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ABSTRACT

A Numerical Fitting Procedure for the Embedded Atom Method Interatomic
Potential and a Bridged Finite Element-Molecular Dynamics Method for Large

Atomic Systems

Karthik Narayan, Master of Applied Science, Aerospace Engineering
Ryerson University, Toronto, 2007

This thesis presents a powerful numerical fitting procedure for generating Embedded
Atom Method (EAM) inter-atomic potentials for pure Face Centred Cubic (FCC) and
Body Centred Cubic (BCC) metals. The numerical fitting procedure involves assuming a
reasonable parameterized form for a portion of the EAM potential, and then fitting the
remaining portion to select thermal and elastic properties of the metal. Molecular
Dynamics (MD) simulation is used to effect the fitting procedure. The procedure is used
to generate an EAM potential for copper, an FCC metal. This resulting EAM potential is
used to conduct MD simulations of perfect copper 6rystals containing voids of different
geometries. Following this, a bridged Finite Element-Molecular Dynamics (FE-MD)
method is presented, which can be used to simulate large atomic systems much more
efficiently than MD simulation alone. The method implements a novel element
discretization scheme proposed by the author that is so general that it can be applied to
any system of objects interacting with each other via any potential (simple or complex,
EAM or otherwise). This bridged FE-MD method is used to reanalyze the voids in the
copper crystal lattice. The resulting virial stress increment patterns are found to agree
remarkably with the earlier MD simulation results. Furthermore, the bridged FE-MD
method is much quicker than the pure MD simulation. These two facts prove the power
and usefulness of the bridged FE-MD method, and validate the proposed element

discretization scheme.
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1. INTRODUCTION

Nanotechnology is a growing and exciting field today: it promises to advance humanity
at an unprecedented rate. It has found its niche in several areas of science including
biochemistry, materials science and nano-mechanisms. Nanotechnology deals with
phenomena and mechanisms at the atomic level. The main idea behind nanotechnology is
that since atoms are the building block of matter for all practical purposes (the
constituents of atoms like protons, electrons and neutrons cannot be manipulated as easily
as entire atom can be), then studying and manipulating atoms will allow the tailoring of
technology to suit mankind’s needs. As evident, the nature of nanotechnology research
makes experimental equipment extremely expensive to procure. For example, direct
observation of atoms requires an electron microscope, which is a very expensive piece of
equipment.

Due to the prohibitive costs of experimental equipment for nanotechnology,
recent focus has shifted to using computers for analysis of nanotechnology and nano-
mechanisms. Modern computers are powerful and cost-effective for design and analysis.
The key computational tool for nanotechnology is Molecular Dynamics (MD). In the
short time since its practical implementation, MD has become invaluable for simulating
atoms and molecules. It has become the cornerstone of several researches in
nanotechnology. Thanks to the rapid evolution of computers, it has become possible to
simulate several millions of atoms using MD. MD is currently being used to simulate
proteins in nature, to study fatigue and fracture of metals, to study elastic wave
propagation in solids, and to study chemical reactions, among other things. Some specific
examples of its application are: studying thermal and mechanical properties of crystalline
and amorphous silicon [1,2]; studying brittle fracture in silica [3]; studying mechanical
propérties of nanocrystalline pure metals and alloys [4,5,6]; studying deposition of
metallic and non-metallic atoms onto thin films [7,8]; generating plausible crystal

structures for niolecu]ar solids [9]; and studying weak interactions between molecules of
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liquids [10]. Recent efforts have been dedicated to improving MD by using advanced
atomic concepts [11,12,13]. '

This thesis focuses on the application of MD to studying the behaviour of perfect
metal crystals at the atomic level. As mentioned earlier, the cost of experimental
equipment was prohibitive enough to limit the research work to computational analysis. It
was recognized from the beginning that similar work in the literature might simply be
extended directly into applications on perfect metal crystals. However, use of MD in
nanotechnology is a relatively new endeavour at several institutions across the country
with only a handful of research groups having knowledge of and access to MD software.
Hence it was necessary to go through the exercise of creating custom MD software from
scratch to grasp the key concepts of the subject and to have a fully customizable code for
the research group. Chapter 2 of this report is therefore dedicated to MD, and presents the
MD software programmed by the author for this thesis.

The key to simulating any system with MD is an accurate model of the forces
between the constituent atoms or molecules. Almost all these interactive forces are
conservative in nature, which means that they can be derived from a scalar potential
function. The potential function is usually derived from quantum mechanics, the branch
of science that is used to deal with atomic and subatomic particles. Once the potential
function is derived, the inter-atomic forces can be calculated as the spatial gradient of the
potential. These forces are used to formulate the dynamic equationé of motion of the
system, which are then integrated by the MD software to yield the trajectories of atoms
and molecules. The Embedded Atom Method (EAM) potential is one such inter-atomic
potential that has proven to be very accurate for metals. EAM potentials have been
developed for a handful of metals by various researchers [19]. However, for the same
reasons that prompted the development of a custom MD software, it was decided to
develop a numerical fitting procedure to produce EAM potentials for cubic metals. The
procedure would enable the research group to easily develop EAM potentials from
scratch for metals whose EAM potentials are not readily available. Chapter 3 of this
report is dedicated to the EAM potential, and presents a numerical fitting pfocedure
proposed by the author for generating EAM inter-atomic potentials for pure Face Centred
Cubic (FCC) and Body Centred Cubic (BCC) metals. Chapter 4 then demonstrates the
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application of MD and the EAM potential for determining virial stress increment patterns
in perfect copper crystal lattices with voids of definite geometries.

For MD to be effective, the simulation has to be conducted for a substantial
number of time steps (i.e. the equations of motion must be integrated for a total time that
is substantial enough to yield reliable results). This is sometimes time-consuming, even
with powerful computers. To overcome this, certain principles of MD can be combined
with the Finite Element (FE) method to yield bridged FE-MD methods that are much
more efficient than MD simulation, and yet yield comparable results. Recent reseérch has
been geared towards developing such hybrid methods [14]. Chapter S presents one such
bridged FE-MD method-that implements a novel element discretization scheme proposed
by the author. Chapter 6 finally concludes the thesis by comparing results from the
bridged FE-MD method with results from MD simulation alone.
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2. MOLECULAR DYNAMICS

2.1 Introduction to Molecular Dynamics

Molecular Dynamics (MD) is a computational method used to directly simulate the
dynamic behaviour of atoms and molecules. The foundation of any MD code is an
efficient N-body dynamics simulator, which integrates the dynamic equations of motion
of the system to determine the trajectory of atoms and molecules in a system. Due to
advances in computer power, MD can now be used to simulate millions of atoms over
substantial time periods (substantial relative to- atomic motion; time periods of 1
nanosecond to 1 microsecond are substantial at this scale of natural phenomena). MD is
the only viable method of simulating a large number of atoms or molecules interacting
with each other. This is an important advantage that MD has over numerical quantum
mechanical simulation methods, which are limited in the size of the system they can
simulate. That being said, a few words on these numerical quantum mechanical
simulation methods are in order.

There is no doubt today tﬁat the behaviour of atoms and subatomic particles is -
governed by the laws of quantum mechanics. Quantum mechanics has given us insight
into some of the most chal]eng'ing problems in physics. A very brief overview of
quantum mechanics is given in Appendix D. It suffices to say heré that exact solutions to
the quantum mechanical differential equation (the SchrSdinger wave equation) are
obtainable only for the simplest of atoms like the Hydrogeri or Hydrogen-like atoms. For
all other purposes, various numerical methods have been developed to solve the
Schrodinger wave equation approximately. The Hartree-Fock Self-Consistent-Field {(HF
‘ éCF) method is an example of one such numerical method (see Appendix D for a
discussion on the HF SCF method). However, even these numerical methods in quantum
mechanics are restricted to systems containing a relatively small number of atoms or
molecules. MD, on the other hand, incorporates the fundamental results from quantum

mechanic simulations or studies to simulate a large number of atoms;
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The most important fundamental result from quantum mechanics is a model of the
inter-atomic forces, which are required by the dynamic equations of motion for
calculating atomic trajectories. These inter-atomic forces are conservative forces and
hence they can be represented by a scalar potential function. There are a number of inter-
atomic potential functions in use today, some examples of which are: the Lennard-Jones
pair potential for gases, liquids and some solids; the Tersoff potential for Silicon; and the
Embedded Atom Method (EAM) multi-body potential for metals. Once the forces are
modelled from quantum mechanics, the trajectories of atoms and molecules can be
calculated using MD.

MD has become an invaluable tool in studying material behaviour at the atomic
level. It has been used to study metal fracture, elastic wave propagation, bending of
carbon nano-tubes, etc. The importance of MD in nanotechnology is epitomized by the
world’s fastest parallel computing system, MDGfape-3', which is a petaflop (le+15
floating point operations per second) capable system designed exclusively for performing
MD simulations on proteins.

The basic premise and use of MD has been presented. The following section
introduces the inter-atomic potential most commonly used for metals in MD simulations:
the Embedded Atom Method (EAM) potential.

2.2 The Embedded Atom Method Inter-Atomic Potential for Metals |

The Embedded Atom Method (EAM) potential is one of the most accurate inter-atomic
potential functions for single-crystal metal lattices. It is based on Density Functional
Theory (DFT), a quantum mechanical theory that states that the electron density of any
system of atoms determines all its ground-state properties [15,16].

A single-crystal metal lattice consists of positively charged nuclei embedded in a
‘sea’ of valence electrons. The electron ‘sea’ or cloud binds the nuclei together and gives

the crystal lattice its stability. Since the arrangement of the nuclei is periodic in all

* High Performance Molecular Simulation Team, Computational & Experlmental Systems Blology Group,
Genomic Sciences Center, RIKEN (http:/mdgrape.gsc.riken.jp/)
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direction in a perfect metal lattice, the inter-metallic bond is non-directional, and the
potential function need not have terms related to bond angles.

The basic interaction between the nuclei is modelled as a pair potential (e.g.
Coulomb electrostatic interaction, Lennard-Jones potential interaction or a Morse
potential interaction). Pair potential functions and their gradients (i.e. the forces
associated with them) can be individually calculated and finally summed to yield the total
potential energy of the system. That means that for any pair potential ¢(¥;) which is a
function of the scalar distance between atoms 7 and j (i.e. ry), the following expressions

are valid:

N
? =20 (1

J=
J#

-— N —
Vg, ==YV, €))

J=1
J#

The remaining cohesive force contributing to anharmonic crystal behaviour is due to the
‘sea’ of valence electrons and therefore is a function of the electron density at a point in
the lattice. However, since electron density at a point depends on all nuclei in the
vicinity, the potential energy from this electron density is not a simple pair potential, but
is a multi-body potential. These kinds of potentials generally do not obey equations (1)
and (2).

The EAM potential, which was proposed by Daw and Baskes [17,18] and
developed for a handful of metals by Foiles, Baskes and Daw [19], combines a- pair
potential (for the basic interaction amongst the nuclei) with a multi-body potential (for
anharmonic interactions between the nuclei and the electron cloud) to give the total
potential energy of the metal crystal lattice. The EAM potential energy of a system of Ny,
atoms in a metal lattice, each of which is affected (or influenced) by N surrounding

atoms, is given by the following expression:
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In equation (3), ¢(r;j) is the pair potential and ¥ is the energy required to ‘embed’ a

nucleus in the surrounding electron cloud. ¥ is appropriately called the ‘embedding
function’ and is a function of the total electron density py.; at the location of the nucleus
i, as evident in the last term of equation (3). It is this term that distinguishes the EAM
potential from pair potentials and gives EAM its ability to capture metallic behaviour
accurately. The total electron density at the location of nucleus i is further approximated
as the scalar sum of afomic electron densities of the N atoms surrounding nucleus (or

atom) i. Hence equation (3) is rewritten as:

Noot 1& N
Unsaan =21 52:8(n)+¥1 2. () @)
Jei Jei

The force due to a potential at a point is the spatial gradient of the fotal system potential
energy at that point. The same definition applies.to the EAM potential. The spatial

gradient of equation (4) for an atom i gives the following expression for the force on that

atom [20].
Fe¥ b(n) (ax _aw ) dp(r,)
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2.3  The General Molecular Dynamics Algorithm

The purpose of Molecular Dynamics (MD) is to calculate the trajectory of atoms in
Phase-space by integrating the dynamic equations of motion for each atom. Phase-space

is the N-dimensional space, a point of which completely describes the position and
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momentum of an atom. For the case of atoms in a plane (two-dimensional case), the
position part of phase-space (called configuration-space) is two-dimensional with the X
and Y Cartesian coordinates along the two axes. The momentum part of phase-space
(called momentum-space) is also two-dimensional with the X and Y momentum
components of each atom along the two axes. That makes the phase-space of a two-
dimensional case four-dimensional. Similarly, the phase-space of the general, three-
dimensional case is six-dimensional (a three-dimensional configuration-space and a
three-dimensional momentum-space). The dynamic equations of motion require the
forces on each atom to be evaluated using a suitable inter-atomic potential (which is
usually modelled using quantum mechanics, as discussed in the preceding sections).
Taking all these facts into account, the general MD algorithm when using Newton’s
laws of motion can be written as follows (information here is put together from various

sections of a MD reference book [21]):

1. Obtain positions and momentum (i.e. velocities, indirectly) of all the atoms at time
ti.

2. Evaluate the forces on each and every atom at that same instant of time, #;.
Calculate the acceleration of each and every atom by dividing the force on an atom
by its mass (it is being assumed here that the atoms are point masses; this is a very
reasonable assumption since the size of the atomic nucleus, where almost all the
mass of the atom is concentrated, 'is less than' a thousandth of the inter-atomic
distance, even in tightly packed solids).

4.  Choose a very small time interval 4t over which the time integration will be
performed. ) -

5.  Integrate the dynamic equations of motion over this time interval by-any numerical
method. One direct approach is to: '

a) Integrate the acceleration first to get the velocity increment.
b) Add the velocity increment to the veloc{ty of that atom at time #. This is
the velocity of the same atom at time ¢; + 4.

c) Integrate the velocity to get the position increment.
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d) Add the position increment to the position of that atom at time #. This is
the position of the same atom at time ¢; + 4t.
6.  Repeat steps 2 through 5, assuming that £+, = t; + At until the required time for the
simulation has elapsed.
7. Tabulate atomic positions and momentum (or velocities) at each instant of time.
Use tabulated data to determine other quantities of interest, like:-average kinetic

energy of all the atoms; trajectory of the centre-of-mass of the system; etc.

This is the algorithm for almost all MD codes in existence today. The differences
between the codes are simply in how the dynamic equations are formulated (Newtonian
vs. Lagrangian vs. Hamiltonian equations) and how they are integrated numerically
(Taylor series approximation; predictor-corrector methods like Gear’s algorithm; Runge-

Kutta integration; etc.).

24  Custom Molecular Dynamics Code MD_V_7 00

There is MD freeware available on the World Wide Web for general usage (XMD is one
such MD freeware). However, for this thesis project, it was decided to write a custom
MD code since a major aim of the thesis was to develop a code for fitting the EAM inter-
atomic potential for various metals (Chapter 3), which required specialization of an MD
code. Making changes to the freeware source code was found to be very difficult due to
non-familiarity with the source code.

The custom MD code is written in MATLAB™ *. MATLAB™ has an excellent set

of library functions that handle all sorts of mathematical tasks, from table interpolation,

'I'Mt

to polynomial fitting, to extracting numerical data from text files.
The following sections present details of the author’s custom MD code, along

with the supporting theory.

¥ Center for Materials Simulation, UmverS|ty of Connecticut Institute of Materials Science
(http J/lwww .ims.uconn. edu/centers/smul/)
Developed by The MathWorks® (http://www.mathworks.com/)

10
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24.1 Program Execution Flowcharts

Figure 67 through Figure 71 in Appendix A show the program execution flowcharts for
the author’s custom MD code. Each figure corresponds to one particular function in the

code.

2.4.2 Function Descriptions

2.4.2.1 MATLAB" Function MD_V_7_00

MD_V_7 00 is the master MD function that coordinates operations and calculations
between all other functions. MD_V_7_00 performs the following intrinsic tasks (i.e. tasks

for which it doesn’t depend on other functions):

Read initial atomic positions and velocities.

2.  For each atom, generate an array containing distances to other atoms that are less
than the Embedded Atom Method (EAM) potential cut-off distance.

3. Calculate the total force on each atom using the EAM force expression. Use this
force to estimate position and velocity after the time interval using a second order
Taylor series expansion for position and a first order Taylor series expansion for
velocity.

4. . Write position and velocity data to a text file at each time step.

Use the recorded data to create a movie of the atomic motion during the simulation.

The Taylor series. for position estimation is now derived. Let the X coordinate of a
particle at time ¢ be x(), while the X-direction components of velocity and acceleration of
the same particle at the same time ¢ be vy(2) and ax(?) respectively. Then the X coordinate
at time s + At (where At is the user-defined time interval) can be obtained using the

following Taylor series expansion for x about ¢:

11



MOLECULAR DYNAMICS

x(t+At)=x(t)+Atdx(t) (&) dzx(t) [( )] (6)

2

This is a second order Taylor series expansion with order of the error given by the last
term. Now, the first and second derivatives of x(#) with respect to time are merely the X-
direction components of velocity and acceleration respectively. Hence equation (6) can

be rewritten as:

x(t+Af) = x(r)+Amw, (£)+ Atha{‘ (0 @)

Similar expressions can be written for the Y- and Z- directions. Equation (7) is used to
predict the positions of the atoms at time ¢ + At using the positions, velocities and
accelerations at time ¢ (which are all known). It is accurate to the second order of time
interval.

To develop an expression for predicting the velocities at time ¢ + At, write the

following Taylor series expansion for v, about #:

v( ) (1) + A Atdv (t) 0[(-‘;—’)2] | | .(8)

Obviously, this expansion predicts the velocity at the half-time step. The first derivative
of vx with respect to time is the X-direction component of acceleration. Hence equation

(8) can be rewritten as follows:

v,(t+A2t)—v (t)+—a (t)+o[[’;’)] ©)

A similar backward expansion about ¢ + At gives the following expression:

12
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At At dv, (t+At At : ,
vx(t+?)=vx(t+m)——i£-—(dt—)+0[(7t) ] (10)

This can again be rewritten as follows:

v, (t +‘—\25)=v, (t+&)—%t—a, (t+At)+é|:(é2t—)2] l (11)

Equating (9) and (11) and solving for vx(t + At) gives the following final expression for

the X-direction component of velocity at time ¢ + At:

v (t+A1) =y, (t)+i‘21[a, (£)+a, (t+ar)] .. (12)

This expression is the popular velocity Verlet algorithm used in many other MD codes,
and is more accurate than a regular forward difference evaluation of the velocity about
time ¢ because of the ¥ factor in the error term in equations (9) and (11). Equation (12)
requires knowledge of the acceleration at time ¢ + At. Since the positions at time ¢ + At
| can be determined using equation (7), it isé simple matter of evaluating the forces at the
new locations and dividing by the masses of the atoms.
Force evaluation is probably the most important function that MD_V_7_00 does.
The forces are calculated using the spatial derivative of the EAM potential. Equation (4)
is used to calculate the EAM potential energy, while equation (5) is used to calculate the
force on each atom during the simﬁ]ation. The three component functions of the EAM
potential (the pair potential, the electron density and the embedding function) are
represented as either discrete functions in MATLAB™ (in the case of the pair potential
and electron density) or as tabulated data stored as a text file (in the case of the

embedding function).

13
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2.4.2.2 MATLAB™ Functions FCC_Gen_V_7_00 and BCC_Gen_V_7_00

These functions construct a Face Centred Cubic (FCC) or a Body Centred Cubic (BCC)
crystal lattice with user-defined lattice parameters. The functions first generate the lattice
and then save the atomic positions in a text file for reading by all other functions. They
also initialize atomic velocities according to the following Gaussian probability density

function (see Appendix E for a derivation based on statistical mechanics):

([ mv?
f)= k p\'zkﬂr) |
( 2
m mv,
/(%)= \/2 P | 2kBT) (13)
( 2
m mv,
)=zt | 2kBT)

In equation (13), m is the mass of each atom, kp is Boltzmann’s constant (1.3806503 x

10 m?kg.s2K") and T is the initial absolute temperature of the system in Kelvin. The
mean velocity of the distribution is zero. Velocities are chosen such that their arithmetic
mean is also zero; this ensures that the centre-of-mass of the system has zero initial
velocity. ' |

This distribution is governed. by the initial temperature of the simulation, as
evident in the exponential term in the equation set. The average Kinetic energy of atom i
is further related to the temperature by the following common relationship (based on the

principle of equipartition of energy in statistical mechanics):
K E _ l 2 2 2 3
Eogs = Em, ((vx', )wg' +(vy,, )wg' + (vz’, )avg = EkBT (19

Then the average Kinetic energy of the entire system at absolute temperature T is:

14
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Niot 1 3

K.E “avg.total — ; _2' m, ((vx.12 )avg. + (vJ’.iz )avg + (vz,iz ) avg) = E ]VtolkBT (15)

, Where Ny, is the total number of atoms in the system. For initializing the velocity
distribution, it is assumed that the average total kinetic energy given by equation (15)

corresponds to the instantaneous initial total kinetic energy of the distribution. Hence:

Nigt 1 3

K.E =m (v, +v,} +v.}) 2 K.E N, k,T (16)

*total initial —

‘avg.,total ==
i=1 2

The function flowchart is given in Figure 68 (Appendix A).

2.42.3 MATLAB"™ Functions CRACK_VOID_V_7_00

This function constructs a void within the crystal lattice generated by FCC_Gen_V_7_00
or BCC_Gen_V_7_00. A void is essentially a three-dimensional space devoid of any
atoms, whose surface can theoretically be represented by an equation in three-
dimensional shape. Practically speaking, this is possible only for simple enclosing
surfaces like: the surface of a sphere (for a spherical void); the surface of a cylinder (for a
cylindrical void); etc. CRACK_VOID_V_7_00 requires the user to symbolically enter
the equation of a residual function (which is possible in MATLAB™) based on the
equation of the void’s outer surface. The user defines the residual function in such a way
that all points within the void yield a non-hegative residual  value.
CRACK_VOID_V_7_00 then calculates the value of the residual function at each atom’s
position, and discards atoms whose positions yield non-negative residuals. The remaining
atoms are the active atoms, and are the only ones used in the MD simulation. Formulation
of residual functions is demonstrated during the application of the custom MD code

(Chapter 4). The function flowchart is given in Figure 69 (Appendix A).

15
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2.42.4 MATLAB™ Function EAM_Range_V_7_00

This function scans the EAM potential data text file and returns the embedding function
data points (which, as mentioned in Section 2.4.2.1, are stored in the form of a lookup
table in the text file). A fourth order spline is fit into these data points by MATLAB
function EAM_Poly_Fit_V_7_00 (Section 2.4.2.5) to obtain functional forms of the data.
The function flowchart is given in Figure 70 (Appendix A).

™

2.42.5 MATLAB™ Function EAM_Poly_Fit_ V_7_00

This function fits a fourth order spline into the data arrays returned by function
EAM_Range_V_7_00. The MATLAB™ library function spapi() is uséd to calculate the-
splines. The function also calculates the derivative of the spline using MATLAB™ library
function fnder(). The function flowchart is given in Figure 71 (Appendix A).

2.4.3 Additional Theory

2.43.1 Average Stress Calcvulation: The Virial Stress

The average stress due to atoms in a domain of volume V can be calculated using the
well-known virial theorem, and the resulting stress tensor is called the virial stress tensor.
The virial theorem was originally put forth by Clausius [22] to describe the relationship
between average values of bound properties of the system as the time of averaging
becomes infinitely long. A

The virial stress of N atoms in a domain of volume V is given by the following

expression [23]:

16
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N
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The right hand side of this equation contains two parts. The first part depends on the
velocity of the atoms and therefore is the thermal stress of the system. The second part
depends on inter-atomic forces and therefore is the internal mechanical stress of the
system. The sum must be in equilibrium with the externally applied mechanical stress on

the system (i.e. with the left-hand-side of equation (17)). In equation (17), 7, is the vector

from atom j to atom i:

=7, (18)

, ¥ is the velosity vector of atom i, _Zy is the force exerted on atom i by atom j

(calculated using equation (5)), and m; is the mass of atom i. ® denotes the Kronecker

tensor product of two vectors, defined as:

a, ab, a,b;, ab,
a®b=ab"=|a,|[b, b, b ]=|ab ab, apb (19)
a, . ab, ab, ab,

The stress tensor given by equation (17) is a symmetric tensor, with normal stresses given
by the diagonal elements and shear stresses given by the off-diagonal elements. In a
perfect crystal at any temperature, the shear stresses are expected to be zero while a
normal stress is negative (compressive) if the crystal edge-length along that direction is
less than the equilibrium lattice constant at that temperature, and positive (tensile) if the
crystal edge length is greater than the equilibrium lattice constant at that temperature.
However, it must be emphasized that the virial theorem deals with averages over an
essentially infinite time. Hence the average stress tensor over a large number of runs will

yield zero shear stresses for a perfect unstrained crystal, but the instantaneous shear

17
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stresses need not be zero because the atoms are continually moving about their
equilibrium lattice positions, thereby breaking the symmetry at any instant of time. A
special case arises at OK, at which atoms do not possess any velocity according to
classical theories (note that the phenomenon of zero-point energy, as predicted by
quantum mechanics, is not taken into account in the simulations). At absolute zero, the
instantaneous shear stresses are all exactly zero because of perfect symmetry in
arrangement of atoms at all times.

It has been argued recently [24] that the virial theorem is not an accurate
representation of externally applied mechanical stress. However, the virial stress remains
the only viable and popular method of calculating stresses for discrete-particle systems,
and has been used in atomistic simulations quite successfully ([25], for example). In
addition, the virial stress has another powerful feature that makes it attractive for
engineering applications: the thermal stress is already accounted for in the virial stress
equation (17), as already mentioned. By using a suitable relationship between atomic
velocity and temperature (which has already been presented in Section 2.4.2.2), thermal
stresses at any required temperature can be readily imposed on the atoms. This is

essential for capturing thermal properties of the crystal, like thermal expansion.

2.43.2 Hydrostatic Pressure and Equilibrium Lattice Constant

Equation (17) is used in the code for determining the equilibrium lattice constant at a
particular temperature, since a metal crystal expands with increase in temperature. During
an equilibration run, the lattice constant is adjusted periodically until the average
hydrostatic pressure acting on the crystal becomes almost zero. At zero hydrostatic
pressure, the crystal is neither in compression nor in tension, and hence is in equilibrium
with the surroundings. Note that atmospheric pressure is neglected compared to the
internal stresses of the crystal since atmospheric pressure is only slightly greater than 1
Mega Pascal, or 1 MPa (101,325 Pa at mean sea level to be precise), while crystal
stresses are typically tens or hundreds of MPa.

