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Abstract 

 
 

The time dependent surface evolution in abrasive jet micromachining (AJM) is described by a 

partial differential equation which is difficult to solve using analytical or traditional numerical techniques.  

These techniques can yield incorrect predicted profile evolution or fail altogether under certain 

conditions.  More recently developed particle tracking cellular automaton simulations can address some 

of these limitations but are difficult to implement and are computationally expensive.   

In this work, level set methods (LSM) were introduced to develop novel surface evolution models 

to predict resulting feature shapes in AJM.  Initially, a LSM-based numerical model was developed to 

predict the surface evolution of unmasked channels machined at normal and oblique jet impact angles 

(incidence), as well as masked micro-channels and micro-holes at normal incidence, in both brittle and 

ductile targets.   

This model was then extended to allow the prediction of: surface evolution of inclined masked 

micro-channels made using AJM at oblique incidence, where the developing profiles rapidly become 

multi-valued necessitating a more complex formulation; mask erosive wear by permitting surface 

evolution of both the mask and target micro-channels simultaneously at any jet incidence; and surface 

damage due to secondary particle strikes in brittle target micro-channels resulting from particle mask-to-

target and target-to-target ricochets at any jet incidence.  For all the models, a general ‘masking’ function 

 iii



was developed by applying previous concepts to model the adjustment to abrasive mass flux incident to 

the target or mask surfaces to reflect the range of particle sizes that are ‘visible’ to these surfaces.  The 

models were also optimized for computational efficiency using an adaptive Narrow Band LSM scheme.   

All models were experimentally verified and, where possible, compared against existing models. 

Generally, good predictive capabilities and improvements over previous attempts in terms of feature 

prediction or execution time, were observed.   

The proposed LSM-based models can be practical assistive tools during the micro-fabrication of 

complex MEMS and microfluidic devices using AJM.   
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
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
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Chapter 1 Introduction 
 

1.1 Motivation  

 

Abrasive jet micromachining (AJM) is a relatively novel top-down technique for the micro-

machining of features such as micro-channels, micro-holes, etc. in glass and polymers.  Pressurized air is 

mixed with small particles and passed through a small nozzle, to produce a jet of abrasive particles which 

is directed towards a target surface.  The resulting mechanical erosion of the target substrate can be 

controlled by applying patterned masks and by varying jet parameters such as the angle that the nozzle 

makes with the surface, the impact angle, α, also known as angle of incidence, the standoff distance, the 

nozzle to target distance, h (Figure 1.1), the particle mass flux, the mass of particles per unit area per unit 

time, the particle velocity, shape and size as well as the substrate properties [1].  

 AJM has been used to machine micro-components for use in the electronic, e.g. LCD or plasma 

flat panel displays, microfluidic, Micro Electro Mechanical Systems (MEMS), and opto-electronic 

industries [1-3].  For example, AJM can be used to micro-machine glass to produce three-dimensional 

(3D) suspended micro-cantilever beams for inertial sensors [4], microfluidic channels [5] and other 

features with aspect ratios (AR), feature depth-to-width ratios, as high as 7 [6].  AJM can also be used to 

machine polymers, such as poly-methyl-methacrylate (PMMA) and acrylonitrile-butadiene-styrene (ABS) 

[7], and with a recently developed cryogenic cooling technique, elastomers such as poly-dimethyl-

siloxane (PDMS) [8].  Polymers are of great interest for microfluidic and MEMS applications due to their 

low cost and the fact that they are available with a wide variety of properties [9].  AJM may also be 

suitable for the machining of micro-moulding dies for the mass production of micro-components [10].  

AJM can be an attractive micro-fabrication alternative to traditional wet etch technologies due to its 

relatively low capital cost, extremely high etch speed [11], and its ability to easily create multi-depth, 

anisotropic patterns and structures [6,12].   

The development of process models that are able to predict the surface evolution, i.e. the size and 

shape of the machined feature, in AJM as a function of the process parameters is of great interest.  

Analytical and semi-empirical/computational models have been developed to predict the evolution of 

masked and unmasked features of relatively low aspect ratios and relatively simple geometrical shape, 

e.g. micro-holes or channels machined at normal (α = 90°) jet incidence (Figure 1.1).  However, the 

majority of these models suffer from a number of limitations.  For instance, they cannot predict the 

evolution of two-dimensional (2D) features of more complex geometry, such as the asymmetric, i.e. 

machined at oblique jet incidence (α < 90°), masked micro-channels that are required to fabricate 

suspended micro-features, such as cantilever beams [4].  Furthermore, the majority of these models ignore 
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mask wear, particle mask-to-target ricochet and second strike, i.e. particle ricochet from the target with a 

subsequent second impact on the surface, effects, and do not consider curvature-based surface evolution.  

Finally, presently utilized computer models that account for some of these effects by tracking individual 

particles are relatively slow and cannot readily be made more computationally efficient.  It is the aim of 

the proposed research to develop more efficient and generally applicable computational models that are 

able to address these shortcomings so that they could be used in the industry to predict the surface 

evolution of complex features made using AJM under a wide variety of jet and impact conditions.   

 

 

 

Figure 1.1. Depiction of the AJM process. 
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1.2 Literature review: Abrasive jet micromachining modelling and level set methods  

 

 In this section, a critical literature review is presented to provide a succinct summary of existing 

AJM modelling efforts and to highlight areas that require further improvement.  In addition, Level set 

methods (LSM), a set of robust numerical techniques for studying evolving interfaces for a variety of 

different settings, will be discussed, and the reason behind choosing these techniques over other available 

computational approaches will be highlighted.     

 

1.2.1 Analytical and semi-empirical/computational AJM modelling  

 

Fundamental analytical and semi-empirical models 

 

 Analytical models for profile evolution in masked glass (brittle) substrates were first developed 

by ten Thije Boonkkamp-Jansen [1] and Slikkerveer and in’t Veld [13].  The models assume that the 

surface evolution depends on the relationship between the erosion rate, Er, the amount of substrate mass 

removed per mass of abrasive media used, the local impact angle, α, and the particle velocity.  The 

interdependency of these parameters generally is considered constant for a given ‘erosive system’, 

consisting of a given erosive particle size and shape distribution, and a given substrate [14].  For brittle 

erosion, which is characterized by deformation wear and fracture, the erosion rate can be assumed to 

increase with increasing impact angle, reaching its maximum at normal incidence [1,14,15] (Figure 1.2).  

In these early surface evolution models, the local surface evolution velocity as the surface erodes could 

thus be related to the local surface slope, the particle mass flux and the velocity.  The result was a partial 

differential (surface evolution) equation that could be used to predict the shape and size of AJM features 

as a function of time [1].  To model the decrease in particle flux near the mask edge due to particle-to-

mask collisions, a first order approximation, i.e. a linear decrease, was assumed [1].  Moreover, the 

models did not consider the effect of local surface curvature on surface evolution.  The models predicted 

the evolution of low aspect ratio features (< 0.5) fairly well, although the resulting channel and hole 

profiles had unrealistically sharp cusps at their centres that over-predicted the experimentally measured 

profile depths.  In addition, both models were developed for masked features only, using constant particle 

velocity and simplified linear particle flux distributions.  For unmasked features, the particle flux and 

spatial distributions play a fundamental role in feature evolution.  The effects of the particle size 

distribution which affect the mass flux near the mask edge were ignored by the model of [13], whereas 

the model of [1] ignored the effect of secondary particle impacts, which will be discussed in detail below.  

Both models ignored mask wear, which can also affect the resulting surface evolution of the target.   
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Figure 1.2. Schematic of typical brittle and ductile erosion rate, Er, as a function of α. 
 

 

A semi-empirical analytical surface evolution model for brittle materials, based on the model of 

ten Thije Boonkkamp-Jansen [1], which accounts for some of the above mentioned limitations, was 

recently developed by Ghobeity et al. [14].  The governing equation describing the surface evolution for a 

symmetric hole or channel cross-section was given by as [1,14] 

 

 0)1)(()( 2/2 vv  k
x

k
t zxxV

C
z 


 (1.1) 

 
where zt and zx are the partial derivatives of the profile depth z with respect to exposure time t and the 

coordinate x, defining the width dimension over which the profile is expected to develop.  (x) and V(x) 

are the particle mass flux and velocity distributions, respectively, C is constant for a given erosive system, 

kv is the velocity exponent and    is the density of the substrate.  For a scanning nozzle, the particle mass 

flux and velocity distributions in eq. (1.1) are also a function of time and scanning speed vt.  It was shown 

that the eroded profile generated by a scanning nozzle is very close to that generated across the diameter 

of a stationary nozzle, if the scanning speed is relatively high.  This effect was modelled by fitting an 

empirical exponential function for the net erosive power, the product of velocity to the power kv and the 

particle mass flux, in eq. (1.1) from the experimentally obtained first pass profile for both masked and 

unmasked channels.  This approach made the analysis less complicated but deviated from a physical 

model to a more empirical one.  In addition, the model could not be extended to the oblique incidence 

case for masked substrates, and it neglected secondary effects, such as the effects of mask wear and 

particle secondary strikes.  The predictions of the model compared much better to experimental profiles 

than the model of [1] for aspect ratios up to 0.5 but still exhibited the cusp at the centre of the channels. 
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The model of [14], developed for brittle erosive systems, was extended to ductile systems such as 

the AJM of masked and unmasked channels and holes in PMMA [2].  For ductile erosion, which is 

characterized by cutting wear, the erosion rate is highest at oblique impact angles [2,15] (Figure 1.2).  

Ductile erosion rate and system depends on the same parameters and consists of the same components, 

respectively, as in the brittle case discussed above.  A semi-empirical function, g(α), describing the 

dependence of erosion rate on the angle of incidence for ductile materials was incrorporated into the 

equation of motion in [2], which can be obtained by multiplying the second term on the left-hand side of 

eq. (1.1) by g(α) .  The model predicted the centreline depth up to an aspect ratio of 0.6 for 

masked channels and 0.25 for unmasked channels, but it successively over-predicted the channel width 

with each pass [2].  The model had the same limitations as that of [14].   

2/)1(2 v)1(  k
xz

The models of [2] and [14] were improved by adding a smoothing parameter into the governing 

equation defined by eq. (1.1), equivalent to a viscosity term [16], to regulate the predicted speed of 

surface evolution in regions containing elevated curvature for masked and unmasked holes in glass [17]. 

This resulted in a significant improvement in feature shape prediction by smoothing out sharp corners up 

to an aspect ratio of 1 [17].  The smoothing term is a free parameter which is used in numerical models to 

stabilize the convergence of iterative solutions of partial differential equations [16].  In a related work, 

Moktadir et al. [18] derived a continuum equation based on the change of surface free energy upon 

particle impact that included this effect of curvature smoothing in masked glass substrates.  However, the 

model could only be used to predict the qualitative shape of machined features, but not the surface 

evolution as a function of time.   

 Ghobeity et al. [19] further extended the models of [2], [14] and [17] by developing a relatively 

simple analytical model to estimate the spatial distribution of erosive power, or erosive efficacy, across 

the mask opening in the machining of micro-holes and micro-channels in glass and PMMA.  The model 

allows the erosive efficacy close to the mask edge to be obtained as a function of the measured normal 

and log-normal particle size distributions and the size of the mask opening for normal incidence cases.  

The results showed good agreement with experimental channels in glass up to an aspect ratio of 1 and in 

PMMA up to an aspect ratio of 0.2.  The poorer fits for higher aspect ratios were likely caused by the 

inability of the model to account for the particle second strike effect present during machining of glass 

channels and particle embedding present during machining of PMMA channels [2,8,17].  The model is 

quite powerful as it allows the surface evolution of micro-features to be predicted without using semi-

empirical or computer particle tracking techniques.  However, it was only derived for normal incidence 

cases and did not account for mask wear.   
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Analytical and semi-computational models and second strike, mask edge and spatial hindering 
effects  
 

 Wensink et al. [20] and Wensink and Elwenspoek [21] showed that different shapes develop as 

the erosion profile is machined in masked (brittle) glass channels with aspect ratios up to 2.5.  Firstly, a 

bowl shape develops into a ‘V’ shape, after which necking occurs, which results in a wider pocket, or an 

‘udder shape’ near the bottom of the profile for AR > 1 [13,21], as shown in Figure 1.3.  They explained 

that the first two shapes originated from a ‘blast lag’ effect which caused narrower features to travel less 

deep when compared to wider ones.  They hypothesized that this resulted from the characteristics of 

brittle erosion and from the more rapid formation of sloped sidewalls, and hence the ‘V’ shape, in 

narrower features due to the inability for particles to impact the target near the mask edge walls, both of 

which decrease the erosion rate.  However, this could also result from the fact that as the profile deepens, 

the ‘neck’ prevents larger particles from reaching the bottom of the narrowing profile and collide with the 

side walls instead (spatial hindering effects) [13,22,23].  In addition, the udder shape results from the fact 

that as the profile sidewalls become highly sloped, particle ricochets from the sidewalls and consequent 

second strikes [13,21-24] at the centre of the target are made possible, as shown in Figure 1.3.   

 

 

Figure 1.3. Depiction of the second strike, mask edge and spatial hindering effects in glass at normal 
incidence ( = 90°).    
 

 

This so called ‘second strike’ effect was initially modelled by Slikkerveer and in’t Veld [13] and 

implemented into their analytical surface evolution model which was described above in Fundamental 

analytical and semi-empirical models section.  This was done by using ray tracing to calculate 

approximate particle trajectories, thus estimating the loss of energy and the rebounding angle of initially 
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striking particles.  They found that the model was able to predict the udder shape, but it significantly over-

predicted the measured profile depths and the resulting profiles had unrealistically sharp cusps at their 

centres, as mentioned before.  The poor fits were attributed to spatial hindering effects originating from 

the failure of larger particles to reach the bottom of narrowing deep profiles [13,22,23], as depicted in 

Figure 1.3.  The model provided clear evidence of a second strike effect causing the udder shape.  

However, in addition to not modelling the particle spatial hindering effects, it did not account for the 

mask-to-target particle ricochet effect, i.e. mask edge effect, shown in Figure 1.3.    

More recently, Ghobeity et al. [22] developed a computer simulation which also utilized 

numerical ray tracing to model second strike, and incorporated it into an analytical surface evolution 

model.  The model incorporated an ‘effective particle flux’, extracted from the computer simulation, 

accounting for the mask edge and second strike effects, and was able to fairly accurately predict the centre 

depth of the resulting channel profiles.  However, although the results showed significant improvements 

over the model of [13], the model could not predict the udder shape for higher AR, and the unrealistic 

sharp cusps remained.  This was likely because the analytical model did not consider curvature 

smoothing, spatial hindering effects, and it ignored the effects of mask wear.   

   

Semi-empirical model and mask erosive wear  

 

Several investigators have studied the solid particle erosion of masks used in AJM.  For example, 

Wensink et al. [25] measured the erosion rate of elastic negative resist foil, polyimide, steel and 

electroplated copper masks under typical AJM conditions, and found that the metallic masks eroded at a 

lower rate than the polymeric ones.  The electroplated copper mask, which was quite thin (~50 m), was 

found to provide both good wear resistance and feature edge definition down to a minimum feature size 

of < 50 m in glass.  For machining deeper features, the effect of mask wear would have likely been 

much more pronounced.  Achtsnick et al. [26] reached similar conclusions by studying the erosive 

characteristics of 8 metallic, elastomeric and photo-resistive masks.  They also found that although 

elastomeric masks can be used to produce relatively small features (~75 m) in glass, they are relatively 

thin (50~100 m) and prone to elastic deformation, and thus they can only be used to produce a limited 

range of AR.  High AR (>2) features can be achieved through the use of thicker and inherently tougher 

steel shadow masks [14]; however, they are prone to under-etching, caused by particles entering between 

the substrate and the mask [26].  More recently, the use of a SU8/PDMS masking technique [27,28] has 

led to an improvement in attainable AR (~2) and minimum feature size (~30 m) in glass targets.  

However, these masks are also quite thin (~50 m), are difficult to apply and involve a significant capital 

investment, when compared to standard masking techniques.  
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In spite of its significant effect on the resolution of features machined using AJM, the modelling 

of mask wear has thus far been very limited.  Although Slikkerveer et al. [29] derived a semi-empirical 

model that allowed the worn shape of masks made from three elastomeric materials to be predicted, the 

model was applied to the mask alone, independent of the target erosion, and thus only qualitative 

conclusions of the influence that mask wear had on surface evolution of the target could be drawn.   

 

Analytical and semi-empirical models and oblique incidence  

 

 All of the above mentioned models have been derived for normal incidence cases only.  Due to its 

complexity, the oblique erosion process in AJM has not been studied as extensively.  Belloy et al. [30] 

used AJM to machine low AR (< 0.33) masked glass holes using aluminum oxide particles at oblique 

angles of attack.  They extrapolated curves from experimental profiles in at attempt to quantify the under-

etching effect caused by the impact of secondary particles as function of the angle of incidence and 

etching time.  These curves were then used to formulate a simple coordinate transformation, i.e. a 

correction of each point, from the normal incidence case to oblique case that would be used to match the 

experimental profiles in the best way possible in order to try to quantify the under-etching effect.  This 

semi-empirical model was not a physical predictor of the oblique erosion process, i.e. it did not model the 

surface evolution, and the fits to experimental profiles were poor.  Park et al. [24] also studied the effect 

of under-etching in masked glass samples machined at oblique incidence, and schematically showed that 

mask wear and second strike effects discussed above can have a significant effect on the resulting shape 

of the machined features.  More recently, Getu et al. [31] extended the work of [14] by studying oblique 

erosion in PMMA as well as in polymers such as LUCITE, an acrylic, and LEXAN, a polycarbonate, in 

masked and unmasked holes and channels.  The analytical model used the technique of [14] by fitting the 

erosive power distribution across the mask opening with a polynomial function using the first pass 

experimental profile.  The work only considered oblique erosion by varying the angle of incidence along 

the nozzle centreline and parallel to the scanning direction plane, which would result in symmetrical as 

opposed to asymmetrical cross-sectional profiles.  Asymmetrical profiles are only obtained by varying the 

angle of incidence in the plane of the channel cross-section and perpendicular to the scanning direction 

plane.  The authors were able to quantify the effect of particle embedding that is present in micro-

machining of polymers under certain conditions and found a relation for a net embedding energy flux as a 

function of scanning direction distance and angle of incidence.  However, the model had the same 

limitations as those in [14].   

All of the above mentioned analytical and semi-empirical/computational models cannot be used 

to predict the evolution of features which have two or more depth values at a given profile location along 
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the width.  Such 2D and 3D multi-valued profiles develop, for example, in the AJM of masked micro-

channels and holes at oblique jet incidence, which are of interest in the AJM of suspended components, 

such as micro cantilever beams [4].  More sophisticated techniques must be employed to solve these 

multi-valued partial differential equations.  These will be discussed in the following sections.       

 

1.2.2  Traditional interface tracking techniques and cell-based methods 

 

Traditional interface tracking techniques 

 

 The marker/string method and the volume-of-fluid technique are commonly used to numerically 

track interfaces [16].  The marker/string method uses a Lagrangian approach where the boundary of the 

interface, i.e. the evolving surface, is discretely parameterized.  Surfaces are computed via the use of 

marker particles in 2D and via nodal triangularization of the interfaces in 3D.  The locations of the nodes 

are updated by obtaining data about the normals and curvature from the representation of the markers.  

This method can be quite accurate; however, it gives inaccurate solutions when corners and cusps develop 

in the evolving front and has difficulty in handling complex interface changes.  In addition, although the 

method has been applied to track interfaces in 3D, its extension from 2D to 3D is difficult [16].   

The volume-of-fluid technique utilizes a computational grid which is divided into cells, each of 

which contains ‘volume fractions’ in the range from 0 to 1, which signify the fraction of each cell 

containing material within the interface [16].  The front is propagated forward in time under a ‘transport 

velocity’ in each coordinate direction by reconstructing the front based on these volume fractions.  This 

method can handle interface changes with ease and can be extended through adaptive methods to solve 

3D problems.  However, precise calculation of geometric properties such as the surface normal and 

curvature can be difficult [16].   

 

Cell-based methods 

 

More recently, a 3D cellular automaton (CA), cell-based computational method used to model 

AJM has been applied to obtain the shape of a glass channel along with the encompassing polymeric 

mask [32].  The CA algorithm was composed of combinations of two orthogonal planes of 2D cells along 

with a solid particle erosion model.  The predicted eroded channel and worn mask shapes using both low 

and high resistant masks showed good qualitative agreement with experiments but no quantitative 

comparisons were made.  In addition, the simulation did not account for a non-uniformly distributed 

particle flux, oblique incidence, particle scattering and second strike effects, as well as the effect of 

 9



interference between incident and rebounding particles which becomes important when considering high 

flux cases [33-35].  A computer simulation for modelling surface evolution in AJM, which accounts for 

some of these limitations, was recently developed by Shafiei et al. [36].  The simulation can predict the 

size and shape of resulting unmasked hole and channel profiles as a function of all the process parameters.  

Target propagation was obtained by discretizing the surface to form a 3D grid of cubic cells, each of 

which was assigned a ‘damage limit’ based on the number of particle impacts it experienced.  The 

simulation can be adopted for any substrate and can simulate high flux cases by tracking individual 

particles and implementing particle-particle and particle-surface collision detection and kinematics.  The 

simulation showed excellent agreement between predicted unmasked profile shapes and experiments at 

low fluxes and fair agreement at high fluxes, i.e. it overestimated the feature depths.   

Most recently, Ciampini and Papini [23] developed a CA-based model for the prediction of the 

AJM of masked features which included algorithms for launching, tracking, and collision detection of 

non-uniform particle size distributions.  Their model implemented a better algorithm for surface damage 

distribution than that used in [36], resulting in very good agreement with measured profiles for low and 

high aspect glass micro-channels and micro-holes.  It was the first model to account for all of the effects 

of second strike, mask edge and spatial hindering described in Section 1.2.1.  However, although the CA 

method is quite powerful since it can emulate real-time conditions, it is very complex and difficult to 

implement in terms of coding, and is thus less accessible to the machining community.  Moreover, the 

finite size of the cells in this method makes it difficult to calculate geometric quantities such as the 

surface normal and curvature at sharp corners and complex geometrical shapes.  Most importantly, to be 

effective, this method must incorporate algorithms to track many particles simultaneously [23], making it 

computationally very expensive, especially at high fluxes and in simulating large masked feature depths.  

On a standard PC, highly optimized CA/particle tracking simulations may take more than 15 hours to 

complete, for even low flux cases [23].  In addition to all of this, none of the above CA models considered 

surface evolution of masked features that result from AJM at oblique incidence.   

 

1.2.3 Level set methods and their advantages over other computational techniques  

 

Level set methods  

 

Level set methods (LSM), developed by Sethian and Osher [16,37], are powerful computational 

techniques for analyzing and obtaining the evolution of dynamic fronts for a multitude of different 

situations.  LSM numerically estimate the governing equations of motion for a moving front by 

transforming them into a distinctive solution of an initial value partial differential equation (PDE).  LSM 
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are based on a Hamilton-Jacobi type equation for the level set function, and utilize methods formed for 

solving hyperbolic PDEs which rely on the connection between front propagation and hyperbolic 

conservation laws [16].  Fundamentally, LSM abandon the Lagrangian (local) geometric perspective for 

solving interface problems and move towards the Eulerian (global) perspective.  They rely on viscosity 

solutions for fitting PDEs to update the location of the interface, using the velocity of the front [16,37].   

 LSM for evolving interfaces can be particularly useful for profiles that can: develop sharp corners 

and cusps where singularities can form, undergo major changes in topology, e.g. where there is a 

responsive dependence on the direction of the normal to the front and on the surface curvature or when 

surfaces merge or break apart, undergo sensitive variations in the speed of propagation, and experience 

complex motion in 3D.  Hence, the method is versatile and stable for the formulation of arbitrary 

geometries.  LSM are utilized in computer vision, material science, image processing, computational fluid 

dynamics, micro-fabrication, i.e. etching, deposition and lithography, and many other fields.  The use of 

LSM for simulating the evolution of machined profiles in AJM was first suggested by ten Thije 

Boonkkamp [1], but no work on LSM implementation in AJM existed in the literature before the work of 

the present dissertation.  With respect to LSM implementation in the different research fields, the major 

difference is only the definition of the velocity of surface propagation.  As a result, LSM has become a 

general computational method for solving arbitrary interface propagation problems, and hence it can be 

extended to AJM [16,37].   

The main principle behind LSM is to represent the location of a surface at a particular time t as a 

zero level set, of a particular implicit function ),( tx


 , the level set function, where the initial surface is 

defined by }0)0,(|{  xx


.  The variable x


can represent all spatial variables, i.e. x, y and z, including the 

location of the surface, which is embedded in the level set function, and the arrow head indicates a vector 

quantity.  Thus, the desired surface location is implicitly defined by ),( tx


 , which has one more 

dimension than the surface.  Surface movement with time results from, for instance, a driving physical 

force or flux, whose effect is defined by a local surface normal velocity function, which depends on the 

physics of the particular problem.  The local normal velocity of any point on the surface, ),( txF


, depends 

on both spatial and time variables, and is assumed to be valid for the entire computational domain, not 

just on the surface.  As ),t(x




),( tx

 evolves in time and the surface propagates, for t > 0, it becomes the zero 

level set of 


 , and it can be defined as a set of points }0) ,(|{  txx n 
 (see Figure 1.4).   

 

 11



 

Figure 1.4. Depiction of the level set method (LSM).  In LSM, a level set function, ),( tx



)

, evolves in 

time and the surface location and shape can be determined by the zero level set, ,( tx


  = 0 (in the figure, 

the intersection of ),( tx


 and the 2D plane).  The original image taken from [38] has been modified.   

 

 

The level set equation is defined as [16,37] 

 

         0||),( 



txF
t


                      (1.2) 

 

Since physical models derive the velocity function only at the zero level set, i.e. the surface is located 

where ),( tx


 = 0, it has to be extrapolated appropriately at grid points that are not adjacent to the zero 

level set.  The level set equation can then be iteratively solved to obtain surface profiles for t > 0.   

 Numerically, ),( tx


  is represented by its values on the grid nodes, and the computational 

domain is approximated by a spatial grid.  LSM uses finite differences, FDs, to approximate the solution 
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to ),( tx


 and vital geometric properties, such as the surface normal and curvature.  It uses upwind FD 

schemes to ensure that FD approximations follow the exact-solution PDE theory so that numerical 

solutions can converge correctly [16,37].  In addition, LSM can be made more computationally efficient 

through adaptive strategies [16].  These aspects will be explored in more detail in later chapters.   

 

Advantages over other computational techniques 

 

LSM can overcome all the limitations of traditional interface tracking techniques discussed in 

Section 1.2.2 since it can handle singularities and complex changes in topology.  Intrinsic geometric 

quantities such as the surface normal or curvature can be easily obtained from the level set function and 

LSM can be readily extended from 2D to 3D by simply extending the size of arrays and gradient 

operators.  Moreover, LSM can overcome all the limitations of cell-based methods since they are less 

complex and much easier to implement and are more computationally efficient.  In addition, geometric 

quantities can be easily calculated as mentioned above.  As a result, LSM were chosen over cell-based 

methods and traditional interface tracking techniques to model surface evolution in AJM. 
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1.3 Objectives, significance and organization  

 

The proposed dissertation will utilize LSM to develop surface evolution models in AJM based on 

less simplifying assumptions than previous analytical and semi-empirical/computational models discussed 

in Section 1.2.1.  These models would also address the limitations of previous computational models 

discussed in Section 1.2.2.  Specifically, the main objective of the research is to develop 2D LSM models, 

which are relatively easy to implement as well as computationally efficient, for the surface evolution of 

both brittle and ductile materials during the AJM process.  The models would be able to predict 2D 

features of complex geometry, as well as account for mask wear [24,29,32] and particle behaviour near 

the mask edge and the second strike effect [13,21-24].  The models will be verified by comparison with 

experimentally determined AJM feature profiles.  Ultimately, such models could be used to perform 

parametric studies, on how the process parameters such as the standoff distance, angle of incidence, 

scanning speed, width and height of the mask, etc. affect the resulting feature shapes.  This would allow 

the optimization of AJM operations.  The main objective will be accomplished by achieving the following 

secondary objectives: 

 

1.   The development of a 2D LSM numerical model for the AJM of masked and unmasked holes and 

channels in glass (brittle material) and polymethylmethacrylate (PMMA) (ductile material) at 

normal incidence (α = 90°) and unmasked channels in glass and PMMA at oblique incidence (α < 

90°).  For the masked cases, only ARs of up to approximately 1 will be modelled in this 

preliminary step.  These situations, which do not include secondary effects such as mask wear 

[24,29,32] and particle second strike [13,21-24], have already been modelled analytically in, e.g. 

[2,14,17], and thus can serve as a foundation for achieving the main objective and as a means to 

evaluate the level set methodology, which has not been previously used in modelling the AJM 

process.  This will be considered in Chapter 2.   

2.  Extension of the LSM model described in objective 1 for the AJM of masked channels in glass 

and PMMA at normal incidence to oblique incidence.  This model will demonstrate the power of 

LSM for solving the multi-valued PDEs that result from oblique incidence AJM of masked 

features, which has not been previously considered.  This step will also include optimization of 

the LSM model to increase computational efficiency by utilizing the Narrow Band (NB) LSM 

[16].  The NB LSM [16] is an adaptive scheme which is based on the notion that calculations 

need not be performed for points far away from the interface, and hence only for points in its 

vicinity; hence, up to an order of magnitude decrease in execution time can result [16].  This will 

demonstrate that the LSM approach is more efficient than other computational approaches in 
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solving the AJM problem, which would also make it possible to perform parametric studies with 

more ease.  This will be considered in Chapter 3.   

3.  Extension of the LSM models described in objectives 1 and 2 for the AJM of masked channels in 

glass and PMMA at any incidence to include mask erosive wear [24,29,32], by modelling the 

surface as a composite material, where portions of the surface represented by the mask have 

different material properties than portions represented by the target, and hence erode differently.  

This approach has never been used in modelling the AJM process, and the effect of mask erosive 

wear on the development of target features has only been studied at normal incidence [29,32].  

This will be considered in Chapter 4.  

4.  Extension of the LSM models described in objectives 1 to 3 for the AJM of masked channels in 

glass at any incidence to features having an AR > 1, when the effects of second strike [13,21-24] 

must be included.  These effects will be included by extending the Slikkerveer and in’t Veld [13] 

model of second strike from normal to oblique incidence, which has not been previously 

considered.  It will involve the use of ray-tracing and expressions for reduced rebound velocity 

and rebound angle, based on the point of impact.  This will be considered in Chapter 5.   
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Chapter 2 Level Set Methods for the Modelling of Surface Evolution in 
Abrasive Jet Micromachining: Foundational Model 

 

2.1 Motivation 

 

In this chapter, a new methodology for the prediction of surface evolution in AJM based on LSM 

[16,37] is introduced.   It has the potential to address shortcomings of existing analytical and computer 

models, as explained in Chapter 1, so that it can be used to predict the surface evolution of complex 

multi-valued AJM features using a wide variety of jet and impact conditions.  To demonstrate its 

feasibility, the methodology is used to predict the surface evolution of unmasked micro-channels 

machined at normal and oblique jet incidence, and masked micro-channels and micro-holes at normal 

incidence, in both glass and PMMA, assuming conditions in which secondary effects such as mask wear 

[24,29,32] and second strike [13,21-24] are neglected.  The level set predicted eroded profiles are 

compared to those experimentally obtained, as well as to those predicted by existing analytical and 

computer models.  The advantages of the current level set methodology over previous modelling efforts 

are discussed.  The majority of the material in this chapter has been published in [39].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 16



2.2 AJM experiments: Unmasked and masked channels 

 

All AJM experiments were conducted using a round 0.76 mm inner diameter nozzle fitted to a 

commercial microblaster (MB 1005 Microblaster, Comco Inc., Burbank, CA, USA) into which a mixing 

device was incorporated to prevent particle bed compaction [2].  The blasting pressure was held constant 

at 200 kPa, and the maximum jet centre velocity of the 25 m (nominal diameter) alumina powder at the 

utilized nozzle to target standoff distance, h = 20 mm (Figure 2.1), was approximately 162 m s-1.  The 25 

m aluminum oxide particles are the most widely used abrasives because of their excellent hardness and 

angular shape, which promotes high erosion rates [2,14].    

