracting the data [10]. Energyplus considers variables such as the direct and diffuse solar 

radiation from the sun, ground, and sky reflectance; building geometry and orientation; any 

potential building shading; the window transmittance along with the time of year; latitude; and 

weather conditions [10]. Another solar radiation method is using solar radiation algorithm with 

inputs of cloud cover and building information pertaining to orientation, location, solar 

protection, and glazing to calculate the direct and indirect solar heat loads, as seen in the study 

[11]. The most commonly seen method however, is the use of local weather stations to gather 

overall solar radiation measurements [12,13,16,17,18,20]. In a rare case, where the building 

was programmed with external shading devices, the solar load was omitted from the internal 

heat load calculation for the thermal dynamic model due to the sun being blocked during 

daytime hours [7].  

Similar to how solar radiation is measured, exterior weather conditions are commonly found 

using the closest weather station to the simulation building [12,18,33,31]. Other studies 

gathered data from online databases [30] ; or when simulating within energy modeling software 

used weather files [8,10,11,29]. Some research installed exterior sensors to gather the outdoor 

temperature and relative humidity conditions [7,23].  

2.3 White Box Model  

White box models are created using detailed physics-based equations. These are used to model 

the building components, sub-systems, and systems to predict the building behavior [35]. The 

input parameters – including weather conditions, building structure, building systems, and 

building equipment – need to be obtained from building design plans, site measurements or 

manufacturer catalogs [35]. White box models are commonly run on simulation software such 

as EnergyPlus [14,15] or TRNSYS [36]. Due to their level of detail and representation of 
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underlying physical mechanisms, they have the potential to represent the thermal dynamics of 

the building very well [35].  

A significant drawback of using white box models for use in MPC’s is the complexity 

associated with their creation and solution [35]. The models require detailed information on the 

building construction and system parameters that are usually difficult to obtain, if they are 

available at all. These models are therefore very time consuming to create and computationally 

slow to solve [35]. Another challenge when using white box models in MPC systems is 

connecting the white box model simulation output to the MPC control system input. Energy 

modeling simulation programs cannot be stopped once the simulation has started, therefore the 

results from the model simulation cannot be sent to the HVAC control system and the HVAC 

control parameters cannot be sent to the simulation. To solve this problem, a building control 

virtual test bed (BCVTB) was created by Lawrence Berkley national laboratories [24] and is 

used in many MPC studies as a communication software between energy modeling software 

such as EnergyPlus [24,27,29] and TRNSYS [37] and  HVAC control models.  

It has been shown that the level of detail within white box models is not truly necessary for 

determining thermal dynamic behavior [23]. Within the study [23], researchers compared a 

white box model made in Modelica to a simplified, linear white box model. The Modelica 

model, named the ‘complex model’, used the simulation program’s physical acausal modeling 

approach, which uses a resistance and capacitance network to represent the thermal zones. By 

reducing the number of zones corresponding to the hydraulic system, a simplified form of the 

Modelica model was created. This ‘simplified model’ was created based on energy balances, 

similarly to what is done with grey box models. The study found that compared to the complex 

model, the simplified version had temperature prediction deviation of less than 0.07 kelvin. 

Therefore, it can be extended from this study that simplified models, such as grey box models, 

can accurately predict the ambient temperature without the level of detail required for a white 

box model. 

2.4 Black Box Model 

Black box models by definition are based purely on data relationships, and do not incorporate 

any knowledge of the building’s physical structure [8]. Statistical models are applied to 

determine correlations between the operational data, and energy consumption [35]. Black box 
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models use data measurements from the building to train the model, such that it is able to predict 

the building operations. The black box model simplicity is beneficial as it is computational 

efficient and easy to create [35].  

2.4.1 Linear Models 

Black box thermal dynamic models can be linear or nonlinear models. One type of statistical 

linear black box model, seen in research [32],is an Autoregressive with eXogenous input (ARX) 

model. ARX models are time series linear models that use past building load information to 

determine future building loads [38]. The study conducted by Powell et al. [38] compared the 

linear ARX model to a neural network based Nonlinear Autoregressive network with 

Exogenous inputs (NNARX). NNARX models are similar to ARX models that use previous 

load data to forecast future building loads, however, this model uses neural networks to solve 

for the future loads [38]. The study determined that the NNARX model predicted the 

temperature and relative humidity more accurately, due to the non-linear design of neural 

network models. As temperature and relative humidity are governed by nonlinear diffusion 

equations, nonlinear models demonstrate a stronger ability to predict future conditions [32]. 

Another study by [7], discusses the same issue with linear models stating they have an inability 

to capture the non-linear thermal dynamic effects, potentially resulting in larger errors when 

strong nonlinear variables are present in the system. 

2.4.2 Neural Networks 

Recently, there has been a shift towards the use of Artificial Neural Networks (ANN) models 

for building simulation and control. Studies demonstrate these models as being superior for 

modeling nonlinear HVAC systems compared to other modeling methods [7,19,38]. Neural 

network models mimic the human neuron system, developing learning ability using historical 

data, weighted networks, and learning rules [7]. The parameters of neural networks are the 

number of neurons and the weights connected to the input variables [7]. Neural network models 

gain the ability to learn from historical data by adjusting the weights of the connections between 

the various nodes (“neurons’) [7]. An ANN structure has three layers, as illustrated 

conceptually in Figure 1. 
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Figure 1 Artificial Neural Network Structure showing Relationship between Inputs and 

Outputs using Neurons [30] 

The first layer of an ANN consists of sensory units that are fed data from the input variables 

[7]. The inputs to the first layer are multiplied by their respective weights, summed, and added 

to the bias before being sent to the second layer. This second layer consists of one or more 

hidden layers designed with a set number of neurons and with each neuron having its own 

activation function, logical sigmoid function, and a sum operator to perform nonlinear 

transformations on the input data [7], as seen in Figure 2. 

 

Figure 2 Hidden Layer of Neural Network [30] 
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The number of neurons within the second hidden layer of the neural network is chosen by the 

designer, and varies with every neural network. For example, the network model in [12] 

optimized the number of neurons for the NARX model by investigating models with hidden 

layer size ranging from 0 to 10. Using cross validation methods, the model that demonstrated 

the most accurate results had a hidden layer size of 1 [12]. Comparatively, within the research 

[13], the hidden layer size was optimized using a trial and error approach, determining that 

eight hidden layers was the best balance of accuracy and computational time. Each of the 

neurons performs nonlinear transformation using a sum operator and an activation function, 

shown below [7]. 

𝑓(𝑥) =  
1

1 + 𝑒−𝑥
 

(1) 

Neural networks are trained using input and output data along with an optimization algorithm. 

Based on the input and output data, the algorithm determines the neural network parameter that 

best represents the training data set. The optimization algorithms used in neural net training 

varies; the most commonly seen method is the Levenberg-Marquardt (LM) approach 

[12,30,32]. This algorithm minimizes the mean square error between the predicted and the 

actual output value. LM is considered a faster optimization algorithm compared to other 

algorithms, but with the disadvantage of being more computationally expensive [12]. Other 

studies, such as [7], use Bayesian regularisation as the parameter training method stating that it 

improves the generalisation of the ANN model to prevent over fitting but at the cost of a slower 

convergence speed. 

When creating a neural net, the network is trained and tested using different sets of data. This 

is to ensure that the testing results from the neural network are based on data it has never seen 

before. The data also needs to be normalized before being input into the model to ensure data 

with larger values do not overpower data with lower values, which might be equally influential. 

The study [7], describes the training method for the neural network with 70 percent of the data 

being used for training, 15 percent of the data being used for validation, and 15 percent of the 

data being used for testing. The data used within the model was normalized on a scale of 1 to -

1 to avoid dominant effects of select variables. This is reversed at the output of the network so 

that the output is the real system value.  
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There are two types of neural network architecture: feedforward, and feedback [39]. In a 

feedforward network the data moves in one direction only while feedback neural networks have 

additional feedback from the previous layer. Feedback models are commonly used for adaptive 

control applications [39]. An example of a feedback neural network thermal dynamic model is 

in [30] where the researchers investigated the use of multi-input multi-output (MIMO) network 

structures instead of the more typically used multi-input single-output (MISO). This research 

looked into the implications of using neighboring zone temperatures as neural network inputs 

and the result of thermal zone coupling on prediction accuracy. Their findings demonstrated 

that the feedback neural network had better prediction results when considering the neighboring 

zone temperature and both interior and exterior zones could be predicted accurately based on 

outdoor temperature [30]. This structure is seen again in a later study conducted by Huang et 

al. [7] where a feedback nonlinear autoregressive model with exogenous input (NARX) model 

is used to represent the thermal system for an airport in southern Australia [7]. This study, 

similar to the previous research, investigated the implications when considering neighboring 

HVAC zone conditions in an open concept space. The two modeling methods compared include 

a MIMO neural network model representing all five HVAC zones and five MISO neural 

network models representing each individual HVAC zone. The study found the multi-zone 

model had better performance than the single zone network model, due to the fact that the 

model considered thermal coupling between zones [7]. The research concluded that the MIMO 

model is a good solution for modeling of commercial buildings that are often built with large 

open areas conditioned by multiple HVAC systems [7].   

2.4.3 Black Box Models vs Grey Box Model 

Grey box models, as briefly described in Section 2.1, are combinations of both white box and 

black box models, incorporating both physical representations of the space and training data.  

A study was conducted to compare the thermal dynamic modeling accuracy of black box and 

grey box models [12]. The black box models compared within the study were linear ARX and 

nonlinear NARX models while the grey box models were variations of RC networks, with the 

most complex being a 4R3C structure (see Section 2.5.1).The models were tested for a winter 

simulation period, resulting in the NARX model having 14% lower RMSE than the ARX 

model, and 21% lower RMSE than the 4R3C grey box model [12]. However, this study did not 
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simulate the models in different seasons which, is the weakness of black box models. Black 

box models are constrained to the building operation conditions within their training domain 

space; this often leads to large forecasting errors when the simulation is run during conditions 

that the model has never seen before [35]. Therefore, although the study above demonstrated 

the black box models having the best performance for the winter season, there is a likelihood 

that it would not perform as well when simulated for other seasons as it was specifically trained 

for the winter season.  

2.4.4 Challenges of Black box Models 

A considerable disadvantage for black box models is the fact that the quality of the data used 

to train the models directly determines their predictive performance. To create a robust model, 

measurements from all seasons of the year are needed to assure that the model is not skewed to 

one period. In the research conducted in [7] the training data included both the historical 

maximum values as well as the minimum values to increase the generalisation of the model. 

This study also used a sliding window method to make the neural networks more adaptive to 

change. This method stores the training data in a sliding window, so new data collected from 

the site will replace the older data and the model can be re-trained periodically [7].  

A second concern when using a neural network black box model is overfitting the network. 

This occurs when the number of data points is similar to the number of parameters. This permits 

the network to memorize the training examples, making the model unable to perform well in 

new situations [40]. This can be avoided by using cross-validation to artificially expand the 

number of data points when training the black box models [12]. Initially this value along with 

the training error decreases during the first number of iterations but, when the network begins 

overfitting the validation error increases. The Matlab neural network app monitors this and 

stops training the network if the validation error is observed to continually increase for a set 

number of iterations [40].  

2.5 Grey Box Models 

Grey box models are created using a combination of physical white box models and statistical 

black box models. This type of model uses physical relationships to define the model’s structure 

and its state equations, while data measurements are used for the identification process to 
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determine model parameters [8]. Compared to black box models they have better generalization 

ability [25] and compared to white box models they are less time consuming and expensive to 

construct [35].  

The white box component, the physical representation of the space, is created using an 

equivalent electrical (RC) network. The model represents different building components 

through resistances (R) and capacities (C) analogous to an electrical network [8]. These 

building components are lumped together with the heating loads of the space to create the 

lumped RC network model. The RC network models the heat transfer relationship within the 

space in an equivalent electrical circuit – a simplified representation of the thermal dynamics. 

Typical simplifying assumptions that are used when creating RC network models include: one-

dimensional heat transfer, uniform surface temperature, fully mixed ambient temperature, and 

constant density value of the interior air [24].  

RC networks are used to derive the differential equation for each of the temperature nodes. The 

differential equations are derived from physical laws defining the dynamics of the building 

[21]. Grey box models are made up of a set of these differential equations formulated in a state 

space form. A state space model represents the dynamics of a Nth order system as a first order 

differential equation in an N-vector [41]. An example of a standard linear state-space is 

illustrated in equation (2) and (3) below. 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐸𝑑(𝑡) (2) 

𝑦(𝑡) = 𝐶𝑥(𝑡) (3) 

Within these state space equations x represents the walls and zone temperature vector, �̇� is the 

differentiation with respect to time, y is the output vector of the simulated zone temperature, u 

is a vector representing the controlled HVAC inputs to the space, and d is the vector of 

disturbances to the space including exterior conditions and heat gains [4]. When integrating 

these models into control processes it is preferred for the models to have a simpler structure, as 

it has been concluded that second order state space is sufficient to describe the thermal 

dynamics [5]. The order of the state space describes the order of the differential equation that 

can represent the system, so a second order system is represented by a second order differential 

equation. This type of model, a second order system, can be seen in the work [5] where after 
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parameter estimation the grey box model was successfully installed within an MPC control 

system achieving 25% energy savings [5].  

2.5.1 RC-Network Structure 

The structure of the RC network varies for every study depending on the space being 

represented and the amount of detail added by the designer. One consistency amongst these 

models is the use of a 3R2C model ( Figure 3, right) for representing the exterior wall 

[6,8,10,16,24]. This model structure is commonly paired with a parallel resistor to represent a 

window unit in the wall [6,10], as illustrated in Figure 3 (left) .The meaning of the subscripts 

in  Figure 3 are, ‘in’ representing interior, ‘out’ representing exterior, ‘a’ representing ambient 

properties, ‘e’ representing the equivalent resistivity value, and ‘e,win’ representing the 

resistivity value for the window. The three resistors in the model represent the resistivity of the 

interior air film, the elements being modeled, and the exterior air film. The two capacities 

represent the heat storage of the interior and exterior sides of the wall. 

 

 Figure 3 R2C Network Structure with (left) and without (right) window component 

Elements with low heat storage capacity are represented with an equivalent resistance, as seen 

with the window in Figure 3. For curtain wall or window wall assemblies, the window is a 

single resistor represented on a separate branch of the RC network not attached parallel to any 

other RC network branches. For elements where conductive heat transfer is not modeled but 

the surface temperature affects the ambient temperature, the component is modeled with a 

1R1C structure, as seen in [8] and [17] with the interior walls represented as 1R1C systems. 
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The arrangement of an RC network depends on the structure of the space and the 

resistance/capacitance values depend on the materials and dimensions [4]. An example of an 

RC network representing a mixed-mode building is illustrated in Figure 4 [16]. This study 

represents the roof and the exterior wall as separate 3R2C network branches, the window unit 

as a single resistance branch, and the internal mass as a 2R2C branch.   

 

Figure 4 R-C Network Representing the Mixed-mode Energy Building [16] 

This RC network models the buildings relationship with the exterior conditions and the internal 

heat loads. This structure is unique in its creation with the use of a 2R2C representative internal 

mass branch. Other grey box models combine the internal mass heat capacity with the ambient 

air capacity [6,7,8,11,16].  

 One of the more complex RC networks observed represents two HVAC conditioning zones 

within a solar decathlon house [23], as shown in Figure 5.  

 



 36 
 

 

Figure 5 R-C Network Representing a Solar Decathlon House [23] 

Using this grey box model within the MPC system was able to reduce the heating load of the 

solar decathlon house by 30% and the cooling load by 18% when compared to an on/off control 

HVAC system [42]. This research demonstrates the complexity of RC networks and the 

challenge associated in creating them, especially as the building becomes larger and involves 

more zone interactions. In the study conducted on a 25-zone building, the RC network was 

made of 494 resistors and 341 capacitors with every wall represented as a 3R2C structure [4]. 

In this 25-zone model, as well as in the model within the study [6] , the RC network models 

were reduced to a simpler state space model for implementation within an MPC system. 
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2.5.2 RC Network Structure Optimisation 

It has been stated that for control design, such as MPC, more simplified grey box models are 

preferred to larger scale RC networks [4]. Many researchers have conducted studies optimizing 

the RC networks to balance simplicity of the network design with accuracy of the ambient 

temperature prediction [11,12,17].  In a study conducted by Reynders et al. [21] the researchers 

compared the performance of five grey box models ranging in complexity from 1st order to 5th 

order models, demonstrated in Figure 6. 

 

Figure 6: 1st-5th Order Grey Box Models used within the study [21] 

The results from this study demonstrated that the fourth order model best represented the 

uninsulated building and the fifth order model best fit the insulated building [21]. The models 

were selected based on their root mean squared error, residuals, and model performance for 

day-ahead prediction [21]. A comparison of these models to their equivalent white box models 

demonstrated strong agreement in interior temperature results especially during the winter 

simulations [21]. Other studies who have similarly investigated the optimisation of RC 
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networks found varying results in the optimal degree of complexity for the RC network. In the 

research [11] three models were simulated in TRNSYS, the results demonstrate the 6R2C model 

(Figure 7) had the most accurate prediction results with a model error of less than 2%. The 

research summarized that the simplest model that can accurately represent a building’s thermal 

dynamic behavior is a second order model [11]. The optimized structure in this research is 

unique as it includes an equivalent resistance for mechanical ventilation of the room, as 

illustrated in Figure 7. Typically, the mechanical ventilation heat load is added to the total 

interior heat load, which is connected to the ambient temperature node [6,7,8,11,16].  

 

Figure 7 R6C3 Model used to Represent an Office Building [11] 

In an analogous study comparing first order, second order, and third order grey box models 

concluded that the third order model, with 4R3C structure (Figure 8), had the most accurate 

ambient temperature prediction results [12]. This model uses the 1R1C structure for modeling 

the interior walls but differs from most models by representing the exterior wall with a 2R1C 

structure.  

 

Figure 8 4R3C Model Representing an Office Space [12] 

Likewise, in the study by Peder et al. [17] the RC network (Figure 9) uses a 2R1C structure to 

represent the envelope of the building and a 1R1C structure for the interior wall, designated as 
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‘sensor’. This 4R4C structure most accurately predicted the ambient temperature compared to 

five other RC network iterations. 

 

Figure 9 4R4C Structure Representing a House [17] 

RC Network Heat Loads 

All of the RC networks discussed in the previous section model the heat loads due to exterior 

temperature, solar radiation, and internal heat sources. The majority of models represent the 

internal heat loads of the occupancy, interior lighting, and HVAC conditioning as one internal 

heat load connected to the ambient temperature [6,7,8,11,16]. Not all of the studies, however, 

include the HVAC load with the internal heat load calculation, as seen within [11]. Another 

exception includes the study [11] that models radiant in floor heating. In this system the heating 

load is connected to the floor temperature node, instead of the ambient temperature node. 

Another modeling method seen in study [17] represents the heater with its own temperature 

node and connects it to the ambient temperature through an internal air film resistor, instead of 

being incorporated within the internal load.  

For the solar representation within RC networks, many studies model the solar radiation 

impacting both the interior and exterior of the room [6,18,23,34]. The solar radiation affects 

the interior by entering through the window and impacts the exterior wall by warming the 

facade. The solar radiation entering the space has been shown in previous studies to be 

connected to the interior temperature node, representing the solar radiation absorbed by the 

internal mass [23,34]. Other studies, such as the one discussed within the paper by J.Wen [43], 

connected the solar radiation to the floor node. Researchers for this study observed the floor 

element to be directly in the sunlight, absorbing the radiation, and then transferring the heat 

load to the ambient air through convective heat transfer. For larger buildings, as seen in [4], the 
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researchers combined the model disturbances of the RC network. With the solar radiation 

affecting all of spaces of the same orientation and occupancy impacting building spaces of 

similar purpose, patterns common to multiple estimated disturbance states were extracted by 

Principal Component Analysis (PCA) [4].  

2.6 Building Parameter Estimation 

Building parameter estimation is used when grey box model parameters, resistance and 

capacitance values, are unknown, or when solving for the weights of a steady state equation. 

Optimization algorithms, similar to those used in black box models, are used to solve for the 

parameters using input and output data. The internal heat capacity is a common parameter 

within grey box models that is solved for using parameter estimation [10,11,12,17,34]. As seen 

in [6,10,12,17,18,20,44], this value frequently encompasses heat capacities from multiple 

sources, making it hard to calculate. The study [11] defines this value as the “internal air and 

light furniture capacitance”. The internal heat capacity was solved for in [16], when the building 

construction drawings were available for the creation of the RC network but the resistivity and 

capacitance values of the representative 2R2C internal mass branch were unknown. The study 

was able to determine the values using a genetic algorithm and root mean square error 

optimisation. The resulting energy model had a relative error of 8% when predicting the cooling 

energy consumption in the summer and a relative error of 10% when predicting the cooling 

energy consumption in the winter [16]. In another study, the researchers chose not to solve for 

the internal mass using parameter estimation but instead used the assumption that the ambient 

air heat capacity increases by a factor of 5 when incorporating miscellaneous internal heat sinks 

[21]. One unique study, conducting RC network optimisation, demonstrated that the best 

performing model had no internal heat capacity value at all [8].  

In addition to solving for the internal mass, studies have also used parameter estimation to 

determine the material property values for RC networks, and the variables for state space 

models [5,6,8,10,11,12,16,17,18,19,20]. In the study conducted by McKinley and Alleyne [10], 

hill climbing optimisation procedures were used with the model’s ambient and HVAC supply 

air data to solve for the zone mass, four thermal resistances, and two thermal capacitances. The 

hill climbing function in this study was run using the Matlab 7.1 Optimization Toolbox with 

results from the parameter estimation demonstrating parameter accuracy and repeatability 
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below 1% [10]. Similarly, the study by Soudari et al. [13], solved for the parameters within the 

state space model using the least squares method. This research, along with the previous study 

[10], used data collected from test sites to solve for the grey box model parameters. 

Comparatively, in [11], data generated from the TRNSYS building model was used within the 

parameter estimation interior point algorithm. This study concluded the parameter fit is good 

when the thermal needs are high and low during shoulder seasons when the thermal need is low 

[11]. Although these studies demonstrate accurate grey box model results when using 

parameter estimation tools, a study found that models of at least fourth order (see Figure 6) 

should be used when conducting parameter estimation for models representing well insulated 

buildings [21].  

No consistent algorithm is observed to be used within research that conducts parameter 

estimation. One study used the greyest function within Matlab to assure good results as this 

function uses Gauss-Newton direction, Levenburg-Marquardt, and steepest descent gradient 

search [12]. Another study concluded that swarm optimisation is the best option for models 

with high dimensionality and low levels of input excitation [4]. It is stated that this algorithm 

is robust against the problem of convergence at a local minimum [4].  

2.7 Subtractive Linear Regression 

Linear regression models are the preliminary black box model components added to the grey 

box model in this thesis, replacing building element physical representations. As no other study 

to date has created this kind of thermal dynamic model there are no previous studies for 

reference. The regression models were created using a subtractive linear regression approach. 

This method determines the linear relationship of the output value, in this case the building 

element surface temperature, based on the input values and the monitored data from the test 

cell. In a subtractive approach, all of the monitored values from the test cell are included within 

the first iteration of the regression model and then the input values are gradually reduced to the 

key input values. The elimination of data points from the regression model is determined based 

on their p-value and the adjusted R2 value of the regression model. The p-value of the variable 

indicates the statistical significance, where the lower the p-value the more significant the 

variable is to the regression model. The R2 value is often referred to as the ‘goodness of fit’ of 

the regression model [45]. This value tells us that the proportion of variability in the dependent 
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variable is accounted for by the independent variables; if the predicted values closely resemble 

the actual values, the R2 value will be close to 1 [45]. The R2 value however, tends to increase 

and decrease with the addition or subtraction of input terms in the regression model [45]. As a 

subtractive regression approach is used in this analysis, involving the number of variables 

changing with every iteration, an adjusted R2 value is used as the performance criteria of the 

regression model. Therefore, if the adjusted R2 value decreases when a parameter (with the 

lowest p-value) is removed from the regression model, then the best fit model is previous model 

iteration.  

2.8 Validation and Error Analysis 

For MPC systems to be able to program the future HVAC conditioning requirements, they 

require accurate prediction of the ambient temperature from the thermal dynamic model. In 

previous research, when analyzing the prediction performance of a thermal dynamic model, 

predicted the ambient temperature for different lengths of time. One study stated that MPCs 

require the thermal dynamic model to predict the conditions of the room three hours in advance 

[12]. Comparatively, another study stated shorter prediction periods of between 15 and 30 

minutes are adequate for thermal dynamic models [32].  

To evaluate the thermal dynamic model’s ability to predict ambient temperature, the error 

between the predicted and actual temperatures is calculated. The error calculations used in 

previous research include root mean square error (RMSE) [8,11,12,19,21,34], mean average 

error (MAE) [9,10,23,32], and mean average percent error (MAPE) [13,25]. The RMSE 

calculation is based on the sum of squared errors - a function of the average error, the 

distribution of the error magnitudes, and the sample size to the power of a half [46]. The MAE 

is found by summing the magnitudes of the errors to determine the total error and then dividing 

the total error by the sample size [46]. The MAPE value is the same calculation as the MAE 

but represents the error as a percentage. Although previous research did not calculate the 

weighted average percent error (WAPE), this value will be considered in our error analysis. 

The WAPE value differs from the MAPE value by accounting for each value’s proportional 

weight to the total error [47]. The equation for each of these calculations is shown below, where 

𝑛 is the sample size, 𝑦∗is the actual value, and 𝑦 is the predicted value. 
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  (7) 

The most commonly seen error calculations are RMSE [8,11,12,19,21,34] , MAE [7,26,31,32], 

or a combination of both values [9,10,23,32]. Studies have been conducted to analyze which 

error calculation is the most accurate [42,46]. The research [46] suggests MAE is the most 

natural measurement of average error magnitude and recommends using MAE over RMSE 

[46]. In comparison, the study [42] found that RMSE is more appropriate than MAE when the 

model errors follow normal distribution [42]. It concludes that MAE might be affected by large 

quantities of error values within the range of the average error and will be unable to reflect 

instances of large error deviation [42]. In comparison, RMSE would perform better in such a 

situation by giving higher weights to unfavorable conditions, better revealing differences in 

model performance [42]. Studies also calculate the mean average percent error (MAPE) to 

analyze model performance [13,25]. MAPE calculations however, are biased towards forecast 

values that are below the actual value, resulting in model performance penalization when 

underprediction occurs [47]. A way to avoid this is by calculating the weighted average percent 

error (WAPE), where each simulation error is proportionally weighted to the total [47].  

2.9 Lessons from Literature Review used within this Thesis 

This thesis created grey box models based on the methods outlined in the studies discussed 

above. Similar to previous work, data was gathered using a test cell rather than being collected 

from a simulation program. This test cell installed surface temperature sensors using thermal 

conductive paste, similar to the study [18]. For monitoring the HVAC system, the ventilation 

air temperature and airflow rate were collected, as in [7,10,31]. The heater activity was 

determined using a surface temperature sensor that was installed on the hot water pipe, as it 
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was not possible to monitor the hot water temperature like in the study [20]. As commonly 

conducted by previous studies [18,23,31], the internal heat gains from equipment within the 

space was gathered using a watt meter. For occupancy the test cell used a manual sign in sensor 

system to measure the occupancy within the cell and a limit switch on the door (indicating 

position) to provide complementary data for validation. This thesis also followed the most 

popular and convenient method for exterior weather data collection, using the building rooftop 

weather station to measure exterior temperature and wind speed measurements 

[12,13,16,17,18,20]. The solar radiation data was also gathered from this station, with direct 

and indirect solar radiation calculated using a similar method to the study conducted by Berthou 

et al. [11]. 

For the creation of the grey box RC network this thesis follows the findings from previous 

studies [6,8,10,16,24]. It uses a 3R2C circuit to represent the exterior wall, parallel resistors to 

represent the window and spandrel panel, and 1R1C circuits to represent the ceiling and floor 

slabs. The model within our research however, is not optimised and uses a circuit slightly more 

complicated than the optimized models in [11,12,17,21] shown in Section 2.5.2 above. This 

work however, did use parameter estimation technique to solve for the internal heat capacity 

value similar to previous studies [10,11,12,17,34]. For representing the heat loads of the test 

cell, the mechanical ventilation is modeled using the same method as [6,7,8,11,16]. The 

ventilation heat load is added to the total interior heat load value and connected to the ambient 

temperature node. Similarly, the heat load from the heater is added to the total sensible heat 

load value of the test cell and connected to the ambient temperature node. The solar radiation 

heat load was represented in the model using the same method as described in [43] , connecting 

the radiative heat load to the floor temperature node.  

The grey box model gradually introduces black box models into its structure; starting with 

linear black box models. Due to the findings of [7] and [38], demonstrating neural network 

models predicting the thermal dynamics better than linear models, neural network models are 

also investigated within this thesis. The neural network fitting method described in [7], using 

70% of the data as training data, 15% as validation data, and 15% as testing data was used in 

this thesis. This was the only observed study to describe the training process 
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 and other research does not give any indications of contradicting this method. The Matlab 

neural network fitting app was used in this study with LM algorithm, similar to the studies 

[12,30,32]. This Matlab app minimizes the potential for overfitting by monitoring the 

validation error throughout the training process [36]. 

Based on the mandatory Prediction Window described in [12] for MPC systems, the grey box 

models created in this thesis are evaluated based on their prediction performance at 15, 30, 45, 

60, 120, and 180 Prediction Windows. The model performance is often analyzed based on the 

prediction error. 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐸𝑟𝑟𝑜𝑟(%) =  
𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑇𝑎𝑐𝑡𝑢𝑎𝑙 

𝑇𝑎𝑐𝑡𝑢𝑎𝑙
∗ 100 

(8) 

The results are analyzed using a combination of RMSE, MAE, and WAPE values. It is noted 

that although the results from this thesis are mainly discussed for MPC system use, it is also 

applicable for economic MPC systems. The test cell is within a heavy thermal mass structure, 

predominantly constructed of thick concrete slabs, making it a strong candidate for economic 

MPC systems, as shown in [20]. 

 

  



 46 
 

3 Methodology 

The major steps taken to create the final grey box model include: test cell sensor installation 

and data collection, white box model creation, grey box model creation, and analysis of grey 

box model. These steps are outlined below with the respective sections where they are fully 

described. 