The hydrostatic pressure acting on the crystal is given by the following equation:

18
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0, +0,+0,
P=- — 3 (20)

P denotes constant pressure acting on the faces of the crystal and is the negative average
of the normal stresses from the stress tensor (17). The negative sign is included because a
positive hydrostatic pressure corresponds to a negative hydrostatic stress by convention.

Using the following common definition of the bulk modulus, B, of a material:

dP
B=—V— 21
7 @n

,» Where V is the volume of the material, one can arrive at the following equation for the

volume at zero final pressure [26]:
P
., =Vexp(-§) @)

Here, V is the initial volume of the crystal, while P is the initial hydrostatic pressure as
defined by equation (20).

An unstressed FCC or BCC crystal at any temperature can be considered as a
cube. Hence V=a’, where a is the lattice constant (or edge length) of the crystal. Using
this in equation (22) gives the following expression for the equilibrium lattice constant at

any temperature:

P
al,, = aexp(3—3) (23)

Equation (23) is used to periodically change the initial lattice constant and loop the

simulation until the average lattice constant over a large number of runs converges to the
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desired accuracy. The final average lattice constant is taken to be the equilibrium lattice

constant at that particular temperature.

2.43.3 Engineering Strain Tensor for a Desired Principal Virial Stress Tensor

The procedure used for determining the equilibrium lattice constant at a specific
temperature (given in Section 2.4.3.2) can be modified to enable the determination of a
strain tensor that produces a desired principal virial stress tensor. The stress tensor is a
principal stress tensor since only desired normal stresses can be obtained using the
procedure; the shear stresses will remain zero.

To achieve this, it is sufficient to write an expression similar to equation (23) for
each of the three directions of the crystal, with the hydrostatic pressure replaced by the
difference between the desired normal stress along each direction and the current

(calculated) normal stress along that direction. Hence:

exp (i’}_'.:‘i) : (24)

Subscript r denotes the required stress, while subscript ¢ denotes the calculated stress.
Equation (24) makes intuitive sense: if the required stress exceeds the calculated stress,
then the exponential term is greater than 1 and the lattice size is increased (i.e. the normal -
strain is increased); if the required stress is less than the calculated stress, then the
exponential term is lesser than 1 and greater than 0 and the lattice size is decreased (i.e.
the normal strain is decreased). Note that all three components of stress in equation (24)
are not indepeh_dent of each other: a change of lattice size in one direction generally
affects all components of the EAM force on the atoms (as per equation (5)), which in turn

influences the normal stresses in the other directions also (as per equation (17)). Hence
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the simulation is looped while periodically applying equation (24) until all three lattice

sizes (i.e. ay, a, and a;) converge to the desired accuracy.

2434 Periodic Boundary Condition in Molecular Dynamics

It is impossible to simulate a large piece of metal using molecular dynamics because
there are simply too many atoms (billions to trillions) for any modern computer to
handle. Hence MD is used to simulate a few unit cells of the crystal, with the surrounding
unit cells being represented using Periodic Boundary Condition (PBC). When PBC is
used, exact replicas of the active unit cell (called the primary cell) are made in the
direction of PBC activation. These replicas are called image cells. The positions of atoms
in the image cells are usually obtained by simple translation of the positions of the
corresponding atoms in the primary cell. The velocities of atoms in the image cells are
usually set exactly equal to the velocities of the corresponding atoms in the primary cell.
Figure 1 shows the concept of PBC for a two-dimensional case®. The central shaded cell

is the primary cell, while all other cells are the image cells.

Figure 1 — Two-Dimensional Periodic Boundary Condition

§ http://www.compsoc.man.ac.uk/~1ucky/Democritus/Theory/pbc-mi.html
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The biggest advantage of using PBC is that the effect of the surrounding crystal is
captured quite well. This is important to keep the atoms oscillating about their
equilibrium lattice positions. Otherwise, a single unit cell simulated by itself would either
expand to a very large volume or collapse into a very small volume. The important
question then is just how many image cells are needed. The answer lies in the potential
function: the number of image cells in each direction is set such that the maximum
distance between an atom in the primary cell and any atom in any image cell just exceeds
the cut-off distance for that potential. The cut-off distance is the distance beyond which
the potential becomes negligible and can be taken as zero for all practical purposes. In
typical simulations, this translates to one to three image cells in each direction.

The author’s MD code implements PBC in a slightly different way compared to
the afore-mentioned description. The atoms in the image cells are assumed to be fixed
with zero velocity at their equilibrium lattice positions. This was required to ensure that
the primary cell was stable and did not distort unusually. The immediate disadvantage of
this is that momentum of the system will not be conserved, since external forces are
required to restrain the image cell atoms from moving. However, the primary unit cell
does not move, which is all that is required from the MD simulation. Hence this is not as

much of a problem as it might seem to be.

24.3.5 Temperature Clamping in Molecular Dynamics

To determine the equilibrium lattice constant at any temperature using equation (23), the
temperature of the simulation must be maintained constant at all times. This is achieved
by scaling the velocity components equally until the Left Hand Side (LHS) of equation
(16) agrees with the Right Hand Side (RHS) of equation (16) for a temperature T. This is

a very simple procedure, and will not be discussed in further detail.
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2.5  Testing of Custom Molecular Dynamics Code: Momentum and
Energy Conservation for Single Unit Cell (No Periodic Boundary
Condition)

The first test case tests how well MD_V_7_00 conserves system momentum and energy
when PBC is not used. Because all the forces are conservative (i.e. are derived from a
potential function) and are internal, the total energy (potential plus kinetic) and
momentum of the system must be constant at all times. To check momentum
conservation, the velocity of the centre-of-mass of the system (which is always initialized
as zero) is monitored throughout the run (using the output text file generated by the
code). The total energy in the output text file is also monitored to ensure that it remains
more or less constant. Typically, the momentum is exactly conserved, while energy very
slightly oscillates about the ideal total energy because of numerical inaccuracies.

A single FCC unit cell of copper was used for the simulation. Important

parameters for the simulation are as follows:

Material : Copper

Atomic mass : 63.55 amu (Atomic Mass Unit)
Initial lattice constant (arbitrary) : 3.4 A (Angstroms)

Initial temperature : 0K (since no PBC is used)
Temperature clamp : Off

Time interval : 1 femto-second (10™'° sec)

Time steps . 250

Interatomic Potential - : Author’s EAM potential for copper

(details are presented in Chapter 3)

The above parameters are entered into the MD_V_7_00.m MATLAB™ program file
using a text editor. The program is executed in MATLAB™ by opening up
MD_V_7_00.m with any text editor, changing the root directory of MD_V_7_00.m to the
appropriate one on the machine, adding the directory to the MATLAB™ path, and then
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typing MD_V_7_00 in the MATLAB™ command line. The initial and final entries in the
output file are shown in Appendix B. _

In Appendix B, the first three bolded numbers in each italicized line are the X-,
Y- and Z- components of the velocity of the system centre-of-mass (in m.s), while the
last bolded number in each italicized line is the total system energy (potential plus
Kinetic, in electron volts or eV). Comparing corresponding values between the initial and
final time steps, one can see that the momentum (or velocity of the centre-of-mass) is
perfectly conserved at a value of zero to within 10 accuracy, while the total energy is
conserved to within 107 eV, which is accepted for almost all other MD codes. Hence the
author’s code conserves momentum and energy very well when such conservation is
expected (i.e. when PBC is not used).

As an additional observation, the last three lines of each entry is the stress tensor.
Note that the shear stresses (off-diagonal terms) are zero, as expected at 0K (as explained ‘
in Section 2.4.3.1). Note that the velocity components change even at OK because of the
absence of any surrounding atoms to hold the atoms of the primary unit cell in place (i.e.

because of the absence of PBC).

2.6 Chapter Summary

This chapter presented a brief overview of MD, and also presented the author’s custom
MD code, MD_V_7_00, which was used to do work for this thesis. Various functions
used in MD_V_7_00 were described in detail, along with all the theory used during the
programming stages. The code was tested by observing energy and momentum
conservation on a single unit cell of copper. Although one test case is insufficient to
completely validate any piece of software, the principles and code behind a general N- |
body simulator are simple enough to allow for a reasonable level of confidence in using

the code, given that energy and momentum were conserved very well in the test case. |
Furthermore, the code is used (in slightly modified forms) for all other work in this
thesis, the results of which are very good. This lends more éredibility to the custom MD

code.
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Because the custom MD code written for this thesis is a general and powerful N-
body simulator, it would be inappropriate to attach the entire code with this thesis, lest it
is misused. The flowcharts presented in Section 2.4.1 and the subsequent description of

functions provide sufficient information regarding the algorithm of the code.
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3. EMBEDDED ATOM METHOD POTENTIAL FITTING
PROCEDURE FOR PURE FCC AND BCC METALS

3.1  Introduction to Proposed Embedded Atom Method Potential

Fitting Procedure

This part of the report presents a numerical fitting procedure for developing Embedded
Atom Method (EAM) potentials for pure FCC and BCC metals which was developed by
the author. The focus was on developing an approximate EAM potential that sufficed for
engineering applications to pure metals. As already mentioned in Section 2.2, the EAM
inter-atomic potential consists of two parts: the pair-potential and the embedding
function. By assuming a parameterized form for the pair potential, the embedding
function is numerically fit into the hydrostatic linear-elastic stress equations of the metal
at hand. Following this, the single crystal anisotropic Young’s modulus and Poisson’s
ratio of the metal at 293 degree Kelvin (293K) are calculated through a uniaxial
Molecular Dynamics (MD) simulation, and are compared to experimental values. The
parameters of the pair potential are then changed and the embedding function
recalculated until the Young’s modulus and Poisson’s ratio are satisfactorily predicted.
Following this, a parameterized relation between temperature and kinetic energy is fit
into the thermal expansion data of the metal, and a temperature dependent volume factor
for calculating Young’s modulus at 0K and 100K accurately is numerically fit. Finally,
the potential is adjusted without changing the slopes (i.e. forces) to fit the cohesive
energy of the metal.

The following sections present details on the proposed fitting procedure, and
conclude with a test of the EAM potential obtained for copper using the proposed
procedure. The thermal and elastic properties of single crystal copper are predicted using

the EAM potential, and are compared to corresponding experimental values.
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3.2  Molecular Dynamics (MD) Code for Numerical EAM Potential
Fitting

The code for fitting EAM potentials is a variant of MD_V_7_00, which has been naméd
EAM_Potential_Fit_V_4_00. The only major difference between MD_V_7 00 and
EAM_Potential_Fit_V_4_00 is the presence of code blocks related to fitting EAM
potentials in EAM_Potential_Fit V_4_00. Any additional theory for these new code

blocks is presented in the following sections.

33 Essential Components of the Proposed EAM Potential Fitting

Procedure

3.3.1 Relationship between Temperature and Atomic Velocity

It is a popular result of statistical mechanics that the average kinetic energy per axis of a
large number, N, Of identical particles governed by the Maxwell distribution (see

Appendix E) is:

> (%), = > (%), = o % )., = % N kT (25)

In equation (25), m; is the mass of atom i, kg is Boltzmann’s constant and T is the
absolute temperature of the system. A reasonable engineering modification for metallic
nuclei in a crystal lattice is taken for the proposed fitting procedure, which is to assume

the following parameterized form of equation (25):

N 1 - 2 N 1 —_ 2 Y 1 - 2 1 ru
’Zl—z-mlvx,l =;5m,vy,, =’21:5m1v:,l =EN lothT (26)
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With this relationship, the average thermal stress on the entire crystal lattice can be
calculated in equation (17). The parameter 4 is adjusted during the numerical fitting
procedure to fit thermal expansion data of the metal at hand as best as possible. The

factor k!, is taken to be numerically equivalent to kg (Boltzmann’s constant), with units

that maintain dimensional consistency of equation (26).

3.3.2  Pair Potential for the EAM Potential: The Lennard-Jones Potential

A modified parameterized Lennard-Jones (LJ) pair potential is assumed as the basic
nuclear pair interaction for the EAM potential in this work, and is mathematically given

by the following expression (the conventional LJ potential equation taken from [21] has
been parameterized):

L1 L_2
Uu(r)=4e[(-‘ri) -(%) ],u_1>u_2 27

, Where ¢ and o are the parameters defining the depth and location of the potential well

respectively. The general form of the LJ potential for arbitrary values of ¢, o, LJ_1 and
LJ 2 is shown in Figure 2.
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Figure 2 — General Form of the Lennard-Jones Pair Potential
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For the proposed EAM fitting procedure, & is chosen so that the LJ potential with LJ 1
and LJ 2 taken as 12 and 6 respectively (i.e. the conventional form of the LJ pair
potential) is a minimum when the interatomic distance is equal to the nearest-neighbour
distance in the perfect lattice at zero degree Kelvin (OK). If r = r, is the nearest-
neighbour distance at OK, then the value of ¢ for a minimum is obtained by
differentiating equation (27), setting it to zero and setting LJ 1 and LJ 2 as 12 and 6

respectively. The resulting value of ¢ is:

1V
0:(—) kL, (28)

In equation (27), &, LJ_1 and LJ 2 are free parameters that are varied during the
numerical fitting procedure to fit uniaxial elastic properties and elastic shear properties.
The magnitude of force due to the LJ potential is calculated in the following usual way

(i.e. in the way that any force is calculated from a potential):

-

Fy ==VU, (r) (29

, where V is the gradient of a scalar field.

3.3.3 Atomic Electron Density Calculation using WinGAMESS

In general, as seen from equation (3), the embedding function ¥ at the location of a
nucleus is a function of fotal electron density at the position of that nucleus in the crystal
lattice, excluding the self-contribution of that nucleus. While using the EAM potential,
the total electron density at a point is approximated as the sum of individual aromic
electron densities at that point from surrounding atoms, which can be inferred from

equation (4). The atomic electron density of the metal is obtained from a numerical
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quantum mechanical Hartree-Fock Self-Consistent-Field (HF SCF) computation on one
atom of the metal, using the numerical quantum mechanical freeware package
WinGAMESS"*. Details on the HF SCF method, and the WinGAMESS input file for

copper, are given in Appendix D.

3.3.4 Varying the Total Electron Density during the EAM Fitting Process

The essential goal of the numerical EAM fitting procedure is to determine the embedding
function, ¥, as a function of total electron density. From equation (4), it is evident that
the only method of changing the total electron density at a point while using the EAM
potential is to change inter-nuclear distances in the crystal lattice. Calculating the
embedding function then requires known relationships between the crystal lattice at
different inter-nuclear distances, and the force from the EAM potential (equation (5)).
From a stress engineering point of view, stress relationships are the most
convenient since a method of calculating stress is already known in the form of the virial
stress tensor. It is a tried and tested fact in stress engineering that the Von-Mises yield
cﬁterion is the most satisfactory yield criterion for ductile metals (both single crystals and
poly-crystalline metals), which has made it the principal predictor of yielding in ductile
metals in the industry. The Von-Mises yield criterion states that yielding of a ductile
metal does not take place until the Von-Mises stress (an equivalent stress based on
distortion strain energy) reaches the uniaxial yield stress from tensile tests. Since the
distortion strain energy associated with a state of hydrostatic stress is always zero, a
ductile metal does not yield under hydrostatic loading or straining under the Von-Mises
yield criterion. Hence large hydrostatic tensile and compressive strains (30 %
engineering strain is used for this thesis) can be applied to the metal crystal lattice, and
the resulting stresses calculated using the virial stress tensor must still satisfy the
following elastic relationship (which can easily be derived from general elastic stress-

strain relationships for cubic crystals):

** GAMESS Home Page: http://www.msg.ameslab.gov/GAMESS/GAMESS .html
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E
O %% O _ (30)
&, &, &, 1-2v

E is the single crystal Young’s modulus of the metal and v is the single crystal Poisson’s
ratio of the metal. For a single crystal, E and v exhibit anisotropy along different
crystallographic directions. Using the three cubic elastic constants c;, ¢, and cyy for the
metal (which are always specified in the coordinate system that uses the standard, three
mutually perpendicular crystallographic axes [100], [010] and [001]; this system is also
the coordinate system used by the custom MD code), the (anisotropic) E, v and G (shear
modulus) values in this standard coordinate system are calculated using the following

equations [27]:

2 2
_ S teycp =26,

E (1)
€y 6

y =S (32)
a1 +6,

G=c, (33)

Conversely:

1-v

Gy =E(‘1 _ V-—2V2) (34)

v
= E(15257) (35)
€y =G o (36)
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Equation (30) is a vital relationship in the proposed EAM fitting procedure. The
importance of equation (30) is that it allows the total electron density to be varied
significantly, and yet maintains a definite known relationship among all quantities of
interest. Hence the slope of the embedding function can be calculated properly for a wide
range of total electron densities. The slope is then numerically integrated using the

trapezoid rule to obtain the embedding function.

3.3.5 Fitting the Cohesive Energy of the Metal

The cohesive energy of the metal is the energy required to completely remove an atom of
the metal from the crystal lattice. Since the externally applied mechanical stress tensor is
dependent only upon inter-atomic forces (equation (17)), which are in turn dependent
only upon the gradient of the EAM potential (equation (5)), the fitting procedure is
unaltered if a constaht is added to the entire potential. This constant is calculated such
that the cohesive energy of the metal at 293K predicted by the EAM potential matches

experimental values.

34  Proposed Numerical EAM Potential Fitting Procedure

Figure 72 and Figure 73 in Appendix C show a flowchart for the proposed numerical
EAM potential fitting procedure. The flowchart is also the algorithm used for the custom
MD code that performs the numerical fitting. A temperature dependent volume factor is
used in the virial stress equation (equation (17)) to scale the volume by an amount
required to properly predict Young’s modulus at OK. A power law is fit through this
calculated factor, a factor of 1 at 293K (since all data at 293K require no factor by design

of the fitting procedure), and the experimental value of Young’s modulus at 100K.
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3.5  Results: EAM Potential for Copper

Using the proposed numerical fitting procedure (Figure 72 and Figure 73), the EAM
potential for copper was determined. The electron density output from WinGAMESS was
found to be well approximated by the following power fit in R (distance from nuclear

centre):
p=0.268619- R (37)

In equation (37), R is in Angstroms and is in the range 0.4 Angs < R < 6 Angs. No atom
in a metal is expected to come close to another by less than 0.4 Angstroms (which is very
conservative itself), while the electron density beyond 6 Angstroms is negligible for
copper (from the WinGAMESS output). In using equation (37), the resulting unit of p is
Coulomb.Angstrom™ (C.A3. A plot of equation (37) is shown in Figure 3.

The modified Lennard-Jones pair potential was iteratively found to be the

following function of inter-nuclear distance R (where R is in Angstroms):

6.01 - 6
4=22534 4[(2.2613792) _(2.26}3792) ] G8)

In equation (38), ¢ is in eV (1 eV = 1.602e-19 Joules or J). A plot of equation (38) is
shown in Figure 4.

The iterated, integrated and cohesion-energy-shifted embedding function values
are plbtted in Figure 5 as a function of total electron density. Because the values are
numerically determined, there is no need to fit a function to the data: it can be read from a
text file and used as is (interpolating for intermediate data points whenever required).

The temperature dependent volume factor was found to be:
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3
V_ fac:or=1.288455e-009(-2%) +0.967591 (39)

The volume V in equation (17) is multiplied by this factor at the simulation temperature

before calculating the virial stress.
Finally, the temperature exponent  for average kinetic energy was calculated as

1.221. Hence:

N N1 N
Avg. K.E. per axis = Z%mﬁx,f = Zimﬁy’f = Z:—l;_'mtvz,zz =%Nmk1’9T 2L (40)
i=t i1 Py
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Figure 3 — Electron Density of Copper Atom (WinGAMESS Output)
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Lennard-Jones Pair Potential for Copper EAM Potential
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Figure 4 — Lennard-Jones Pair Potential for Copper EAM Potential
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In Figure 5, the embedding function for low electron densities appears to be becoming
positive. However, intuitively, the embedding function must be zero and must have zero
slope at zero total electron density. To overcome this, a smooth function can be filled in
between zero total electron density and the first electron density in Figure 5. This would
enable the prediction of failure for perfect crystals (identiﬁéd when atoms in the MD
simulation are no longer stably bound to one-another). However, for reasons to be given
in Section 3.7, this effort is unwarranted at this stage. Moreover, it does not present a
problem in this thesis since such high unrealistic tensile strains were not applied in the

test cases.

3.6 EAM Potential Testing: Thermal and Elastic Properties of Single
Crystal Copper '

3.6.1 Test Case 1: Léttice Constants of Copper Single Crystal at Various

Temperatures

The first test case uses the EAM potential and temperature parameter, 4, with the custom
MD code MD_V_7_00 to determine the equilibrium lattice constant of copper at various
temperatures ranging from 0K to 1300K. The results for various temperatures, and the
corresponding experimental values, are given in Table 1.

As can be seen from Table 1, the agreement between results using the numerically
fitted EAM potential and experimental results are very good, except very near OK. For all
practical applications, the temperature lies between 50K and 1000K, for which the
agreement is excellent (showing a maximum deviation of 0.0430 % from experimental

results). The agreement is exact at room temperature, which was enforced in the

numerical procedure.
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Table 1 - Calculated Equilibrium Lattice Constants of Copper at Various Temperatures

Absolute Temperature Lattice Constant (Angstroms) .
(K) P Calculated with Custom MD Code Experimental [28] % Difference

3.600343 3.603287 0.0817
25 3.601069 3.603287 0.0616
50 3.602035 3.603504 0.0408
100 3.604288 3.604806 0.0144
200 3.609538 3.609650 0.0031
293 (room temp.) 3.615000 3.615000 0.0000
400 3.621778 3.621579 0.0055
500 3.628491 3.628086 0.0112
600 3.635509 3.634846 0.0182
700 3.642792 3.641787 0.0276
800 3.650309 3.648945 0.0374
900 3.658037 3.656464 0.0430
1000 3.665958 3.664381 0.0430
1200 3.682318 3.681444 0.0237
1300 3.690734 3.690734 0.0000

3.6.2  Test Case 2: Uniaxial Properties of Copper Single Crystal at 293K

The second test case uses the EAM potential and temperature parameter, u, with

MD_V_7_00 to determine the (anisotropic) Young’s modulus and Poisson’s ratio of

single crystal copper at 293K through uniaxial tensile and compressive stresses on the

crystal lattice.

For the tensile stress, MD_V_7_00 was used to calculate strains needed to obtain

a mechanical virial stress tensor of:

o O O

oS O O

(41)

MD_V_7_00 determined the required engineering strain tensor (using the procedure

outlined in Section 2.4.3.3) to be:
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0.149026 0 0 _
£= 0 -0.061871 0 % strain 42)
0 0 —0.061871
Young’s modulus is then:
poOe 1006406 _ (7 102326¢+09 Pa=67.1023 GPa @3)
g, 0.149026e-02
Poisson’s ratio is:
£, £, -0.061871
=—-—=-—-—“—-=———————-=0.415167 44
YT, T e, 0.149026 @9

For the compressive stress, MD_V_7_00 was used to calculate strains needed to obtain a

mechanical virial stress tensor of:

-100 0 0
o=| 0 0 0|MPa
0 00

MD_V_7 00 determined the required engineering strain tensor to be:

-0.150956 0 0
£= 0 0.063144 0 % strain
0 0 0.063144

Young’s modulus is then:
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o —100e+06

E=—"%=
€ -0.150956e —02

xx

=6.6244306¢+09 Pa = 66.2443 GPa. (47)

Poisson’s ratio is:

&, &, 0063144

Te. &, —0.150956

y= =0.418294 (48)

The elastic constants cyy, c12 and ¢y of pure copper in the standard [100]-[010]-[001]
crystal coordinate system are 164.84 GPa, 117.74 GPa and 75.4 GPa respectively [29].
Using equations (31) and (32), the anisotropic E and v values in the standard crystal
coordinate system are calculated as 66.7341 GPa and 0.416649 respectively. The
agreement is once again excellent, with less than 1 % differences between corresponding
values.

As the stress values are increased, the error in the results increases, but not
significantly (less than 2 % difference at 300 MPa stress). This is acceptable from an

engineering stand-point.

3.6.3 Test Case 3: Hydrostatic Elasticity of Single Crystal Copper at 293K

The third test case uses the EAM potential and temperature parameter, g, with
MD_V_7_00 to determine the (anisotropic) hydrostatic elasticity of single crystal copper
at 293K through hydrostatic tensile and compressive stresses on the crystal lattice.

For the tensile stress, MD_V_7_00 was used to calculate strains needed to obtain

a mechanical virial stress tensor of:

100 0 O
g=| 0 100 O |MPa (49)
0 0 100
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MD_V_7_00 determined the required engineering strain tensor to be:
0.024980 0 0
£= 0 0.024980 0 % strain (50)
0 0 0.024980
From equation (30), hydrostatic elasticity is then:
E__Ou__100e+06 _ 40 320577¢+09 Pa=400.3206 GPa  (51)

For the compressive stress, MD_V_7_00 was used to calculate strains needed to obtain a

virial stress tensor of:

-100 0 0
o= 0 -100 0 |MPa {52)
0 0 =100

MD__V_7_00 determined the required engineering strain tensor to be:

-0.024980 0 0
£= 0 —0.024980 0 % strain (53)
0 0 -0.024980

From equation (30), hydrostatic elasticity is then:

= 1006406 _ 400.320577¢+09 Pa=400.3206 GPa  (54)

—0.024980e —02

E—

1-2v g,

3

The experimental value of single crystal hydrostatic elasticity for copper is:
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E _ 66.7341e+09
1-2v  1-2(0.416649)

=400.319732e¢+09 Pa =400.3197 GPa (55)

» Where E and v were calculated from the experimental sihgle crystal elastic constants
using equations (31) and (32), as done in section 3.6.2. The agreement is once again

excellent (negligible % difference).