 

 

Figure 2.1. Schematic of AJM channel blasting apparatus for the experiments under consideration. 

 

Unmasked and masked channels were machined in 5 mm thick Borofloat (Schott North America 

Inc., Elmsford, NY, USA) glass plates (density,    = 2200 kg m-3), and 1.5 mm thick PMMA ( = 1190 
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kg m-3) sheets (Piedmont Plastics Inc., Brampton, ON, Canada).  Glass is the most common material 

utilized in microfluidics and MEMS applications [6] due to its hardness, transparency and ease of 

machinability.  In AJM, it represents a brittle erosive system having a maximum erosion rate at normal 

incidence (α = 90°), when the nozzle is perpendicular to the surface (Figure 2.1) [24].  Its erosive 

behaviour is similar to that of silicon.  PMMA is one of the polymeric materials commonly used in 

microfluidics and MEMS applications [9].  In AJM, it represents a  ductile erosive system in which the 

erosion rate increases with the impact angle to a maximum value of approximately 15–40°, after which it 

begins to rapidly decrease [2,24] (Figure 1.2).  The AJM process models developed for these two 

materials are thus applicable to a wider class of brittle and ductile erosive systems by simply specifying 

different erosive system parameters.   

The target samples were mounted on parallel screw mounts and clamped to a programmable 

computer controlled linear stage having an accuracy of 0.5 m (Aerotech, Pittsburgh, PA, USA) which 

moved relative to the stationary nozzle.  Scanning speeds of 1 mm s-1 and 0.5 mm s-1 were used in 

machining the glass and PMMA channels, respectively, over a 15 mm length.  The utilized scanning 

speed ensured that particle embedding [2,8,17,31] and temperature, i.e. target surface heating effects in 

PMMA were minimized, as in [2].  Nevertheless, even if surface heating had existed, its effect would be 

accounted for in the surface evolution because, as explained in the next section, the fundamental erosion 

rate used as an input in the surface evolution model is obtained under the same conditions as the 

machining.  In addition, these scanning speeds ensured that appreciable slopes along the channel length 

are avoided in both materials.  For slow scanning speeds and high erosion rates, i.e. higher mass fluxes, 

an appreciable slope in the scan direction at the leading edge of the jet can develop.  This may affect the 

local erosion conditions at a particular channel cross-section, and thus the effective erosion rate may 

change [14].  This is important when modelling a scanning nozzle in 2D, as in the present case.  As a 

result, the scanning speeds were balanced to ensure this was avoided but at the same time guaranteed an 

efficient erosion rate.  All unmasked channels were machined at incidence angles of 90°, 60° and 30° and 

masked channels at incidence angles of 90°.  The average abrasive particle mass flow rate was measured 

3 times before and after each channel was machined, by weighing with a micro mass balance of accuracy 

= 0.01 mg the amount of powder blasted for a minute into a special container that was covered with filter 

material which prevented the particles escaping, while also preventing back pressure.  The measured mass 

flow rate, i.e. mass flux, range of 2.16-5.38 g min-1 (see Appendix A, Tables A-1-A-8) was sufficiently 

low to ensure that particles rebounding from the surface did not interfere with incoming particles [33-35].   

The mask was made by securely taping two parallel tempered steel (Starret Co., Athol, MA, 

USA) feeler gages to the workpiece a known distance apart, aligned with a reference gage.  The mask 

width, Wm, and height, Hm (Figure 2.1), were approximately 400 m and 100 m, respectively.  To 
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ensure that the mask adhered to the surface during blasting, an industrial magnet spanning the length of 

the channel was attached and secured below the 1.5 mm thick PMMA workpiece, and a rare-earth magnet 

was attached below the 5 mm thick glass workpiece.   

The cross-sectional profiles of the machined channels were measured with a non-contact optical 

profilometer (Nanovea ST400, Micro Photonics Inc, Allentown, PA, USA), which was accurate to within 

a depth of 10 nm.  Between 200-850 and 350-450 data points were obtained over scanning width ranges 

of 6-10.5 mm and 0.65-0.725 mm for all the unmasked and masked channel profiles, respectively.   
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2.3 Level set modelling of surface evolution in AJM  

 

2.3.1 Transformation of coordinates  

 

In order to model features machined with the jet at oblique incidence as shown in Figures 2.1 and 

2.2, the coordinate system used to describe previous analytical 1D models [1,2,14] of surface evolution 

described in Section 1.2.1, developed for normal incidence, was modified.  The original xo – zo axis was 

moved up to the nozzle and rotated about the y-axis by the angle  (Figure 2.2), to define a new x’- z’ 

axis.  To be consistent with the LSM formulation, using geometry, the local x’ and z’ coordinates can be 

expressed in terms of the global x and z coordinates as follows 

 

 

off

sincos

cossin

xxx''

zx''z'

zx''x'








 (2.1) 

 

where xoff is the offset distance between the global and nozzle axes (Figure 2.2), necessary to ensure 

generality for both oblique and normal incidence.  For the unmasked case, xoff = htan, where  is the 

maximum jet spread angle (Figure 2.1) [34].  In the equations that follow, x” will be used instead of x – 

xoff for brevity.   
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Figure 2.2. Schematic of coordinates used for unmasked channel and/or hole cross-sectional profiles. 

 

2.3.2 Derivation of local normal velocity of evolving surface for unmasked channels and 
holes 

 

For the AJM of brittle targets such as glass, the velocity of the surface in the direction of the local 

normal required for the solution of eq. (1.2) can be expressed as [1] 

 

            )),,,((
),,,(

),,,( br,
b ntzyx

tzyxE
tzyxF


 


                                    (2.2) 

 

and for ductile targets, such as PMMA, as [2] 

 

                ),,,(
),,,(

),,,( dr,
d tzyx

tzyxE
tzyxF 


                                         (2.3) 

 

where (x,y,z,t) is the particle mass flux, the mass of particles per unit time arriving to a unit surface area 

at a given spatial location on the surface, n


is the surface normal (Figure 2.2), and Er(x,y,z,t) is the erosion 

rate, the mass of target material removed per mass of incident particles.  The subscripts ‘b’ and ‘d’ stand 

for ‘brittle’ and ‘ductile’, respectively.        
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The brittle erosion rate can be expressed as [1,14] 

 

        v)),,,((),,,(br,
kntzyxVCtzyxE


                                         (2.4) 

 

where V(x,y,z,t) is the distribution of particle velocities incident to the surface, kv  is a velocity exponent 

and C is an empirical erosion constant which can be obtained by fitting the modelled erosive efficacy (see 

Section 2.4.1.1) to the experimentally obtained first pass profile [14,36].  C and kv generally depend on 

particle and target hardness and toughness, as well as particle size, type and velocity.  kv can be obtained 

by performing erosion test at various angles of attack and curve fitting the results [14].  

For ductile erosion, a more complex relationship between erosion rate and angle of attack exists.  

Following Getu et al. [2], the angular dependence of erosion due to Oka et al. [40] can be adopted for the 

AJM of many polymers such as PMMA, and Er in these cases can be expressed as   
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       (2.5) 

 

where Hv (GPa), the initial Vickers target hardness, and the constants n1 and n2 are determined using a 

microhardness tester and experiments similar to that when obtaining kv, respectively [2,40].  The last two 

terms in the brackets in the RHS of eq. (2.5) are the surface normal and tangential components of the 

erosion rate [2,40].     

 For the AJM of holes machined at  = 90° using a round nozzle, V in eqs. (2.4) and (2.5) is 

independent of t and y = y’ = 0 due to symmetry.  For the blasting conditions used in the present work, the 

measured velocity distribution across the jet [14] can be expressed as      
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where Vo is the maximum jet centre velocity.   

For the AJM of channels at any , the target is scanned relative to the stationary round nozzle at a 

scan speed of vt in the positive y direction (Figure 2.1), where y = y’ = (rs - vtt), and rs = htan, which is 

the radius of the impact area of the jet on the unmasked target surface measured in the y - z plane [14] 

(Figure 2.1).  In one pass, each channel cross-section in the x - z plane is exposed to a jet of particles for a 
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total time of 2rs/vt [14].  Using the coordinate system of eq. (2.1), the velocity distribution for the 

scanning target in eqs. (2.4) and (2.5) can be expressed as      
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The particle mass flux  in eqs. (2.2) and (2.3) for holes machined at  = 90° under the conditions 

described in Section 2.2 can be obtained as [14]  
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where M is the particle mass flow rate through the nozzle and   is the ‘focus coefficient’ which 

describes the spread of the abrasive jet.  Generally,  depends on the internal nozzle roughness, particle 

velocity and type [41] and can be obtained through mass measurements at different radial locations of the 

jet and curve fitting the results [14,42].  A higher  implies a more focused jet [14,41,42].   

 For channels machined at any  with a scan speed of vt, the particle mass flux in eqs. (2.2) and 

(2.3) can be expressed in the coordinates of eq. (2.1) as  
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2.3.3  Derivation of local normal velocity of evolving surface for masked holes and 
channels  

 

For masked features, particle mass flux passing through the mask and striking the surface 

decreases as the mask edge is approached.  This occurs because only smallest incoming particles can 

avoid colliding with the mask edge as it is approached, as depicted in Figure 2.3.  As a result, the 

proportion of the total particle size distribution that can pass through the mask decreases as the mask edge 

is approached.  The analytical model of [19] for  = 90° describes this effect which depends on the 

particle size distribution and the size of the mask opening.  According to the model, the proportion of the 

 23



total incoming particle mass, M, that passes through the mask opening and arrives to the surface at a given 

location, can be expressed as [19]  
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where (rp)drp is the proportion of particles having a radius, rp, between rp and rp + drp, and Wm is the 

width of the mask opening (Figure 2.1).  x’’ is defined in a similar manner as for unmasked cases (eq. 

(2.1)), where xoff = Wm/2 (Figure 2.1) so that x’’ = 0 corresponds to the centre of the mask opening.  For 

the 25 m alumina used in the experiments of Section 2.2, the size distribution was measured as log-

normal [19], 
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where l and l are the log-normal mean and standard deviation of rp.  This model was applied to masked 

holes and channels at normal incidence by multiplying the mass flux, eqs. (2.8) or (2.9), by eq. (2.10).  
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Figure 2.3. Depiction of the decrease in mass flux incident to the target as the mask edge is approached.  
In the figure, a small particle arriving to the target at a distance x1’’ from the centre of the mask opening 
will pass through the mask while a larger particle will collide with the mask edge.  As the mask edge is 
approached for x’’ > x1’’, e.g. when x’’ = x2’’, only successively smaller particles will arrive to the target 
without colliding with the mask edge.  Due to symmetry, only the right mask edge is shown.    
 
 

2.3.4 Implementation of the LSM model 

 

2.3.4.1 Finite differences and geometric variables   

 

LSM use finite differences (FDs) to approximate the solution to ),( tx


 , the surface normals, and 

the curvature.  Most commonly, first order FDs are used to approximate first and second partial 

derivatives, 
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where g denotes the x or z spatial variable for the symmetric 2D problems considered in the present work.  

The superscripts ‘+’, ‘-’ and ‘c’ denote forward, backward and central FD, respectively, and l denotes the 

appropriate grid index (i, k) of the spatial direction (x, z) of the partial derivative.  First order 

approximations are much simpler to implement and require less stringent boundary conditions than higher 
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order FDs.  The loss of accuracy can be compensated for by increasing the grid resolution.  Using FDs, 

the gradient of ),( tx


 can be defined by [16,37] 
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From this, the surface normal, n


, and curvature, K, can be obtained as [16,37] 
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The motion of the surface can be regulated by multiplying F(x,z,t) in eqs. (2.2) or (2.3) by (1- K), where 

 is a free parameter that regulates, i.e. smoothes out, the predicted speed of surface evolution in regions 

containing elevated curvature [16,17,37].   

 

2.3.4.2 LSM for non-convex Hamiltonians   

 

Equation (1.2) relates the change in time to the gradient of (x,z,t) using F(x,z,t) and can be 

recast to Hamilton-Jacobi form, and generalized to include curvature, as [16,37] 
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where the Hamiltonian, H, is defined by  
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Here, use of the term ‘Hamiltonian’ refers to the Hamiltonian function and not an operator.  Combining 

eqs. (2.2)-(2.5), (2.10), (2.14), and (2.16), and expressing the result in the x’’ and z components, the 

Hamiltonians for brittle erosive (glass) and ductile erosive (PMMA) targets, respectively, can be 

expressed as  
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and 
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with  
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where  is the angle between the surface normal n


and the particle impact velocity vector V (Figure 2.2), 

and V and  are solved with eqs. (2.6) and (2.8) for a stationary target, and eqs. (2.7) and (2.9) for a 

scanning target, respectively.   



To determine whether H is convex, and if F(x,z,t) is smooth for all time and position, the 

following condition must be fulfilled [16]: 
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For more than one dimension, the Jacobian matrix must be evaluated.  For the present cases of eqs. (2.17) 

and (2.18), the inequality in eq. (2.20) is not satisfied, and the H is said to be non-convex.  This implies 

that the F(x,z,t) depends on (x,z,t) and H is non-smooth or singular [16,37].  As a result, a special class 

of numerical schemes for dealing with these more complex non-convex cases is used.  Equation (2.15) 

must be redefined as follows [16,37] 
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where Ĥ is the numerical Hamiltonian [16], 
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H is evaluated using g
c, i.e. central FDs, and g are bounds of the partial derivative of H with respect to 

g [16], 
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where the maximum of is evaluated using all the combinations of 
g

H g
+ and g

-, and the superscript 

‘g’ differentiates between the spatial variables.  These terms are second-order linear smoothing viscosity 

terms which act as second derivatives.  If they are too large, the results will yield unrealistic smoothing of 

sharp corners; if they are too small, numerical instabilities will result [37].  All the quantities on the RHS 

of eq. (2.21) are evaluated using g
c, since these terms are parabolic contributions to the equation of 

motion and information propagates in both directions [16].  The temporal partial derivative in eq. (2.21) is 

evaluated using appropriate first order forward FD.   

 The numerical schemes for evaluating Ĥ  differ from each other in the manner in which g is 

found.  For example, the Lax-Fredrichs scheme evaluates eq. (2.23) by searching for the maximum in the 

entire computational domain.  This is very computationally expensive, and can also result in unnecessary 

smoothing which can lead to inaccurate results.  To avoid this, the present work utilized the Local Local 

Lax-Fredrichs scheme, which evaluates eq. (2.23) by using g
+ and g

- at a specific grid point [37].  To 

evaluate eq. (2.23), and for glass and PMMA can be obtained by taking the partial derivatives 

of eqs. (2.17) and (2.18) with respect to 

x
H z
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x and z, 
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with 
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where the notations (x’’; z) and (x; z) in eq. (2.24) indicate that x’’ and x are used to calculate 

while z and 
x

H )( b z are used to calculate , etc.   
z

H )( b

 

2.3.4.3 Grid formulation, boundary conditions and CFL condition 

 

For all cases, the vertical grid limits were set at zmin = hsin and zmax = hsin + zsurf, where zsurf is 

the maximum expected feature depth.  For unmasked cases, using the geometry of Figure 2.1 (top, right), 

the horizontal grid limits were defined by xmin/max = htan + hsin/tan( ± ).  For a spatial particle 

distribution corresponding to eq. (2.8), the jet spread angle at which 99.9% of particles arrive to the 

surface was assumed to be  = )/)001.0ln((tan 1  [34].  For masked cased at  = 90°, xmin = 0 and 

xmax = Wm.  These limits were used to obtain appropriate spatial grid steps; i.e. x = (xmax – xmin)/(imax - 1), 

and z = (zmax – zmin)/(kmax - 1), where imax · kmax is the grid size.  The global spatial coordinates at the 

grid nodes were thus obtained as x = (i - 1)x + xmin and z = (k - 1)z + zmin.  The boundary conditions 

were assumed such that the partial derivatives of (x,z,t) directed towards outside the computational 

domain were zero.  Finally, the time step t was limited by the Courant-Friedreichs-Lewy (CFL) 

condition, i.e. that the numerical wave speed should be greater than or equal to the physical wave speed to 

ensure stability [37], 
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where the superscript ‘g’ differentiates between spatial variables.  The maximum is calculated by 

searching the entire computational domain.   
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2.3.4.4 Surface initialization, re-initialization and interpolation 

 

The initial surface was represented by a horizontal line, and the level set function was initialized 

at t = 0 using the signed distance function, SDF, of a point x


 from the surface [37],    
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                              (2.29) 

 

where x


is the position of some grid node and a


is the nearest point on the surface, and the function is 

positive if x


is in front of the surface propagation direction, and negative if behind the surface 

propagation direction.  The zero level set evolves naturally unless it encounters discontinuities, which can 

occur when the surface is propagated with curvature smoothing [16,37], since the SDF is not 

differentiable.  In this case, the SDF must be re-initialized, i.e. re-calculated, every fixed number of time 

steps to ensure the level sets are evenly spaced around the front, using eq. (2.29) for t > 0 [16].  In order to 

do this, and to visualize the evolving surface profile for t > 0, the surface, i.e. the zero level set, must be 

interpolated since it is usually located between the grid nodes, as shown in Figure 2.4.  The entry and exit 

points of the zero level set were interpolated linearly in order to maintain monotonicity and hence 

stability.   
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Figure 2.4. Visual representation of , including  = 0, i.e. the surface, and the computational grid for 
the case in Figure 2.5 after 6 passes (see below).     
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2.4 Results and discussion 

 

2.4.1 Comparison with experiments of Section 2.2 

 

2.4.1.1 Model execution and inputs 

 

The LSM model presented in Section 2.3 was implemented in MATLAB 7.7 (The MathWorks, 

Inc., Natick, MA, USA).  MATLAB was chosen as the programming platform as it has many built-in 

standard functions.  Although LSM libraries have been (scarcely) made available commercially, they are 

not easily adaptable to difficult LSM problems.  As a result, LSM was applied to the current problem 

from the ground up, i.e. from ‘scratch’.   

The resulting predicted surface evolution profiles are compared to the measured ones in Figures 

2.5-2.12.  On a 2.6 GHz Quad-core Intel CPU with 4 MB of RAM, the execution times, ETs, for most 

cases were between 16 min and 2.5 hrs.  For the majority of cases, the average particle mass flow rate was 

used since repeatability over the course of machining was good.  However, for cases where the mass flow 

rate fluctuation over the course of machining was significant (Figures 2.7-2.10), it was modelled as a 

linearly decreasing function of time (see Appendix A, Tables A-3-A-6).  In addition to particle 

compaction in the particle reservoir of the microblaster mentioned in Section 2.2, three other factors that 

can affect mass flow rate repeatability are particle size stratification, relative humidity of storage air and 

the effect of powder level in the reservoir [43].  It is difficult to control for all these factors during the 

course of experimental runs.  Thus, for the cases in Figures 2.8-2.10, the mass flow rate decrease with 

time was most likely caused by the decrease in powder level in the reservoir since a longer machining 

time was required for those cases by using a slower scan speed of 0.5 mm s-1 to obtain a desired depth up 

to 30 passes for the slowly eroding PMMA, when compared to glass.  For the case in Figure 2.7, the 

decrease in the flow rate could have been due to a combination of all these factors.   

For the present nozzle, particle, and jet conditions,  =15 in eqs. (2.8) and (2.9) and Vo= 162 m s-1 

in eqs. (2.6) and (2.7) were assumed, based on values measured in [14].  For glass targets, kv = 1.43 in 

eqs. (2.17) and (2.24) [14], while for PMMA targets, kv = 2.0, n1 = 1.27, n2 = 15.5 and Hv = 0.25 GPa 

were assumed in eqs. (2.18), (2.25) and (2.27), based on the measurements in [2].  For masked cases, 

values of l = -11.6 and l = 0.5 were assumed in eq. (2.11) from the measurements made in [19], for the 

25 m alumina particles utilized in the present work.  The erosion constants C = 8.0 x 10-6 (m s-1)-kv 

(glass) and C = 5.7 x 10-8 (m s-1)-kv (PMMA) used in eqs. (2.17) and (2.18) were obtained from [36].   
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 For most cases, it was not necessary to smooth the results based on curvature, and = 0 was 

assumed.  This is especially true for unmasked and masked PMMA features, where the profile bottoms 

remain rounded and flat, respectively.  However, for glass targets, the modelled profiles in Figures 2.5 

and 2.11 resulted in converging sidewalls at the profile bottom that tended to create a pointed profile, i.e. 

a high K.  In these cases, beyond AR of roughly 0.2 for unmasked and 0.5 for masked profiles, the 

smoothing parameter  [16,17,37] described in Section 2.3.4.1 was estimated based on the 

recommendations of [17], which gives a range of of (0.2-1.0) x 10-4 and (0.09-2.25) x 10-5 for unmasked 

and masked cases, respectively.  In these cases, the frequency of re-initialization, FR, (Section 2.3.4.4) 

was obtained through a numerical convergence study by ensuring that numerical stability was maintained, 

but at the same time the FR minimized, since this step was computationally expensive [16,37].  Similarly, 

for all cases, imax · kmax = 101 · 101 and the spatial grid steps x and z, calculated as described in Section 

2.3.4.3, were in the range of 4–220 m, which ensured the convergence and accuracy of the numerical 

solution, i.e. the grid steps for each case were decreased until the profile plots between successive 

simulations varied by no more than 1%.  The mean representative time step calculated with eq. (2.28) for 

all cases was in the range of (0.53-5.3) x 10-2 s.     

 For the majority of cases, V and  were calculated using eqs. (2.6) and (2.8) for the micro-

machining of holes, and eqs. (2.7) and (2.9) for the micro-machining of channels.  However, for the 

unmasked PMMA channels in Figures 2.8-2.10, eqs. (2.7) and (2.9) had to be slightly modified by 

assuming a stationary target approach, i.e. y = y’ = (rs - vtt) = 0.  This modification was necessary 

because, for ductile erosive systems, the 2D approximation for the scanning target, i.e. y’ = (rs - vtt), used 

in eq. (2.18) introduces a component of the erosive efficacy, Eef = v , in the y scanning direction that 

incorrectly cause the surface to grow in the x - z plane.  This y component, originating from eqs. (2.3) and 

(2.5), cannot be eliminated from the 2D channel formulation, and ultimately causes the channel cross-

section in the x - z plane to erode and widen, due to the surface tangential component of the erosion law in 

eq. (2.5).  In reality, this tangential component should mostly represent damage done by cutting and 

ploughing mechanisms in the y direction, and thus should primarily cause the surface to erode in along the 

channel in the y direction.  The net result is the y direction erosive efficacy causes the channels to grow 

too rapidly wide.  This ‘widening’ effect is minimal in glass since its erosion law depends only on the 

components of erosive efficacy related to energy transfers normal to the surface (eq. (2.17)), and hence 

eqs. (2.7) and (2.9) are valid.   

kCV

The use of a stationary target assumption for channels is acceptable for ductile targets because 

[14] demonstrated that, to a first approximation, the dose, i.e. mass, of particles that a given channel 

cross-section receives in the direction normal to the surface during one scanning pass over a time of 2rs/vt 
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is roughly equivalent to the dose that the cross-section at the centre of a hole receives for a stationary 

target during the time it takes to reach the same depth.  However, since the scanning target erosive 

efficacy has a smooth bell shape, whereas the stationary target erosive efficacy has a bell shape with a 

cusp at x’ = 0, the use of eqs. (2.7) and (2.9) delays the onset of high curvature, K , i.e. a pointed profile, 

and hence avoids the use of curvature smoothing in many cases, which is computationally expensive.  It is 

therefore efficient to use it for glass targets that develop such sharp profiles.  For example, Figure 2.13 

compares the LSM model which used the scanning target erosive efficacy, with the model of [14] which 

used the stationary target erosive efficacy, both with  = 0.  The use of the model of [14] resulted in 

pointed profiles, while the use of the LSM model resulted in smooth profiles.  However, since the pointed 

profile only occurs in glass, this difference was not significant for PMMA.  For masked PMMA channels, 

the modification was not required since the small mask opening limited the range of incident angles of 

attack over a narrow range near to perpendicular.   
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Figure 2.5. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in 
glass at  = 90° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = 3.30 g min-1, = 5.0 x 10-5, FR = 
1/20 time steps, ET = 25 min.  All other model inputs are specified in Sections 2.4.1.1 and 2.2.     
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Figure 2.6. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in 
glass at  = 60° after 2, 4, 6, 10, 20 and 30 passes of the nozzle.  M = 3.30 g min-1, ET = 16 min.  All 
other model inputs are specified in Sections 2.4.1.1 and 2.2.     
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Figure 2.7. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in 
glass at  = 30° after 2, 4, 6, 10, 20 and 30 passes of the nozzle.  M = (2.43 -1.19 x 10-3t (s)) g min-1, ET 
= 16 min.  All other model inputs are specified in Sections 2.4.1.1 and 2.2.     
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Figure 2.8. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in 
PMMA at  = 90° after 2, 4, 6, 10, 20 and 30 passes of the nozzle.  M = (3.97 -2.05 x 10-3t (s)) g min-1, 
ET = 141 min.  All other model inputs are specified in Sections 2.4.1.1 and 2.2.     
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Figure 2.9. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in 
PMMA at  = 60° after 2, 4, 6, 10, 20 and 30 passes of the nozzle.  M = (3.88 -3.47 x 10-3t (s)) g min-1, 
ET = 138 min.  All other model inputs are specified in Sections 2.4.1.1 and 2.2.     
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Figure 2.10. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in 
PMMA at  = 30° after 2, 4, 6, 10, 20 and 30 passes of the nozzle.  M = (2.66 -1.19 x 10-3t(s)) g min-1, 
ET = 135 min.  All other model inputs are specified in Sections 2.4.1.1 and 2.2.     
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Figure 2.11. LSM predicted (—) and measured (◊) surface evolution of masked channels machined in 
glass at  = 90° after 2, 4, 6 and 10 passes of the nozzle.  M = 2.63 g min-1,  = 2.0 x 10-6, FR = 1/20 time 
steps, ET = 21 min.  All other model inputs are specified in Sections 2.4.1.1 and 2.2.     
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Figure 2.12. LSM predicted (▬) and measured (◊) surface evolution of masked channels machined in 
PMMA at  = 90° after 2, 4, 6 and 10 passes of the nozzle.  M = 5.38 g min-1, ET = 245 min.  All other 
model inputs are specified in Sections 2.4.1.1 and 2.2.     
 

 

2.4.1.2 Fit of LSM model to experiments   

 

Comparisons of the LSM model with experiments of Section 2.2 (Figures 2.5-2.12) showed 

excellent agreement for the majority of cases, showing the promise of the LSM for modelling surface 

evolution in AJM.  For all cases, relatively minor discrepancies between the model and experiments could 

have been caused by localized mass flow rate fluctuations, as seen in Figure 2.5 (pass 30), Figure 2.6 

(passes 20 and 30), Figure 2.7 (pass 30), Figure 2.8 (passes 10 and 20) and Figure 2.12 (pass 6), and by 

nozzle misalignments, as seen in Figure 2.9 (passes 20 and 30) and Figure 2.10 (pass 30).  However, for 

the deep profiles in Figure 2.11, the modelled predicted profiles began to significantly deviate from 

experimental ones beyond AR > 1.  The poor fit for deep masked profiles can be understood in the 

context of two effects that were not considered by the present LSM model: second strikes of particles, and 

spatial hindering [13,21-24].  These were discussed in Chapter 1 and will be considered in more detail in 

Chapter 5.  In addition, in Figure 2.12, the experimental profiles were wider for deeper profiles than the 
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modelled profiles due to mask wear [24,29,32], which was not considered in the present model.  This 

effect will be considered in detail in Chapter 4.   

 

2.4.2 Comparisons with previously published models and experiments 

 

2.4.2.1 Model execution and inputs 

 

To further validate the predictions of the present LSM methodology, comparisons were also made 

to previously published models and experiments for selected cases at α = 90°.  The ETs for most cases 

were between 3 min and 1 hr. (Figures 2.13-2.16).  In all cases, the M , vt, Wm,and Hmvalues that were 

obtained based on data presented in [2], [14], [17], [19] and [36], are indicated in the figure captions.  For 

all cases, M  had to be slightly adjusted to match the initial pass profile due to a lack of published 

experimental details, and M variability.   In all cases, except Figure 2.15, where a rectangular 0.3 mm x 

3.8 mm nozzle was used, , Vo, kv, n1, n2, Hv, l, and l were obtained from the same references as 

specified in Section 2.4.1.1, since all the previous models assumed the same nozzle, particles and jet 

conditions as those used in Section 2.2.  For the predictions of Figure 2.15, a uniform flux along the mask 

width and a scanning target were assumed; i.e. x’’ = 0 in eq. (2.8) since the target was oscillated during 

the machining of the PMMA hole [17].  Also, for Figure 2.15, Vo = 148 m s-1 and  = 15 were used for the 

rectangular nozzle, obtained from unpublished measurements [44].  All other variables were the same as 

for the circular nozzle.  C and  (= 0) (Figures 2.13-2.16) were obtained and used in the same manner as 

described in Section 2.4.1.1.  For all cases, the same grid size was used as for Figures 2.5-2.12, and x 

and z were in the range of 7.6–70 m, obtained in the same way as described in Section 2.4.1.1.  The 

mean representative time step calculated with eq. (2.28) for all cases was in the range of (0.13-5.6) x 10-2 

s.  Finally, for the unmasked PMMA channels in Figure 2.16, the stationary target approach was used for 

the same reasons as described in Section 2.4.1.1.   
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Figure 2.13. LSM predicted (+), analytical model predicted (—; ML) and measured (◊) surface evolution 
for unmasked channels machined in glass at α = 90° after 1, 2, 3, 4, 5, 6, 7 and 8 passes of the nozzle.  
Measured profile and analytical model data from [14].  M = 1.91 g min-1, vt = 1.0 mm s-1, ET = 3 min.  
All other model inputs are specified in Section 2.4.2.1.     
 

 43



-0.8

-0.6

-0.4

-0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6

x (mm)

z (mm)

 

Figure 2.14. LSM predicted (+), analytical model predicted (▬ ▬; ML) and measured (◊) surface 
evolution for masked holes machined in glass at α = 90° after 2, 5, 10, 15, 20, 30 s.  Measured profile data 
from [17] and analytical model data from [19].  M = 2.43 g min-1, Wm = 900 m, Hm = 1000 m, ET = 
62 min.  All other model inputs are specified in Section 2.4.2.1.  Only half of the symmetric hole is 

own.  