 

 

Test cell creation : sensor installation and calibration 

[Section 3.1 -3.5]

Data collection from November through February 

[Section 3.6]

White box model of the test cell (RC network) 

[Section 4]

Generation 1 Grey box model created and simulated within Simulink 

[Section 5.1-5.3]

Elimination of the building elements physical represenation, replaced with Multiple Linear 
Regression Models: Generation 2 Grey box model

[Section 5.4]

Sensitivity and Error analysis conducted for Final Model

[Section 5.6-5.8]
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3.1 Test Cell Apparatus 

This research uses an office space within a 1970-era university building (concrete construction; 

Brutalist architectural style) as the test cell. The test cell is located in Toronto, Ontario, at 43.66 

latitude and -79.38 longitude. The cell is approximately 90 ft2, featuring one external eastern 

facing wall with three window panes and one spandrel panel. Most building elements including 

the floor/ceilings and exterior siding are made from thick concrete slabs. The other elements 

include double pane-aluminum framed windows, a spandrel panel made of steel sheet metal 

sandwiching fiberglass insulation, and internal walls constructed of steel framing at 16 inches 

on centre with drywall on either side. The test cell is connected on the North and South side to 

office spaces that make up the same HVAC conditioning zone. There are office spaces both 

above and below the test cell. Overall, the test cell experiences little direct sunlight due to the 

test cell’s orientation and the orientation of surrounding buildings.  

The test cell is an office space that features one desktop computer. The schedule of the space 

during the study period is relatively sporadic due to change in academic terms and schedules 

along with the winter holidays. Generally speaking, the hours of occupation stay within 

standard working hours of 9am-5pm Monday to Friday. The heating, ventilation, and air 

conditioning systems for the space include an air source heat pump and radiant heater. The air 

source heat pump receives preconditioned air from an air handling unit. The air handling unit 

splits its output to both the heat pump and a direct line to the test cell through the left duct. The 

conditioned air from the air source heat pump is delivered to the test cell through the right 

ventilation duct. The ventilation system has no return duct, the room is balanced by the air 

circulating to the hallway. The floor mounted radiative heater in the room runs hot water 

through the pipe when the weather falls below 15oC which, is for the majority of the heating 

season considered in this research.  

3.2 Sensor Description 

The sensors installed within the test cell are monitoring eight major room characteristics: 

surface temperatures, ambient temperatures, solar radiation, ventilation input, plug load, 

occupancy, interior lighting, and door position. An overview of sensors installed within the test 

cell with their make, model, and description is shown in Table 1. 
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Table 1  Summary of Sensors and Data Collection 

Surface temperature measurements are collected from eight key elements of the test cell: the 

exterior concrete wall, the middle window, the spandrel panel, the floor slab, the ceiling slab, 

the supply pipe of the radiant heater, the interior side of the adjacent hallway wall, and the 

exterior side of the adjacent hallway wall. The thermocouple sensors are type T cables (copper 

and constantan) wired to the Madgetech OctTemp Data Logger. The system has an accuracy of 

±0.5oC and resolution of 0.1 oC. The system was set up to take measurements at one-minute 

time intervals. The Madgetech logger software was installed on the office’s desktop computer 

to communicate with the logging unit, and download the data in the logger memory. 

The ambient temperature is collected using Omnisense wireless temperature/RH sensors and 

gateway. The sensors have an accuracy of ± 0.4oC with a resolution of 0.1oC and data collection 

Data 

collected 

Sensor 

(make and model) 

Description 

Surface 

Temperature 

MadgeTech OctTemp 

with Type T 

Thermocouples 

Temperature (0.05oC resolution, ±0.5 accuracy) 

[48] of each surface within the test space 

Indoor 

Ambient 

Temperature 

OmniSense S-10 

Ambient Sensors 

Temperature (+/- 0.4oC accuracy) [49] and relative 

humidity (+/- 3.5%) [49]of ambient air at four locations 

around the test space. 

Exterior 

Conditions 

HBO Weather Station  Weather station collecting, exterior ambient temperature, 

wind speed, and solar radiation 

Ventilation 

Input 

Modern Devices 

Wind Sensor Rev P 

 

AM2302 Temperature-

humidity Sensor 

The unit reads the temperature and flow rate of the 

incoming air from the ventilation ducts and transmits the 

data to the Arduino Mega. 

 

The sensor is installed within the ducts leading to the 

test cell reading the temperature (±0.5 oC) and relative 

humidity (±2-5%) of the incoming air 

Electrical 

Watts 

Watts up? PRO A Wattmeter measures power consumption at the power 

bar serving the computer and other electrical equipment. 

Occupancy Toggle switch Manual toggle switches are used by people entering the 

test cell to record occupancy data on the Arduino Mega. 

Interior 

Lighting 

Toggle switch A manual toggle switch next to the light switches of the 

lab sends ON/OFF status to the Arduino Mega. 

Door 

Position 

Reed switch A reed switch is set up on the door of the office to record 

its OPEN/CLOSED position on the Arduino Mega. 
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frequency of 5-6 minutes. The data is logged to the Omnisense website through internet 

connection. 

Initially the test cell was set up with a PV panel facing outward on one of the windows within 

the test cell. The panel was able to detect brightness however it was discovered that it could not 

distinguish between direct and diffuse solar radiation which was needed in this study. 

Therefore, the direct and diffuse solar radiation data used in this research was found using data 

from the rooftop weather station, along with solar calculation method described in the research 

conducted by Finch [50]. These calculations determine the direct and diffuse solar radiation 

values for vertical surfaces using data collected from horizontal solar collectors. An example 

of the calculations can be seen in Appendix A Solar Radiation Calculations. 

The sensors installed within the ventilation ducts are WindSensor Rev P data loggers. The 

sensors detect the temperature (oC) and velocity (MPH) of the incoming air and send the data 

to the Arduino Mega. The sensors are produced by an independent vendor that does not provide 

accuracy ratings for the sensors. The sensors include an Arduino conversion code to calculate 

the temperature and velocity values based on the received input voltage from the sensors. These 

values are then recorded onto the SD card attached to the Arduino. 

The plug load in the test cell is monitored using a WattsUp Pro meter. An extension cord was 

installed within the cell to power the desktop computer, and data logging equipment. The 

extension cord is plugged into the WattsUp meter where it receives power, and the meter 

records the watts being used. The data logger is set to collect data at intervals of 3 minutes and 

can store the data for up to two weeks. The data is collected from the meter using a USB outlet 

and the WattsUp logging software.  

The occupancy and interior lighting are monitored for the test cell using toggle switches, read 

by the Arduino Mega unit. The light status records the UP position of the lighting toggle switch 

as “ON” and the down position as “OFF”. The occupancy is recorded using a sequence of 

toggle switches that are associated with a dedicated occupancy count. The first switch in the 

sequence is read as one occupant, the second switch is read as two occupants, and so on. The 

occupancy system is accompanied with LED visual confirmation to confirm the number of 

LEDs turned on matches the occupancy count. The door position for the cell is recorded using 

a Reed switch. The Reed switch opens and closes a circuit based on the presence of a magnetic 
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field. A magnet was placed on the door to the test cell with the Reed switch installed on the 

door frame. When the door is closed the Arduino units reads 1, when the door is open the unit 

reads 0.  

The Arduino unit is set up with a Real Time Clock, SD Card reader, and Bluetooth serial output. 

When the data logging code is uploaded to the Arduino Mega, the Real Time Clock records the 

date and time from the computer. The program incrementally increases the time over each 

sampling period and prints the date and time stamp with the Arduino data. The data and time 

stamp is printed to the SD Card in a .csv file, and the .csv file is retrieved from the card weekly. 

The Bluetooth serial output was used when calibrating the sensors in the cell by streaming the 

incoming Arduino data on a laptop remotely.  The Arduino network is shown in Figure 11, with 

the diagram legend shown in Table 2. 

Table 2 Legend for Arduino Circuit Diagram 

Occupancy Toggle Switches 1-4 

Occupancy LED lights 5-8 

Lighting Toggle Switch 9 

Door Reed Switch 10 

Real Time Clock 11 

Bluetooth board 12 

AM3203 Temperature and 

Relative Humidity Sensors 

13-14 

WindSensor Rev P airflow 

and temperature sensors 

15-16 
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Figure 10 Arduino Circuit Diagram for Test Cell 

 

3.3 Sensor Installation 

The sensors within the test cell were installed between late October and early November, with 

steady data collection starting in mid-November. The position of the sensors within the test cell 

is shown in Figure 11. All of the data logging units were installed centrally within the room 

with the exception of the Arduino Mega, which was installed at the entrance of the door in close 

proximity to the sensors that it is recording. 
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Figure 11: Test Cell Sensor Layout 

The thermocouple wires are connected to their respective surfaces using conductive paste to 

assure good connection. The wires are connected back to the OctTemp datalogger, which is 

positioned centrally within the cell to minimize resistance loss discrepancies in the data. 

Four ambient sensors were placed in the test cell at the east end of the room next to the window, 

the middle of the room, the wall adjacent to the hallway, and in the hallway, as shown in Figure 

11. The sensors were installed by placing the units in their respective places and assuring that 

the antenna was directed upwards. The gateway (data logger) was positioned in the centre of 

the room where it is recording the data collected from the sensors wirelessly, and logging them 

on the Omnisense website through its Ethernet connection.  

The plug meter was installed within the test cell in close proximity to the wall outlet, and plug 

load extension cord. The extension cord is plugged into the meter, and the meter to the wall.  

The Wind Sensor Rev P units were installed in the middle of both duct openings on the outward 

side of the grate (inside the test cell). The sensors are wired to the Analog input connection 

points of the Arduino Mega unit where the input signals are read, and converted into their 

respective temperature and velocity measurements using the data logging Arduino code.  

Similarly, the AM2302 temperature/RH sensors are installed inside the middle of both ducts 

behind the grate. These sensors also connect back to the Arduino through the Analog input 
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ports, where the voltage signals are read, and converted into temperature and relative humidity 

values using the data logging Arduino code. 

An Arduino Mega unit installed within the entrance of the test cell serves as the data logger for 

the occupancy, interior lighting, door position, Wind Sensor Rev P, and AM2302 

temperature/RH sensors. This location, close to the light toggle switch, door reed switch, and 

ventilation sensors, allows for shorter wiring and less disruption in the sensor signals. The 

Arduino code used for data collection is shown in Appendix B Arduino Code. 

The type-T thermocouples, WindSensor Rev P temperature/airflow sensors, along with the 

AM2302 temperature/RH sensors were calibrated upon installation. The other sensors were not 

calibrated because they are either logic signal switches, or, in the case of the Omnisense ambient 

temperature sensors, have manufacturer guaranteed lifetime calibration. 

The type-T thermocouple surface temperature sensors within the test cell were calibrated using 

the High-Low calibration method. Each thermocouple was submerged in 100oC boiling water, 

and 0oC ice water alongside a thermometer with resolution of ±0.1oC. The measurement 

readings from the Madgetech logging software were compared to the thermometer readings. 

The offset from both the high and low measurements were input into the Madgetech software 

calibration settings where the software used the offset values to calibrate each temperature 

sensor. 

The WindSensor Rev P and AM2302 sensors were calibrated for temperature measurements, 

and for the AM2302 calibrated for RH readings, using a point temperature measurement sensor 

(resolution of 0.01oC and accuracy ±2oC). The calibration was conducted by taking temperature 

and RH measurements at the sensor location. A laptop with Bluetooth capabilities was installed 

next to the measurement station, live streaming the Arduino sensor readings. The timestamp 

from the Arduino live stream was recorded at the time of each calibration sensor reading. The 

WindSensor Rev P and AM2302 sensor readings, found on the Arduino SD card, at the time 

stamps recorded were compared to the calibration instrument readings. The WindSensor Rev P 

airflow measurements were also calibrated using a balometer (resolution 1 CFM) shown in 

Figure 12. The balometer determines the overall airflow of the duct by equalizing the pressure 

of the chamber shown in Figure 12, when the device is held up against the opening of the duct. 

Similar to the previous calibration, the live streaming capabilities of the Arduino was used to 
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record the timestamp on the Arduino when the calibration measurements were taken. The 

measurements collected from balometer recordings were compared to the Wind Sensor 

readings. The calibration results for both devices is shown in Appendix C Calibration. 

 

Figure 12 Balometer used for Calibration of Airflow sensor 

3.4 Sensor Modifications 

While initially it was assumed that relative humidity could be determined from the base 

building system monitoring, in fact, this data was found to be both uncontrolled and 

inconsistent in a review of the building data. As a result, this information was lacking for the 

heating season data. To resolve this moving forward, AM3202 Temperature/RH sensors were 

installed in the test cell in March 2018, after the heating season cut-off for this study. It was 

attempted, using linear regression and machine learning techniques, to determine a relationship 

between the ventilation RH and other measured values including the ventilation temperature 

(from the WindSensor Rev P), outdoor temperature, and outdoor relative humidity. 

Unfortunately, as a correlation did not appear no relationship was found and the relative 

humidity of the ventilation air could not be back calculated using the data measurements taken 

during the research study period. This study, therefore, only considers the sensible heat load 
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from the ventilation system. The AM3202 Temperature/RH sensors are currently installed and 

collecting data for future research. 

3.5 Data Analytics to Overcome Data Gaps 

The WattsUp Pro sensor is an older watt meter manufactured by a company that has since 

dissolved. Unfortunately, the first installed watt meter of this type malfunctioned in the month 

of November and no steady data was collected until December 6th. During the end of January, 

the collection laptop crashed, losing all data logging software. The challenge in finding the 

WattsUp data logging software resulted in the loss of data for between the time when the laptop 

crashed at the end of January until mid-February. Due to the large gaps in data, the plug load 

values used throughout this study were determined from the occupancy patterns of the cell. 

These values were used for all simulation periods, even periods when the watt meter was 

working, to maintain consistency throughout the research and in the results. A sensitivity study, 

Section 6.11.1, was conducted to analyze the impact of this simplification on the model results. 

A strong correlation between occupancy and plug load readings can be seen in Figure 13. When 

the occupant was not in the test cell an average reading of 45W can be observed. Therefore, for 

this study the plug load is calculated by assuming a value of 45W when the test cell is 

unoccupied and a plug load value of 77W when it is occupied. The 77W value is based on the 

observed trend in the data collected from the watt meter and the recommended heat gain value 

from ASHRAE [51] for desktop computers with 3.0 GHz and 2 GB RAM. 
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Figure 13: Occupancy and Plug Load Correlation 

A second issue arising in the data collection was the loss of the data signal from the door sensor 

for one month. As the loss occurred during December, the impact of the data loss was 

minimized as the test cell was unoccupied for the last 2 weeks of the month. The missing door 

position status was calculated using the occupant count and lighting status from the test cell; 

when it was observed that an occupant entered the room and the lights went on, the door was 

changed from closed to open. When the occupant count went to zero and the lights were off, 

the door returned to a closed position. 
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3.6 Data Collection 

Full data collection of all sensors within the test cell began at the beginning of November 2017. 

Figure 14 illustrates the sensor readings on a typical weekday in November. The graph in the 

upper left-hand corner demonstrates the surface and ambient temperature readings. The graph 

in the upper right-hand corner demonstrates the outdoor air temperature readings. The graph in 

the bottom left-hand corner demonstrates the data collected from the Arduino unit including 

the occupancy, lighting, and initial PV solar sensors. The graph in the lower right-hand side 

shows the supply air velocity and temperature for both the ventilation ducts. The Arduino data 

collection code can be seen in Appendix B Arduino Code.  

Figure 14 Example of Data Collected from the Test Cell Sensors during November 
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4 White Box Model Development 

The simplified energy balance of the test cell was used to create the RC Network physical white 

box model, as illustrated in Figure 15. This model can be split into four major sections: (1) heat 

transfer from the hallway, (2) heat storage in the ceiling and floor, (3) the internal sensible heat 

gains, and (4) the heat transfer through the exterior wall. 

 

Figure 15 RC-network of Test Cell 

Several simplifying assumptions were made: 

1. All heat transfer was assumed to be 1-dimensional only. 

2. The interior walls of the test cell were assumed adiabatic. The offices on either side of the 

test cell are conditioned by the same HVAC system, resulting in minimal temperature 

gradient between the offices. 

3. The only radiant heat contribution considered was solar radiation entering through the 

window. Although there is a percentage of radiant heat emitted by the occupants and the 

interior lighting, they are found to be insignificant heat contributions compared to the other 

heat loads affecting the space and are therefore ignored.  

(3) 

(1) 

(2) 

(4) 
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4. Exterior infiltration and exfiltration are assumed to be negligible. The ventilation system 

for the test cell is designed with two supply ducts and no return duct. This creates a 

positively pressurized space where all air leakage is exfiltrated from the test cell. The model 

therefore does not consider infiltration loads as there are none when the ventilation system 

is on and minimal loads when it is off. The pressure within the test cell forces the air out 

three ways: through the exterior façade, through the interior walls/floor/ceiling, and through 

the doorway into the hallway. A study of air tightness levels from 400 different commercial 

buildings within the United States found on average an air leakage rate of 16.7 m3/h·m2 for 

commercial buildings ranging in construction type and age [44] . Using this rate, the airflow 

for the exterior wall and interior elements of the test cell respectively are 162m3/h and 

809.95 m3/h. In comparison, the airflow rate of the conditioned air entering the space from 

the ventilation system is 41,611.4 m3/h. The air leaving the test cell through exterior and 

interior wall exfiltration is therefore equivalent to only 2.34% of the air entering the room. 

This suggests that the other 97.66% of the air is leaving the room through the doorway. For 

simplicity within the model it is therefore assumed that all air leaving the test cell is through 

the doorway, and that the flowrate of the air entering the room from the ventilation system 

is the same flowrate as the air leaving the room. 

5. A single ambient temperature was used to represent the overall cell temperature. This 

simplifies the reality, as the cell has sensors monitoring ambient temperature in three 

locations and their data demonstrates the variance in ambient temperatures when in 

proximity to the window and the ventilation ducts. Vertical stratification was also ignored 

in this study. 

6. The internal walls, window, and spandrel panel heat capacity was ignored. Table 3 

compares the total heat capacity of each element and demonstrates that the window, 

spandrel panel, and the interior wall have significantly less storage than the concrete 

elements. 

7. The solar radiation entering through the eastern windows hit the northern wall and floor of 

the test cell. As the interior walls are not being considered for heat storage within this 

model, the northern wall is not modeled in the radiant heat contribution of the room. The 

solar radiation heat contribution to the test cell is therefore modeled using only the floor 

heat gain. 
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8. The floor and ceiling of the test cell are surrounded above and below by conditioned space 

and are also assumed adiabatic. Due to the minimal temperature difference experienced by 

the components along with their heat storage properties they are modeled as 1R1C systems. 

This model represents them as on only heat storage elements ignoring conductive heat 

transfer. The resistivity component of this model represents the interior air film between 

their surfaces and the ambient air. 

Table 3: Heat Capacity of Elements within the Test Cell 

  

Specific 

Heat 

(kJ/kgK) 

Volume 

(m3) 

Density 

(kg/m3) Storage Value (kJ/K) 

Floor/Ceiling 

Concrete 0.90 2.92 2400.00 6306.62 

Element Total 6306.62 

North Internal Wall         

Gypsum board (x2) 1.15 0.12 640.00 84.65 

Air (20oC) 1.00 0.52 1.23 0.64 

Steel  0.50 0.02 7830.00 65.67 

 Element Total 150.95 

South Internal Wall 

Gypsum board (x2) 1.15 0.25 640.00 182.80 

Air (20oC) 1.00 1.12 1.23 1.38 

Steel  0.50 0.04 7830.00 141.80 

Element Total 325.97 

Hallway  

Gypsum board (x2) 1.15 0.24 640.00 178.30 

Air (20oC) 1.00 1.10 1.23 1.34 

Steel  0.50 0.03 7830.00 117.59 

Element Total 297.23 

Exterior Wall  

Concrete 0.90 1.33 2400.00 2864.27 

Element Total 2864.27 

Spandrel Panel  

Steel  0.50 0.004 7830.00 14.61 

Fiberglass 

Insulation 0.80 0.04 112.00 4.01 

Steel  0.50 0.004 7830.00 14.61 

Element Total 33.22 
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The differential equations describing the heat flow in the test cell are shown in Table 4. These 

equations were found using the RC network. 

Table 4: Building Element Differential Equations 

Temperature 

Node 

Differential Equation 

Floor 

Surface 
𝑐𝑝_𝑓𝑙𝑜𝑜𝑟

𝑑𝑇𝑓𝑙𝑜𝑜𝑟

𝑑𝑡
= (𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 − 𝑇𝑓𝑙𝑜𝑜𝑟)𝑈𝑖𝑛𝐴 + 𝐼𝑠𝑤𝛼𝐴𝑓𝑙𝑜𝑜𝑟 

 

Ceiling 

Surface 
𝑐𝑝_𝑐𝑒𝑖𝑙𝑖𝑛𝑔

𝑑𝑇𝑐𝑒𝑖𝑙𝑖𝑛𝑔

𝑑𝑡
= (𝑇𝑎𝑚𝑏 − 𝑇𝑐𝑒𝑖𝑙𝑖𝑛𝑔)𝑈𝑖𝑛𝐴𝑐𝑒𝑖𝑙𝑖𝑛𝑔 

 

Hallway 

Ambient 
𝑐𝑝_ℎ𝑎𝑙𝑙𝑤𝑎𝑦

𝑑𝑇ℎ𝑎𝑙𝑙𝑤𝑎𝑦

𝑑𝑡
= (𝑇𝑎𝑚𝑏 − 𝑇𝑎𝑚𝑏ℎ𝑎𝑙𝑙𝑤𝑎𝑦)𝑈𝑤𝑎𝑙𝑙𝐴𝑤𝑎𝑙𝑙 

 

Eastern 

Wall 

(Interior 

Side) 

Surface 

𝑐𝑝_𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙

𝑑𝑇𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙

𝑑𝑡
= (𝑇𝑜𝑢𝑡_𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙 − 𝑇𝑖𝑛_𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙)𝑈𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙𝐴 + (𝑇𝑎𝑚𝑏

− 𝑇𝑖𝑛_𝑒𝑎𝑠t)𝑈𝑖𝑛𝐴 

 

Eastern 

Wall 

(Exterior 

Side) 

Surface 

𝑐𝑝_𝑜𝑢𝑡_𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙

𝑑𝑇out_𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙

𝑑𝑡
= (𝑇𝑖𝑛_𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙 − 𝑇𝑜𝑢𝑡_𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙)𝑈𝑒𝑥𝑡𝑤𝑎𝑙𝑙𝐴𝑒𝑥𝑡𝑤𝑎𝑙𝑙 + (𝑇𝑜𝑢𝑡

− 𝑇𝑜𝑢𝑡_𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙)𝑈𝑜𝑢𝑡𝐴𝑒𝑥𝑡𝑤𝑎𝑙𝑙 + 𝛼𝐼𝑠𝑤 + 𝐹𝑎𝜀𝜎(𝑇𝑠𝑘𝑦
4 − 𝑇𝑜𝑢𝑡

4 )

− 𝐹𝑎𝜀𝜎(𝑇𝑜𝑢𝑡_𝑒𝑎𝑠𝑡𝑡𝑤𝑎𝑙𝑙
4 −𝑇𝑠𝑘𝑦

4 ) − ℎ𝑐(𝑇𝑜𝑢𝑡_𝑒𝑎𝑠𝑡𝑤𝑎𝑙𝑙−𝑇𝑎𝑖𝑟) 

 

Test Cell 

Ambient 
𝑐𝑝_𝑎𝑖𝑟

𝑑𝑇𝑎𝑚𝑏

𝑑𝑡
= (𝑇𝑎𝑚𝑏ℎ𝑎𝑙𝑙 − 𝑇𝑎𝑚𝑏)𝑈𝑤𝑎𝑙𝑙𝐴𝑤𝑎𝑙𝑙 + (𝑇𝑐𝑒𝑖𝑙 − 𝑇𝑎𝑚𝑏)𝑈𝑖𝑛𝐴𝑐𝑒𝑖𝑙𝑖𝑛𝑔

+ (𝑇𝑓𝑙𝑜𝑜𝑟 − 𝑇𝑎𝑚𝑏)𝑈𝑖𝑛𝐴𝑓𝑙𝑜𝑜𝑟 + (𝑇𝑒𝑥𝑡𝑤𝑎𝑙𝑙 − 𝑇𝑎𝑚𝑏)𝑈𝑖𝑛𝐴𝑒𝑥𝑡𝑤𝑎𝑙𝑙

+ (𝑇𝑜𝑢𝑡 − 𝑇𝑎𝑚𝑏)𝑈𝑤𝑖𝑛𝑑𝑜𝑤𝐴𝑤𝑖𝑛𝑑𝑜𝑤 + (𝑇𝑜𝑢𝑡

− 𝑇𝑎𝑚𝑏)𝑈𝑠𝑝𝑎𝑛𝑑𝑟𝑒𝑙𝐴𝑠𝑝𝑎𝑛𝑑𝑟𝑒𝑙 + 𝑄𝑠𝑒𝑛𝑠 + 𝑄𝑙𝑎𝑡 

 

 

4.1 Calculation of Internal Heat Loads 

The heat gains within the test cell come from the occupants, interior lighting, heater, 

conditioned ventilation air, and the plug load.  
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4.1.1 Occupancy 

The occupancy heat load is calculated using only the sensible heat contribution of the 

occupancy heat load (9). The occupant’s activity within the cell are defined as ‘seated, very 

light work’ within the ASHRAE Handbook. This activity level has a sensible heat load of 75W 

[51]. The heat load is therefore found by multiplying this value by the Arduino occupancy count 

𝐴𝑜. 

𝑄𝑜𝑐𝑐 = 𝐴𝑜 ∗ 75 (9) 

4.1.2 Interior Lighting 

The interior lighting is calculated using the lighting status data from the Arduino (1-ON, 0-

OFF) and multiplying it by the heat load from the florescent bulbs (10). The amount of heat 

energy gained when the lights are on is the product of the 4 fluorescent bulbs, the input energy 

from each of the 32 watts tubes, efficiency of the light fixture (0.85) [52], and the percentage 

of the heat energy that is convective (33% with a lens) rather than radiative (67% with a lens) 

[51]. As previously stated, radiative heat load from lighting is not considered in this research 

therefore, the interior lighting equation calculates the convective heat load only. 

𝑄𝑙𝑖𝑔ℎ𝑡 = 𝐴𝑟𝑑𝑢𝑖𝑛𝑜 ∗ 4 ∗ 0.85 ∗ 32 ∗ (1 − 𝑟𝑎𝑑)      (10) 

4.1.3 Ventilation 

The enthalpy equation used to calculate the ventilation heat load is shown in (11) with inputs 

of incoming air temperature (in kelvin) and the air heat capacity. The temperature of the 

incoming air for the left ventilation duct fluctuates from 20oC-30oC and the right duct fluctuates 

from 8oC to 30oC. The heat capacity fluctuation due to the temperature difference in the left 

duct is ±0.0005 J/kg K and the right duct is ±0.001 J/kg K. Since both the left and right ducts 

demonstrate temperatures primarily around 25 oC, the heat capacity value used is 1.0063J/kg 

K, which is the heat capacity of air at 25oC [53].  

ℎ =  𝑐𝑝𝑎 ∗ 𝑇  (11) 

The density of the air is calculated using (12) with the temperature of the incoming ventilation 

air (in kelvin), the atmospheric pressure 𝑃𝑑𝑎, 101,325Pa, and the specific gas constant for dry 
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air (𝑅𝑑 = 287.05𝐽/𝑘𝑔𝐾) . This equation only calculated the density of the dry component of 

the air as latent load is not considered [54]. 

𝜌 =  
𝑃𝑑𝑎

𝑅𝑑∗𝑇
   (12) 

The heat energy being added to the test cell can therefore be calculated by multiplying the 

enthalpy of the air ℎ (kJ/kg) by the density of the air 𝑝 (kg/m3) and by the volumetric flow rate 

𝑣 (m3/s), found from the WindSensor Rev P(13).  

𝑄𝑣𝑒𝑛𝑡 = ℎ ∗ 𝑝 ∗ 𝑣 (13) 

As previously discussed in Section 4, it is assumed that the airflow rate of the air exfiltrating to 

the hallway is equal to the total ventilation input airflow rate from both ducts. The heat loss 

from the room is therefore also calculated using the enthalpy, density values (found from the 

ambient room temperature), and volumetric flow rate. 

4.1.4 Heater 

The heater within the test cell is a hot water heater that adds sensible heat into the room through 

convective heat transfer. The initial convective heat transfer coefficient equation used for the 

heater is for turbulent natural heat transfer (14), used for conditions when the temperature 

difference is greater than 10oC [55]. This was later altered to the natural convection heat transfer 

coefficient (15), as discussed in Section 5.2. The L term in this equation is four times the area, 

divided by the perimeter [55]. 

ℎ𝑐_𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 = 1.52 ∗ (𝑇𝑎𝑚𝑏 − 𝑇ℎ𝑒𝑎𝑡𝑒𝑟)0.33 (14) 

ℎ𝑐_𝑛𝑎𝑡𝑢𝑟𝑎𝑙 = 1.32(∆𝑇
𝐿⁄ )0.25 (15) 

𝑄ℎ𝑒𝑎𝑡𝑒𝑟 = ℎ𝑐 ∗ (𝑇𝑎𝑚𝑏 − 𝑇ℎ𝑒𝑎𝑡𝑒𝑟) (16) 

4.1.5 Thermal Storage 

The heat storage in the test cell is modeled for the ceiling, floor, and exterior wall along with 

the ambient air. The ceiling, floor, and exterior wall are the only elements considered due to 
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their high heat storage capacity compared to the other elements in the space, as shown in Table 

3.  

The heat capacity, 𝐶 (J/K) values used within the white box model was found using the specific 

heat capacity  𝑐𝑝(kJ/kgK), density 𝜌(kg/m3), and volume 𝑣 (m3) of each of the modeled building 

elements [55]. 

𝐶 = 𝑐𝑝 ∗ 𝜌 ∗ 𝑣 ∗ 1000 (17) 

The heat capacity of the air within the test cell was also calculated. The density of the air was 

determined using the temperature and relative humidity data collected from the Omnisense 

sensors from November through February in the equation (18) shown below [54]. 

𝜌 =  
𝑃𝑑𝑎

𝑅𝑑𝑇
+

𝑃𝑤𝑣

𝑅𝑣𝑇
  (18) 

The specific heat capacity of air used within this calculation is 1.01kJ/kgK. The results 

demonstrated the heat capacity of the cell averaging 35,116.58 J/K ± 0.5%.  