3.6.4 Test Case 4: Shear Modulus of Copper at 293K

The fourth test case uses the EAM potential and temperature parameter, x, -with

MD_V_7_00 to determine the (anisotropic) shear modulus of single crystal copper at

293K through hydrostatic tensile and compressive stresses on the crystal lattice.
MD_V_7_00 applies a shear strain, &, for example, in the following conventional

way:

YA
---0O--- Undeformed crystal and atoms

—@— Deformed crystal and atoms

Figure 6 — Convention for Shear Strain Application in Custom MD Code

For positive shear strain, MD_V_7_00 was used to calculate stresses resulting from an

engineering strain tensor of:
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0 010
£=[(0.1 0 0] %strain (56)
0 0 0
MD_V_7_00 determined the resulting stress tensor to be:
—0.277317 75.771688 0
o=|75.771688 —0.149306 0 MPa (57)

0 0 0.032640

The small normal stresses are due to the sensitivity of the virial stress tensor (equation
(17)) to atomic positions. The magnitudes are not cause for concern from an engineering

stand-point. The (anisotropic) single crystal shear modulus is then:

. -+
G=Tn _T5.T71688¢+06 _ ¢ 1716880100 Pa=75.7717 GPa (58)
£
xy

0.1e-02

For negative shear strain, MD_V_7_00 was used to calculate stresses resulting from an

engineering strain tensor of:

0o 010
g=|-0.1 0 0] %strain (59)
0 0 0

MD_V_7 00 determined the resulting stress tensor to be:

-0.277317 =75.771688 0
o=|-75771688 —0.149306 0 |[Mpa (60)
0 0 0.032640
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The (anisotropic) single crystal shear modulus is then:

G=To o ZITTI688H06 _ 5 271 688e+09 Pa=75.7717 GPa 1)
E
xy

-0.1e-02

The experimental value of single crystal shear modulus for copper is obtained using

equation (33) and the value of the elastic constant c4s for copper (from Section 3.6.2):
G=c, =754 GPa (62)

The results show a deviation of less than 0.5 % from the expected result, which is once

again excellent.

3.6.5 Test Case S: Isothermal Young’s Modulus and Poisson’s Ratio of
Copper from 0K to 300K

The fifth and final test case uses the EAM potential and the thermal virial stresses with
MD_V_7_00 to determine the (anisotropic) isothermal Young’s modulus and Poisson’s
ratio of single crystal copper at various temperatures from OK to 300K through a uniaxial
tensile stress on the crystal lattice. The MD results are compared to expected values,
calculated from isothermal elastic constants data [29, 30] using equations (31) and (32).
At each temperature, MD_V_7_00 was used to calculate strains needed to obtain a

mechanical virial stress tensor of:

100 0 0
o=l 0 0 0|MPa (63)
0 00

The results are shown in Table 2.
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Table 2 — Isothermal Young’s Modulus and Poisson’s Ratio of Copper at Various Temperatures for
100 MPa Uniaxial Stress (calculated using custom MD code)

Absolute Normal Strains Young’s Modulus , .
Temperature (K) | XX Strain (%) YY Strain = ZZ Strain (%) (Gpag; xlet9 Pa) Poisson’s Ratio
0 0.13787931 -0.05669823 72.5272 0.411216
25 0.13807888 -0.05696229 72.4224 0.412534
50 0.13840861 -0.05727461 72.2498 0.413808
100 0.13960898 -0.05774278 71.6286 0.413604
200 0.14323699 -0.05937951 69.8144 0.414554
293 (room temp.) 0.14902613 -0.06187068 67.1023 0.415167

Comparison with expected values, calculated from isothermal elastic constants data [30]

using equations (31) and (32), are presented in Figure 7 and Figure 8. As seen from

Figure 7, the variation of Young’s modulus with temperature is captured quite well, with

a difference of less than 0.5 GPa in all cases. This is within acceptable error. The

variation of Poisson’s ratio with temperature is also predicted fairly accurately (as seen

from Figure 8). In particular, the Poisson’s ratios between 50K and 293K are close to the

expected value. Judging by the trend of the data in Figure 8, this agreement is expected to

continue far above 293K. Hence the potential can be used with confidence in a wide

temperature range.

3.6.6 Summary of Results for Anisotropic Mechanical Properties of Single
Crystal Copper at 293K

Table 3 summarizes the anisotropic mechanical properties of single crystal copper at
293K obtained from MD simulations (Sections 3.6.2 through 3.6.4), and compares then

to reference mechanical properties taken from the literature. References for the literature

values have already been given in the preceding sections.
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Variation of Young's Modulus with
Temperature (up to 300K)
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Figure 7 — Variation of Young’s Modulus with Temperature (up to 300K)

Variation of Poisson's Ratio with Temperature
(up to 300K)

0.417000
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Figure 8 — Variation of Poisson’s Ratio with Temperature (up to 300K)
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Table 3 — Anisotropic Mechanical Properties of Single Crystal Copper at 293K
. . . Percentage
Mechanical Property MD Simulation Result Reference Value Deviation

Tensile Young’s modulus for loading along

100] axis at 293K (GPa; x1e+9 Pa) 67.1023 66.7341 05517%
Tensile Poisson’s ratio for loading along o

100] axis at 293K 0.415167 0.416649 0.3557 %
Compressive Young’s modulus for loading o,
along [100] axis at 293K (GPa; x1e+9 Pa) 66.2443 66.7341 0.7340%
Compressive Poisson’s ratio for loading o
along [100] axis at 293K 0.418294 0.416649 0.3948 %
Tensile hydrostatic elastic modulus for
loading along [100]-[010]-[001] axes at 400.3206 400.3197 0.0002 %
293K (GPa; xle+9 Pa)
Compressive hydrostatic elastic modulus
for loading along [100]-[010]-[001] axes at 400.3206 400.3197 0.0002 %
293K (GPa; xle+9 Pa)
Positive shear modulus for shearing about o

001] axis at 293K (GPa; x1e+9 Pa) 3.7 754 04930%
Negative shear modulus for shearing about o

001] axis at 293K (GPa; x1e+9 Pa) 757717 54 0.4930%

3.7 Discussion

The numerically fit EAM potential for copper is found to predict thermal and elastic
properties of copper single crystal satisfactorily. The deviation of the lattice constant at
various temperatures from experimental values is less than 0.1% as seen from Table 1,
while the single crystal isothermal anisotropic elastic properties are predicted within 1 %
of experimental values. Hence as per these data, the proposed numerical fitting procedure
seems to produce an excellent EAM pote}itial for engineering applications over a wide
temperature range.

The numerical fitting procedure has only been demonstrated with pure copper (an
FCC metal) in this thesis. However, none of the concepts or principles used is specific to
FCC or BCC crystals alone. The fitting procedure is very general and can therefore be
implemented for any FCC or BCC metal.

It might be noted that only elastic properties have been considered for verification

purposes in this thesis. Because of the use of the Von-Mises yield criterion in the fitting
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algorithm, plasticity has no bearing on the resulting EAM potential except possibly at
extremely large and unrealistic tensile hydrostatic strains, as already mentioned.
Moreover, prediction of plastic probenies using MD simulation of perfect crystals is
difficult and erroneous: it is well known that perfect crystals have extremely high
theoretical yield stresses which can never be realized in experiments due to the presence
of crystal defects that reduce the strength by several orders of magnitude. The only way
to realistically capture plastic behaviour then is to simulate crystals with defects using
MD, which is a challenge in itself and has not been attempted in this thesis. No effort has
been made to fit the theoretical yield strength of the perfect crystal since this value is -
extremely high and therefore unrealistic. Ultimately, EAM potentials are used to model
crystal defects in single crystals or grains in polycrystalline material, which allow for
proper plastic flow mechanisms.

Finally, it is emphasized that the proposed fitting proce’dul"e is not applicable to
alloys, but only to pure metals. A similar procedure can be developed for alloys, but is

not attempted in this thesis.

3.8 Chapter Summary

An engineering-oriented numerical fitting procedure for developing Embedded-Atom-
Method (EAM) potentials for pure FCC and BCC metals was developed in this chapter.
The fitting method fits the embedding function of the EAM potential to thermal and
single crystal elastic properties of the metal. A systematic procedure for varying the EAM
potential ultimately ensures that all these properties are predicted as accurately as
possible. The numerical procedure was used to develop the EAM potential for copper
single crystal, which was subsequently tested in a variety of test cases and gave good
results. In conclusion, the proposed EAM fitting procedure promises to be a relatively
easy and practical method for obtaining accurate EAM potentials for FCC and BCC

metal single crystals.
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4. APPLICATION OF MOLECULAR DYNAMICS WITH
THE EMBEDDED ATOM METHOD POTENTIAL

4.1 Overview of Applications

This chapter presents a study of virial stress increment patterns produced in a perfect
copper crystal lattice with voids of definite geometries. The stress patterns are obtained
from MD simulations of the copper crystal lattice using MD_V_7_00. The EAM
potential developed for copper in Section 3.5 is used as the inter-atomic potential. Three
voids are investigated in this study: an infinite, perfectly cylindrical void in the interior of
the lattice; an infinite, semi-cylindrical notch at a free surface of the lattice ; and an
infinite, elliptical void in the interior of the lattice. The lattices and voids are constructed
and dynamically relaxed through MD simulation. It should be noted that only elastic
strains are applied for all cases. Contour plots for all three voids, for a uniaxial far-field
stress of 100 MPa, are presented. A qualitative comparison with existing data is not
possible in this case, since studies on atomic-level voids of these geometries are
extremely rare. Hence this chapter simply presents simulated results, without providing
any comparison.

Isothermal conditions (at room temperature of 293K) are imposed during the MD
simulation. The object is to study virial stress increments, and not the absolute virial
stresses, since the absolute stress on one atom is meaningless in the context of failure
prediction: an atom will never break apart or fail under the applied loads. Realistically,
crystal behaviour depends on the increment of atomic stresses from the base
(undeformed) state, whatever state that might be. Hence all stress patterns shown in this
chapter are records of stress increments (and not absolute stresses) from the base state. In
this case, the base state is simply the perfect copper crystal lattice with the appropriate
lattice constant at 293K and the void, relaxed using MD under a zero engineering strain

tensor. The deformed state is simply the perfect copper crystal lattice
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with the appropriate lattice constant at 293K and the void, relaxed using MD under the
desired non-zero engineering strain tensor. The following  sections present all three

applications, along with the resulting stress increment contour plots.

4.2  Application 1: Elastically Stressed Infinite, Perfectly Cylindrical
Void in a Perfect Copper Crystal Lattice

4.2.1 Application Objective

This application uses the copper EAM potential and MD_V_7_00 to perform a MD
simulation of an infinite, perfectly cylindrical void in an infinite copper crystal lattice.
The copper lattice with the void in it is first generated in MD_V_7_00, and a strain tensor
corresponding to a far-field (bulk) uniaxial stress of 100 MPa in the XX direction is then
applied to the whole lattice. The atoms are then allowed to relax through a damped MD
simulation. Appropriate damping (defined according to convention as the product of a
damping constant and the atomic velocities) ensures that the atomic velocities die down
to zero fairly quickly. The virial stress on each atom is then calculated and recorded. A
strain-free version is then simulated to calculate the base (undeformed) local stresses at
zero far-field base stress. The uniaxial results are then subtracted from the reference
results to yield the net stress increment of each atom. These stress increments are plotted
as contour plots for all components of stress. Periodic Boundary Condition (PBC) is used

to simulate the infinite surrounding lattice (already described in Section 2.4.3.4).

4.2.2 Infinite Copper Lattice Specifications |

A 15x15x1 (in the order XYZ in the standard [100]-[010]-[001] crystal coordinate
system) unit cell nano-layer of copper (each with a lattice constant of 3.615 Angstroms,

i.e. each at 293K) is first generated using MD_V_7_00. A 7 Angstroms radius cylindrical
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void with its axis parallel to the Z axis of the crystal is introduced at the very centre of the
nano-layer. As mentioned in Section 2.4.2.3, function CRACK_VOID_V_7_00 decides
which atoms are to be removed from the perfect lattice by calculating whether each atom
lies within the surface of the void. The surface is defined as an equation in 3-D space, and
can be specified for any desired void geometry, provided it is fairly simple. A point is
determined to lie inside the void if the result of a residual function is greater than or equal
to zero. For the 7 Angstroms radius hole (which is a cylinder along the Z axis) placed at
the centre of the 15x15x1 (54.225x54.225x3.615 Angstroms) nano-layer, the residual

function is defined as:

' 2 2
Residual = (7)2 —[(x - 54525) A +(y - 54'2225) :l (64)

It can easily be verified by putting in numbers that any atom on or within the cylindrical

envelope of the hole produces a non-negative residual. Consequently, it is removed from
the MD simulation. All other atoms are included in the simulation. Figure 9 and Figure
10 show two views of the copper nano-layer with the hole. The circles represent the

atoms,

Figure 9 — Copper Nano-Layer with Cylindrical Void (View 1; Angstroms)
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Figure 10 — Copper Nano-Layer with Cylindrical Void (View 2; Angstroms)

The nano-layer is then extended infinitely in the Z direction using PBCs in MD_V_7_00.
Since the cut-off distance for the EAM potential developed for copper in Section 3.5 is
just 6 Angstroms and there are 15x15 unit cells in the XY plane, there is no need to
impose PBCs in the X and Y directions. Rather, the atoms on the outer edges are clamped
rigid, since these atoms are not expected to move in any direction (on the average). This
saves simulation time, while ensuring correct stresses for all atoms save those in the
outermost 2 rows along the X and Y edges, which are of no consequence. Again, this was
one of the reasons for extending the crystal lattice for 15 unit cells in the X and Y

directions.

4.2.3 Core MD Simulation Parameters

The core parameters for the MD simulation are as follows:
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Material : Copper
Interatomic potential : Numerically Fit EAM Potential
Time steps : 5000
Time increment : le-14 sec
Damping : Yes

Applied initial strain tensors (determined by MD_V_7_00 for desired far-field stress

tensors):

000
£=|0 0 0| % strain (reference case) (65)
000
0.149026 0 0
£= 0 -0.061871 0 % strain (stressed case) (66)
0 0 -0.061871

Note: Atoms within void are first removed from the perfect crystal. Strain tensor is only

applied afterwards.

Corresponding initial stress tensors:

000
o=|0 0 0|MPa far-field/bulk (reference case) ©67)
[0 00
[100 0 ©
oc=| 0 0 O0|MPa far-field/bulk (stressed case) (68)
0 00
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Boundary conditions : Clamping along X and Y, dynamic periodic
boundary conditions (PBCs) along Z

4.2.4 Application 1 Results: Virial Stress Increment Plots

The MD simulation took roughly 2 hours to run for each of the two cases (reference
(base) and stressed). The atomic velocities after 5000 time steps were found to be less
than 0.001 m/s. The maximum difference in positions between one time step and the next
was about le-04 Angstroms, which was sufficient enough to warrant discontinuing the
simulations.

Plots of stress increments (not absolute stresses, for reasons already discussed in
Section 4.1) are shown in Figure 11 through Figure 16. The stress increments are the
stresses of the reference MD simulation subtracted from the stresses of the stressed MD

simulation.

XX Stress Increment (max.213.8394MPa; min.-8.0993MPa)

Figure 11 — Application 1: XX Stress Increment (MPa)
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XY Stress Increment (max.55.326MPa; min.-55.326MPa)
Y Q

Figure 12 — Application 1: XY (YX) Stress Increment (MPa)

XZ Stress Increment (max.2e-006MPa; min.-2e-006MPa) x 10
2

Figure 13 — Application 1: XZ (ZX) Stress Increment (MPa)
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YY Stress Increment (max.67.5198MPa; min.-85.4373MPa)

2at.a%e$

Figure 14 — Application 1: YY Stress Increment (MPa)

YZ Stress Increment (max.2e-006MPa; min.-2e-006MPa) 6

Figure 15 — Application 1: YZ (ZY) Stress Increment (MPa)
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7Z Stress Increment (max.144.8361MPa; min.-95.7719MPa)

Figure 16 — Application 1: ZZ Stress Increment (MPa)

4.3  Application 2: Elastically Stressed Infinite, Semi-Cylindrical
Notch at the Free Surface of a Perfect Copper Crystal Lattice

4.3.1 Application Objective

This application uses the copper EAM potential and D_V_7_00 to perform a Molecular
Dynamics (MD) simulation of an infinite, semi-cylindrical notch at the free surface of a
semi-infinite copper crystal lattice. The copper lattice with the notch in it is first
generated in MD_V_7_00, and a strain tensor corresponding to a far-field (bulk) uniaxial
stress of 100 MPa in the XX direction is then applied to the whole lattice. The atoms are
then allowed to relax through a damped MD simulation. Appropriate damping (defined

according to convention as the product of a damping constant and the atomic velocities)
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ensures that the atomic velocities die down to zero fairly quickly. The virial stress on
each atom is then calculated and recorded. A strain-free version is then simulated to
calculate the base (undeformed) local stresses at zero far-field base stress. The uniaxial
results are then subtracted from the reference results to yield the net stress increment of
each atom. These stress increments are plotted as contour plots for all components of
stress. Periodic Boundary Condition (PBC) is used to simulate the infinite surrounding
lattice (already described in Section 2.4.3.4).

4.3.2 Semi-Infinite Copper Lattice Specifications

A 15x8x1 (in the order XYZ in the standard [100]-[010]-[001] crystal coordinate system)
unit cell nano-layer of copper (each with a lattice constant of 3.615 Angstroms, i.e. each
at 293K) is first generated using MD_V_7_00. A 6 Angstroms radius semi-cylindrical
notch with its axis parallel to the Z axis of the crystal is introduced at the positive Y
surface of the nano-layer. The residual function for CRACK_VOID_V_7_00 is defined

as:

Residual =(6)" - [(x - 54'2225J +(y- 28.92)2] (69)

It can easily be verified by putting in numbers that any atom on or within the semi-
cylindrical envelope of the notch produces a non-negative residual. Consequently, it is
removed from the MD simulation. All other atoms are included in the simulation. Figure
17 and Figure 18 show two views of the copper nano-layer with the surface notch.

The nano-layer is then extended infinitely in the Z direction using PBCs. The
atoms on the positive and negative X edges, and the negative Y edge alone (not the

notched free surface), are clamped rigid.
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Figure 17 — Copper Nano-Layer with Surface Notch (View 1; Angstroms)

Figure 18 — Copper Nano-Layer with Surface Notch (View 2; Angstroms)
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4.3.3 Core MD Simulation Parameters

The core parameters for the MD simulation are as follows:

Material : Copper

Interatomic potential : Numerically Fit EAM Potential
Time steps : 5000

Time increment : le-14 sec

Damping : Yes

Applied initial strain tensors (determined by MD_V_7_00 for desired far-field stress

tensors):

0 00
£=|0 0 O [ % strain (reference case) (70)
0 00
0.149026 0 0
£= 0 -0.061871 0 % strain (stressed case) (71)
0 0 —-0.061871

Note: Atoms within void are first removed from the perfect crystal. Strain tensor is only

applied afterwards.

Corresponding initial stress tensors:

MPa far-field/bulk (reference case) (72)

1Q

Il
o o o
o o o
o o o
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100 0 O )
o={ 0 0 0|MPafar-field/bulk (stressed case) (73)
0 0O
Boundary conditions : Clamping along X and Y (except positive Y),

dynamic periodic boundary conditions (PBCs)
along Z

4.3.4 Application 2 Results: Stress Increment Plots

The MD simulation took roughly 1 hour to run for each of the two cases (reference (base)
and stressed). The atomic velocities after 5000 time steps were found to be less than
0.001 m/s. The maximum difference in positions between one time step and the next was
about le-04 Angstroms, which was sufficient enough to warrant discontinuing the
simulations.

Plots of stress increments (not absolute stresses, for reasons already discussed in
Section 4.1) are shown in Figure 19 through Figure 24. The stress increments are the
stresses of the reference MD simulation subtracted from the stresses of the stressed MD

simulation.
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XX Stress Increment (max.276.7362MPa; min.-4.7139MPa)

Figure 19 — Application 2: XX Stress Increment (MPa)

XY Stress Increment (max.71.4811MPa; min.-71.4811MPa)

Figure 20 — Application 2: XY (YX) Stress Increment (MPa)
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XZ Stress Increment (max.2e-006MPa; min.-2e-006MPa)

- -
e ot e

Figure 21 — Application 2: XZ (ZX) Stress Increment (MPa)

YY Stress Increment (max.91.2001MPa; min.-75.8637MPa)

Figure 22 — Application 2: YY Stress Increment (MPa)
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YZ Stress Increment (max.2e-006MPa; min.-2e-006MPa)

-
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Figure 23 — Application 2: YZ (ZY) Stress Increment (MPa)

ZZ Stress Increment (max.200.4398MPa; min.-85.4658MPa)

Figure 24 — Application 2: ZZ Stress Increment (MPa)
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4.4  Application 3: Elastically Stressed Infinite, Elliptical Void in a
Perfect Copper Crystal Lattice

44.1 Application Objective

This application uses the copper EAM potential and MD_V_7_00 to perform a MD
simulation of an infinite, elliptical void in an infinite copper crystal lattice. The copper
lattice with the void in it is first generated in MD_V_7 00, and strain tensors
corresponding to a far-field (bulk) uniaxial stress of 100 MPa in the XX direction first,
and 100 MPa in the YY direction next, are then applied to the whole lattice. The atoms
are then allowed to relax through a damped MD simulation. Appropriate damping
(defined according to convention as the product of a damping constant and the atomic
velocities) ensures that the atomic velocities die down to zero fairly quickly. The virial
stress on each atom is then calculated and recorded. A strain-free version is then
simulated to calculate the base (undeformed) local stresses at zero far-field base stress.
The uniaxial results are then subtracted from the reference results to yield the net stress
increment of each atom. These stress increments are plotted as contour plots for all
components of stress. Periodic Boundary Condition (PBC) is used to simulate the infinite

surrounding lattice (already described in Section 2.4.3.4).

4.4.2 Infinite Copper Lattice Specifications

A 15x15x1 (in the order XYZ in the standard [100]-[010]-[001] crystal coordinate
system) unit cell nano-layer of copper (each with a lattice constant of 3.615 Angstroms,
i.e. each at 293K) is first generated using MD_V_7_00. An elliptical void of 7 Angstroms
semi-major axis and 4 Angstroms semi-minor axis with its axis parallel to the Z axis of
the crystal is introduced at the centre of the 15x15x1 (54.225x54.225x3.615 Angstroms)
nano-layer. The residual function for CRACK_VOID_V_7_00 is defined as:
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54.225) ? ( 54.225) 2
x—IT y-—=
+

Residual = (l)2 - ( 2 2

e B (74)

It can easily be verified by putting in numbers that any atom on or within the elliptical
envelope of the void produces a non-negative residual. Consequently, it is removed from
the MD simulation. All other atoms are included in the simulation. Figure 25 and Figure

26 show two views of the copper nano-layer with the surface notch.

Figure 25 — Copper Nano-Layer with Elliptical Void (View 1; Angstroms)
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Figure 26 — Copper Nano-Layer with Elliptical Void (View 2; Angstroms)

The nano-layer is then extended infinitely in the Z direction using PBCs. The atoms on
the positive and negative X edges, and the positive and negative Y edges, are clamped

rigid.

4.43 Core MD Simulation Parameters

The core parameters for the MD simulation are as follows:

Material : Copper

Interatomic potential : Numerically Fit EAM Potential
Time steps : 5000

Time increment : le-14 sec

Damping : Yes

Applied initial strain tensors (determined by MD_V_7 00 for desired far-field stress

tensors):
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0 00
£=|0 0 0 [ % strain (reference case) (75)
0 00
[0.149026 0 0
E= 0 -0.061871 0 % strain (XX stressed case) (76)
| 0 0 -0.061871
[-0.061871 0 0
E= 0 0.149026 0 % strain (Y'Y stressed case) a7
| 0 0 -0.061871

Note: Atoms within void are first removed from the perfect crystal. Strain tensor is only

applied afterwards.

Corresponding initial stress tensors:

o

0
0 [ MPa far-field/bulk (reference case) (78)
0

19

Il
o o o
o o

0
0 0| MPa far-field/bulk (XX stressed case) (79)
0

MPa far-field/bulk (YY stressed case) (80)

19
Il
o o o
—
o
S
o
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Boundary conditions : Clamping along X and Y, dynamic periodic
boundary conditions (PBCs) along Z

4.4.4 Application 3 Results: Stress Increment Plots

The MD simulation took roughly 2 hours to run for each of the three cases (reference
(base) and two stressed). The atomic velocities after 5000 time steps were found to be
less than 0.001 m/s. The maximum difference in positions between one time step and the
next was about 1e-04 Angstroms, which was sufficient enough to warrant discontinuing
the simulations.

Plots of stress increments (not absolute stresses, for reasons already discussed in
Section 4.1) are shown in Figure 27 through Figure 38. The stress increments are the
stresses of the reference MD simulation subtracted from the stresses of the stressed MD

simulation.

XX Stress Increment (max.222.5718MPa; min.-0.21575MPa)

Figure 27 — Application 3: XX Stress Increment (MPa) for 100MPa XX Applied Far-Field Stress
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XY Stress Increment (max.51.4421MPa; min.-51.4421MPa)
208

Figure 28 — Application 3: XY (YX) Stress Increment (MPa) for 100MPa XX Applied Far-Field
Stress

Figure 29 — Application 3: XZ (ZX) Stress Increment (MPa) for 100MPa XX Applied Far-Field
Stress
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YY Stress Increment (max.72.2283MPa; min.-60.9901MPa)

Figure 31 — Application 3: YZ (ZY) Stress Increment (MPa) for 100MPa XX Applied Far-Field
Stress
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ZZ Stress Increment (max.167.968MPa; min.-69.4095MPa)

Figure 33 — Application 3: XX Stress Increment (MPa) for 100MPa YY Applied Far-Field Stress
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XY Stress Increment (max.57.4148MPa; min.-57.4148MPa)
Q

Figure 34 — Application 3: XY (YX) Stress Increment (MPa) for 100MPa YY Applied Far-Field
Stress

XZ Stress Increment (max.2e-006MPa; min.-2e-006MPa) x 10
v 2

: RRY SR N
A R
0 10

5
.h
S
~
iy
50

SANGHR RIS i‘b "N
.‘:~ \ ~ X L, ‘\ .~. \.\ \\
\é\\\\}:\ ..~ . \E}Q\ \::;\}::& \ \

2% S e \\\‘. \

20 30 40

X

Figure 35 — Application 3: XZ (ZX) Stress Increment (MPa) for 100MPa YY Applied Far-Field
Stress
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YY Stress Increment (max.238.5373MPa; min.-8.0669MPa)

Figure 37 — Application 3: YZ (ZY) Stress Increment (MPa) for 100MPa YY Applied Far-Field
Stress
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ZZ Stress Increment (max.188.7929MPa; min.-104.8775MPa)

Figure 38 — Application 3: ZZ Stress Increment (MPa) for 100MPa YY Applied Far-Field Stress

4.5 Discussion

There are several points to be noted from the contour plots of stress increments presented
in the previous sections. Firstly, in all cases, the far-field stress increments (i.e. stress
increments on atoms sufficiently far away from the void) are as required: a uniaxial state
of stress exists in the far-field for all cases. The magnitude of the uniaxial stress is 100
MPa far-field in all cases while all other stresses are zero or close to zero, just as
required. The only exceptions to this are the atoms in the outermost two rows of atoms
(i.e. atoms along the clamped edges). The stress increments on these atoms are not 100
MPa uniaxial because of the clamped boundary conditions. As discussed in Section 4.2.2,
this does not affect the rest of the stress increment contour, and this is evident in the
contour plots.