 

sh
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Figure 2.15. LSM predicted (+), analytical model predicted (♦; ML) and measured (◊) surface evolution 
for masked holes machined in PMMA at α = 90° after 1, 3, 5, 7, 9, 11 and 13 passes of the nozzle.  
Measured profile and analytical model data from [17]. M = 6.90 g min-1, vt = 0.25 mm s-1, Wm = 760 m, 
Hm = 1000 m, ET = 737 min.  All other model inputs are specified in Section 2.4.2.1.  Only half of the 
symmetric hole is shown.   
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Figure 2.16. LSM predicted (+), computer simulation predicted (▬; CS) and measured (◊) surface 
evolution for unmasked channels machined in PMMA at α = 90° after 1, 3, 5 and 7 passes of the nozzle.  
Measured profile from [2] and computer simulation data from [36]. M = 2.68 g min-1, vt = 0.25 mm s-1, 
ET = 55 min.  All other model inputs are specified in Section 2.4.2.1.  Only half of the symmetric hole is 
shown.   
 

 

2.4.2.2 Comparisons with previous analytical models  

 

The LSM model was compared against previous experiments and analytical models [14,17,19] in 

Figures 2.13-2.15.  The analytical models of [2], [14], [17], and [19] used Mathcad software (Mathsoft, 

Inc., Cambridge, MA, USA), which applies a pre-coded method of lines (ML) [45] to solve the equations 

of motion.  The ML method, is similar to LSM in that it also uses FDs to approximate spatial and 

temporal variables.  Both methods utilize upwind FD schemes to ensure that FD approximations follow 

the exact-solution PDE theory so that numerical solutions can converge correctly; i.e. either forward, 

backward or central FD are used, depending on the situation [16,37].   

 The underlying difference between the ML and LSM methods is that LSM defines the surface 

implicitly [16,37], whereas ML defines the surface explicitly, i.e. the surface is directly defined by the 

spatial variable.  LSM can thus be used to solve more complex cases and can be more easily extended to 

higher dimensions [16] than ML.  For the present study, the general difference between the LSM model 
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and the ML solutions to previous analytical models stem from this implicit surface formulation, described 

in Section 2.3.4, and the difference in modelling the physical aspects of the erosion process, described in 

Sections 2.3.1-2.3.3.  These are summarized as follows: 

 

i. The present LSM model formulation allows the modelling of features which are multi-valued, i.e. 

there are two or more depth values at a given profile location along the width, or with 

approximately vertical sidewalls, something which is not possible with previous analytical 

models.   

ii. The present model incorporated a transformed coordinate system (Section 2.3.1) allowing the 

modelling of obliquely shaped features in the cross-sectional plane (Figures 2.6, 2.7, 2.9 and 

2.10), something not previously considered in the analytical models.   

iii. The previous analytical models assumed that particles were all incident at the nominal angle of 

incidence, and thus neglected the variation in incident angles of attack brought about by the 

nozzle divergence.  The present model took this spread in angles of attack into account in eqs. 

(2.17)-(2.19) and (2.24)-(2.27). 

iv. In previous models, the incident particle flux and velocity at the surface were assigned based on 

the coordinates of the unmachined flat surface.   In the present model, eqs. (2.6)-(2.9) utilized a 

depth spatial coordinate, i.e. z or z’, that accounted for the change in particle velocities and fluxes 

from those at the flat surface (Figure 2.2).   

v. For glass masked and unmasked channels, masked PMMA channels and holes, the 2D 

approximation of a scanning target described in Section 2.3.2 was used, whereas all previous 

analytical models assumed a stationary target approach for modelling such features. 

vi. For masked features, the analytical model of [19] along with actual erosive efficacy, defined by 

Eef = vkCV , were used to model the normal incidence cases.  The previous analytical models of 

[2], [14] and [17] (Figure 2.15) utilized an empirical exponential function for the net erosive 

efficacy from the experimentally obtained first pass profile.  However, this did not physically 

account for the effect of particle size near the mask edge.   

 

Refinement ii is relevant to features machined with oblique nozzles, something that has not been 

previously attempted with analytical models.  Refinements iii and iv, when implemented in the present 

LSM scheme, were found to make very little improvement over analytical modelling of the surface 

evolution of the channels and holes considered in [2], [14], [17] and [19].  These refinements are likely 

more important for future modelling efforts of the machining of: 1) very deep features, where the 

implementation of refinement iv would account for the more drastic change in particle velocities and 
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fluxes with increasing depth;  and 2) very wide features, where the implementation of refinement iii 

would account for the more drastic variation in  across the width of feature with increasing 'x .  This 

variation in  is even more significant for wide features machined at oblique incidence (refinement ii).  

For instance, for an initially flat target attacked by the jet at oblique incidence, the  to the left and right 

of the jet centreline becomes smaller and larger, respectively with increasing jet divergence.  In both cases 

1) and 2), there would be a more profound effect on the local speed of surface evolution, especially near 

the bottom or periphery of the very deep or wide features, respectively.  It should also be emphasized that 

refinements iii and iv are necessary when second strike [13,21-24] and mask wear [24,29,32] are to be 

considered, i.e. when exact particle trajectories need to be specified.  Refinements i, v and vi, however, 

were found to significantly improve the predicted surface evolution, and are therefore discussed in more 

detail.  Although refinements ii-v have not been previously implemented, in theory they could be 

incorporated into the analytical modelling framework presented in [2], [14], [17] and [19].       

Figure 2.13 shows that use of the scanning nozzle technique (refinement v) resulted in an 

improvement in the prediction of the shape of the experimental unmasked glass channel profiles over the  

analytical model of [14], mainly due the smoothing that the LSM model introduces, as explained in 

Section 2.4.1.1.       

In Figure 2.14, the LSM model was comparable with that of [19] in predicting the experimental 

masked glass hole profile, since both models accounted for particle size near the mask edge (refinement 

vi), where the minor variations in the model fits could be due to the way the initial pass fit was obtained 

and due to the implementation of refinements iii and iv, since refinements i, ii and v play no role in this 

case.  The LSM model matched the experimental profiles quite well, providing an improvement in the 

under-prediction of the profile depth after 30 s.  The under-prediction at 30 s is likely due to a localized 

mass flow rate fluctiation during the experiment.   

Use of refinements i, v and vi resulted in a large improvement in the prediction of the 

experimental masked PMMA hole profiles shown in Figure 2.15, over the existing analytical model of 

[17], in terms of both depth and shape.  The most likely reason for the improvement is refinement i, which 

because of the nature of LSM, allows for the modelling of feature sidewalls that are multi-valued or 

vertical, such as in Figure 2.15 (or Figure 2.12).  This is not possible with the ML solution of the 

analytical model.  The over-predicted depths beyond 7 passes could be the result of particle embedding 

[2,8,17,31], which can be significant for hole profiles and could decrease the effective erosion rate.   
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2.4.2.3 Comparisons with previous computer simulation  

 

In Figure 2.16, the LSM model was also compared against the computer simulation (CS) of [36], 

described in Section 1.2.2.  Figure 2.16 shows excellent agreement with experiments and the CS of [36] 

for unmasked PMMA channels, and in most cases, a slight improvement over the CS (see passes 1, 3 and 

7).      

The simulation of [36] is very computationally expensive, more so than the LSM model proposed 

here.  For the LSM model, ETs for the majority of cases varied approximately between 3 min and 2.5 hrs. 

(Figures 2.5-2.16), using a standard PC platform, which is quite efficient.  However, some of the masked 

cases, e.g. such as in Figures 2.12 and 2.15, took quite a long time.  This problem will be addressed in the 

next chapter.   

  The LSM model presented in this chapter provides a foundation for modelling more complex 

cases, such as the modelling of obliquely shaped masked features which will be considered in the next 

chapter.   
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Chapter 3 Level Set Methodology for Predicting the Surface Evolution of 
Inclined Masked Micro-Channels Resulting from Abrasive Jet 
Micromachining at Oblique Incidence 

 

3.1 Motivation 

 

In this chapter, a novel implementation of narrow band (NB) LSM [16,37] (Section 1.3) is used to 

predict the surface evolution of inclined masked micro-channels in glass and PMMA made using AJM at 

oblique incidence.  The formulation extends the LSM model presented in Chapter 2 for masked features 

machined at normal incidence to the never before considered case of masked features machined at oblique 

incidence.  The resulting inclined micro-channels rapidly become multi-valued, and the Hamilton-Jacobi 

type partial differential equation describing their evolution cannot be solved using traditional analytical or 

semi-empirical/computational techniques such as those mentioned in Section 1.2.1.  To predict the 

decrease in particle flux at the mask edge, the previously developed analytical model of [19] described in 

Section 2.3.3 is generalized from the normal to the oblique incidence case.  The local surface velocity 

function is non-convex (Section 2.3.4.2), necessitating the development of a modified extension velocity 

methodology to address the problem of grid ‘visibility’ of the particle flux.  The formulation developed in 

the present chapter ignores mask wear [24,29,32] and particle second strike effects [13,21-24], to be 

considered in Chapters 4 and 5, respectively.  The agreement between LSM-predicted and measured 

surface evolution, as well as the feasibility of the model in predicting AJM surface evolution of inclined 

masked features given its present assumptions, is discussed.  The majority of the material in this chapter 

has been published in [46].   
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3.2 AJM experiments: Masked channels machined at oblique incidence 

 

All AJM experiments were conducted using the same channel blasting apparatus and almost the 

same experimental conditions as those described in Section 2.2.  Some differences and extra details are 

outlined below. 

  The masked glass and PMMA channels were machined with the jet at a 45° angle to the surface 

(Figure 3.1), measured using an angular level which was accurate to approximately 1°.  To ensure correct 

alignment with the small mask opening, a micro-drill bit with a diameter similar to that of the nozzle was 

temporarily placed in the nozzle, with a protruding length of 20 mm (= h) and aligned with the mask 

opening through contact.  The mask widths, Wm (Figure 3.1), were approximately 450 m and 430 m in 

the machining of glass and PMMA channels, respectively.  The measured mass flow rate was in the range 

of 0.67-2.70 g min-1 (see Appendix A, Tables A-9 and A-10), which was low enough for particle 

interference to be neglected, as in Section 2.2 [33-35].   

The machined samples were cross-sectioned at two locations along the channel using a low speed 

diamond saw, and the cross-sections were compared to ensure repeatability, i.e. to ensure that no chipping 

occurred during the cross-sectioning.  Where necessary, the cross-sections were polished with corundum 

abrasive paper (type AW-C, grit P-1200) to obtain clear edges.  Images of the cross-sections were 

obtained using a 5 megapixel digital camera attached to a 40X magnification optical microscope.  

Examples of typical channel cross-sections in glass and PMMA are shown in Figure 3.2.  Digital image 

analysis software (ImageJ, http://rsb.info.nih.gov/ij/) was used to digitize the coordinates of the cross-

sectional channel profiles.  Between 30-50 and 50-70 data points were obtained for all the resulting glass 

and PMMA channel profiles, respectively.   

 

 

 

Figure 3.1. Front view schematic in the AJM of oblique incidence masked channels (see Figure 2.1 for 
more details on the channel blasting apparatus). 

 51



 

Figure 3.2. Cross-sections of oblique (= 45°) masked channels in: (a) Glass and (b) PMMA, after 30 
passes of the nozzle under the conditions described in Sections 2.2 and 3.2.  Dashed lines show 
approximate original locations of the masks.     
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3.3 Level set modelling of surface evolution in AJM of oblique masked channels  

 
3.3.1 Local normal velocity function of evolving surface for oblique masked channels 

 

In order to model the masked channels machined at oblique incidence (Figure 3.1), the same 

transformed coordinate system defined by eq. (2.1) was used as that in Section 2.3.1 and Figure 2.2 for 

unmasked channels, but with xoff  = Wm/2.  By combining eqs. (2.2) and (2.4), and eqs. (2.3) and (2.5), the 

velocity of the surface in the direction of the local normal in eq. (1.2) can be re-written conveniently as  
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for the AJM of glass and PMMA channels, respectively, where all the variables were previously defined 

in Sections 2.2 and 2.3.2.  For the AJM of glass channels, V and  in eq. (3.1) are defined by eqs. (2.7) 

and (2.9), i.e. scanning target approach, since for the present problem the same blasting conditions were 

used as in Section 2.2.  However, as discussed in Section 2.4.1.1, for the AJM of ductile targets such as 

the PMMA channels, the 2D approximation for the scanning target used in eq. (3.2) cannot correctly 

account for the portion of the total erosive efficacy in the y scanning direction that is due to the surface 

tangential component of velocity; therefore, the stationary target approach whereby y = y’ = (rs - vtt) = 0 

in eqs. (2.7) and (2.9) is instead used. 

 

3.3.2 Approximation of decrease in mass flux near the mask edge at oblique incidence 

 

As described in Section 2.3.3 and depicted in Figure 2.3, as the mask edge is approached, only 

progressively smaller particles can pass through the mask opening without colliding with the mask, and 

the particle mass flux incident to the surface thus decreases.  The effect was modelled in [19] for the case 

of a non-diverging jet incident perpendicular to the surface, and is now generalized to the oblique 

incidence case including the effect of the jet divergence.  To do this, it was necessary to employ the 
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transformed coordinates of eq. (2.1), and consider the effect of the mask shadow and height, as shown in 

Figure 3.3.  By re-writing eq. (2.10), the resulting expression for the proportion of the total incoming M 

that passes through the mask opening and arrives to the surface at a given x’ is 
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where the same lognormal particle size distribution was used as in eq. (2.11) since the same abrasives 

were used as in Section 2.2.  L is the target location that an infinitely small particle can reach without 

undergoing collision with the edge of the mask, measured along the x’ direction at a given z’ (Figure 3.3), 
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The model assumes that the jet centre is aligned with the centre of the mask opening.   
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Figure 3.3. Geometry used for modelling flux reduction near mask edges for an inclined jet.  xm, the 
mask shadow width, measured from the left hand side of the mask opening, reduces the proportion of the 
target surface in the mask opening that can see incoming particles.  Case (a) 0 < xm < Wm/2; Case (b) 
Wm/2 ≤ xm ≤ Wm; Case (c) xm ≤ 0, i.e. no mask shadow.  The mask opening width, Wm, is exaggerated 
with respect to the standoff, h, for clarity.     

as 

 

Depending on the values of Wm, , h, and Hm, the three cases in Figure 3.3 must be considered, 

so that L+
 and L- can be obtained 
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where xm is the mask shadow width, measured horizontally from the left hand edge of the mask opening, 
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x’ lim is defined in Figure 3.3 (b),  

 

  (3.7) )tan(''lim
 zx

 

and    and are the angles defining the maximum particle trajectories that may be incident to the 

surface through the mask, measured from the jet centreline to the left and right mask edges, respectively,    
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The variation of the flux across the mask opening can be obtained by multiplying the mass flux, eq. (2.9), 

by eq. (3.3).  It should be noted that when xm < 0 in eq. (3.6), the negative value holds no physical 

significance, i.e. xm = 0; however, it is useful to identify the transition to where Case (c) must be used in 

solving eqs. (3.5) and (3.8).   

 

3.3.2.1 Surface visibility   

 

The modified model presented in Section 3.3.2 can be used to calculate the percentage of 

unmachined surface visibility, %USV, 
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This quantity is useful for setting up machining runs, since it is difficult to visually discern whether any of 

the surface is exposed to the jet.  A smaller %USV will result in a narrower feature shape and a %USV of 

0% will result in no machining of the surface.  For example, using eqs. (3.6) and (3.10), with h, , Hm and 

Wm (for glass) from Sections 2.2 and 3.2, %USV = 77%, showing that the exposed surface was ‘seen’ 

fairly well for the case presented here.  Equation (3.10) can also be used in determining the minimum 

mask width, Wm,min, necessary so that the surface is ‘visible’ to the nozzle for a given h,  and Hm, for xm 

> 0.  Substituting %USV = 0% and eqs. (3.6) in (3.10), Wm,min can be obtained as 
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For example, using eq. (3.11), with h,  and Hm from Sections 2.2 and 3.2, Wm,min = 100.4 m.  Thus, the 

mask opening must be larger than Wm,min to allow for machining of the surface.   

 

3.3.3 LSM model implementation   

 

3.3.3.1 Finite differences, signed distance function and geometric variables  

 

In order to approximate the solution to ),,( tzx and geometric variables, first order FDs in eq. 

(2.12) were used to approximate the partial derivatives, as explained in Section 2.3.4.1.  The initial 

surface was represented by a horizontal line, and the level set function was initialized at t = 0 by using the 

signed distance function (SDF) defined by eq. (2.29).  A useful property of SDFs that can greatly simplify 

the analysis is that the norm of the gradient (eq. (2.13)) of the level set function must be unity [37], 

 

                                                                       1),(  zx                                                                   (3.12)  

 

However, as explained in Section 2.3.4.4, as the surface evolves for t > 0, ),,( tzx  generally deviates 

from the initial value of the signed distance due to numerical instability.  In order to ensure that 

remains equal to the signed distance and hence ensure that eq. (3.12) remains valid, 

must be re-initialized at fixed time intervals [37].  To ensure a high degree of accuracy, 

was re-initialized every time step; although this is computationally expensive, it is simple to 

implement.  Using eq. (3.12), 

),,( tzx

),,( tzx

),,( tzx

n


and K in eq. (2.14) can be re-defined simply as [37] 
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3.3.3.2 Simplified LSM for non-convex Hamiltonians 

 

As was shown in Section 2.3.4.2, the LSM equation of motion for non-convex Hamiltonians, H, 

is defined by eq. (2.21).  The methodology presented here is the same as that used in Section 2.3.4.2; 

however, it is greatly simplified due to the definition in eq. (3.12).  In addition, this definition allows the 

extension velocity methodology presented in Section 3.3.3.3, and necessary in the present formulation, to 

be extended to cases where the Hamiltonian function, i.e. the velocity function, is non-convex.  For the 

present case, the surface evolution did not depend on curvature, i.e.  = 0, since the smoothing of the 

evolving surface profiles was not necessary.  This resulted due to the application of the scanning target 

approach in modelling the erosive efficacy for glass, which delays the formation of cusps at the profile 

centres, and the fact that curvature-based surface evolution need not be considered in modelling ductile 

targets, i.e. PMMA, as explained in Section 2.4.1.1.  Thus, eq. (2.21) can be reduced to   
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H
t

                                                        (3.14) 

 

where once again, Ĥ is the numerical Hamiltonian defined by eq. (2.22) along with eq. (2.23).  Using eq. 

(3.12), H in eq. (2.22) can be reduced to [37] 
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Combining eqs. (3.1)-(3.3), (3.12), (3.13), and (3.15), and expressing the result in the x’’ and z 

components, the H for glass and PMMA defined by eqs. (2.17)-(2.19), respectively, can be reduced to 
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and 
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with  
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where  is the angle between n


and the particle impact velocity vector V


(Figure 2.2), V and  are 

obtained using eqs. (2.7) and (2.9), respectively, as described in Section 3.3.1, and  is now defined 

by eq. (3.3).   

0/xM

 Finally, the partial derivatives of eq. (3.16) and eq. (3.17) with respect to x and z , and 

, used in eq. (2.23), are obtained as  
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where the notation (x’’; z) in eqs. (3.19) and (3.20) indicates that x’’ is used to calculate and z to 

calculate .  Equations (3.19) and (3.20) are the simplified versions of eqs. (2.24)-(2.27) due to eq. 

(3.12). 

x
H

z
H

 

3.3.3.3 Extension velocity methodology for non-convex Hamiltonians   

 

The velocity function ),( txF


 has physical meaning only for the zero level set, , i.e. o ),( tx


 = 

0 (Section 1.2.3), which defines the actual surface evolution [16].  However, since eq. (1.2) is written for 

the function ),( tx


 defined over the entire computational space, the equation must have a consistent 
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physical meaning for all the level sets on the grid, i.e. at every x


, so that o  is allowed to propagate 

naturally [16].  The velocity function ),( txF


 obtains its physical meaning from the position of o  and 

not the geometry of ),( tx


 .  The use of a mask (Section 3.3.2) introduces a boundary beyond which the 

level sets are slowed down since only the portion of the incoming particle jet which is outlined by the 

mask is ‘visible’ to the grid.  As a result, o will stop once that boundary is reached, as depicted in 

Figure 3.4.  For the present formulation, where only the surface evolution of the target is considered, as 

opposed to the surface evolution of both the target and the mask which will be considered in Chapter 4, 

this effect occurs only at oblique incidence, since at normal incidence, the entire jet is ‘visible’ to the grid, 

and visibility is thus not a problem.  As a result, for the oblique case, the velocity function must be 

extended from the surface, i.e. , to all other level sets [16].  Henceforth, this procedure will be referred 

to as the extension velocity methodology (EVM).   

o

When there is no natural choice available for an extension velocity, as in the present case, the 

most common method of implementing EVM is to assign to every point x


 in the domain, the velocity of 

the nearest point on the surface, a


 [16], 

 

                       )0(),()(ext  aaFxF
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                                           (3.21) 

 

where Fext is the extension velocity.  Although this step is computationally expensive, it is necessary in 

order to ensure that the level sets do not collide.  It should be emphasized that the sole purpose of Fext is 

to force the motion of the level sets in the vicinity of o , and it need not correspond to the velocity 

implied by the physics of the problem [16].  The only requirement is that it must equal the velocity at 

o , as the distanc  betw en x


and a


 approaches zero [16], which eq. (3.21e plies.   e ) im

EVM is usually applied to cases where the H is convex, meaning that eq. (2.15) (Section 2.3.4.2) 

without considering motion with curvature, i.e.  = 0, can be used to propagate the surface with time, 

instead of eq. (3.14).  Equation (2.15) with  = 0 can be solved by using simpler upwind FD schemes that 

ensure FD approximations follow the exact-solution PDE theory [16,37], where the evaluation of the 

partial derivative of H with respect to g is not required.  In such cases, the extension velocity can be 

easily applied by substituting Fext, eq. (3.21), for F in eq. (3.15) [16,37].  However, for the present 

problem, H is non-convex, meaning that Fext must also be applied to determine eqs. (3.19) and (3.20) in 

solving eq. (2.23) defined in Section 2.3.4.2.  This necessitated a novel extension of EVM theory in order 

to treat these non-convex H cases, by factoring out F in eqs. (3.19) and (3.20), using eq. (3.15) and 

applying eq. (3.21), to obtain 
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where the superscript ‘o’ indicates that the quantity in question is obtained at the point on  which is 

closest to the grid point (x, z).  H

o

b and Hd in eqs. (3.19) and (3.20) are replaced with Hb,ext and Hd,ext, 

according to eq. (3.22), in order to obtain and , respectively.  H
zx

H  ;extb, )(
zx

H  ;extd, )(

H

b,ext and Hd,ext 

are evaluated using eqs. (3.16) and (3.17) but with xo, zo, x
o and z

o in place of x, z, x and z, 

respectively.  All remaining quantities in eqs. (3.19) and (3.20) are evaluated with x, z, x and z, i.e. the 

grid node values.  These new expressions are then used in place of H and in eqs. (2.22) and (2.23), in 

order to solve eq. (3.14).   

g

 

 

 

Figure 3.4. Portion of the jet which is outlined by the mask that is ‘visible’ to the grid.  Without velocity 
extension, the level sets are stationary beyond the masking boundary.  Wm is exaggerated with respect to 
h for clarity.     
 

3.3.3.4 Optimization using the narrow band LSM  
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As mentioned in Section 1.3, the narrow band (NB) LSM [16] is an adaptive scheme that is based 

on the notion that calculations need only be performed for points in the vicinity of the surface, since only 

the  has any physical meaning.  Thus, in the NB LSM, a narrow band is defined around the o o  

where all computations are only performed at grid points, (x, z), within this boundary, or ‘tube’.  As a 

result, when compared to the full-grid LSM approach, less grid points are considered for each iteration 

step, thus greatly improving the computational efficiency [16].  The NB LSM also has the advantage that 

the extension velocity described in Section 3.3.3.3 need only be calculated for points situated within the 

narrow band [16], which makes the method even more computationally efficient for cases such as the 

present, where EVM is required.   

The band is initialized based on the position and shape of o , by searching the grid for DUB, 

which forms the ‘upper band’ ahead of o , and for DLB, which forms the ‘lower band’ behind o .  

DUB and DLB are the band widths measured from the o  to the upper and lower bands, respectively.  As 

evolves and approaches the boundary, calculations are temporarily halted and a new band is re-

initialized around .  for all the (x, z) within the new band are calculated with the SDF 

defined by eq. (2.29), while for all (x, z) on or outside the ‘tube’ are frozen.  Since re-

initialization is computationally expensive, the size of the band is chosen as a compromise between 

assigning a band width large enough to prevent recurrent re-initialization, and small enough to not include 

too large a domain.  In the present work, D

o

o ),,( tzx

,(x

o

o

)t,z

UB = 4z (= 4x) and DLB = 2z, where x and z are the 

horizontal and vertical spatial grid steps, respectively, were found to be appropriate by maintaining a 

good balance between computational effort and band re-initialization.  Re-initialization occurred when a 

minimum distance between and the upper or lower bands, Dmin, was reached.  A Dmin = z/2 was 

used, which ensured that did not pass the boundary while also minimizing the frequency of re-

initialization.  Dmin was evaluated at each time step.  The whole process was repeated until the required 

propagation time was reached.   

 

3.3.3.5 Grid formulation, boundary conditions and time step   

 

For the present problem, the vertical grid limits were the same as that presented in Section 

2.3.4.3.  Using the geometry of Figure 3.3, the horizontal grid limits were defined as xmin = xoff + hcos - 

Wm/2 + xm and xmax =  xoff + hcos + Wm/2 + zsurf /tan( - +).  These limits were then used to calculate 

the spatial grid steps and global spatial coordinates at the grid nodes as shown in Section 2.3.4.3.  The 

boundary conditions were obtained in the same way as in Section 2.3.4.3, where now the computational 
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domain was defined by the narrow band boundary, as opposed to the entire grid.  Finally, t was once 

again calculated using the CFL condition [37], and with  = 0 and extension, eq. (2.28) can be re-defined 

as 

 

       
 

1
)(

max
,

ext





















 






zxg g

H
t

g                                            (3.23) 

 

The maximum was evaluated by searching within the entire narrow band. 

 

3.3.3.6 Surface partial derivatives and interpolation  

 

As mentioned in Section 2.3.4.4, in order to re-initialize the level set function using the SDF of 

eq. (2.29), and to visualize the evolving surface profile for t > 0, the surface, i.e. o , must be interpolated 

since it is usually located between the grid nodes as shown in Figure 3.5.  The entry/exit point of the zero 

level set shown in Figure 3.6 was interpolated linearly in order to maintain monotonicity and hence 

stability (Section 2.3.4.4).  In addition, in order to extend the velocity from o  to other level sets and 

thus evaluate the Hb,ext and Hd,ext described in Section 3.3.3.3, it was necessary to obtain FD 

approximations of the partial derivatives, x
o and z

o, and coordinates, xo and zo, for the surface 

entry/exit point.  xo and zo were obtained with linear interpolation based on the value of o and adjacent 

nodes.  Following eq. (2.12), forward, backward and central FD approximations of x
o and z

o were 

obtained for Case (a) and Case (b) in Figure 3.6 using the following relations 
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                 (3.24) 

 

where, for example, GH was obtained using linear interpolation between the nodes G and H, etc. 

 Finally, in construction of the narrow band of Section 3.3.3.4, the upper and lower bands were 

also located through linear interpolation between the grid nodes, based on the position of .   o
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Figure 3.5. The level set function,  on the computational grid, along with the zero level set, o , i.e. 
the location of the machined surface, and the narrow band, after 6 passes in the machining of an inclined 
masked channel in glass at  = 45°.   
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Figure 3.6. FD approximation of partial derivatives for the zero level set, o , for a surface entry/exit 
point located in between the grid nodes: Case (a) along the x-direction; Case (b) along the z-direction, 
used in eq. (3.24).  The dots labelled A to X represent grid points, where F and Q are the reference points, 

and the x’s represent locations of interpolation.  The value of o  at the circled entry/exit point is 

obtained using linear interpolation.  When o passes through a grid point, e.g. F, eq. (3.24) reduces to eq. 
(2.12) at that point, and no interpolation is necessary.    
 

 

3.3.3.7 Summary of algorithm   

 

The algorithm used in solving eq. (3.14) can be summarized as follows: 

 

1. Initialize  with the SDF, eq. (2.29), at each grid point (i,k).  Build a narrow band around the 

o , as described in Section 3.3.3.4.   

2. For the initial iteration, m = 0, where m = 0,1,2,… is the iteration number, compute H using either 

eq. (3.16) or (3.17), and 
g

H using either eq. (3.19) or (3.20), for each grid point (i,k) inside the 

narrow band without the use of extension.  For m > 0, compute the extended Hamiltonian Hext 

using eq. (3.16) or (3.17), with xo, zo, x
o and z

o obtained as described in Section 3.3.3.6, and 

 
g

H ext using eq. (3.19) or (3.20), with xo, zo, x
o and z

o and x, z, x and z, as explained in 

Section 3.3.3.3, for each grid point (i,k) inside the narrow band.  
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3. Solve eq. (3.14) with eqs. (2.22) and (2.23) (Section 2.3.4.2) using the unextended (m = 0) or 

extended (m > 0) quantities from step 2, along with m, to obtain m+1.       

4. Using linear interpolation, obtain a set of points that represent the physical surface (i.e. o ), 

}|) , as explained in Section 3.3.3.6.   ,{( ooo zx

5. If o reaches Dmin defined in Section 3.3.3.4, stop the computation and re-build a new upper and 

lower band around the o ; otherwise, continue to the next step.     

6. Re-initialize  with the SDF, eq. (2.29), at each grid point (i,k) in the narrow band.   

7. Repeat steps 2-6 until the simulation reaches the desired time.     
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3.4 Results and discussion  

 

3.4.1 Model execution and inputs 

 

The model presented in Section 3.3 was implemented in MATLAB 7.7 (The MathWorks, Inc., 

Natick, MA, USA), as in Chapter 2.  The LSM predicted surface evolution profiles are compared to the 

measured ones in Figures 3.7 and 3.8.  Using the same PC as outlined in Section 2.4.1.1, the ETs were 9 

min and 76 min for the simulation of channels machined in glass (Figure 3.7) and PMMA (Figure 3.8), 

respectively, using the NB LSM approach described in Section 3.3.3.4.  The implementation of the NB 

LSM approach decreased the ETs by approximately 7 and 3 times for the glass and PMMA channels, 

respectively, when compared to simulations using the full-grid approach.  Using the DUB, DLB and Dmin 

presented in Section 3.3.3.4, the band was re-initialized 12 and 20 times, approximately every 220 and 

1200 time steps, for the glass and PMMA channels shown in Figures 3.7 and 3.8, respectively.   

  A summary of the required model inputs appears in Table 3.1.  The parameters h, Hm, Wm, , vt, 

and  were obtained based on experimental conditions of Section 3.2 and are specified in Table 3.1.  The 

measured particle mass flow rate, M , given in Table 3.1, was assumed to linearly decrease with time to 

account for the mass flow rate fluctuations, as described in Section 2.4.1.1 (see Appendix A, Tables A-9 

and A-10).  The parameters , Vo, l, l, kv, C, n1, n2 and Hv specified in Table 3.1 were obtained from 

Section 2.4.1.1 based on previous measurements for the same nozzle, jet conditions, abrasives, and target 

materials as presently used.   

 The grid dimensions, imax · kmax, and zsurf defined in Section 2.3.4.3, given in Table 3.1, were 

chosen such that, for the channels machined in glass, x = z = 8.8 m, while for PMMA, x = z = 20 

m, which ensured the convergence and accuracy of the numerical solution as described in Section 

2.4.1.1.  For the present simulations, representative mean values of t determined by eq. (3.23) were 5.6 x 

10-2 s and 1.8 x 10-2 s for glass and PMMA, respectively.  The simulation time was set based on the 

maximum number of required nozzle passes (Table 3.1), in multiples of 2rs/vt (Section 2.3.2).   
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Figure 3.7. Predicted () and measured (--) surface evolution of masked channels machined in glass at 
 = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (2.70 -9.65 x 10-3·t (s)) g min-1.  All other 
model inputs are specified in Table 3.1.       
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Figure 3.8. Predicted () and measured (--) surface evolution of masked channels machined in PMMA 
at  = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (1.86 -1.44 x 10-3·t (s)) g min-1.  All other 
model inputs are specified in Table 3.1.       
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Table 3.1. Model inputs. 