4.1.6 Calculation of External Heat Loads 

The only radiative heat load included in the model is the short-wave solar entering through the 

window. The solar radiation lands on the northern wall of the cell, as well as the floor. As the 

simplifications of the model assume negligible heat storage properties for the internal walls, 

the radiation heat load is calculated using only the floor heat storage capacity and the area of 

the floor which receives the radiation. 

The short and long wave values were found using the calculation process described in [50], 

(see Appendix A). The solar radiation data used within the calculations were measured at the 

weather station installed on the roof of the building. The direct solar radiation values 𝐼𝑆𝑊 are 

used to calculate the short-wave solar radiation heat gain within the test cell. It is assumed that 

one third of the floor, an area of 2.78 m2, is impacted by the incoming radiation. The solar heat 

gain coefficient (SHGC) value used for the window is 0.7 for double pane, uncoated window 

type [51], the absorption, 𝛼 , of the concrete floor is 0.6 [51]. 

𝑄𝑠𝑜𝑙 = 𝐼𝑆𝑊 ∗ SHGC ∗ 𝐴𝑓𝑙𝑜𝑜𝑟 ∗ 𝛼 (19) 
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During the heating season, the conductive heat losses from the test cell are primarily through 

the exterior façade with the conductive heat gains coming from the interior hallway. As 

previously stated, due to the assumptions of this model these are the only two elements within 

the cell under consideration for conductive heat transfer.  

The east-facing wall experiences the largest conduction heat loss as it is the exterior facing wall 

and features low insulative components such as window and spandrel panel units. The window 

and spandrel panel are represented in the model as one equivalent resistance to simulate 

conductive heat transfer. The concrete portion of the wall however, is modeled as a 3R2C 

system incorporating both conduction and heat storage. The exterior surface temperature of the 

concrete wall is therefore needed for the conduction calculations. The test cell does not have 

sensors installed on the exterior façade so the exterior surface temperature is found using back 

calculation of the wall’s energy balance. The energy balance for the exterior wall during the 

heating season is shown below in (22) [55]. The heat gains in this equation include the absorbed 

short-wave radiation while the heat losses in this equation include the emitted long wave 

radiation and the convective and conductive heat losses. The convective coefficient used in this 

equation is forced convection under conditions of airflow between 1 m/s to 5 m/s [55]; it is 

assumed the east façade being sheltered by surrounding buildings falls within this range. The 

equation (20) shown below, takes input of the wind velocity, which for our study is the wind 

speed taken from the weather station on the roof of the building. The term 𝐼𝑠𝑤 represents the 

short-wave radiation, while  𝑇𝑠𝑘𝑦, 𝑇𝑎𝑖𝑟, 𝑇𝑒𝑥𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒, 𝑇𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟 represent the sky, exterior 

ambient, exterior surface, and interior surface temperatures respectively. The temperature of 

the sky is found using the simplified relationship shown in (21) below [55]. The 𝐹𝑎 term is the 

view factor (0.5 for vertical wall components), 𝜀 is the emissivity value for the concrete (0.93 

[51]), 𝜎 is Stephan-Boltzman’s constant(5.67 x 10-8), 𝛼 is the absorptivity of concrete (0.6 

[51]), and 𝑈 is the conduction heat transfer coefficient. 

ℎ𝑐 = 5.9 + 3.6𝑉 

𝑇𝑠𝑘𝑦 = 1.2 ∗ 𝑇𝑎𝑖𝑟 − 14 

 

(20) 

(21) 
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𝛼𝐼𝑠𝑤 +  𝛼𝐼𝐿𝑤 − 𝐹𝑎𝜀𝜎(𝑇𝑒𝑥𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒
4 −𝑇𝑠𝑘𝑦

4 ) − ℎ𝑐(𝑇𝑒𝑥𝑡 𝑠𝑢𝑟𝑓𝑎𝑐𝑒−𝑇𝑎𝑖𝑟) − 𝑈(𝑇𝑖𝑛𝑡𝑒𝑟𝑖𝑜𝑟

− 𝑇𝑒𝑥𝑡𝑒𝑟𝑖𝑜𝑟) = 0 

 

(22) 

 

The U-values used for the window, spandrel panel, exterior wall, interior wall and door are 

shown in Table 5 with full calculations in Appendix D U-value Calculations. The conductance 

and conductivity values used to calculate the overall U-value is found from Building Science 

for A Cold Climate [56]. The door and window U-values were both determined from the 

ASHRAE Handbook: Fundamentals [51]. The ASHRAE door and window type definitions are 

shown in Table 5. The spandrel panel, interior wall, and window u-values include the air film 

resistivity as these elements are represented as one equivalent resistance in the RC network. 

The exterior wall, floor, and ceiling u-values do not include air film resistivity because the air 

films are modeled in the RC network for these elements. 

Table 5: U-value for Elements of the Test Cell 

Test Cell Element Construction U-value 

Exterior Wall 28" concrete  4.8 

Floor/Ceiling 13.75" concrete 3.78 

Windows Double pane, aluminum frame 3.18 

Spandrel Panel 1.75" spandrel panel filled with fiberglass insulation  0.82 

Interior Walls Steel studded wall 16" OC 1.95 

Door Foam-insulated steel slab with metal edge in steel frame 2.10 

The conduction calculation (23) is completed using the element’s U-value, exposed surface 

area, and temperature gradient [55]. The hallway heat exchange calculations are conducted 

using the door position data, so the conductive heat exchange through the door is only included 

when the data indicates that the door is closed. The exterior wall’s temperature gradient is the 

difference between the exterior temperature and the test cell’s ambient temperature. The interior 

wall’s temperature gradient is the difference in the hallway and test cell ambient temperatures. 

𝑄𝑐𝑜𝑛𝑑 = 𝑈𝐴∆𝑇 (23) 
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4.2 White Box Model Implementation in Matlab 

The RC Network white box model was created in the simulation program Simulink, a plugin 

within Matlab. Simulink is a block diagram environment used for model-based design. 

Dynamic systems can be created using the block library and solved using the range of solver 

apps. Simulink and Matlab are integrated programs that allow for data to be transferred between 

them. 

The white box model was created by constructing each of the differential equations from Table 

4, using the program’s mathematical blocks. An example of the sub-system circuit for the 

temperature of the floor is shown in Figure 16.   

 

Figure 16 Simulink Implementation of Differential Temperature Equations 

To organise the model, each differential equation is created within their own sub-system’s 

block as shown in Figure 17. The sub-systems are then linked together to replicate the RC 

Network. For example, in Figure 16 the input node 1, Tamb is linked to the output node from 
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the Tamb differential sub-circuit and the output node 𝑇𝑓𝑙𝑜𝑜𝑟 is sent to the ambient temperature 

subsystem. 

 

Figure 17 Grey Box Model Subsystem Structure 

The material properties and scientific values used within the model are input as variables 

instead of their actual values to utilize the workspace parameter storage option in Simulink. All 

of the variable values are stored in this space to facilitate quick changes of values, if necessary, 

without having to find their location in the model.  
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5 Grey Box Model Creation 

The grey box model was created by expanding the Simulink white box model to include the 

input data collected from the test cell. The first step to running the grey box model was 

configuring the input data in Matlab before being uploaded to Simulink. The excel files with 

the sensor measurements were uploaded into Matlab using the excel table upload function, 

xlsread. The data values requiring calibration, namely the ventilation airflow temperature and 

airflow rate, were then calibrated within the code. In order for Simulink to be able to read the 

Matlab data, the data must be configured as double arrays with the first row being the time 

stamp and the second row the respective data value. The arrays are then saved as version 7.3 

.mat files. The Matlab code is shown in Appendix E Matlab Code . 

In Simulink, the .mat files were loaded into the model using. mat source blocks. Simulink reads 

data from the .mat files and outputs the data as signals. The source blocks are then directly 

connected to rate transition blocks to transfer the data points into one congruent time step. This 

step is needed because the data collected from the sensors and data loggers have different 

measurement time increments. In this research, the Arduino data was collected per second and 

averaged into 1-minute sets, the thermocouple surface measurements were collected at 1-

minute intervals, the ambient data along with weather station data at 5-minute intervals, and 

the solar data at 15-minute intervals. The grey box models were simulated at 1-minute time 

steps, the rate transition blocks determined the output value of the data source blocks based on 

the time step defined in their data arrays. From the rate transition blocks the signals were sent 

to their respective locations within the model.  

To see the signals being transferred between the blocks in the model, sink blocks can be 

installed anywhere by connecting the input of the sink block to the signal line. Throughout the 

troubleshooting of the model this feature became useful to check the calculations in the model. 

The sink blocks send the data to Matlab in the form of data arrays. The predicted temperature 

results from the simulation are collected using this method where sink blocks are installed at 

each subsystem output and the results are found in the Matlab workspace. 

The simulation is set up by first configuring the simulation period and the settings for the 

simulation time steps. The time step has the options of being fixed or variable steps as well as 
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having a minimum and maximum size. This model is configured as a fixed step solver with a 

step size of 1 minute, simulating for 5 hours. Before the simulation is run, the initial 

temperatures of the ambient air, ceiling slab, floor slab, and exterior wall are input into the 

integrator blocks situated within each of the subsystems. 

5.1 First Generation, First Iteration Grey box Model (G1v1)  

The first generation, first iteration grey box model is the white box RC network with inputs of 

the test cell BAS points. This model uses the estimated resistance and capacitance values to 

represent the building elements. To test the model under a variety of conditions eleven 

simulation days spanning November to February were chosen based on time of day, occupancy, 

and exterior conditions. These simulation days are used for the remainder of this study to 

evaluate the performance of future model iterations and compare model performances. Images 

of the first-generation model are shown in Appendix F Simulink Images. 

5.2 First Generation, Second Iteration Grey box Model (G1v2) 

Following the G1v1 simulations, some shortcomings of the model were observed, notably the 

performance discrepancies due to the addition of the heater and occupancy related heat loads. 

To address the first observation, the second iteration model was created with representation of 

the convective heat transfer from the heater using a natural convection coefficient instead of 

the turbulent convection coefficient previously used. This model is an alteration of the first 

iteration model where every element besides the heater convective heat transfer calculation is 

the same as before. Note that convective heat transfer was added to the ceiling element in the 

model to correct the initial model’s shortcomings, however, this did not improve the model and 

resulted in more inconsistencies. The convective element was therefore not included in the 

G1v2 model.  

5.3 First Generation, Third Iteration Grey box Model (G1v3) 

To address the second observation, poor prediction results for occupied simulations, the G1v3 

model was created. The G1v3 model optimizes the internal mass heat capacity value to improve 

the performance of the model during daytime occupied conditions when it is subjected to 

additional heat loads. It is common for grey box models to use a representative internal heat 

capacity value that includes both the heat capacity of the air along with miscellaneous building 



 71 
 

elements such as furniture, as discussed in Section 2.6. The internal heat capacity value of the 

test cell was found using Simulink’s parameter estimation tool.  

To set up the parameter estimation tool, the output signal, initial input parameters, and the 

parameter being estimated are defined. For this research the output signal is the measured 

ambient temperature, the initial input parameter is the ambient temperature at the beginning of 

the simulation, and the parameter for estimation is the internal heat capacity. The parameter 

optimisation tool settings were set to use a nonlinear least squares method and a trust-region-

reflective algorithm with a tolerance of 0.001. The parameter estimation was run on every 

simulation day for the G1v3 model. The optimal heat capacity value was determined by then 

running each of the internal heat capacity values on all of the other simulation days to determine 

the value that best represents the test cell. The steps taken to determine the optimal heat capacity 

value are described in Table 6. 

Table 6 Internal Heat Capacity Optimisation using G1v3 Model  

Date Internal Heat Capacity 

from Parameter Estimation 

Comments 

November 

29th, 2017 

457.9 kJ/K This date was chosen first for analysis because it 

is the median heat capacity value. 

January 

6th, 2018 

1,834.2 kJ/K This value was analyzed second, as it is the next 

highest value 

January 

8th, 2018 

252.7 kJ/K Due to the less accurate results of the higher heat 

capacity value, this value was chosen as it is the 

next lowest value below 457.9 kJ/K 

February 

7th , 2018 

239.0 kJ/K, The lower heat capacity value, 252.7 kJ/K, 

demonstrated better results than the initial 457.9 

kJ/K. Sequentially lower values were tested until 

a minimum error was found 

January 

2nd, 2018 

219.1 kJ/K 

November 

17th, 2018 

112.7 kJ/K.  
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Using the optimized internal heat capacity value, the prediction performance of the grey box 

model improved. However, the G1v3 model still incorporates knowledge of the exterior wall 

resistivity values and uses the initial temperatures of the ceiling, floor, and exterior wall slabs 

to set up the simulation. In order to develop the model to the point where only building 

automation system (BAS) points are used within the simulation, the relationship between the 

slab temperatures and the energy loads of the cell was found using linear regression. These 

regression models will replace the building elements physical representation in the model. 

5.4 Second Generation (G2) Model 

Because the objective of this thesis is to model the thermal dynamics of a space based on 

inference from building automation system data rather than known characteristics, it was 

necessary to eliminate the resistivity and capacitance values for the building elements in this 

model. To replace these, a stepwise linear regression model was created, correlating the 

relationships between the surface temperatures of the ceiling, floor, exterior wall, window, 

spandrel, and interior wall elements as well as the BAS points. The subtractive approach was 

conducted within R-studio, using the dataset of BAS points collected between November 16th, 

2017 and February 29th, 2018. The data points were cleaned to eliminate any noise that would 

skew the results. The data cleaning criteria was occupancy between 0 and 4; lighting between 

0 and 1; short and long wave radiation above 0W; the right and left ventilation airflow between 

0 and 1m3/s; right and left ventilation temperature between 0 and 50 oC; and all the surface 

temperature measurements - heater, ceiling, floor, ambient, spandrel, interior wall, and window 

above 5 oK. The most important cleaning criteria within this set was the surface temperature 

measurements of at least 5 oK. When the thermocouple logger malfunctioned, it would record 

the surface temperature as -3 oK. This problem occurred on multiple occasions, in short spurts, 

for the heater thermocouple throughout the data collection period. The cleaning criteria assured 

that these heater measurements were not included within the regression analysis.  

 The cleaned data was split into training data (80% of cleaned data set) and testing data (20% 

of cleaned data set). The training data set was used within the subtractive regression analysis 

to determine the model that best balances simplicity and accuracy, as described in Section 2.7. 

The input variables to the regression analysis were: the ambient test cell and hallway 

temperature, the heater surface temperature, the occupancy count, the light position, the left 
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and right ventilation airflow rate, the left and right ventilation air temperature, the plug load, 

the short and longwave solar radiation, the exterior temperature, and wind speed. The 

regression analysis was conducted for a general model as well as a split occupied and 

unoccupied condition model.  

The regression analysis for the general model used the complete data set. The general linear 

regression models for all of the building elements were added to the G1 grey box model 

replacing their physical representation circuits. This eliminated all of the surface temperature 

node differential equations, leaving only the ambient temperature equation within the model. 

For the split linear regression model, the data sets were found using the filter application within 

excel to divide the overall dataset into occupied times and unoccupied times. To compare the 

performance of the split regression model and the general regression model, the grey box model 

with all of the surface temperature general regression models, was altered to replace one 

element at a time with the split regression model. The surface temperature prediction results of 

the element represented with the split model is compared to the results of that element when 

represented with the complete regression model. This was repeated for each building element 

where, in each grey box iteration only the building element under investigation is represented 

with the split regression model.  

The performance of the regression models was analyzed by the adjusted R2 value and the root 

mean squared error (RMSE). The closer the adjusted R2 value is to one, the greater performance 

of the model when it was tested against the unseen testing data. The RMSE results is an 

additional assessment of the strength of the fit, by calculating how far off the model is from the 

actual conditions. The significance of the variables within the model was analyzed based on 

their p-value and t-value. The p-value tells us the significance of the variable, and tells us the 

probability of seeing this result in a random collection of data [57]. For example, a p-value of 

0.05 means there is a 5% chance that the results would occur again in a collected of random 

data, so there is a 95% probability that this variable has an effect on the model. The t-value 

correlates the p-value except it is a measurement of the difference between the population mean 

and a hypothesized value, measured in units of standard deviation [57]. The null hypothesis for 

the regression analysis is that all variables have no significance in the regression model. If the 

p-value is less than 0.01, there is a 90% probability that rejecting the null hypothesis is correct, 
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less than 0.05 a 95% probability, and 0.001 a 99% probability. Similarly, in terms of the t-

values, the greater the magnitude of the t-value, the greater the evidence against the null 

hypothesis. Rejecting the null hypothesis means the variable is significant in the regression 

model. 

These regression models were then used within the Simulink grey box model to replace the 

differential equations of the building elements. Images of the model can be seen in Appendix 

F Simulink Images. 

5.5 Third Generation (G3) Model 

The analysis from the G2 model demonstrated the window, spandrel panel, and exterior wall 

as having the largest WAPE values compared to all of the other building elements. To improve 

the performance, neural networks were created for each of these elements within Matlab using 

the Neural Net Fitting App. Within the app the inputs, output, and neural network settings are 

defined. For this model the inputs to the neural network are the same as the inputs to the linear 

regression analysis: the ambient test cell and hallway temperature, the heater surface 

temperature, the occupancy count, the light position, the left and right ventilation airflow rate, 

the left and right ventilation air temperature, the plug load, the short and longwave solar 

radiation, the exterior temperature, and wind speed. The output of the neural network is the 

surface temperature measurement. The app was set to split the data into 70% training, 15% 

validation and 15% testing. The hidden layer size for each neural network was determined using 

an optimisation process. The number of hidden layers within each neural net was continually 

increased until a minimum RMSE value was found. The minimum RMSE criteria was the 

lowest observed RMSE value where the two consecutive larger hidden layer models have 

greater RMSE. Once the hidden layer size was determined, the neural network was fit using a 

Levenberg-Marquardt algorithm. Following the results in Matlab, the getsim function was used 

to create a Simulink block of the neural network. The neural network blocks for the window, 

spandrel panel, and exterior wall were created in this manner. To evaluate the performance of 

the neural networks compared to the linear regression models, the neural network of each 

element was implemented one at a time into the G2 linear regression grey box model. Three 

G3 models were created, each one having one of the three elements - the window, spandrel, 

and exterior wall - being represented with their neural network. The models were simulated on 
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the eleven days; the overall prediction performance of the window, spandrel panel, and exterior 

wall surface temperatures using the neural networks were compared to using linear regression 

models. 

5.6 Final Model 

The Final model for this research is the G2 model. The G3 model did not demonstrate 

improvement in predicting the surface temperatures of the window, spandrel panel, or exterior 

wall therefore the elements were reverted back to linear regression models. The Final Model 

for this research is the G2 model with all elements represented with linear regression equations. 

5.7 Sensitivity Analysis 

Following the creation of the Final model, a sensitivity analysis was conducted. This analysis 

investigates the sensitivity of the model and the ability of the Final model to be implemented 

within a different environment. The model being used within a new environment will require 

the internal mass heat capacity value to be optimized and the regression models re-trained.  

To investigate the ability to determine the internal heat capacity parameter using the Final 

model, the parameter estimation tool within Simulink was once again used. The results from 

the parameter estimation using the Final model are compared to the results found previously 

using the G1v3 model, to see if the Final model results are within range of the optimal value 

determined from the G1v3 model. 

In addition to determining the internal mass heat capacity value, the linear regression models 

needed to be trained from data collected from the new building. An investigation into the 

amount of data needed to accurately predict the ambient temperature was conducted. This 

analysis trained the grey box models using varied sizes of data sets, spanning 1 week’s worth 

of data to 1 month’s worth of data.  This will determine the length of time that surface 

temperature data will need to be collected in order to create accurate linear regression models. 

The testing periods used in this analysis are shown Table 7. 
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Table 7 Regression Model Training Period Analysis using the Final Model 

Dataset Duration Dates Included 

1 week 
December 1st 2017-December 7th 2017 

February 16th 2018 – February 22nd 2018 

2 weeks 
December 1st 2017 – December 14th 2017 

February 16th 2018 – February 29th 2018 

1 month December 1st 2017 – December 31st 2017 

All of the regression equations for these models were found using the same process as described 

in Section 2.7 and using the same regression model structures, with all building elements except 

the ceiling slab using the split model. The simulations created for these time periods were also 

tested for their ability to determine the optimal internal heat capacity values. The heat capacity 

values are then compared to the results from the G1v3 model and the Final model to see if 

results within the same range can be determined. 

Finally, a sensitivity analysis was also conducted to investigate the ability of the model to 

perform outside the training season. A simulation day of April 9th, 2018 was selected to evaluate 

the performance of the final model in predicting building element surface temperature and 

ambient temperature. This simulation is for occupied, daytime conditions. 

5.8 Error Analysis 

As noted in Section 3.5, the plug load data used in this study was not the actual collected data. 

Due to malfunctions in equipment and user error, large data gaps in the data collection 

prevented the use of the actual data. An observed data trend between the plug load value and 

occupancy count determined the plug load values used within this study. To analyze the 

implications of this simplification on the results of this research, three simulation days were 

selected when the equipment was working properly. Simulation results when using the actual 

plug load data were compared to results when using the calculated values to evaluate the impact 

of the approximated plug load data. 

Point measurements of the surface temperatures, ventilation ducts air temperature and flow 

rate, and ambient temperature were used within this study. An investigation was conducted to 

analyze the error associated with this simplification. An analysis of true variations in surface 
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temperature was conducted by taking multiple temperature readings across the window and 

floor area. The data points were inspected to observe the true deviations in temperature 

occurring across the element’s surface. The point measurement errors associated with the 

ventilation sensors and ambient sensors were not investigated. This is due to the ventilation 

sensors being calibrated using a balometer, which mitigated the point temperature and airflow 

measurement error (see Section 6.11.2). The ambient temperature point measurement was 

unfortunately not analyzed due to time constraints and is an unknown error factor within this 

research. 

Another sensor error that occurred within this research, discussed in Section 3.5,  is the test cell 

being installed without relative humidity sensors for the ventilation air. This study therefore 

did not consider any latent heat loads from the incoming ventilation air, instead using the 

assumption of dry air for calculating the enthalpy. Relative humidity sensors have since been 

installed within the ventilation ducts. The simulation day of April 9th 2018, was used to conduct 

a comparison in ambient prediction results when calculating the proper enthalpy of the 

incoming ventilation air verses when using the dry air assumption. 
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6 Grey Box Model Results 

The grey box model was tested using multiple simulations, of three-hour periods, for selected 

days between the middle of November and the end of February. The simulation periods were 

chosen strategically to represent the full range of domain inputs, namely variation in time of 

day, day of the week, level of use, and outdoor conditions. These are summarized in Table 8 

below. The simulations were run in series starting with the simplest conditions- at night without 

occupants, moving to the most complex conditions- during the day with variable indoor and 

outdoor conditions. 

Table 8 Summary of Simulation Periods used for Model Testing 

Period Tout Wind Speed Total Global 

Solar Radiation 

Occupied? Time of day 

November 17, 2017 

(0:05 – 3:05) 

0.93oC 0.5 to 1.5 m/s 0 No Night 

November 29,2017 

(0:05 – 3:05) 

4.7oC 0.5 to 1.5 m/s 0 No Night 

January 6, 2018 

(0:05 – 3:05) 

-19.19oC 0.5 to 1.5 m/s 0 No Night 

December 31, 2017 

(9:35-12:35) 

-16.04oC 0.5 to 1.5 m/s 400W/m2 No Daytime 

January 13, 2018 

(9:35-12:35) 

-13.04oC 0 m/s 400W/m2 No Daytime 

January 2, 2018 

(9:05-12:05) 

-10.02oC 2-4 m/s 50W/m2 No Daytime 

February 12, 2018 

(13:50 – 16:50) 

-2.51oC 0.5-2 m/s 120W/m2 Yes Daytime 

January 8, 2018 

(10:05 – 13:05) 

0.5oC 1-2.5 m/s 50W/m2 Yes Daytime 

February 7, 2018 

(16:05-19:05) 

-3.57oC 0.5-1.5 m/s 50W/m2 Yes Daytime 

December 8, 2017 

(14:20 – 17:20) 

1.04oC 2.5–3.5 m/s 50W/m2 Yes Daytime 

December 5, 2017 

(11:35-14:35) 

10.93oC 2-4 m/s 50W/m2 Yes Daytime 
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6.1 G1 Model 

The G1 model has all of the building elements represented with differential equations (shown 

in Table 4), using estimated resistivity and capacitance values. The inputs to the model are the 

initial indoor ambient temperature, ceiling and floor surface temperatures, as well as, the 

exterior wall interior and exterior surface temperatures. The model was simulated under three 

conditions nighttime (unoccupied) simulations, daytime unoccupied simulations, and daytime 

occupied simulations. The accuracy of the simulated temperature was examined at Prediction 

Windows of 15, 30, 45 60, 120, and 180 minutes. Note that the true weather, HVAC data, and 

occupancy data were fed to each model, as the prediction of these elements is beyond the scope 

of this thesis. Error bars are not displayed on the surface temperature results from Generation 

1 simulations as the graphs were zoomed in to allow to see the temperature variations in the 

results; the error bars resulted in too much overlap and had the upper or lower limit falling 

outside the graph area. When analyzing the results keep in mind, surface temperature sensors 

are accurate to +/- 0.5oC. The error bars are displayed for the ambient temperature results, with 

the ambient temperature measurement accurate to within +/- 0.4oC. 

6.1.1 Nighttime Simulation 

The first three simulations periods were selected during the simplest condition: at night between 

12 am and 5 am when the ventilation is off and there are no occupants. The first two occurred 

in November before the heater of the test cell was turned on. The third such simulation occurred 

during February and included this heat load.  

The prediction error (equation (8)) from November 17th are summarized in Table 9. The G1 

model predicted the surface temperatures to within 0.6% accuracy. The graph of predicted 

verses actual temperature, Figure 18, demonstrates the ceiling and exterior wall having 

temperature deviations that increased to 0.1oC for the 180-minute forecast, while the floor slab 

has no temperature deviations. It is observed at the 30-minute Prediction Window that the 

exterior wall temperature deviation jumps from 0.1oC to 0. A review of the raw data indicated 

the thermocouple measurement decreased by 0.1oC at the 30-minute time step and then returned 

to its original value at the 45-minute time step. The thermocouples have an accuracy of +/- 

0.5oC therefore the jump seen in the temperature is likely only a measurement fluctuation. 
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Ambient temperature (Figure 18) also demonstrates good prediction results, with the largest 

deviation of 0.2oC occurring in the last hour of the Prediction Window. 

Table 9 Prediction Error for Temperatures of Simulated Elements as a Function of Prediction 

Window Duration for November 17, 2017 (Tout = 0.93oC, wind speed = 0.5 to 1.5 m/s) 

Prediction Error  
15 

minutes 

30 minutes 45 

minutes 

60 minutes 120 

minutes 

180 minutes 

Ambient -0.125% 0.182% 0.070% -0.033% -0.357% -1.003% 

Exterior Wall -0.443% -0.024% -0.468% -0.481% -0.531% -0.583% 

Ceiling -0.421% -0.421% -0.421% -0.421% -0.423% -0.425% 

Floor 0.000% -0.001% -0.001% -0.002% -0.003% -0.005% 

 

Figure 18 November 17, 2017 Actual vs Predicted Temperatures for each Prediction Window 

The results from the November 29th simulation are summarized in Table 10, with surface 

temperature predictions within 0.5% accuracy for the 180-minute Prediction Window. Similar 

to the previous model, it can be seen that the exterior prediction error jumps by 0.1oC (Figure 

19) at the 15-minute and 45-minute prediction time; more than likely due to noise of the surface 

temperature measurement. The ambient temperature is predicted within 1.5%, as shown in 

Figure 19, and  deviates at the 60-minute Prediction Window by 0.2oC and at the 180-minute 

Prediction Window by 0.3oC. Both of these deviations are within the accuracy of the 

measurement device. 
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Table 10 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for November 29, 2017 (Tout = 4.7oC, wind speed = 0.5 to 1.5 

m/s) 

Prediction Error  
15 

minutes 

30 minutes 45 

minutes 

60 minutes 120 

minutes 

180 minutes 

Ambient -0.007% -0.020% 0.423% 0.866% 0.445% 1.407% 

Exterior Wall -0.449% -0.011% -0.460% -0.021% -0.513% -0.547% 

Ceiling 0.000% 0.000% -0.001% -0.001% -0.002% -0.003% 

Floor 0.000% -0.001% -0.001% 0.432% 0.430% 0.429% 

 

Figure 19 November 29, 2017 Actual vs Predicted Temperatures for each Prediction Window 

The results for January 6th are summarized in Table 11, demonstrating surface temperature 

predictions to within 0.6% for the 180-minute Prediction Window. As shown in Figure 21, the 

floor and ceiling elements show good prediction results with prediction error close to 0% for 

the entire simulation, while the exterior wall demonstrated similar results to the other night 

simulations with 0.1oC deviations. The ambient temperature demonstrated good prediction 

performance for the first hour of the simulation and then gradually increased in prediction error 

to 1.5%, 0.5oC off, at the 180-minute Prediction Window. 
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Table 11 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for January 6, 2018 (Tout=-19.19oC, wind speed ranging from 

0.5 to 1.5 m/s) 

Prediction Error 

  15 minutes 30 minutes 45 minutes 60 minutes 120 minutes 180 minutes 

Ambient -0.008% -0.016% -0.024% -0.516% -1.044% -1.564% 

Exterior 

Wall 

0.479% -0.545% -0.570% 0.404% 0.305% -0.297% 

Ceiling 0.000% -0.001% -0.002% -0.003% -0.006% -0.008% 

Floor -0.001% -0.002% -0.003% -0.004% -0.008% -0.013% 

 

Figure 20 January 6th, 2018 Actual vs Predicted Temperatures for each Prediction Window 
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wall than the previous nighttime simulations. The exterior wall had a prediction error of up to 

2.5% at the 120-minute Prediction Window onward. This is due to the actual temperature 

increasing while the predicted temperature remains steady, as shown in this same figure. 

Despite the larger prediction error for the exterior wall, the ambient temperature still 

demonstrates good prediction performance with prediction error within 1%, 0.3oC off, at the 

180-minute Prediction Window period. 