Secondly, the stress increment patterns (and not the stress increments themselves)

show certain similarities to classical theory of elasticity results. For instance, there are
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regions of normal stress increment concentration at classical positions around the
cylindrical void (Figure 11 and Figure 14). The XY shear stress increment peaks at the
45° locations around the void (Figure 12), just as in classical theory of elasticity. That
being said, there are several differences, which are to be expected since classical theory
of elasticity deals with isotropic materials and is a continuum theory, while atomic level
studies are obviously anisotropic and discrete-particle based. Hence no effort will be
made to compare the results to classical results, since such a comparison is neither valid
nor warranted.

Finally, the very definition of virial stress as a discrete, atomic force/position
based stress leads to important differences in observed results from classical macroscopic
results. For example, since the voids are all oriented in the Z direction, the ZZ stress
increment around the voids is expected to be zero always according to classical
macroscopic results (at least for the case of plane stress). However, since the atomic
positions alternate in the atomic planes of a crystal lattice, the exclusion of neighbouring
atoms most definitely induces ZZ virial stress increments, even though the crystal is
unloaded. Again, one cannot expect atomic results to be similar to classical macroscopic
results in all respects.

The author was unable to find any work in the literature archives to compare the
results with. Hence the stress increment results are simply presented in this chapter. The
study was restricted to perfect crystals with infinite voids since modelling dislocations in

crystals using MD is beyond the scope of this thesis.

4.6  Chapter Summary

Virial stress increment patterns in deformed copper crystal lattices with voids of various
geometries were studied using MD. All six independent components of the incremental
stress tensor were presented as contour plots. The plots were analyzed and differences
between them and expectations from classical continuum theories were noted and
accounted for. Although the study is idealized, the results provide insight into atomic-
level stress patterns in loaded perfect crystals.
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S. A BRIDGED FINITE ELEMENT-MOLECULAR
DYNAMICS METHOD FOR LARGE ATOMIC
SYSTEMS

5.1  Introduction to Bridged Method

This chapter presents a bridged method for efficiently analyzing metal single crystals that
combines certain key principles of the Finite Element Method (FEM) with Molecular
Dynamics (MD). The method is expected to be faster than MD simulations since only a
single step is required for the bridged Finite Element-Molecular Dynamics (FE-MD)
method in most cases, while a few thousand time steps are typically required for MD
simulations (as seen in the applications in Chapter 4). The element discretization scheme
introduced for the bridged FE-MD method is a novel scheme and was developed by the
author for this thesis. The bridged FE-MD method essentially reformulates the dynamic
equations of MD as a static system of equations for static loading. The definition of the
static system of equations mirrors that of conventional FEM, i.e. it uses appropriately
defined stiffness equations for each atom in the crystal lattice. Since the Embededed
Atom Method (EAM) potential for metals is a multi-body potential and has a non-linear
potential gradient, the stiffness equations hold approximately for that state of the system
for which they were formulated. For lafge initial displacements, recalculating and re-
solving the stiffness equations iteratively will lead to a final converged set of atomic
displacements.

Since the atoms themselves are discrete entities having discrete energies in the -
system, they can be used as the kernels of the finite elements in the analysis. The results
of this new discretization technique are comparable to results from pure MD simulation,
and it is felt by the author that this technique, gombined with faster computers, will allow

efficient analysis of large-scale atomic systems.

7 PRCPERTY OF
RYERSON UNIVERSITY LIBRARY
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The following sections present the details of the proposed bridged FE-MD
method. A reader who is not familiar with the basic principles of the FEM is'urged to
refer to the numerous good reference books available on the subject, since these

principles are not repeated in this thesis report.

5.2 General Form of Finite Element Stiffness Equation

Elements in conventional FEM can seemingly be formulated in a variety of ways, but the
fundamental quantity used in all these formulations is the energy of the system. The most
general way of formulating the stiffness matrix of an element from the energy of the
element is demonstrated with the simple example of a one dimensional spring element,

shown in Figure 39.

Y L 5F, L 5F,
. }—')6X1=A1 :— > 6X2=A2
® , . °
X  Node 1 Spring Element with Node 2

Energy U(6x;, 0x,)

Figure 39 — Two-Node Spring Element (for illustration of general stiffness matrix formulation)

The notations in Figure 39 are self-explanatory. Nodes 1 and 2 experience externally
applied forces of magnitudes 6F; and JF, respectively in the X direction. The resultant
displacements of nodes 1 and 2 in the X direction are A; and A, respectively. The
potential energy of the spring element is a general function of the nodal displacements,

ie.

U =U(6x,6x,) (81
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The internal forces on nodes 1 and 2 in any configuration are the negative spatial
gradients of the total system potential energy U with respect to the nodal coordinates (or
nodal displacements, if the undeformed state is arbitrarily chosen to be at zero potential)

in that configuration:

oUu
F. =———= 82
1,int a(axl) gx| :AA' ( )
ou
F,  =———< 83
2,int a(axz) §Xl :AAl ( )

The multi-variable first-order Taylor series approximations for the above energy

derivatives about the undeformed configuration are:

oU oU o*U U
— & — +(A)—— +(A,) ——————= (84)
0(5x,) oah 0(dx,) ) (&) 8(6x, )2 25 =0 (2:) 8(5x,)9(6x) on0
, and:
ou ou U U
_— & — +(A,)—————= +(A,)——— (85)
0 (5.762) g;;:AA'z 0 (6x2) gi;:% ( l) 0 (5x, ) 0 (6x2 ) g;;:% ( 2) 0 (6x2 )2 gi' :%

Under equilibrium, the vector sum of the external applied forces and internal forces at

F; t F;int} {0}
Sl S B (86)
{F'Z,ext} {F‘Z,int 0

Combining equations (82) through (86) gives the following final stiffness equation for the

each node is zero:

non-linear spring element:
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v U ] (ou | )
R O WA A R
ALV E (7 | (87)
62U azU 2 2,ext oUu
-a(5x, ) 0 (5x2 ) g;lz:g o (5x2 )2 g;;:% J \ 6(5.7&?2) g;lz:% ‘
Equation (87) resembles the standard FEM global stiffness equation:
(K]} ={F} )

, with the exception of the approximation inherent in the derivation of equation 87).
Comparing equation (87) with equation (88), it is apparent that:

[¥]

, and:

[ U o’U
o(sx,)’ o 8(8x,)a(6x,) on o
o’U U
- 0 (5xl ) 0 (5.7:2 ) 2;;‘_‘:, 3 ( 5x, )2 g;;:%
A,
@={a}
r aU | 3
0(6x,)|sx-
{F}={F;'w}_4 ( l)gx”'% e
By e U
~6(6x2) ey
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As mentioned earlier, an iterative procedure that involves updating the stiffness equation
will ensure convergence to the exact nodal displacements (i.e. will overcome the
approximation in equation (87)).

Using a similar approach, the stiffness equation for any non-linear system having

Cartesian nodal degrees of freedom (x;, X2, ..., ¥») and total energy Uy is:

(U, Uy OU| i
x?  oxox, | ox,ox ot

_ . ox,

xﬂ F;exlw
62 Utol azUlol 1lx F ’ _a U’"’ .
oxpx, ox? 2 Bt ox,
. Pﬂ N SO S : 92)

. . F, )

) an J " next ] ) U,,,,

62[Jlol aZUmI ax
| oxox, . ox? "

Equation (92) is the most general form of the FE stiffness equation of a system. It should
be remembered that since the total energy of the system has to be used in equation (92),
the resulting stiffness equation is the stiffness equation for the entire model, and not for
individual elements of the model. Individual element stiffness matrices can be formulated
similar to equation (92) if and only if the total system energy, U, can be distributed
between the elements in an independent and mutually exclusive manner. As will be seen
shortly, this is possible with the EAM energy if each finite element is based upon one
atom of the model and the energy of that atom is taken to be the energy of the

corresponding element.

53  FE Boundary Conditions vs. MD Periodic Boundary Conditions

In conventional FEM, all boundary conditions are applied to the boundary nodes as the

name suggests. However, in MD, there are no boundary nodes for an infinite or semi-
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infinite crystal lattice. To overcome this, MD implements Periodic Boundary Condition
(PBC) which simulates the effect of an infinite surrounding crystal lattice on the model
being simulated (already described in Section 2.4.3.4).

The importance of including the atoms in the PBC cells in the bridged FE-MD
analysis is illustrated very nicely with the following simple example of an assembly of

linear spring elements, each with stiffness k:

PBC Node 1 +— Primary Model/Cell

N ;
A

. W
L ! J "PBC Node 2

Figure 40 — Assembly of Linear Spring Elements (for illustration of the effects of PBC)

Nodes 1, 2 and 3 comprise the primary cell, while nodes i and J enforce partial PBC on
the primary model through their influence on nodes 1, 2 and 3.
Using conventional FEM techniques for spring elements, it can be easily

calculated that the stiffness matrix equation for the entire model is:

1
N
|
—
|
—
o
o
]
=
—

©3)

CEEREEK

0 0 -1 —1 2J ~x_’J

» Where F; denotes the net external force on node i. Now, if the model is strained such as
to displace node j to the right by an amount & while retaining the position of node i, then

the FE boundary conditions are;
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-

, and:

95)

il
o O ©

Applying these boundary conditions to equation (93) and solving for the unknown

displacements yields:

-1

X, 3 -1 -1

x,¢=—|-1 4 =1| |-1 -1 0 (96)
o
X, -1 -1 3 0 -1
For example, if 8 is 1, then:
X, 0.375
x, ¢ =40.500 97)
X, 0.625

These values make intuitive sense since the symmetry of the entire model is retained, as
is expected from the arrangement in Figure 40.
However, if only the nodes in the primary model are used, then the stiffness

matrix equation looks as follows:

- (98)
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If boundary conditions x/=0, x;=1 and F;=0 are applied to equation (98), then the
unknown displacement is calculated as x;=0.25, which is completely against the
symmetry of the model. This simple example shows why the PBC nodes are 1mportant
and why they cannot be discarded from the bridged FE-MD analysis.

That being said, the analysis is greatly simplified by the fact that the deformation
of the PBC cells is identical to the deformation of the primary cell far away from any
voids that are introduced in the primary cell. This means that there are definite
relationships between the displacements of the atoms in the PBC cells and the
displacement of atoms in the primary cell. This fact will be used shortly to provide a
tractable method of solving the bridged FE-MD model.

5.4  Proposed Element Discretization Scheme for Bridged FE-MD
Method

This section presents the element discretization scheme proposed by the author for the
bridged FE-MD method. As mentioned in Section 5.2, a stiffness equation similar to
equation (92) can be formulated for each element individz)ally if and only if the total
system energy can be distributed between the elements in an independent and mutually
exclusive manner. The proposed discretization scheme achieves exactly this for the
atomic system. The proposed scheme is now demonstrated using a simple example of a

collection of nodes (or atoms) interacting via the simple linear spring potential.

5.4.1 Conventional FEM Element Discretization Scheme

Consider the following collection of nodes (or atoms), each interacting with two nearest
atoms on either side via the linear spring potential. The linear spring potential is a simple
2-body potential (with each body being a node). Hence the most logical way of
discretizing the model is to create one element for each non-repeating pair of nodes i and

J. The resulting element is readily identified as the two node spring element seen in
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conventional FEM, and in many other common mechanical applications. The resulting

model is shown in Figure 41, and is the model used in conventional FE analysis.

@Og/@@
7/@2\ /Z@\'s

Figure 41 — Assembly of Linear Spring Elements (for illustration of the effects of PBCs)

The potential energy of the spring element containing nodes i and j is then:

U, =2k -1) 99)

, where k is a parameter characterizing the spring potential (commonly called the spring
stiffness coefficient, or simply spring stiffness). The element stiffness equation for

element 1 is readily determined as:

(1 -1 0 0 0(x) (A

-1 1 00 0|[x,| |E

k[0 0 00 Ofyx e={F' (100)
0 0 0-0 Of|x| |F

(0 0o 0 0 0f|lx) (A

, where x; is the displacement of node (or atom) i and FY is the force on node i of element

J. The global stiffness matrix for element 1 is then:
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[K], =+

Similarly, the global element stiffness matrices for the other elements are:

[K], =k

k)=

[K], =k

1

S O O -

o O O o ©
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© ©O ©o o o
© © O © ©

S O = O
S O ©O o ©

o O O o ©

S O =

o O © o ©
o

©c O © ©

S O o ©

o O O o © o
— —

oS © O ©

(101)

(102)
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i 0]

[K],=F (106)

o O O © O

o O © O O

o = O O

o ©oO ©o © ©
1

K], = 0 (107)

o O © © ©

o ©oO © ©o ©

o ©O © © ©

- O O O
o

The assembled global stiffness matrix for the entire model is simply:

[K]g:i[K],=k -1 -1 4 -1 -l (108)

The global model stiffness matrix obtained from the conventional FE discretization
scheme (equation (108)) will be compared to that obtained from the proposed FE

discretization scheme, which is the focus of the next section.

5.4.2 Proposed Element Discretization Scheme

Consider the same collection of nodes (or atoms) as in the previous section, each again
interacting with two nearest atoms on either side via the linear spring potential. The

potential energy of a pair of nodes i and j is then given by the following expression:
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U, = k(5 -x) (109)

» Where k is again the parameter characterizing the linear spring potential. Now, this
potential energy can be divided equally between the two nodes, giving the following

expression for potential energy per node 7 or j for an interaction between those nodes:

2

U =U, =-i-k(x, -x,) (110)

The ability to divide energy between the nodes in this fashion (i.e. in an independent and
mutually exclusive manner) suggests the use of a rather different element for the FE
discretization: one in which the element energy is based on the total energy of a single
node. Such an element based on node 1, for example, would look as depicted in Figure
42:

_. Secondary
.----=7.*" Nodes

-
-
-
-

Figure 42 — Proposed Element Discretization (only element 1 shown)

The energy of the element (element 1) shown in Figure 42 is taken to be equal to the total
energy of node 1, which is calculated using equation (110) from all non-repeating
interaction pairs that involve node 1. The element number is equal to the number of the
node upon whose energy the element energy is based. This node is termed the primary
node of the element. All nodes that interact with the primary node are included in the
element and are called secondary nodes. Note that the secondary nodes of an element do
not contribute to the element energy: they are included because their position relative to

the primary node affects the energy of the primary node, which has to be captured in the
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stiffness matrix. Now, the formulation of the stiffness matrix based on this element
discretization scheme is addressed.
Using equation (110), the total energy of element 1 (i.e. the energy associated

with node 1) is:
1
U, =Z—k[(x2 =5) + (% -x)" ] (111)

Using a similar element discretization procedure, it can be easily verified that the

energies of elements 2 through 5 are:

U, =“lzk|:(xz '-xn)2 +(xz —x3)2 +(x2 —x4)2] (112)
U, =%k[(x3 —x, )+ (% =x,) (o5 —x, ) +(x, —xs)z] (113)
U, =%k|:(x4 —x2)2 +(x, —x3)2 +(x, —xs)z] (114)
1 2
Us =zk[(xs "x3) +(x5 -—x4)2:| (115)

Since the energies of the elements are independent and mutually exclusive of each other,
equation (92) can be modified for each element by using the element energy in place of

the total system energy. Hence the stiffness matrix for element i is:
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[ U, 8, o°U, |
R
U, &,

[K] =|ovox, 2> T (116)
0%, 8°U,
R

» Where U is the energy of element 7 and x; is the displacement of node /. Using equation

(116), the global stiffness matrix for element 1 is:

[ oU, o, @&U, &U, &, ]
ox®  ox,0x, Ox0x Ox,dx, Oxox,
FU, oW, &U, U, o,

ox0x, ox,° Ox;ox, Ox,0x, Ox,ox,

FU, U, U, U, o,

[x],= oxpx, oxdr, o Oxox, Ordw, (n
’U, o, U, °dU, &,
ox,0x, 0Ox,0x, Ox,0x, ©&x,> 0x,0x,
o’'u, o'U, U, &U, &,
| Ox,0x;  Ox,0x, Ox0xs Ox,0x,  Ox; |
, which can be easily evaluated using the energy of element 1 (equation (111)) as:
(2 -1 -1 0 0]
-1 1 0 00
[K]l =§ -1 0 1 00O (118)
0 0 0 00O
(0 0 0 0 0]

Similary, the global stiffness matrices for the other elements in the proposed

discretization scheme are:
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1 -1 0 0 0]
(|3
[k],=5{0 -1 1 0 (119)

[K]3=§ -1 4 - - (120)

0 0 0 0 0]

01 0 -1 0
[K]4=-’250 0 1 -1 0 (121)

0 -1 -1 3 -l

0 0 0 -1 1]

00 0 0 O]

|00 0 0 0
[K]5=§ 00 1 0 -l (122)

00 0 1 -l

0 0 -1 -1 2]

The assembled global model stiffness matrix is then simply:

5

[K]g_—.Z[K],=k -1 -1 4 =1 - (123)
=l 0 -1 -1 3 -]
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5.4.3 Comparison of Discretization Schemes

There are only 5 elements in the proposed discretization scheme, compared to 7 elements
in the conventional discretization scheme (as evident in equation (108)). Now, the global
element stiffness matrices obtained from the proposed discretization method (equations
(118) through (122)) are not equal to those obtained from the conventional FEM
discretization procedure (equations (101) through (107)), and neither should they be
expected to be since the discretization procedures are completely different. However, and
most significantly, the global model stiffness matrix obtained from the proposed
discretization method (equation (123)) is identical to that obtained from the conventional
FEM discretization procedure (equation (108)). This makes intuitive sense since the
global model stiffness matrix captures the behaviour of the entire system, and should be
the same irrespective of the discretization procedure used since the system can only
behave in a single way.

The equality of the global model stiffness matrices given by the conventional FE
discretization procedure and the proposed discretization procedure has been established.
It might appear that the extra complications involved with the proposed element
discretization scheme are unwarranted. After all, an element in the proposed scheme (i.e.
the element in Figure 42) is just a combination of elements in the conventional
discretization scheme (i.e. elements in Figure 41). However, upon a little thought, it
becomes apparent that this behaviour is due to the fact that the linear spring potential is a
simple 2-body potential. The real utility of the proposed discretization scheme is realized
while dealing with complex multi-body potentials like the EAM potential. For the EAM
potential, the embedding function embodies the multi-body component of the potential.
As seen from equation (4), the embedding function is determined by the fotal electron
density at the location of an atom, and is not distributive in nature (i.e. the embedding
function. for the sum of two electron densities is not equal to the sum of the embedding
functions for each of those two electron dénsities). It is easily realized that the behaviour
of such multi-body potentials can only be captured using the proposed element

discretization scheme.
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5.5  The Bridged FE-MD Method

5.5.1 Formulation of Stiffness Equations

For the FE-MD bridged method, the nodes in Figure 42 can t')e.considered as atoms, with
each element consisting of a primary atom interacting with a number of secondary atoms
within its sphere of influence. The interactions are, of course, represented by the EAM
potential and not by the simple linear spring potential used for the example in Section
5.4. The EAM potential energy of an atom i interacting with N-1 atoms within its sphere
of influence (which is determined by the EAM potential cut-off distance) is given by the

expression within the square brackets in equation (4), i.e.:

Z¢( ,)+¥ > o(n) (124)

254 Jj=1
jei jei

The second derivative of the EAM potential energy for atom i/ with respect to degrees of

freedom (nodal displacements) p and g can then be derived easily as:

o, _&[[1ds, av dp,) ' [1de, d¥ &p)oy 0]
oqop 4| |2dr, dp,, dry |0q0p |2 ar? dp,, dr’ |oq dp
i

d"I’ Z dp, O I 3| 420 dp, O
dplal 12 J=1 aq j=l d’;_/ ap

In equation (125), 7y is the distance between atoms / and j and, for Cartesian coordinates,

(125)

is given by:
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Ty =J(x, _xj)z +(», —y/)z +(= —z/)z

It can be easily verified that the first derivatives of r are then:

o _

Ox, Ox, T

Oy _ 9 %=y,

_6};, X=X,

Y oy
Oz, oz, r
, while the second derivatives are:
2
621;1= o*r, __ o%r, =627;j =i;jz—(x, x/)
oxi’  ox@x, oxdx, xS r’
2
627;j= o’r, _ o’r, =621;, ='},2 —(}’: ".V;)
ay’z a.yja.yl ay,ayj ayfz ’;/3
2
O __ O & & _r’-(a-z)
0z 0207, 070z, 0z r’
o7, - "1, — o', _ 1y =-(x,-x,)(y,—yj)
9y, 0x, a.yjaxi aylaxj @)jaxj ';13
O __ O __&n _ @ _~(x-x)(a-z)
0z,0x,  0z,0x, Oz,bx, &z,0x, r’
Or, __ O, o _ 9 _—(y,—yj)(z,—zj)
3

2,0y, 8z,%y, oz,dy, oz,09,

(126)

(127)

(128)

Using equations (125) through (128) and the element discretization method proposed in

Section 5.4.2, the global model stiffness matrix for a system of atoms interacting through

the EAM potential can easily be determined. From the standpoint of computational
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implementation, this is accomplished through a single step MD simulation of all the
atoms, with extra equations for calcu]ating second derivatives of energy as per equations
(125) through (128). This is why the technique is termed a bridged FE-MD method. All
that remains is to calculate the forces F on the atoms for use in the following stiffness

equation:
[K] {d}={F} - (129)

The forces are given by the components of the EAM force vector given in equation (5),

and whose general expression is:

- b@_@_:_ﬁ:[dqﬁ(n,){ d¥_, _d¥ )[dp(n,)ﬂa_r,,_ 130)

P op, ;:: d’;j d Pi ot dp i 10t d’;j op,

Equation (130) gives the component of force on atom i in the direction of degree-of-
freedom p;. , .

All quantities in equation (129) are known except for the unknown displacements.
However, as mentioned in Section 5.3, equation (129) necessarily contains displacements
of elements whose primary nodes are the atoms of the PBC cells. But these displacements
are related to the displacements of the atoms in the primary cell in a definite manner,
since the deformation of the PBC cells is the same as the deformation of the primary cell
away from ahy voids in the primary cell (this was also mentioned in Section 5.3). This

will be addressed next.

5.5.2 Mapping PBC Nodal Displacements to Primary Cell Nodal

Displacements

The code used for performing the bridged FE-MD analysis is a variant of MD_V_7_00.

Hence it provides the option of specifying initial strains on the entire model. Since most
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PBC cells are based on the primary cell excluding any voids (except in directions of
infinite voids), it seems logical to strain the entire model to the desired strain before
running the bridged FE-MD analysis. If this is done, the atoms of the PBC cells are
already in the desired locations and their subsequent displacements (i.e. displacements
from the bridged FE-MD analysis) can be taken as zero. Equation (129) can be simplified
using this fact since columns of the global stiffness matrix corresponding to the
displacements of these atoms are multiplied by zero, resulting in their removal from the
analysis.

Further reduction can be achieved by noting that all PBC cells in the direction of
infinite voids are exact copies of the primary cell with the void included. Hence the
displacements of corresponding atoms between the PBC cells in the direction of infinite
voids and the primary cell can be equated to each other. These equalities can be.

expressed as a matrix equation:
{d)=[]{a), 131)

» Where: {d} is the vector of nodal displacements of the entire model (including the PBC
cells); {d}, is the vector of nodal displacements of the primary cell alone; and [T] is the
mapping matrix consisting of 0 and 1, which relates the two displacement vectors with
each other. Equation (131) is then substituted into the LHS of equation ( 129) to reduce it
to a system of equations containing only the nodal displacements of the primary cell.
Because the method involves pre-straining the crystal, the bridged FE-MD
method can only be used for crystal relaxation studies around cracks or voids. That being
said, straining the entire crystal lattice beforehand is a trivial task and therefore the

proposed method can be used without any concerns.
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5.5.3 Boundary Conditions

Once the mapping procedure of Section 5.5.2 has been implemented, what is left is a
stiffness equation that involves only the displacements of atoms in the primary cell. Since
the strains have already been applied, the boundary conditions are simple: the atoms on
the faces of the primary cell which are connected to neighbouring PBC cells have no
displacements, while the forces on the remaining atoms are given by equation (130). Now
the system of equations can be solved for the displacements of the primary cell atoms,
{d},, from which the displacements of the PBC atoms can be determined using equation
(131).

5.6 Code for Bridged FE-MD Method

The code for performing the bridged FE-MD analysis is a variant of MD_V_7_00, which
has been named FE_MD_V_7_00. The only major difference between MD_V_7_00 and
FE_MD_V_7_00 is the presence of code blocks related to the bridged FE-MD method in
FE_MD_V_7_00. '

5.7 Chapter Summary

This chapter presented a bridged FE-MD method for analyzing large atomic systems.
Because of the FE based formulation, the bridged method is expected to be much quicker
than MD simulation alone. Details of the stiffness matrix formulation for the bridged
method were presented, along with all relevant theory. The bridged FE-MD method is
implemented in MATLAB™ code FE_MD_V_7_00 written by the author for this thesis.
The next chapter uses FE_MD_V_7_00 to analyze the three cases that were analyzed
usihg MD simulation alone in Chapter 4. The superior efficiency of the bridged FE-MD

method will become apparent in the process.
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6. APPLICATION OF BRIDGED FE-MD METHOD

6.1  Overview of Applications

The bridged FE-MD method will be applied to the analysis of the three cases that have
already been simulated by MD alone in Chapter 4 using FE_MD_V_7_00. Only the
stress increment plots are shown, since the bridged FE-MD method has already been
outlined in sufficient detail in Chapter 5. Details of the MD simulation and crystal void
geometry can be found in Chapter 4.

6.2  Application 1: Elastically Stressed Infinite, Perfectly Cylindrical
Void in a Perfect Copper Crystal Lattice

The results of the bridged FE-MD analysis using FE_MD_V_7_00 for this case are
shown in Figure 43 through Figure 43.
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XX Stress (max.208.9169MPa; min.-12.0601MPa)

Z (Ang.)