Model inputs Figure 3.7 
(glass) 

Figure 3.8 
(PMMA) 

Figure 3.9 
(glass) 

h (mm) 20 20 20 
Hm (m) 100 100 100 
Wm (m) 450 430 550 
 (°) 45 45 45 
vt (mm s-1) 1.0 0.5 1.0 
 (kg m-3) 2200 1190 2200 
M (g min-1) 2.70 -9.65 x 10-3·t (s) 1.86 -1.44 x 10-3·t (s) 2.70 -9.65 x 10-3·t (s)
 ( ) 15 [14] 15 [14] 15 [14] 
Vo (m s-1) 162 [14] 162 [14] 162 [14] 
l ( ) -11.6 [19] -11.6 [19] -11.6 [19] 
l ( ) 0.5 [19] 0.5 [19] 0.5 [19] 
kv ( ) 1.43 [14] 2.0 [2] 1.43 [14] 
C (m s-1)-kv 8.0 x 10-6 [36] 5.7 x 10-8 [36] 8.0 x 10-6 [36] 
n1 ( ) - 1.27 [2] - 
n2 ( ) - 15.5 [2] - 
Hv (GPa) - 0.25 [2] - 
imax ( ) 91 76 115 
kmax ( ) 90 60 90 
zsurf  (m) 780 1200 780  
Max. no. 
of nozzle passes ( ) 

30 30 30 

 
   

3.4.2 Fits of model to experiments 

 

 It is evident from Figures 3.2, 3.7 and 3.8 that the measured profiles of the inclined masked 

channels for glass and PMMA differ in shape, as was also noted previously for channels machined at 

normal incidence [2].  The glass profiles in Figure 3.2 have curved walls and rounded bottoms, while the 

PMMA profiles have straighter walls and more rectangular bottoms.  This difference in shape arises due 

to the different erosion laws that govern the surface evolution of the two target materials, i.e. eqs. (3.1) 

and (3.2), or in more expanded form, eqs. (3.16) and (3.17).  For PMMA, the local velocity of surface 

erosion is highest when the particle incident velocity vectors are at a shallow angle to the surface, i.e. 

when  in Figure 2.2 is large.  This has the tendency to rapidly create side walls which are approximately 

parallel to the incident velocity vectors, i.e. approximately parallel to the nozzle inclination angle, while 

the bottom of the channel, which is approximately at normal incidence to the particles, advances 

relatively slowly.  This alignment of the walls with the inclination angle of the nozzle does not occur for 

glass because its maximum erosion rate occurs at normal incidence, i.e. at the bottom of the channel, and 

not at the shallower angles on the inclined side walls.  The inclined straight walls in the PMMA targets 
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may be desirable in the micro-fabrication of ‘V’ grooves in microstructures such as hydraulic resistors 

[47] and pressure-flow sensors [48].   

For the case of the glass micro-channels in Figure 3.7, there was quite a significant discrepancy 

between the measured and modelled profiles, both in terms of depth and overall shape, although the 

depths were predicted quite well up to 10 passes.  The discrepancy in shape is likely due to a combination 

of mask wear [24,29,32] and particle second strike effects [13,21-24], that the present model cannot 

account for.  It is hypothesized that the particles arriving to one side of the target profile ricochet, and 

strike the opposite side, resulting in the significant under-etching seen in the experimental profiles, as 

well as deeper experimental profiles than those predicted by the model.  In addition, particle mask-to-

target ricochet, i.e. mask edge effect, [23] can further contribute to this effect.   

As the surface became deeper, the glass experimental profiles tended to shift their direction of 

propagation to the right, likely caused by the combination of increase in mask width due to mask wear 

with time and second strike particles.  This can be seen by comparing the predicted and experimental 

profiles after 20 and 30 passes of the nozzle in Figure 3.7.  The effect of mask wear in causing this change 

in propagation direction is partially demonstrated in Figure 3.9, where the modelled profiles of Figure 3.7 

with Wm = 450 m are compared against modelled profiles with a representative worn mask having a 

width of Wm = 550 m.  This approximate value was obtained by measuring the mask width after 

machining using a reference gage and micro callipers.  It can be seen that the profiles with the larger mask 

opening are shifted more to the right and travel deeper.  Assuming that most of the mask wear occurred 

between 10 to 20 passes, and Wm increased from 450 m to 550 m during that time, the change in 

surface propagation direction is also indicated by the solid line shown in Figure 3.9.  This is, of course, a 

simplified view of the increase in mask width, which, in reality, would be a more complex function of the 

erosion mechanism of the mask and second strike effects, as indicated by the experimental profiles in 

Figure 3.7.    
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Figure 3.9. Depiction of the relation between mask wear and profile propagation direction.  Model 
simulation of masked glass channels at  = 45° for Wm = 450 m (: Figure 3.7) and Wm = 550 m (: 20 
and 30 passes. ET = 12 min, with band re-initialized 14 times approximately every 180 time steps and 
mean t = 6.4 x 10-2 s.  All other model inputs are specified in Table 3.1).  The solid and dashed line 
indicates the propagation direction with and without mask wear, respectively.  The lines connect the 
points of highest curvature of each profile.   
 

 

Figure 3.8 shows a good agreement between the predicted and measured profiles of the micro-

channels machined in PMMA, both in terms of depth and overall shape.  The agreement is better when 

compared to the predicted and measured profiles in glass (Figure 3.7).  Since the PMMA channels 

develop straight sidewalls which are approximately aligned with the incoming particle velocity vectors, 

ricochet and second strike of particles to the opposite side wall is unlikely.  In addition, the effect of mask 

wear in causing a shift in the propagation direction of the profiles does not occur in PMMA because the 

profile bottoms remain flat, as opposed to curved as in glass.  However, the effect of mask wear in 

increasing the mask width size did result in a discrepancy between the measured and modelled profile 

width in Figure 3.8.  

The present model was only implemented for one representative inclination angle.  A change in 

the incident angle would likely change the inclination of the micro-channels; however, experiments were 

performed at only 45°, which represents a realistic balance between feature width and inclination angle.  
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Moreover, for impact angles other than 45°, the general shape of the PMMA channels should not 

significantly change, i.e. they will always have straight walls and rectangular bottoms, regardless of angle 

of incidence, as also was shown in Chapter 2 at normal incidence, e.g. as seen in Figure 2.12.  On the 

other hand, the shape of glass would most likely change with the angle.  However, it would not be 

practical to machine brittle masked substrates at angles < 45°, because, for brittle targets, the erosion rate 

rapidly decreases with decreasing incident angle (Section 2.2), thus requiring much longer machining 

times which also increases the mask wear.  In the more practical range of 45° - 90°, the shape would still 

have curved walls and round bottoms, approaching symmetry as normal incidence is approached.   

It was demonstrated in Chapter 2 that LSM can fairly accurately predict the surface evolution of 

micro-channels machined in glass at 90° up to AR = 1, e.g. as seen in Figure 2.11.  Beyond that, the 

modelled predicted profiles begin to deviate from experimental ones due to particle second strike and 

spatial hindering effects [13,21-24] described in Section 1.2.1.  For the present case in Figure 3.7 ( = 

45°), the effective AR, the ratio of maximum feature depth to width at zero depth multiplied by 1/(sin)2, 

approaches 1 after just 6 passes, which is much more rapidly than at 90°.  Hence these effects, and 

consequently deviations in the model predictions, are expected to be more significant in the case of 

oblique blasting.  In addition, the effect of mask wear is likely more significant at oblique incidence since 

masks are normally made from ductile materials that have a peak erosion rate at oblique incidence, as in 

the present case.  Hence, for the model to accurately predict the experimental profiles in glass, the effects 

of mask wear and second strike must be included.  Thus, the current formulation is suitable only in cases 

where these effects are minimal, and so is generally not applicable for predictions of the AJM in brittle 

substrates.   

 In the next chapter, the formulation will be extended to include mask erosive wear.   
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Chapter 4 Level Set Methodology for Predicting the Effect of Mask Wear on 
Surface Evolution of Features in Abrasive Jet Micromachining 

 

4.1 Motivation 

 

 As shown in Chapters 2 and 3, mask wear effects affect the surface evolution of target features 

during AJM, e.g. such as can be seen in Figures 2.15, 3.7 and 3.9.  In many cases mask wear cannot be 

avoided, i.e. when (thin) polymeric masks are used or when large particle doses, and hence long 

machining times, are necessary to create high aspect ratio features.     

In spite of its significant effect on the resolution of features machined using AJM, the modelling 

of mask wear has thus far been limited to only two previous models: Slikkerveer at al. [29], described in 

Section 1.2.1, and Yagyu and Tabata [32], described in Section 1.2.2.  However, in both cases, the work 

did not make direct comparisons between the model predictions and experiments on both the target and 

the mask together; thus only qualitative conclusions in terms of influence of mask wear on surface 

evolution of the target could be drawn.  In addition, these models did not consider the influence of mask 

wear on features machined at oblique incidence such as those presented in Chapter 3.   

This chapter extends the NB LSM-based methodology presented in Chapter 3 to allow the surface 

evolution of both the mask and target to be predicted simultaneously, by representing them as a hybrid, 

yet continuous, mask-target surface.  The general methodology is based on a previous level set approach 

developed for ion beam milling a masked substrate at normal incidence [49].  The extension of this 

methodology to make it suitable for the modelling of mask wear in AJM presented unique challenges 

because, in contrast to ion beam milling, it considers finite size particles, and thus requires an estimate of 

the change in abrasive mass flux incident to the target through the mask opening, such as in Sections 2.3.3 

and 3.3.2, and, for the first time, onto the eroding mask edge itself.  The modelling of oblique incidence 

also presents additional complications that have not been previously considered.  The predicted channel 

and eroded mask shapes were directly compared against measurements on channels machined in both 

glass and PMMA targets, using two different masks, thus verifying the predictive capability of the 

methodology.  The majority of the material in this chapter has been submitted for publication and is 

currently under review [50].        
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4.2 AJM experiments: Channels and eroding masks   

 

All AJM experiments were conducted using the same channel blasting apparatus and similar 

experimental conditions as those described in Section 2.2.  Some differences, especially with respect to 

the masking technique, and extra details, are outlined below. 

Two mask materials were used for the glass and PMMA targets: tempered steel feeler gauge (FG) 

stock (Starret Co., Athol, MA, USA) and High Tack RapidMaskTM (RM) (IKONICS Imaging, Duluth, 

MN, USA).  The densities of FG and RM were  = 7712 kg m-3 and  = 1292 kg m-3, respectively, 

obtained from unpublished experimental results (UR) from the author’s laboratory (see 

Acknowledgements).  The initial hardness of the FG stock was measured as Hv = 5.67 GPa using a micro 

hardness tester, and a value of Hv = 0.1 GPa was assumed for RM (UR).  Both mask materials exhibited 

ductile erosive properties, as in the case of PMMA, although RM is an elastomer.   

The FG masks were made by securely clamping two gauges to the target a specified distance 

apart, parallel to each other.  The RM masks were made by placing a patterned photomask (Fine Line 

Imaging, Colorado Springs, CO, USA) over an RM sheet, and exposing it to a fused quartz silicon 

dioxide curing lamp (5.04 W/mm) for 40 passes at 76 mm/s using a mini conveyor UV cure system 

(American Ultraviolet Company, Lebabon, IN, USA).  A squeegee was used to ensure that no air bubbles 

formed around the exposed feature, which acquired brittle properties after exposure.  The resulting pre-

machined FG and RM masks had a height, Hm, of approximately 100 m and opening widths, Wm of 

approximately 180 m and 130 m, respectively.  Figure 4.1 shows a schematic of the mask arrangement.   

The glass masked channels were machined at impact angles, , of 90° and 45°, and the PMMA 

masked channels at impact angles of 90°, as shown in Figures 2.1 and 3.1.  Scanning speeds of 1 mm s-1 

and 2 mm s-1 were used in machining the channels with FG and RM masks, respectively.  The measured 

abrasive mass flow rate was in the range of 2.24-3.84 g min-1 (see Appendix A, Tables A-11-A-16), 

which again was low enough for particle interference to be neglected, as in Section 2.2 [33-35].   

Cross-sectional target channel profiles with the masks attached were measured before and after 

machining using a non-contact optical profilometer described in Section 2.2.  After machining, the masks 

were removed, the targets cleaned with alcohol, and the cross-sectional profiles of the target channels 

were measured.  Approximately between 33-456 and 26-111 data points were obtained over scanning 

width ranges of 0.33-3.30 mm and 0.23-0.62 mm for all the mask profiles and channel profiles machined 

at  = 90°, respectively.  As in Section 3.2, the inclined channel profiles were multi-valued, and could not 

be scanned using the optical profilometer.  Instead, they were sectioned, and their cross-sectional profiles 

were measured and digitized using a 1.3 megapixel CMOS digital camera mounted to a 50X 

magnification optical microscope (ViewMet, Buehler Ltd., Lake Bluff, IL, USA), together with ImageJ 
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software.  Between 21-80 data points were obtained for all the resulting inclined channel profiles.  A FG 

mask edge radius, rm, depicted in Figure 4.6 and given in Table 4.1 (see below), was measured before 

machining using the same hardware as that used in obtaining the cross-sectional profiles.   

  

 

 

Figure 4.1. Front view schematic of masks used in the AJM of the micro-channels. 
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4.3 Level set modelling of surface evolution in AJM including mask erosive wear 

 

4.3.1 Local normal velocity function of evolving surface for masked channels including 
mask erosive wear 

 

In order to model masked channels including mask erosive wear, as shown in Figure 4.2, the 

same transformed coordinate system defined in eq. (2.1) from Section 2.3.1 and shown Figure 3.1 was 

used, but with xoff  = Wm/2 + lm,L, where lm,L is the pre-machined length of the left hand side of the mask 

shown in Figure 4.1.  The velocity of the surface in the direction of the local normal for the AJM of brittle 

materials (glass) and ductile materials (PMMA, FG and RM) is defined by eqs. (3.1) and (3.2), 

respectively, with the particle velocity, V, and particle flux, , distributions defined as previously in eqs. 

(2.7) and (2.9), since similar blasting conditions were used as those in Sections 2.2 and 3.2.   

As explained in Sections 2.4.1.1 and 3.3.1, eqs. (2.7) and (2.9) can be used to express the erosive 

efficacy of the jet, Eef = , for the AJM of channels in brittle targets, but for ductile materials in 

general, a stationary approach that approximates E

vkCV

ef of a moving target/mask by a stationary one must be 

used.  Since for the present problem, the hybrid surface consists of both the target (glass, brittle or 

PMMA, ductile) and the mask (FG or RM, ductile), for consistency and without loss of accuracy, in the 

present formulation the stationary target/mask approach was also used for the brittle glass targets.   

In general, to use the stationary approach for a channel, the time dependencies of eqs. (2.7) and 

(2.9), represented by the (rs - vtt) terms, are removed by calculating a single y location along the scanning 

direction where the erosive efficacy distribution seen by a cross-section of a hole, Eef,st, is closest to the 

erosive efficacy distribution seen by a cross-section of a channel, Eef,t, over a full pass.  For instance, in 

Chapters 2 and 3, y = 0 was used in place of y = (rs - vtt), as explained in Sections 2.4.1.1 and 3.3.1.  

However, in the present case, a slightly different approach was taken.  In a single pass of the nozzle, the 

average erosive efficacy for a scanning target with the mask, tef,E , is obtained as  

 

 dtCV
r

v
E

ts vr
k

s

t 
/2

0
tef,

v

2
       (4.1) 

  

where V and  are defined by eqs. (2.7) and (2.9), respectively, with the time dependencies in place.  The 

equivalent stationary erosive efficacy was then obtained by calculating the location y  = prs·rs where the 

Eef,st best fit eq. (4.1) over the full range of x’ and z’, i.e. prs (i.e. y) was varied until the mean ratio of 

tef,E / Eef,st(y) over the full range of x’ and z’ was equal to 1.  y  was then used in place of  y = (rs - vtt) in 
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eqs. (2.7) and (2.9) to represent the equivalent stationary erosive efficacy, Eef,st( y ).  This approach better 

approximates the mean Eef,t for the present formulation than the stationary approach used in Chapters 2 

and 3.  prs can vary with vt, kv,  and rs (see Table 4.1). 

    

 

 

Figure 4.2. Geometry for modelling of flux adjustment for the target near the eroding mask edges at any 
incidence angle, .  The window shows the special case where the jet centreline intersects the eroding 
mask surface.  The effective vertical height and horizontal opening width of the eroding mask, Hm,eff,90, 
and Wm,eff,90, are exaggerated with respect to h.   
 

 

4.3.2 Masking function: Adjustment of particle mass flux to the target and the mask 
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In Sections 2.3.3 and 3.3.2, the reduction in particle mass flux incident to the target surface in the 

vicinity of the mask edges was modelled.  In the present approach, since the surface is composed of both 

the target and the mask, the formulation is generalized by introducing the concept of a masking function, 

i.e. the adjustment to the incoming particle mass flux incident to the hybrid mask-target surface at a given 

x’ to reflect the range of particle sizes that are ‘visible’ to this surface.  The following sections derive this 

function.   

 

4.3.2.1 Adjustment of mass flux to the target  

 

 In Sections 2.3.3 and 3.3.2, the effect of reduction in mass flux through the mask opening and 

incident to the target surface near the mask edges was modelled for non-eroding masks.  In contrast to the 

previous approach, the present involves an eroding mask, so that the mass flux incident to the target 

surface adjacent to the edge changes with time and must thus be updated at each time step.  The following 

formulation generalizes the approach presented in Section 3.3.2 to eroding masks.     

At any instant, the masking function for the target surface, 
T0/xM , defined as the ratio of the 

mass of particles, M,  that can reach the target surface at x’ to the M that can reach the target surface at x’ 

= 0, across the eroding mask opening, is  
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where eq. (4.2) is the same as eq. (3.3), and is repeated here to maintain continuity, and the subscript ‘T’ 

indicates ‘target surface’ (Figure 4.2).  The same lognormal particle size distribution was assumed in eq. 

(4.2) as in eq. (2.11) since the same abrasives were used as in Sections 2.2.  Note that eq. (4.2) can also be 

interpreted as the ratio of the expected value of the particle volume incident to the target at a given x’ to 

the expected value of the particle volume at x’ = 0, where particles of any size can reach the target.  

Following Section 3.3.2, L represents the target location that an infinitely small particle can reach without 

undergoing collision with the right (+) or left (-) edge of the eroding mask, measured along the x’ 

direction at a given z’ (Figure 4.2), 
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 and are the angles defining the maximum particle trajectories incident to the target surface through 

the eroding mask opening, measured from the jet centreline to the right (+) and left (-) mask edges.  For 

the typical case presented in Figure 4.2 and at normal incidence, the angles are calculated at each time 

step by searching for the minimum point x’ to the right (+)/left (-) mask surface,  , measured 

from the jet centreline, 
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where 
min

/'
' x

z  is the z’ that corresponds to min
/' x .  The analysis assumes that the jet centre coincides 

with the centre of the pre-machined mask opening.  For the special case presented in the window of 

Figure 4.2, when the jet centreline intersects the mask surface on the left hand side, eq. (4.3) must be 

modified as follows 
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where is obtained using eq. (4.4) and x’ lim is defined in the window of Figure 4.2,  

 

 )tan('' limlim zx   (4.6) 

 

The angle lim is calculated by searching for the maximum x’ to the mask surface on the left hand side, 

 defined in the window of Figure 4.2, measured from the jet centreline, max'x
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where 
max'

' x
z  is the z’ that corresponds to .  It should be noted that when max'x Lx ' in eq. (4.2), 

T0/xM = 0, as expected.   
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4.3.2.2 Adjustment of mass flux to the mask edges   

 

In addition to the adjustment to particle mass flux ‘visible’ to the target surface near the mask 

edges, the finite size of the particles also limits the flux ‘seen’ by the mask edges themselves.  For 

example, the particle shown in Figure 4.3 (a) is too large to strike the inclined edge of the mask, and 

would instead strike the top of the mask near .  Similarly, only small particles can strike the mask 

edge at its bottom near the surface.  This effect has never been previously modelled.   


tran'x

 

 

 

Figure 4.3. Modelling of adjustment to mass flux striking the mask edges for (a)  = 90° and (b)  ≤ 90°, 
i.e. the general case.  Due to symmetry, only the right mask edge is shown in (a).  The effective eroding 
mask heights and opening widths are exaggerated with respect to h.     
 

 

Modifying eq. (4.2), the masking function for the mask edge surface, 
edgeM,0/xM , defined as the 

ratio of the portion of incident M that can arrive at x’ and strike the mask edge surface, to the M that can 

arrive at x’ = 0, across the eroding mask opening and edge, can be expressed as  
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where the subscript ‘M’ indicates ‘mask surface’ (Figure 4.2).  Wm,eff /2 is the effective half opening 

width of the eroding mask measured along x’, and dm is the approximated length of the eroding mask 

edge measured along x’ (Figure 4.3).  The Heaviside function,   'x -Wm,eff/2 is defined as  = 0 if 

'x  < Wm,eff/2 and  = 1 f  i 'x  ≥ Wm,eff/2.  It should be noted that when 'x  ≥ Wm,eff/2 + dm in eq. (4.8), 

edgeM,0/xM = 0, as expected.    

The LSM model allows for the mask edge to evolve a curved profile, i.e. with a non-uniform  

defined in Figures 2.2 and 4.2).  As a first-order approximation, for the purposes of determining Wm,eff/2 

and dm at any given time step, it was nevertheless assumed that the eroded mask edge could be 

represented by a single line (Figure 4.3) having a slope determined by the average of all the local over 

the mask edge, avgWith this approximation, for the typical case (Figure 4.2) for the right (+) or left (-) 

mask,  
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and for the special case depicted in the window of Figure 4.2,  
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where  and x’min
/' x lim were defined in Section 4.3.2.1 and Figure 4.2.  The distance dm in Figure 4.3 is 

approximated as  
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where  and are the effective heights of the eroding right and left masks, respectively, 

measured parallel to the jet centreline (Figure 4.3),  
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The value of 
min'x in eq. (4.9) only needs to be evaluated when dm is non-zero.  For a FG mask, and for a 

RM mask after the ‘brittle’ RM (BRM) layer (Figure 4.1) has been fully etched through to the target 

surface,  (Figures 4.2 and 4.3) is calculated as the distance from the transition point between the 

eroding mask edge and the top of the mask,  (Figure 4.3), to the unmachined target surface.  For a 

RM mask before the BRM layer has been fully etched through,  is calculated numerically from 

 to the assumed flat eroding bottom of the BRM surface (see Section 4.3.2.3 and bottom of Figure 

4.4).   is obtained by searching the mask surface and locating a point of sharp transition in local    

-/
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     In the analysis, particles incident to 'x  < Wm,eff/2 were considered incident to the target surface, 

whereas ones incident to 'x  ≥ Wm,eff/2 were considered incident to the eroding mask edge, thus ignoring 

unlikely glancing collisions.  In addition, the eroded mask edge was represented by a line having a single 

average slope, avg. As a result, the overall adjustment to the flux at the sloped mask edge was modelled 

as the mean of the masking function in eq. (4.8) over the range of Wm,eff/2 ≤ 'x  ≤ Wm,eff/2 + dm,  
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Since the distance dm is generally small, the error introduced by this averaging is also small.   
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4.3.2.3 General masking function for the entire mask   

 

The general masking function for the entire mask surface, 
genM,0/xM , defined within the global 

range of  sinsin m hzHh  (Figure 4.2), where Hm is the pre-machined mask height, and the full 

horizontal length of the computational space is  
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        (4.14) 

 

The various cases that must be considered in eq. (4.14) are shown in Figure 4.4.  Equation (4.14 (a)) is 

defined in eq. (4.13), and eq. (4.14 (b)) describes the masking function for the top of the mask that was 

originally horizontal.  Equation (4.14 (c)) reflects the fact that, at oblique incidence, any point on the left 

mask edge surface does not see the incoming particle flux until its local slope is at least parallel with the 

incident velocity vector.   

In the case of the RM, the entire initial surface is flat, and the region of width Wm exposed to the 

UV light becomes brittle (BRM).  Thus, the initial surface is composed of two different eroding materials: 

RM and BRM (see Section 4.3.3.1).  The use of a hybrid surface with continuous connectivity can 

introduce complications at the points of intersection of the surfaces; in this case, the points connecting 

RM and BRM.  This results solely from the introduction of a masking function for the mask edges.  If the 

conditions of eq. (4.14 (a)) were assumed from the beginning, although the BRM surface would propagate 

downwards towards the target relatively quickly, the lateral propagation of the eroding RM mask edge 

surfaces would be unrealistically slowed down due to the low initial  in eqs. (4.11) and (4.12), 

and hence 

 /
eff,90m,H

edgeM,0/xM ≈ 0.  To overcome this difficulty, 
genM,0/xM  = 1 was assumed in eq. (4.14 (d)), 

for both the BRM and RM, until the RM began to develop an inclined mask edge, after  passes of the 

nozzle.  After  passes, the eroded profile was partially in the RM and the BRM, and eq. (4.14 (a)) was 

assumed on the inclined RM surface, and 

pN

pN

genM,0/xM  = 1 was assumed in eq. (4.14 (e)) for the remaining 

BRM.  As a result, for the RM-BRM profile surface, the mask edge effect was partially accounted for 
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until the target region was reached.   corresponds to the experimental initial pass profile used to 

determine the time, T

pN

pass, that it takes for the surface to propagate to a depth defined by the first pass 

profile (see Section 4.4.1).     

 

 

 

Figure 4.4. Schematic representation of cases corresponding to eq. (4.14).  Top left: eq. (4.14 (a)) and eq. 
(4.14 (b)); top right: eq. (4.14 (c)); bottom left: eq. (4.14 (d)); and bottom right: eq. (4.14 (e)).  The 
rectangular regions in the bottom two schematics differentiate the different materials in the numerical 
grid.   
 

 

4.3.2.4 General masking function for the target 

 

Equation (4.2) is used to model the adjustment to the mass flux incident to the target surface near 

the mask edges, and greatly improves the fits of the modelled target profiles to measured ones [19].  

However, when the intersection points between the lines of the maximum particle trajectories incident to 

the target defined by and  and the horizontal line at   )sin(hz   match the connectivity points 

between the target and the mask, the target masking function 
T0/xM  = 0, while the mask edge masking 

function 
edgeM,0/xM is generally non-zero (Figure 4.5).  If uncorrected, this causes an unrealistic 
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slowdown in the surface propagation of the mask edges similar to that encountered for the RM-BRM 

surface in Section 4.3.2.3, however this time due to the target masking function.  This problem was not 

encountered in previous LSM studies of e.g. ion milling when applied to source etching of a substrate and 

a mask [49], because the masking function in that case was 1 at such locations, since the particles were all 

considered infinitely small.  Thus, in the present work, it was necessary to adopt a procedure whereby the 

target was allowed to erode to a depth  under the same flux adjustment, i.e. masking function, as the 

mask shown on the left hand side of Figure 4.5.  This allowed the target and mask edges to evolve 

together over the depth .  Beyond that depth, the target evolved under the usual flux adjustment 

according to eq. (4.2).  Hence, the general masking function for the target surface, 

adjT,z

adjT,z

genT,0/xM , defined 

globally for sinhz  (Figures 4.2 and 4.5) and over the full computational horizontal length, is  
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adjT,z

ffect the propagation of the mask edges, but at the same time small enough to not significantly 

affect the shape of the target profile within adjT,sinsin zhzh   .  To do this, the simulation was 

successively run to different adjT,z  depths w o the target, i.e. infinitely small 

particles impacting the target w

ith no flux adjustment t

ith
genT,0/xM = 1.  z  was decreased until a transition between rapid 

mask propagation and slow mask propagation was noted, i.e. such that there was an insignificant 

difference in mask propagation between the chosen adjT,z  and a large adjT,z .  In general, adjT,z  was found 

to be in the range of 2 to 3 grid steps (see Table 4.1).  Since the resultin adj  was gener only on the 

order of 10 - 20 m (see Table 4.1), which is less than the maximum depth of the resulting target profile 

(see Section 4.4.1), the resulting error in the target profile evolution was relatively small. 

  For the special case when  < 90° and  ≥ 90° shown on the right hand side 

adjT,

g T,z ally 

of Figure 4.5, a 

portion of the target to the right of the connectiv  point is in the shadow of the left hand side of the 

mask, and 

ity

genT,0/xM = 0 was assumed in eq. (4.15 (c)) over this shadow length.    

 

 88



   

Figure 4.5. Schematic representation of cases corresponding to eq. (4.15).  Left: eq. (4.15 (a)) and eq. 
(4.15 (b)); and right: eq. (4.15 (c)). The rectangular regions differentiate the different materials in the 
numerical grid.   
 

 

4.3.2.5 Unified masking function  

 

The unified masking function, 
Unif0/xM , for the hybrid surface consisting of both the mask and 

the target surface, can be summarized as  
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where /0 M,genxM and /0 T,genxM  are the general masking functions for the entire mask and target surfaces, 

respectively.  The effective flux for the entire hybrid mask-target surface at each time step can be 

obtained by multiplying the modified eq. (2.9) (Section 4.3.1) by eq. (4.16). 

 

4.3.3 LSM model implementation   

 

4.3.3.1 Partial derivatives, surface initialization and geometric variables 

 

Following the approach of Sections 2.3.4.1 and 3.3.3.1, eq. (2.12) was used to approximate partial 

derivatives used in obtaining the solution to ),,( tzx and geometric variables.  The initial hybrid surface 

was represented either by a horizontal line consisting of the RM and ‘brittle’ RM (BRM) mask surfaces at 
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the same height, or, in the case of the FG,  an inverse ‘hat’ shape, consisting of the FG mask and the 

target which is at a lower height over the mask opening width, as shown in Figure 4.6.  Following the 

approach of [49], the grid was divided into regions, each of which represents a different material.  For 

simulations involving a FG mask, there were 2 regions consisting of the FG and the target.  For 

simulations involving a RM mask, there were 3 regions consisting of the RM, BRM, and the target 

(Figure 4.6).  For this case, the hybrid surface consisted of the RM mask and the target once the BRM 

layer was etched through to the target.  The ),,( tzx was initialized and re-initialized using the SDF 

defined by eq. (2.29) as explained in Section 3.3.3.1. The geometric variables n


 and K were obtained 

using eq. (3.13).       
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Figure 4.6. Initial surface and grid formulation.  The grid is divided into regions, each of which 
represents a different material.  The grid spacing and mask dimensions are exaggerated with respect to h.     
 