Table 12 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for December 31, 2017 (Tout=-16.04oC, wind speed ranging 

from 0.5 to 1.5m/s) 

Prediction Error 

  15 minutes 30 minutes 45 minutes 60 minutes 120 minutes 180 minutes 

Ambient -0.020% -0.021% -0.014% -0.006% 0.959% 0.982% 

Exterior Wall -0.021% -0.043% -0.065% -0.575% -2.095% -2.182% 

Ceiling 0.000% 0.000% -0.001% -0.001% -0.461% -0.462% 

Floor 0.457% 0.013% 0.469% 0.023% -0.414% -0.416% 

  

Figure 21 December 31st, 2017 Actual vs Predicted Temperatures for each Prediction 

Window  
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Prediction Window onward. This is observed to be due to jumps in the actual ambient 

temperature measurements. As the ambient temperature measurement device is only accurate 

to within 0.4oC, these jumps, similar to the surface temperature deviations, are likely caused by 

measurement fluctuations. 

Table 13 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for January 13, 2018 (Tout=-13.04oC, wind speed ranging from 

0 m/s, and solar radiation 400W/m2). 

Prediction Error 

  15 minutes 30 minutes 45 minutes 60 minutes 120 minutes 180 minutes 

Ambient -1.018% -0.714% 0.046% -1.377% -0.396% -0.208% 

Exterior Wall -0.487% -0.506% -0.056% -0.075% -0.621% -0.229% 

Ceiling 0.000% 0.000% 0.000% -0.001% -0.002% -0.440% 

Floor 0.010% 0.018% 0.025% 0.031% 0.045% 0.045% 

 

Figure 22 January 13th, 2018 Actual vs Predicted Temperatures for each Prediction Window 

The January 2nd simulation results are summarized in Table 14, with surface temperature 

prediction errors less than 0.5%, and ambient temperature prediction error less than 1% (Figure 

23). The fluctuations seen in the exterior wall temperature, similar to previous simulations, are 

believed to be measurement fluctuations. The ambient temperature prediction for this 

simulation demonstrates similar behaviour to previous models, with accuracy of within 0.1oC 

until the last two hours of the simulation when the predicted temperature deviated by 0.3oC. 
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Table 14 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for January 2, 2018 (Tout=-10.02oC, wind speed ranging from 

2-4 m/s, and solar radiation 50W/m2). 

Prediction Error 

  15 minutes 30 minutes 45 minutes 60 minutes 120 minutes 

180 

minutes 

Ambient 0.059% 0.115% 0.172% 0.230% 0.930% 1.138% 

Exterior Wall 0.475% -0.038% -0.054% 0.419% 0.345% 0.272% 

Ceiling 0.000% 0.000% -0.001% -0.001% -0.002% -0.003% 

Floor 0.000% 0.000% -0.001% -0.002% -0.004% -0.006% 

 

Figure 23 January 2nd, 2018 Actual vs Predicted Temperatures for each Prediction Window  
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temperature accuracy off by 1.5%, 0.3oC, at the 180-minute Prediction Window. The actual 

temperatures of all three surfaces in Figure 24 are observed to increase at the 30-minute 

Prediction Window. Inspecting the data for this simulation there is no indication of an 

occurrence that would result in the temperature increase between the start of the simulation and 

the 30-minute period. Since the data does not demonstrate any increase in heat load, the 

predicted temperature stays stagnant and the actual temperature increases. This could be due to 

convective heat transfer, which is not modeled within the RC network, or a heat load that is 

missed within the grey box model.  One observation made when looking at the data for this 

simulation is the occupancy count increases to 3 people at the 30-minute Prediction Window 

and stays at 3 people until the 90th minute when it reduces to 0. This is hypothesized to be the 

reason why the predicted ambient temperature starts increasing and deviating away from the 

actual ambient temperature at the 30-minute Prediction Window. The predicted temperature 

does not decrease at the 90-minute Prediction Window, when the occupants leave, because the 

interior lighting stays on for the remainder of the simulation. 

Table 15 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for February 12, 2018 (Tout=-2.51oC, wind speed ranging from 

0.5-2 m/s, and solar radiation 120W/m2) 

Prediction Error 

  15 minutes 30 minutes 45 minutes 60 minutes 120 minutes 180 minutes 

Ambient 0.065% -0.074% 0.423% 0.417% 1.025% 1.527% 

Exterior Wall -1.376% -2.279% -0.954% -1.863% -2.795% -1.072% 

Ceiling -0.426% -1.268% -0.428% -1.269% -1.271% -1.273% 

Floor -0.437% -0.870% -0.001% -1.300% -1.301% 1.331% 
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Figure 24 February 12th, 2018 Actual vs Predicted Temperatures for each Prediction Window 

The results shown in Table 16 for the January 8th simulation indicates the model 

underpredicting the surface temperatures of all building elements. Figure 25 demonstrates how 

the predicted ceiling and exterior wall element temperatures deviate from the actual 

temperatures by 0.5oC at the 180-minute Prediction Window. The large surface temperature 

prediction error of the ceiling and exterior wall may be the cause of temperature stratification 

within the test cell; both thermocouples are located higher in the room than the location of the 

ambient sensor and may be experiencing warmer ambient conditions. The data for this 

simulation demonstrates an increase in occupancy count from 0 to 1 person within the first 15 

minutes, an increase to 2 people at 70 minutes, and then a drop-in occupancy at the 130th minute 

to zero. This data roughly matches the predicted ambient temperature profile seen in Figure 25 

with a mildly increasing temperature slope until the 15th minute, a steeper slope until the 120th 

minute, and then a milder slope again for the last 180 minutes. The increase in occupant related 

heat loads within the test cell is also thought to be the reason that the actual ceiling and exterior 

wall temperatures start increasing.  
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Table 16 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for January 8, 2018 (Tout=0.5oC, wind speed ranging from 1-2.5 

m/s, and solar radiation 50W/m2) 

Prediction Error 

  15 minutes 30 minutes 45 minutes 60 minutes 120 minutes 180 minutes 

Ambient 0.319% 0.900% 1.430% 1.871% 3.338% 4.416% 

Exterior Wall 0.974% 0.467% 0.455% -1.012% -1.055% -2.508% 

Ceiling 0.000% -0.458% -0.910% -1.359% -2.244% -2.244% 

Floor -0.001% -0.001% -0.002% -0.450% -0.451% -0.895% 

 

Figure 25 January 8th, 2018 Actual vs Predicted Temperatures for each Prediction Window 

The February 7th simulation had the worst results of all the simulation days, as shown in Table 

17. The ambient temperature prediction is off by close to 9% at the 180-minute Prediction 

Window, as illustrated in Figure 26. The surface temperature prediction results however, 

demonstrate similar prediction error range as those seen during the other occupied simulations, 

with all elements having prediction error within 1.5% at the 180-minute Prediction Window. 

The thermocouple surface temperature data in Figure 26 demonstrates an increase in the 
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the occupancy count and the fact that the lights within the test cell continue to be on in the test 

cell after the occupants leave. 

Table 17 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for February 7, 2018 (Tout=-3.57oC, wind speed ranging from 

0.5-1.5 m/s, and solar radiation 50W/m2) 

Prediction Error 

  15 minutes 30 minutes 45 minutes 60 minutes 120 minutes 180 minutes 

Ambient 1.706% 3.394% 3.801% 4.603% 6.534% 8.558% 

Exterior 

Wall 

-0.925% -1.835% -2.727% -0.987% -1.509% -1.586% 

Ceiling -0.465% -0.467% -0.927% -0.929% -1.388% -1.842% 

Floor -0.002% -0.477% -0.479% -0.949% -0.952% -1.419% 

 

Figure 26 February 7th, 2018 Actual vs Predicted Temperatures for each Prediction Window 

The December 8th prediction results in Table 18 are more accurate than the previous results 

from the February 7th simulation. The ambient temperature has a prediction error that increases 

steadily until it reaches 2.5%, 0.5oC off (Figure 27), at the 180-minute Prediction Window. The 

surface temperature elements demonstrate varied prediction results. The ceiling temperature 

remains within 1% error, the floor within 1.5%, and the exterior wall within 2%. This model 

did not demonstrate worse prediction results compared to other occupied simulations due to the 

higher wind speeds, as initially expected. The exterior wall performance does not demonstrate 

the same correlation to occupancy that was seen for other simulations. This simulation indicates 

the exterior wall temperatures are opposite to the occupancy data - the temperature is lowest at 
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the 60-minute period when there is the highest occupancy count.  The ambient data in this 

model, similar to previous occupancy simulations, demonstrates correlation to occupant related 

heat loads. Figure 27 demonstrates the predicted ambient temperature continually increasing 

throughout the model, most likely due to the occupancy count continually increasing until the 

120th minute, and the interior lighting remaining on for the entire simulation. 

Table 18 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for December 8, 2017 (Tout=1.04oC, wind speed ranging from 

2.5-3.5m/s, and solar radiation 50W/m2) 

Prediction Error 

  15 minutes 30 minutes 45 minutes 60 minutes 120 minutes 180 minutes 

Ambient -0.152% 0.590% 1.322% 1.218% 1.499% 2.643% 

Exterior 

Wall 

1.903% 0.450% -0.499% 1.871% -0.550% -0.123% 

Ceiling 0.444% 0.000% -0.878% -0.001% -0.441% -0.878% 

Floor 0.881% 0.438% -0.001% 0.437% -0.437% -0.437% 

 

Figure 27 December 8th, 2017 Actual vs Predicted Temperatures for each Prediction Window 

The December 5th model demonstrates good ambient prediction results, as shown in Table 19, 

with prediction error of less than 1.5% for the 180-minute Prediction Window. The ceiling and 

floor surface temperatures have good performance with errors of less than 0.5% for the entire 

prediction period. The exterior wall has a jump in error at the 30-minute Prediction Window, 

as shown in Figure 28, where the actual temperature decreases by 0.4oC. The predicted ambient 

temperature, as illustrated in Figure 28, is not observed to increase as steeply as seen in previous 
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simulations, believed to be due to the occupants only being present for the first 35 minutes of 

the simulation.  

Table 19 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for December 5, 2017 (Tout=10.93oC, wind speed ranging from 

2-4m/s, and solar radiation 50W/m2) 

Prediction Error 

  15 minutes 30 minutes 45 minutes 60 minutes  120 minutes 180 minutes 

Ambient 0.1605% 0.3163% 0.4335% 0.3807% 1.4049% 0.8821% 

Exterior Wall -0.0053% 1.7910% 0.8763% -0.0217% -0.0438% -0.0659% 

Ceiling -0.0004% 0.4233% 0.4229% -0.0008% -0.4218% -0.0030% 

Floor -0.4274% 0.0000% 0.0000% 0.0000% 0.0004% -0.4269% 

 

Figure 28 December 5th, 2017 Actual vs Predicted Temperatures for each Prediction Window 

6.1.4 Summary of G1v1 model Performance 
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occupied daytime conditions demonstrated more varied results with the ambient temperature 

predicted in the range of 0.9%-9% accuracy at the 3-hour Prediction Window.  

The results from the daytime occupied conditions were analyzed more thoroughly to identify 

the discrepancy in results. The results demonstrated that the best ambient temperature 

prediction occurred for the February 12th simulation, which, is the only simulation day within 

the occupied simulation group that does not have the heat load from the heater. A strong 

correlation between the predicted ambient temperature and the occupancy and interior lighting 

conditions was also observed in the occupied models. To address both of these discrepancies, 

two new iterations of the G1 grey box model were created to improve the model performance. 

6.2 G1v2 model I: Heater Convective Heat Load 

The G1v2 model was altered to calculate the heater heat flux using a natural heat convection 

coefficient. The model was simulated on the three worst simulation days: February 7th (Table 

20), January 8th (), and December 8th (). 

Table 20 Prediction Error for G1v2 Model on February 7th, 2018 using Turbulent and 

Natural Convection when Representing the Heater Unit 

Febuary 7, 2018 (4:00 PM) 

Prediction Error 

  15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes  

120 

minutes 

180 

minutes 

Ambient – turbulent conv. 1.7065% 3.3935% 3.8011% 4.6032% 6.5337% 8.5584% 

Ambient – natural conv. 1.6355% 3.2538% 3.6014% 4.3497% 6.1205% 8.0382% 

 

Table 21 Prediction Error for G1v2 Model on January 8th, 2018 using Turbulent and Natural 

Convection when Representing the Heater Unit 

January 8, 2018 (10:00 AM) 

Prediction Error 

  15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes  

120 

minutes 

180 

minutes 

Ambient – turbulent conv 0.3186% 0.8995% 1.4295% 1.8714% 3.3384% 4.4157% 

Ambient – natural conv. 0.2686% 0.8014% 1.2883% 1.6910% 3.0383% 4.0368% 
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Table 22 Prediction Error for G1v2 Model on December 8th, 2017 using Turbulent and 

Natural Convection when Representing the Heater Unit 

December 8, 2017(2:40 PM) 

Prediction Error 

  15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes  

120 

minutes 

180 

minutes 

Ambient – turbulent conv -0.1525% 0.5901% 1.3222% 1.2176% 1.4991% 2.6432% 

Ambient – natural conv. -0.1905% 0.5153% 1.2127% 1.0775% 1.2640% 2.3412% 

As evidenced by the errors in these tables, Figure 29-Figure 31 illustrate improved prediction 

performance for the simulation days using the natural convective heat coefficient compared to 

the simulations using turbulent convection coefficient. All three simulation days of February 

7th, January 8th, and December 8th, demonstrate lower prediction error after altering the 

convection coefficient in the heater energy load calculation. 

 

Figure 29 Ambient Temperature Prediction Error for February 7th, 2018 when using 

Turbulent and Natural Convection to Represent the Heater Unit 
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Figure 30 Ambient Temperature Prediction Error for January 8th, 2018 when using 

Turbulent and Natural Convection to Represent the Heater Unit 

 

Figure 31 Ambient Temperature Prediction Error for December 8th, 2017 when using 

Turbulent and Natural Convection to Represent the Heater Unit 
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contact with the ambient air is not at a 10-degree difference. It is acknowledged that the 

convective heat exchange model from the heater to the room is a simplified model which, using 

natural convective coefficient or turbulent convective coefficient, does not truly represent the 

actual heat exchange of the system. 

6.3 G1v3 Model: Cp Parameter Optimization 

The second alteration to the G1v1 models was optimization of the internal heat capacity value 

to improve the model prediction results under occupied conditions. Parameter estimation of the 

internal heat capacity value was conducted using the Simulink parameter estimation toolbox. 

The internal heat capacity results for each simulation day are shown in Table 23.  

Table 23 Internal Mass Heat Capacity found using the Parameter Estimation Tool 

Date Internal Heat Capacity (kJ/K) 

November 17th, 2017 112.7  

November 29th, 2017 457.9  

January 6th, 2018 1,834.2  

December 31st, 2017 395.0  

January 13th, 2018 105.4  

January 2nd, 2018 219.1  

February 12th, 2018 777.6  

January 8th, 2018 252.7  

February 7th, 2018 239.0  

December 8th, 2017 93.9  

December 5th, 2017 38.4  

As noted in this table, there was a significant range in internal heat capacity values, which is 

troublesome. The results do not demonstrate any correlation to the conditions of the test cell as 

all three conditions, nighttime unoccupied, daytime unoccupied, and daytime occupied, result 

in both high and low internal heat capacity values. These values are highly erroneous and 

demonstrate error  in the parameter estimation method used or potentially in the grey box model 

itself. Because of the high white box model accuracy, the parameter estimation is suspect, 

highlighting a need for further investigation to determine the source and impact of this error in 

future research. For the sake of completing the thermal dynamic models of the mass elements, 

an approximate value was desired and thus each of the values found in parameter estimation 

was tested for all sample days to find an acceptable representative value for this thesis. 
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To determine the best fit internal heat capacity value, the grey box model was simulated with 

seven of the heat capacity values, chosen strategically as discussed in Section 5.3. The grey 

box model was run for every simulation day, with each of the internal heat capacity values, to 

determine the value that most accurately predicts the ambient temperature for all simulation 

conditions. The overall RMSE, MAE, and WAPE values from this analysis are presented in  

Table 24. The order of the results in  

Table 24 is based on the analysis order, described in Section 5.3. It is noted that the WAPE 

results are presented with a larger number of significant digits in order to identify the best 

performing model. 

Table 24 Internal heat capacity performance 

  RMSE MAE WAPE 

Final Model 0.384 0.234 0.0521% 

07-Feb 0.116 0.084 0.0178% 

08-Jan 0.116 0.084 0.0179% 

29-Nov 0.126 0.089 0.0189% 

06-Jan 0.143 0.093 0.0202% 

02-Jan 0.116 0.083 0.0176% 

17-Nov 0.140 0.099 0.0213% 

The analysis indicates that the grey box model using the internal heat capacity value of 219.1 

kJ/K, found on January 2nd, most accurately predicted the ambient temperature for the eleven 

simulation days. Therefore, this value is the internal heat capacity that is carried forward for 

the remainder of this research. It is noted that the value used in this research is not the true 

optimal heat capacity value but the best performing value out of the simulation days analyzed. 

It can be hypothesized from the results that the optimal heat capacity value falls within the 

range of 112kJ/K - 250kJ/K, as values outside this range had worse prediction results than the 

final internal heat capacity value. It is observed that this range is similar to the internal heat 

capacity value used in the work by Reynders et al. [21]., who used the assumption that the true 

internal heat capacity of the modeling space is five times the heat capacity of the air. To 

determine the true internal heat capacity value for the test cell, an optimization would need to 

be conducted with continuous data from the test cell, rather than eleven three-hour periods, 

which is outside the scope of our research. 
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The performance comparison of the G1v2 model using the initial internal heat capacity value 

of 35.1 kJ/K (found from calculations in Section 4.1.5) against the G1v3 model using the new 

internal heat capacity value of 219.1 kJ/K are shown below. The results from the unoccupied 

nighttime simulations, shown in Figure 32-Figure 34 demonstrate little or no improvement in 

ambient prediction performance compared to the original heat capacity value. This result was 

expected as the nighttime simulations are not subjected to large heat loads. Therefore, these 

models do not need the larger heat capacity value to achieve accurate ambient temperature 

predictions. Overall, the unoccupied nighttime simulations for the G1v3 model demonstrate 

prediction error below 1.5% at the 3-hour Prediction Window. 

 

Figure 32 Ambient Temperature Prediction for November 17th, 2017 comparing the use of 

the Initial and Optimized Internal Heat Capacity Values 

 

Figure 33 Ambient Temperature Prediction for November 29th, 2017 comparing the use of 

the Initial and Optimized Internal Heat Capacity Values 
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Figure 34 Ambient Temperature Prediction for January 6th, 2018 comparing the use of the 

Initial and Optimized Internal Heat Capacity Values 

The unoccupied daytime simulation results, shown in Figure 35 - Figure 37, illustrate mixed 

performances. Compared to the G1v2 model, the G1v3 model demonstrates the December 31st 

simulation (Figure 35) with little improvement in prediction accuracy, the January 13th 

simulation ( Figure 36) with lower prediction accuracy for the first 120 minutes, and the January 

2nd simulation (Figure 37) with better prediction results. The larger deviation in model 

performance due to the internal heat capacity value demonstrates the stronger influence of this 

value on the daytime simulations compared to the nighttime simulations.  

 

Figure 35 Ambient Temperature Prediction for December 31st, 2017 comparing the use of 

the Initial and Optimized Internal Heat Capacity Values 
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Figure 36 Ambient Temperature Prediction for January 13th, 2018 comparing the use of the 

Initial and Optimized Internal Heat Capacity Values 

 

Figure 37 Ambient Temperature Prediction for January 2nd, 2018 comparing the use of the 

Initial and Optimized Internal Heat Capacity Values 

The results from the occupied simulations, shown in Figure 38-Figure 42, demonstrate 

significant improvement in ambient temperature prediction ability with the larger internal heat 

capacity. The February 12th (Figure 38) and December 5th (Figure 42) simulation improvements 

were the smallest of the occupied models however, they still demonstrated better results with 

the new internal heat capacity. The other simulation days demonstrated greater improvement: 

January 8th (Figure 39) illustrates prediction error reduction at the 180-minute Prediction 

Window from 4% to 1%, February 7th (Figure 40) from 8% to 0.5%, and December 8th (Figure 

41) from 2.5% to 0.6%. The significant model improvements for the occupied models was 

expected due to larger heat loads present under these conditions.  
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Figure 38 Ambient Temperature Prediction for February 12th, 2018 comparing the use of the 

Initial and Optimized Internal Heat Capacity Values 

 

Figure 39 Ambient Temperature Prediction for January 8th, 2018 comparing the use of the 

Initial and Optimized Internal Heat Capacity Values 

 

Figure 40 Ambient Temperature Prediction for February 7th, 2018 comparing the use of the 

Initial and Optimized Internal Heat Capacity Values 
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Figure 41 Ambient Temperature Prediction for December 8th, 2017 comparing the use of the 

Initial and Optimized Internal Heat Capacity Values 

 

Figure 42 Ambient Temperature Prediction for December 5th, 2017 comparing the use of the 

Initial and Optimized Internal Heat Capacity Values 

6.4 Summary of G1 model 

The G1 model was altered from its initial state based on observations from the G1v1 model 

results. The first observation was lower ambient temperature prediction error for models that 

occurred at times when the heater of the test cell was off. To adjust the model the convective 

heat transfer calculation was changed from a turbulent convective heat transfer coefficient to a 

natural convective heat transfer coefficient. The performance of the three worst prediction days 

with the natural convection model demonstrated improved performance over the previous 

model. The natural convection heat transfer model is therefore carried forward for the 

remainder of the research. 

The second observation from the G1v1 model results, was the large discrepancy between the 

occupied model results and the unoccupied model results. The model demonstrated that it was 

-1.00%

0.00%

1.00%

2.00%

3.00%

15 30 45 60 75 90 105 120 135 150 165 180

P
re

d
ic

ti
o

n
 E

rr
o

r 
(%

)

Prediction Window (minutes)

Ambient Temperature (Cp 35.1 kJ/K) Ambient Temperature (Cp 219.1 kJ/K)

0.00%

0.50%

1.00%

1.50%

15 30 45 60 75 90 105 120 135 150 165 180P
re

d
ic

ti
o

n
 E

rr
o

r 
(%

)

Prediction Window (minutes)

Ambient Temperature (Cp 35.1 kJ/K) Ambient Temperature (Cp 219.1 kJ/K)



 102 
 

not able to predict the ambient temperature of the test cell with the same degree of accuracy 

when subjected to the additional plug load, occupancy, and interior lighting heat loads. 

Therefore, the parameter estimation tool within Simulink was used to solve for the optimal 

internal mass heat capacity value. From this analysis, the internal mass heat capacity value of 

219k J/K was found to best represent the test cell, as it had the most accurate ambient 

temperature predictions overall for the simulation days. With the new internal heat capacity 

value, the occupied simulations predict the ambient temperature to within 1.5% accuracy at the 

180-minute Prediction Window. 

6.5 G2 model: Regression Analysis  

The results from the regression analysis, shown in Table 25, demonstrate all of the elements 

except the ceiling performing better when using the split occupancy linear regression model 

when compared to the general linear regression model. This was an unexpected finding as the 

ceiling is one of the elements thought to be most affected by the heating loads and one that 

would derive the greatest benefit from a split occupancy model. The second observation from 

the regression analysis are the exterior wall, spandrel panel, and window unit having the largest 

WAPE values. This result is due to the fact that all three of these elements face the exterior and 

are influenced by both the interior and exterior conditions.  

Table 25 Results of the general regression model and the split regression model for each 

building element with RMSE, MAE and WAPE performance measurements. 

Complete Regression Model 

  Exterior Wall Ceiling Floor Spandrel Window  Interior Wall 

RMSE 1.395 0.580 0.535 1.014 1.219 0.709 

MAE 0.821 0.390 0.398 0.760 0.873 0.463 

MAPE 0.173% 0.076% 0.077% 0.217% 0.293% 0.090% 

Split Regression Model 

RMSE 1.382 0.586 0.458 1.007 1.137 0.654 

MAE 0.791 0.390 0.323 0.706 0.718 0.420 

MAPE 0.167% 0.075% 0.063% 0.202% 0.257% 0.081% 

The regression models used in the composition of the G2 model are outlined below. This 

section outlines the regression equations used for each building element. The regression models 

are analyzed based on their adjusted R2 values and RMSE. The Student t-test p-value and t-

value is used to analyze the significance of the variables within the models. As described in 
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Section 5.2, the smaller p-value and larger t-value, the larger the influence of the variable on 

the ambient temperature. A summary of the p-value confidence intervals for rejecting the null 

hypothesis is shown in Table 26. 

Table 26 Summary of p-value confidence intervals   

p-value <0.05 <0.01 <0.001 

Confidence of null hypothesis rejection 95% 90% 99% 

 

6.5.1 Exterior Wall 

The final split occupied (24) and unoccupied (25) regression models determined for the exterior 

wall are shown below.  

𝑇𝐸𝑥𝑡𝑊𝑎𝑙𝑙_𝑆𝑝𝑙𝑖𝑡_𝑂𝑐𝑐

=  −4.041 + 0.779𝑇𝑎𝑚𝑏 + 0.293𝑇ℎ𝑎𝑙𝑙 − 0.014𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + 0.106𝑂𝑐𝑐

− 0.268𝐿𝑖𝑔ℎ𝑡 + 97.860𝑉𝑙𝑒𝑓𝑡 − 0.072𝑇𝑙𝑒𝑓𝑡 + 5.044𝑉𝑟𝑖𝑔ℎ𝑡

+ 0.017𝑇𝑟𝑖𝑔ℎ𝑡 + 0.001𝑄𝑆𝑊𝑅𝑎𝑑 + 0.002𝑄𝐿𝑊𝑅𝑎𝑑 − 0.005𝑇𝑜𝑢𝑡

+ 0.124𝑣𝑤𝑖𝑛𝑑 

 

(24) 

 

𝑇𝐸𝑥𝑡𝑊𝑎𝑙𝑙_𝑆𝑝𝑙𝑖𝑡_𝑈𝑛𝑜𝑐𝑐 

=  −78.930 + 0.701𝑇𝑎𝑚𝑏 + 0.611𝑇ℎ𝑎𝑙𝑙 − 0.011𝑇ℎ𝑒𝑎𝑡𝑒𝑟

+ 0.128𝐿𝑖𝑔ℎ𝑡 + 26.19𝑉𝑙𝑒𝑓𝑡 − 0.071𝑇𝑙𝑒𝑓𝑡 − 43.550𝑉𝑟𝑖𝑔ℎ𝑡

+ 0.036𝑇𝑟𝑖𝑔ℎ𝑡 − 0.049𝑊𝑝𝑙 − 0.0004𝑄𝑆𝑊𝑅𝑎𝑑 + 0.002𝑄𝐿𝑊𝑅𝑎𝑑

+ 0.010𝑇𝑜𝑢𝑡 − 0.051𝑣𝑤𝑖𝑛𝑑 

 

(25) 

 

The results for the exterior wall regression models are summarized in Table 27. The adjusted 

R2 value for both models demonstrates good performance with values close to 1. The 

unoccupied model indicates a better fit compared to the occupied model with a larger adjusted 

R2 value however, it also shows a larger RMSE. The exterior wall results demonstrate that in 

the four months of training data there is a larger set of data for unoccupied conditions than 

occupied conditions, as seen in the difference in the degrees of freedom for both models. This 
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is partially due to Christmas vacation occurring within this modeling period, resulting in larger 

unoccupied periods. 

Table 27 Performance of the Exterior Wall Occupied Regression Model 

 Adjusted R2 RMSE Degree of Freedom 

Occupied 0.7736 0.4643 7010 

Unoccupied 0.8289 0.4801 86849 

The occupied exterior regression model resulted in most variables having p-values within the 

99% confidence interval, with exception of the right ventilation duct airflow rate that resulted 

in a p-value within the 90% confidence interval. To determine the degree of influence of these 

variables on the regression model, the t-values in Table 28 were analyzed. The results 

demonstrate that the exterior wall surface temperature, during occupied conditions, is most 

heavily influenced by the ambient test cell and hallway temperatures, the heater temperature, 

the left ventilation airflow rate, and the wind speed. It is unexpected to see the exterior wall 

influenced by the hallway ambient temperature and the left ventilation airflow rate, especially 

since the left vent is not the primary supply duct to the room. It is hypothesised that the 

consistency in their data influences the exterior wall because the exterior wall also maintains a 

relatively consistent temperature due to its large thermal mass. The plug load data was 

eliminated from the regression model during the subtractive process; this data may be 

insignificant because it is not the true plug load data. 

Table 28 Student t-test P-values and t-values for Occupied Exterior Wall Regression Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝐎𝐜𝐜 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑽𝒓𝒊𝒈𝒉𝒕 𝑻𝒓𝒊𝒈𝒉𝒕 

P-value <2e-16 <2e-16 <2E-16 <2E-16 9.07E-11 <2e-16 <2e-16 0.083 <2E-16 

t-value 83.089 15.695 -26.11 12.22 -6.49 15.79 -16.90 1.73 13.16 

 

𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

3.92E-15 <2e-16 6.77E-05 <2E-16 

7.88 10.17 -3.99 15.80 

The results for the unoccupied conditions in Table 29 demonstrate all of the variables in the 

equation having p-values within the 99% confidence interval. The t-value results indicate the 

exterior wall, during unoccupied conditions, is most significantly influenced by the ambient 

test cell, and hallway temperatures, the temperature of the air supply from the right, and left 
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vent as well as the heater surface temperature. Similar to the occupied model, the influence of 

the ambient hallway temperature, with such far proximity to the exterior wall, is thought to be 

due to the consistency of the hallway temperature, as well as, its similarity in value to the 

ambient temperature of the test cell. The supply airflow temperatures, along with the heater 

temperature, are expected for the unoccupied condition because they are the only heat loads 

conditioning the space during this time. It is noted that no data was eliminated in this linear 

regression model. 

Table 29 Student t-test P-values and t-values for Unoccupied Exterior Wall Regression Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑽𝒓𝒊𝒈𝒉𝒕 𝑻𝒓𝒊𝒈𝒉𝒕 𝑾𝒑𝒍 

P-value <2e-16 <2e-16 <2E-16 <2E-16 <2e-16 <2e-16 <2e-16 <2E-16 <2E-16 

t-value 238.94 129.17 -61.27 17.39 14.42 -75.06 -43.17 84.98 -27.97 

 

𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

<2e-16 <2e-16 <2e-16 <2E-16 

-11.22 36.10 30.94 -21.38 

 

6.5.2 Ceiling 

The general ceiling linear regression equation (26) found from the subtractive linear regression 

fitting is presented below. 