Y (Ang.) 0 T e

Figure 43 — Application 1: XX Stress Increment from FE-MD Bridged Simulation (MPa)

XY Stress (max.55.3455MPa; min.-55.3455MPa)

Z (Ang.)

Figure 44 — Application 1: XY (YX) Stress Increment from FE-MD Bridged Simulation (MPa)
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Z (Ang.)

20
X (Ang.)

Figure 45 — Application 1: XZ (ZX) Stress Increment from FE-MD Bridged Simulation (MPa)

Y (Ang.) 0 10

Z (Ang.)

Y (Ang.) 0

X (Ang.)

Figure 46 — Application 1: YY Stress Increment from FE-MD Bridged Simulation (MPa)
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YZ Stress (max.1.3905e-009MPa; min.-1.0927e-008MPa) x 10

Z (Ang.)

Y (Ang.) 0 X (Ang.)

Figure 47 — Application 1: YZ (ZY) Stress Increment from FE-MD Bridged Simulation (MPa)

ZZ Stress (max.147.7943MPa; min.-97.9527MPa)

Z (Ang.)

2 X (Ang.)

Figure 48 — Application 1: ZZ Stress Increment from FE-MD Bridged Simulation (MPa)
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Table 4 compares the results from the bridged FE-MD method to those from the pure MD
simulation (Section 4.2.4).

Table 4 — Summary and Comparison of Results for Application 1

Pure MD Bridged FE-MD Difference
Quantity of Simulation Method (MPa, not %)
Interest Max. Min. Max. Min. Max. | Min.
XX virial ?ﬁ;s:) 2138394 | -8.0093 208.9169 120601 | 49225 | 3.9608
XY Virial f&‘;s:) 553260 | -55.3260 553455 | 553455 | 00195 | 0.0195
ﬁ::;ﬂtm";:) Negligible | Negligible |  Negligible Negligible | NA N/A
Xy Vil ?ﬁ‘;‘; 67.5198 | -85.4373 70,0224 859669 | 25026 | 05296
xz Z;“;‘:)‘tm:) Negligible | Negligible |  Negligible Negligible N/A N/A
z ‘g’:‘;tsat{f;:) 1448361 | -95.7719 147.7943 979527 | 29582 | 21808
Simulation Time 2 hours 15 minutes N/A

6.3  Application 2: Elastically Stressed Infinite, Semi-Cylindrical
Notch at the Free Surface of a Perfect Copper Crystal Lattice

The results of the bridged FE-MD analysis using FE_MD_V_7_00 for this case are
shown in Figure 49 through Figure 54.
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XX Stress (max.268.4213MPa; min.-4.735MPa)

Y (Ang.)

X(Ang.)
Figure 49 — Application 2: XX Stress Increment from FE-MD Bridged Simulation (MPa)

XY Stress (max.69.2885MPa; min.-69.2885MPa)

Y (Ang.) 10 ;‘(’A )
ng.

Figure 50 — Application 2: XY (YX) Stress Increment from FE-MD Bridged Simulation (MPa)
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XZ Stress (max.2.3351e-008MPa; min.-1.6277e-008MPa) x 10

Z (Ang.)

Y (Ang.)

X (Ang.)
Figure 51 — Application 2: XZ (ZX) Stress Increment from FE-MD Bridged Simulation (MPa)

i
]
i YY Stress (max.88.5507MPa; min.-71.9483MPa)

Z (Ang.)

Y (Ang.) 0 i)

l Figure 52 — Application 2: YY Stress Increment from FE-MD Bridged Simulation (MPa)
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YZ Stress (max.2.6032e-008MPa; min.-2.1202e-008MPa) x 10

Z (Ang.)

20
X (Ang.)
Figure 53 — Application 2: YZ (ZY) Stress Increment from FE-MD Bridged Simulation (MPa)

Y (Ang.) 0 10

ZZ Stress (max.195.3059MPa; min.-83.8692MPa)

Z (Ang.)

20
X (Ang.)

Figure 54 — Application 2: ZZ Stress Increment from FE-MD Bridged Simulation (MPa)

Y (Ang.) 0 10
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Table 5 compares the results from the bridged FE-MD method to those from the pure MD
simulation (Section 4.3.4).

Table 5 — Summary and Comparison of Results for Application 2

. Pure MD Proposed FE-MD Difference
Q}lantlty of Simulation Bridged Method (MPa, not %)
nterest . . .
Max. Min. Max. Min. Max. Min.
XX Virial Stress
Increment (MPa) 276.7362 -4.7139 268.4213 4.735 8.3149 0.0211
XY Virial Stress 714811 | -714811 69.2885 692885 | 21926 | 2.1926
Increment (MPa)
XZ Virial Stress . . . . . ..
Increment (MPa) Negligible | Negligible Negligible Negligible N/A N/A
YY Virial Stress
Increment (MPa) 91.2001 -75.8637 88.5507 -71.9483 2.6494 39154 .
YZ Virial Stress .. .. . . ..
Increment (MPa) Negligible Negligible Negligible Negligible N/A N/A
ZZ Virial Stress
Increment (MPa) 200.4398 -85.4658 195.3059 -83.8692 5.1339 1.5966
Simulation Time 1 hour 45 minutes N/A

6.4  Application 3: Elastically Stressed Infinite, Elliptical Void in a
Perfect Copper Crystal Lattice

The results of the bridged FE-MD analysis using FE_MD_V_7 00 for this case are
shown in Figure 55 through Figure 66.

107




APPLICATION OF BRIDGED FE-MD METHOD

XX Stress (max.227.0723MPa; min.1.4385MPa)

Z (Ang.)

Y (Ang.) 0 10 20
X(Ang.)

Figure 55 — Application 3: XX Stress Increment from FE-MD Bridged Simulation (MPa) for 100MPa
XX Applied Far-Field Stress

XY Stress (max.57.3484MPa; min.-57.3484MPa)

Z (Ang.)

Y (Ang)) bl =D 2°A :
X (Ang.

Figure 56 — Application 3: XY (YX) Stress Increment from FE-MD Bridged Simulation (MPa) for
100MPa XX Applied Far-Field Stress
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Z (Ang.)

Y (Ang.) 0 10
X (Ang.)

Figure 57 — Application 3: XZ (ZX) Stress Increment from FE-MD Bridged Simulation (MPa) for
100MPa XX Applied Far-Field Stress

YY Stress (max.72.7777MPa; min.-59.4729MPa)

Z (Ang.)

Y (Ang.) 0 10

X (Ang.)

Figure 58 — Application 3: YY Stress Increment from FE-MD Bridged Simulation (MPa) for 100MPa
XX Applied Far-Field Stress
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YZ Stress (max.1.1775e-009MPa; min.-1.1795e-009MPa) x 10°

Z (Ang.)

[ fst
X (Ang.)

Y (Ang.) 0

Figure 59 — Application 3: YZ (ZY) Stress Increment from FE-MD Bridged Simulation (MPa) for
100MPa XX Applied Far-Field Stress

ZZ Stress (max.170.49MPa; min.-70.4336MPa)

Z (Ang.)

Y (Ang.) 0 10 20
X (Ang.)
Figure 60 — Application 3: ZZ Stress Increment from FE-MD Bridged Simulation (MPa) for 100MPa
XX Applied Far-Field Stress
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XX Stress (max.80.1706MPa; min.-118.3583MPa)

35¢

Z (Ang.)

iy X (Ang.)

Figure 61 — Application 3: XX Stress Increment from FE-MD Bridged Simulation (MPa) for 100MPa
YY Applied Far-Field Stress

XY Stress (max.60.1088MPa; min.-60.1088MPa)

Y (Ang.) 0 10

X (Ang.)

Figure 62 — Application 3: XY (YX) Stress Increment from FE-MD Bridged Simulation (MPa) for
100MPa YY Applied Far-Field Stress
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XZ Stress (max.1.2649e-008MPa; min.-1.7583e-009MPa) 0

Z (Ang.)

Y (Ang.) 0 10 j‘(’An )
g.

Figure 63 — Application 3: XZ (ZX) Stress Increment from FE-MD Bridged Simulation (MPa) for
100MPa YY Applied Far-Field Stress

YY Stress (max.239.2572MPa; min.-38.2195MPa)

Z (Ang.)

Y (Ang.) 0 10 2‘; )
X (Ang.

Figure 64 — Application 3: YY Stress Increment from FE-MD Bridged Simulation (MPa) for 100MPa

YY Applied Far-Field Stress
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YZ Stress (max.2.3414e-009MPa; min.-1.1796e-009MPa) x 10
C ()

Z (Ang.)

X (Ang.)

Figure 65 — Application 3: YZ (ZY) Stress Increment from FE-MD Bridged Simulation (MPa) for
100MPa YY Applied Far-Field Stress

77 Stress (max.210.693MPa; min.-113.0203MPa)

Y (Ang.) 0 10

X(Ang.)

Figure 66 — Application 3: ZZ Stress Increment from FE-MD Bridged Simulation (MPa) for 100MPa
YY Applied Far-Field Stress
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Table 6 and Table 7 compare the results from the bridged FE-MD method to those from
the pure MD simulations (Section 4.4.4).

Table 6 — Summary and Comparison of Results for Application 3 (100 MPa XX Far-Field Stress)

. Pure MD Proposed FE-MD Difference
Quantity of Simulation Bridged Method (MPa, not %)
Interest . . .
Max. Min. Max. Min. Max. Min.
XX Virial Stress
Increment (MPa) 222.5718 -0.21575 227.0723 1.4385 4.5005 1.6543
XY Virial Stress 51.4421 -51.4421 57.3484 -57.3484 59063 | 5.9063
Increment (MPa)
XZ Virial Stress . . . . . .
In ent (MPa) Negligible Negligible Negligible Negligible N/A N/A
YY Virial Stress
Increment (MPa) 72.2283 -60.9901 727777 -59.4729 0.5494 1.5172
YZ Virial Stress . . .. .. ..
In ent (MPa) Negligible | Negligible Negligible Negligible N/A N/A
ZZ Virial Stress 167.9680 | -69.4095 170.4900 -70.4336 25220 | 1.0241
Increment (MPa)
Simulation Time 2 hours 15 minutes N/A

Table 7 — Summary and Comparison of Results for Application 3 (100 MPa YY Far-Field Stress)

. Pure MD Proposed FE-MD Difference
Qilantltytof Simulation Bridged Method (MPa, not %)
nteres . . .
Max. Min. Max. Min. Max. Min.
XX Virial Stress 772217 | -90.9001 80.1706 -1183583 | 29489 | 27.4s82
Increment (MPa)
XY Virial Stress
Tncroment (V) 57.4148 -57.4148 60.1088 -60.1088 2.6940 2.6940
XZ Virial Stress . - - .
Increment (MPa) Negligible | Negligible Negligible Negligible N/A N/A
YY Virial Stress
Increment (MBa) 238.5373 -8.0669 239.2572 -38.2195 0.7199 | 30.1526
YZ Virial Stress .. - [ - .
In ent (MPa) Negligible | Negligible Negligible Negligible N/A N/A
ZZ Virial Stress
Increment (MPa) 188.7929 | -104.8775 210.6930 -113.0203 | 219001 | 8.1428
Simulation Time 2 hours 15 minutes N/A
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6.5  Discussion and Chapter Summary

The results of the proposed FE-MD bridged method are very close to the results of pure
MD simulations, as evident from the data presented in Table 4 through Table 7. Some
differences can be observed in the data of Table 7, but the differences are not very large.
In fact, the FE-MD bridged method is more conservative in these cases, which means that
it can be used safely (in the stress engineering sense). The difference is because of the
inherent nonlinearity while dealing with the EAM potential. An iterative method
involving updating the stiffness matrix after each step to account for this non-linearity
was implemented for application 2, which is why it took longer to run.

In general, it is found that the iterative method is recommended for maximum
nodal displacements much greater than 0.1 Angsfroms in the first iteration. This is
because the non-linearity of " the EAM potential becomes substantial at large
displacements, and is not accounted for in a single-step linear FE-MD simulation.
However, otherwise, the FE-MD bridged method results are very close to the MD
simulation results, with the FE-MD bridged results being conservative in cases where
there is a relatively large difference in stresses between the two methods.

Also, as evident from the last entry in each of Table 4 through Table 7, the
bridged FE-MD method is much quicker than MD simulation alone when no iterating is
involved. Only a few cases are expected to require iterations, and hence the bridged FE-
MD method seems capable of analyzing large atomic systems very efficiently.

In conclusion, the proposed FE-MD bridged method is extremely accurate, and

looks very promising as an alternative to time-consuming MD simulations.
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7. CONCLUDING REMARKS

This thesis has attempted to provide the computationai tools necessary to study behaviour
of metals at the atomic level. A custom MD code has been written, which can be tailored
for any future application. The thesis has also provided a means for creating EAM inter-
atomic potentials for use with the custom MD code, the resulting potential of which has
been found to predlct thermal and elastic properties of pure FCC copper very well. The
procedure is applicable to any FCC or BCC metal, so long as the metal is pure (i.e.
contains no alloying elements or impurity atoms). A repository of EAM potentials for
various pure metals is a crucial first step in any future work, and the EAM fitting
procedure from this thesis will allow such a repository to be easily created. Essentially,
the thesis has laid the groundwork for conducting computational research on FCC and
BCC metal crystal lattices.

A bridged FE-MD method with a novel element discretization scheme proposed
by the author has also been developed. Bridged FE-MD methods constitute one of the
several groups of methods being currently developed throughout the world to efficiently
analyze large atomic systems. The linear stiffness formulation of the method is ideally
suited for atomic systems that are expected to approach a state of equilibrium from an
arbitrary initial state (like all the applications in this thesis). The element discretization
scheme proposed for this thesis is a very general and powerful scheme which can be
applied to any system of discrete point masses interacting via any potential. The results
from the bridged method have been found to agree with MD simulation results very well.
That being said the reason for developing the bridged method is to analyze atomic
systems much more efficiently (i.e. much quicker) than MD simulation alone. This is
indeed found to be the case, with the bridged method being up to elght times faster than
MD simulation in the applications considered for this thesis.

For systems showing large atomic displacements in the initial FE-MD solution or
involving high(y nonlinear potentials, an iterative procedure can be employed that entails

recalculating the stiffness matrix after each iteration and then recalculating the
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displacements. The iterative procedure is terminated when all displacements fall below a
threshold value. This iterative procedure was carried out for one of the applications, and
it still proved to be more than twice as fast as the corresponding MD simulation. The
bridged method thus promises to be a far more efficient method for analyzing large
atomic systems than MD simulation alone.

Note that all applications investigated in this thesis employed the standard [100]-
[010]-[001] crystallographic coordinate system for cubic metals. The reason for doing
this was to provide three mutually perpendicular directions that are identical as far as
mechanical properties are concerned. This simplified the analysis and programming
tremendously. More complicated crystal structures will require consideration of possible
anisotropy in the arbitrary coordinate system chosen for the analysis. The kernel of the
MD code (the N-body force-equation integrator), however, can be used with any crystal
structure. |

Only a small portidn of the science of atomistic simulations has been investigated
in this thesis. There are several potential avenues of work that can be pursued using the
results of this thesis. Some of them are: studying dislocation behaviour in real metal
crystals; predicting fatigue and fracture behaviour of metals at the atomic level; studying
metallurgical processes and phenomena like heat treatment and phase transformation of
metals; directly studying the effects of alloying elements on the behaviour of metals; etc.
Important work remains to be done to bring the necessary level of maturity to the
research group for pursuing these and other challenging endeavours. For example, as
mentioned earlier, a repository of EAM pdtentials for metals and other suitable potentials
fof non-metals is required to analyze materials of practical engineering significance (like
alloys and polymers). Another example is the constant revision of the MD code to utilize
available computational resources efficiently. The author hopes that his research work
paves the way for all these tasks and years of important and exciting research in the field

nanotechnology.
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DYNAMICS (MD) CODE

3.0

1.0

EAM force equation

Call MATLAB function 20 Call MATLAB function
EAM_Range_V_7_00to Introduce crystal voids FCC_Gen_V_7_00 or
obtain tabulated embedding using MATLAB function <4~ BCC_Gen_V_7_00 to build
function data for the CRACK_VOID_V_7_00, if desired crystal lattice (l.e.
Embedded Atom Method required Initial atomic positions and
(EAM) potential velocities)
4.0
Initialize parameters for
electron density and pair
potential functions, and
upper/lower cutoff distances
for the EAM potential
19.0
+ Plot atoms one time step at
a time to give user visual
5.0 feedback
Call MATLAB function
EAM_Poly_Fit_V_7_00to
fit a polynomial for the EAM
embedding function data
obtained in 3.0
18.0
+ Advance time step
6.0
Initialize simulation time
interval, number of time
steps, atomic mass and
other simulation control 16.0
parameters Record positions and
velocities of all atoms in a
7.0 text file
Determine and tabulate +
inter-atomic distances lower 15.0
than the upper cutoff v
distance snmaﬁfia in 4.0 for Update positions and
each atom velocities of all atoms
8.0
Evaluate the electron
density, pair potential and 13.0
embedding function for all 14.0 Al at.oms
tabulated inter-atomic Choose next atom considered?
distances from 7.0, and
calculate the EAM potential
energy of the atom
9.0
Evaluate funcltion and . Useth 10.0 110 120
polynomial derivatives of se the EAM force . "
the electron density, pair | equation and the | Calculate accelerationof | Ulse tmlgjclaatled Ta{:or ser’i;s
potential and embedding 7] derivatives from 9.0 to 77 the atom from the force > °| ca , e position fa?h
function polynomial from determine the force on the evaluated in 10.0 velocity increments of the
4.0 and 5.0 for use in the atom atom

Figure 67 — Program Execution Flowchart for Master MD Function MD_V_7_00
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START

Y

11
Build atomic position array
for one-eighth unit cell

Y -
1.2
Build primitive translation
vector array for FCC/BCC
unit cell

Y

1.3

Translate one-eight unit cell

array from 1.1 in all

directions by amounts
specified in translation

vector array from 1.2 until
required number of unit

cells have been generated

in each direction

14
Save atomic positions to a
text file

Y
15

For the specified initial

temperature, assign a

Gaussian velocity

distribution in each direction

to all atoms, ensuring that

the arithmetic mean is zero

(for zero centre-of-mass

velocity)

Y
1.6

Add atomic velocities to the
text file of 1.4

Y
STOP

Figure 68 — Program Execution Flowchart for Function FCC_Gen_V_7_00 and BCC_Gen_V_7_00
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START

Y

21
Represent outer surface of
void by its equation in 3-D
space

Y

2.2
Formulate a residual
function using the equation
of the outer surface
obtained in 2.1, such that
locations within the void
(from where atoms are to
be removed) have a non-
negative residual

Y

2.3
Calculate the value of the
residual function formulated
in 2.2 for all atoms

Y

24
Discard all atoms having
non-negative residuals

Y

‘2.5
Return remaining atoms to
MD_V_7_00

Y

STOP

Figure 69 — Program Execution Flowchart for Function CRACK_VOID_V_7_00
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DYNAMICS (MD) CODE

START

Y

341
Open Embedded Atom
Method (EAM) potential
data file for specified
material

Y

3.2
Read tabulated embedding
function data from EAM file
and store in an array

Y

3.3
Apply the appropriate
conversion factor to convert
from J to eV, if required

Y

34
Return EAM embedding
function data array to
MD_V_7_00

Y

STOP

Figure 70 — Program Execution Flowchart for Function EAM_Range_V_7_00
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DYNAMICS (MD) CODE

START

Y

5.1
Fit a 4™ order spline into
embedding function data
array from function
EAM_Range_V_7_00 using
MATLAB spapi() function

Y

5.2
Calculate derivative of
spline from 5.1 using
MATLAB fnder() function

Y

53
Return spline and derivative
toMD_V_7_00

Y

STOP

Figure 71 — Program Execution Flowchart for Function EAM_Poly_Fit_V_7_00
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APPENDIX B: INITIAL AND FINAL ENTRIES IN OUTPUT FILE FOR MD

(MOMENTUM AND ENERGY CONSERVATION FOR SINGLE UNIT CELL)

V_7_00 TEST CASE

Initial Entry
Total simulation time:1.000000e-015

Individual atoms (coord. in Angstroms, vel. in m/s):

X Coord. Y Coord. Z Coord.
0.000034 0.000034 0.000034
0.000034 0.000034 3.399966
0.000034 3.399966 0.000034
0.000034 3.399966 3.399966
3.399966 0.000034 0.000034
3.399966 0.000034 3.399966
3.399966 3.399966 0.000034
3.399966 3.399966 3.399966
-0.000083 1.700000 1.700000
3.400083 1.700000 1.700000
1.700000 -0.000083 1.700000
1.700000 3.400083 1.700000
1.700000 1.700000 -0.000083
1.700000 1.700000 3.400083
System (vel. in m/s, energy in eV):
COM X Vel. COM Y Vel. COM Z Vel.
-0.000000 0.000000 0.000000
Instan. dyn. temp. (K) Avg. dyn. temp.
0.469741 0.469741

Instan. VIRIAL stress tensor (MPa)

2686.905914 0.000000 0.000000
0.000000 2686.905914 0.000000
-0.000000 0.000000 2686.905914
Final Entry

Total simulation time:2.500000e-013

Individual atoms (coord. in Angstroms, vel. in m/s):

0.057539 0.057539 0.057539
0.057539 0.057539 3.342461
0.057539 3.342461 0.057539
0.057539 3.342461 3.342461
3.342461 0.057539 0.057539
3.342461 0.057539 3.342461
3.342461 3.342461 0.057539
3.342461 3.342461 3.342461
-0.175583 1.700000 1.700000
3.575583 1.700000 1.700000
1.700000 -0.175583 1.700000
1.700000 3.575583 1.700000
1.700000 1.700000 -0.175583
1.700000 1.700000 3.575583

System (vel. in m/s, energy in eV):

COM X Vel. COM Y Vel. COM z vel.
0.000000 0.000000 0.000000
Instan. dyn. temp. (K) Avg. dyn. temp.
182.017745 134.887937

Instan. VIRIAL stress tensor (MPa)

1993.489831 0.000000 0.000000
0.000000 1993.489831 -0.000000
0.000000 0.000000 1993.489831

seconds

X Vel.
6.856990
6.856990
6.856990
6.856990
~6.856990
-6.856990
~-6.856990
-6.856990
-16.665191
16.665191
0.000000
0.000000
0.000000
0.000000

Total PE
-32.549831

Y Vel.
6.856990
6.856990
-6.856990
-6.856990
6.856990
6.856990
-6.856990
-6.856990
0.000000
0.000000
-16.665191
16.665191
0.000000
0.000000

Total KE
0.000850

2686.905914

seconds

60.021971
60.021971
60.021971
60.021971
-60.021971
-60.021971
-60.021971
-60.021971
-407.530358
407.530358
0.000000
0.000000
0.000000
0.000000

Total PE
-32.878541

60.021971
60.021971
-60.021971
-60.021971
60.021971
60.021971
-60.021971
-60.021971
0.000000
0.000000
-407.530358
407.530358
0.000000
0.000000

Total KE
0.329423

-218.815697
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Z Vel.
6.856990
-6.856990
6.856990
-6.856990
6.856990
-6.856990
6.856990
-6.856990
0.000000
0.000000
0.000000
0.000000
-16.665191
16.665191

Total Energy
-32.548981

(K) Avg. hydro. stress (MPa)

60.021971
-60.021971
60.021971
-60.021971
60.021971
-60.021971
60.021971
-60.021971
0.000000
0.000000
0.000000
0.000000
-407.530358
407.530358

Total Energy
-32.549118

(K) Avg. hydro. stress (MPa)



APPENDIX C: FLOWCHART FOR PROPOSED

NUMERICAL EMBEDDED ATOM METHOD (EAM)
INTERATOMIC POTENTIAL FITTING PROCEDURE

127



APPENDIX C: FLOWCHART FOR PROPOSED NUMERICAL EMBEDDED ATOM METHOD
(EAM) INTERATOMIC POTENTIAL FITTING PROCEDURE

STOP

220
Display final values of
1.0 electron density,
Call custom MATLAB corres_pondirfg embegding
function to build desired function, pair potential, p
FCC or BCC crystal lattice and volume factor.
(i.e. initial atomic positions). : +

+ 21.0

Calculate volume factor needed to
2.0 predict correct Young’s modulus
Assign zero initial velocities at OK and 100K. Fit a power law
to all atoms. Temperature

into the volume factor (having a
effects are included later. value of 1 at 293K)

Y A

3.0 20.0
Assume a Lennard-Jones Add a constant to the
pair potential for the EAM embedding function to
potential. Fix distance predict cohesion energy
parameter to give minimum correctly. Note that adding
potential at nearest- ‘ a constant does not affect
neighbour distance in the derivatives and hence
crystal lattice with LJ_1 as any of the previous fits.
12and LJ_2 as 6. +
+ 19.0
4.0 Integrate embedding
Assign an initial value for function derivative
the free parameters ¢, LJ_1 numerically to obtain
and LJ_2 in the Lennard- embedding function at
Jones pair potential. various electron densities.

Figure 72 — Flowchart for Proposed Numerical EAM Potential Fitting.Procedure (part 1; continued
in Figure 73)
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APPENDIX C: FLOWCHART FOR PROPOSED NUMERICAL EMBEDDED ATOM METHOD
(EAM) INTERATOMIC POTENTIAL FITTING PROCEDURE

5.0
Assume: Avg. K.E. per axis =
0.5N(ka)T", where kg is
Boltzmann’s constant, T is

18.0

absolute temperature, N is
number of atoms and pis a
parameter that can be
changed.

Y

6.0
Assign an initial value for p.

Y

7.0
Approximate WinGAMESS
electron density data by a
power fit in a reasonable
range of interatomic
distances.

Y

8.0
Apply thermal virial stress
tensor corresponding to
293K to crystal lattice.

Y

|

Vary LJ parameters

LJ_1andLJ_2.

16.0

Changep -

9.0
Calculate embedding function derivatives
needed to satisfy hydrostatic linear elasticity
over a wide range of electron densities,
achieved by applying various hydrostatic
strains (assured to be valid irrespective of -
strain magnitude by the Von-Mises yield
criterion) along [100], [010] and [001]
directions. Changing strain hydrostatically
ultimately changes total electron density at
an atom's location.

13.0
Change free
< parameter in
Lennard-Jones pair
potential

Y

10.0

Using the calculated

embedding function

derivatives at various
electron densities, calculate

3-D strains required for
producing a uniaxial stress
of 100 MPa

11.0
Calculate Young's modulus
(E) and Poisson's ratio (v)
from uniaxial stress and
calculated strain along
tensile axis (from 9.0).