 

4.3.3.2 Simplified NB LSM for non-convex Hamiltonians with EVM 

 

 The same simplified LSM for non-convex H presented in Section 3.3.3.2 is used in the present 

formulation, however, with two exceptions: 1) Equation (2.21) with 1),(  zx (see eq. (3.12)) is used 

instead of eq. (3.14) since the present formulation considers motion with curvature, i.e. ≠; and 2) 
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Unif0/xM  defined by eq. (4.16) is used in eqs. (3.16) (for glass) and (3.17) (for PMMA, FG and RM), 

instead of  defined by eq. (3.3), since the present formulation considers eroding masks.   0/xM

 The same EVM presented in Section 3.3.3.3 is used in the present formulation but it should be 

added that the ‘jet visibility’ effect (Figure 3.4) which necessitates the application of EVM described in 

that section now occurs at any , i.e. both oblique and normal incidence.  This occurs since the present 

formulation includes the mask as part of the hybrid zero level set surface, which affects the visibility of 

the grid ‘below’ the mask at any incidence.  In other words, the use of a mask (Section 4.3.2) introduces a 

boundary for the target  for sinhz 



 formed by lines of the maximum particle trajectories incident to 

the target defined with and in Figure 4.2, beyond which = 0 for the level sets below the 

mask to the left or right of the lines, respectively, at any incidence.  Thus, EVM was used at any 

incidence, and for both the target and the mask to maintain consistency and numerical stability, i.e. by 

extending from the entire hybrid mask-target surface to all the material regions defined in Figure 4.6.     

 ),,( tzxF

 Finally, the same NB LSM presented in Section 3.3.3.4 is applied in the present formulation.  The 

NB-extension algorithm was the same as outlined in Section 3.3.3.7.     

 

4.3.3.3 Grid formulation, boundary conditions, time step and surface interpolation  

 

For the present problem, using the geometry of Figure 4.6, the vertical grid limits were obtained 

as zmin = hsinα – (Hm + zam) and zmax = hsin + zsurf, where zsurf was defined in Section 2.3.4.3 and zam is 

the vertical grid distance above the mask necessary to initiate ) ,,( tzx with the SDF in eq. (2.29) and 

adjusted to maintain uniform grid spacing, i.e. x =z.  The horizontal grid limits were obtained as xmin = 

xoff + hcos– (Wm/2 + lm,L) and xmax = xoff + hcos + (Wm/2 + lm,R), where lm,L and lm,R are the pre-

machined lengths of the left and right hand sides of the mask, respectively, shown in Figures 4.1 and 4.6.  

These limits were then used to calculate the spatial grid steps and global spatial coordinates at the grid 

nodes as described in Section 2.3.4.3.  The boundary conditions were obtained in the same way as 

described in Sections 2.3.4.3 and 3.3.3.5.  The time step was once again calculated using the CFL 

condition [37] by combining eqs. (2.28) and (3.23) with a slight modification,  
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where the maximum was obtained in the same way as in Section 3.3.3.5.  Equation (4.17) differs from the 

approach originally suggested by Osher and Fedkiw [37], and which was adapted in Chapter 2 and eq. 

(2.28), only through the introduction of )( c g
H  in the second term, related to the motion due to 

curvature in eq. (2.21) with 1  (Section 4.3.3.2).  In Section 2.3.4.2 the  term multiplying cK

ccc  FH in eq. (2.21) was applied to the c  term, whereas now it is applied directly to the  

term which more accurately reflects the motion due to curvature defined in eq. (2.21) with 

cF

1c .  

This greatly reduces the time step restriction required in eq. (4.17) for cases where curvature is used, and 

hence increases the computational efficiency.   

 Finally, the location of the surface, used in obtaining ),,( tzx with the SDF in eq. (2.29), in 

calculating 
Unif0/xM  defined in Sections 4.3.2.5 and in locating the upper and lower bands described in 

Section 3.3.3.4, as well as FD approximations of the partial derivatives at surface nodes (Figure 3.6 and 

eq. (3.24)) used in EVM described in Section 4.3.3.2, were obtained using interpolation as described in 

Section 3.3.3.6.   
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4.4 Results and discussion  

 

4.4.1 Model execution and inputs/outputs 

 

  The model presented in Section 4.3 was implemented in MATLAB 7.9 (The MathWorks, Inc., 

Natick, MA, USA) and experimentally verified by comparing the LSM predicted surface evolution 

profiles to the measured ones in Figures 4.7-4.11.  The required model inputs and resulting numerical 

outputs corresponding to simulations in Figures 4.7-4.11 are specified in Table 4.1.  The parameters h, 

Hm, Wm, rm, , vt, M and  were obtained based on experimental conditions of Sections 2.2 and 4.2 and 

are specified in Table 4.1.  For BRM, was assumed to be the same as for RM (UR).  Hv for PMMA was 

obtained from Section 2.4.1.1 and for FG and RM from Section 4.2.  Attempts to measure the hardness of 

the thin BRM sheet failed due to its tendency to fracture into small pieces upon contact with the indenter 

when using a micro hardness tester.  Therefore, the Hv for this material was assumed to increase from the 

unexposed RM value of 0.1 (UR) to 0.25 GPa after exposure, reflecting the transition from ductile to 

brittle behaviour.  The higher value for BRM was estimated based on the previously measured value for 

PMMA [2], which is harder than the unexposed RM (elastomer).   

The parameters Vo, , l, l, kv, C, n1 and n2 specified in Table 4.1 were obtained from Section 

2.4.1.1 or UR based on previous measurements for the same nozzle, jet conditions, abrasives, target and 

mask materials as presently utilized.  Although the RM after exposure was labelled as ‘brittle’, the 

resulting experimental BRM profiles implied an intermediate brittle and ductile erosive response as 

shown in the Figure 4.11 measured profile after 2 passes since, as shown in Section 3.4.2, brittle target 

profiles generally have sloped walls and rounded bottoms, while ductile target profiles have straight walls 

and rectangular bottoms.  Thus, the general erosion-angle of incidence model proposed by Oka et al. [40] 

and used in eq. (3.2) was assumed for BRM.  The constant n1 in eq. (3.2) for BRM can be calculated 

knowing kv = 1.41 (Table 4.1) from the relationship due to Oka et al., n1 = kv + 1 [40].  The constant n2 = 

9 was obtained by numerically fitting the model-predicted to the measured sidewall slope of the BRM 

mask after the initial pass, in terms of side wall slope, analogous to the approach used to obtain Tpass (see 

below).  Thus, the particular value of Hv = 0.25 GPa used for BRM, as explained in the previous 

paragraph, is not of great importance as long as it is of the correct order of magnitude, since it is a curve 

fitting parameter used along with n1 and n2 to obtain a best fit of the model-predicted to measured initial 

pass profile shape.  Use of a different value would only yield a new n2 without significantly affecting the 

resulting profile shape.   

 94



The parameters prs,  and  specified in Table 4.1 were obtained as explained in Sections 

4.3.1, 4.3.2.3 and 4.3.2.4, respectively.  The parameter [16,17,37] was used to smooth the results in 

modelling glass targets and RM masks, estimated based on the recommendations of [17] as explained in 

Section 2.4.1.1.   

pN adjT,z

For all the present simulations, the grid dimensions imax·kmax and geometrical parameters zsurf, zam, 

lm,L and lm,R defined in Section 4.3.3.3 and Figure 4.6 were chosen such that x = z, which ensured the 

convergence and accuracy of the numerical solution as described in Section 2.4.1.1 (Table 4.1).   

Following the approach taken in [2,14,17], the time it takes for the surface to propagate along the 

profile centreline to a depth defined by the experimental first pass profile, Tpass, was used in the 

simulations to obtain an equivalent time, i.e. 2rs/vt, that a given masked channel cross-section is exposed 

to the particle jet during a single pass of the nozzle, as explained in Section 2.3.2.  Tpass for the target 

(glass and PMMA) and the mask (FG, RM and BRM) in Table 4.1 was obtained from a best fit of the 

simulated and experimental initial pass profile depths, by matching the depths within the total percentage 

standard deviations of the corresponding mass flow rate measurements (see Appendix A, Tables A-11-A-

16).  This is similar to the method used in [36] to estimate the erosive efficacy due to a single pass of the 

nozzle and hence C, as explained in Sections 2.3.2.  For all cases in Figures 4.7-4.11, Tpass for glass, 

PMMA, FG, RM and BRM varied between 2.5-5.1 s pass-1, 3.9-11.2 s pass-1, 2.7-18.9 s pass-1, 1.1-2.8 s 

pass-1 and 5.6-7.5 s pass-1, respectively.  The different values resulted from experimental fluctuations in 

flux and/or velocity between experiments, and the fact that different scanning speeds were used in Figures 

4.7, 4.8 and 4.10, and Figures 4.9 and 4.11.        

The total simulation times for each case in Figures 4.7-4.11 were obtained by multiplying the 

maximum number of nozzle passes (Table 4.1) by (the chosen) Tpass for the target.  Thus, since the target 

and the mask surfaces evolve in the simulation simultaneously, and, as shown in Table 4.1, the Tpass for 

the target and the mask in each case were generally not equal, the Hb and Hd in eqs. (3.16), (3.17), (3.19) 

and (3.20) for the mask had to be multiplied by the ratio of Tpass,mask/Tpass,target in order to solve the 

equation of motion defined by eq. (2.21) as described in Section 4.3.3.2.  The resulting representative 

mean values of t determined by eq. (4.17) and the number of iterations and band re-initializations 

(Section 3.3.3.4) are listed in Table 4.1.  On a 2.93 GHz Quad-core Intel i7 CPU with 8 GB of RAM, the 

ETs for all the cases were approximately between 8 to 135 min.    
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Figure 4.7. Predicted () and measured () surface evolution of glass channels (z ≤ 0) with FG mask (z ≥ 
0) machined at  = 45° after 0, 2, 4, 10, 20 and 40 passes of the nozzle.  All model inputs are specified in 
Table 4.1.       
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Figure 4.8. The case of Figure 4.7 re-plotted for the case where the predicted () surface evolution does 
not consider mask wear.   
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Figure 4.9. Predicted () and measured () surface evolution of glass channels (z ≤ 0) with RM mask (z 
≥ 0) machined at  = 45° after 0, 2, 4, 6, 8 and 10 passes of the nozzle.  All model inputs are specified in 
Table 4.1.       
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Figure 4.10. Predicted () and measured () surface evolution of glass (x ≤ 0) and PMMA (x ≥ 0) 
channels (z ≤ 0) with FG masks (z ≥ 0) machined at  = 90° after 0, 2, 4, 10 and 0, 2, 4, 10, 20, 40 passes 
of the nozzle, respectively.  Only half the profiles are shown due to symmetry.  All model inputs are 
specified in Table 4.1.       
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Figure 4.11. Predicted () and measured () surface evolution of glass (x ≤ 0) and PMMA (x ≥ 0) 
channels (z ≤ 0) with RM masks (z ≥ 0) machined at  = 90° after 0, 2, 4, 6, 8, 10, 16 and 0, 2, 4, 6, 8, 10 
passes of the nozzle, respectively.  Only half the profiles are shown due to symmetry.  All model inputs 
are specified in Table 4.1.       
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4.4.2 Comparison of predicted and measured surface evolution  

 

 Figures 4.10 and 4.11 show profiles for a given mask, FG and RM, respectively, and two target 

materials, glass and PMMA, to compare the extent of mask wear and the differences in the evolution of 

the two features.  From these figures, it can be directly seen that: 1) the glass profiles had curved walls 

and rounded bottoms, while the PMMA profiles had relatively straight walls and rectangular bottoms, 

consistent with observations in Chapters 2 and 3; and 2) the etch rate of glass was greater than that of 

PMMA as has been noted in several other studies, e.g. in [17].      

In Section 3.4.2, the lack of a mask wear model was identified as a major contributor to the 

inaccurate prediction of the surface evolution of inclined channels in glass at oblique incidence.  For the 

presently considered cases, the necessity of modelling mask wear can be seen by comparing Figure 4.7, 

which shows the model-predicted profiles when mask wear is considered, to Figure 4.8, which shows the 

predictions when mask wear is not modelled, for the oblique incidence case of a FG mask on a glass 

target.  Modelling the mask wear resulted in an increase in width and depth of the target profiles resulting 

from the surface evolution of the mask.  Without mask wear, the portion of the jet outlined by the mask 

that is ‘visible’ to the target defined with +  in Figure 4.2 does not increase with time, and hence 

the modelled target profiles maintain a constant width.  As a result, their propagation begins to slow down 

beyond a certain depth, as also noted in Section 3.4.2.  An analogous argument explains the increase in 

width and depth of the glass target profiles, as well as the increase in width of the PMMA target profiles 

as explained in Section 3.4.2, for the  = 90° cases in Figures 4.10 and 4.11.     

 

In general, the agreement between the predicted and measured glass and PMMA target profiles of 

the micro-channels machined at  = 45° and  = 90° in Figures 4.7, 4.9, 4.10 and 4.11 were good, both in 

terms of depth and overall shape.  In the majority of cases, e.g. Figures 4.7 and 4.11, the model fairly 

accurately predicted the increase in width (and depth) of the target profiles resulting from the surface 

evolution of the FG and RM masks.  However, in Figure 4.9, there was a slight discrepancy between the 

measured and modelled glass profile shapes.  This was likely due to the deformation of the RM mask on 

the right hand side caused by the poor structural integrity of the elastomeric RM mask resulting from the 

exposure of interface between the mask and the substrate to the incoming jet at oblique incidence.   

On the left hand side of Figure 4.10, discrepancies between the measured and modelled profiles 

of the channels machined in glass at  = 90° when using a FG mask likely resulted from particle second 

strike and spatial hindering effects [13,21-24], as also explained in Sections 2.4.1.2 and 3.4.2.  As a result 

of this, in comparison to the modelled profiles in glass, the experimental profiles were deeper beyond 4 

passes.  Additional discrepancies in Figure 4.10 resulted from mask under-etch, as also seen in [26] when 
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using steel masks as explained in Section 1.2.1, where the measured profiles were wider near the mask-

target interface, i.e. z = 0 in the figure, and tapered off towards the bottom beyond 2 and 4 passes in glass 

and PMMA, respectively, when compared to the modelled profiles.   

In the modelled PMMA profiles on the right hand side of Figure 4.10, there was a slight ‘under-

etching effect’ at the target side walls, just below the zero depth, due to a combination of the rapid lateral 

target propagation caused by the high local erosion rate of PMMA at shallow impact angles and the 

application of  in eq. (4.15 (b)), as opposed to eq. (4.15 (a)), necessary so that the slowdown in the 

numerical surface propagation of the mask edges is avoided, as explained in Section 4.3.2.4.  This was not 

evident in the predicted glass profiles since the local erosion rate of glass is minimal at shallow angles, as 

explained in Sections 2.2 and 3.4.2.   

adjT,z

Overall, the agreement between the predicted and measured FG and RM mask profiles machined 

on glass and PMMA targets at  = 45° and  = 90° in Figures 4.7, 4.9, 4.10 and 4.11 was fair, both in 

terms of depth and overall shape.  Figure 4.7 shows relatively fair agreement up to ~ 4 passes, and poor 

agreement beyond that, especially at the right mask.  Figure 4.9 shows good agreement up to 8 passes on 

the left mask, and poor agreement on the right mask.  This is partially due to the RM mask deformation 

on the right side that was mentioned above.  Another reason for the discrepancies between the measured 

and predicted mask profiles in Figures 4.7, 4.9, 4.10 and 4.11 may be the first-order approximation 

discussed in Section 4.3.2.2 that assumes the masking function at the sloped mask edge to be constant at 

an average value, determined by assuming a linear mask edge.  Nevertheless, it is the prediction of the 

surface evolution of the target profiles incorporating mask wear that is of practical importance, rather than 

the shape of the eroding mask itself.  Since the model predicts the target profiles quite well, in the 

majority of cases, it is nevertheless useful.   

As a final practical note, RM masks erode relatively fast, when compared to FG masks.  From 

Figures 4.9 and 4.11, it can deduced that in machining features using RM, i.e. elastomeric, masks, the 

maximum achievable AR is ~ 1, taking into account the increase in feature width due to mask wear.  Thus 

RM masks can be viewed as being more suited to machine small shallow features, whereas FG, i.e. steel, 

masks can be used to achieve higher ARs such as the PMMA channels in Figure 4.10 where AR > 2.   

The next chapter considers the effect of particle second strikes [13,21-24] in an attempt to 

improve feature predictions in glass (brittle) features for AR > 1.   
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Chapter 5 Modelling of Surface Evolution in Abrasive Jet Micromachining 
Including Particle Second Strikes: A Level Set Methodology 

 

5.1 Motivation 

 

 As shown in Figures 2.11, 3.7 and 4.10 (x ≤ 0), the particle second strike effect [13,21-24] can 

significantly affect the surface evolution of brittle (glass) target features with AR > 1.  As discussed in 

Section 1.2.1, this effect was initially modelled and implemented into an analytical surface evolution 

model by Slikkerveer and in’t Veld [13], which was later extended to include the mask edge effect by 

Ghobeity et al. [22].  These previous models could not account for all the pertinent effects in order to 

accurately model the second strike effect.  In addition, as discussed in Section 1.2.2, Ciampini and Papini 

[23] developed a CA computer simulation which addressed the previous limitations of the above 

mentioned models.  However, these types of computer simulations are very computationally expensive.  

In addition, none of the previous models have considered second strike and mask edge effects for cases in 

which the nozzle is incident at oblique angles, such as the case depicted in Figure 5.1.   

 

 

 

Figure 5.1. Depiction of the particle second strike and mask edge effects in glass at oblique incidence ( 
< 90°). 
 

 

In the present chapter, the LSM model developed in Chapter 4 is extended to include second 

strike and mask edge effects in brittle (glass) features made using AJM, using a ray tracing/node tracking 

algorithm.  The second strike model is generalized to any impact angle, and thus presents an improvement 

upon previous modelling attempts, i.e. for the first time, the prediction of the particle second strike effects 

from inclined masked brittle features is made possible.  The model is verified against previous 

measurements on masked micro-channels in glass with AR > 1.  The present model is also compared 
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against the model of Ghobeity et al. [22] and Ciampini and Papini [23], as well as previous LSM 

formulations developed in Chapters 2 and 3, which consider and do not consider the effects of second 

strikes, respectively.  Particle second strike effects do not need to be considered in the surface evolution 

of ductile, e.g. PMMA, features made using AJM since, as explained in Section 3.4.2, ductile features 

develop straight sidewalls which are approximately aligned with the incoming particle velocity vectors.  

Thus, ricochet and second strike of particles to the opposite side walls is highly unlikely.  As shown in 

Figures 2.12, 3.8 and 4.10 (x ≥ 0), there was no significant discrepancy between predicted and measured 

surface evolution of ductile (PMMA) features in terms of profile depth and overall shape well beyond AR 

of 1, without consideration of second strike effects.  The majority of the material in this chapter has been 

accepted for publication in [51].   
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5.2 Level set modelling of surface evolution in AJM including particle second strikes 

 

5.2.1 Local normal velocity and masking functions  

 

In order to model masked channels including mask erosive wear, as shown in Figure 4.2, and 

second strikes, the same transformed coordinate system defined by eq. (2.1) was used as that in Section 

2.3.1, Figure 3.1 and Section 4.3.1.  The velocity of the surface in the direction of the local normal for the 

AJM of brittle target (glass) and ductile mask (FG) presently considered is defined by eqs. (3.1) and (3.2), 

respectively, where V and  are defined by eqs. (2.7) and (2.9) with y  used in place of y = (rs - vtt) from 

Section 4.3.1, since similar blasting conditions were used as those in Sections 2.2, 3.2 and 4.2.  In 

addition, the same masking function 
Unif0/xM  defined by eq. (4.16) is used to adjust the particle mass 

flux  incident to the glass target and the FG mask as that in Section 4.3.2.    

 

5.2.2 LSM model implementation  

 

5.2.2.1 Partial derivatives, surface initialization and geometric variables  

 

Following the approach of Sections 2.3.4.1, 3.3.3.1 and 4.3.3.1, eq. (2.12) was used to 

approximate partial derivatives used in obtaining the solution to ),,( tzx and geometric variables.  The 

initial hybrid mask-target surface was represented by an inverse ‘hat’ shape, and the grid was divided into 

2 material regions, FG and glass, as shown in Figure 4.6.  The ),,( tzx was initialized and re-initialized 

using the SDF defined by eq. (2.29) as explained in Section 3.3.3.1. The geometric variables n


 and K 

were obtained using eq. (3.13).  In addition, with 1),(  zx from eq. (3.12) and Section 3.3.3.1, the 

tangent to the surface, (Figure 5.2), becomes  t


 

                                                ),( xzt 


                                                                    (5.1) 
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Figure 5.2. Geometry for modelling particle second strike. 

 

 

5.2.2.2 Particle second strike formulation 

 

 The following assumptions were made in modelling the particle second strike effect: 

 

a. First and secondary particle strike contributions occurred over the same time step.  The same 

modelling approach was used in [13,22].  Since the particle velocities were on the order of 150 m 

s-1, and the maximum distance a particle can travel after ricocheting is on the order of the mask 

opening width (~500 m), the time for a particle to ricochet is on the order of 3.3 s, which was 

much smaller than the average time step, which was on the order of 14-40 ms (see Section 5.3.1).  

Therefore, this assumption introduces negligible error. 

b. All particles travelled in the x-z plane, at a y  location along the scanning direction that 

approximates the total flux seen in a single scan of the nozzle by an equivalent 2 dimensional 

system, as discussed in Sections 4.3.1 and 5.2.1. 
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c. Only first and secondary strike contributions were considered, assuming that third and higher 

ricochets would carry negligible energy towards erosion, as in [13,22].   

d. Inter-particle collision were ignored since the range of the particle mass flow rate typically used 

in AJM, and considered in the present study (see Section 5.3.1) was low enough such that 

particles ricocheting from the surface did not interfere with arriving particles [33-35], as in 

Sections 2.2, 3.2 and 4.2.   

 

In the analysis, the hybrid mask-target surface is composed of surface nodes (Figure 5.2), or a 

collection of points which are not the same as the grid nodes, since the actual surface is usually in 

between the grid nodes, as explained in Sections 2.3.4.4 and 3.3.3.6 and shown in Figures 2.4 and 3.5.  

The initial particle strike is calculated by tracking particle trajectories originating from the nozzle and 

arriving to each of the surface nodes, which could be the mask or the target.  The example in Figure 5.2 

only shows an initial particle arriving to the target, but can be generalized to the entire mask-target 

surface.  Surface nodes which define the ‘top’ of the mask as shown in Figure 4.4, and which are not 

visible to the initial particle trajectory, as shown in Figure 4.4 along with eq. (4.14 (c)) and Figure 4.5 

along with eq. (4.15 (c)), resulting from the application of a mask as described in Sections 4.3.2 and 5.2.1, 

will obviously not contribute to the secondary strike effect.   

The secondary impact can result from particle target-to-target or mask-to-target ricochet, i.e. 

mask edge effect.  The algorithm uses ray tracing and iterates through each of the surface nodes where an 

initial particle strike already occurred, e.g. node ‘e’ in Figure 5.2, and checks whether a secondary 

collision is plausible from any of the other surface nodes, e.g. node ‘a’ in Figure 5.2.  Following the 

example in Figure 5.2, a particle arrives with a velocity vector aV


to a node ‘a’ where, using eqs. (3.13) 

and (5.1), the surface normal and tangent are defined as   

 

                                              aa ),( zxn 


                                                                    (5.2) 

 

and 

 

                                              aa ),( xzt 


                                                                  (5.3) 

 

and with this, the angles between aV


and an


, a , and between aV


 and at


, a , are defined as 
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and 
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Ideally, the particle will rebound from node ‘a’ and arrive at a potentially eroding surface node ‘e’ under 

consideration with a velocity vector eV


 where with eq. (3.13) the surface normal is defined as  

 

                                              ee ),( zxn 


                                                                    (5.6) 

 

and the unit vector distance from nodes ‘a’ to ‘e’, eaU


, can be obtained as  

 

                        
2

ae
2

ae

aeae

ae

ae
ea

)()''''(

),''''(

zzxx

zzxx

xx

xx
U









 


                                      (5.7) 

 

The angle between eV


 and en


, e , can then be calculated as  
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However, the ‘actual’ departing velocity from node ‘a’, dV


, must be determined using particle kinematics 

accounting for energy losses.  The method of Slikkerveer and in’t Veld [13] was adopted for this purpose, 

where the departing speed dV


was defined as a fraction, fv, of the arriving speed aV


, 

 

                                                        avd VfV


                                                                    (5.9) 
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and the departing angle, defined as 180° - d  in the present formulation, was defined as a fraction, f of 

the arriving angle a , where d is the angle between dV


and an


in Figure 5.2, 

 

                                                        aθd  f                                                              (5.10) 

 

It is noted that fv and f can be different for the mask and the target.  Thus, a particle is assumed to strike 

node ‘e’ a second time only when the particle trajectory defined by dV


 ‘closely’ matches that defined by 

eV


 in Figure 5.2.  For each node ‘e’, the algorithm iterates through each plausible node ‘a’ and calculates 

a single minimum displacement, smin, between these trajectories as 

 

                                            )min(tan aede'min xxs
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                                               (5.11) 

 

where de'  is defined in Figure 5.2, 

 

                                                         de'de'                                                              (5.12) 

 

and using eqs. (5.2) and (5.7), the angle between eV


 and an


, e' , can be calculated as 
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A secondary collision will occur at node ‘e’ if the following conditions are met:  

 

                                                          critmin ss                                                              (5.14) 

 

and  

 

                                                            critae Uxx 


                                                       (5.15) 
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where scrit in eq. (5.14) is a critical displacement on the order of 1 node spacing dictating whether a 

secondary collision will occur at node ‘e’ and Ucrit in eq. (5.15) is a critical minimum distance between 

nodes ‘e’ and ‘a’ on the order of mean particle diameter.  The condition in eq. (5.15) ensures that eq. 

(5.11) remains valid and approximates a realistic scenario such that the distance between nodes ‘e’ and ‘a’ 

must be larger than the mean particle diameter so that a particle has enough room to rebound.  Since a 

secondary particle trajectory will usually pass between nodes, the secondary strike contribution between 

successive ‘e’ surface nodes needs to be linearly weighed to evenly distribute the erosive energy across 

the nodes. Thus, eq. (5.9) is re-written to obtain the speed eV


as  
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where aV


 is defined by eq. (2.7) as described in Section 5.2.1 but with x’’a and za, i.e. surface nodal 

values, in place of x’’ and z, respectively.  The particle mass flux simply becomes  

 

                                                            ae 


                                                                   (5.17) 

 

where a


 is defined by eq. (2.9) as described in Section 5.2.1 but with x’’a and za in place of x’’ and z, 

respectively.   

 This above procedure is repeated for all the nodes ‘e’.  Only a single secondary strike 

contribution from a given node ‘a’ is possible to a given node ‘e’ if conditions in eqs. (5.14) and (5.15) 

hold; otherwise there is no secondary strike at node ‘e’.  Although at first glance the algorithm seems 

computationally expensive, the algorithm avoids many redundant calculations by checking the visibility 

between nodes ‘a’ and ‘e’ and the rebound direction of the potential secondary strike trajectory.  Thus, 

node ‘e’ is visible to the potential secondary strike trajectory from node ‘a’ only if e'  > 90° and e  < 90° 

in Figure 5.2, which ensures that glancing collisions never occur.  The assumption is valid for smooth 

surfaces that do not have excessive irregularities.  In addition, by checking the rebound direction of the 

potential secondary strike trajectory, many nodes can be ignored.  For instance, if a > 90°, as shown in 

Figure 5.2, the particle will rebound from left to right, with respect to the x’-z’ axis.  Thus, node ‘e’ must 

be to the right of node ‘a’, or x’e > x’a, for any calculations to be performed.  Similarly, for a < 90°, a 

particle will rebound from right to left, thus node ‘e’ must be to the left of node ‘a’, or x’a > x’e, for any 
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calculations to be performed.  Finally, for a = 90°, the particle will rebound back along the same arrival 

trajectory from the nozzle, and thus no secondary strike is possible.   

 The entire procedure is repeated at each time step and is valid for any impact angle, .   

 

5.2.2.3 Simplified LSM for non-convex Hamiltonians including particle second strikes 

 

The simplified LSM for non-convex H presented in Sections 3.3.3.2 and 4.3.3.2, and based on 

Section 2.3.4.2, is now generalized to include the effect of particle second strike.  Thus, eq. (2.21) 

with 1),(  zx can be rewritten as  
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                              (5.18) 

 

where the superscripts 1st and 2nd indicate first and second strike contributions.  Ĥ from eq. (2.22) now 

includes the effect of second strike, 
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Combining eqs. (3.2), (3.12), (3.13), (4.16), (5.8), (5.16) and (5.17), the Hamiltonians for the first and 

second strike contributions on a ductile FG mask, respectively, can be expressed as  
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and 
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where ,  and  are defined by eqs. (5.8), (5.16) and (5.17), respectively,  is the angle 

between the initial particle trajectory velocity, 

2nd
e

2nd
e

2nd
eV 1st

e

1st
eV


, arriving from the nozzle to node ‘e’ and en


(Figure 

5.2),   
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and and  are obtained using eqs. (2.7) and (2.9) as described in Section 5.2.1, respectively, but 

with x’’

1st
eV 1st

e

e and ze  in place of x’’ and z, respectively.  It is noted that the Hamiltonians for the first and 

second strike contributions on a brittle glass target corresponding to eq. (3.1) can be obtained by 

substituting both n1 = kv + 1 and n2 = 0 in eqs. (5.20) and (5.21).  It should also be noted that the masking 

function 
Unif0/xM  only applies to the first strike in eq. (5.20), and not eq. (5.21).  g in eq. (5.19), 

originally defined by eq. (2.23), now includes the effect of second strike, 
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From the results of eqs. (3.18) and (3.20), in eq. (5.23), the partial derivatives of eqs. (5.20) and (5.21) 

with respect to x and z, can be expressed as 
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and 
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where  
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It is again noted that the brittle target versions of eqs. (5.24) and (5.25) can be obtained by substituting in 

n1 = kv + 1 and n2 = 0.  The notation (x’’; z) in eqs. (5.24) and (5.25) indicates that x’’ and z were used 

when evaluating  and , respectively.  All the non-constant quantities in eq. (5.26), in the square 

brackets on the right hand side of eqs. (5.24) and (5.25), in K from eq. (3.13) used in eq. (5.18), and  

and  from eq. (2.12) used in eq. (5.19), are evaluated at the grid nodes, rather than the surface nodes.  

In contrast, eqs. (5.20)-(5.22) are evaluated at the surface nodes, which is consistent with EVM from 

Sections 3.3.3.3 and 4.3.3.2 (and 5.2.2.4).   

x
H z

H

 g

-
g

 

5.2.2.4 EVM and NB LSM  

 

The same EVM presented in Sections 3.3.3.3 and 4.3.3.2 is used in the present formulation.  

Using eq. (3.22), 1stH  and 2ndH  in eqs. (5.20), (5.21), (5.24) and (5.25) at the surface nodes become 

 and at the grid nodes.  Equations (5.24) and (5.25) thus become nd 

.  These new expressions now replace

1st
extH

H 2nd
ext(

2nd
extH

z

zx
H  ;

1st
ext )( a

x  ;) 1stH , 2ndH , and  in eqs. (5.18), (5.19) 

and (5.23) in solving eq. (5.18) for t > 0.  In addition, the same NB LSM presented in Section 3.3.3.4 is 

applied in the present formulation.  The NB-extension algorithm in solving eq. (5.18) was analogous to 

the one outlined in Section 3.3.3.7 in solving eq. (3.14).     

1st
g

H 
2nd

g
H 

 

5.2.2.5 Grid formulation, boundary conditions, time step and surface interpolation  

 

 For the present problem, using the geometry of Figure 4.6, the vertical and horizontal grid limits 

were obtained in the same way as described in Section 4.3.3.3.  These limits were then used to calculate 

the spatial grid steps and global spatial coordinates at the grid nodes as described in Section 2.3.4.3.  The 

boundary conditions were obtained in the same way as described in Sections 2.3.4.3 and 3.3.3.5.  The 

time step was calculated using the CFL condition [37] described by eq. (4.17), which is now modified to 

include the effect of second strike,   
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(5.27) 
 

where the maximum was obtained in the same way as described in Section 3.3.3.5.   