𝑇𝐶𝑒𝑖𝑙_𝐴𝑙𝑙 =  −11.31 + 0.4159𝑇𝑎𝑚𝑏 + 0.5274𝑇ℎ𝑎𝑙𝑙 + 0.004486𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + 0.1279𝑂𝑐𝑐

+ 0.2188𝐿𝑖𝑔ℎ𝑡 − 4.705𝑉𝑙𝑒𝑓𝑡 + 0.07443𝑇𝑙𝑒𝑓𝑡 + 0.001568𝑇𝑟𝑖𝑔ℎ𝑡

− 0.005181𝑊𝑝𝑙 − 0.000633𝑄𝑆𝑊𝑅𝑎𝑑 + 0.0009701𝑄𝐿𝑊𝑅𝑎𝑑

+ 0.01525𝑇𝑜𝑢𝑡 − 0.01742𝑣𝑤𝑖𝑛𝑑 

 

(26) 

 

The ceiling regression model results in Table 30 show the model fit well to the unseen testing 

data, with high adjusted R2 value and low RMSE. This is a better prediction performance than 

seen previously with the exterior wall.  
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Table 30 Performance of the General Ceiling Regression Model 

Adjusted R2 RMSE Degree of Freedom 

0.9334 0.2633 93873 

The ceiling regression model has all independent variables resulting in p-values within the 99% 

confidence internal, as shown in Table 31. The t-values indicate the variables with the largest 

influence include the ambient test cell and hallway temperature, the left ventilation duct air 

supply temperature, and the exterior temperature. Similar to the exterior wall, the left 

ventilation duct air supply temperature and the hallway temperature are thought to be influential 

on the ceiling temperature because of their consistent value. The exterior temperature is an 

unexpected result as the test cell has a high ceiling, with the measurement sensor far from the 

exterior facade. This model is also observed to have omitted the right ventilation supply duct 

airflow rate through the subtractive regression fitting process. This is another unforeseen result 

as the right ventilation duct is the primary air supply duct for the test cell and is situated higher 

in the test cell, in closer proximity to the ceiling.  

Table 31 Student t-test P-values and t-values for Ceiling General Regression Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝐎𝐜𝐜 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑻𝒓𝒊𝒈𝒉𝒕 𝑾𝒑𝒍 

P-value <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 <2e-16 

t-value 275.49 213.97 53.18 26.88 55.72 -12.1 160.87 10.11 -19.87 

 

𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

<2e-16 <2e-16 <2e-16 <2e-16 

-33.94 30.84 94.13 -14.12 

 

6.5.3 Floor 

The occupied (27) and unoccupied linear (28) regression models for the floor slab, found from 

the subtractive regression analysis, are presented below. 

𝑇𝐹𝑙𝑜𝑜𝑟_𝑆𝑝𝑙𝑖𝑡_𝑂𝑐𝑐 =  8.153 + 0.431𝑇𝑎𝑚𝑏 + 0.612𝑇ℎ𝑎𝑙𝑙 + 0.015𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + 0.111𝑂𝑐𝑐

− 0.031𝐿𝑖𝑔ℎ𝑡 + 225.7𝑉𝑙𝑒𝑓𝑡 − 0.165𝑇𝑙𝑒𝑓𝑡 − 66.3𝑉𝑟𝑖𝑔ℎ𝑡

+ 0.051𝑇𝑟𝑖𝑔ℎ𝑡 + 0.001𝑊𝑝𝑙 + 0.004𝑄𝐿𝑊𝑅𝑎𝑑 + 0.015𝑇𝑜𝑢𝑡

+ 0.092𝑣𝑤𝑖𝑛𝑑 

(27) 
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𝑇𝐹𝑙𝑜𝑜𝑟_𝑆𝑝𝑙𝑖𝑡_𝑈𝑛𝑜𝑐𝑐

=  −18.950 + 0.542𝑇𝑎𝑚𝑏 + 0.529𝑇ℎ𝑎𝑙𝑙 + 0.015𝑇ℎ𝑒𝑎𝑡𝑒𝑟

+ 0.067𝐿𝑖𝑔ℎ𝑡 + 64.2𝑉𝑙𝑒𝑓𝑡 − 0.050𝑇𝑙𝑒𝑓𝑡 − 39.530𝑉𝑟𝑖𝑔ℎ𝑡

+ 0.042𝑇𝑟𝑖𝑔ℎ𝑡  − 0.122𝑊𝑝𝑙 − 0.001𝑄𝑆𝑊𝑅𝑎𝑑 + 0.0003𝑄𝐿𝑊𝑅𝑎𝑑

+ 0.003𝑇𝑜𝑢𝑡 + 0.023𝑣𝑤𝑖𝑛𝑑 

(28) 

 

The results for the floor regression model presented in  

Table 24, show the occupied and the unoccupied models having poor fit when compared to the 

unseen testing data. The occupied model only fits the testing data 68% of the time. The 

unoccupied model demonstrates slightly better results with the model fitting the test data 79% 

of the time. It is hypothesized that these results are worse than the other models due to the fact 

that the floor is also influenced by the heating loads of the space below the test cell which is 

not monitored in this study. The lower fit of the occupied model compared to the unoccupied 

model may also stem from the lower amount of training data.  

Table 32 Performance of the Occupied and Unoccupied Floor Regression Models 

 Adjusted R2 RMSE Degree of Freedom 

Occupied 0.6787 0.4644 7010 

Unoccupied 0.7859 0.4805 86849 

The floor slab occupied regression model resulted in the majority of the variables having p-

values within the 99% confidence interval, with the exception of the plug load, as shown in 

Table 33. Through inspection of the t-values, the largest influences on the floor temperature are 

the ambient test cell and hallway temperature, the left and right ventilation duct supply air 

temperature, the supply air flow rate from the left duct, and temperature of the heater. The 

ventilation duct values are unexpected influences for the floor due to the duct openings being 

high on the test cell wall, closer to the ceiling. Similar to previous models, it is believed that 

the relation to the left duct airflow temperature and hallway temperature are due to the 

consistency in their values, similar to the steady floor temperature. The occupied floor 

regression model omits short wave solar radiation data, as it was eliminated during the 

subtractive regression model fitting process. The short-wave radiation entering the test cell does 

hit and influence a portion of the floor within the cell however, the thermocouple installed on 
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the floor slab is not in the sunlight and therefore indicates no relationship to the short-wave 

radiation. 

Table 33 Student t-test P-values and t-values for Occupied Floor Regression Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝐎𝐜𝐜 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑽𝒓𝒊𝒈𝒉𝒕 𝑻𝒓𝒊𝒈𝒉𝒕 

P-value <2e-16 <2e-16 <2E-16 <2E-16 0.472 <2e-16 <2e-16 <2E-16 <2E-16 

t-value 46.134 33.277 27.998 12.513 -0.719 36.265 -38.829 -22.753 38.124 

 

𝑾𝒑𝒍 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

0.581 <2E-16 <2E-16 <2E-16 

0.552 24.181 11.288 11.763 

All variables within the floor slab unoccupied model have p-values within the 99% confidence 

interval, as shown in Table 34. The unoccupied model is most heavily influenced by the 

ambient temperature of the test cell and hallway, the temperature of the air supply from the 

right ventilation duct, and the heater temperature. Similar to the occupied condition, the 

significance of the air supply temperature for the right duct was unanticipated due to the 

proximity of the duct opening to the floor, as well as, the fact that there is no connection 

between the HVAC system in the test cell to the HVAC system of the space below the test cell. 

The hallway temperature, similar to the occupied condition, is believed to influence the floor 

slab because of its consistency and similarity in value to the ambient test cell temperature. The 

heater temperature is thought to impact the temperature of the floor because this system is also 

installed within the space below the test cell and uses the same hot water loop.  

Table 34 Student t-test P-values and t-values for Unoccupied Floor Regression Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑽𝒓𝒊𝒈𝒉𝒕 𝑻𝒓𝒊𝒈𝒉𝒕 

P-value <2e-16 <2e-16 <2E-16 <2E-16 <2e-16 <2e-16 <2E-16 <2E-16 

t-value 184.547 111.813 84.024 9.171 35.312 -52.505 -39.151 98.768 

 

𝑾𝒑𝒍 𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

<2E-16 <2e-16 3.73E-05 <2E-16 <2E-16 

-70.236 -14.954 4.124 9.707 9.73 
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6.5.4 Spandrel 

The spandrel panel occupied (29) and unoccupied (30) regression models found from the 

subtractive regression analysis are displayed below. 

𝑇𝑆𝑝𝑎𝑛𝑑𝑟𝑒𝑙_𝑆𝑝𝑙𝑖𝑡_𝑂𝑐𝑐

=  −5.817 + 0.096𝑇𝑎𝑚𝑏 + 0.732𝑇ℎ𝑎𝑙𝑙 − 0.004𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + 0.228𝑂𝑐𝑐

− 0.317𝐿𝑖𝑔ℎ𝑡 + 0.037𝑇𝑙𝑒𝑓𝑡 − 5.261𝑉𝑟𝑖𝑔ℎ𝑡 + 0.010𝑇𝑟𝑖𝑔ℎ𝑡

− 0.001𝑄𝑆𝑊𝑅𝑎𝑑 + 0.005𝑄𝐿𝑊𝑅𝑎𝑑 + 0.150𝑇𝑜𝑢𝑡 − 0.152𝑣𝑤𝑖𝑛𝑑 

(29) 

 

𝑇𝑆𝑝𝑎𝑛𝑟𝑒𝑙_𝑆𝑝𝑙𝑖𝑡_𝑈𝑛𝑜𝑐𝑐

=  −2.210 + 0.287𝑇𝑎𝑚𝑏 + 0.477𝑇ℎ𝑎𝑙𝑙 + 0.014𝑇ℎ𝑒𝑎𝑡𝑒𝑟

+ 0.331𝐿𝑖𝑔ℎ𝑡 + 25.150𝑉𝑙𝑒𝑓𝑡 + 0.093𝑇𝑙𝑒𝑓𝑡 + 3.062𝑉𝑟𝑖𝑔ℎ𝑡

− 0.083𝑊𝑝𝑙 − 0.001𝑄𝑆𝑊𝑅𝑎𝑑 + 0.004𝑄𝐿𝑊𝑅𝑎𝑑 + 0.144𝑇𝑜𝑢𝑡

− 0.077𝑣𝑤𝑖𝑛𝑑 

(30) 

 

The regression models demonstrate good performance, as presented in Table 35, with adjusted 

R2 values close to 1. The unoccupied conditions demonstrate the better performance with the 

larger adjusted R2 value and lower RMSE. As previously stated, this may be due to the larger 

amount of training data.  

Table 35 Performance of the Occupied and Unoccupied Spandrel Regression Models 

 Adjusted R2 RMSE Degree of Freedom 

Occupied 0.7907 0.5817 7011 

Unoccupied 0.9337 0.4479 86849 

The occupied spandrel regression model results are shown in Table 36, it had almost all p-

values within the 99% confidence interval, except for the right ventilation duct flow rate that 

resulted in a p-value outside all confidence intervals. The occupied model is most heavily 

influenced by the exterior temperature, the long wave radiation, the temperature of the hallway, 

occupancy count, and the exterior wind speed. The exterior temperature, wind speed, and long 

wave radiation variables were expected to be significant for this model as the spandrel faces 

the exterior. The ambient hallway temperature is believed to influence the spandrel temperature 

more heavily than the ambient temperature of the room due to the hallway temperature usually 

being slightly warmer than the test cell. The hallway ambient temperature could be more 
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representative of the conditions in the corner of the test cell near the spandrel panel. The 

occupancy count was not a foreseen influence for the spandrel temperature. The occupied 

model omits the left duct airflow measurement as well as the plug load due to its elimination 

in subtractive regression fitting process.  

Table 36 Significance of the Variables within the Occupied Spandrel Regression Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝐎𝐜𝐜 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑽𝒓𝒊𝒈𝒉𝒕 𝑻𝒓𝒊𝒈𝒉𝒕 

P-value <2e-16 <2e-16 6.33E-01 <2E-16 4.66E-10 <2e-16 0.115 6.97E-10 <2e-16 

t-value 8.434 32.615 -6.191 21.059 -6.239 8.987 -1.578 6.175 8.434 

 

𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

2.87E-10 <2e-16 <2e-16 <2E-16 

-6.315 23.764 88.354 -15.544 

The unoccupied spandrel regression model, with results shown in Table 37, has all variable p-

values within the 99% confidence interval. The major influencers within this model are the 

exterior temperature, the ambient test cell and hallway temperature, the left vent air supply 

temperature, and the heater temperature. The exterior wall and ambient test cell temperatures 

are expected values for this model as these are the two ambient temperatures surrounding the 

spandrel panel. The heater temperature is believed to be due to the proximity of the heater to 

the panel. The hallway and left vent air supply temperatures were unexpected values for this 

model due to the spandrel panel’s lower thermal mass and more varied temperature 

measurements. Previously, these input variables were believed to be influential because of their 

steady measurements matching the steady surface temperature measurements of the more 

thermally massive floor, ceiling, and exterior wall elements. As these variables are only 

indicated to be significant for the unoccupied model, the spandrel may have steadier 

temperature when the cell is unoccupied, with fewer heat loads. This model omits the airflow 

temperature from the right duct. As stated in the occupied model, the ducts are too far away to 

have significant influence in the regression model.  
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Table 37 Student t-test P-values and t-values for Unoccupied Spandrel Regression Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑽𝒓𝒊𝒈𝒉𝒕 𝑻𝒂𝒎𝒃 𝑾𝒑𝒍 

P-value <2E-16 <2E-16 <2E-16 <2E-16 <2E-16 <2E-16 7.59E-06 <2E-16 <2E-16 

t-value 105.22 108.18 83.83 48.48 18.09 121.06 4.48 105.22 -51.79 

 

𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

<2E-16 <2E-16 <2E-16 <2E-16 

-41.208 72.404 498.377 -34.669 

6.5.5 Window 

The occupied (31) and unoccupied (32) regression models found from the subtractive 

regression analysis are presented below. 

𝑇𝑊𝑖𝑛𝑑𝑜𝑤_𝑆𝑝𝑙𝑖𝑡_𝑂𝑐𝑐

=  −92.3 − 0.132𝑇𝑎𝑚𝑏 + 1.161𝑇ℎ𝑎𝑙𝑙 − 0.014𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + 0.246𝑂𝑐𝑐

− 0.746𝐿𝑖𝑔ℎ𝑡 − 88.670𝑉𝑙𝑒𝑓𝑡 + 0.060𝑇𝑙𝑒𝑓𝑡 + 0.006𝑇𝑟𝑖𝑔ℎ𝑡

+ 0.001𝑄𝑆𝑊𝑅𝑎𝑑 + 0.006𝑄𝐿𝑊𝑅𝑎𝑑 + 0.241𝑇𝑜𝑢𝑡 − 0.278𝑣𝑤𝑖𝑛𝑑  

 

(31) 

 

𝑇𝑊𝑖𝑛𝑑𝑜𝑤_𝑆𝑝𝑙𝑖𝑡_𝑈𝑛𝑜𝑐𝑐

=  2.0 + 0.103𝑇𝑎𝑚𝑏 + 0.526𝑇ℎ𝑎𝑙𝑙 + 0.017𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + 0.276𝐿𝑖𝑔ℎ𝑡

+ 105.200𝑉𝑙𝑒𝑓𝑡 + 0.118𝑇𝑙𝑒𝑓𝑡 + 29.480𝑉𝑟𝑖𝑔ℎ𝑡 − 0.029𝑇𝑟𝑖𝑔ℎ𝑡

− 0.035𝑊𝑝𝑙 − 0.001𝑄𝑆𝑊𝑅𝑎𝑑 + 0.008𝑄𝐿𝑊𝑅𝑎𝑑 + 0.244𝑇𝑜𝑢𝑡

− 0.193𝑣𝑤𝑖𝑛𝑑 

(32) 

 

The window regression model results demonstrate good prediction performance with adjusted 

R2 values close to 1, as shown inn Table 38.  The RMSE values for these models, however, are 

the largest of all the regression models. This is most likely due to the low thermal inertia and 

resistivity properties of the window, resulting in surface temperatures that vary more than the 

other building elements.  

 

 



 112 
 

Table 38 Performance of the Occupied and Unoccupied Window Regression Models 

 Adjusted R2 RMSE Degree of Freedom 

Occupied 0.7758 0.8616 7011 

Unoccupied 0.9153 0.735 86849 

The window regression model, under occupied conditions, demonstrates all p-values within the 

99% confidence interval, as shown in Table 39. The largest influences on the window 

temperature, determined from the t-values, are the exterior temperature, the hallway 

temperature, the wind speed and the long wave solar radiation. It is noted that the influence of 

the exterior temperature however, is significantly greater than all other variables within this 

model. The exterior conditions such as the exterior temperature and wind speed were expected 

to have significant influences on the window temperature due to the unit facing the exterior. 

The hallway temperature is hypothesized to have a larger influence than the test cell’s ambient 

temperature for similar reasons to the spandrel panel. The test cell ambient measurements are 

taken at a location far from the window; the heater below the window is likely creating a 

warmer ambient temperature than what is recorded by the test cell ambient measurement 

device. As the ambient temperature in the hallway is usually slightly warmer than the test cell, 

it has a closer resemblance to the ambient air close to the window pane. The occupied model 

eliminated the plug load as well as the right duct air flow measurements during the subtractive 

regression analysis. As previously stated, the air duct measurement has no influence on the 

window because it is too far away, and the plug load data is eliminated as it is not the true value. 

Table 39 Student t-test P-values and t-values for Occupied Window Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝐎𝐜𝐜 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑻𝒓𝒊𝒈𝒉𝒕 

P-value 3.45E-14 <2e-16 <2E-16 <2E-16 <2E-16 <2e-16 2.69E-16 0.000291 

t-value -7.596 34.04 -14.576 15.275 -9.778 -8.438 8.207 3.625 

 

𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

3.33E-09 <2e-16 <2e-16 <2E-16 

5.922 17.217 94.744 -19.178 

The unoccupied window regression model, with results shown in Table 40, demonstrates all 

variables with p-values within the 99% confidence interval. The largest influences on the 

window surface temperature are the exterior temperature, the longwave solar radiation, the 
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heater temperature, the hallway temperature, and the speed of the wind. The exterior conditions 

similar to the occupied model is expected to be the most significant influencers of this model 

due to the low thermal mass of the window and its placement on the exterior wall of the 

building. It is noted, similar to the previous model, the exterior temperature has significantly 

higher degree of influence in comparison to all other variables. One of the only differences in 

this model in comparison to the occupied condition is the influence of the heater temperature. 

This is hypothesized to be due to the lower amount of heating loads during unoccupied 

conditions, which makes the heater load more significant.  

Table 40 Student t-test P-values and t-values for Unoccupied Window Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑽𝒓𝒊𝒈𝒉𝒕 𝑻𝒓𝒊𝒈𝒉𝒕 𝑾𝒑𝒍 

P-value <2E-16 <2e-16 <2E-16 <2E-16 <2e-16 <2E-16 <2E-16 <2E-16 <2E-16 

t-value 22.922 72.72 62.895 24.554 37.83 81.192 19.086 -45.285 -13.004 

 

𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

<2E-16 <2e-16 <2e-16 <2E-16 

-21.999 84.406 499.845 -53.163 

6.5.6 Interior Wall 

The interior wall occupied (33) and unoccupied (34) regression models found from the 

subtractive linear regression analysis are presented below. 

𝑇𝐼𝑛𝑡𝑊𝑎𝑙𝑙_𝑆𝑝𝑙𝑖𝑡_𝑂𝑐𝑐

=  74.86 + 0.062𝑇𝑎𝑚𝑏 + 0.599𝑇ℎ𝑎𝑙𝑙 − 0.006𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + 0.226𝑂𝑐𝑐

− 0.482𝐿𝑖𝑔ℎ𝑡 − 36.710𝑽𝒍𝒆𝒇𝒕 + 0.065𝑇𝑙𝑒𝑓𝑡 − 34.48𝑉𝑟𝑖𝑔ℎ𝑡

+ 0.012𝑇𝑟𝑖𝑔ℎ𝑡 − 0.002𝑄𝑆𝑊𝑅𝑎𝑑 + 0.003𝑄𝐿𝑊𝑅𝑎𝑑 + 0.027𝑇𝑜𝑢𝑡

− 0.093𝑣𝑤𝑖𝑛𝑑 

 

(33) 

 

𝑇𝐼𝑛𝑡𝑊𝑎𝑙𝑙_𝑆𝑝𝑙𝑖𝑡_𝑈𝑛𝑜𝑐𝑐

=  13.80 + 0.269𝑇𝑎𝑚𝑏 + 0.586𝑇ℎ𝑎𝑙𝑙 + 0.010𝑇ℎ𝑒𝑎𝑡𝑒𝑟 + 0.180𝐿𝑖𝑔ℎ𝑡

− 9.986𝑽𝒍𝒆𝒇𝒕 + 0.079𝑇𝑙𝑒𝑓𝑡 − 14.38𝑉𝑟𝑖𝑔ℎ𝑡 + 0.009𝑇𝑟𝑖𝑔ℎ𝑡 − 0.075𝑊𝑝𝑙

− 0.001𝑄𝑆𝑊𝑅𝑎𝑑 + 0.001𝑄𝐿𝑊𝑅𝑎𝑑 + 0.013𝑇𝑜𝑢𝑡 − 0.022𝑣𝑤𝑖𝑛𝑑  

(34) 
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The results from the interior wall regression models, shown in Table 41, demonstrate 

contradicting results where the unoccupied model shows good performance while the occupied 

model does not. The unoccupied model has an adjusted R2 result close to 0.9, and low RMSE. 

The occupied model however, has poor adjusted R2 value, closer to 0.5, and large RMSE. These 

results are believed to be due to model not considering the airflow within the test cell which, 

has significant effects on this surface temperature due to its low thermal mass and it’s proximity 

to the ventilation output. 

Table 41 Performance of the Occupied and Unoccupied Interior Wall Regression Models 

 Adjusted R2 RMSE Degree of Freedom 

Occupied 0.5323 0.549 7010 

Unoccupied 0.877 0.3303 86849 

The results from the occupied interior wall, presented in Table 42, demonstrate all variables 

with p-values within the 99% confidence interval. The t-values indicate that the variables with 

the largest influence on the model are the hallway temperature, the occupancy, the outdoor 

temperature, and the long wave radiation. The influence of the exterior temperature along with 

the long wave radiation, were unexpected results in this model due to the distance between the 

monitored interior wall and the exterior wall. The plug load was eliminated during the 

subtractive process, as seen in the other models, due to the values used within this research not 

being the true measurements. 

Table 42 Student t-test P-values and t-values for Occupied Interior Wall Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝐎𝐜𝐜 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑽𝒓𝒊𝒈𝒉𝒕 

P-value 2.75E-08 <2e-16 <2e-16 <2e-16 <2e-16 5.34E-07 <2e-16 7.59E-06 

t-value 5.563 27.202 -9.503 22.139 -9.90 -5.018 12.942 -10.029 

 

𝑻𝒓𝒊𝒈𝒉𝒕 𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

3.30E-14 <2e-16 <2e-16 <2e-16 <2E-16 

7.602 -11.963 16.14 16.716 -10.058 

The results from the unoccupied model, shown in Table 43, have all the variables with p-value 

within the 99% confidence interval. The t-values demonstrate the ambient test cell and hallway 

temperature, left vent air supply temperature, temperature of the heater, and outdoor 



 115 
 

temperature as the variables with the most significance on the regression model. Unlike the 

occupied model, the ambient test cell temperature is one of the most significant variables along 

with the hallway temperature, as was expected for the interior wall. The outdoor temperature’s 

impact on the interior wall temperature again is an unforeseen variable in this model, as the 

interior wall is far within the modeling space away from the exterior wall.  

Table 43 Student t-test P-values and t-values for Unoccupied Interior Wall Model 

 𝑻𝒂𝒎𝒃 𝑻𝑯𝒂𝒍𝒍 𝑻𝑯𝒆𝒂𝒕𝒆𝒓 𝑳𝒊𝒈𝒉𝒕 𝑽𝒍𝒆𝒇𝒕 𝑻𝒍𝒆𝒇𝒕 𝑽𝒓𝒊𝒈𝒉𝒕 𝑻𝒓𝒊𝒈𝒉𝒕 𝑾𝒑𝒍 

P-value 2.75E-08 <2e-16 <2e-16 <2e-16 1.36E-15 <2e-16 <2e-16 <2e-16 <2e-16 

t-value 133.22 180.18 79.83 35.59 -7.99 120.54 -20.71 32.66 -63.04 

 

𝑸𝑺𝑾𝑹𝒂𝒅 𝑸𝑳𝑾𝑹𝒂𝒅 𝑻𝒐𝒖𝒕 𝒗𝒘𝒊𝒏𝒅 

<2e-16 <2e-16 <2e-16 <2E-16 

-30.03 23.60 60.84 -13.42 

 

6.5.7 Summary of G2 model  

The second-generation model replaces all RC network building element branches with linear 

regression models. Two linear regression models, a general model and a split occupied-

unoccupied model, were created using subtractive regression analysis. The models were 

compared for better surface temperature prediction ability. The results from the simulations 

demonstrate the split regression model having better surface temperature prediction accuracy 

for all elements except for the ceiling slab. The final G2 model is therefore a grey box model 

with split regression models representing the exterior wall, window, spandrel, floor, and interior 

wall, and a general model for the ceiling. The results from this analysis also demonstrated the 

window, spandrel panel, and exterior wall having significantly worse WAPE values compared 

to the other building elements. 

Overall, the significant variable analysis within each building elements regression model 

indicated the plug load data, lighting, and right ventilation air supply and temperature are not 

significant variables. These variables were either eliminated from the regression equation 

through the subtractive regression fitting process or were present within the regression models 
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with minimal influence. The right ventilation data is the most unexpected result from this 

analysis as it is the main conditioning vent to the test cell.  

6.6 G3 Model: Neural Network Analysis 

To improve the surface temperature prediction performance of the exterior wall, window, and 

spandrel panel, neural networks were created for each element. The neural nets were trained 

using the same cleaned data set used to train the linear regression models.  

The results from the hidden layer optimisation are presented in Table 44. The findings 

demonstrate the window unit having a much smaller optimal hidden layer size than the other 

two models and had much higher RMSE. This is most likely due to the low thermal mass of 

the window making the temperature harder to predict.  

Table 44 Hidden Layer Optimisation for each Neural Network 
 

Exterior Wall Spandrel Window 

Hidden Layer Size 30 27 19 

RMSE 0.2354 0.2427 0.4240 

Three new grey box models were created that replaced the split linear regression model of the 

window, spandrel panel, and exterior wall with their neural net models. The new grey box 

models were simulated for all eleven simulation days to compare the surface temperature 

prediction results of the neural networks to the split linear regression models. The results shown 

in Table 45, demonstrate that none of the neural network models performed better than the split 

linear regression models. Therefore, none of the neural networks were incorporated into the 

grey box model.  
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Table 45 Comparison of the Split Regression Models and the Neural Network Models for the 

Exterior Wall, Spandrel Panel and Window 

Split Regression Model 

  Exterior Wall Spandrel Window 

RMSE 1.382 1.007 1.240 

MAE 0.791 0.706 0.777 

WAPE 0.167% 0.202% 0.257% 

Neural Network Model 

  Exterior Wall Spandrel Window 

RMSE 1.748 1.151 3.212 

MAE 1.036 0.771 1.653 

WAPE 0.219% 0.222% 0.570% 

 

6.7 Final Model 

Based on the results from the model variations presented, the final model for this research is 

the G2 model incorporating split linear regression models to represent the building elements. 

This model incorporates the RC network representations of the ambient temperature and 

sensible heat loads, with the linear regression equations for each of the building elements, see 

Simulink model images in Appendix D. The only input parameter for this grey box model is the 

initial ambient test cell temperature. All the result graphs below display the error associated 

with the measurement devices, 0.4oC for ambient temperature measurements [49], and 0.5oC 

for the calibrated thermocouple measurements [48]. 

The results from the November 17th simulation are summarized in Table 46, this simulation 

demonstrated prediction accuracy within 3% for all the building element surface temperatures 

(Figure 43) and within 0.5% for the ambient temperature (Figure 44). Observations from this 

model include underprediction of all of building element temperatures except for the interior 

wall. The exterior wall demonstrated the worst prediction results, varying around 3% while the 

other building elements vary within the 1.5% error range. The window unit demonstrates the 

largest variance in error varying between 2.3% underprediction and 1.2% overprediction. 