Figure 73 —

from Figure 72)
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17.0
Does shear stress
agree with
expected value,
G'vy?

16.0
Apply an XY shear strain of
0.1%. Calculate
corresponding shear stress
at 293K (zero thermal shear
stress is applied).

15.0
Do lattice constants
agree with
experimental values
at those
temperatures?

14.0
Calculate equilibrium lattice
constants at various
temperatures by varying
lattice constant until
(almost) zero virial stress
tensor is obtained.

A

120
DoEandv
agree with
experimental
values within
ermor?

YES

Flowchart for Proposed Numerical EAM Potential Fitting Procedure (part 2; continued



APPENDIX C: FLOWCHART FOR PROPOSED NUMERICAL EMBEDDED ATOM METHOD
(EAM) INTERATOMIC POTENTIAL FITTING PROCEDURE
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APPENDIX D: A BRIEF OVERVIEW OF QUANTUM
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APPENDIX D: A BRIEF OVERVIEW OF QUANTUM MECHANICS

D1. Introduction

Quantum mechanics is a branch of science that has been formulated to deal with atomic
and sub-atomic particles like nuclei, electrons, etc. Classical mechanics could not explain
many of the experimental observations related to atoms and molecules. Quantum
mechanics was laid down to explain these experimental observations. Quantum
mechanics has its history divided into two different philosophies: the old quantum theory
and the new quantum theory. The differences will be summarized in the following

sections. Information for this appendix has been obtained from [31].

D2. The Old Quantum Theory

In 1900, Max Planck explained the discontinuous energy spectrum observed during
black-body radiation by postulating that the vibrating particles of matter (considered to
act as harmonic oscillators) do not emit or absorb light continuously but instead only in
discrete quantities of energy with magnitude hv (v being the frequency of the light). The
constant 4 was calculated by Planck to be 6.626e-34 kg.mz.sec'l, and is called P]anck’s‘
constant. Ao was called a quantum of radiant energy of frequency v. Planck therefore
overcame the conflicting classical result that the radiant energy forms a continuous
spectrum by using his postulate of quantization. Thus was born the old quantum theory.
In 1905, Einstein suggested that each quantum of radiant light energy was emitted
uni-directionally (like a particle) and not omni-directionally (like a wave). Hence the
particle nature of light was suggested, with each light particle dubbed a photon. Using
this particle interpretation of light and the quantization postulate of Planck, Einstein
explained the photo-electric effect very successfully. Einstein also applied the
quantization postulate to a collection of oscillating atoms in a solid material and

explained the observed heat-capacities of the solid very successfully.
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The old quantum theory remained at this stage till 1911, when Ernest Rutherford
discovered the structure of the atom (a small, heavy, positively charged nucleus
surrounded by light, negatively charged electrons bound to the nucleus by Coulomb
electrostatic forces). In 1913, Bohr used this model of the Hydrogen atom and explained
the observed emission spectra of Hydrogen successfully. During his derivation, Bohr
realized that the emission spectra and stationary states (states that correspond to definite
values of energy) could be accurately predicted if he quantized the angular momentum of
the electron as integral multiples of #/(2r). This was the quantization rule for Bohr’s
model of the Hydrogen atom.

In 1915, this quantization rule was found to be a special case of a general
quantization rule discovered by W. Wilson and A. Sommerfeld, called the Wilson-
Sommerfeld quantization rule. The rule states that a generalized coordinate (gx) and its
canonically conjugate generalized momentum (ps, defined as in Hamiltonian dynamics)

are related by the following quantization expression:
C‘f pdq, =nh, k=12,...3n;n, =an integer called the quantum number (D1)

The integral in equation (D1) is taken over one complete cycle of the motion of the
system.

Bohr also laid down a very important principle in quantum mechanics, called the
correspondence principle. According to this principle, the classical results and quantum
results will numerically converge at large enough values of the quantum number(s) (nx in
equation (D1)).

The old quantum theory slowly declined because of some inadequacies
discovered shortly there after. For example, old quantum theory predicted the energy of a
one-dimensional harmonic oscillator to be nhv (n being the quantum number), whereas
the actual energy determined from experiments was (n+0.5)ho. The old quantum theory
was eventually replaced by the new quantum theory, which is the focus of the remaining

sections of this appendix.
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D3. The New Quantum Theory

The new quantum theory was developed in two frameworks which were ultimately
proven to be equivalent: wave mechanics which was due to Erwin Schrodinger, and
matrix mechanics which was due to Werner Heisenberg. The focus will predominantly be

on wave mechanics, which is more intuitive than matrix mechanics.

D4. The General Nature of New Quantum Theory

It should be understood (and this cannot be reiterated enough) that the new quantum
theory is based on a group of postulates that cannot be derived from anything else. The
postulates were deductively laid down with the ultimate hope that experiments would
confirm any predictions from the postulates. It is the crowning achievement of Erwin
Schrddinger’s wave mechanics and Werner Heisenberg’s matrix mechanics that almost
all experimentally observed phenomena at the atomic and sub-atomic levels have
successfully been explained using these postulates. Today, the postulates have been
validated by experimental observations enough times that the postulates are assumed to

be fundamental to the working of nature.

DS. Erwin Schriodinger’s Wave Mechanics

D5.1 Postulates of Wave Mechanics
1. Existence of probability densities and amplitudes:
One of the most important principles in new quantum theory is the uncertainty

principle (by Heisenberg and Bohr), which states that it is impossible to

simultaneously measure exactly the position and momentum of a small, moving
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particle like an electron. This is easy to see with a thought experiment: assume
that one wants to measure the position of an electron exactly. The measurement is
effected using a physical apparatus, like a microscope. For one to see the electron
through the microscope, the particles of some incident beam must be bounced by
the electron into the aperture of the microscope. This very act of measurement
will then result in the momentum of the electron changing. Hence the momentum
of the electron is uncertain, even though the position is certain.

Given the uncertainty principle, one can no longer talk about the exact
position and momentum of a particle, but can only talk about the probability that
the particle has a certain position and momentum. The probability that a particle is
at a certain position in space can then be expressed by a probability density

function, P(q1,q2, ...,99, the probability being:

Pr.=P(q,,955-4 f)dq,dqz...dq s (D2)
41,92 .-,qr are the f generalized coordinates of motion of the system. Now,
probability is always a real, non-negative quantity that is less than or equal to 1.
To ensure that this is the case (or to reflect this fact), P(q1,92-..,q9 is written as
the product of a complex quantity ¥(q1,92 ...,g9 and its conjugate. Recall that the

product of a complex number and its conjugate is always non-negative. Hence the

following equation is written for P(q1,q2 ...,49"
P(qy5925++> Q/) =¥ (q), 92> qj)\P(ql, qzseee Qf) (D3)

Therefore, the probability of finding a particle in the infinitesimal ranges of

positions g;+dqi, g2t+dg>, ..., qr+dgy is (using equation (D3) in (D2)):

Pr.=F" (g, @yserrs 0) V1> G230+ 9, )001 G, A (D4
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Now, the particle must be found somewhere in space. In other words, the

probability of finding the particle somewhere in space is 1. This is expressed as:
I...I‘I"(q,,qz,..., a,)¥(9) 955+ 9,)40,dg, ...dq , =1 (D5)

, where each integration is performed over the complete possible range of that
variable. Equation (D5) is called the normalization condition. The complex

quantity ¥ is called the probability amplitude of the system.
2. Change of ¥ with Time — Schriédinger’s Wave Equation Including the Time:

Erwin Schrédinger postulated the following equation for predicting the change of
the probability amplitude ¥ of a single particle of mass m in Cartesian
coordinates moving in a conservative field with time, based on analogies between
¥ and quantities in classical mechanics. This equation is called Schridinger’s

wave equation including the time:

W |0 (x,y,z,1) 0°¥(x,y,zt) O°F (%, 3,2,1)
+ +
87°m ox* ? oz’

h 0¥(x .21t
7 (53,2) ¥ (n )= ( - )

(D6)

Here, h is Planck’s constant (already defined), m is the mass of the particle,
V(x,y,2) is the potential (energy) of the conservative field (which is independent of
time for conservative systems), and i is the complex quantity V(-1). A more

compact form of the equation is:

”2 2 X h 0% (st’,z’t)
V¥ (x +V X W)=
872 ( ’y’z’t) (x’J,Z)\F( ’y’z t) 2 i 6t

(D7)

, where the Laplacian operator V?in Cartesian coordinates is used.
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Quantum Operator Associated With the Hamiltonian:

The Hamiltonian of a single particle in a conservative field is the sum of its
potential energy (V) and kinetic energy (7), which is furthermore a constant of the
motion (from Hamiltonian dynamics). In Cartesian coordinates, this statement can

be mathematically expressed as:
H(pys Pys Por¥s352) =T (Pes Pyo P2 ) +V (3 9,2) =W, @ constant (D8)

Here, py is the linear momentum of the particle along the K" Cartesian axis. Using

the expression for kinetic energy of a particle, equation (D8) can be written as:
12, 2, 2
H(pyr Pys Do %, 912) =5;(p, +p}+p2)+V (23,2) =W (D9)

Comparing equation (D9) with equation (D6), it is seen that equation (D9) can be
converted into equation (D6) by the following steps:

a) Replace every piin equation (D9) with :2_h—aa_k’ k=x,y,z. This is an example
wi

of a differential operator.

b) Replace W in equation (D9) with —-z—hg-aa—t This is another example of a

differential operator.
¢) Use the resulting differential operator equation and operate on the probability

amplitude ‘Y.

The following property of differential operators is used in the steps:
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o 0"
cC=| =C" D1
cx] =% @10
Also, remember that i’ = -1,

Defining H, (subscript ‘0’) as the quantum operator associated with the
Hamiltonian (obtained by going through the afore-mentioned steps), equation

(D6) can be written as:

h & h o h o
H <y =H A PR 5,2 Sl
olP(xay z t) (2”1’ ox 2mi ay 27i Oz Nt Z)T(x »E t) (Dl 1)
h 0
——'2—7r;."a—t‘l’(x’y,z,t)

, where:

(D12)

= Ty X V2

o[ h 8 h 8 h O
° 27i Ox’ 2ri By’ 27i 6z

Hence it is found that the Hamiltonian operator in quantum mechanics is obtained
from the classical Hamiltonian expression by replacing the coordinates and

momenta by their respective quantum operators, given below:

X, =x
Yo=Y
z,=z
h 0
Pro =5 or (D13)
_h 0
p""’_;r-i-ay
_h 2
on—'z';;az
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Expectation (Average) Values of Observable Quantities:

The average value or expectation value of any observable quantity A(px.Py.Ps%.Y:2)

at a fixed time # is defined by the following equation:
A= I”‘-I’* (%7 2:8 )4, ¥ (x, V52, to)dxdydz (D14)

, where A, is the quantum operator associated with the observable quantity

A(pxDy,p2%y,2) and is obtained using an equation analogous to equation (D12):

h o h o hoo
A=Al —— 777 %) D15
° (2;::' o 2midy 2mi oz z) (B13)

Note that the order of operations in the integrand of equation (D14) must not be
changed. Also note that 4, must be first recast as a Hermitian operator before
using it in equation (D14). A Hermitian operator, F,, has the following property

(which is extremely important in quantum mechanics):

” u’ (x,, z)Fu, (%, 7, z)dxdydz = j”uz (%7 z) [E,ul (x5 z)]. dxdydz (D16) |

, where u; and u; are any operands on which the operator can operate.

The product of two Hermitian operators F, and G, (which is F,Go) is itself
Hermitian only if F, and G, are Hermitian and commute (i.e. FoGou = GoFot).
However, the symmetrized product, (FoGotGoF0)/2, is always Hermitian if F, and
G, are themselves Hermitian. It is this symmetrized product that is used in
equation (D14). Note that the Hamiltonian quantum operator is already Hermitian,
and therefore does not need to be recast (symmetrized) as above.

As an example, what is the operator associated with the observable
quantity A(DsPyPax.y,2) = xps? Following equation (D15), or by multiplying the

quantum operators for x and p; from equations (D13):
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h o
A =x,p, =x— e D17
o = oPro = i o ®17)

However, by using 4, in equation (D16), it is found that LHS # RHS, i.e. 4, is not
Hermitian. Hence symmetrizing the product, the correct quantum operator

associated with 4, is:

Aa=xapxo+pxoxo =l x _I_I__a_ +L2_(x) (Dlg)
2 2| \2#iox) 2miox

Note the difference between the two terms in equation (D18): the first term takes
the partial derivative of an operand with respect to x and then multiplies it by x,
whereas the second term multiplies the operand by x first, and then takes the

partial derivative of this product.

D6. Separation of Schriodinger’s Wave Equation

Recall Schrédinger’s wave equation including the time:

hz ) _ h 6‘I’(x,y,2,f)
-87l'2mv lP(xuy’z’t)"'V(x’y’z)‘y(x’y’z,t)— 27l'i at

(D19)

This equation can be separated into one differential equation in the Cartesian coordinates
alone and another equation in the time alone. If the wave function is assumed to have the

following form:

¥ (x,5,21) =y (x,,2) (1) (D20)
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, and is substituted into equation (D19), then the equation separates into the two required

differential equations:

dp(t) 2ni

———— ————W

o = e (D21)
B,

pry Vi (x,,2)+V (%2 2)¥ (%, 3,2) =Wy (x, ,2) (D22)

In equations (D21) and (D22), W is the separation constant. Equation (D22) is

customarily written as:

8 2
:zm W=V (x»2)}y(xy,2)=0 (D23)

Vi (x,y,2)+

Equation (D23) is called Schrodinger’s wave equation independent of time. It is found
that equation (D23) possesses various satisfactory solutions, corresponding to certain
values of the separation constant . Let these values of W be indicated by attaching the
subscript », and similarly let the amplitude function in the coordinates corresponding to
W, be denoted as wn(x,y,2). For a particular value of n, the corresponding equation for p(1)

(equation (D21)) can be immediately integrated to give:

2’
o, (f)=e " (D24)
Hence, the general solution of equation (D19) is:
' =2 ~W—"t
P (57,50 = Y0¥, (5020 = Nay, (xnz)e (D25)

Hence all that is needed to be done is to solve equation (D23) for each system and use the

sblutions in equation (D25) to get the general probability amplitude function for the
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system. It can be proved that the separation constant W corresponds to the energy levels

of the system.
D7. Stationary States

The probability density function for the amplitude given by equation (D25) is (using
equation (D3)):

P(x,y,2,t) =¥ (x,y,2,0)¥(x, , 2,1)

A

D26
=24 AW, + Y. Y a ey, we  * b0

, Where the prime on one the double-summation indicates that only terms with m#n are
included. From equation (D26), it is seen that P is generally a function of time. For P to
be independent of time, the double summation must disappear. This is only possible if
only one of the coefficients, a,, is non-zero and all other coefficients are zero. In this

case, the general solution (D25) will contain only one term (with n=n’, say):

W,
-2 it
27 7

¥ (x,,2,t) =Y, (x,»2t)=y, (x.,2)e (D27)

In equation (D27), the constant a,- has been absorbed into y,- For such a state (i.e. with a
single term in the solution), P(x,y,z,2) is independent of time, i.e. P=P(x,y,z), and the state

is called a stationary state.

D8. The One-Dimensional Quantum Harmonic Oscillator

Consider a particle of mass m under the influence of a Hooke’s law force field along the
X-direction. If vo is the fundamental frequenéy, the potential function is V=2nmv,*x’.

Hence the Schrddinger’s wave equation independent of time (equation (D23)) becomes:
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d*y N 87%m

Tt (W—27r2mv02x2)z//=0 (D28)

This equation can be solved using series methods. Without going into details of the

solution procedure, the following points are noted about the series solution.

D9.

Consi

The infinite series solution is found to be divergent. However, the probability
amplitude must be integrated to give a value of 1 over the entire x axis. The only
way this is found to be possible is to break off the infinite series after a finite
number of terms.

The mathematical expression for the condition in point 1 (i.e. for the condition that
the series solution must be finite and not infinite) leads to quantization of energy

levels, given by:

n

W :(n+%)hvo,n=0,l,2,... (D29)

Unlike the old quantum theory where quantization was a required postulate,
quantization follows naturally in the new quantum theory from the requirement that
the solution must be physically permissible (which is a natural, unquestionable
requirement in almost every branch of science). This is seen from points 1 and 2.
Hence the new quantum theory (referred to simply as quantum mechanics) requires

no quantization condition like the older Wilson-Sommerfeld quantization rule.

The Particle in a One-Dimensional Box

der a particle of mass m in a one-dimensional box. A box refers to a square

potential well, i.e. a potential function of the following form:
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infinite, —oo<x <0
V ={ constant, 0<x<a (D30)
infinite, a<x <o

Since potential energy is a relative concept, the constant potential in [0,a] can be

arbitrarily taken as zero. Hence:

0, —0<x<0
V=< 0,0x<a (D31)

00, < x <0

Outside the box, the coefficient of y in equation (D23) becomes infinite. Hence, the only
solution to the wave equation that still satisfies equation (D23) is w=0. Therefore, outside

the potential box:
w(x)=0 (D32)
Inside the potential box, equation (D23) becomes (for V'=0):

dy . 87°m

ot Wy =0 (D33)

The solution of equation (D33) is very simple, and is:

w(x)=4sin {( %W)x} (D34)

This function must go to zero at x=0 and x=a to ensure continuity with the outside
solution (equation (D32)). This is again a mathematical expression for the solution to be

physically permissible. At x=0, equation (D34) is identically satisfied (this is also the
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reason why a cosine expression of the form of equation (D34) cannot be a solution, and

only a sine expression can). At x=a:

sin{{ %W)a}:O | (D35)

This is possible if:
87m
X W |a=nm,n, =1,2,3,.. (D36)
Solving for W yields:
n’n
ng = 8ma2 (D37)

, i.e. the energy of the particle is quantized. Again, quantization arises directly from the
requirement that the solution be physically permissible.
By substituting (D37) into (D32), the stationary state of a particle in a one-

dimensional box is:

nmx

v, (x)=Asin = (D38)
The constant A is chosen to satisfy the normalization condition. Hence:
fw..” (), (x)dx=1 (D39)
0

, since the range of a non-trivial solution is [0,a]. Substituting and solving for 4 yields:
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A= [= (D40)
a

The final stationary state is:

v, ()= \/g sin 2 (D41)

a

The calculation can be extended to three-dimensions using the technique of separation of

variables.

D10. The Hydrogen Atom

The first major application of Schrédinger’s wave mechanics was to the Hydrogen atom.
From Rutherford’s discovery of the structure of an atom, the Hydrogen atom can be
considered as having a nucleus (idealized as a point mass) of unit positive charge and
mass my, located at the point (x;, y;, z;), and an electron of unit negative charge and mass

m;, located at the point (xz, y;, zz). The wave equation of the system is:

1 62‘//1' 62‘//1 62‘//7' 1 azl/,r aZWT 62‘//7' 872'2
. + + +— + + +—— (W, =V, =0 (D42
m ( o’ oy’ 8z m,\ ox,>  dy, 8z} K (W =V)y; =0(D42)

, Where:

Ze?
‘/(xz =% )2 +(72 —yl)2 +(z, _zl)z

V= (D43)

is the Coulomb electrostatic potential between the nucleus and electron, and the subscript

T (signifying total) indicates that y and W refer to the complete System, with six
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coordinates. Z is the number of protons in the nucleus. Hence this model applies not only
to the Hydrogen atom (which has one proton in the nucleus, i.e. Z=I), but to any atom
with Z protons in the nucleus, but only one electron. This last point is important, since the
following results cannot be applied directly to atoms with more than one electron.

Just as in orbital mechanics, equation (D42) can be separated into two equations,
one describing the translational motion of the centre-of-mass of the nucleus and proton,
and another describing the motion of the electron relative to the nucleus. The former
equation is of little interest: it is the motion of the electron relative to the nucleus that is
of most interest. This latter equation is best solved when written in polar coordinates
(actually, the process of separation is carried out using a transformation to six new
coordinates: three Cartesian coordinates for the location of the centre-of-mass of the
system, and three polar coordinates for the relative position of the electron with respect to
the nucleus; hence the equation of relative motion vis already in polar coordinates, once
the transformation and separation are effected).

The polar equation of relative motion can be solved using the method of
separation of variables. Details of the long and tedious solution procedure are deferred to
books on the subject. Three of the four quantum numbers popular in quantum chemistry
appear during the solution procedure as a consequence of imposing the requirement that
the solution be physically permissible. These are: the principal or total quantum number
(n); the azimuthal quantum number (J); and the magnetic quantum number (m). The
remaining quantum number, the spin quantum number (s), will be discussed shortly. The

ranges of the three resulting quantum numbers are:

n=123,..
1=0,1,2,..,n-1 (D44)
m=—l,—1+1,-1+2,..-1,0,1,..0 =2, -1,]

A particular combination of quantum numbers is an orbital (recall from fundamental
chemistry: Is, 25, 2Px 2Py 2Px etc.) where the electron is likely to be found. The energy

of relative motion of the system is found to be quantized, depending only on the principal

quantum number (n). 1t is given by:
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W = _%‘i (D45)
, Where:
= (D46)
m,+m,
is the reduced mass of the system (just as in orbital mechanics).
D11. Orthonormality of Wave Functions
Recall the normalization céndition of a wave function:
[[ % @3, 21,09 (x, p, 2,1, )dydz =1 (D47)

The normalization condition is valid at a fixed time tp. If the wave function is not
normalized for some reason (i.e. if the wave function does not satisfy equation (D47)),

then it can be normalized by multiplying by an appropriate real constant. That constant is
given by the following equation:

4= : (D48)
JIIIT.(x’y’ z’to)lP(xLya 2,’o)dxdydz

So any wave function, in principle, can be normalized using the above equation. Whether

the integral is easy to evaluate is another matter.

Now, recall the property of a Hermitian operator F,;
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II u’ (x’ Vs z) Fu, ('x9 Y z) dxdydz = _[”uz (x’ s Z)[E,ul (x, Vs Z)]. dxdydz (D49)

The Hamiltonian operator satisfies equation (D49), and hence is Hermitian. Using this
fact, the following important properties of the spatial wave functions (solutions to

Schridinger’s wave equation independent of time, i.e. to:

h2
[— - V4V (%, z)] w, (x,3,2) =Wy (x,,2) (D50)

), can be proved. Let w» and y, (called eigen-functions of equation (D50)) be any two
solutions to equation (D50), corresponding to the energy values Wp and W, (called eigen-

values of equation (D50)) respectively. Three possibilities arise:

1. m=n:
In this case, it can be proved that the energy eigen-value corresponding to state m is

real.

2. m#nand Wy # Wy
In this case, it can be proved that the energy eigen-functions y. and . are

orthogonal to each other:
[[[w.rwdsdydz =0 | D51)

3. m#nand Wy,=Wy
In this case, the states m and n are called degenerate states. They do not necessarily
satisfy the orthogonality condition of equation (D51), but can be made into
orthogonal functions by mutual linear combination. These new orthogonal |
functions. are also solutions to the wave equation for the samé eigen-value Wy, (=
W,) because the Schrédinger’s wave equation independent of time is a linear

differential equation.
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Hence, in general, the wave function solutions to equation (D50) are (or can be made to

form) an orthonormal (orthogonal and normalized) set, satisfying:

H v, w,dxdydz =1,m=n

.[.” W, W,dxdydz=0,m # n (D52)

If all solutions to the wave equation (D50) are found, then the orthonormal set is said to

be complete.

D12. Spin Quantum Number

Three quantum numbers were introduced for the hydrogen atom: the principal quantum
number, the azimuthal quantum number and the magnetic quantum number. These names
are retained for all other multi-electron atoms as well. In addition to these three quantum
numbers, there is a quantum number that is associated with electron spin, a fundamental
property of the electron. This quantum number is called the spin quantum number (s) and
is quantized to have a value of % or -%. These numbers are called the spin eigen-values,

and are associated with a spin eigen-function equation (which involves a spin operator).

D13. Pauli Exclusion Principle and Antisymmetric Wave

Functions

Each electron in a multi-electron atom has a corresponding wave equation, which
includes inter-electron interactions. The wave functions which are solutions to these wave
equations are found to possess an important and far-reaching property, the proof of which

can be found in any good quantum mechanics textbook. The property has been called the
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Pauli exclusion principle. 1t states that no two electrons in an atom can have the same
values for all four quantum numbers (principal, azimuthal, magnetic and spin). This
statement is the final outcome of an important observation of nature: all wavefunctions in
nature are antisymmetric with respect to interchange of two electrons. This is illustrated
with the following example.

Consider a multi-electron atom, in which the inter-electron interactions are
completely neglected. In this case, the wave equation for the atom is separable into a
wave equation for each electron, which involves coordinates only of that electron. This is
simply the wave equation for a hydrogen-like ion, for which the solutions are exactly
known. Because of the separation of the solution, the solution for the original wave
equation is simply the product of solutions of the individual (separated) wave equations.
For instance, take the helium atom, which has two electrons. Neglecting inter-electron
interaction completely, if w; and . are the solutions to the separated (spatial) wave
equations for the electrons, then the solution to the helium atom, neglecting the inter-

electron interaction, is:
Ve =0 (7w () - D5y

Here, the vectors are the position vectors of electrons 1 and 2. Now, the subscripts 1 and
2 are mere labels for the electrons, and hence can be interchanged without affecting the

meaning of the wave function in any way. Doing this, we find:

Yher =W ('_';)‘/’2 (;';) (D54)

The subscript P indicates that the electron coordinates have been permuted. Now -
equations (D53) and (D54) are identical, since it is only the label on an electron that we
are changing. In particular, the sign of the wave function is unchanged with the
interchange of the 2 electrons. Such a wave function that does not change sign with a
single exchange of 2 electrons, the wave function in equation (D53) is a symmetric wave
function. If the sign changes, then the wave function is an antisymmetric wave function.

All wave functions in nature are found to be antisymmetric.
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D14. Antisymmetrization: The Slater Determinant

The correct way to form the composite wave function from the individual electron wave
functions for n electrons (neglecting inter-electron interactions) is to use the Slater

determinant, defined as:

—

xﬂ

¥(3) ¥(5) - \y‘

(
¥,(5) ¥a(®) - W3

‘I’"(.x,) ¥ (xz) . P (x)

)
W (%, %, eems ") (D55)

=Tl

The x vectors refer to all the spatial-spin coordinates for each electron, and should not be
confused with the Cartesian x. A spin coordinate does not have any unit, but is included

to indicate that the complete wave function includes the Cartesian components x, y and z

and a spin component to indicate the spin of each electron (2 or -%%). The —1—-— factor

Jn!

normalizes the resulting wave function, as is required for any wave function.