 Finally, as described in Section 4.3.3.3, the location of the surface, used in obtaining ),,( tzx , 

Unif0/xM  and the upper and lower bands, as well as FD approximations of the partial derivatives at 

surface nodes, used in EVM and the presently considered second strike formulation, were obtained using 

interpolation as described in Section 3.3.3.6.   
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5.3 Results and discussion  

 

5.3.1 Model execution and inputs/outputs 

 

 The second strike LSM-based model presented in Section 5.2 was verified by comparison with 

experimental profiles and LSM models from Sections 2.4.1.1 (Figure 2.11) and 3.4.1 (Figure 3.7) in 

Figures 5.3-5.5, as well as previously published experimental profiles and computer simulation based 

analytical model from [22] along with CA based model from [23] in Figure 5.6.  The necessary model 

inputs and resulting outputs for the current model simulations corresponding to Cases 1-5 in Figures 5.3-

5.6 are summarized in Table 5.1.  In all figures, a zero depth, i.e. z = 0, represents the mask-target 

interface.   

 For Cases 1-4 in Table 5.1 (Figures 5.3-5.5), the parameters h, Hm, Wm, rm, , vt, M , Hv and  

(for glass) were obtained based on experimental conditions and measurements as specified in Sections 

2.2, 2.4.1.1, 3.2, 3.4.1 and 4.2.  The parameters Vo, , l, l,   (for FG), kv, C, n1 and n2 were obtained 

from Sections 2.4.1.1, 4.2 and 4.4.1 based on previous measurements for the same nozzle, jet conditions, 

abrasives, target and mask materials as presently utilized.  

 For Case 5 in Table 5.1 (Figure 5.6), almost the same experimental setup, jet conditions, 

abrasives and target material were used in [22] as that specified in Sections 2.2, 2.4.1.1, 3.2 and 3.4.1.  

Thus, the parameters l,  l, h,  and vt, as well as kv and C for the glass target were the same as that 

for Cases 1-4, with the exception of for Cases 3 and 4, where the jet was at oblique incidence to the 

target.  However, the abrasives were blasted from a 3.8 x 0.3 mm rectangular nozzle in [22] instead of a 

0.76 mm inner diameter nozzle, as in Cases 1-4.  Thus, for this case, a constant velocity across the target 

and the mask was assumed, i.e. V = Vo rather than that defined by eq. (2.7) as described in Section 5.2.1, 

in order to be consistent with the approach in [22].  Also, Vo and  were obtained from measurements in 

[44] as described in Section 2.4 .1, and .2 M from measurements in [17].  In addition, the assumed 

tempered steel FG mask attached to the target via clamps in [22] had different dimensions than that for 

Cases 1-4, and due to a lack of published data, erosion and material constants for this mask could not be 

verified to be the same as that for Cases 1-4.  Thus, it was assumed that no mask wear occurred in Case 5, 

as was also done in [22], and thus the parameters Hv, kv, C, n1 and n2 for the mask were not specified.            

For all cases in Table 5.1, the parameters prs and were obtained as explained in Sections 

4.3.1 and 4.3.2.4, respectively.  The parameter [16,17,37] was used to smooth the results in modelling 

glass targets, estimated based on the recommendations of [17] described in Section 2.4.1.1.  The 

parameter for Cases 1-4 in Figures 5.3-5.5 was different than that used previously in Figure 2.11 and 

adjT,z
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Figure 3.7 where the scanning target approach described in Sections 2.4.1.1 and 3.3.1 was used, since the 

present formulation used the stationary target approach described in Sections 4.3.1 and 5.2.1.   

For all cases in Table 5.1, the parameters f and fv were adjusted to obtain a best fit to the 

experimental glass profiles for AR > 1 where second strike effects begin to take effect, as was also done 

in [13,23].  These values were within the ranges of 0.8 ≤ f  ≤ 1.2 and 0.2 ≤ fv ≤ 0.5 quoted by Slikkerveer 

and in’t Veld [13], and almost the same as those assumed in [13,23], under similar experimental 

conditions.  The parameters scrit and Ucrit were obtained as defined in Section 5.2.2.2.   

For all the present simulations in Table 5.1, the grid dimensions imax·kmax and geometrical 

parameters zsurf, zam, lm,L and lm,R defined in Section 4.3.3.3 and Figure 4.6 were chosen such that x = z, 

which ensured the convergence and accuracy of the numerical solution as described in Section 2.4.1.1.  

Tpass for the glass target and the FG mask was obtained in the same way as explained in Section 4.4.1, 

except for Case 5 where it was assumed that no mask wear resulted, as explained above, and thus Tpass for 

the mask was not specified.  For all cases in Table 5.1, Tpass for the target and the mask varied between 

1.5-7.6 s pass-1 and 9.1-12.0 s pass-1, respectively, which resulted from possible variations in flux and/or 

velocity between experiments, and the fact that different nozzles were used for Cases 1-4 and Case 5.       

 As explained in Section 4.4.1, the total simulation times for all the cases were obtained by 

multiplying the maximum number of nozzle passes (Table 5.1) by (the chosen) Tpass for the target.  The 

1stH  and 2ndH  in eqs. (5.20), (5.21), (5.24) and (5.25) for the mask were multiplied by the ratio of 

Tpass,mask/Tpass,target.  The resulting mean t values obtained with eq. (5.27) and the number of iterations and 

band re-initializations (Section 3.3.3.4) are listed in Table 5.1.   

 The model was implemented in MATLAB 7.9 (The MathWorks, Inc., Natick, MA, USA).   All 

cases were simulated on a 2.93 GHz Quad-core Intel i7 CPU with 8 GB of RAM and the resulting ETs 

were approximately between 0.5-2.5 hours.  An example program, corresponding to Case 2 in Figure 5.3, 

is given in Appendix B.       

 

 117



-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35

x (mm)

z (mm)

 

Figure 5.3. Comparison of measured (Section 2.4.1.1; Figure 2.11) (◊) surface evolution of glass FG 
masked channels machined at  = 90° after 2, 4, 6 and 10 passes of the nozzle with predictions of: (●) 
previous LSM model (Section 2.4.1.1; Figure 2.11) that did not consider mask wear and second strikes; 
(——, Case 1) present model that considers mask wear and second strikes off the target only; (▬▬, Case 
2) present model that considers mask wear and second strikes both off the target and the mask.  All model 
inputs are specified in Table 5.1.  
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Figure 5.4. Comparison of measured (Section 3.4.1; Figure 3.7) (—◊—) surface evolution of glass FG 
masked channels machined at  = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle with predictions of: 
(●, Case 3) present model that considers mask wear and does not consider second strikes.  All model 
inputs are specified in Table 5.1.   
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Figure 5.5. Comparison of measured (Section 3.4.1; Figure 3.7) (—◊—) surface evolution of glass FG 
masked channels machined at  = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle with predictions of: 
(●, Case 4) present model that considers mask wear and second strikes both off the target and the mask.  
All model inputs are specified in Table 5.1.  
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Figure 5.6. Comparison of measured [22] (◊) surface evolution of glass FG masked channels machined at 
 = 90° after 1, 3, 5, 7, 9 and 12 passes of the nozzle with predictions of: (——) previous [22] computer 
based analytical model that considered second strikes; (▬) previous [23] CA based model that considered 
second strikes; (▬▬, Case 5) present model that does not consider mask wear and considers second 
strikes both off the target and the mask.  Only a small portion of the simulated mask profiles are shown 
for ease of comparisons.  All model inputs are specified in Table 5.1.   
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Table 5.1. Model inputs and numerical outputs.   

Model parameters Case 1 and {Case 2}* 
(Figure 5.3) 

Case 3 
(Figure 5.4) 

Case 4 
(Figure 5.5) 

Case 5 
(Figure 5.6) 

Model inputs     
V0 (m s-1) ( ) 162 [14],15 [14] 162 [14],15 [14] 162 [14],15 [14] 148 [44],15 [44] 
 l  ( ),  l  ( ) -11.6 [19],0.5 [19] -11.6 [19],0.5 [19] -11.6 [19],0.5 [19] -11.6 [19],0.5 [19] 
h (mm) 20  20  20  20 [22] 
Hm (m) 100  100  100  1000 [22] 
Wm (m) 400  450  450  200 [22] 
rm (m) 14  14  14  300 [22] 
 (°) 90  45  45  90 [22] 
vt (mm s-1) 1.0  1.0  1.0 1.0 [22] 
M  (g min-1) 2.63  2.70 - 9.65 x 10-3·t (s)  2.70 - 9.65 x 10-3·t (s)  5.21 [17] 
 (kg m-3) 2200 (glass),  

7712 (UR) (FG) 
2200 (glass),  
7712 (UR) (FG) 

2200 (glass),  
7712 (UR) (FG) 

2200 (glass),  
- (FG) 

Hv (GPa) - (glass),5.67 (FG) - (glass),5.67 (FG) - (glass),5.67 (FG) - (glass),- (FG) 
kv ( ) 1.43 [14] (glass), 

1.73 (UR) (FG) 
1.43 [14] (glass), 
1.73 (UR) (FG) 

1.43 [14] (glass), 
1.73 (UR) (FG) 

1.43 [14] (glass), 
- (FG) 

C (m s-1)-kv 8.00 x 10-6 [36] (glass), 
7.90 x 10-8 (UR) (FG) 

8.00 x 10-6 [36] (glass), 
7.90 x 10-8 (UR) (FG) 

8.00 x 10-6 [36] (glass), 
7.90 x 10-8 (UR) (FG) 

8.00 x 10-6 [36] (glass), 
- (FG) 

n1 ( ) - (glass),0.69 (UR) (FG) - (glass),0.69 (UR) (FG) - (glass),0.69 (UR) (FG) - (glass),- (FG) 
n2 ( ) - (glass),1.40 (UR) (FG) - (glass),1.40 (UR) (FG) - (glass),1.40 (UR) (FG) - (glass),- (FG) 
prs ( ) 0.3536  0.3501  0.3501  0.3536  
zT,adj  (m) 20  10  10  20  
( ) 8.0 x 10-6 (glass),0 (FG) 9.0 x 10-6 (glass),0 (FG) 9.0 x 10-6 (glass),0 (FG) 4.0 x 10-6 (glass),0 (FG) 
fv ( ) 0.4 (glass),0 {0.4} (FG) 0 (glass),0 (FG) 0.4 (glass),0.4 (FG) 0.4 (glass),0.4 (FG) 
f ( ) 0.9 (glass),1.0 (FG) 0.9 (glass),1.0 (FG) 0.9 (glass),1.0 (FG) 0.8 (glass),1.0 (FG) 
scrit  (m), Ucrit  (m) 6.7,25 6.7,25 6.7,25 6.7,25 
imax·kmax ( ) 105·151 211·92 211·92 121·226 
z surf  (m) 850 450 450 450 
lm,L (m), lm,R (m) 150,150 400,549 400,549 300,300 
zam (m) 50.0 54.7 54.7 50.0 
x (m) = z (m) 6.7  6.7 6.7 6.7 
Tpass (s pass-1) 7.6 (glass),12.0 (FG) 7.0 (glass),9.1 (FG) 7.0 (glass),9.1 (FG) 1.5 (glass),- (FG) 
Max. no. of  
nozzle passes ( ) 

10 30 30 12 

Numerical outputs     
t (mean) (s) 4.06 x 10-2 {4.16 x 10-2} 3.80 x 10-2 1.81 x 10-2 1.40 x 10-2 
ET (min) 32.5 {30.6} 55.7 154.2 39.8 
No. iterations ( ) 3324 {3318} 3870 8921 1729 
No. band  
re-initializations ( )  

27 {28} 16 22 17 

            *{Quantity} in the column entries indicates respective input/output for Case 2 if different than that for Case 1.  

 

 

5.3.2 Comparisons with LSM model and experiments at  = 90° from Section 2.4.1.1 
(Figure 2.11)   

 

 In Figure 5.3, the predictions of the current LSM model which includes the effects of particle 

second strike and mask wear are compared to experiments at  = 90° and LSM model which did not 

consider particle second strikes and mask wear from Section 2.4.1.1 (Figure 2.11).  The effect of mask 

wear in increasing the width and depth of the feature was insignificant for this case.  However, the 

importance of modelling the second strike effect can be seen in Figure 5.3.  Whereas the previous LSM 

model failed to predict the udder shape and under-predicted the measured profile depths for AR > 1, the 

present model successfully predicted the udder shape and had a much better overall agreement with the 
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measured glass profiles both in terms of centre depth and overall shape.  Figure 5.3 also compared the 

present model predicted surface evolution considering ricochet and second particles strikes from both the 

target and the mask (Table 5.1, Case 2), with that considering second strikes off the target only (Table 

5.1, Case 1).  The mask edge effects were minor in this case due to the low mask height which resulted in 

only a slightly deeper and wider target profile after 10 passes when compared to the case which did not 

consider mask edge effects.  For 2-6 passes, the simulated profiles with and without consideration of the 

mask edge effects overlapped.     

 

5.3.3 Comparisons with LSM model and experiments at  = 45° from Section 3.4.1 
(Figure 3.7)  

 

 In Figures 5.4 and 5.5, the predictions of the present LSM model were compared to experiments 

at  = 45° from Section 3.4.1 (Figure 3.7).  The predictions of the LSM model which did not consider 

particle second strikes and mask wear are shown in Figure 3.7.  As can be seen in Figure 3.7, the overall 

agreement between the previous model predicted and the measured glass profiles of the micro-channels 

machined at  = 45° was poor both in terms of the overall shape and the depth, which were under-

predicted beyond 10 passes where the effective AR > 1.  In Figure 5.4, in order to isolate the effects of 

second strike, the present model, but considering only mask wear effects (Case 3) and not second strike, 

was compared against the same experiments.  Figure 5.4 showed some improvement in agreement 

between predicted and measured profiles over the previous LSM model of Figure 3.7 in terms of the 

overall shape, i.e. the simulated profiles in Figure 5.4 were slightly wider and deeper than those in Figure 

3.7.  Finally, in Figure 5.5, the present model considering both mask wear and second strike effects from 

both the mask and the target (Case 4) was again compared to the same experimental results as Figures 3.7 

and 5.4.  In this case, a significant improvement in agreement between predicted and measured profiles 

was achieved.  The simulated profiles in Figure 5.5 were not only much wider and deeper than those in 

Figure 3.7, but also deeper than those in Figure 5.4.  The simulated profiles in Figure 5.5 over-predicted 

the measured profile centre depths beyond 6 passes, more so than those in Figure 3.7 or 5.4.  This perhaps 

resulted from the fact that the present model did not consider spatial hindering effects.  Nonetheless, the 

overall model predictions which considered both effect of second strike and mask wear were much better 

than those which did not consider both of these effects.  It is thus clear that both the effect of second strike 

and mask wear must be considered for a fair prediction of surface evolution of inclined micro-channels.   

 In Section 3.4.2, it was stated that the glass experimental profiles in Figure 3.7 tended to shift 

their direction of propagation to the right, likely caused by the combination of increase in mask width due 

to mask wear with time, as shown in Figure 3.9, and second strike particles.  Figure 5.5 shows that this 
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effect was actually less significant than previously thought, i.e. the simulated profiles did slightly 

propagate to the right, but less so than the experimental profiles.  The additional discrepancy between 

predicted and measured profiles beyond 10 passes shown in Figure 5.5 was likely caused by mask under-

etch that resulted in a wider profile, and thus a more significant shift in profile propagation direction than 

that predicted by the model.  Mask under-etch, discussed in Section 1.2.1, was also seen in Figure 4.10 in 

Section 4.4.2 and in [26] when using steel masks.   

It should be noted that mask edge effects were very minor for the case presented in Figure 5.5, 

even more so than for the  = 90° case in Figure 5.3, and hence simulated profiles considering mask wear 

and second strikes off the target only were not shown, i.e. the simulated profiles with and without 

consideration of the mask edge effects overlapped.   

Finally, for the case presented in Figure 4.7, where the model of Chapter 4 which only considered 

mask wear effects was compared against similar experiments as that presently considered in Figures 3.7, 

5.4, and 5.5 but using a narrower Wm, second strike effects were not significant.  This can be said since 

the agreement between predicted and measured target profiles in Figure 4.7 was very good.  This likely 

resulted since for the case in Figure 4.7, the mask wore and target etched at a rate such that the resulting 

increase in target width preserved an effective AR such that second strikes were not significant, when 

compared to the present cases.   

 

5.3.4 Comparisons with previously published semi-computational and cellular automaton 
based models and experiments at  = 90° 

 

 Figure 5.6 shows the predictions of the current LSM model compared to previously published 

experimental profiles at  = 90° [22] and to semi-computational [22] and cellular automaton (CA) based 

models [23] described in Sections 1.2.1 and 1.2.2, respectively, which considered particle second strikes.  

The overall agreement between the predictions of both the current model (Case 5), and those of the CA 

model with the measured glass profiles of the micro-channels in Figure 5.6 were quite good, in terms of 

overall profile shape.  Both models were able to predict the udder shape for AR > 1, since both models 

account for the second strike and mask edge effects.  However, the present model slightly over-predicted 

the centre profile depths beyond 5 passes.  This likely resulted from the fact that the present model did not 

consider spatial hindering effects, while the CA model of [23] did.   

The computer simulation based analytical model of [22] predicted the measured centre profile 

depths well in Figure 5.6, but did not predict the overall profile shape well for AR > 1.  Instead, the 

resulting simulated profiles revealed sharp cusps at their centres.  In addition, the udder shape was not 

predicted.  This is likely because the model of [22] did not directly model the second strike effect; instead 
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an additional ‘effective particle flux’ originating from the second strike contribution was obtained from 

the computer simulation and incorporated into the analytical model.  In addition, the model of [22] did not 

consider curvature smoothing, i.e. when ≠0 in eq. (5.18), which the current LSM model took into 

account, and spatial hindering effects, which the CA model of [23] took into account.   

The present LSM formulation presented an improvement over the model of [22] in terms of 

feature shape prediction as can be seen in Figure 5.6.  Also, the current formulation is more 

computationally efficient than the CA approach, as mentioned in Sections 1.2.2 and 1.2.3.  For the case in 

Figure 5.6, ET ≈ 40 min for the current LSM model, whereas ET ≈ 15 hrs. for the CA model of [23], 

using similar hardware.  In addition, the current model considers particle second strike effects in inclined 

masked features, as shown in Section 5.3.3, and thus presents a significant improvement over previous 

modelling work of [13,22,23], which only considered normal incidence cases.   

Finally, it should be noted that mask edge effects were very minor for Case 5 in Figure 5.6, as 

was the case in Figure 5.5, and thus simulated profiles considering second strikes off the target only were 

not shown.  The same conclusion was reached in [22], where the computer simulation showed that the 

combination of large mask thickness and narrow mask opening width used in this case resulted in 

particles ricocheting off the mask edge wall and striking the mask edge wall a second time, as opposed to 

the target surface.  The mask edge effect is likely to become important in cases where the ratio of mask 

thickness, i.e. height, to mask opening width, i.e. feature width, approaches unity.   
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Chapter 6 Conclusions and Future Work 
 

6.1 Summary 
 

In Chapter 2, a LSM-based approach was presented to model the surface evolution in AJM of 

unmasked channels machined at normal and oblique jet incidence, as well as masked micro-channels and 

micro-holes at normal incidence, in both brittle (glass) and ductile (PMMA) targets.  The approach was 

developed to address the limitations of previous modelling approaches, as described in Chapter 1.  A 

previously developed analytical model of the AJM surface advancement problem was recast into level set 

form.  The level set predicted eroded profiles were compared to those experimentally obtained, and to 

those predicted by existing analytical models and a computer simulation.  The proposed model generally 

showed good predictive capability and improvements over previous modelling attempts.  The model 

developed provided a foundation for simulation of more complicated cases that followed.   

In Chapter 3, the formulation presented in Chapter 2 for masked features was extended to allow 

the prediction of surface evolution in AJM of masked micro-channels in glass and PMMA machined at 

oblique incidence.  The resulting profiles were multi-valued, which necessitated the development of a 

more complex and computationally efficient NB LSM-based formulation.  An extension of a previously 

developed analytical model from the normal to oblique incidence case allowed the decrease in particle 

flux near the mask edge to be predicted as a function of the mask height and the jet angular spread.  

Utilizing the NB LSM approach resulted in, on average, 5 times faster execution times.  The general 

agreement between measured and predicted profiles was fair due to the fact that the proposed model 

ignored particle second strikes and mask wear effects. 

In Chapter 4, the formulation presented in Chapter 3 was extended to allow for the modelling of 

mask erosive wear in AJM.  The model permitted the prediction of the surface evolution at any jet 

incidence of both the mask and the target simultaneously, by representing them as a hybrid and 

continuous mask-target surface.  The concept of a masking function was introduced to model the 

adjustment to abrasive mass flux incident to the hybrid surface to reflect the range of particle sizes that 

are ‘visible’ to this surface.  The predictions of the channel surface and eroded mask profiles were 

compared with measurements on micro-channels machined in both glass and PMMA targets at both 

normal and oblique incidence, using tempered steel and elastomeric masks.  Taking mask wear into 

account showed significant improvement in agreement between measured and predicted target profiles.   

 In Chapter 5, the formulation presented in Chapter 4 was extended to include the effect of particle 

second strikes off a brittle target and the mask, i.e. mask edge effects, at any jet incidence.  When 

compared to LSM models developed in Chapters 2 and 3 that did not account for mask wear and second 
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strike effects, the model significantly improved the prediction of measured masked micro-channels 

machined in glass.  The model also showed improvement over previous semi-computational and cellular 

automaton based models which considered particle second strikes, either in terms of feature prediction or 

in execution time.   
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6.2 Limitations of model 
 

The LSM-based model presented in Chapter 5 predicts the surface evolution of masked micro-

channels abrasive jet micromachined at any jet incidence in brittle targets considering particle second 

strikes, mask edge effects and erosive wear of masks where the target is exposed to the jet from time zero, 

e.g. FG mask.  This model also applies to: 1) cases using ductile targets, e.g. PMMA, by simply changing 

the target material and erosive parameters and by ignoring the effects of second strike; 2) cases using 

masks which are initially flat where the target is initially unexposed, e.g. RM mask, by simply changing 

the initial surface conditions for the mask; 3) surface evolution of masked micro-holes at normal 

incidence since the model of Chapter 5 uses the stationary target/mask approach to approximate the 

erosive efficacy for the AJM of micro-channels; and 4) surface evolution of unmasked channels at any 

incidence and unmasked holes at normal incidence, by simply allowing the masking function to be unity 

everywhere and by modifying the initial surface conditions and grid limits.  Thus, the model of Chapter 5 

is general and can be used to model any of the previous cases presented in Chapters 2-4.  It has the 

following limitations: 

 

1.   The model can only be used in cases where the particle mass flux, i.e. flow rate, is relatively low.  

For higher mass fluxes, particles ricocheting from the surface can interfere with arriving particles 

[33-35], thus decreasing the effective flux incident to the surface, and hence the erosion rate.  

However, the analytical model of Burzynski and Papini [34] showed that the ranges of the 

particle mass flux used in the present study, typical of those used in AJM operations, were 

sufficiently low for these effects to be negligible.   

2.  For the AJM of ductile targets, the model can only be used in cases where particle embedding and 

temperature, i.e. target surface heating, effects are minimal [2,8,17,31], as shown in Section 2.2.  

For example, in the AJM of PMMA holes at a scan speed of 0.25 mm s-1 in Figure 2.15, the 

profile depths were over-predicted by the model beyond 7 passes.  This was likely due to particle 

embedding which decreases the effective erosion rate [2,8,17,31].  In addition, for much higher 

fluxes and longer blasting times than that considered in the present study, the PMMA targets can 

begin to experience surface heating [2,31] which can affect the erosion rate.  Furthermore, the 

present model cannot be used for ductile polymeric targets such as ABS or soft PDMS that can be 

very difficult to machine or have very low erosion rates when abrasive jet machined at room 

temperature [8].  However, the model is still applicable to these materials when machining at 

cryogenic temperatures, and to a wide range of typical experimental conditions and ductile targets 

used in AJM, such as, e.g. LUCITE and LEXAN [31].   
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3. As discussed in Section 4.3.2.2, the model uses a the first-order approximation that assumes the 

masking function at the sloped mask edge to be constant at an average value, determined by 

assuming a linear mask edge.  This leads to discrepancies between the measured and predicted 

mask profiles, as was seen in, for instance, Figure 4.7.  Nevertheless, as explained in Section 

4.4.2, it is the prediction of the surface evolution of the target profiles incorporating mask wear 

that is of practical importance, which in most cases, the model does fairly well.    

4.  As discussed in Sections 5.3.3 and 5.3.4, the model ignores spatial hindering effects [13,22,23], 

and thus can only be used for cases where such effects are minimal, i.e. when the width at the top 

of the developing udder shape is significantly larger than the mean particle size.  For example, for 

the same mean particle size, the udder shape width in Figure 5.3 was approximately twice as large 

as that in Figure 5.6, and this was reflected in the better model predictions in Figure 5.3 when 

compared to Figure 5.6.  Nevertheless, for the case presented in Figure 5.6, the CA simulation of 

[23] showed that the maximum percentage of spatially hindered particles at the profile centres 

was only approximately 9%, and thus this effect is likely to become significant only at much 

higher ARs in brittle features than those presently considered.   

5.  The model cannot be used for prediction of the AJM of holes at oblique incidence, or channels at 

very slow scan speeds or high mass fluxes, where an appreciable slope in the scan direction at the 

leading edge of the jet can develop [14], as discussed in Section 2.2.  These cases require a 3D 

formulation because, in the former case, there is no profile symmetry across the scanning 

direction, and in the latter case, the slope on the leading edge can strongly affect the erosion rate 

under the given circumstances.  However, scan speeds and mass fluxes can be chosen such that 

the effect of the development of an appreciable slope in the scan direction can be ignored, while 

still maintaining an efficient erosion rate, as was done in the present study.   
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6.3 Conclusions and contributions 
 

The main conclusions and contributions of the present study can be summarized as follows: 

 

1. In Chapter 2, a novel approach was presented to model the surface evolution in AJM of 

unmasked and masked features in both brittle and ductile targets using LSM.   

2. For most of the cases considered in Chapter 2, excellent agreement with the experimental surface 

profiles was obtained using the foundational LSM-based model.  The model also showed 

improvement in terms of feature prediction over existing analytical models and a computer 

simulation, especially in cases where the evolving feature developed steep sidewalls, e.g. as seen 

in the surface evolution of  PMMA, which could not be predicted by the analytical models.   

3.  In Chapters 2 and 3, the scanning target approach was used for the first time in modelling the 

erosive efficacy for the AJM of micro-channels, whereas all previous analytical models assumed 

a stationary target approach.  This approach proved to be useful in modelling brittle, e.g., glass, 

targets that develop sharp profiles since it delays the onset of high curvature, and hence in many 

cases avoids the use of curvature smoothing which is computationally expensive.   

4.  In Chapter 3, an NB LSM-based formulation was developed that, for the first time, allowed the 

prediction of surface evolution in AJM of inclined masked features.  

5. In Chapter 3, it was shown that the developed model for predicting the decrease in particle flux 

near the mask edge at oblique incidence could also be used in setting up successful experimental 

runs by calculating the portion of the target that is exposed to the jet prior to machining.   

6.  In the LSM formulation of Chapter 3, the resulting surface velocity function was non-convex, 

necessitating a novel extension of an existing extension velocity methodology (EVM) to allow 

the problem of grid ‘visibility’ of the particle flux to be properly addressed.   

7.  The results of Chapter 3 showed that the inclined masked PMMA micro-channels had straight 

walls and rectangular bottoms, while the glass micro-channels had curved walls and rounded 

bottoms.  It was also shown that changing the angle of incidence does not significantly affect the 

general shape of masked PMMA channels.   

8.  Since the LSM-based model developed in Chapter 3 ignored particle second strike and mask wear 

effects, it was best suited for predicting surface evolution at oblique incidence in ductile 

substrates with non-eroding masks, since the straight sidewalls in PMMA result in a low 

likelihood of particle ricochet.  The model was not suitable for use on glass, where mask wear 

and second strike effects significantly affected its ability to accurately predict the resulting 

surface evolution for AR > 1.  In addition, it was shown that the combination of the effects of 
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mask wear and second strike particles can cause a shift in the propagation direction of the 

developing glass profiles, although it was later shown that that this effect is actually less 

significant than originally thought.   

9.  In Chapter 4, the LSM-based formulation of Chapter 3 was extended to permit the prediction of 

the surface evolution of both the target and the mask simultaneously.  It was the first model that 

considered the influence of mask wear on features machined using AJM at oblique incidence.   

10.  The work of Chapter 4 demonstrated for the first time the need to model the adjustment in the 

mass flux at the mask edge walls themselves, as opposed to the target only, due to the finite size 

of the particles which limit the flux that is visible to the mask edges.  This led to the development 

of a masking function which generalized the adjustment in the flux to the entire mask-target 

surface.   

11.  In Chapter 4, the use of a continuous mask-target surface in the formulation introduced 

complications that were nevertheless resolved to obtain significant improvement in agreement 

between measured and predicted target surface profiles when mask wear was taken into account, 

although the mask profiles were not predicted as well.  Mask wear generally resulted in wider and 

deeper target profiles, when compared to cases where no mask wear was present.   

12. In Chapter 5, the LSM-based formulation of Chapter 4 was extended to include second strike and 

mask edge effects.  The model presented was the first to allow prediction of these effects in 

inclined masked features made using AJM.   

13. The work of Chapter 5 demonstrated that the second strike effect becomes important in the 

prediction of surface evolution of brittle (glass) features abrasive jet micromachined at any 

incidence for AR > 1.  The inclusion of the second strike effect into the formulation led to a 

significant improvement in feature prediction when compared to LSM models which did not 

account for these effects.  The model presented also showed significant improvement over 

previous semi-computational and cellular automaton based models which accounted for these 

effects, either in terms of feature prediction or in execution time.   

14. The work of Chapter 5 showed that the mask edge effect is not a significant contributor to the 

overall second strike effect; thus, in the majority of cases, it can be ignored.   

15. The proposed LSM-based feature predictive models can prove to be practical assistive tools 

during the micro-fabrication of complex MEMS and microfluidic devices using AJM.   
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6.4 Future work 
 

The general LSM-based model presented in Chapter 5 can be improved by addressing the 

limitation outlined in Section 6.2.  Firstly, it can be extended to model high flux cases by incorporating 

the analytical model of particle interference effects developed in [34].  However, since the model of [34] 

was developed for divergent erosive jets incident to a flat target surface at normal incidence only, it would 

have to be generalized to work for cases where the jet is incident to a non-flat, i.e. evolving, target surface 

at any incidence, as in the present study.  Secondly, the model can be extended to account for particle 

embedding effects in ductile targets by incorporating the model of [31] where a relation for a net 

embedding energy flux as a function of scanning direction distance and angle of incidence was used.  This 

would enable the modelling of surface evolution in AJM of a wider class of polymeric targets where these 

effects are significant.  Thirdly, the first-order approximation in modelling the mask edge could be 

improved by extending the formulation of Section 4.3.2.2 to work for cases where the mask edge slope is 

non-linear.  Furthermore, spatial hindering effects could be modelled by extending the formulation of 

Section 4.3.2.1 for the masking function for the target by assuming that the width of the udder shape is 

analogous to the mask opening width.  This would ensure that particles only as wide as the udder shape 

itself and smaller can reach the bottom of the profile.  If necessary, the model could be extended to 3D by 

extending the size of arrays and gradient operators for the level set function.  This would also require the 

development of a new 3D formulation to model the erosive efficacy, masking function and the grid, more 

difficult techniques in visualizing the evolving surface, and more efficient use of computational resources, 

i.e. by taking advantage of parallel computing to maintain computational efficiency.   