Overall, the results of the simulation were good with the ambient temperature predicted to 

within 0.1oC. 
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Table 46  Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for November 17, 2017 (Tout=0.93oC, wind speed ranging from 

0.5 to 1.5 m/s) 

Prediction Window  
0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior 

Wall 

-2.85% -2.91% -2.60% -2.96% -2.85% -2.81% -2.56% 

Ceiling -0.26% -0.54% -0.33% -0.36% -0.22% 0.00% 0.20% 

Floor -1.59% -1.36% -1.12% -1.11% -1.26% -1.00% -0.80% 

Spandrel -0.72% -0.59% -0.93% -0.95% -0.51% -0.64% 0.00% 

Window -0.13% -0.47% -2.29% -1.68% 0.03% -0.17% 1.20% 

Interior Wall 0.12% -0.13% 0.09% 0.06% 0.23% 0.05% 0.27% 

Ambient 0.00% -0.02% 0.40% 0.39% 0.38% 0.35% -0.08% 

 

Figure 43 November 17, 2017 Prediction Error for all Building Elements along with Ambient 

Temperature 
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Figure 44 November 17th, 2017 Predicted vs Actual Ambient Temperature  

The results from the November 29th simulation, presented in Table 47, demonstrate poor 

surface temperature predictions for the spandrel panel and window unit. The simulation begins 

with the spandrel temperature underpredicting by 4% (Figure 45) and the window under 

predicting by close to 11% (Figure 45). Both results, however, improve throughout the 

simulation until the 180-minute Prediction Window when the spandrel is below 1% error and 

the window below 2%. The linear regression results for the spandrel and window models 

demonstrate two of the significant variables influencing their temperature prediction is the 

exterior temperature and the wind speed. The underprediction results from this model are 

surprising as this model has a warmer exterior temperature than the previous simulation on 

November 17th. The wind speeds for this model however, are higher than the speeds for 

November 17th, and could be the reason why both of these elements have worse prediction 

results. The higher wind speeds increase the amount of convective heat loss on the exterior of 

the window, this convective heat loss decreases throughout the simulation as the wind speeds 

decrease. It is observed in Figure 45, that all of the elements have an upward slope near the end 

of the simulation. This is believed to be caused by the ambient temperature prediction, which 

influences all of the surface temperature linear regression models. Within Figure 47, the actual 

temperature decreases throughout the simulation, while the predicted ambient temperature 

stays relatively constant. This results in a temperature difference of 0.3oC by the end of the 

simulation. This deviation could be a measurement fluctuation in the ambient temperature 

sensor, as is it has a measurement accuracy of +/- 0.4oC. The over prediction of the ambient 

temperature at the 180-minute Prediction Window could be the cause of the over predictions 

seen in the building elements. 
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Table 47 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for November 29, 2017 (Tout=0.93oC, wind speed ranging from 

0.5 to 1.5 m/s) 

Prediction Window  
0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minute

s 

Exterior Wall 0.80% 0.59% 0.80% 0.44% 1.26% 1.77% 2.30% 

Ceiling -0.59% -0.71% -0.52% -0.51% -0.25% 0.57% 1.02% 

Floor 0.27% 0.58% 0.25% 0.38% 1.11% 2.00% 2.14% 

Spandrel -3.90% -3.64% -3.91% -3.54% -2.84% -1.34% 0.84% 

Window -10.60% -10.48% -10.18% -9.17% -8.91% -5.88% -1.91% 

Interior Wall 0.66% 0.38% 0.30% 0.32% 0.63% 1.16% 1.62% 

Ambient 0.00% 0.00% -0.01% 0.43% 0.88% 0.48% 1.48% 

 

Figure 45 November 29, 2017 Prediction Error for all Building Elements along with Ambient 

Temperature 

 

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

0 15 30 45 60 120 180

P
re

d
ic

ti
o

n
 E

rr
o

r 
(%

)

Prediction Window (minutes)

Exterior Wall

Ceiling

Floor

Spandrel

Window

IntWall

Ambient



 121 
 

 

Figure 46 November 29th, 2017 Predicted vs Actual Surface Temperature of the Window and 

Spandrel Panel 

 

Figure 47 November 29th, 2017 Predicted vs Actual Ambient Temperature 

The January 6th simulation, illustrated in Table 48 and Figure 48, demonstrated prediction 

results with all of the building elements predicted to within 6 %, and ambient temperature 

predicted to within 1.5%. This simulation demonstrates the window, spandrel panel, and 

exterior wall having the worst prediction results. The window and spandrel underpredictions, 

shown in Figure 49, may be due to the extreme cold temperatures of this simulation. The 

variations seen in the prediction error is believed to be caused by the varying wind speed for 

this simulation. The ambient temperature results, shown in Figure 50, demonstrate predicted 

accuracy to within 0.3oC, despite the prediction errors of the façade elements. 
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Table 48 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for January 6, 2018 (Tout=-19.19oC, wind speed ranging from 

0.5 to 1.5 m/s) 

Prediction Window 

  0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior Wall 3.02% 0.48% -0.60% -0.91% 0.20% 0.22% 0.35% 

Ceiling -2.00% -1.94% -1.95% -2.08% -2.05% -2.07% -1.60% 

Floor -1.86% -1.86% -1.89% -1.73% -1.82% -1.76% -1.34% 

Spandrel -3.42% -3.13% -2.58% -3.41% -2.67% -1.64% -0.15% 

Window -5.63% -3.92% -1.50% -4.26% -3.59% 0.38% 1.48% 

Interior Wall -1.44% -1.36% -1.38% -1.53% -1.50% -1.05% -0.53% 

Ambient 0.00% 0.01% 0.01% 0.02% -0.45% -0.91% -1.35% 

 

Figure 48 January 6th, 2018 Prediction Error for all Building Elements along with Ambient 

Temperature 
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Figure 49 January 6th, 2018 Predicted vs Actual Surface Temperature of the Window and 

Spandrel Panel 

 

Figure 50 January 6th, 2018 Predicted vs Actual Ambient Temperature 

The December 31st simulation demonstrates mixed prediction results, as illustrated in Table 49 

and Figure 51. The predicted surface temperature of the window is off by as much as 9%, with 

the spandrel panel off by up to 4%. Comparatively, the other building elements had good 

prediction results, to within 2% accuracy. The 1oC deviation in predicted window temperature 

and 0.6oC deviation in spandrel temperature at the 30-minute Prediction Window can be seen 

in Figure 52 to be caused by the predicted temperatures increasing when the actual temperatures 

remain steady. This is believed to be due to the large longwave radiation values in this 

simulation, which is a significant input variable in both window and spandrel panel regression 
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models. Despite these larger prediction errors, the ambient temperature is still predicted to 

within 0.3oC of the actual temperature, as shown in Figure 53. 

Table 49 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for December 31, 2017 (Tout=-16.04oC, wind speed ranging 

from 0.5 to 1.5 m/s, and solar radiation 400W/m2) 

Prediction Window 

  0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior Wall 1.31% 1.483% 1.863% 1.772% 1.587% 0.442% 0.393% 

Ceiling -0.55% -0.479% -0.102% -0.158% -0.098% -0.084% 0.057% 

Floor 0.00% 0.424% 0.184% 0.759% 0.379% 0.424% 0.271% 

Spandrel 1.06% 1.213% 3.578% 1.737% 1.979% -0.034% 0.487% 

Window 2.92% 3.868% 8.687% 0.900% -2.471% -2.216% -2.311% 

Interior Wall -0.19% -0.048% 0.362% 0.312% -0.078% 0.455% 0.118% 

Ambient 0.00% 0.004% 0.013% 0.024% 0.036% 1.044% 1.117% 

  

Figure 51 December 31st, 2017 Prediction Error for all Building Elements along with 

Ambient Temperature 
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Figure 52 December 31st, 2017 Predicted vs Actual Surface Temperature for the Window and 

Spandrel Panel 

 

Figure 53 December 31st, 2017 Predicted vs Actual Ambient Temperature 

The simulation for January 13th demonstrates prediction accuracy to within 2% for all of the 

building elements except the window, as illustrated in Table 50 and Figure 54. The window 

prediction error increases to close to 10% at the 60-minute prediction time. The window data, 

shown in Figure 55, demonstrates a jump in the measured temperature around the 60th minute. 

None of the data collected from the test cell indicate major changes around the 60th minute 

which, is why the predicted temperature does not increase with the actual data. This jump must 

be caused by a heat source not modeled within this grey box model. The predicted window 

temperature however can be observed to gradually increase throughout the simulation, believed 

to be caused by the gradual increase in exterior temperature and increase in long wave radiation. 

Similar to previous simulations, despite the prediction error for the window, the ambient 
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temperature is predicted to within 0.2oC (Figure 56). It is noted that this simulation 

demonstrates greater variance in the actual ambient temperature measurements compared to 

other simulation days which could be caused by the higher right duct ventilation rate increasing 

the degree of air mixing within the test cell. 

Table 50Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for January 13, 2018 (Tout=-13.04oC, wind speed ranging from 

0 m/s, and solar radiation 400W/m2) 

Prediction Window 

  0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior Wall 2.04% 1.70% 1.41% 1.91% 2.02% 1.71% 2.11% 

Ceiling -0.65% -0.62% -0.65% -0.65% -0.50% -0.10% -0.53% 

Floor 0.17% 0.16% 0.01% -0.06% 0.00% 0.22% 0.22% 

Spandrel -2.26% -1.42% -1.21% -1.64% -2.39% -2.46% -1.65% 

Window -5.40% -2.90% -3.87% -8.77% -9.68% -4.75% -4.12% 

Interior Wall -0.61% -0.60% -0.63% -0.64% -0.93% -0.50% -0.92% 

Ambient 0.00% -0.89% -0.47% 0.39% -0.94% 0.35% 0.78% 

 

Figure 54 January 13th, 2018 Prediction Error for all Building Elements along with Ambient 

Temperature 

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

2.00%

4.00%

0 15 30 45 60 120 180

P
re

d
ic

ti
o

n
 E

rr
o

r 
(%

)

Prediction Window (minutes)

Exterior Wall

Ceiling

Floor

Spandrel

Window

IntWall

Ambient



 127 
 

 

Figure 55 January 13th, 2018 Predicted vs Actual Surface Temperature for the Window and 

Spandrel Panel 

 

Figure 56 January 13th, 2018 Predicted vs Actual Ambient Temperature 

The results from the January 2nd simulation, summarized in Table 51 and Figure 57, 

demonstrate over prediction, between 2% to 14%, for all building elements. The prediction 

error of the interior elements is observed to remain constant throughout the simulation with the 
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the least accurate temperature predictions. The prediction error for the window starts at 8% and 

increases to 13%, with similar results for the spandrel panel starting at 6% and ending close to 

9%. The spandrel panel and window temperatures are observed to be off by 1.5oC and 1.7oC 
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exterior temperature and higher wind speeds dictating the linear regression models would be 

thought to produce underpredicted temperature results. The gradual increase in predicted 

temperature for both elements is believed to be due to the increase in exterior temperature 

throughout this simulation, and increasing long wave radiation value. Similar to previous 

simulations, the observed upwards trend of the building elements at the end of the simulation 

is believed to be due to the ambient temperature prediction results (Figure 59). The ambient 

temperature demonstrated prediction accuracy to within 1.5%, with the temperature being 

overpredicted by 0.3oC at the 180-minute Prediction Window.  

Table 51 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for January 2, 2018 (Tout=-10.02oC, wind speed ranging from 

2-4 m/s, and solar radiation 50W/m2) 

Prediction Window 

  0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior Wall 1.00% 2.97% 2.55% 2.77% 3.32% 3.76% 4.45% 

Ceiling 1.18% 1.29% 1.41% 1.49% 1.57% 2.04% 2.52% 

Floor 0.80% 4.51% 4.52% 4.66% 4.77% 4.76% 4.89% 

Spandrel 2.61% 5.73% 6.13% 6.66% 6.97% 8.22% 8.98% 

Window 7.81% 7.58% 7.64% 8.74% 10.03% 10.91% 12.97% 

Interior Wall 1.12% 3.32% 3.44% 3.53% 3.59% 3.50% 3.96% 

Ambient 0.00% 0.08% 0.16% 0.25% 0.33% 1.16% 1.52% 
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Figure 57 January 2nd, 2018 Prediction Error for all Building Elements along with Ambient 

Temperature 

 

Figure 58 January 2nd, 2018 Predicted vs Actual Surface Temperature of the Window and 

Spandrel Panel 

 

Figure 59 January 2nd, 2018 Predicted vs Actual Ambient Temperature 
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caused by the occupancy count increasing to 3 people at the 30-minute prediction time and 

decreasing back to zero occupants at the 90-minute time. The ambient temperature prediction 

for the room indicates close precision until the 90th minute when the actual ambient temperature 

decreases and the predicted ambient continues to increase (Figure 62). This is believed to be 

due to the lighting that continues to be on in the room after the occupants leave. Despite these 

discrepancies, the ambient temperature is predicted to within 0.3oC. 

Table 52 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for February 12, 2018 (Tout=-2.51oC, wind speed ranging from 

0.5-2 m/s, and solar radiation 120W/m2) 

Prediction Window 

  0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior Wall -0.08% -1.52% -0.01% 0.95% 0.33% -2.63% -3.71% 

Ceiling 0.05% 0.50% 1.83% 1.83% 1.76% 0.26% -1.61% 

Floor -0.02% -1.07% 2.68% 2.18% 1.92% -0.79% -1.35% 

Spandrel 0.05% 0.14% 2.26% 3.78% 2.56% 1.41% -1.73% 

Window -0.52% 1.28% 7.32% -0.68% 0.15% 5.10% -0.18% 

Interior Wall -0.13% -1.31% 0.11% -1.64% -1.30% -4.09% -4.06% 

Ambient 0.00% 0.05% -0.26% -0.06% -0.32% 0.16% 1.22% 

 

Figure 60 February 12th, 2018 Prediction Error for all Building Elements along with Ambient 

Temperature 
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Figure 61 February 12th, 2018 Predicted vs Actual Surface Temperature for the Window and 

Spandrel Panel. 

 

Figure 62 February 12th, 2018 Predicted vs Actual Ambient Temperature 

The January 8th simulation demonstrates unique prediction results with the window, spandrel 

panel, and interior wall following the same prediction error pattern as shown in Table 53 and 

Figure 63. These elements display high prediction errors at the beginning of the simulation, 

settle in the middle. before slightly increasing again near the end.  All three of these elements 

demonstrate a sharp increase in predicted error at the 15-minute Prediction Window, as shown 

in Figure 64. This is believed to be due to an increase in long wave radiation at this time, which 

has significant influence on all three regression models, along with a change in occupancy 

status. At the 15-minute mark the simulation transitions from the unoccupied regression models 
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to the occupied regression models due to occupants entering the test cell. The predicted ambient 

temperature steadily increases throughout this simulation due to the presence of the occupants 

as well as the interior lighting being on for the entire simulation. Overall, the ambient 

temperature is predicted to within 1.7% accuracy, with deviation of 0.35oC at the 180-minute 

Prediction Window, as illustrated in Figure 65.  

Table 53 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for January 8, 2018 (Tout=0.5oC, wind speed ranging from 1-2.5 

m/s, and solar radiation 50W/m2) 

Prediction Window 

  0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior Wall -1.10% -0.94% -0.78% -0.87% -2.60% -0.85% -2.40% 

Ceiling 0.64% 2.29% 1.72% 1.25% 0.68% 0.60% 0.94% 

Floor -0.98% -0.23% 0.14% -0.24% -0.36% 0.80% 0.14% 

Spandrel 0.43% 4.95% 2.47% 0.97% -0.14% -0.82% 1.61% 

Window 0.06% 5.98% 2.53% 0.77% -0.72% -0.55% 1.36% 

Interior Wall -0.92% 2.07% 1.09% 0.38% -0.54% -1.09% 0.52% 

Ambient 0.00% 0.09% 0.25% 0.40% 0.54% 0.76% 1.65% 

 

Figure 63 January 8th, 2018 Prediction Error for all Building Elements along with Ambient 

Temperature 
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Figure 64 January 8th, 2018 Predicted vs Actual Surface Temperature for the Window, 

Spandrel Panel, and Interior Wall 

 

Figure 65 January 8th, 2018 Predicted vs Actual Ambient Temperature 
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propagated within the linear regression equation. All of the other building elements within this 

model demonstrate prediction accuracy to within 7%. The ambient temperature has very good 

prediction results, as shown in Figure 68,  despite the high error in the exterior wall temperature; 

the predicted ambient temperature is within 0.2oC of the actual temperature. 

Table 54 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for February 7, 2018 (Tout=-3.57oC, wind speed ranging from 

0.5-1.5m/s, and solar radiation 50W/m2) 

Prediction Window 

  0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior Wall -17.34% -18.32% -18.81% -19.20% -17.75% -17.07% -15.78% 

Ceiling -3.06% -3.47% -3.07% -3.55% -3.49% -4.34% -4.12% 

Floor 0.10% -0.66% -0.89% -1.00% -1.14% -2.70% -2.06% 

Spandrel -3.75% -5.56% -4.41% -5.45% -6.54% -6.36% -4.85% 

Window -5.73% -6.62% -2.60% -5.97% -6.42% -6.25% -3.88% 

Interior Wall -0.66% -2.51% -2.75% -4.01% -5.81% -8.82% -8.25% 

Ambient 0.00% 0.34% 0.70% -0.03% -0.23% -0.40% 0.42% 

 

Figure 66 February 7th, 2018 Prediction Error for all Building Elements along with Ambient 

Temperature 
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Figure 67 February 7th, 2018 Predicted vs Actual Surface Temperature of the Exterior Wall 

 

Figure 68 February 7th,2018 Predicted vs Actual Ambient Temperature 

The simulation results for December 8th, illustrated in Table 55 and Figure 69, are similar to 
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model, similar to previous simulations, can be connected to higher ventilation airflow rates at 

this time.  

Table 55 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for December 8, 2017 (Tout=1.04oC, wind speed ranging from 

2.5-3.5m/s, and solar radiation 50W/m2) 

Prediction Window 

  0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior Wall 1.54% 3.66% 2.52% 0.05% 2.77% 0.90% 1.86% 

Ceiling 1.37% 1.37% 1.91% 1.44% 1.06% 1.64% 0.84% 

Floor 1.12% 2.62% 2.61% -0.25% -0.82% -0.11% 1.37% 

Spandrel 1.34% -0.36% 0.25% 4.63% 0.35% 0.63% 1.08% 

Window 2.61% 0.14% 0.18% 8.05% 1.97% 1.59% 1.72% 

Interior Wall -0.52% -0.75% -0.73% 2.56% -0.60% -1.23% -1.89% 

Ambient 0.00% -0.39% 0.14% 0.68% 0.31% -0.23% 0.85% 

 

Figure 69 December 8th, 2017 Prediction Error for all Building Elements along with Ambient 

Temperature 
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Figure 70 December 8th, 2017 Predicted vs Actual Surface Temperature for the Window, 

Spandrel Panel, and Interior Wall 

 

Figure 71 December 8th, 2017 Predicted vs Actual Ambient Temperature 

The simulation for December 5th demonstrated all of the building element surface temperatures 

being underpredicted, as shown in Table 56 and Figure 72. The window and spandrel results 

demonstrate much lower predicted temperatures until the 45-minute Prediction Window, when 

both temperatures have a significant increase (Figure 73). This jump is caused by the simulation 

changing from the occupied regression models to the unoccupied regression models, as the 

occupancy drops to 0 at the 45-minute Prediction Window. All of the other building elements 

have a relatively constant prediction error within 7%. The ambient temperature for this 

simulation displays prediction results within 0.1oC of the actual temperature for the entire 

simulation, as illustrated in Figure 74. 
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Table 56 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for December 5, 2017 (Tout=10.93oC, wind speed ranging from 

2-4m/s, and solar radiation 50W/m2) 

Prediction Window 

  0 

minutes 

15 

minutes 

30 

minutes 

45 

minutes 

60 

minutes 

120 

minutes 

180 

minutes 

Exterior Wall -4.25% -4.46% -2.71% -8.37% -8.68% -9.44% -10.26% 

Ceiling -6.41% -6.50% -6.87% -6.16% -6.02% -6.90% -6.87% 

Floor -5.31% -6.04% -5.39% -5.12% -4.41% -5.07% -5.62% 

Spandrel -9.20% -8.83% -6.38% -2.16% -3.33% -5.48% -6.98% 

Window -15.33% -16.30% -15.49% -3.26% -4.77% -7.04% -8.21% 

Interior Wall -6.80% -7.15% -5.38% -4.72% -5.35% -6.57% -7.34% 

Ambient 0.00% -0.10% -0.22% -0.33% -0.43% 0.33% -0.46% 

 

Figure 72 December 5th, 2017 Prediction Error for all Building Elements along with Ambient 

Temperature 
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Figure 73 December 5th, 2017 Predicted vs Actual Surface Temperature for the Window and 

Spandrel Panel 

 

Figure 74 December 5th, 2017 Predicted vs Actual Ambient Temperature 
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in the prediction results caused by the model switching between occupied and unoccupied 

regression models. These elements were impacted the most due to their low thermal mass and 

resistivity properties. It can be observed in the regression model analysis that these models, as 

well as the interior wall, had higher RMSE and lower adjusted R2 values compared to the other 

building elements. 

The ambient temperature was predicted for all simulation days within 1.5% of the actual value 

despite the large surface temperature prediction errors for the building elements. These results 

are all within the measurement error of the ambient temperature sensor of the test cell. It is 

believed that the accuracy of the predicted ambient temperature is mostly due to the optimized 

internal mass heat capacity value. One observation from these results is a strong influence from 

the interior lighting heat load on the predicted ambient temperature which, led to overprediction 

of the ambient temperature in multiple occupied simulations.  
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6.9 Overall Summary of Results 

The ambient temperature prediction results at the 180-minute Prediction Window for the G1v1, 

G1v3, and Final Model (G2) are compared in Figure 75. As the neural network analysis 

demonstrated none of the neural networks performing better than the linear regression models, 

no grey box G3 model came to fruition. The results from this comparison demonstrate all three 

models having best and worst prediction performances. The G1v1 model is observed in Figure 

75 to have the most extreme prediction errors for simulation days of February 7th, January 8th, 

and December 8th. The larger errors occur for the G1v1 occupied models due to the use of the 

original internal heat capacity value in this model.  

 

Figure 75 Comparison of Ambient Temperature Prediction Performance for the G1v1, G1v3, 

and Final Model at the Three-Hour Prediction Window. 

To analyze the performance of each grey box model iteration in more detail, the full simulation 

period results for the eleven simulation days are compared. The nighttime occupied simulations 

are shown in Figure 76- Figure 78 .  

The November 17th simulation, shown in Figure 76, demonstrates the G1v1 model having 

decreasing prediction error. This is due to the model predicting a continual decrease in the 
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The G1v3 and Final Model predicted a steadier ambient temperature, due to their higher internal 

heat capacity, resulting in better prediction results. 

 

Figure 76 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of November 17th, 2017 

All three models demonstrated almost identical results for the November 29th simulation, as 

shown in Figure 77.  The major jumps in the prediction error is due to fluctuations in the actual 

ambient temperature measurements. 

 

Figure 77 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of November 29th, 2017 
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by the actual ambient measurement increasing throughout the simulation, either due to 

measurement fluctuation or a heating load not monitored by the test cell. 

 

Figure 78 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of January 6th, 2018 

The results for the daytime unoccupied models demonstrated greater variance between the three 

grey box model performances in comparison to the nighttime unoccupied simulations as shown 

in Figure 79-Figure 81. All three simulation days December 31st  (Figure 79), January 13th 

(Figure 80), and January 2nd (Figure 81) resulted in the Final Model having the greatest 

prediction error with the G1v3 model having the lowest prediction error. The Final Model 

having lower accuracy than the G1v1 model is an unexpected result as it was hypothesized it 

would perform better with the larger internal heat capacity. 

The December 31st simulation shows both the G1v3 and G1v1 models performing better than 

the Final Model, as shown in Figure 79.  This is caused by the prediction performance of the 

surface temperature regression models. The overall shape of the prediction error is caused by 

the actual ambient temperature gradually decreasing near the end of the simulation. As 

previously stated, due to measurement device fluctuations or due to the influence of a heat load 

not monitored in the test cell. 
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Figure 79 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of December 31, 2017 

The January 13th simulation demonstrated the Final Model and the G1v3 model having more 

similar results compared to the December 31st simulation, as shown in Figure 80. The prediction 

error shape is caused by the actual ambient temperature fluctuating throughout the simulation. 

The actual temperature increases at 15-minute Prediction Window, creating the under 

prediction, then decreases at the 45-minute Prediction Window, creating the overprediction, 

and finally increasing again at the 60-minute Prediction Window. 

 

Figure 80 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of January 13, 2018 

The results from the January 2nd simulation, shown in Figure 81, illustrates the G1v3 model 
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the Final Model. The overall prediction error shape for this simulation is caused by a gradual 

decrease in the actual ambient temperature throughout the simulation while the simulations 

predict the ambient to stay at a relatively constant temperature; creating a gradually increasing 

over prediction. 

 

Figure 81 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of January 2, 2018 

The daytime occupied simulations, shown in Figure 82-Figure 86, show the G1v1 model 

consistently having the largest prediction error. These simulations indicate most visibly, of all 

the simulation groups, the improved prediction performance with the larger interior heat 

capacity. For the majority of the simulations, the G1v3 model has the lowest prediction error 

with the exception of the December 5th (Figure 86) simulation day when the Final Model has 

the lowest prediction error. For the February 12th simulation (Figure 82), the Final Model is 

observed to have a prediction performance in the middle of the G1v1 and the G1v3 model 

prediction results, while the January 8th (Figure 83), February 7th(Figure 84), and December 8th 

(Figure 84) models demonstrate the Final Model having comparable results to the G1v3 model.  

The simulation for February 12th demonstrates the Final model performing best for the majority 

of the simulation until the 180-minute Prediction Window, as shown in Figure 83 . The shape 

of the prediction results is caused by the actual ambient temperature behavior which, increases 

at the beginning of the simulation and decreases at the end. This causes all the models to 

overpredict the ambient temperature at the end of the simulation.  

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

0 20 40 60 80 100 120 140 160 180 200

P
re

d
ic

ti
o

n
 E

rr
o

r 
(%

)

Prediction Window (minutes)

G1v1 G1v3 Final Model



 146 
 

 

Figure 82 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of February 12, 2018 

The simulation results for January 8th, illustrated in Figure 83, demonstrates the Final model 

and the G1v3 model having similar prediction error results. The G1v1 model performs 

significantly worse, with prediction error of almost 5%. The actual ambient temperature does 

not deviate very much during this simulation, the Final model and the G1v3 model closely 

replicate this while the G1v1 model increases in temperature throughout the simulation. 

 

Figure 83 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of January 8, 2018 

The February 7th simulation closely resembles the previous January 8th simulation, as shown in 

Figure 84. The G1v1 model is observed to have significantly higher prediction error compared 

to the Final Model and the G1v3 model. This is due to the G1v1 model having lower internal 

heat capacity value. For this simulation period the actual ambient temperature does not have 

significant variance, only a slight increase in temperature at the 45-minute Prediction Window 
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which, can be seen in the prediction error of the three models. The more accurate prediction 

results for the Final Model and the G1v3 model, similar to other simulations, is due to their 

higher internal heat capacity values that slows the thermal dynamics appropriately. 

 

Figure 84 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of February 7, 2018 

The December 8th simulation, illustrated in Figure 85, demonstrates similar results to the 

previous models, with significantly worse prediction performance for the G1v1 model 

compared to the Final and G1v3 models. The jumps in prediction errors are caused by 

fluctuations in the actual ambient temperature measurements for this simulation day. 

 

Figure 85 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of December 8, 2017 

The December 5th simulation, illustrated in Figure 86, demonstrates much different results 

compared to the other occupied simulations. This is due to the higher accuracy in the building 

-2.00%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

0 20 40 60 80 100 120 140 160 180 200

P
re

d
ic

ti
o

n
 E

rr
o

r 
(%

)

Prediction Window (minutes)

G1v1 G1v3 Final Model

-1.00%

-0.50%

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

0 20 40 60 80 100 120 140 160 180 200P
re

d
ic

ti
o

n
 E

rr
o

r 
(%

)

Prediction Window (minutes)

G1v1 G1v3 Final Model



 148 
 

element regression models for this particular day. The prediction error results, where the G1 

models over predicts at the end of the simulation while the Final model is able to accurately 

represent the decrease in temperature, may be due to the Final model’s ability to change the 

regression models based on occupancy which, changes throughout this simulation.  

 

Figure 86 Comparison of the G1v1, G1v3, and the Final Model Performance for the 

Simulation day of December 5, 2017 

6.9.1 Findings from Model Comparison 

Overall, the Final Model does not demonstrate the most accurate prediction results of the three 

model iterations, however it shows similar results to the G1v3 model. This is substantial as the 

G1v3 model represents the building elements with their RC network physical representations. 

The Final Model performing to the same level of accuracy as this model indicates that the 

accuracy of a grey box model can be maintained without the building construction 

specifications. 
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6.10 Sensitivity Analysis 

The goal of this research is to create a grey box thermal dynamic model that expands the range 

of buildings capable of implementing MPC HVAC systems with grey box thermal dynamic 

models. The model created in this study was made specifically for the test cell using a process 

of calculated steps.  A sensitivity analysis was conducted to determine the ability of the model 

to be implemented within a different building for use in MPC HVAC systems. The sensitivity 

analysis conducted includes: investigating the ability to determine the internal heat capacity 

using the final model, analyzing the time period required for training the linear regression 

models to achieve the same level of accuracy, and testing the model outside the training season. 

6.10.1 Heat Capacity with Final Model 

The results from the parameter estimation analysis using the Final Model are compared to the 

results from the G1 model in Table 57. The results from the parameter estimation using the 

Final Model were observed to be for the most part lower than the results from the G1 model. 

As discussed in Section 6.3, it is hypothesized that the true internal heat capacity value of the 

test cell is somewhere between 112kJ/K-250kJ/K. The results from the Final Model parameter 

estimation demonstrated four values within this hypothesized range, as highlighted in Table 57. 

As previously stated, the use of a constant data stream in an optimization algorithm instead of 

the three-hour blocks used within this analysis would produce the true optimal internal heat 

capacity value. It is also noted the large variance in internal heat capacity values found on the 

different simulation days; these are poor results, caused by error in the model or in the 

parameter estimation method used. 
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Table 57 Heat Capacity Values found for the Final Grey Box Model in Comparison to those 

found previously in the G1 Model. 

Simulation Day G1v3 Cp (kJ/kg) Final Cp (KJ/kg) 

November 17th 112.66 41.50 

November 29th 457.90 122.06 

January 6th 1 834.20 223.53 

December 31st 39.50 114.13 

January 13th 105.43 98.91 

January 2nd 219.07 116.26 

February 12th 77.76 159.93 

January 8th 252.67 532.35 

February 7th 239.03 263.18 

December 8th 93.91 102.12 

December 5th 38.42 307.06 

6.10.2 Training Period 

Grey box models were created using one week, two weeks’, and one months’ worth of training 

data. Linear regression equations were created for each model using the same split/general 

structures previously determined. The results from the linear regression analysis demonstrated 

increased improvement in performance for the thermally lightweight elements: the window, 

spandrel panel, and interior wall, with increasingly large amounts of training data points. The 

thermally massive elements, however, did not demonstrate any correlation between 

performance and the amount of training data points. The window and spandrel panel regression 

models demonstrated the exterior temperature being the most significant variable. All other 

building elements demonstrated inconsistencies in the significant variables. It was observed 

that the February models, compared to the December models and models determined 

previously in this study, were more highly influenced by the ventilation data points.  This may 

be due to the ventilation loads gradually transitioning to cooling rather than heating near the 

end of the month. As the ventilation system is the only source of cooling in the test cell, this is 

the dominant source of conditioning during cooling season.  

The results of the grey box model when using different lengths of training data sets are shown 

in Table 58. The results from this analysis demonstrate training with two weeks of data gives 

the same, or unexpectedly, better results than the final model. The models with one week of 

training data resulted in worse RMSE, 0.8oC higher, compared to the model using two weeks 
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of data. Surprisingly, the one-month data also had worse prediction results than the two-week 

data. This may be caused by the large number of unoccupied periods in the month of December 

from holidays, skewing the model. Overall, these results demonstrate that the model can be 

trained well using a collection period of two weeks.  