D15. Expansion in terms of a Complete Orthonormal Set

One of the most useful mathematical tools is the Fourier series, which says that any
periodic, well behaved function can be expanded exactly as an infinite series of sines and
cosines. An infinite sequence of sines and cosines is a complete, orthonormal set. Hence
the Fourier series is one type of expansion of a function in terms of a complete
orthonormal set.

This fact has profound implications for the quantum mechanical solution of

complex systems, especially multi-electron atoms. The hydrogen atom and hydrogen-like
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jons (ions with only one electron) have been solved exactly, and the solutions form a
complete orthonormal set. Hence any wave function of any system can be exactly
represented by an infinite series of the wave functions of a hydrogen atom. This is the
single, important principle that has allowed practical solutions of any system more
complex than the Hydrogen atom, and is the foundation for almost all numerical
procedures in quantum mechanics.

For a multi-electron system, this expansion results in an infinite series of Slater
determinants. Because there are an infinite number of wave functions that solve a single
electron system (corresponding to an infinite number of principal quantum number), each
Slater determinant places the n electrons in n of these single-électron wave functions,

giving:

V(5 Fyron ) = 3 DDy (D56)

K=l

The Slater determinants have been renamed as ®k (each of which is given by the RHS of
equation (D55)), and Dg are constant multiplicative factors. They are constant because
the expansion is already in terms of wave functions that have similar properties to the

total wave function .

D16. Hartree-Fock Self-Consistent-Field Method

The Hartree-Fock (HF) Self-Consistent-Field (SCF) [32] method attempts to optimize the

single determinant approximation in equation (D56):
‘P(k’,,k‘z,...,Sc',,) =, : (D57)

D; is taken as one initially since only a single determinant is involved. A suitable
normalization constant can be computed later. The optimization of the member orbitals of

@, is done by minimizing the system energy, given by:
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[R@:AZE
=i (D58)
[¢"wdr

» Where H, is the Hamiltonian operator (this time including the inter-electron interactions)

and dr includes all position variables and the spin variable. This procedure is based on the

variational principle of quantum mechanics, which states that a value of energy obtained
from an approximate wave function is always greater than the actual energy value.

Each component orbital of the determinant ® is in turn approximated as linear

combinations of single-electron atomic orbitals, simply called Linear Combination of
Atomic Orbitals (LCAO). Hence:

¥, =>9C, (D59)

r=1

for each ¥; in the RHS of equation (D55). The coefficients C,; are ultimately the
constants to be iteratively determined to optimize the wave function. Complete details of
the derivation can be found in [32], and is not repeated here due to the sheer amount of
material. |

The atomic orbitals ¢, are called the basis fénctions for the HF calculation, and
these atomic orbitals are once again expanded in terms of simple orbital-like functions

called primitive basis functions:

! .
¢’j = Z ¢s, primillvest (D60)

s=1

This expansion has been calculated for various atoms and is available in the form of sets

called basis sets. These are briefly described next.
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D17. Slater Type Orbitals, Gaussian Type Orbitals and Basis
Sets

The basis functions, @, were originally hydrogen-like radial wave functions of the form:
@, = Aexp(-Br) (D61)

This type of atomic orbital wave function is called a Slater Type Orbital (STO). It was
soon found out that numerically integrating STOs was computationally very expensive.
Hence today, these STOs are expanded in terms of primitive basis functions (as in

equation (D60)), each of which is of the following form:
Ps, primitive = A €xp (—Bl‘ 2) (D62)

This is a Gaussian, and hence is called a Gaussian Type Orbital (GTO). This equation
(with the » being squared) is far easier to numerically integrate with respect to individual
Cartesian coordinates (since exp(—rz)=exp(—xz)exp(—yz)exp(—zz), while exp(-r)
cannot be separated into separate functions of the Cartesian coordinates as easily). This
makes evaluating the variation of the energy expression (equation (D58)) far easier than
if it were done using STOs.

There are several expansions of the form of equation (D60) that are used today.
These basis sets are usually named based on the number of primitives used for the

expansion.

D18. Hartree-Fock Analysis of Copper using WinGAMESS

The General Atomic and Molecular Electronic Structure System (GAMESS) is a free

computational quantum chemistry soﬁware that performs HF analysis on user-defined -
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molecules and gives the user a choice of several basis sets'!, WinGAMESS is the
Windows™ version of GAMESS.

The goal is to determine the electron density of copper. The input file for
WinGAMESS is given below.

$CONTRL SCFTYP=UHF MULT=2 RUNTYP=ENERGY COORD=CART SEND
$SYSTEM TIMLIM=2 MEMORY=500000 S$END
$BASIS GBASIS=MIDI $END
SGUESS GUESS=HUCKEL $END
$GRID ORIGIN(1)=0,0,0 XVEC(1)=6,0,0 YVEC(1)=0,1E-4,0 SIZE=1E-1 UNITS=ANGS S$END
SELDENS IEDEN=1 WHERE=GRID S$END
$DATA
Copper
Cl
Cu29000
SEND

UHF refers to Unrestricted Hartree Fock and is the most general HF run available. The
spin multiplicity of copper is 2, i.e. copper has 1 unpaired electron (MULT=2). The
copper atom is centered at (0,0,0) and has 29 electrons. The basis set used is Huzinaga’s
MIDI basis set, which is available in WinGAMESS.

The output from WinGAMESS for the input given above is given on the

following pages.

" GAMESS Home Page: http://www.msg.ameslab.gov/GAMESS/GAMESS.html
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************************************************************************

Distributed Data Interface kickoff program.
Initiating 1 compute processes on 1 nodes to run the following command:
C:\WinGAMESS/gamess.05.exe input

******************************************************

GAMESS VERSION = 27 JUN 2005 (R2)

FROM IOWA STATE UNIVERSITY
M.W.SCHMIDT, K.K.BALDRIDGE, J.A.BOATZ, S.T.ELBERT,
M.S.GORDON, J.H.JENSEN, S.KOSEKI, N.MATSUNAGA,
K.A.NGUYEN, S.J.SU, T.L.WINDUS,

TOGETHER WITH M.DUPUIS, J.A.MONTGOMERY
J.COMPUT.CHEM. 14, 1347-1363(1993)

Sk kk AR K K*KFHH A Ak JINDOWS VERSION **H%dkkkdrhhkhhkh*

* % ok b ok ok %
FEETEE B I 2

SINCE 1993, STUDENTS AND POSTDOCS WORKING AT IOWA STATE UNIVERSITY
AND ALSO IN THEIR VARIOUS JOBS AFTER LEAVING ISU HAVE MADE IMPORTANT
CONTRIBUTIONS TO THE CODE:

IVANA ADAMOVIC, CHRISTINE AIKENS, ROB BELL, PRADIPTA BANDYOPADHYAY,
BRETT BODE, GALINA CHABAN, WEI CHEN, CHEOL HO CHOI, PAUL DAY,

TIM DUDLEY, DMITRI FEDOROV, GRAHAM FLETCHER, MARK FREITAG,

KURT GLAESEMANN, GRANT MERRILL, HEATHER NETZLOFF, RYAN OLSON,

MIKE PAK, JIM SHOEMAKER, JIE SONG, TETSUYA TAKETSUGU, SIMON WEBB.

ADDITIONAL CODE HAS BEEN PROVIDED BY COLLABORATORS IN OTHER GROUPS:
TOWA STATE UNIVERSITY: JOE IVANIC, KLAUS RUEDENBERG
UNIVERSITY OF TOKYO: KIMIHIKO HIRAO, HARUYUKI NAKANO, TAKAHITO

NAKAJIMA, TAKAO TSUNEDA, MUNEAKI KAMIYA, SUSUMU YANAGISAWA,
KIYOSHI YAGI

UNIVERSITY OF SOUTHERN DENMARK: FRANK JENSEN

UNIVERSITY OF IOWA: VISVALDAS KAIRYS, HUI LI

NATIONAL INST. OF STANDARDS AND TECHNOLOGY: WALT STEVENS, DAVID GARMER
UNIVERSITY OF PISA: BENEDETTA MENNUCCI, JACOPO TOMASI

UNIVERSITY OF MEMPHIS: HENRY KURTZ, PRAKASHAN KORAMBATH

UNIVERSITY OF ALBERTA: MARIUSZ KLOBUKOWSKI

UNIVERSITY OF NEW ENGLAND: MARK SPACKMAN

MIE UNIVERSITY: HIROAKI UMEDA

MICHIGAN STATE UNIVERSITY:

KAROL KOWALSKI, MARTA WLOCH, PIOTR PIECUCH

UNIVERSITY OF SILESIA: MONIKA MUSIAL, STANISLAW KUCHARSKI
FACULTES UNIVERSITAIRES NOTRE-DAME DE LA PAIX:

OLIVIER QUINET, BENOIT CHAMPAGNE

UNIVERSITY OF CALIFORNIA - SANTA BARBARA: BERNARD KIRTMAN
INSTITUTE FOR MOLECULAR SCIENCE: KAZUYA ISHIMURA AND SHIGERU NAGASE
UNIVERSITY OF NOTRE DAME: DAN CHIPMAN

EXECUTION OF GAMESS BEGUN Mon Nov .6 18:34:59 2006

INPUT
INPUT
INPUT
INPUT
INPUT

ECHO OF THE FIRST FEW INPUT CARDS -
CARD> SCONTRL SCFTYP=UHF MULT=2 RUNTYP=ENERGY COORD=CART $END
CARD> $SYSTEM TIMLIM=2 MEMORY=500000 $END
CARD> SBASIS GBASIS=MIDI $END
CARD> S$GUESS GUESS=HUCKEL $END
GARD> SGRID ORIGIN(1)=0,0,0 XVEC(1)=6,0,0 YVEC(1)=0,1E-4,0 SIZE=1E-1

UNITS=ANGS $END

INPUT
INPUT
INPUT
INPUT
INPUT
INPUT
INPUT

.....

CARD> S$ELDENS IEDEN=1 WHERE=GRID $END
CARD> S$DATA

CARD>Copper

CARD>C1

CARD>Cu 29 0 0 0

CARD> $END

CARD>

DONE SETTING UP THE RUN .....
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500000 WORDS OF MEMORY AVAILABLE

BASIS OPTIONS

GBASIS=MIDI IGAUSS= 0 POLAR=NONE
NDFUNC= 0 NEFFUNC= 0 DIFFSP= F
NPFUNC= 0 DIFFS= F
RUN TITLE
Copper
THE POINT GROUP OF THE MOLECULE IS Cl
THE ORDER OF THE PRINCIPAL AXIS IS 0
THE MOMENTS OF INERTIA ARE (AMU-ANGSTROM**2)
IXX= 0.000 IYY= 0.000 1z22= 0.000
ATOM ATOMIC COORDINATES (BOHR)
CHARGE X Y Z
cu 29.0 0.0000000000 0.0000000000 0.0000000000

INTERNUCLEAR DISTANCES (ANGS.)

cu
1 cu 0.0000000

* ... LESS THAN 3.000

ATOMIC BASIS SET

THE CONTRACTED PRIMITIVE FUNCTIONS HAVE BEEN UNNORMALIZED
THE CONTRACTED BASIS FUNCTIONS ARE NOW NORMALIZED TO UNITY

SHELL TYPE PRIMITIVE EXPONENT CONTRACTION COEFFICIENTS

cu
1 S 1 4137.5632000 0.063136495841
1 S 2 625.7329400 0.374792875314
1 S 3 136.9596900 0.683209455000
2 S 4 183.1051000 -0.104686104134
2 S 5 17.1224180 0.703484027782
2 S 6 6.9491752 0.363428114352
3 P 7 233.6235300 0.092364299331
3 P 8 53.5455690 0.448044896756
3 P 9 15.3880410 0.615583995543
4 S 10 13.9999370 -0.223963395077
4 S 11 2.2431225 0.711303284363
4 S 12 0.8531059 0.422701490708
5 p 13 5.8732783 0.259313512372
5 P 14 2.2084129 0.568795027137
5 P 15 0.7864834 0.298710614251
6 D 16 15.5864860 . 0.284218699230

158



APPENDIX D: A BRIEF OVERVIEW OF QUANTUM MECHANICS

6 D 17 3.8355780 0.839259171926
7 D 18 0.8650425 1.000000000000
8 S 19 0.8304054 -0.177824807075
8 S 20 0.0854047 1.066086970422
9 S 21 0.0318198 1.000000000000
TOTAL NUMBER OF BASIS SET SHELLS = 9
NUMBER OF CARTESIAN GAUSSIAN BASIS FUNCTIONS = 23
NUMBER OF ELECTRONS = 29
CHARGE OF MOLECULE = 0
SPIN MULTIPLICITY = 2
NUMBER OF OCCUPIED ORBITALS (ALPHA) = 15
NUMBER OF OCCUPIED ORBITALS (BETA ) = 14
TOTAL NUMBER OF ATOMS = 1
THE NUCLEAR REPULSION ENERGY IS 0.0000000000
THIS MOLECULE IS RECOGNIZED AS BEING LINEAR.
$CONTRL OPTIONS
SCFTYP=UHF RUNTYP=ENERGY EXETYP=RUN
MPLEVL= 0 CITYP =NONE CCTYP =NONE VBTYP =NONE
MULT = 2 ICHARG= 0 NZVAR = 0 - COORD =CART
ECP =NONE RELWFN=NONE LOCAL =NONE NUMGRD=
ISPHER= -1 NOSYM = 0 MAXIT = 50 UNITS =ANGS
PLTORB= F MOLPLT= F AIMPAC= F FRIEND=
NPRINT= 7 IREST = 0 GEOM =INPUT
NORMF = 0 NORMP = 0 ITOL = 20 ICUT =
INTTYP=BEST GRDTYP=BEST QOMTTOL= 1.0E-06
$SYSTEM OPTIONS
REPLICATED MEMORY= 500000 WORDS (ON EVERY NODE) .
DISTRIBUTED MEMDDI= 0 MILLION WORDS IN AGGREGATE,
MEMDDI DISTRIBUTED OVER 1 PROCESSORS IS 0 WORDS/PROCESSOR.
TOTAL MEMORY REQUESTED ON EACH PROCESSOR= 500000 WORDS.
TIMLIM= 2.00 MINUTES, OR 0.00 DAYS.
PARALL= F BALTYP= NXTVAL KDIAG= 0 COREFL= F
INPUT DEFINING PLOTTING GRID
ORIGIN= 0.0000000000 0.0000000000 0.0000000000
XVEC= 6.0000000000 0.0000000000 0.0000000000
YVEC= 0.0000000000 0.0001000000 0.0000000000
SIZE= 0.1000000000 UNITS=ANGS
THE GRID WILL CONTAIN 61 BY 1 MESH POINTS.
THE CORNERS OF THE GRID LIE AT (BOHR UNITS)
LOWER LEFT= 0.0000000000 0.0000000000 0.0000000000
LOWER RIGHT= 11.3383559263 0.0000000000 0.0000000000
UPPER LEFT= 0.0000000000 0.0000000000 0.0000000000
UPPER RIGHT= 11.3383559263 0.0000000000 0.0000000000
PROPERTIES INPUT
) MOMENTS FIELD POTENTIAL DENSITY
IEMOM = 1 IEFLD = 0 IEPOT = 0 IEDEN = 1
WHERE =COMASS . WHERE =NUCLEI WHERE =NUCLEI WHERE =GRID
OUTPUT=BOTH OUTPUT=BOTH OUTPUT=BOTH . OUTPUT=BOTH
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IEMINT= 0 IEFINT= 0 IEDINT= 0
MORB = 0
EXTRAPOLATION IN EFFECT
DIIS IN EFFECT
INTEGRAL TRANSFORMATION OPTIONS
NWORD = 0 CUTOFF = 1.0E-09
MPTRAN = 0 DIRTRF = F
AOINTS =DUP
INTEGRAL INPUT OPTIONS
NOPK = 1 NORDER= 0 SCHWRZ= F
THE POINT GROUP IS Cl , NAXIS= 0, ORDER= 1
DIMENSIONS OF THE SYMMETRY SUBSPACES ARE
A = 23
..... DONE SETTING UP THE RUN .....
STEP CPU TIME = 0.03 TOTAL CPU TIME = 0.0 { 0.0 MIN)
TOTAL WALL CLOCK TIME= 0.5 SECONDS, CPU UTILIZATION IS 5.83%
Fhhkkhkhkhkhhhdhhkdrrhhhkhd
1 ELECTRON INTEGRALS
Fhkhkhhkdhkhkhkhhdhdhdhhhkhhhkhd
«<.... END OF ONE-ELECTRON INTEGRALS ......
STEP CPU TIME = 0.00 TOTAL CPU TIME = 0.0 ( 0.0 MIN)
TOTAL WALL CLOCK TIME= 0.6 SECONDS, CPU UTILIZATION IS 5.51%
GUESS OPTIONS
GUESS =HUCKEL NORB = 0 NORDER=
MIX = F PRTMO = F PUNMO =
TOLZ = 1.0E-08 TOLE = 1.0E-05
SYMDEN= F PURIFY= F
INITIAL GUESS ORBITALS GENERATED BY HUCKEL ROUTINE.
HUCKEL GUESS REQUIRES 5969 WORDS.
SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW. ALPHA SET(S).
15 ORBITALS ARE OCCUPIED ( 9 CORE ORBITALS).
10=A 11=A 12=a 13=A 14=a 15=A 16=a
17=A 18=A 19=a 20=A 21=A 22=p 23=A
SYMMETRIES FOR INITIAL GUESS ORBITALS FOLLOW. BETA SET(S).
14 ORBITALS ARE OCCUPIED ( 9 CORE ORBITALS) .
10=a 11=A 12=p 13=A 14=p 15=A 16=A
17=A 18=A 19=a 20=A 21=A 22=A 23=A
...... END OF INITIAL ORBITAL SELECTION ......
STEP CPU TIME = 0.02 TOTAL CPU TIME = 0.0 ( 0.0 MIN)
TOTAL WALL CLOCK TIME= 0.7 SECONDS, CPU UTILIZATION IS 6.54%

S,P,L SHELL ROTATED AXIS INTEGRALS, REPROGRAMMED BY
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KAZUYA ISHIMURA (IMS) AND JOSE SIERRA (SYNSTAR).
s,P,D,L SHELL ROTATED AXIS INTEGRALS PROGRAMMED BY
KAZUYA ISHIMURA (INSTITUTE FOR MOLECULAR SCIENCE) .
s,p,D,F,G SHELL TO TOTAL QUARTET ANGULAR MOMENTUM SUM 5,
ERIC PROGRAM BY GRAHAM FLETCHER (ELORET AND NASA ADVANCED
SUPERCOMPUTING DIVISION, AMES RESEARCH CENTER).
s,p,D,F,G,L SHELL GENERAL RYS QUADRATURE PROGRAMMED BY
MICHEL DUPUIS (PACIFIC NORTHWEST NATIONAL LABORATORY) .

2 ELECTRON INTEGRALS

THE -PK- OPTION IS OFF, THE INTEGRALS ARE NOT IN SUPERMATRIX FORM.

-1631.7939047562 0.0000000000 0.000002951

0.000000207

STORING 15000 INTEGRALS/RECORD ON DISK, USING 12 BYTES/INTEGRAL.
TWO ELECTRON INTEGRAL EVALUATION REQUIRES 60741 WORDS OF MEMORY.
II,JST,KST,LsT = 1 1 1 1 NREC = 1 INTLOC = 1
1I,JST,KST,LST = 2 1 1 1 NREC = 1 INTLOC = 2
1I,JST,KST,LsT = 3 1 1 1 NREC = 1 INTLOC = 7
1I,JST,KST,LsT = 4 1 1 1 NREC = 1 INTLOC = 34
1I,JST,KST,LST = 5 1 1 1 NREC = 1 INTLOC = 67
1I,JST,KST,LsT = 6 1 1 1 NREC = 1 INTLOC = 214
1I,JST,KST,LST = 7 1 1 1 NREC = 1 INTLOC = 1189
II,JST,KST,LST = 8 1 1 1 NREC = 1 INTLOC = 4201
1I,JST,KST,LST = 9 1 1 1 NREC = 1 INTLOC = 5216
TOTAL NUMBER OF NONZERO TWO-ELECTRON INTEGRALS = 6438
1 INTEGRAL RECORDS WERE STORED ON DISK FILE 8.
..... . END OF TWO-ELECTRON INTEGRALS .....
STEP CPU TIME = 0.09 TOTAL CPU TIME = 0.1 ( 0.0 MIN)
TOTAL WALL CLOCK TIME= 1.0 SECONDS, CPU UTILIZATION IS 14.45%
UHF SCF CALCULATION
NUCLEAR ENERGY = 0.0000000000
MAXIT = 50 NPUNCH= 2 MULT= 2
EXTRAP=T DAMP=F SHIFT=F RSTRCT=F DIIS=T SOSCF=F
DENSITY MATRIX CONV= 1.00E-05
MEMORY REQUIRED FOR UHF/ROHF STEP= 37173 WORDS.
ITER EX TOTAL ENERGY E CHANGE DENSITY CHANGE DIIS ERROR
1 0 -1631.6367258912 -1631.6367258912 0.298663554 7.024076405
* ok ox INITIATING DIIS PROCEDURE *oxox
2 1 -1631.7938965389 -0.1571706477 0.001375045 0.036687951
3 2 -1631.7939040485 -0.0000075096 0.000406995 0.001022709
4 3 -1631.7939045241 -0.0000004756 0.000124105 0.000707698
5 4 -1631.7939047451 -0.0000002210 0.000105754 0.000096945
6 5 -1631.7939047561 -0.0000000110 0.000021356 0.000007281
7 6 -1631.7939047562 -0.0000000001 0.000007165 0.000000690
8 7

FINAL UHF ENERGY IS -1631.7939047562 AFTER

0.500
0.750

SPIN S2
S-SQUARED

wn
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wWoOoOJdJoaUs WN P

VodoudsWwWwNH

ALPHA SET -----

EIGENVECTORS

1
-326.7337

A
CU1l s 0.979742
CUl s 0.074303
CUl X 0.000000
cuUl Yy 0.000000
CUl 2 0.000000
CuUl s 0.136516
cul X 0.000000
cuUl Y 0.000000
CuUl z 0.000000
CU 1 XX -0.065121
CU 1YY -0.065121
CU 1 2z -0.065121
CU 1 XY 0.000000
CU 1 Xz 0.000000
CU 1 Y2z 0.000000
CU 1 XX -0.014303
CU 1Yy -0.014303
CUu 1 22 -0.014303
CU 1 XY 0.000000
CU 1 XZ 0.000000
CUu 1 YZ 0.000000
cul s 0.005443
CcuUl s -0.002693

6
-4.8633

A
cul s 0.123878
CuUl s -0.460234
cul X 0.000000
cul Y 0.000000
cul 2z 0.000000
CuUl s 1.089762
cul X 0.000000
CcUl Y 0.000000
cul 2 0.000000
CU 1 XX 0.001073
CU 1 YY 0.001073
CUu 1 22 0.001073
CU 1 XY 0.000000
CU 1 X2z 0.000000
CU 1 Y2 0.000000
CuU 1 XX -0.001168
CU 1YY -0.001168
CU 1 22 -0.001168
CU 1 XY 0.000000
CU 1 X2z 0.000000
CUu 1 Y2 0.000000
cul s 0.006013
cul s -0.002518

11
-0.2861

A

2
-40.5852
A
-0.327478
1.033727
0.000000
0.000000
0.000000
0.000752
0.000000
0.000000
0.000000
0.002849
0.002849
0.002849
0.000000
0.000000
0.000000
0.000717
0.000717
0.000717
0.000000
0.000000
0.000000
-0.000742
0.000412

7
=3.1791

A
0.000000
0.000000
0.107057

-0.375556
0.086352
0.000000

-0.283238
0.993597

-0.228460
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

12
-0.2861
A

3
-35.3424
A
0.000000
0.000000
-0.605414
0.693577
0.339068
0.000000
-0.032945
0.037743
0.018451
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

8
-3.1791
A

0.000000
0.000000
0.264846
0.006605
-0.299621
0.000000
-0.700696
-0.017476
0.792699
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

13

-0.2861
A

162

4
-35.3424
A
0.000000
0.000000
0.654376
0.689653
-0.242307
0.000000
0.035610
0.037529
-0.013186
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

9
-3.1791

A
0.000000
0.000000

-0.279920
-0.137384
-0.250460
0.000000
0.740576
0.363473
0.662636
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

14
-0.2861
A

5
-35.3424
A
0.000000
0.000000
0.409644
-0.076631
0.888179
0.000000
0.022292
-0.004170
0.048333
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

10
-0.2861
A

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000836
-0.008879
0.008042
-0.020877
-0.046036
0.607467
0.000827
-0.008777
0.007950
-0.020638
-0.045508
0.600501
0.000000
0.000000

15

-0.2090
A
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WO W R

wodoud WK

COAaL & WN

FRRRRPRPRPRPBHERERRERPRPRRERRRRPRRE

RFRPRPRPPPRPPREPBRRPRERPRPRPEPERERERPE

PRRERPERPEREPR

NKXNONKX N

§N»<><mw»<><mu:

KX K N
NNRKNK

XX
YY
22
XY
Xz
YZ

MK XNNK XN

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.594249
-0.339531
-0.254718
-0.054897
0.114441
0.005180
0.587435
-0.335638
-0.251797
-0.054267
0.113129
0.005121
0.000000
0.000000

16
0.1477

A
-0.015440
0.079240
0.000000
0.000000
0.000000
-0.022569
0.000000
0.000000
0.000000
-0.024281
-0.024281
-0.024281
0.000000
0.000000
0.000000
0.006347
0.006347
0.006347
0.000000
0.000000
0.000000
1.840462
-1.828919

21
3.6267

A
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

. 0.000000

0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
-0.106745
-0.352689
0.459434
0.040149
0.371916
0.022171
-0.105521
-0.348645
0.454166
0.039688
0.367652
0.021917
0.000000
0.000000

17
1.7639
A

0.066510
-0.243004
0.000000
0.000000
0.000000
1.327951
0.000000
0.000000
0.000000
-0.180188
-0.180188
-0.180188
0.000000
0.000000
0.000000
-0.738476
-0.738476
-0.738476
0.000000
0.000000
0.000000
1.159887
-0.613398

22
3.6267
A
0.000000
0.000000

0.000000°

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
-0.076547

0.341456

-0.264909
-0.218398
0.441076
0.031656
-0.075669
0.337541
-0.261872
-0.215894
0.436019
0.031293
0.000000
0.000000