The model in its present form could be made more computationally efficient by minimizing the 

frequency of re-initialization, FR, of the level set function, while still ensuring that eq. (3.12) remains 

valid (see Section 3.3.3.1).  This can be achieved through numerical convergence studies or the 

introduction of a metric, although this would make the approach more complicated and less accurate, 

when compared to the present approach where re-initializaton is performed at each time step to ensure the 

highest degree of accuracy.  As a final note, the present model can be used to predict more intricate 

shapes that can be sculpted for a desired application through superposition of individual features made 

using AJM, i.e. the resulting surface shape from the initial simulation can be used as an input for the next 

one, etc.  Such sculpted features could be abrasive jet micromachined by using a combination of different 

nozzle passes, mask patterns, mask dimensions, and jet parameters, e.g. scan speed, angle of incidence, 

standoff distance, particle flux, velocity, shape and size.  This could be considered for future work.    
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Appendix A Abrasive Mass Flow Rate Measurements for AJM Experiments  
 

In the analysis, the mass flow rate fluctuation over the course of the machining experiment, 

originally described in Section 2.4.1.1, was deemed to be significant if the percentage change in average 

M  before and after the experiment was more than 10%.  In such cases, the mass flow rate was modelled 

as a linearly decreasing function of time t (cases in Tables A-3-A-6, A-9 and A-10).  Otherwise, the total 

average M  was used (cases in Tables A-1, A-2, A-7, A-8 and A-11-A-16).   

For the cases in Tables A-3-A-6, A-9 and A-10, the linear M function was obtained using the 

average M  before and after the experiment and the total machining time for the respective cases, i.e. the 

maximum number of nozzle passes multiplied by 2rs/vt (Section 2.3.2), since all such cases corresponded 

to the machining of channels.  For all these cases, the maximum number of nozzle passes was 30, as 

indicated in Sections 2.4.1.1 and 3.4.1.  From Sections 2.3.2 and 2.3.4.3, rscan be obtained as rs = 

/)001.0ln(h , where h = 20 mm from Sections 2.2 and 3.2 and = 15 from Sections 2.4.1.1 and 

3.4.1.  Using scanning speeds vt of 1 mm s-1 (glass, Tables A-3 and A-9) and 0.5 mm s-1 (PMMA, Tables 

A-4-A-6 and A-10) from Sections 2.2 and 3.2, the resulting total machining times were obtained 

approximately as 210 s and 420 s, respectively.  The resulting linear M functions are listed in Tables A-3-

A-6, A-9 and A-10.   

 
 
Table A-1. Abrasive mass flow rate measurements corresponding to Figure 2.5 and Sections 2.2 and 
2.4.1.1.   
              Trial M avg. (stand. 

dev.) (g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

3.41 3.32 3.35 3.36 (0.04) 

M after experiment              
(g min-1) 

3.20 3.29 3.23 3.24 (0.04) 

M total avg. (total stand. 
dev.) (g min-1) 

   3.30 (0.07) 

Change in M avg. 
before/after experiment (%) 

   3.6 (< 10) 
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Table A-2. Abrasive mass flow rate measurements corresponding to Figure 2.6 and Sections 2.2 and 
2.4.1.1.   
              Trial M avg. (stand. 

dev.) (g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

3.37 3.29 3.30 3.32 (0.04) 

M after experiment              
(g min-1) 

3.27 3.31 3.26 3.28 (0.02) 

M total avg. (total stand. 
dev.) (g min-1) 

   3.30 (0.04) 

Change in M avg. 
before/after experiment (%) 

   1.2 (< 10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Table A-3. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure 
2.7 and Sections 2.2 and 2.4.1.1.   
 

             Trial M avg. (stand. dev.) 
(g min-1) 

 1 2 3  
M before experiment           
(g min-1) 

2.27 2.46 2.56 2.43 (0.12) 

M after experiment              
(g min-1) 

2.09 2.12 2.33 2.18 (0.11) 

M total avg. (total stand. 
dev.) (g min-1) 

   2.31 (0.17) 

Change in M avg. 
before/after experiment (%) 

   10.3 (> 10) 

Resulting M  function 
(g min-1) 

   2.43-1.19 x 10-3t(s) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 134



Table A-4. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure 
2.8 and Sections 2.2 and 2.4.1.1.   
              Trial M avg. (stand. dev.) 

(g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

4.17 3.96 3.78 3.97 (0.16) 

M after experiment              
(g min-1) 

2.98 3.21 3.13 3.11 (0.10) 

M total avg. (total stand. 
dev.) (g min-1) 

   3.54 (0.45) 

Change in M avg. 
before/after experiment (%) 

   21.7 (> 10) 

Resulting M  function 
(g min-1) 

   3.97-2.05 x 10-3t(s) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A-5. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure 
2.9 and Sections 2.2 and 2.4.1.1.   
 

             Trial M avg. (stand. dev.) 
(g min-1) 

 1 2 3  
M before experiment           
(g min-1) 

3.77 4.05 3.82 3.88 (0.12) 

M after experiment              
(g min-1) 

2.21 2.53 2.52 2.42 (0.15) 

M total avg. (total stand. 
dev.) (g min-1) 

   3.15 (0.74) 

Change in M avg. 
before/after experiment (%) 

   37.6 (> 10) 

Resulting M  function 
(g min-1) 

   3.88-3.47 x 10-3t(s) 
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Table A-6. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure 
2.10 and Sections 2.2 and 2.4.1.1.   
              Trial M avg. (stand. dev.) 

(g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

2.77 2.43 2.78 2.66 (0.16) 

M after experiment              
(g min-1) 

2.25 2.31 1.92 2.16 (0.17) 

M total avg. (total stand. 
dev.) (g min-1) 

   2.41 (0.30) 

Change in M avg. 
before/after experiment (%) 

   18.8 (> 10) 

Resulting M  function 
(g min-1) 

   2.66-1.19 x 10-3t(s) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A-7. Abrasive mass flow rate measurements corresponding to Figure 2.11 and Sections 2.2 and 
2.4.1.1.   
              Trial M avg. (stand. 

dev.) (g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

2.63 2.81 2.69 2.71 (0.07) 

M after experiment              
(g min-1) 

2.47 2.58 2.60 2.55 (0.06) 

M total avg. (total stand. 
dev.) (g min-1) 

   2.63 (0.10) 

Change in M avg. 
before/after experiment (%) 

   5.9 (< 10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A-8. Abrasive mass flow rate measurements corresponding to Figure 2.12 and Sections 2.2 and 
2.4.1.1.   
              Trial M avg. (stand. 

dev.) (g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

5.31 5.55 5.61 5.49 (0.13) 

M after experiment              
(g min-1) 

5.29 5.19 5.33 5.27 (0.06) 

M total avg. (total stand. 
dev.) (g min-1) 

   5.38 (0.15) 

Change in M avg. 
before/after experiment (%) 

   4.0 (< 10) 
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Table A-9. Abrasive mass flow rate measurements and resulting linear function corresponding to Figures 
3.7 and 3.9, Table 3.1, and Sections 3.2 and 3.4.1.   
              Trial M avg. (stand. dev.) 

(g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

2.78 2.49 2.83 2.70 (0.15) 

M after experiment              
(g min-1) 

0.58 0.91 0.52 0.67 (0.17) 

M total avg. (total stand. 
dev.) (g min-1) 

   1.69 (1.03) 

Change in M avg. 
before/after experiment (%) 

   75.2 (> 10) 

Resulting M  function 
(g min-1) 

   2.70-9.65 x 10-3t(s) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A-10. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure 
3.8, Table 3.1, and Sections 3.2 and 3.4.1.   
              Trial M avg. (stand. dev.) 

(g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

1.71 1.99 1.88 1.86 (0.12) 

M after experiment              
(g min-1) 

1.31 1.12 1.33 1.25 (0.09) 

M total avg. (total stand. 
dev.) (g min-1) 

   1.56 (0.32) 

Change in M avg. 
before/after experiment (%) 

   32.8 (> 10) 

Resulting M  function 
(g min-1) 

   1.86-1.44 x 10-3t(s) 
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Table A-11. Abrasive mass flow rate measurements corresponding to Figures 4.7 and 4.8, Table 4.1, and 
Sections 4.2 and 4.4.1.   
              Trial M avg. (stand. 

dev.) (g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

2.70 2.12 3.01 2.61 (0.37) 

M after experiment              
(g min-1) 

2.08 2.62 2.83 2.51 (0.32) 

M total avg. (total stand. 
dev.) (g min-1) 

   2.56 (0.35) 

Change in M avg. 
before/after experiment (%) 

   3.8 (< 10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A-12. Abrasive mass flow rate measurements corresponding to Figure 4.9, Table 4.1, and Sections 
4.2 and 4.4.1.   
 

             Trial M avg. (stand. 
dev.) (g min-1) 

 1 2 3  
M before experiment           
(g min-1) 

3.84 3.82 3.86 3.84 (0.02) 

M after experiment              
(g min-1) 

3.85 3.84 3.83 3.84 (0.01) 

M total avg. (total stand. 
dev.) (g min-1) 

   3.84 (0.01) 

Change in M avg. 
before/after experiment (%) 

   0 (< 10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A-13. Abrasive mass flow rate measurements corresponding to Figure 4.10 (x ≤ 0), Table 4.1, and 
Sections 4.2 and 4.4.1.   
 

             Trial M avg. (stand. 
dev.) (g min-1) 

 1 2 3  
M before experiment           
(g min-1) 

2.81 3.39 3.16 3.12 (0.24) 

M after experiment              
(g min-1) 

3.17 3.03 4.06 3.42 (0.46) 

M total avg. (total stand. 
dev.) (g min-1) 

   3.27 (0.39) 

Change in M avg. 
before/after experiment (%) 

   9.6 (< 10) 
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Table A-14. Abrasive mass flow rate measurements corresponding to Figure 4.10 (x ≥ 0), Table 4.1, and 
Sections 4.2 and 4.4.1.   
              Trial M avg. (stand. 

dev.) (g min-1) 
 1 2 3  
M before experiment           
(g min-1) 

2.13 2.67 2.25 2.35 (0.23) 

M after experiment              
(g min-1) 

2.05 1.79 2.52 2.12 (0.30) 

M total avg. (total stand. 
dev.) (g min-1) 

   2.24 (0.29) 

Change in M avg. 
before/after experiment (%) 

   9.8 (< 10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A-15. Abrasive mass flow rate measurements corresponding to Figure 4.11 (x ≤ 0), Table 4.1, and 
Sections 4.2 and 4.4.1.   
 

             Trial M avg. (stand. 
dev.) (g min-1) 

 1 2 3  
M before experiment           
(g min-1) 

2.97 3.97 3.86 3.60 (0.45) 

M after experiment              
(g min-1) 

3.07 3.68 4.05 3.60 (0.40) 

M total avg. (total stand. 
dev.) (g min-1) 

   3.60 (0.43) 

Change in M avg. 
before/after experiment (%) 

   0 (< 10) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table A-16. Abrasive mass flow rate measurements corresponding to Figure 4.11 (x ≥ 0), Table 4.1, and 
Sections 4.2 and 4.4.1.   
 

             Trial M avg. (stand. 
dev.) (g min-1) 

 1 2 3  
M before experiment           
(g min-1) 

3.45 3.62 3.55 3.54 (0.07) 

M after experiment              
(g min-1) 

3.56 3.58 3.60 3.58 (0.02) 

M total avg. (total stand. 
dev.) (g min-1) 

   3.56 (0.05) 

Change in M avg. 
before/after experiment (%) 

   1.1 (< 10) 
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Appendix B Example Program for the Case Corresponding to Figure 5.3 
(Case 2) in Section 5.3.1 

 
 
 

%2D LLLF LSM with Curvature, F Extended, Narrow Band   
%AJM of Masked Glass Channels with Mask Wear, Second Strike 
clc 
clear all 
tic; %Start timer 
%__________________________________________________________________________ 
%Target (T) Properties 
%Input Constants of Target (all in metric units) 
MFR =2.63/60000;            %MFR (kg/s) 
C=8.0e-6; %T                %Empirical constant (m/s)^-k_vel 
H_slp=4.92;                 %Velocity distribution slope 
beta=15;                    %Focus coefficient 
v_o=162;                    %v(0) (m/s) 
v_scan=0.001;               %Scan Velocity (m/s) 
rho_s=2200; %T              %Target surface mass density (kg/m^3) 
k_vel=1.43; %T              %Velocity exponent 
alfa=90*pi/180;             %Angle of incidence (rad) 
epsilon=8e-6;               %Curvature coefficient - NOTE has to be MAX if have epsilon for T & M (SEE CFL condition) 
h=0.02;                     %Standoff distance (m) 
W_m=400e-6;                 %Mask width (m) 
H_m=100e-6;                 %Mask height (m)                      
%__________________________________________________________________________ 
%Mask (M) Properties 
C_M=7.9e-8;                 %Empirical constant (Mask)(m/s)^-k_vel_M 
rho_s_M=7712;               %Mass density (Mask) (kg/m^3) 
k_vel_M=1.73;               %Velocity exponent (Mask) 
H_vic_M=5.67;               %Vicker's hardness (Mask) (GPa) 
n_1_M=0.69;                 %Ductile Erosion constants (Mask)  
n_2_M=1.399;    
leng_M_L=150e-6;            %Mask length on left side (m) 
leng_M_R=150e-6;            %Mask length on right side (m) 
%__________________________________________________________________________ 
%Other Inputs 
pas_des=10; %Desired number of passes 
adj_r_s=1.08;   %r_s (radius of impact area of jet on surface; see r_s) fit, i.e. Tpass_T (the time it takes to reach initial profile depth; see t_in) - applied here for code 
simplicity 
Num_iter=200000;    %Used for initial time step dt=tin/Num_iter (see below) 
adj_r_s_M=1.71; %T_pass_M fit (Mask); See adj_r_s 
C_M=C_M*(adj_r_s_M/adj_r_s); %Equivalent to Hamiltonian_M*(T_pass_M/T_pass_T) since C_M in Hamiltonian_M - applied here for code simplicity 
z_in=850e-6;   %Maximum expected feature(target) depth (m) (ensure large enough to account for upper band size BS) 
z_air=50e-6;  %Vertical distance above mask (m); (ensure large enough to account for lower band size) 
i_max=105;  %Grid size, x 
k_max=151;  %Grid size, z 
BS_L=2; %Define LOWER band size (Integer), in multiples of dz (need 1 grid pt. clearance from end of grid) 
BS_U=4; %Define UPPER band size (Integer), in multiples of dz (need 1 grid pt. clearance from end of grid) 
MT_pt_dist=3;   %Define zTadj distance, in multiples of dz 
%__________________________________________________________________________ 
%Specify output name of excel file 
if (alfa==90*pi/180)     
        fil_name='G_2DMOb_FxNB_MWr_2S_90FGch.xls';     
end 
if (alfa==60*pi/180)    
        fil_name='G_2DMOb_FxNB_MWr_2S_60FGch.xls';  
end 
if (alfa==45*pi/180) 
        fil_name='G_2DMOb_FxNB_MWr_2S_45FGch.xls';    
end 
if (alfa==30*pi/180)     
        fil_name='G_2DMOb_FxNB_MWr_2S_30FGch.xls';  
end 
%__________________________________________________________________________ 
%Calculate Spread angle (rad), assume 99.9% particles from r=0 to 
%(r+dr)_max and radius of impact area (r_s) of jet on surface in scan direction 
fi=atan(sqrt(-log(0.001))/beta);  
r_s=adj_r_s*h*tan(fi); %Adjusted r_s to obtain Tpass_T - applied here for code simplicity 
y_mean=0.3536*(r_s/adj_r_s); %Mean y used in stationary erosive power/efficacy (see below) simulating Avg. scanning erosive power/efficacy 
%__________________________________________________________________________ 
%Calculate input 'blasting time' 
pass_spec=pas_des;  
t_in=pass_spec*(2*r_s)/v_scan; 
T_pass_T=(2*r_s)/v_scan; %Tpass_T 
T_pass_M=(2*r_s)/v_scan*(adj_r_s_M/adj_r_s); %Tpass_M 
%__________________________________________________________________________  
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%Calculate minimum and maximum x & z grid limits 
x_off=W_m/2+leng_M_L; %Offset distance between global and nozzle axes 
  
if (alfa==90*pi/180) %Need this condition since Matlab creates error for cos(90) 
x_min_grid=0;  
x_max_grid=W_m/2+leng_M_R+x_off; 
else 
x_min_grid=h*cos(alfa);  
x_max_grid=h*cos(alfa)+W_m/2+leng_M_R+x_off; 
end 
  
z_min_grid=h*sin(alfa)-(H_m+z_air); 
z_max_grid=h*sin(alfa)+z_in; 
  
%Define grid spacing 
dx=(x_max_grid-x_min_grid)/(i_max-1); 
dz=(z_max_grid-z_min_grid)/(k_max-1); 
%__________________________________________________________________________ 
Crit_D=dz/2; %Define critical distance that must be achieved before bands are rebuilt 
%__________________________________________________________________________ 
%Define x and z coordinates 
x_cord=zeros(1,i_max); 
for i=1:1:i_max 
    x_cord(i)=(i-1).*dx+x_min_grid; 
end 
%Local x, nozzle origin 
x_cord_local=zeros(1,i_max); 
for i=1:1:i_max 
x_cord_local(i)=x_cord(i)-x_off; 
end 
z_cord=zeros(k_max,1); 
for k=1:1:k_max 
z_cord(k)=(k_max-k).*dz+z_min_grid; 
end 
%__________________________________________________________________________ 
%INITIALIZATION of phi (level set function) 
  
%Create arrays for initial surface, inc. mask 
r_UCt=14e-6;    %Mask radius 
  
%Top mask surface (left and right) 
z_rTL=h*sin(alfa)-H_m+r_UCt; %Centre pos'n of radial circle 
x_rTL=x_min_grid+leng_M_L-r_UCt; 
i_max_1L=1+ceil(leng_M_L/dx); 
dx_1L=leng_M_L/(i_max_1L-1); 
xz_surf_ini_1L=zeros(i_max_1L,2); 
for i_1L=1:1:i_max_1L 
    xz_surf_ini_1L(i_1L,1)=(i_1L-1)*dx_1L+x_min_grid; 
    if (xz_surf_ini_1L(i_1L,1)<x_rTL) 
        xz_surf_ini_1L(i_1L,2)=h*sin(alfa)-H_m; 
    else 
        xz_surf_ini_1L(i_1L,2)=real(-sqrt(r_UCt^2-(xz_surf_ini_1L(i_1L,1)-x_rTL).^2)+z_rTL);  
    end 
end 
  
z_rTR=h*sin(alfa)-H_m+r_UCt; %Centre pos'n of radial circle 
x_rTR=x_max_grid-leng_M_R+r_UCt; 
i_max_1R=1+ceil(leng_M_R/dx); 
dx_1R=leng_M_R/(i_max_1R-1); 
xz_surf_ini_1R=zeros(i_max_1R,2); 
for i_1R=1:1:i_max_1R 
    xz_surf_ini_1R(i_1R,1)=(i_1R-1)*dx_1R+(x_max_grid-leng_M_R); 
    if (xz_surf_ini_1R(i_1R,1)>x_rTR) 
        xz_surf_ini_1R(i_1R,2)=h*sin(alfa)-H_m; 
    else 
        xz_surf_ini_1R(i_1R,2)=real(-sqrt(r_UCt^2-(xz_surf_ini_1R(i_1R,1)-x_rTR).^2)+z_rTR); 
    end 
end 
%Target surface 
i_max_2=1+ceil((W_m)/dx);  
dx_2=(W_m)/(i_max_2-1);  
xz_surf_ini_2=zeros(i_max_2,2); 
for i_2=1:1:i_max_2 
    xz_surf_ini_2(i_2,1)=(i_2-1)*dx_2+(x_min_grid+leng_M_L);  
    xz_surf_ini_2(i_2,2)=h*sin(alfa); 
end 
%Vertical Mask edge surface (left and right) 
k_max_3=1+ceil((H_m-r_UCt)/dz); 
dz_3=(H_m-r_UCt)/(k_max_3-1);  
xz_surf_ini_3=zeros(k_max_3,2);   
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for k_3=1:1:k_max_3    
    xz_surf_ini_3(k_3,1)=x_min_grid+leng_M_L; 
    xz_surf_ini_3(k_3,2)=(k_3-1)*dz_3+(h*sin(alfa)-H_m+r_UCt);      
end 
  
k_max_4=k_max_3; 
dz_4=dz_3; 
xz_surf_ini_4=zeros(k_max_4,2);  
for k_4=1:1:k_max_4         
    xz_surf_ini_4(k_4,1)=x_max_grid-leng_M_R; 
    xz_surf_ini_4(k_4,2)=(k_4-1)*dz_4+(h*sin(alfa)-H_m+r_UCt); 
end 
  
%Combine all into 1 array 
xz_surf_ini=[xz_surf_ini_1L;xz_surf_ini_1R;xz_surf_ini_2;xz_surf_ini_3;xz_surf_ini_4]; 
  
%Calculate SDF and hence initialize phi 
b_max_ini=i_max_1L+i_max_1R+i_max_2+k_max_3+k_max_4;  
SDF_ini=zeros(b_max_ini,1); 
phi=zeros(k_max,i_max); 
for k=1:1:k_max 
    for i=1:1:i_max 
         for b_ini=1:1:b_max_ini 
             SDF_ini(b_ini)=((x_cord(i)-xz_surf_ini(b_ini,1)).^2+(z_cord(k)-xz_surf_ini(b_ini,2)).^2).^0.5; 
         end 
          
         min_SDF_ini=min(SDF_ini); 
          
         %Assign signage (+ or -) 
         if (min_SDF_ini==0) 
             phi(k,i)=0; 
         else 
            if (z_cord(k)<(h*sin(alfa)-H_m)) 
                phi(k,i)=-min_SDF_ini; 
            elseif (z_cord(k)>(h*sin(alfa))) 
                phi(k,i)=min_SDF_ini; 
            else %if (h*sin(alfa)-H_m) <= z <= h*sin(alfa) 
                 
                 if ((x_cord(i)>=x_min_grid)&&(x_cord(i)<(x_min_grid+leng_M_L-r_UCt)))||... 
                        ((x_cord(i)>(x_max_grid-leng_M_R+r_UCt))&&(x_cord(i)<=x_max_grid))  
                    phi(k,i)=min_SDF_ini; 
                 elseif ((x_cord(i)>(x_min_grid+leng_M_L))&&(x_cord(i)<(x_max_grid-leng_M_R))) %if x_min_grid+leng_M_L < x < x_max_grid-leng_M_R 
                    phi(k,i)=-min_SDF_ini; 
                 elseif ((x_cord(i)>=x_min_grid+leng_M_L-r_UCt)&&(x_cord(i)<=(x_min_grid+leng_M_L))) 
                        
                       if (z_cord(k)>(h*sin(alfa)-H_m+r_UCt))&&(z_cord(k)<(h*sin(alfa)))                               
                          phi(k,i)=min_SDF_ini;  
                       else  
                           if (((x_cord(i)-x_rTL)^2+(z_cord(k)-z_rTL)^2)>=r_UCt^2) 
                               phi(k,i)=-min_SDF_ini;    
                           else 
                               phi(k,i)=min_SDF_ini; 
                           end 
                       end 
                        
                 else 
                        
                       if (z_cord(k)>(h*sin(alfa)-H_m+r_UCt))&&(z_cord(k)<(h*sin(alfa)))                               
                          phi(k,i)=min_SDF_ini;  
                       else  
                           if (((x_cord(i)-x_rTR)^2+(z_cord(k)-z_rTR)^2)>=r_UCt^2) 
                               phi(k,i)=-min_SDF_ini;    
                           else 
                               phi(k,i)=min_SDF_ini; 
                           end 
                       end                    
                      
                 end 
            end 
         end 
          
    end 
end 
%__________________________________________________________________________ 
%Define flags for M and T 
flag_T_M=zeros(k_max,i_max); 
for k=1:1:k_max 
    for i=1:1:i_max 
        if (z_cord(k)<(h*sin(alfa))) 
            flag_T_M(k,i)=2; %M  
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        else 
            flag_T_M(k,i)=1; %T 
        end 
    end 
end 
%__________________________________________________________________________ 
%Define (initial) mask "Visibility", Ratio of what flux "sees" at 
%initial surface w.r.t mask opening  
x_m=H_m*(h*cos(alfa)-W_m/2)/(h*sin(alfa)-H_m); %(Initial) Mask shadow at top of surface 
  
if (x_m<=0)         %i.e., when (alfa+fi_min)>= 90 deg 
    Visibility=1; 
elseif (x_m>=W_m)   %i.e., when shadow is larger than mask opening 
    Visibility=0; 
else 
    Visibility=(W_m-x_m)/W_m; 
end 
%__________________________________________________________________________ 
%Adjustment to Mass Flux due to Mask Model for Target M(x') for initial iteration  
  
%Calculate visibility angles based on zero level set (M) 
x_prime_surf_LM=zeros(b_max_ini,1); %Initial surface for M in local coordinates 
z_prime_surf_LM=zeros(b_max_ini,1); 
x_prime_surf_RM=zeros(b_max_ini,1); 
z_prime_surf_RM=zeros(b_max_ini,1); 
for b_ini=1:1:b_max_ini 
    if ((xz_surf_ini(b_ini,1)>=x_min_grid)&&(xz_surf_ini(b_ini,1)<=(x_min_grid+leng_M_L)))&&... 
            ((xz_surf_ini(b_ini,2)>=(h*sin(alfa)-H_m))&&(xz_surf_ini(b_ini,2)<h*sin(alfa))) %This check also ensures that if surf was not encountered 
        % (i.e. xz surfs are 0) then it will ignore those values (this will occur below after interpolation) 
        x_prime_surf_LM(b_ini)=(xz_surf_ini(b_ini,1)-x_off).*sin(alfa)-xz_surf_ini(b_ini,2).*cos(alfa); %Rotated local x 
        z_prime_surf_LM(b_ini)=(xz_surf_ini(b_ini,1)-x_off).*cos(alfa)+xz_surf_ini(b_ini,2).*sin(alfa); %Rotated local z 
    else 
        x_prime_surf_LM(b_ini)=NaN; 
        z_prime_surf_LM(b_ini)=NaN; 
    end 
  
    if ((xz_surf_ini(b_ini,1)>=(x_max_grid-leng_M_R))&&(xz_surf_ini(b_ini,1)<=x_max_grid))&&... 
            ((xz_surf_ini(b_ini,2)>=(h*sin(alfa)-H_m))&&(xz_surf_ini(b_ini,2)<h*sin(alfa))) 
        x_prime_surf_RM(b_ini)=(xz_surf_ini(b_ini,1)-x_off).*sin(alfa)-xz_surf_ini(b_ini,2).*cos(alfa); %Rotated local x 
        z_prime_surf_RM(b_ini)=(xz_surf_ini(b_ini,1)-x_off).*cos(alfa)+xz_surf_ini(b_ini,2).*sin(alfa); %Rotated local z 
    else 
        x_prime_surf_RM(b_ini)=NaN; 
        z_prime_surf_RM(b_ini)=NaN; 
    end 
     
end 
  
%By evaluating Max of x_prime_surf_LM, we can check if any entries are 
%positive, ignoring NaN's; if any are, then we have case (b), 
%where mask shadow is >= W_m/2 from left mask edge, else have case (a) and 
%(c), mask shadow is < W_m/2  
[max_x_prime_surf_LM,I_max_LM]=max(x_prime_surf_LM); %Will ignore NaN's 
  
%Min tan of left 'spread' angle defined by mask 
if (max_x_prime_surf_LM>=0) %Case (b) 
    tan_fi_min=max_x_prime_surf_LM/z_prime_surf_LM(I_max_LM); 
else %Case (a) and (c) 
    %Find min |x_prime_surf_LM| 
    [min_x_prime_surf_LM,I_min_LM]=min(abs(x_prime_surf_LM)); 
     
    if (alfa==90*pi/180) 
        tan_fi_min=min_x_prime_surf_LM/h; 
    else 
        tan_fi_min=min_x_prime_surf_LM/z_prime_surf_LM(I_min_LM); 
    end 
end 
     
%Find min x_prime_surf_RM 
[min_x_prime_surf_RM,I_min_RM]=min(x_prime_surf_RM); 
%Max tan of right 'spread' angle defined by mask 
if (alfa==90*pi/180) 
    tan_fi_max=min_x_prime_surf_RM/h; 
else 
    tan_fi_max=min_x_prime_surf_RM/z_prime_surf_RM(I_min_RM);  
end   
  
%Define more Mask "Visibility" Parameters 
x_prime=zeros(k_max,i_max); 
z_prime=zeros(k_max,i_max); 
for k=1:1:k_max         
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        for i=1:1:i_max 
            x_prime(k,i)=x_cord_local(i).*sin(alfa)-z_cord(k).*cos(alfa); %Rotated local x 
            z_prime(k,i)=x_cord_local(i).*cos(alfa)+z_cord(k).*sin(alfa); %Rotated local z 
        end  
end 
  
%Define Parameters for particle size distribution (mean and standard 
%deviation) 
mu_l=-11.615; 
sigma_l=0.5; 
  
%Constants for M(x') closed form fit (T) 
P_1=0.11338616706948672477e-14; 
P_2=-1.4142135623730950488; 
P_3=15.365430355183677705; 
  
%Define Left/Right rotated local x limit for mask (L) 
L_mask=zeros(k_max,i_max); 
x_lim=zeros(k_max,i_max); %Lower x_prime L_mask limit when x_m>=W_m/2 
Int_P_r_x_prime=zeros(k_max,i_max); 
Int_P_r_L_mask=zeros(k_max,i_max); 
M_r_x_prime=zeros(k_max,i_max); %Initial masking function 
for k=1:1:k_max 
        for i=1:1:i_max 
             
            if flag_T_M(k,i)==1 %T 
                 
            if (max_x_prime_surf_LM<0) %Case (a) and (c) 
                if (x_prime(k,i)<0) 
                    L_mask(k,i)=z_prime(k,i).*tan_fi_min; 
                else %i.e., when x_prime>=0 
                    L_mask(k,i)=z_prime(k,i).*tan_fi_max;  
                end             
            else %i.e., when x_m>=W_m/2 Case (b) 
                x_lim(k,i)=z_prime(k,i).*tan_fi_min; 
                if (x_prime(k,i)<x_lim(k,i)) 
                    L_mask(k,i)=0; 
                else %i.e., when x_prime>=x_lim 
                    L_mask(k,i)=z_prime(k,i).*tan_fi_max-x_lim(k,i); 
                end 
            end 
  
            %Define proportion of mass of particles that pass through mask opening having a 
            %specific particle size (of radius r) distribution            
            if (abs(x_prime(k,i))>=L_mask(k,i)) 
                M_r_x_prime(k,i)=0; 
            else 
                Int_P_r_x_prime(k,i)=real(P_1-P_1*erf(P_2*log(L_mask(k,i)-abs(x_prime(k,i)))-P_3));   
                Int_P_r_L_mask(k,i)=real(P_1-P_1*erf(P_2*log(L_mask(k,i))-P_3));  
                M_r_x_prime(k,i)=Int_P_r_x_prime(k,i)./Int_P_r_L_mask(k,i); 
            end 
             
            else  %M (for initial iteration only over very small dt) %Below, calculate this using theta to check visibility for M and M(x') for edge 
                 