Table 58 Performance of the Final Model when Trained with 1 week, 2 weeks, and 4 weeks of 

data 

  Final Model 

4 months 

December 

1 week 

February 

1 week 

December 

2 weeks 

February 

2 weeks 

December 

1 month 

RMSE 0.1280 0.1792 0.2034 0.1274 0.1265 0.1365 

MAE 0.0931 0.1356 0.1381 0.0932 0.0911 0.1005 

MAPE 0.429% 0.631% 0.650% 0.432% 0.418% 0.465% 

The ability to determine the internal mass heat capacity value was also tested with these shorter 

training models, as shown in Table 59. The results demonstrate all training models found at 

least two values within the hypothesized internal heat capacity value range, 112kJ/K-250kJ/K, 

determined in Section 6.3. As previously stated in the other parameter estimation sections of 

this paper, using a constant string of data within an optimization function would find the true 

internal heat capacity value of the test cell, and the variance in results indicate something amiss 

in this procedure. It can be derived from this analysis that the two weeks of data required to 

train the grey box model is plenty of data to find the optimal internal heat capacity value as two 

values within the hypothesized range were found here with only 33 hours of data (11 

simulations, 3 hours in length).  
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Table 59 Internal heat capacity values found from the parameter estimation tool for the 1 

week, 2 week and one-month models 

  Final Model 

4 months 

(kJ/K) 

December 

1 week 

(kJ/K) 

February 

1 week 

(kJ/K) 

December 

2 weeks 

(kJ/K) 

February 

2 weeks 

(kJ/K) 

December 

1 month 

(kJ/K) 

17-Nov 41.50 178. 41 148.37 163.75 138.92 118.71 

29-Nov 122.06 83.83 373.71 176.90 100.50 1,115.89 

06-Jan 223.53 911.66 686.33 256.83 911.66 301.57 

31-Dec 114.13 268.81 92.53 209.37 63.99 110.16 

13-Jan 98.91 233.37 583.57 110.16 492.20 201.38 

02-Jan 116.26 1,210 .21 222.40 1,189 .19 70.32 1,132.61 

12-Feb 159.93 206.28 576.08 133.89 519.35 205.95 

08-Jan 532.35 1,324 .22 1,099 .06 806.19 1,855 .86 865.65 

07-Feb 263.18 463.30 602.22 397.13 553.92 368.03 

08-Dec 102.12 913.42 1,069 .80 10.54 1,172. 93 384.85 

05-Dec 307.06 167.78 976.46 138.02 145.58 72.77 

 

6.10.3 Seasonal Sensitivity 

To test the Final Model’s generalisation ability, the model was simulated for a period outside 

the training season. This research was conducted for the winter season therefore, the sensitivity 

analysis was conducted during the spring, on April 9th 2018, during daytime occupied 

conditions. The exterior and interior conditions on April 9th are outlined in Table 60. 

Table 60 April 9th, 2018 Simulation Conditions 

Period Average Tout Wind Speed Solar Radiation Occupied? Time of day 

April 09, 2018 

(11:05 – 14:05) 

5.27oC 1.5 to 4 m/s 600 W/m2 Yes Daytime 

The results from the April 9th simulation, illustrated in Table 61 and Figure 87, demonstrate the 

surface temperatures being predicted within 15% accuracy and the ambient temperature within 

2.5% accuracy. The surface temperature prediction results are similar to those seen during 

occupied conditions for the winter season simulations, where the building element errors were 

as severe as 16% prediction error. The window and spandrel panel demonstrate the worst 

prediction results, with prediction errors above 10% for the first part of the simulation, 

decreasing to close to zero at the 180-minute Prediction Window (Figure 87). The measurement 

data, seen in Figure 88, demonstrates much higher actual surface temperatures at the beginning 
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of the simulation than the predicted temperatures. The improvement in prediction error at the 

end of the simulation is believed to be due to the simulation switching to occupied regression 

models when occupants enter the room at the 60-minute Prediction Window. The ambient 

temperature demonstrated slightly worse results than the winter simulations, reaching a 

prediction error above 2%. It is observed that the actual temperature in the test cell falls by 

0.6oC between the 15th and 30th minute of the simulation. This observation is believed to be due 

to a decrease in ventilation air temperature, from 25oC to 13oC, at the 12th minute of the 

simulation lasting until the 30th minute.  

Table 61 Prediction Error for Temperatures of Simulated Elements as a Function of 

Prediction Window Duration for April 4th, 2017 (Tout=5.27oC, wind speed ranging from 1.5 

to 4 m/s, and solar radiation 600W/m2) 

 Prediction Window 

  15 minutes 30 minutes 45 minutes 60 minutes 120 minutes 180 minutes 

Exterior Wall 0.46% 1.6021% 0.5750% 3.8637% 1.5889% 1.1353% 

Ceiling -1.61% -0.3015% -0.5784% 0.3112% 0.1752% 0.5684% 

Floor -4.45% -2.1996% -1.9989% 2.3925% 5.1910% -3.0342% 

Spandrel -9.25% -8.5132% -11.6437% -8.1855% -7.8534% -3.2688% 

Window -12.71% -8.6073% -9.9394% -11.3825% -7.1207% -0.7601% 

Interior Wall -0.78% 1.9392% 2.2646% 6.3892% 4.9017% -0.0036% 

Ambient -0.05% 2.4927% 1.1105% 1.0611% -0.5236% 0.5925% 

 

 

Figure 87 April 4th, 2017 Prediction Error for all Building Elements along with Ambient 

Temperature 
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Figure 88 April 4th, 2017 Predicted vs Actual Surface Temperature for the Window and 

Spandrel Panel 

 

Figure 89 April 4th, 2017 Predicted vs Actual Ambient Temperature  

6.11 Error Analysis 

An error analysis was conducted on the Final Model to determine the impact of the 

simplifications on model accuracy. Simplifications within this study include: plug load data 

calculation, the single point temperature measurement for the surface temperatures, and 

ventilation measurements, and omission of latent heat loads.  

6.11.1 Plug Load Error Analysis 

To analyze the impact of using of calculated plug load values rather than the true plug load 

data, simulations were run for January 2nd, January 6th, and January 8th, using both plug load 

data sets as shown in Table 62. This analysis investigated the impact on the first G1v1 model 
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simulations had better prediction accuracy when using the actual plug load data, while the 

simulation for January 6th demonstrated worse prediction accuracy.  

Table 62 Final Model and G1v1 Model results when using true plug load data compared to 

calculated plug load data 

First Generation Grey Box Model 

  02-Jan 06-Jan 08-Jan 

RMSE 0.0744 0.0963 0.3019 

MAE 0.0309 0.0369 0.1434 

WAPE 0.0209% 0.0254% 0.0973% 

First Generation Grey Box Model with Plug load 

  02-Jan 06-Jan 08-Jan 

RMSE 0.0367 0.1280 0.2742 

MAE 0.0134 0.0530 0.1260 

WAPE 0.0091% 0.0366% 0.0855% 

Final Model 

  02-Jan 06-Jan 08-Jan 

RMSE 0.0974 0.0838 0.0523 

MAE 0.0409 0.0322 0.0432 

WAPE 0.0277% 0.0222% 0.0293% 

Final Model with Plug load 

  02-Jan 06-Jan 08-Jan 

RMSE 0.0679 0.0852 0.0965 

MAE 0.0271 0.0326 0.0423 

WAPE 0.0183% 0.0224% 0.0287% 

 

The overall performance of the four models, illustrated in Table 63, shows the G1 model and 

the Final Model as having better prediction results when using the true plug load data. The 

RMSE is observed to improve by 0.02 for both models when using the true data, indicating that 

the results within this study are likely lower than the results that would have been obtained if 

the true plug load data had been used. 

Table 63 Overall comparison results for the G1 grey box model and final grey box model  

  First Generation First Generation Plug Final  Final Plug 

RMSE 0.3255 0.3048 0.1609 0.1456 

MAE 0.2111 0.1923 0.1163 0.1019 

WAPE 0.0479% 0.0437% 0.0264% 0.0232% 
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6.11.2 Point Measurement Error Analysis 

The implications of using point surface temperature measurements were investigated upon 

installation of the thermocouples. Before being attached with conductive paste, the 

thermocouples were used to gather temperature measurements across the surface of the floor 

and window unit. The floor represents the most thermally massive element of the cell and the 

window the lightest. The temperature of the floor slab was read at seven different locations 

across its cross section; the results show deviation in temperature readings of 0.5oC. Similarly, 

the temperature of the window was captured at 13 points across its cross section; the data 

demonstrated a maximum temperature deviation of 1.3 oC between point measurements in the 

sunlight and point measurements that were in the shade. As the sun only shines on the test cell 

for the first few hours of the day, due to the eastern orientation of the test cell, these deviations 

in temperature measurements only occur for a few hours of each day. It should be noted that 

there is an additional error associated with the window temperature measurements due to the 

thermocouple paste used to connect the sensor. This paste adds additional resistivity between 

the thermocouple and the window surface; this value is small since the paste is highly 

conductive however, it will have some influence of the window temperature since the window 

has low overall resistivity. In addition, the paste will absorb heat from solar radiation and 

influence the thermocouple measurement to be warmer than the actual temperature of the 

window surface. 

To mitigate the error associated with the airflow point measurement readings, the sensor 

calibration was conducted using a balometer, which captures the velocity of the air from the 

entire duct opening (see Section 3.3). The deviation in airflow temperature for the ventilation 

ducts was investigated by taking temperature measurements at 10 points across the opening of 

the duct. The results demonstrate that the temperature deviation across the opening varied by 

0.15oC.  

It is noted, that one sensor that was not analyzed for point measurement error was the ambient 

temperature sensor. The three ambient sensors within the test cell demonstrate variations in 

temperature at different locations horizontally throughout the room due to their proximity to 

different heat loads. The implications of using the ambient temperature measurement in the 

middle of the room rather than the ambient temperature sensor closer to the building element 
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being modeled, was not investigated. The ambient temperature was also collected at different 

locations horizontally within the room but not at varying heights. Therefore, there is no 

measurement that indicates the amount of stratification that may be affecting the ceiling, floor 

and exterior wall sensors. 

6.12 Latent Heat Error Analysis 

A major simplification made in this study was the omission of the latent heat load in the 

ventilation heating load calculation. To analyze the impact of this assumption on the results of 

this study, the Final Model and the G1v1 Model are simulated with and without the latent heat 

load calculation, as shown in Table 64. For the models not considering latent heat gain, the dry 

air equations described in Section 4.1.3 are used. For the models considering latent heat gain, 

the ventilation energy is calculated with the enthalpy (35) and density (36) equations shown 

below. The variables in these equations include 𝑐𝑝𝑎 = 1.006 𝑘𝐽/𝑘𝑔𝐾 [53], 𝑐𝑝𝑤 = 1.84 𝑘𝐽/

𝑘𝑔𝐾 [53], ℎ𝑤𝑒 = 2501 𝑘𝐽/𝑘𝑔, 𝑥 the humidity ratio, T the temperature (K), 𝑅𝑑 =

287.05𝐽/𝑘𝑔𝐾 [54], 𝑅𝑣 = 461.5𝐽/𝑘𝑔𝐾 [54], 𝑃𝑑𝑎the partial pressure of dry air, and 𝑃𝑤𝑣 the 

partial pressure of water vapor [54]. 

ℎ =  𝑐𝑝𝑎 ∗ 𝑇 + 𝑥 ∗ (𝑐𝑝𝑤 ∗ 𝑇 + ℎ𝑤𝑒) (35) 

𝜌 =  
𝑃𝑑𝑎

𝑅𝑑𝑇
+

𝑃𝑤𝑣

𝑅𝑣𝑇
  (36) 

The simulation period used for the comparison is April 4th, 2018 between 11:00 and 14:00; this 

period was chosen as it occurs after the temperature and relative humidity sensors for the 

ventilation ducts were installed. The results from this comparison, summarized in Table 64, 

indicate the inclusion of the latent heat load does not improve the ambient temperature 

prediction results of either model.  

Table 64 Final model and G1v1 model when considering and when omitting latent heat 

  Final Model Final Model with 

Latent 

G1v1 G1v1 with 

Latent 

RMSE 0.28379 0.00462 0.29333 0.29334 

MAE -0.17895 0.00189 -0.17928 -0.17829 

WAPE -0.0337% -0.7731% -0.0294% -0.0336% 
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7 Discussion 

This study was conducted to determine the possibility of creating an accurate grey box thermal 

dynamic model without building construction specifications; and to determine if this type of 

model is generalizable and can predict temperatures with reasonable accuracy in new 

conditions. If so, there is a strong potential this type of model could be used in existing buildings 

to support MPC implementation. The final grey box model created within Simulink, answers 

the first research question by demonstrating the ability to predict the indoor ambient 

temperature of eleven simulation days to within 0.35oC for a 3-hour Prediction Window. These 

results are comparable to those found in the study conducted by Harb et al. [8] ,whose grey box 

model was accurate to within 0.5 oC when simulated for 8 weeks, using measurement updates 

every hour. The Final Model results are also supported by the findings from the comparative 

study conducted in Section 6.9. Figure 76 - Figure 86 demonstrate the Final Model performing 

to within the same level as the traditional G1v3 grey box model created within this research. 

This demonstrates that the Final grey box model, without the building characteristics, can 

achieve the same level of accuracy as typical grey box models. 

One observation from the Final Model results is the large prediction errors for the building 

element surface temperatures, namely the window and spandrel units. These elements had 

prediction errors as severe as 16%, meaning that the predicted temperature was 3oC off from 

the actual surface temperature. A key finding from these results is the predicted indoor ambient 

temperature remaining with 1.7% accuracy despite the large discrepancies in the building 

element surface temperature predictions. The optimization of the internal heat capacity is 

believed to be an important factor contributing to the accuracy of the ambient temperature 

predictions. As shown in  Figure 82-Figure 86, models using the optimized internal heat 

capacity value, the Final Model and the G1v3 model, had prediction errors that were up to 9% 

lower for the occupied simulation days compared to the G1v1 model. With the larger internal 

heat capacity value, the models can better predict the thermal behaviour of the space when it is 

subjected to larger heat loads. Overall, the Final Model despite having poor surface temperature 

prediction results for the low thermal mass and thermal resistance elements, demonstrates the 

ability to accurately predict the ambient temperature for a Prediction Window of three hours.  
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The second goal of this research is to identify if this type of grey box model has the 

generalisation ability to be implemented and perform well under new conditions. The Final 

Model demonstrates the ability to be implemented within new buildings, as the results in within 

Table 58 prove the model can be trained with two weeks of data and achieve the same degree 

of accuracy as a model trained with four months of data. It is noted, these performance results 

were tested within the same season. The linear regression equations may need to be re-trained 

for different seasons to improve prediction performance. This is especially true for the models 

for the lower thermal inertia elements that are more susceptible to heating loads. The use of a 

sliding window, as discussed in [7], could be useful within the Final Model to allow for periodic 

re-training of the linear regression models. Additional support demonstrating two weeks of 

training data is adequate to solve for the internal heat capacity values is shown in the study 

conducted by Berthou et al. [11] , where two weeks of training data to solve for the unknown 

parameters within the grey box model using parameter estimation techniques. Finally, the Final 

Model was also analyzed for model performance outside the training season, using a simulation 

day in April. As shown in Figure 89, this model predicted the indoor ambient temperature to 

within 2.5%, a deviation of 0.5oC from the actual temperature. The April simulation 

demonstrated worse prediction results than the winter simulations where the ambient 

temperature was predicted to within 1.7%. This simulation day, April 4th, is also still within the 

shoulder season, and therefore only gives an indication of the generalisation of the model. To 

truly identify the model’s ability to perform for all seasons of the year, it needs to be tested in 

the middle of the summer, during the cooling season.  

It should be noted that the parameters used within the grey box models were actual data 

measurements and not predicted parameters. The results found within this thesis are therefore 

the optimal results for the model. The ‘optimal’ internal heat capacity values used within this 

research are also not truly the optimal values but the best performing value of the tested 

simulation days. These areas are outside the scope of this research and are recommended future 

work for this study. It is also highly suggested to further investigate parameter estimation 

techniques, as the findings in this model demonstrated poor estimation results, highlighting the 

need to refine the parameter estimation technic used. In addition, future research includes 

investigation of this model with changing HVAC conditioning. As the HVAC system was not 

able to be controlled within this study, this analysis could not be conducted. It is suggested that 
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future test cells, with control of the HVAC system, alter the HVAC sequences to identify the 

ability of the model to perform under varied conditions. 

Unexpected findings from this study include the poor surface temperature prediction results of 

the window, spandrel panel, and exterior wall neural networks. These results may have been 

caused by improper training of the networks in the Matlab neural network fitting tool. As 

discussed within Section 2.4, neural networks demonstrate better thermal dynamic modeling 

performance than other modeling techniques due to their ability to accurately represent 

nonlinear systems. Therefore, it is believed this is the best modeling method for representing 

the low thermal mass elements of the test cell, which demonstrate the highest prediction error. 

It is suggested that future research investigates the use of NARX models and ANFIS models. 

The study by Ferracuti et al. [12] found NARX models to be the best performing thermal 

dynamic model when compared to three other modeling techniques. These models have a 

feedback structure which should help improve the temperature prediction performance of 

lightweight elements that exhibit more varied temperatures. ANFIS models include decision 

making ability that could work in a similar manner to the occupancy dependent model used in 

the linear regression analysis, which demonstrated improved performance for 5/6 building 

elements. An ANFIS structure with fuzzy logic decision, such as the Physical-Rule-Based 

ANFIS Model Structure used in [58], could be a suitable model for predicting the surface 

temperatures of the building elements.  

Worth noting are the similarities between the Final Model and grey box models that use 

parameter estimation techniques. Both methods require collection of BAS points and 

measurements of surface temperatures for at least two weeks in order to train the models. This 

in turn raises the question of which model, as both require the same amount of set up and data 

collection, predicts the ambient temperature with greater degree of accuracy. Based on the 

findings in this research it is believed that the parameter estimation model would have the better 

prediction results. The G1v3 model is similar to a grey box model that was created using 

parameter estimation techniques. The G1v3 model uses estimated resistivity and capacitance 

values, calculated based on estimated building construction for the construction year, and an 

internal heat capacity value determined using parameter estimation. In Section 6.9, this model 

demonstrates the better performance overall when compared to the Final Model. Although this 
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analysis demonstrated that parameter estimation is the model type that produces more accurate 

results, the Final Model still has room to improve with proper internal heat capacity 

optimization, and the use of neural networks for the low thermal inertia elements. Therefore, 

the Final model with the stated changes could demonstrated to be the better model option.  

To conclude, this research found the Final Model could be implemented into buildings where 

the construction specifications are not known, and would have the ability to accurately 

determine the net thermal dynamics during the heating season. This model has potential for 

further improvement with development of neural network models for the thermally lightweight 

elements, implementation of true internal heat capacity value, and seasonal testing and 

development. Overall, the model demonstrates promising results in the ability for MPC 

implementation. The refinement of this model will allow more buildings to use MPC systems 

with grey box thermal dynamic models to help reduce their energy use. In turn, the spread of 

MPC systems within building HVAC systems will help reduce the overall energy consumption 

of the building sector. 
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8 Conclusions 

This study demonstrates the potential of creating a grey box model that can represent the 

thermal dynamics solely based on building automation system points. The final model 

eliminated all resistance and capacitance values for building element representation, replacing 

them with linear regression equations. The model predicted the indoor ambient temperature of 

the cell within 1.7% accuracy, 0.35oC, for up to three-hour Prediction Window. The analysis 

of the model also demonstrated a training period of 2 weeks is sufficient to create an accurate 

thermal dynamic model. Testing the model outside of the training period resulted in slightly 

higher ambient temperature prediction error than the winter simulations, with an accuracy of 

2.5%. Therefore, although this research demonstrated promising results towards the model’s 

ability to be implemented within MPC systems, there are still many areas of growth for future 

improvement.  

The recommended future work includes: 

1. Further research towards more advanced neural network models to represent low 

thermal inertia elements of the exterior façade, including window and spandrel panels. 

2. Creation of prediction functions for the building automation system points to test true 

prediction ability of the system.  

3. Investigating the performance of this model at a larger scale where the thermal 

dynamics are predicted for multiple building zones. 

4. Smaller projects including testing of the model after using optimisation algorithms to 

find the true internal heat capacity of the test cell, as well as testing of the model for the 

summer season. 

5. Test this model in a test cell where the HVAC operation can be changed to observe the 

performance of the model with new HVAC sequences. 
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10 Appendix A Solar Radiation Calculations 

Table A-1 Solar Radiation Calculation - Breaking Down the Time, Hour Angle and Sun Declination 

 

Hour Date Time 
Day 

Number 

equation 

of time 

Local 

Standard 

Time 

Apparent 

Standard 

Time 

Hour Angle Declination 

   eta ET LST AST H-rads 
H-

degress 

delta -

rads 
degrees 

1 
Nov 16, 2017 

14:50 
14:50 320.62 13.81 14.50 15.02351 0.791552 45.35261 -0.34064 -19.5174 

2 
2017-11-16 

15:05 
15:05 320.63 13.81 15.05 15.57346 0.935531 53.60197 -0.34068 -19.5197 

3 
2017-11-16 

15:20 
15:20 320.64 13.81 15.20 15.72342 0.974789 55.85132 -0.34072 -19.5221 

4 
2017-11-16 

15:35 
15:35 320.65 13.80 15.35 15.87338 1.014048 58.10068 -0.34077 -19.5244 

5 
2017-11-16 

15:50 
15:50 320.66 13.80 15.50 16.02334 1.053307 60.35003 -0.34081 -19.5267 

6 
2017-11-16 

16:05 
16:05 320.67 13.80 16.05 16.57329 1.197285 68.59938 -0.34085 -19.5291 

7 
2017-11-16 

16:20 
16:20 320.68 13.79 16.20 16.72325 1.236544 70.84874 -0.34089 -19.5314 

8 
2017-11-16 

16:35 
16:35 320.69 13.79 16.35 16.87321 1.275802 73.09809 -0.34093 -19.5337 
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Table A-2 Solar Radiation Calculation - Using the Time of Day Information to Calculation the Solar Altitude, Azimuth, Degree of 

Incidence and Zenith Angle 

Solar Altitude Solar Azimuth  Solar Incidence 

# of 

Daylight 

Hours 

Sun Zenith Angle 

beta-rads degrees phi-rads degrees theta-rad degree  thetaH-

rads 
degrees 

0.251175 14.39128 0.764656006 43.81156 1.319621 75.60872 9.363966 1.319621 75.60872 

0.174835 10.0173 0.879464215 50.38959 1.395961 79.9827 9.363611 1.395961 79.9827 

0.152652 8.746333 0.909481716 52.10946 1.418144 81.25367 9.363256 1.418144 81.25367 

0.129951 7.445642 0.938995406 53.80047 1.440845 82.55436 9.362902 1.440845 82.55436 

0.106759 6.11684 0.9680295 55.464 1.464037 83.88316 9.362547 1.464037 83.88316 

0.018014 1.032152 1.070901174 61.35812 1.552782 88.96785 9.362193 1.552782 88.96785 

-0.00712 -0.40817 1.098050674 62.91367 1.57792 90.40817 9.361839 1.57792 90.40817 

-0.03261 -1.86847 1.124877291 64.45072 1.603407 91.86847 9.361485 1.603407 91.86847 
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Table A-3 Solar Radiation Calculations - Calculating the Clear Sky Diffuse and Total Solar Radiation 

hottel 

clear sky 

radiation 

atm trans 

for beam 

radiation 

Outer atm 

normal 

radiation 

Clear sky 

horizontal 

beam 

radiation 

tran coeff for beam and 

diffuse 

clear sky 

horizontal diffuse 

radiation 

Total horizontal 

clear sky 

radiation 

if<pi/2 Taub Ion Icb Taud lcd lc 

1 0.30651 1385.24 105.5294 0.180916 62.28778 167.8171 

1 0.22735 1385.245 54.78126 0.204182 49.19921 103.9805 

1 0.20425 1385.251 43.02411 0.21097 44.43905 87.46316 

1 0.18224 1385.257 32.71341 0.21744 39.03252 71.74593 

1 0.16315 1385.262 24.08298 0.223049 32.92389 57.00687 

1 0.14148 1385.268 3.530372 0.22942 5.724816 9.255188 

0 0 1385.273 0 0 0 0 

0 0 1385.279 0 0 0 0 
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Table A-4 Solar Radiation Calculation - Using the Measured Solar Radiation Data from the Rooftop to Determine the Direct and 

Diffuse Portions 

Measured 

Radiance 

Ratio of 

clear sky 

rad 

Ratio of 

diffure 

sky rad 

diffuse 

corrected 

for low 

sun 

Diffuse 

Radiation 
Direct(beam)Radiation 

Direct 

Normal 

Radiation- 

altitude 

dependent 

I l/lc Id/I IIDCorr Id Ib Idn 

39.8 0.237163 0.976284 0.976284 38.85609 0.943908 3.797775 

34.8 0.334678 0.966532 0.966532 33.63532 1.16468 6.69566 

36.033333 0.411983 0.958802 0.365344 13.16456 22.86878 150.393 

57.3 0.798652 0.638367 0.524375 30.04668 27.25332 210.3115 

35.6 0.624486 0.827033 0.669701 23.84135 11.75865 110.3515 

9.3666667 1.012045 0.341956 0.990043 9.273404 0.093262 5.177374 

4.8 0 1 1 4.8 0 0 

1.0333333 0 1 1 1.033333 0 0 
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Table A-565 Solar Radiation Calculation - Converting the Direct and Diffuse Solar Radiation Values to the Vertical Surface 

Wall Solar 

Azimuth 

Wall Angle of 

Incidence 

Direct 

Radiation 

incident to 

surface 

(W/m2) 

Diffuse 

Radiation on 

Surface 

(W/m2) 

Reflected 

Radiation on 

Surface 

(W/m2) 

Total 

Radiation on 

Vertical 

Surface 

alpha-degree chi Ibv Idv Irv Iv 

133.8116 132.1107 0 19.42805 3.98 23.40805 

140.3896 139.3456 0 16.81766 3.48 20.29766 

142.1095 141.2613 0 6.582279 3.603333 10.18561 

143.8005 143.1455 0 15.02334 5.73 20.75334 

145.464 144.9928 0 11.92067 3.56 15.48067 

151.3581 151.3411 0 4.636702 0.936667 5.573369 

152.9137 152.9108 0 2.4 0.48 2.88 

154.4507 154.3871 0 0.516667 0.103333 0.62 
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11 Appendix B Arduino Code 

//Libraries 

#include <Dhcp.h> 

#include <Dns.h> 

#include <Ethernet2.h> 

#include <RTClib.h> 

#include <SPI.h> 

#include <DS3231.h> 

#include <SoftwareSerial.h> 

#include <SD.h> 

#include <RTClib.h> 

#include <Wire.h> 

#include "DHT.h" 

 

#define DHTPIN 24 //left duct 

#define DHTPIN2 22 //right duct 

#define DHTTYPE DHT22   // DHT 22  (AM2302), AM2321 

#define LOG_INTERVAL  1000 // mills between entries (reduce to take 

more/faster data) 

#define SYNC_INTERVAL 1000 // mills between calls to flush() - to write 

data to the card  

uint32_t syncTime = 0; // time of last sync() 

#define ECHO_TO_SERIAL   1 // echo data to serial port 

#define WAIT_TO_START    0 // Wait for serial input in setup() 

 

/* to communicate with the Bluetooth module's TXD pin */ 

#define BT_SERIAL_TX 6 

/* to communicate with the Bluetooth module's RXD pin */ 

#define BT_SERIAL_RX 5 

/* Initialise the software serial port */ 

SoftwareSerial BluetoothSerial(BT_SERIAL_TX, BT_SERIAL_RX); 

 

//SD card file 

File logfile; 

RTC_DS3231 RTC; 

 

//Define variables and ports 

const int togglePin = 13; 

int toggleState; 

int proximity; 

unsigned int Occupancy = 0; 

const int ReedPin = 7; 

int ReedState = 0; 

int GrPin = 8; 

int BlPin = 3; 

int YlPin = 2; 

int RdPin = 9; 

float MS1; 

float MS2; 

float AF1; 

float AF2; 

int AreaDuct = 1.8; 
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char daysOfTheWeek[7][12] = {"Sunday", "Monday", "Tuesday", "Wednesday", 

"Thursday", "Friday", "Saturday"}; 

//int analogPin1 = A9;     // potentiometer wiper (middle terminal) 

connected to analog pin 3 

int val = 0;           // variable to store the value read 

int IR = 0; 

 

const int OutPin  = A3;   // wind sensor analog pin  hooked up to Wind P 

sensor "OUT" pin 

const int TempPin = A4;   // temp sesnsor analog pin hooked up to Wind P 

sensor "TMP" pin 

 

const int OutPin2  = A0;   // wind sensor analog pin  hooked up to Wind P 

sensor "OUT" pin 

const int TempPin2 = A2; 

 

DHT dht(DHTPIN, DHTTYPE); 

DHT dht2(DHTPIN2, DHTTYPE); 

 

const int chipSelect = 4; //SD Card 

 

// Enter a MAC address and IP address for your controller below. 