18
3.6267
A

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000025
0.000875
-0.000900
-0.262649
-0.015126
-0.841904
-0.000026
-0.000880
0.000905
0.264075
0.015208
0.846477
0.000000
0.000000

23
28.3804

A
-0.296924
1.317391
0.000000
0.000000
0.000000
12.268098
0.000000
0.000000
0.000000

163

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.035784
0.123794
~0.159578
0.564720
0.153562
0.033627
0.035373
0.122375
-0.157748
0.558244
0.151802
0.033242
0.000000
0.000000

19

3.6267
A

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.035080
-0.000202
-0.034878
0.025051
-0.880735
0.008034
-0.035271

0.000203"

0.035068
-0.025187
0.885518
-0.008078
0.000000
0.000000

-0.018784
0.062439
0.000000
0.000000
0.000000

-0.209851
0.000000
0.000000
0.000000

-0.002149

-0.002149

-0.002149
0.000000
0.000000
0.000000

-0.000894

-0.000894

-0.000894
0.000000
0.000000
0.000000
0.511911
0.547250

20
3.6267

A
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.440160

-0.720316
0.280156
0.477366
0.016612

-0.149912

-0.442551
0.724229

-0.281678

-0.479959

-0.016702
0.150726
0.000000
0.000000
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WO WN P

wodous WN R

PR
N = O

CU 1 XX 0.656550
CU 1 YY 0.174411
CU 1 22 -0.830961
CU 1 XY 0.087004
CU-1 X2z 0.041572
CU 1 Y2 -0.027163
CU 1 XX -0.660116
CUuU 1YY -0.175358
CU 1 2z 0.835474
CU 1 XY -0.087476
CU 1 Xz -0.041798
CU 1 YZ 0.027311
CU1l s 0.000000
CUl s 0.000000

BETA SET -----

EIGENVECTORS

1
-326.7323

A
CU1l s 0.979741
CUl s 0.074307
CU 1l X 0.000000
cul Yy 0.000000
cuUl 2z 0.000000
CUl s 0.136528
cul X 0.000000
cul Y 0.000000
CuUl 2 0.000000
CU 1 XX -0.065127
CU 1YY -0.065127
CU 1 2z -0.065127
CU 1 XY 0.000000
CU 1 Xz 0.000000
CU 1 Y2 0.000000
CU 1 XX -0.014305
CU 1 Yy -0.014305
CU 1 22 -0.014305
CU 1 XY 0.000000
CU 1 X2 0.000000
CUu 1 Y2 0.000000
CUl s 0.005444
CUl s -0.002694

6
-4.8575

A
CUl s 0.123809
CU1l s -0.459947
CcuU1l X 0.000000
CcuUl Y 0.000000
cul 2z 0.000000
Cul s 1.089820
cul X 0.000000
CUl Y 0.000000
cul 2z 0.000000
CU 1 XX 0.000755
CU 1YY 0.000755
Cu 1 22 0.000755

0.389857
-0.478269
0.088412
-0.687719
-0.009515
0.214332
-0.391974
0.480867
-0.088893
0.691454
0.009567
-0.215496
0.000000
0.000000

2
-40.5835
A
-0.327467
1.033677
0.000000
0.000000
0.000000
0.000547
0.000000
0.000000
0.000000
0.002957
0.002957
0.002957
0.000000
0.000000
0.000000
0.000737
0.000737
0.000737
0.000000
0.000000
0.000000
-0.000748
0.000415

7
-3.1768
A

0.000000
0.000000
-0.321652
-0.237694
0.002987
0.000000
0.850966
0.628845
-0.007902
0.000000
0.000000
0.000000

-5.077984
-5.077984
-5.077984
0.000000
0.000000
0.000000
-1.498876
-1.498876
-1.498876
0.000000
0.000000
0.000000
0.752270
-0.390430

3
-35.3420

A
0.000000
0.000000

-0.110360
0.259803
0.939605
0.000000

-0.006007
0.014141
0.051141
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

8
-3.1768
A

0.000000
0.000000
0.127532
-0.176793
-0.335332
0.000000
-0.337399
0.467723
0.887157
0.000000
.0.000000
0.000000

164

4 5
-35.3420  -35.3420
A A
0.000000 0.000000
0.000000 0.000000
0.521414 0.823701
0.814713 -0.480916
-0.164028 0.229721
0.000000 0.000000
0.028380 0.044833
0.044344 -0.026175
-0.008928 0.012503
0.000000 0.000000
0.000000 0.000000
0.000000 ©0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000

9 10
-3.1768 -0.2836

A A
0.000000 0.000000
0.000000 0.000000
0.200607 0.000000
-0.268726  0.000000
0.217970 0.000000
0.000000 0.000000
-0.530726 0.000000
0.710943 0.000000
-0.576664 0.000000
0.000000 0.544620
0.000000 -0.032916
0.000000 =-0.511704



APPENDIX D: A BRIEF OVERVIEW OF QUANTUM MECHANICS

oo WN -

woOoNoos WN -

PRPEBREERPRPP PP

PR RRRREPPPRPBEREPRPBEBRERERERPPEEE

RFRRRERPRPERPRRPRRERPPBPERRERERR

0.000000
0.000000
0.000000
-0.000775
-0.000775
-0.000775
0.000000
0.000000
0.000000
0.005875
-0.002434

11
'~-0.2836

A
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

-0.243813
0.538841
-0.295028
0.087198
-0.043536
-0.268954
-0.240110
0.530656
-0.290546
0.085874
~0.042874
-0.264868
0.000000
0.000000

16
0.1947

A
-0.020044
0.093030
0.000000
0.000000
0.000000
-0.073801
0.000000
0.000000
0.000000
-0.026118
-0.026118
-0.026118
0.000000
0.000000
0.000000
-0.000873
-0.000873
-0.000873
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

12
-0.2836
A

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
~-0.026369
0.060737
-0.034368
0.036740
0.605555
0.036084
-0.025968
0.059815
-0.033846
0.036182
0.596356
0.035535
0.000000
0.000000

17
1.7838
A

0.066844
-0.244380
0.000000
0.000000
0.000000
1.328827
0.000000
0.000000
0.000000
-0.179515
-0.179515
-0.179515
0.000000
0.000000
0.000000
-0.738347
-0.738347
-0.738347
0.000000
0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

13
-0.2836
A

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
-0.076819
0.159278
-0.082460
0.373805
-0.065570
0.451274
-0.075652
0.156859
-0.081207
0.368127
-0.064574
0.444420
0.000000
0.000000

18
3.6329

A
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.559048
0.310449

-0.869497
0.000344
-0.000007
-0.000099
-0.563082
-0.312689
0.875771
-0.000346
0.000007
0.000100

165

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.000000.

0.000000
0.000000

14
-0.2836
A

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.102013
-0.229275
0.127262
0.473658
0.012809
-0.309457
0.100464
-0.225793
0.125329
0.466463
0.012615
-0.304756
0.000000
0.000000

19
3.6329
A

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.657114
-0.795491
0.138377
-0.107467
~0.105949
0.177056
-0.661855
0.801231
-0.139376
0.108242
0.106714
-0.178333

0.004820
-0.001819
0.002960
0.536347
-0.032416
-0.503931
0.004746
-0.001791
0.002915
0.000000
0.000000

15
0.0215
A

-0.012872
0.034035
0.000000
0.000000
0.000000
-0.188196
0.000000
0.000000
0.000000
0.004809
0.004809
0.004809
0.000000
0.000000
0.000000
-0.005030
-0.005030
-0.005030
0.000000
0.000000
0.000000
-0.084485
1.088766

20
3.6329

A
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

-0.077463
0.093765
-0.016302
0.016965
-0.874794
-0.032169
0.078022
-0.094442
0.016419
-0.017087
0.881106
0.032401
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22 cu1l s 1.918381 1.143536 0.000000 0.000000 0.000000
23 CU1 s -1.572207 -0.602958 0.000000 0.000000 0.000000

21 22 23
3.6329 3.6329 28.3854
A A A
1l Ccu1 s 0.000000 0.000000 -0.296933
2 Cu1l s 0.000000 0.000000 1.317414
3 CuU1l X 0.000000 0.000000 0.000000
4 CU1 Y 0.000000 0.000000 0.000000
5 CuUl 2 0.000000 0.000000 0.000000
6 CU1 s 0.000000 0.000000 12.268148
7 CU1l X 0.000000 0.000000 0.000000
8 CU1l Y 0.000000 0.000000 0.000000
9 Cu1l 2z 0.000000 0.000000 0.000000
10 CU 1 XX 0.160816 -0.020720 -5.077997
11 CU 1YY -0.194946 0.025392 -5.077997
12 Ccu 1l zz 0.034130 -0.004672 =-5.077997
13 CU 1 Xy 0.342422 -0.804696 0.000000
14 CU 1 Xz 0.011652 0.000665 0.000000
15 CU 1 Y2 -0.784782 -0.358272 0.000000
16 CU 1 XX -0.161976 0.020869 -1.498945
17 CcU 1 vy 0.196353 -0.025575 =-1.498945
18 CU 1 zz -0.034377 0.004705 -1.498945
19 CU 1 XY -0.344892 0.810502 0.000000
20 CU 1 Xz -0.011736 -0.000670 0.000000
21 CU 1 YZ 0.790445 0.360857 0.000000
22 CU1 s 0.000000 0.000000 0.752070
23 CcU1l s 0.000000 0.000000 -0.390275
...... END OF UHF CALCULATION ......
STEP CPU TIME = 0.03 TOTAL CPU TIME = 0.2 ¢ 0.0 MIN)
TOTAL WALL CLOCK TIME= 1.0 SECONDS, CPU UTILIZATION IS 16.33%

ENERGY COMPONENTS

WAVEFUNCTION NORMALIZATION 1.0000000000

[

ONE ELECTRON ENERGY
TWO ELECTRON ENERGY
NUCLEAR REPULSION ENERGY

-2285.0534915355
653.2595867794
0.0000000000

o

-1631.7939047562

]

TOTAL ENERGY

ELECTRON-ELECTRON POTENTIAL ENERGY
NUCLEUS-ELECTRON POTENTIAI ENERGY
NUCLEUS-NUCLEUS POTENTIAIL ENERGY

653.2595867794
-3909.0160556633
0.0000000000

nwnn

-3255.7564688840
1623.9625641278
2.0048223652

TOTAL POTENTIAL ENERGY
TOTAL KINETIC ENERGY
VIRIAL RATIO (V/T)

mnun

MULLIKEN AND LOWDIN POPULATION ANALYSES

MULLIKEN ATOMIC POPULATION.IN EACH MOLECULAR ORBITAL
ALPHA ORBITALS

1 2 3 4 5

1.000000 1.000000 1.000000 1.000000 1.000000
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1 1.000000 1.000000 1.000000 1.000000 1.000000
6 7 8 9 10

1.000000 1.000000 1.000000 1.000000 1.000000

1 1.000000 1.000000 1.000000 1.000000 1.000000
11 12 13 14 15

1.000000 1.000000 1.000000 1.000000 1.000000

1 1.000000 1.000000 1.000000 1.000000 1.000000

MULLIKEN ATOMIC POPULATION IN EACH MOLECULAR ORBITAL
BETA ORBITALS

1 2 3 4 5
1.000000 1.000000 1.000000 1.000000 1.000000
1 1.000000 1.000000 1.000000 1.000000 1.000000
6 7 8 9 10
1.000000 1.000000 1.000000 1.000000 1.000000
1 1.000000 1.000000 1.000000 1.000000 1.000000
11 12 13 14

1.000000 1.000000 1.000000 1.000000

1 1.000000 1.000000 1.000000 1.000000
ATOMIC SPIN POPULATION (ALPHA MINUS BETA)

ATOM MULL. POP. LOW.POP.
1 CU 1.000000 1.000000

sxkxkktk* ALL ELECTRONS ******%*

----- POPULATIONS IN EACH AQ —-----

MULLIKEN LOWDIN

1 cul s 1.99120 1.99566

2 Ccul s 2.01053 1.93780

3 cul X 2.00000 2.00000

4 CULl Y 2.00000 2.00000

5 CcuUl 2 2.00000 2.00000

6 CUl s 1.99873 0.80434

7 cuUl X 2.00000 2.00000

8 CUl Y 2.00000 2.00000

9 cUl 2Z 2.00000 2.00000

10 CU 1 XX 0.67368 0.99771
11 Ccu 1l Yy 0.67368 0.99771
12 cu 1l 22 0.67368 0.99771
13 CU 1 XY 1.00986 1.00920
14 CU 1 XZ 1.00986 1.00920
15 CU 1 Yz 1.00986 1.00920
16 CU 1 XX 0.65902 0.76591
17 CU 1YY 0.65902 0.76591
18 CU 1 z2 0.65902 0.76591
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19 CcU 1 XY 0.99014 0.99080
20 CU 1 X2 0.99014 0.99080
21 cCcUu 1l YZ 0.99014 0.99080
22 cul s 0.48289 0.46400
23 cul s 0.51854 0.50735

MULLIKEN ATOMIC OVERLAP POPULATIONS

(OFF-DIAGONAL ELEMENTS NEED TO BE MULTIPLIED BY 2)

1
1 29.0000000
TOTAL MULLIKEN AND LOWDIN ATOMIC POPULATIONS

ATOM MULL. POP. CHARGE
1Cu 29.000000 0.000000

BOND ORDER AND VALENCE ANALYSIS

BOND BOND

ATOM PAIR DIST ORDER ATOM PAIR DIST ORDER
TOTAL BONDED FREE
ATOM VALENCE VALENCE VALENCE
1 cu 1.000 0.000 1.000

ATOMIC SPIN DENSITY AT THE NUCLEUS (A.U.)

LOW.POP.
29.000000

CHARGE
0.000000 -

BOND ORDER THRESHOLD=0.050

BOND
ATOM PAIR DIST ORDER

SPIN DENS  ALPHA DENS BETA DENS
1 cu 29.0 1.8264654 6200.67641 6198.84994
ELECTROSTATIC MOMENTS
POINT 1 X Y Z (BOHR) CHARGE
0.000000 0.000000 0.000000 0.00 (A.U.)
DX DY DZ /D/  (DEBYE)
0.000000 0.000000 0.000000 0.000000
ELECTRON DENSITY
POINT X Y z DENSITY
(BOHR) (a.U.)
1 0.00000 0.00000 0.00000 12399.526350
2 0.18897 0.00000 0.00000 87.137620
3 0.37795 0.00000 0.00000 9.838223
4 0.56692 0.00000 0.00000 5.527207
5 0.75589 0.00000 0.00000 2.931274
6 0.94486 0.00000 0.00000 1.266661
7 1.13384 0.00000 0.00000 0.552326
8 1.32281 0.00000 0.00000 0.277510
9 1.51178 0.00000 0.00000 0.152179
10 1.70075 0.00000 0.00000 0.080644
11 1.88973 0.00000 0.00000 0.039177
12 2.07870 0.00000 0.00000 0.017964
13 2.26767 0.00000 0.00000 0.008634
14 2.45664 0.00000 0.00000 0.004993
15 2.64562 0.00000 0.00000 0.003594
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16 2.83459 0.00000 0.00000 0.002945
17 3.02356 0.00000 0.00000 0.002521
18 3.21253 0.00000 0.00000 0.002173
19 3.40151 0.00000 0.00000 0.001867
20 3.59048 0.00000 0.00000 0.001594
21 3.77945 0.00000 0.00000 0.001354
22 3.96842 0.00000 0.00000 0.001143
23 4.15740 0.00000 0.00000 0.000961
24 4.34637 0.00000 0.00000 0.000804
25 4.53534 0.00000 0.00000 0.000670
26 4.72431 0.00000 0.00000 0.000556
27 4.91329 0.00000 0.00000 0.000460
28 5.10226 0.00000 0.00000 0.000380
29 5.29123 0.00000 0.00000 0.000313
30 5.48021 0.00000 0.00000 0.000257
31 5.66918 0.00000 0.00000 0.000211
32 5.85815 0.00000 0.00000 0.000173
33 6.04712 0.00000 0.00000 0.000141
34 6.23610 0.00000 0.00000 0.000115
35 6.42507 0.00000 0.00000 0.000094
36 6.61404 0.00000 0.00000 0.000077
37 6.80301 0.00000 0.00000 0.000063
38 6.99199 0.00000 0.00000 0.000051
39 7.18096 0.00000 0.00000 0.000042
40 7.36993 0.00000 0.00000 '0.000034
41 7.55890 0.00000 0.00000 0.000027
42 7.74788 0.00000 0.00000 0.000022
43 7.93685 0.00000 0.00000 0.000018
44 8.12582 0.00000 0.00000 0.000015
45 8.31479 0.00000 0.00000 0.000012
46 8.50377 0.00000 0.00000 0.000009
47 8.69274 0.00000 0.00000 0.000008
48 8.88171 0.00000 0.00000 0.000006
49 9.07068 0.00000 0.00000 0.000005
50 9.25966 0.00000 0.00000 0.000004
51 9.44863 0.00000 0.00000 0.000003
52 9.63760 0.00000 0.00000 0.000002
53 9.82658 0.00000 0.00000 0.000002
54 10.01555 0.00000 0.00000 0.000001
55 10.20452 0.00000 0.00000 0.000001
56 10.39349 0.00000 0.00000 0.000001
57 10.58247 0.00000 0.00000 0.000001
58 10.77144 0.00000 0.00000 0.000001
59 10.96041 0.00000 0.00000 0.000000
60 11.14938 0.00000 0.00000 0.000000
61 11.33836 0.00000 0.00000 0.000000

...... END OF PROPERTY EVALUATION ......

STEP CPU TIME = 0.02 TOTAL CPU TIME = 0.2 ( 0.0 MIN)

TOTAL WALL CLOCK TIME= 1.2 SECONDS, CPU UTILIZATION IS 15.96%

400000 WORDS OF DYNAMIC MEMORY USED
EXECUTION OF GAMESS TERMINATED NORMALLY Mon Nov 6 18:35:00 2006
DDI: 920 bytes (0.0 MB / O MWords) used by master data server.

CPU timing information for all processes

0: 0.187000 + 0.046000
1: 0.031000 + 0.000000

0.233000
0.031000

ddikick.exe: exited gracefully.
Z———- accounting info -----
***************.*********************************************************
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The electron density is presented in bold face towards the end of the output. The native
units of WinGAMESS for distance and electron density are Bohr and Coulomb per cubic
Bohr respectively. Note that 1 Bohr is 0.529189 Angstroms. If the distance in the output
is converted to Angstroms and the electron density in the output is converted to Coulomb

per cubic Angstrom, then the curve in Figure 3 (Section 3.5) is obtained.
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El1. Introduction

Statistical mechanics is the branch of science that deals with providing reasonable
methods for treating the behaviour of a mechanical system regarding whose condition or
state we have incomplete knowledge. Most other branches of science allow precise
predictions of the future state of the system to be made from precise knowledge of its
condition at the present. However, the limitations of this philosophy are realized when
the number of particles in the system becomes very large, or when the initial state of the
system is only partially known. Statistical mechanics then provides a framework for
making reasonable predictions of the future state of the system (which can be expected to
hold on an average) from the partial information available on the initial state. This is
achieved by studying the behaviour of an ensemble, or collection, of systems that are
similar in structure to the system of interest, and are distributed over a range of different
precise states. Such a suitable ensemble is called a representative ensemble for the
system. The average behaviour of the systems in the representative ensemble is studied
and is used to make predictions about the average expected behaviour of the system at
hand. The following sections present some details on statistical mechanics and conclude
with a very important result of classical statistical mechanics: the Maxwell-Boltzmann
distribution for states of the system. Information for this appendix has been obtained from
[33].

E2. Concept of Phase-Space

The state of mechanical systems is completely determined by two sets of quantities: the
coordinates (of degrees of freedom) of the system, and the momentum (or velocities) of
the various constituents of the system. For a system of n particles, each with r degrees of
freedom, the state can be represented by a point in a hypothetical 2nr dimensional space,
with nr dimensions for the coordinates and »nr dimensions for the momentum. This

hypothetical 2nr dimensional space is called the phase-space of the system, with the nr
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dimensions for the coordinates constituting the configuration-space and the nr
dimensions for the momentum constituting the momentum-space. The phase-space for a
single particle of a system has been termed p-space in statistical mechanics, while the
phase-space for the entire system has been termed y-space. The state of a particle is
therefore a single point in p-space, while the state of the system is either a single point in
y-space, or a collection of points in p-space with each point representing one particle of
the system. Analogously, the state of an ensemble is a collection of points in y-space with
each point representing one system of the ensemble. v

The number of systems in the ensemble is usually assumed to be large. In that
case then, the number of systems having coordinates and momentum in a certain range
can be represented by a density, p, of points in y-space. Hence the number of systems
having positions and momentum between q1,9y,....4sPLD2 -...pr and q1+dqi, g2+0ga, ...,
qr+éq; pi+dps, p2+dps ... prtépr , where g denotes coordinates and p denotes

momentum, is:

6N = p(q]’q2""’qf’pl’p2’“"pf’t)5q16q2'“5qj5p15p2"'5pf (ED)

E3. Statistical Ensembles in Classical Statistical Mechanics

E3.1 Uniform Ensemble

A uniform ensemble is an ensemble in statistical equilibrium (meaning that p does not

change with time locally), with:

p = constant (E2)

everywhere in phase-space. Uniform ensembles are used to represent systems regarding

which no information is available.
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E3.2 Microcanonical Ensemble
A microcanonical ensemble is an ensemble in statistical equilibrium with:

p = constant (for energy between E and E+5E)

E3
p =0 (for energy outside the above range) (E3)

Microcanonical ensembles are used to represent systems whose initial energies are

precisely known and conserved.
E3.3 Canonical Ensemble

A canonical ensemble is an ensemble in statistical equilibrium with:

p=N exp("';E) (E4)

, Where E is the energy of the system, and y and 6 are parameters independent of position
and momentum whose values complete the description of the distribution. Canonical
ensembles are used to represent systems whose initial energies are close to a precisely

known value.

E4. Maxwell-Boltzmann Distribution Law

The initial energy of most systems is usually precisely known. Hence a microcanonical
ensemble can be used as a representative ensemble for the system. Let »; be the number
of particles of a n particle system whose coordinates and momentum lie in cell i of p-
space. Then the probability of finding the system in this condition is (assuming equal a

priori probabilities for finding a particle in a cell of p-space):
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n!
P=— x constant (ES)
n'n,!nt.nl.

, where the constant normalizes the probability and is independent of the condition of the
system. The condition of maximum probability is obtained by maximizing (ES) subject to

the following logical constraints:

on=7y.6n =0 (E6)
i

, and:

SE=Y £6n =0 (E7)
i

Descriptively, the constraints mean that the total number of particles in the system and
the total system energy (with & being the energy associated with cell i of p-space) are
constant (this was the reason why a microcanonical ensemble was chosen to begin with).
The maximization procedure and ancillary considerations lead to the Maxwell-Boltzmann

distribution law governing the condition of maximum probability:

£
n, = Aexp (—-I-c:?) (E8)

A is a normalization constant, kp is Boltzmann’s constant and T is the absolute
temperature of the system. In differential form, the Maxwell-Boltzmann distribution law

gives the number of particles in any region of p-space with energy ¢ as:

~ dn=nCexp (—7‘%—){5q,5q2...5q,§p,5p2...5p,} (E9)

B
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» Where C is another normalization constant given by:

C= ! (E10)

£
I Iexp (— k—’?) dq,dq,...dq.dpdp,...dp,

B

ES. Maxwell Distribution Law for Velocities

A special case of the Maxwell-Boltzmann distribution law arises for identical particles in
a conservative field. In this case, the potential energy is dependent on the coordinates
alone, while the kinetic energy is quadratically dependent on the momentum (or

velocities) alone. Hence, using Cartesian coordinates, € can be written as:
‘ _ 1 .2 .2 .2
e-a,,(x,y,z)+5m(x +y0 42 ) (E11)

Substituting (E11) into (E9) and integrating out the coordinates (from - to ) gives:

#2457 +z'2)
2T

n=nBexp (-m( }55:5)’/52’ (E12)

as the number of particles of the system having velocity components in a range 535353 .

The normalization constant B can easily be determined as follows:

n=_[5n=nBI I jexp " T

-0 =00 =0

< o m(# + 57+ 2
(— (£ +7+7) didyds (E13)
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3

© o0 "l 52 52 = (E14)
J.J.j.exp( m(x ;cyT+z ))dxdydz‘ 2wk,T |
—00 =00 =0 “~B

=>B=

Note that the following integral was used for performing the integration in (E14):

/2

‘]exp (—as2 )ds =\z (E15)

Substituting (E14) into (E12) gives the Maxwell distribution law for velocities:

3

m & m( + 3 +2*)

on= exp| — OxX6yo2

& ”[27;/«37") p[ 2k, T royos (E16)

The distribution of one component of velocity, say the X-component, is obtained by

integrating out the other two components of velocity (from -0 to o). Hence:

ony=n | exp| -2 )55; | (E17)

Since & is the same as v, and similar notations hold for the Y- and Z- components of

velocity, the probability distributions for equation (E17) are simply:
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.
m my.

v, )= exp| —
F0)= 2o ™\ 27

( 2
_ m _ mvy
7 (%)= VT \ 2kBT) EI8)
[ 2
m my,
P =\ | 2kBT)

The speed of a particle, v, is given by the following expression:

v +37+2 (E19)

If the velocity components are in the infinitesimal range J&x6ydz, then the

corresponding infinitesimal range of speed v is:
cone: 4 3 3 2
536 y8% = gﬂ[(v+ 5v)’ —v ] ~ 4728y (E20)

, neglecting higher order terms. Using equations (E19) and (E20), equation (E16) can

then be rewritten for the number of particles having speed between v and v+ dv as:

3
2 mv?
on, =4r il exp| — vy E21
"(2nk,,T) p[ 2kBT) (E21)

The average speed of particles is then:

© 2
Iexp[ s )v’5v= 8k, (E22)
0
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Note that even thought the average speed is not zero, the average values of the velocity
components are zero because the velocity components are integrated from -co to o, unlike
the speed which is always non-negative.

Similarly, the average kinetic energy of particles is:

1

Emvzé'nv 3 ,

KE.,, =° =27m| — LA P )

g, 0] - [27: kBT) oexp( 2% T v'ov 2kBT (E23)
0

Using the principle of equipartition of energy in statistical mechanics, the average kinetic

energy per axis is then:

Sm (v"z )avg. = _;-m (Vv"2 )avg. =5m (vzz )avg. = -12-kBT (E24)
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