// The IP address will be dependent on your local network: 

byte mac[] = { 

  0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED 

}; 

 

IPAddress ip(141,117,215,28); 

 

// Initialize the Ethernet server library 

// with the IP address and port you want to use 

// (port 80 is default for HTTP): 

EthernetServer server(80); 

 

void setup() { 

  /* Set the baud rate for the software serial port */ 

  pinMode(togglePin, INPUT); 

  pinMode(ReedPin, INPUT_PULLUP); 

  pinMode(GrPin, OUTPUT); 

  pinMode(BlPin, OUTPUT); 

  pinMode(YlPin, OUTPUT); 

  pinMode(RdPin, OUTPUT); 

  //pinMode(11, INPUT); 

  pinMode(32, INPUT_PULLUP); 

  pinMode(34, INPUT_PULLUP); 

  pinMode(36, INPUT_PULLUP); 

  pinMode(38, INPUT_PULLUP); 

  pinMode(A3, INPUT); 

  pinMode(A4, INPUT); 

  pinMode(A5, INPUT); 

  pinMode(A6, INPUT); 

  Serial.begin(9600); 

  BluetoothSerial.begin(9600); // Initialise BlueTooth 
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  analogReference(DEFAULT); 

 

  Serial.println("DHTxx test!"); 

  dht.begin(); 

  dht2.begin(); 

 

  delay(3000); 

  Serial.print("Initializing SD card..."); 

  BluetoothSerial.print("Starting ..."); 

  BluetoothSerial.print("Initializing SD card..."); 

  BluetoothSerial.print("\r\n"); 

 

  while (!Serial) { 

    ; // wait for serial port to connect. Needed for native USB port only 

  } 

   

 // disable w5100 SPI while setting up SD 

 pinMode(53, OUTPUT); 

 digitalWrite(53, HIGH); // davekw7x: If it's low, the Wiznet chip 

corrupts the SPI bus 

 digitalWrite(4,LOW); 

 

  // set up SD 

  if(SD.begin(4) == 0)  

     Serial.println("SD failed"); 

  else 

     Serial.println("SD ok"); 

 

  //Set up RTC 

  if (! RTC.begin()) { 

    Serial.println("Couldn't find RTC"); 

    BluetoothSerial.print("Counldn't find RTC"); 

    BluetoothSerial.print("\r\n"); 

    while (1); 

  } 

  if (RTC.begin()) { 

    Serial.println("RTC found"); 

    RTC.adjust(DateTime(F(__DATE__), F(__TIME__))); 

  } 

 

  if (RTC.lostPower()) { 

    Serial.println("RTC lost power, lets set the time!"); 

    // following line sets the RTC to the date & time this sketch was 

compiled 

    // This line sets the RTC with an explicit date & time, for example to 

set 

    // January 21, 2014 at 3am you would call: 

    RTC.adjust(DateTime(F(__DATE__), F(__TIME__))); 

    // RTC.adjust(DateTime(2017, 7, 20, 5, 1, 1)); 

  } 

 

 

  //Set up SD Card Logging 

  logfile = SD.open("Data.CSV", FILE_WRITE);  //#define LOGFILE "Data.CSV" 
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  Serial.println("Logging to: Data");  

  logfile.println("Date,Time,Occupancy,Light,Door,Solar 1,HVAC Velocity 

(left),HVAC Airflow (left), HVAC Temperature (left), HVAC velocity(right), 

HVAC Airflow (right), HVAC Temperature(right),RH Right, Temperature Right, 

HIC Right, RH Left, Temperature Left, HIC Left"); 

  BluetoothSerial.print("Logging to: Data"); // 

BluetoothSerial.println(filename); 

  BluetoothSerial.print("\r\n"); 

 

  if (!logfile) { 

    Serial.println("couldnt create file"); 

    BluetoothSerial.print("counldn't create SD file"); 

    BluetoothSerial.print("\r\n"); 

  } 

 

  // start the Ethernet connection and the server: 

  Ethernet.begin(mac, ip); 

  server.begin(); 

  Serial.print("server is at "); 

  Serial.println(Ethernet.localIP()); 

} 

 

void loop() { 

  delay(1000); 

  int sensorVal1 = digitalRead(32); 

  int sensorVal2 = digitalRead(34); 

  int sensorVal3 = digitalRead(36); 

  int sensorVal4 = digitalRead(38); 

  int toggleState = digitalRead(togglePin); 

  //ReedState = digitalRead(ReedPin); 

  int proximity = digitalRead(ReedPin); // Read the state of the switch 

  int windADunits = analogRead(OutPin); 

  int windADunits2 = analogRead(OutPin2); 

  int tempRawAD = analogRead(TempPin); 

  int tempRawAD2 = analogRead(TempPin2); 

 

//Airflow from Left Duct 

  float windMPH =  pow((((float)windADunits - 264.0) / 85.6814), 3.36814); 

  Serial.println("Left Duct"); 

  Serial.print(windMPH); 

  Serial.println("MPH\t"); 

  BluetoothSerial.print("Left Duct"); 

  BluetoothSerial.print(windMPH); 

  BluetoothSerial.print("MPH\t ,"); 

  BluetoothSerial.print("\r\n"); 

 

//Convert to m/s 

  MS1 = (windMPH * 0.44704); 

  Serial.print(MS1, 2); 

  Serial.println(" m/s"); 

  BluetoothSerial.print(" m/s"); 

  BluetoothSerial.print(MS1); 

  BluetoothSerial.print("\r\n"); 
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//Convert to m3/s 

  AF1 = (MS1) * AreaDuct; 

  Serial.print("AirFLow  "); 

  Serial.print(AF1, 2); 

  Serial.println(" m3/s"); 

  BluetoothSerial.print("Airflow  "); 

  BluetoothSerial.print(AF1); 

  BluetoothSerial.print("m3/s"); 

  BluetoothSerial.print("\r\n"); 

 

//Temperature of the Left Duct Ventilation Air 

  float tempC = (((((float)tempRawAD * 5.0) / 1024.0) - 0.400) / .0195); 

  Serial.print(" "); 

  Serial.print(tempC); 

  Serial.println(" C"); 

  BluetoothSerial.print("   "); 

  BluetoothSerial.print(tempC); 

  BluetoothSerial.print("  C ,"); 

  BluetoothSerial.print("\r\n"); 

 

//Airflow from Right Duct 

  float windMPH2 =  pow((((float)windADunits2 - 264.0) / 85.6814), 

3.36814); 

  Serial.println("Right Duct "); 

  Serial.print(windMPH2); 

  Serial.println("MPH\t ,"); 

  BluetoothSerial.print("Right Duct"); 

  BluetoothSerial.print(windMPH2); 

  BluetoothSerial.print(" MPH\t ,"); 

  BluetoothSerial.print("\r\n"); 

 

//Convert to m/s 

  MS2 = (windMPH2 * 0.44704); 

  Serial.print(MS2, 2); 

  Serial.println(" m/s"); 

  BluetoothSerial.print(MS2); 

  BluetoothSerial.print(" m/s"); 

  BluetoothSerial.print("\r\n"); 

 

//Convert to m3/s 

  AF2 = (MS2) * AreaDuct; 

  Serial.print("AirFLow  "); 

  Serial.print(AF2, 2); 

  Serial.println(" m3/s"); 

  BluetoothSerial.print(" Airflow"); 

  BluetoothSerial.print(AF2); 

  BluetoothSerial.print("m3/s"); 

  BluetoothSerial.print("\r\n"); 

 

//Temperature from the Right Duct Ventilation 

  float tempC2 = (((((float)tempRawAD2 * 5.0) / 1024.0) - 0.4) / .0195); 

  Serial.print("");; 

  Serial.print(tempC2); 

  Serial.println(" C"); 
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  BluetoothSerial.print("   "); 

  BluetoothSerial.print(tempC2); 

  BluetoothSerial.print(" C ,"); 

  BluetoothSerial.print("\r\n"); 

 

//Relative Humidity from Left Duct-AM2302 

  float h1 = dht.readHumidity(); 

  Serial.print("Humidity Left "); 

  Serial.print(h1); 

  Serial.println(" %"); 

  BluetoothSerial.print("Humidity Left      "); 

  BluetoothSerial.print(h1); 

  BluetoothSerial.print("%"); 

  BluetoothSerial.print("\r\n"); 

 

//Relative Humidity from Right Duct-AM2302 

  float h2 = dht2.readHumidity(); 

  Serial.print("Humidity Right "); 

  Serial.print(h2); 

  Serial.println(" %"); 

  BluetoothSerial.print("Humidity Right     "); 

  BluetoothSerial.print(h2); 

  BluetoothSerial.print("%"); 

  BluetoothSerial.print("\r\n"); 

 

  // Read temperature as Celsius (the default)-AM2302 

  float t1 = dht.readTemperature(); 

  Serial.print("Temperature Left "); 

  Serial.print(t1); 

  Serial.println(" C"); 

  BluetoothSerial.print("Temperature Left     "); 

  BluetoothSerial.print(t1); 

  BluetoothSerial.print("C"); 

  BluetoothSerial.print("\r\n"); 

 

//temperature -AM2302 

  float t2 = dht2.readTemperature(); 

  Serial.print("Temperature Right"); 

  Serial.print(t2); 

  Serial.println(" C"); 

  BluetoothSerial.print(" Temperature Right      "); 

  BluetoothSerial.print(t2); 

  BluetoothSerial.print("C"); 

  BluetoothSerial.print("\r\n"); 

 

  if (isnan(h1) || isnan(t1)) { 

    Serial.println("Failed to read from DHT sensor!"); 

  } 

  if (isnan(h2) || isnan(t2)) { 

    Serial.println("Failed to read from DHT sensor!"); 

  } 

 

//Occupancy Count 
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  if (sensorVal1 == LOW && sensorVal2 == HIGH && sensorVal3 == HIGH && 

sensorVal4 == HIGH) { 

    digitalWrite(8, HIGH); 

    digitalWrite(9, LOW); 

    digitalWrite(2, LOW); 

    digitalWrite(3, LOW); 

    Occupancy = 1; 

  } 

  if (sensorVal1 == LOW && sensorVal2 == LOW && sensorVal3 == HIGH && 

sensorVal4 == HIGH) { 

    digitalWrite(8, HIGH); 

    digitalWrite(3, HIGH); 

    digitalWrite(2, LOW); 

    digitalWrite(9, LOW); 

    Occupancy = 2; 

  } 

  if (sensorVal1 == LOW && sensorVal2 == LOW && sensorVal3 == LOW && 

sensorVal4 == HIGH) { 

    digitalWrite(8, HIGH); 

    digitalWrite(3, HIGH); 

    digitalWrite(2, HIGH); 

    digitalWrite(9, LOW); 

    Occupancy = 3; 

  } 

 

  if (sensorVal1 == LOW && sensorVal2 == LOW && sensorVal3 == LOW && 

sensorVal4 == LOW) { 

    digitalWrite(8, HIGH); 

    digitalWrite(3, HIGH); 

    digitalWrite(2, HIGH); 

    digitalWrite(9, HIGH); 

    Occupancy = 4; 

  } 

 

  if (sensorVal1 == HIGH && sensorVal2 == HIGH && sensorVal3 == HIGH && 

sensorVal4 == HIGH) { 

    digitalWrite(8, LOW); 

    digitalWrite(3, LOW); 

    digitalWrite(2, LOW); 

    digitalWrite(9, LOW); 

    Occupancy = 0; 

  } 

 

  Serial.print("Occupancy="); 

  Serial.println(Occupancy); 

  BluetoothSerial.print("Occupancy:"); 

  BluetoothSerial.print(Occupancy); 

  BluetoothSerial.print(","); 

  BluetoothSerial.print("\r\n"); 

 

//Light Switch 

  if (toggleState == HIGH) { 

    Serial.println("Lights ON"); 

    BluetoothSerial.print("Lights ON ,"); 
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    BluetoothSerial.print("\r\n"); 

  } 

  else { 

    Serial.println("Lights OFF"); 

    BluetoothSerial.print("Lights OFF"); 

    BluetoothSerial.print("\r\n"); 

  } 

 

//Door Position 

  if (proximity == HIGH) { 

    Serial.println("Door Closed"); 

    BluetoothSerial.print("Door Closed ,"); 

    BluetoothSerial.print("\r\n"); 

  } 

  else { 

    Serial.println("Door Open"); 

    BluetoothSerial.print("Door Open ,"); 

    BluetoothSerial.print("\r\n"); 

  } 

 

//PV Panel 

  val = analogRead(A1);    // read the i  nput pin 

  float voltage = val * (5.0 / 1023.0); 

  Serial.print("PV1 voltage="); 

  Serial.println(voltage);             // debug value 

  BluetoothSerial.print("PV1="); 

  BluetoothSerial.print(voltage); 

  BluetoothSerial.print(","); 

  BluetoothSerial.print("\r\n"); 

 

 

  DateTime now = RTC.now(); 

  Serial.print('"'); 

  Serial.print(now.year(), DEC); 

  Serial.print("/"); 

  Serial.print(now.month(), DEC); 

  Serial.print("/"); 

  Serial.print(now.day(), DEC); 

  Serial.print(" "); 

  Serial.print(now.hour(), DEC); 

  Serial.print(":"); 

  Serial.print(now.minute(), DEC); 

  Serial.print(":"); 

  Serial.print(now.second(), DEC); 

  Serial.print('"'); 

  Serial.println(" "); 

 

  BluetoothSerial.print(now.year(), DEC); 

  BluetoothSerial.print("/"); 

  BluetoothSerial.print(now.month(), DEC); 

  BluetoothSerial.print("/"); 

  BluetoothSerial.print(now.day(), DEC); 

  BluetoothSerial.print(" "); 

  BluetoothSerial.print(now.hour(), DEC); 
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  BluetoothSerial.print(":"); 

  BluetoothSerial.print(now.minute(), DEC); 

  BluetoothSerial.print(":"); 

  BluetoothSerial.print(now.second(), DEC); 

  BluetoothSerial.print(","); 

  BluetoothSerial.print("\r\n"); 

 

//Printing data to SD Card 

  now = RTC.now(); 

  logfile.print(now.year(), DEC); 

  logfile.print("/"); 

  logfile.print(now.month(), DEC); 

  logfile.print("/"); 

  logfile.print(now.day(), DEC); 

  logfile.print(","); 

  logfile.print(now.hour(), DEC); 

  logfile.print(":"); 

  logfile.print(now.minute(), DEC); 

  logfile.print(":"); 

  logfile.print(now.second(), DEC); 

  logfile.print(","); 

  logfile.print(Occupancy); 

  logfile.print(","); 

  logfile.print(toggleState); 

  logfile.print(","); 

  logfile.print(proximity); 

  logfile.print(","); 

  logfile.print(voltage); 

  logfile.print(","); 

  logfile.print(windMPH); 

  logfile.print(","); 

  logfile.print(AF1); 

  logfile.print(","); 

  logfile.print(tempC); 

  logfile.print(","); 

  logfile.print(windMPH2); 

  logfile.print(","); 

  logfile.print(AF2); 

  logfile.print(","); 

  logfile.print(tempC2); 

  logfile.print(","); 

  logfile.print(h1); 

  logfile.print(","); 

  logfile.print(t1); 

  logfile.print(","); 

  logfile.print(hic1); 

  logfile.print(","); 

  logfile.print(h2); 

  logfile.print(","); 

  logfile.print(t2); 

  logfile.print(","); 

  logfile.print(hic2); 

  logfile.print(","); 

  logfile.println(" "); 
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  logfile.flush(); 

 

//Ethernet logging 

EthernetClient client = server.available(); 

  if (client) { 

    Serial.println("new client"); 

    // an http request ends with a blank line 

    boolean currentLineIsBlank = true; 

    while (client.connected()) { 

      if (client.available()) { 

        char c = client.read(); 

        Serial.write(c); 

        // if you've gotten to the end of the line (received a newline 

        // character) and the line is blank, the http request has ended, 

        // so you can send a reply 

        if (c == '\n' && currentLineIsBlank) { 

          // send a standard http response header 

          client.println("HTTP/1.1 200 OK"); 

          client.println("Content-Type: text/html"); 

          client.println("Connection: close");  // the connection will be 

closed after completion of the response 

          client.println("Refresh: 5");  // refresh the page automatically 

every 5 sec 

          client.println(); 

          client.println("<!DOCTYPE HTML>"); 

          client.println("<html>"); 

          client.print("Date/Time "); 

         client.print(now.year(), DEC); 

  client.print("/"); 

  client.print(now.month(), DEC); 

  client.print("/"); 

  client.print(now.day(), DEC); 

  client.print("   "); 

  client.print(now.hour(), DEC); 

  client.print(":"); 

  client.print(now.minute(), DEC); 

  client.print(":"); 

  client.print(now.second(), DEC); 

  client.println("<br />"); 

  client.print("Occupancy: "); 

  client.print(Occupancy); 

    client.println("<br />"); 

  client.print("Lighting: "); 

  client.print(toggleState); 

    client.println("<br />"); 

  client.print("Door Position(0-Closed, 1-Open): "); 

  client.print(proximity); 

    client.println("<br />"); 

  client.print("PV Voltage: "); 

  client.print(voltage); 

    client.println("<br />"); 

  client.print("Left WindSensor (MPH): "); 
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  client.print(windMPH); 

    client.println("<br />"); 

  client.print("Left WindSensor (m3/s): "); 

  client.print(AF1); 

    client.println("<br />"); 

  client.print("Left WindSensor Temp (C): "); 

  client.print(tempC); 

    client.println("<br />"); 

  client.print("Right WindSensor (MPH): "); 

  client.print(windMPH2); 

    client.println("<br />"); 

  client.print("Right WindSensor (m3/s): "); 

  client.print(AF2); 

    client.println("<br />"); 

  client.print("Right WindSensor Temp (C): "); 

  client.print(tempC2); 

    client.println("<br />"); 

  client.print("RIght RH (%): "); 

  client.print(h1); 

    client.println("<br />"); 

  client.print("Right Temperature (C): "); 

  client.print(t1); 

    client.println("<br />"); 

  client.print("Left RH (%): "); 

  client.print(h2); 

    client.println("<br />"); 

  client.print("Left Temp (C): "); 

  client.println(t2); 

client.println("</html>"); 

          break; 

        } 

        if (c == '\n') { 

          // you're starting a new line 

          currentLineIsBlank = true; 

        } 

        else if (c != '\r') { 

          // you've gotten a character on the current line 

          currentLineIsBlank = false; 

        } 

      } 

    } 

     delay(1); 

    // close the connection: 

    client.stop(); 

    Serial.println("client disconnected"); 

  } 

} 
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12 Appendix C Calibration  

Table C-1 Right Duct Sensor Calibration Measurements 

Right Duct Calibration 

Calibration Point 

Temperature Sensor (oC) 

Wind Sensor Rev P 

Arduino Reading (oC) 

AM2302 Arduino 

Recording (oC) 

24.15 27.81 24.1 

8.45 11.54 7.2 

8 10.79 6.8 

21.5 24.81 20.3 

22 25.31 21.5 

22.65 26.56 22.3 

23 25.56 22.7 

23.7 26.06 23.8 

24 26.06 23.8 

24 26.56 23.8 

 

 

Figure C-1 Right Ventilation Duct Sensor Calibration 
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Table C-266 Right Duct WindSensor Rev P and Balomter  Data for Calibration 

Balometer CFM Arduino MPH 

Calculated Arduino 

CFM 

109 12.88 115.24 

112 12.65 115.07 

114 13.12 115.42 

119 13.36 115.60 

115 13.36 115.60 

112 10.22 113.23 

114 9.01 112.31 

114 7.51 111.18 

112 7.77 111.38 

114 7.77 111.38 

109 7.51 111.18 

122 21.58 121.82 

123 18.55 119.53 

118 18.34 119.36 

121 18.75 119.68 

 

 

Figure C-290 Right Duct WindSensor Rev P Airflow Rate Calibration 
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Table C-3 Left Duct Sensor Calibration Measurements 

Right Duct Calibration 

Calibration Point 

Temperature Sensor (oC) 

Wind Sensor Rev P 

Arduino Reading (oC) 

AM2302 Arduino 

Recording (oC) 

21 22.4 22.06 

21 22.4 22.06 

21 22.3 22.81 

21 22.3 22.56 

21 22.3 22.81 

25.5 23.2 25.31 

25.5 23.3 24.81 

24 23.4 25.81 

24 23.5 25.56 

24.38 23.6 25.81 

24.3 24 26.06 

24.5 24.1 26.06 

23.57 25.06 22.6 

23.5 24.81 22.7 

23.56 25.31 22.8 

 

 

Figure C-3 Left Ventilation Duct Sensor Calibration 
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Table C-4 Left Duct WindSensor Rev P and Balometer Data for Calibration 

Balometer CFM Arduino MPH 

Calculated Arduino 

CFM 

68 3.67 66.64 

64.6 3.86 67.09 

66.8 3.57 66.41 

68.8 3.67 66.64 

66.4 3.67 66.64 

68.8 4.62 68.87 

59 0.66 59.58 

66.8 1.47 61.48 

62.2 1.35 61.20 

61.9 1.28 61.03 

59 1.39 61.29 

58.2 1.47 61.48 

60.2 1.39 61.29 

64.6 4.62 68.87 

63.5 4.4 68.36 

72.9 4.62 68.87 

72.9 4.62 68.87 

 

 

Figure C-491 Left Duct WindSensor Rev P Calibration 
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13 Appendix D U-value Calculations 

Table D-1 U-value calculation for the spandrel panel 

  Thickness 

(inch) 

Thickness 

(m) Material 

Conductance 

(W/mK) 

Conductivity 

(W/m2K) Resistivity 

Exterior air 

film 

        34 0.029411765 

Sheet metal 0.13 0.003175 Steel, mild 45 14173.22835 7.05556E-05 

Fiberglass 

Insulation 

1.5 0.0381 Owens 

Curtain Wall 

Insulation 

0.032 0.839895013 1.190625 

Sheet Metal 0.13 0.003175 Steel, mild 45 14173.22835 7.05556E-05 

interior air 

film 

        9.3 0.107526882 

     
         

Total 

Resistivity 

1.220177876 

 

Table D-2 U-value calculation for the interior walls 
 

Thickness 

(inch) 

Thickness 

(m) Material 

Conductance 

(W/mK) 

Conductivity 

(W/m2K) Resistivity 

interior air 

film 

        8.3 0.120481928 

3/8" 

drywall 

0.375 0.009525 9.5mm 

plater 

board 

  16.6 0.060240964 

3.5" Air 

cavity 

3.5 0.0889 92mm, 

E=.82 

 
6.425 0.15077821 

0.5" Steel 

studs @ 

16" OC 

    steel, mild 45 506.1867267 6.17361E-05 

3/8" 

drywall 

0.375 0.009525 9.5mm 

plater 

board 

  16.6 0.060240964 

interior air 

film 

        8.3 0.120481928 

     
         

Total 

Resistance:  

0.512285729 
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Table D-3 Interpolating Conductivity value for the Air Space from Building Science for a Cold 

Climate 

Temperature (oC) Conductivity 

30 6.6 [56] 

10 6.1 [56] 

23 6.425 

 

Table D-467 Exterior Wall Resistivity Calculation 

 Thickness(m) Material 
Conductance 

(W/mK) 

Conductivity 

(W/m2K) 
Resistivity 

Concrete 0.275 
Dense concrete, 

dry 
1.32 4.8 0.208333333 

 

Table D-5 Ceiling/Floor Resistivity Calculation 

 Thickness 

(inch) 

Thickness 

(m) 
Material 

Conductance 

(W/mK) 

Conductivity 

(W/m2K) 
Resistivity 

Concrete 13.75 0.34925 
Dense 

concrete, dry 
1.32 3.779527559 0.2645833 
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14 Appendix E Matlab Code 

clear all; 

Arduino = 'Arduino_Jan2 (9AM).xlsx'; 

Ambient_hall = 'Hallway_Jan2(9AM).xlsx'; 

Outdoor = 'Outdoor_Jan2(9AM).xlsx'; 

Heater = 'Heater_Jan2(9AM).xlsx'; 

Solar = 'Solar_Jan2(9AM).xlsx'; 

Thermocouples = 'Thermocouples_Jan2(9AM).xlsx'; 

 

Time1 = xlsread('Output_Jan2(9AM).xlsx',1,'A1:A300'); 

Tamb_Out = xlsread('Output_Jan2(9AM).xlsx',1,'C1:C300'); 

Arduino_timestamp = xlsread(Arduino,1,'A1:A61'); 

MPH_left= xlsread(Arduino,1,'F1:F61'); 

MPH_right= xlsread(Arduino,1,'I1:I61'); 

Temp_left= xlsread(Arduino,1,'H1:H61'); 

Temp_right= xlsread(Arduino,1,'K1:K61'); 

Door= xlsread(Arduino,1,'D1:D61'); 

Occupancy= xlsread(Arduino,1,'B1:B61'); 

InteriorLight= xlsread(Arduino,1,'C1:C61'); 

PlugLoad = xlsread(Arduino,1,'L1:L61'); 

 

Ambient_timestamp = xlsread(Ambient_hall,1,'A1:A61'); 

Ambient_Hall = xlsread(Ambient_hall,1,'B1:B61'); 

 

Out_stamp = xlsread(Outdoor,1,'A1:A61'); 

Outdoor_Temp= xlsread(Outdoor,1,'B1:B61'); 

Windv = xlsread(Outdoor,1,'C1:C61'); 

 

Heater_stamp = xlsread(Heater,1,'A1:A300'); 

Heater = xlsread(Heater,1,'B1:B300'); 

Therm_stamp = xlsread(Thermocouples,1,'A1:A100'); 

Floor = xlsread(Thermocouples,1,'E1:E100'); 

Ceiling = xlsread(Thermocouples,1,'B1:B100'); 

ExteriorWall = xlsread(Thermocouples, 1, 'D1:D100'); 

 

Solar_stamp = xlsread(Solar,1,'A1:A21'); 

SW_solar = xlsread(Solar,1,'B1:B21'); 

LW_solar = xlsread(Solar,1,'C1:C21'); 

 

 

a_size = size(MPH_left1); 

x=1; 

while (x<=a_size) 

Cal_CFM_left (x)=(MPH_left(x)*2.3475)+58.026; 

Cal_CFMH_right (x) = (MPH_right(x)*0.7562)+105.5; 

Cal_Temp_right(x) = (Temp_right(x)*0.9952)-2.8503; 

Cal_Temp_left(x) = (Temp_left(x)*0.9789)+0.2171; 

x=x+1; 

end 

  

%Convert MPH to m3/s% 

k=1; 
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while(k<=a_size) 

    M_m3s_left(k) = Cal_CFM_left(k)*0.00047; 

    M_m3s_right(k) = Cal_CFMH_right(k)*0.00047; 

    k=k+1; 

end 

%Calculate the m/s value% 

%Area of duct is 0.01943m2% 

k=1; 

while(k<=a_size) 

    M_ms_left(k) = M_m3s_left(k)/0.01943; 

    M_ms_right(k) = M_m3s_right(k)/0.01943; 

    k=k+1; 

end 

 

%Calculate T-sky and hc wind 

x=1; 

t_size= size(Outdoor_Temp_Nov,1); 

while(x<=t_size) 

    T_sky(x) = (1.2*Outdoor_Temp(x))-14; 

    hc_wind(x) = (3.9*Wind(x))+5.6; 

    x=x+1; 

end 

 

%Combine Matrices% 

C_CFM_left = [Arduino_timestamp'; M_m3s_left]; 

C_CFM_right = [Arduino_timestamp'; M_m3s_right]; 

C_Temp_left = [Arduino_timestamp'; Cal_Temp_left]; 

C_Temp_right = [Arduino_timestamp'; Cal_Temp_right]; 

C_Door_Nov = [Arduino_timestamp'; Door']; 

C_Occupancy = [Arduino_timestamp'; Occupancy']; 

C_InteriorLight = [Arduino_timestamp';InteriorLight']; 

C_PlugLoad = [Arduino_timestamp';PlugLoad']; 

 

 

C_Ambient_Hall=[Ambient_timestamp';Ambient_Hall']; 

 

C_Outdoor_Temp = [Out_stamp'; Outdoor_Temp']; 

C_Wind = [Out_stamp'; Wind_Nov']; 

C_T_sky = [Out_stamp'; T_sky]; 

C_hc_wind = [Out_stamp'; hc_wind]; 

 

C_Heater = [Heater_stamp'; Heater']; 

 

C_SW_solar = [Solar_stamp'; SW_solar']; 

C_LW_solar = [Solar_stamp'; LW_solar']; 

 

save('MPH_left_test.mat','C_CFM_left,'-mat','-v7.3') ; 

save('MPH_right_test.mat','C_CFM_right’,'-mat','-v7.3'); 

save('Temp_right_test.mat','C_Temp_right’,'-mat','-v7.3'); 

save('Temp_left_test.mat','C_Temp_left','-mat','-v7.3'); 

save('Door_test.mat','C_Door', '-mat','-v7.3'); 

save('Occupancy_test.mat','C_Occupancy','-mat','-v7.3'); 

save('InteriorLight_test.mat','C_InteriorLight', '-mat','-v7.3') ; 

save('PlugLoad_test.mat','C_PlugLoad','-mat','-v7.3'); 
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save('Ambient_Hall_test.mat','C_Ambient_Hall', '-mat', '-v7.3'); 

save('Outdoor_Temp_test.mat','C_Outdoor_Temp', '-mat','-v7.3') ; 

save('Heater_test.mat', 'C_Heater', '-mat', '-v7.3') ; 

save('SW_solar_test.mat','C_SW_solar', '-mat', '-v7.3'); 

save('Wind_test.mat','C_Wind','-mat','-v7.3'); 

save('LW_solar_test.mat','C_LW_solar','-mat', '-v7.3'); 

save('T_sky_test.mat', 'C_T_sky', '-mat', '-v7.3') ; 

save('hc_wind_test.mat', 'C_hc_wind', '-mat', '-v7.3'); 
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15 Appendix F Simulink Images 

 

Figure F-1 Full G1v1 Model 

 

Figure F-2 G1v1 Ceiling Subsystem Differential Equation 
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Figure F-3 Floor Subsystem Differential Equation 

 

Figure F-4 G1v1 Exterior Wall Subsystem with both Interior node and Exterior node Differential 

Equations 
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Figure F-5 Exterior Wall Subsystem - Interior node Differential Equation 
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Figure F-6 Exterior Wall Subsystem - Exterior node Differential Equation 
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Figure F-7 G1v1 Sensible Heat Load Calculation 

 

Figure F-8 Left Ventilation Subsystem - Sensible Heat Load Calculation 
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Figure F-9 Hallway Subsystem - Exfiltration Heat Loss 

 

Figure F-10 Heater Subsystem - If Statement for Heater Temperature Difference from the Ambient 

Temperature of at least 5 degrees Kelvin 
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Figure F-1192 Heater If Action - Heater Heat Load Calculation when Temperature Difference is 

Greater Than 5 degrees Kelvin 
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Figure F-12 Final Grey Box Model - Data Input Blocks on the Left and the Linear Regression Blocks and Heat Load Calculation Blocks 

on the Right 
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Figure F-13 Subsystem Blocks for the Final Model, Including the Ambient Temperature System 

(same as G1v1), Sensible Heat Load (same as G1v1), and the Regression Model Blocks 
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Figure F-14 Ceiling Subsystem Regression Model (not split) 
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Figure F-1593 Example of Split Regression Model in all the Remaining Building Element 

Subsystems; Regression Models Similar to the One Seen for Ceiling Regression is in both If and 

Else Blocks 

 

 