                 
               if (alfa==90*pi/180) %90deg case  
                    M_r_x_prime(k,i)=1; 
               else 
                 
                %Spread angle covering range not seen by nozzle due to mask 
                tan_fi_M=abs(((x_min_grid+leng_M_L)-x_off).*sin(alfa)-h*sin(alfa).*cos(alfa))/... 
                    abs(((x_min_grid+leng_M_L)-x_off).*cos(alfa)+h*sin(alfa).*sin(alfa)); 
                 
                if (max_x_prime_surf_LM<0) %Case (a) and (c) 
                    if (((z_prime(k,i)*tan_fi_min<abs(x_prime(k,i)))&&(z_prime(k,i)*tan_fi_M>abs(x_prime(k,i))))&&... 
                            (x_cord(i)>=(x_min_grid+leng_M_L))&&(x_prime(k,i)<0)) 
                        M_r_x_prime(k,i)=0; 
                    else 
                        M_r_x_prime(k,i)=1; 
                    end 
                     
  
                else %Case (b) 
                    if ((((-z_prime(k,i)*tan_fi_M)<x_prime(k,i))&&((z_prime(k,i)*tan_fi_min)>x_prime(k,i)))&&... 
                            (x_cord(i)>=(x_min_grid+leng_M_L)))                          
                        M_r_x_prime(k,i)=0; 
                    else 
                        M_r_x_prime(k,i)=1; 
                    end 
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                end 
                 
               end 
                 
  
            end 
  
        end 
end           
%__________________________________________________________________________ 
%Initialize time and counters 
time=0; 
counter=0; 
No_RE=0; %Initialize band re-initialization counter 
  
%########################################################################## 
%INITIAL ITERATION (W/O F_EXT & NB) TO CALCULATE/INITIALIZE F_EXT FOR WHILE  
%LOOP; 
%########################################################################## 
  
%__________________________________________________________________________ 
%USE STATIONARY APPROACH 
%Define velocity v(x,z) at each grid node  
v=zeros(k_max,i_max); 
    for k=1:1:k_max 
        for i=1:1:i_max 
                v(k,i)=v_o*(1-H_slp*((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2).^0.5./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)));                      
            if (v(k,i)<0) 
                v(k,i)=0; 
            end 
        end 
    end     
  
%Define particle mass flux(x,z) at each grid node 
 flux=zeros(k_max,i_max); 
    for k=1:1:k_max 
        for i=1:1:i_max 
                flux(k,i)=(MFR/pi)*(beta./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa))).^2.... 
                *exp(-(beta^2.*((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2)./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)).^2)); 
        end 
    end  
  
%Define Erosive Power Eros_pow(k,i) at each grid node 
Eros_pow=zeros(k_max,i_max); 
    for k=1:1:k_max 
        for i=1:1:i_max 
            if flag_T_M(k,i)==1 %T                        
                Eros_pow(k,i)=M_r_x_prime(k,i).*v(k,i).^k_vel.*flux(k,i); 
            else %M 
                Eros_pow(k,i)=M_r_x_prime(k,i).*v(k,i).^k_vel_M.*flux(k,i); 
            end 
        end 
    end 
%__________________________________________________________________________ 
%Define FD's and BC's  
%Initialization (preallocation) to increase computational speed 
phi_x_pos=zeros(k_max,i_max); 
phi_x_neg=zeros(k_max,i_max); 
phi_x_cen=zeros(k_max,i_max); 
phi_x_x_cen=zeros(k_max,i_max); 
phi_z_pos=zeros(k_max,i_max); 
phi_z_neg=zeros(k_max,i_max); 
phi_z_cen=zeros(k_max,i_max); 
phi_z_z_cen=zeros(k_max,i_max); 
phi_x_z_cen=zeros(k_max,i_max); 
for k=1:1:k_max 
        for i=1:1:i_max 
                if i==i_max 
                    phi_x_pos(k,i)=0; 
                else 
                    phi_x_pos(k,i)=(phi(k,i+1)-phi(k,i))./dx; 
                end 
                 
                if i==1 
                    phi_x_neg(k,i)=0; 
                else 
                    phi_x_neg(k,i)=(phi(k,i)-phi(k,i-1))./dx; 
                end 
                 
                if (i==i_max)||(i==1)                     
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                    phi_x_cen(k,i)=0; 
                    phi_x_x_cen(k,i)=0; 
                else 
                    phi_x_cen(k,i)=(phi(k,i+1)-phi(k,i-1))./(2*dx); 
                    phi_x_x_cen(k,i)=(phi(k,i+1)-2*phi(k,i)+phi(k,i-1))./(dx^2); 
                end 
                %Note direction (k+1 is k-1) and 
                %BC (k==k_max is k==1)) since z is +ve 'downward' 
                if k==1 
                    phi_z_pos(k,i)=0; 
                else 
                    phi_z_pos(k,i)=(phi(k-1,i)-phi(k,i))./dz; 
                end 
                %Note direction (k-1 is k+1) and 
                %BC (k==1 is k==k_max) 
                if k==k_max 
                    phi_z_neg(k,i)=0; 
                else 
                    phi_z_neg(k,i)=(phi(k,i)-phi(k+1,i))./dz; 
                end 
                %Note direction (k+1 is k-1) 
                if (k==k_max)||(k==1) 
                    phi_z_cen(k,i)=0; 
                    phi_z_z_cen(k,i)=0; 
                else 
                    phi_z_cen(k,i)=(phi(k-1,i)-phi(k+1,i))./(2*dz); 
                    phi_z_z_cen(k,i)=(phi(k-1,i)-2*phi(k,i)+phi(k+1,i))./(dz^2); 
                end               
        end 
end 
%__________________________________________________________________________     
%Define Curvature K 
K=zeros(k_max,i_max);  
 if (epsilon==0) %If Epsilon=0,there is no need to compute K    
     for k=1:1:k_max 
        for i=1:1:i_max        
                    K(k,i)=0; 
        end 
     end 
 else 
     for k=1:1:k_max 
         for i=1:1:i_max                    
                    K(k,i)=phi_x_x_cen(k,i)+phi_z_z_cen(k,i);                    
         end                
     end 
 end 
%__________________________________________________________________________  
%Define Partial Hamiltonians H for LLLF Scheme 
cos_t_pfx_pfz=zeros(k_max,i_max); %cos(theta) with all combinations of +/- FD's 
cos_t_pfx_nfz=zeros(k_max,i_max); 
cos_t_nfx_pfz=zeros(k_max,i_max); 
cos_t_nfx_nfz=zeros(k_max,i_max); 
H1_LLLF_pfx_pfz=zeros(k_max,i_max); %Partial H wrt phi_x (all +/- FD combinations) 
H1_LLLF_pfx_nfz=zeros(k_max,i_max); 
H1_LLLF_nfx_pfz=zeros(k_max,i_max); 
H1_LLLF_nfx_nfz=zeros(k_max,i_max); 
H3_LLLF_pfx_pfz=zeros(k_max,i_max); %Partial H wrt phi_z (all +/- FD combinations) 
H3_LLLF_pfx_nfz=zeros(k_max,i_max); 
H3_LLLF_nfx_pfz=zeros(k_max,i_max); 
H3_LLLF_nfx_nfz=zeros(k_max,i_max); 
for k=1:1:k_max 
        for i=1:1:i_max 
            cos_t_pfx_pfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_pos(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
            cos_t_pfx_nfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_neg(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
            cos_t_nfx_pfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_pos(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
            cos_t_nfx_nfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_neg(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
            if (cos_t_pfx_pfz(k,i)>1) %Limit cos(theta)  
                   cos_t_pfx_pfz(k,i)=1; 
            end 
            if (cos_t_pfx_nfz(k,i)>1)   
                    cos_t_pfx_nfz(k,i)=1; 
            end 
            if (cos_t_nfx_pfz(k,i)>1)   
                    cos_t_nfx_pfz(k,i)=1; 
            end 
            if (cos_t_nfx_nfz(k,i)>1)   
                    cos_t_nfx_nfz(k,i)=1; 
            end 
            %_________ 
            if cos_t_pfx_pfz(k,i)==0 %Done to ensure 0/0 doesn't results and hence an error - F=H=0 when this occurs  
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                H3_LLLF_pfx_pfz(k,i)=0; 
                H1_LLLF_pfx_pfz(k,i)=0;                 
            else 
                if flag_T_M(k,i)==1 %T 
                    H3_LLLF_pfx_pfz(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_pfx_pfz(k,i))^(k_vel+1))... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_pfx_pfz(k,i)));   
                else %M 
                    H3_LLLF_pfx_pfz(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_pfx_pfz(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_pfx_pfz(k,i))).^n_2_M)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_pfx_pfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_pfx_pfz(k,i)))));                
                end 
                 
                H1_LLLF_pfx_pfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_pfx_pfz(k,i); 
            end 
            %_________ 
            if cos_t_pfx_nfz(k,i)==0  
                H3_LLLF_pfx_nfz(k,i)=0; 
                H1_LLLF_pfx_nfz(k,i)=0;                 
            else 
                if flag_T_M(k,i)==1 %T 
                    H3_LLLF_pfx_nfz(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_pfx_nfz(k,i))^(k_vel+1))... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_pfx_nfz(k,i)));   
                else %M 
                    H3_LLLF_pfx_nfz(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_pfx_nfz(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_pfx_nfz(k,i))).^n_2_M)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_pfx_nfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_pfx_nfz(k,i)))));                
                end 
                 
                H1_LLLF_pfx_nfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_pfx_nfz(k,i); 
            end 
            %_________ 
            if cos_t_nfx_pfz(k,i)==0  
                H3_LLLF_nfx_pfz(k,i)=0; 
                H1_LLLF_nfx_pfz(k,i)=0;                 
            else 
                if flag_T_M(k,i)==1 %T 
                    H3_LLLF_nfx_pfz(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_nfx_pfz(k,i))^(k_vel+1))... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_nfx_pfz(k,i)));   
                else %M 
                    H3_LLLF_nfx_pfz(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_nfx_pfz(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_nfx_pfz(k,i))).^n_2_M)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_nfx_pfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_nfx_pfz(k,i)))));                
                end 
                 
                H1_LLLF_nfx_pfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_nfx_pfz(k,i); 
            end 
            %_________ 
            if cos_t_nfx_nfz(k,i)==0  
                H3_LLLF_nfx_nfz(k,i)=0; 
                H1_LLLF_nfx_nfz(k,i)=0;                 
            else 
                if flag_T_M(k,i)==1 %T 
                    H3_LLLF_nfx_nfz(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_nfx_nfz(k,i))^(k_vel+1))... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_nfx_nfz(k,i)));   
                else %M 
                    H3_LLLF_nfx_nfz(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_nfx_nfz(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_nfx_nfz(k,i))).^n_2_M)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_nfx_nfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_nfx_nfz(k,i)))));                
                end 
                 
                H1_LLLF_nfx_nfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_nfx_nfz(k,i); 
            end 
             
        end 
end 
%__________________________________________________________________________ 
%LLLF Scheme 
%Initialization (preallocation) to increase computational speed 
phi_x_star=zeros(k_max,i_max); %FD used in numerical Hamiltonian H (star) 
phi_z_star=zeros(k_max,i_max); 
alpha_x=zeros(k_max,i_max); %Bounds of partial deriv. of H 
alpha_z=zeros(k_max,i_max); 
Ham=zeros(k_max,i_max); %Hamiltonian 
Ham_num=zeros(k_max,i_max); %Numerical Hamiltonian 
cos_t_star=zeros(k_max,i_max); 
 for k=1:1:k_max 
        for i=1:1:i_max 
                phi_x_star(k,i)=(phi_x_pos(k,i)+phi_x_neg(k,i))/2; 
                phi_z_star(k,i)=(phi_z_pos(k,i)+phi_z_neg(k,i))/2; 
                H1_LLLF_array=[abs(H1_LLLF_pfx_pfz(k,i)),abs(H1_LLLF_pfx_nfz(k,i)),abs(H1_LLLF_nfx_pfz(k,i)),abs(H1_LLLF_nfx_nfz(k,i))]; 
                alpha_x(k,i)=max(H1_LLLF_array); 
                H3_LLLF_array=[abs(H3_LLLF_pfx_pfz(k,i)),abs(H3_LLLF_pfx_nfz(k,i)),abs(H3_LLLF_nfx_pfz(k,i)),abs(H3_LLLF_nfx_nfz(k,i))]; 
                alpha_z(k,i)=max(H3_LLLF_array);              
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            %Define Numerical Hamiltonian 
             cos_t_star(k,i)=(x_cord_local(i).*(phi_x_star(k,i))+z_cord(k).*(phi_z_star(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
             if (cos_t_star(k,i)>1)   
                 cos_t_star(k,i)=1; 
             end 
              
             if flag_T_M(k,i)==1 %T 
                    Ham(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_star(k,i))^(k_vel+1)));                        
             else %M 
                    Ham(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_star(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_star(k,i))).^n_2_M));                 
             end 
     
             Ham_num(k,i)=Ham(k,i)-(alpha_x(k,i)/2).*(phi_x_pos(k,i)-phi_x_neg(k,i))-(alpha_z(k,i)/2).*(phi_z_pos(k,i)-phi_z_neg(k,i)); 
         
        end 
 end 
%__________________________________________________________________________ 
%Define Central Difference Hamiltonian 
Ham_cen=zeros(k_max,i_max);     
cos_t_cen=zeros(k_max,i_max); 
 if (epsilon==0) 
     for k=1:1:k_max 
        for i=1:1:i_max   
            Ham_cen(k,i)=0; 
        end 
     end 
 else 
               for k=1:1:k_max 
                    for i=1:1:i_max 
                        cos_t_cen(k,i)=(x_cord_local(i).*(phi_x_cen(k,i))+z_cord(k).*(phi_z_cen(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                        if (cos_t_cen(k,i)>1)   
                            cos_t_cen(k,i)=1; 
                        end 
                         
                        if flag_T_M(k,i)==1 %T 
                                Ham_cen(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_cen(k,i))^(k_vel+1)));                        
                        else %M 
                                Ham_cen(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_cen(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_cen(k,i))).^n_2_M));                 
                        end                                                             
                    end 
               end             
 end 
%__________________________________________________________________________ 
%Initial small dt  
dt=t_in/Num_iter; 
  
%Curvature coefficient 
%NOTE can scale up/down 'epsilon' to use different epsilons for M and T 
%but 'epsilon' must be maximum for CFL condition 
epsilon_gen=zeros(k_max,i_max); 
for k=1:1:k_max 
        for i=1:1:i_max  
            if flag_T_M(k,i)==1 %T 
                epsilon_gen(k,i)=epsilon;             
            else %M 
                epsilon_gen(k,i)=0; 
            end             
        end 
end 
  
%__________________________________________________________________________ 
%Solve EOM (1st iteration) for phi's to pass onto while loop 
phi_1=zeros(k_max,i_max); 
for k=1:1:k_max 
        for i=1:1:i_max  
            phi_1(k,i)=phi(k,i)+dt.*(-Ham_num(k,i)+epsilon_gen(k,i).*K(k,i).*Ham_cen(k,i)); 
        end 
end 
%__________________________________________________________________________ 
%Surface Interpolation Algorithm (where phi=0) 
  
z_surf_1=zeros(i_max,1); %Initial z surface value at a given x 
z_surf_2=zeros(i_max,1); %Second z surface value at a given x (if multi-valued surface) 
z_surf_3=zeros(i_max,1); %Third z surface value at a given x (if multi-valued surface) 
for i=1:1:i_max %Order matters 
    flag_1=0; 
    flag_2=0; 
     for k=1:1:k_max %Order matters 
           if ((flag_1==0)&&(((phi_1(k,i)>0)&&(phi_1(k+1,i)<0))||(phi_1(k,i)==0)))                            
               z_surf_1(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);                           
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               flag_1=i; %Done to ensure that the rest of code executes only if this 'if condition' occurs (see below) 
               continue %go to next iteration in the for loop, skipping whatever remains below for this iteration 
           end 
           if (((flag_2==0)&&(flag_1==i)&&(k~=k_max))&&(((phi_1(k,i)<0)&&(phi_1(k+1,i)>0))||(phi_1(k,i)==0))) %put in AND expression for k~=kmax since grid 
ends (no z surface there) 
               z_surf_2(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);  
               flag_2=i; 
               continue 
           end 
           if ((flag_2==i)&&(((phi_1(k,i)>0)&&(phi_1(k+1,i)<0))||(phi_1(k,i)==0))) 
               z_surf_3(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);  
           end 
     end 
end 
           
x_surf_1=zeros(1,k_max); %First x surface value at a given z  
x_surf_2=zeros(1,k_max); %Second x surface value at a given z  
for k=1:1:k_max %Order matters 
    flag_3=0; 
     for i=1:1:i_max %Order matters 
            if (((flag_3==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>0)&&(phi_1(k,i+1)<0))||(phi_1(k,i)==0))) %put in AND expression for i~=imax or 1 since grid 
ends (no x surface there)                     
                x_surf_1(k)=((phi_1(k,i).*(x_cord(i)-x_cord(i+1)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                
                flag_3=k; 
                continue 
            end 
            if (((flag_3==k)&&(i~=i_max))&&(((phi_1(k,i)<0)&&(phi_1(k,i+1)>0))||(phi_1(k,i)==0)))                                     
                x_surf_2(k)=((phi_1(k,i).*(x_cord(i)-x_cord(i+1)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                  
            end 
     end 
end 
  
% Convert all z_surf and x_surf to one array 
xz_surf=[x_cord', z_surf_1;x_cord', z_surf_2;x_cord', z_surf_3;x_surf_1',z_cord;x_surf_2',z_cord]; 
b_max=3*i_max+2*k_max; 
for b=1:1:(3*i_max) 
        if xz_surf(b,2)==0 %Ignore this part of array-see below (no surface there) 
        xz_surf(b,1)=0;  
        xz_surf(b,2)=0; 
        else 
        xz_surf(b,1)=xz_surf(b,1); 
        xz_surf(b,2)=xz_surf(b,2);     
        end 
end 
  
for b=(3*i_max+1):1:b_max 
        if xz_surf(b,1)==0 %Ignore this part of array-see below (no surface there) 
        xz_surf(b,1)=0; 
        xz_surf(b,2)=0; 
        else 
        xz_surf(b,1)=xz_surf(b,1); 
        xz_surf(b,2)=xz_surf(b,2);     
        end 
end 
%__________________________________________________________________________ 
%Calculate Upper and Lower Band 
  
%UPPER BAND 
  
z_surf_1_U=zeros(i_max,1); %Analogous to phi=0 surface 
z_surf_2_U=zeros(i_max,1); 
z_surf_3_U=zeros(i_max,1); 
for i=1:1:i_max  
    flag_1_U=0; 
    flag_2_U=0; 
     for k=1:1:k_max  
           if ((flag_1_U==0)&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k+1,i)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))                            
               z_surf_1_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);                
               flag_1_U=i;  
               continue  
           end 
           if (((flag_2_U==0)&&(flag_1_U==i)&&(k~=k_max))&&(((phi_1(k,i)<(BS_U*dz))&&(phi_1(k+1,i)>(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))  
               z_surf_2_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);   
               flag_2_U=i; 
               continue 
           end 
           if ((flag_2_U==i)&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k+1,i)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz)))) 
               z_surf_3_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k); 
           end 
     end  
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end 
           
x_surf_1_U=zeros(1,k_max); 
x_surf_2_U=zeros(1,k_max); 
for k=1:1:k_max  
    flag_3_U=0; 
     for i=1:1:i_max  
            if (((flag_3_U==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k,i+1)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))  
                x_surf_1_U(k)=(((BS_U*dz-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);    
                flag_3_U=k; 
                continue 
            end 
            if (((flag_3_U==k)&&(i~=i_max))&&(((phi_1(k,i)<(BS_U*dz))&&(phi_1(k,i+1)>(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))                
                x_surf_2_U(k)=(((BS_U*dz-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                
            end 
     end 
end 
  
% Convert all z_surf_U and x_surf_U to one array 
xz_surf_U=[x_cord', z_surf_1_U;x_cord', z_surf_2_U;x_cord', z_surf_3_U;x_surf_1_U',z_cord;x_surf_2_U',z_cord]; 
for b=1:1:(3*i_max) 
        if xz_surf_U(b,2)==0 %Means it was not called up (no surface there)  
        xz_surf_U(b,1)=0; 
        xz_surf_U(b,2)=0;   
        end 
end 
  
for b=(3*i_max+1):1:b_max 
        if xz_surf_U(b,1)==0 
        xz_surf_U(b,1)=0; 
        xz_surf_U(b,2)=0;    
        end 
end 
  
%LOWER BAND 
  
z_surf_1_L=zeros(i_max,1); %Analogous to phi=0 surface 
z_surf_2_L=zeros(i_max,1); 
z_surf_3_L=zeros(i_max,1); 
for i=1:1:i_max  
    flag_1_L=0; 
    flag_2_L=0; 
     for k=1:1:k_max  
           if ((flag_1_L==0)&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k+1,i)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))                            
               z_surf_1_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);                
               flag_1_L=i;  
               continue  
           end 
           if (((flag_2_L==0)&&(flag_1_L==i)&&(k~=k_max))&&(((phi_1(k,i)<(-dz*BS_L))&&(phi_1(k+1,i)>(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))  
               z_surf_2_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);    
               flag_2_L=i; 
               continue 
           end 
           if ((flag_2_L==i)&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k+1,i)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L)))) 
               z_surf_3_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);  
           end 
     end 
end 
           
x_surf_1_L=zeros(1,k_max); 
x_surf_2_L=zeros(1,k_max); 
for k=1:1:k_max  
    flag_3_L=0; 
     for i=1:1:i_max  
            if (((flag_3_L==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k,i+1)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))  
                x_surf_1_L(k)=(((-dz*BS_L-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                 
                flag_3_L=k; 
                continue 
            end 
            if (((flag_3_L==k)&&(i~=i_max))&&(((phi_1(k,i)<(-dz*BS_L))&&(phi_1(k,i+1)>(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))      
                x_surf_2_L(k)=(((-dz*BS_L-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                 
            end 
     end 
end 
  
% Convert all z_surf_L and x_surf_L to one array 
xz_surf_L=[x_cord', z_surf_1_L;x_cord', z_surf_2_L;x_cord', z_surf_3_L;x_surf_1_L',z_cord;x_surf_2_L',z_cord]; 
for b=1:1:(3*i_max) 
        if xz_surf_L(b,2)==0  
        xz_surf_L(b,1)=0;         

 150



        xz_surf_L(b,2)=0;   
        end 
end 
  
for b=(3*i_max+1):1:b_max 
        if xz_surf_L(b,1)==0 
        xz_surf_L(b,1)=0; 
        xz_surf_L(b,2)=0;    
        end 
end 
%__________________________________________________________________________ 
%Create flags for points IN the Narrow Band 
%These flags will only change after band is re-initialized 
flag_NB=zeros(k_max,i_max); 
for k=1:1:k_max 
    for i=1:1:i_max 
        if (((phi_1(k,i)>=0)&&(abs(phi_1(k,i))<BS_U*dz))||((phi_1(k,i)<0)&&(abs(phi_1(k,i))<BS_L*dz))) %Don't consider points on boundary 
            flag_NB(k,i)=1; %else they will remain 0 (are outside the band) 
        end 
    end 
end 
  
%Create flags to indicate BC pts (adjacent to NB boundary) 
%These flags will only change after band is re-initialized 
for k=1:1:k_max 
    for i=1:1:i_max 
         
        if (i~=1)&&(i~=i_max)&&(k~=1)&&(k~=k_max) 
            if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1)) 
                flag_NB(k,i)=2; 
            end 
        elseif (i==1)&&(k~=1)&&(k~=k_max) 
            if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1)) 
                flag_NB(k,i)=2; 
            end     
        elseif (i==i_max)&&(k~=1)&&(k~=k_max) 
            if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1)) 
                flag_NB(k,i)=2; 
            end 
        elseif (k==1)&&(i~=1)&&(i~=i_max) 
            if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)) 
                flag_NB(k,i)=2; 
            end 
        elseif (k==k_max)&&(i~=1)&&(i~=i_max) 
            if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k-1,i)==1)) 
                flag_NB(k,i)=2; 
            end    
        elseif  (i==1)&&(k==1)  
            if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k+1,i)==1)) 
                flag_NB(k,i)=2; 
            end 
        elseif  (i==i_max)&&(k==1)     
            if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)) 
                flag_NB(k,i)=2; 
            end 
        elseif  (i==1)&&(k==k_max)     
            if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k-1,i)==1)) 
                flag_NB(k,i)=2; 
            end 
        else %(i==i_max)&&(k==k_max) 
            if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k-1,i)==1)) 
                flag_NB(k,i)=2; 
            end 
        end 
         
    end 
end 
  
%Create flags for the remaining pts. so when rebuild band, we know where 
%phi's should be +ve or -ve; i.e. assign flag_NB(k,i) = 4 and 3 so as to 
%later indicate +ve and -ve phi 
for k=1:1:k_max 
    for i=1:1:i_max 
        if (flag_NB(k,i)~=1)&&(flag_NB(k,i)~=2) 
            if (phi_1(k,i)>0) %we only need to check +ve phi_1 since these are outside the band 
                flag_NB(k,i)=4; %label +ve phi_1's outside band 
            else 
                flag_NB(k,i)=3; %label -ve phi_1's outside band 
            end 
        end  
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    end 
end         
%__________________________________________________________________________ 
%Algorithm to obtain mask angles for T 
  
%Adjustment to Mass Flux due to Mask Model for Target M(x')  
  
%Calculate visibility angles based on zero level set (M) 
x_prime_surf_LM=zeros(b_max,1); %Initial surface for M in local coordinates 
z_prime_surf_LM=zeros(b_max,1); 
x_prime_surf_RM=zeros(b_max,1); 
z_prime_surf_RM=zeros(b_max,1); 
for b=1:1:b_max 
    if ((xz_surf(b,1)>=x_min_grid)&&(xz_surf(b,1)<=(x_min_grid+leng_M_L)))&&... 
            ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa)))  
        x_prime_surf_LM(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); %Rotated local x 
        z_prime_surf_LM(b)=(xz_surf(b,1)-x_off).*cos(alfa)+xz_surf(b,2).*sin(alfa); %Rotated local z 
    else 
        x_prime_surf_LM(b)=NaN; 
        z_prime_surf_LM(b)=NaN; 
    end 
  
    if ((xz_surf(b,1)>=(x_max_grid-leng_M_R))&&(xz_surf(b,1)<=x_max_grid))&&... 
            ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa))) 
        x_prime_surf_RM(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); %Rotated local x 
        z_prime_surf_RM(b)=(xz_surf(b,1)-x_off).*cos(alfa)+xz_surf(b,2).*sin(alfa); %Rotated local z 
    else 
        x_prime_surf_RM(b)=NaN; 
        z_prime_surf_RM(b)=NaN; 
    end 
     
end 
  
%Find min x_prime_surf_LM 
[max_x_prime_surf_LM,I_max_LM]=max(x_prime_surf_LM); %Will ignore NaN's 
  
%Min tan of left 'spread' angle defined by mask 
if (max_x_prime_surf_LM>=0) %Case (b) 
    tan_fi_min=max_x_prime_surf_LM/z_prime_surf_LM(I_max_LM); 
else %Case (b) and (c) 
    %Find min |x_prime_surf_LM| 
    [min_x_prime_surf_LM,I_min_LM]=min(abs(x_prime_surf_LM)); 
     
    if (alfa==90*pi/180) 
        tan_fi_min=min_x_prime_surf_LM/h; 
    else 
        tan_fi_min=min_x_prime_surf_LM/z_prime_surf_LM(I_min_LM); 
    end 
end 
     
%Find min x_prime_surf_RM 
[min_x_prime_surf_RM,I_min_RM]=min(x_prime_surf_RM); 
%Max tan of right 'spread' angle defined by mask 
if (alfa==90*pi/180) 
    tan_fi_max=min_x_prime_surf_RM/h; 
else 
    tan_fi_max=min_x_prime_surf_RM/z_prime_surf_RM(I_min_RM);  
end   
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%START of 2nd Strike Algorithm %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Kinematic rebound parameters (angle and velocity) 
f_alfa_AR_T=0.9; %angle (T) 
f_v_AR_T=0.4; %velocity (T) 
f_alfa_AR_M=1; %angle (M) 
f_v_AR_M=0.4; %velocity (M) 
  
%Obtain arriving node 'a'='AR' theta_AR, gamma_AR & departing 'd'='DE' theta_DE at surface 
  
%Initialize variables before loop entry 
J_k_AR=0; %Nearest reference node index for interpolation 
J_i_AR=0; 
phi_x_pos_AR=zeros(b_max,1); %FD's at 'AR' node 
phi_x_neg_AR=zeros(b_max,1); 
phi_x_cen_AR=zeros(b_max,1); 
phi_z_pos_AR=zeros(b_max,1); 
phi_z_neg_AR=zeros(b_max,1); 
phi_z_cen_AR=zeros(b_max,1);  
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phi_x_star_AR=zeros(b_max,1); 
phi_z_star_AR=zeros(b_max,1); 
cos_t_star_AR=zeros(b_max,1); %Cos(theta) star 
cos_g_star_AR=zeros(b_max,1); %Cos(gamma) star 
  
theta_AR=zeros(b_max,1); 
theta_AR_deg=zeros(b_max,1); 
gamma_AR=zeros(b_max,1); 
gamma_AR_deg=zeros(b_max,1); 
x_prime_surf_AR=zeros(b_max,1); %Local x of AR node 
f_alfa_AR=zeros(b_max,1); %f_alfa for entire surface 
theta_DE=zeros(b_max,1); 
theta_DE_deg=zeros(b_max,1); 
  
 for b=1:1:b_max  
                
     if ((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))  
         %if surface pt; Need 2nd condition since AT 90deg xcord=0 for 1,imax+1,2imax+1 and code thinks no surface there  
      
          if (b>=1)&&(b<=(3*i_max)) %zsurf used 
             
            if (b>=1)&&(b<=i_max)  %%Here, we use I_min_ik=''i'', acts as reference for phi interpolation to know ''i'' value (see below) 
               I_min_ik=b; %z_surf_1 used 
            end               
            if (b>=(i_max+1))&&(b<=(2*i_max)) 
               I_min_ik=b-i_max;  %z_surf_2 used  
            end 
             
            if (b>=(2*i_max+1))&&(b<=(3*i_max)) 
               I_min_ik=b-2*i_max;  %z_surf_3 used   
            end 
                 
                %Calculate nearest k index to surface 
                J_k_AR=floor(k_max-(xz_surf(b,2)-z_min_grid)/dz);                                
                 
                %FD's at 'AR' node using surface nodes (in b/w grid nodes) 
                %i.e. Calculation of dphi/dx,dphi/dz; Define BC's  
                if I_min_ik==i_max 
                    phi_x_pos_AR(b)=0; 
                else 
                    phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik+1)-
phi_1(J_k_AR,I_min_ik+1))+phi_1(J_k_AR,I_min_ik+1); 
                    phi_x_pos_AR(b)=(phi_B_z_surf-0)./dx; 
                end 
                 
                if I_min_ik==1 
                    phi_x_neg_AR(b)=0; 
                else 
                    phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik-1)-phi_1(J_k_AR,I_min_ik-
1))+phi_1(J_k_AR,I_min_ik-1); 
                    phi_x_neg_AR(b)=(0-phi_A_z_surf)./dx; 
                end                
                 
                if (I_min_ik==i_max)||(I_min_ik==1) 
                    phi_x_cen_AR(b)=0;                   
                else 
                    phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik-1)-phi_1(J_k_AR,I_min_ik-
1))+phi_1(J_k_AR,I_min_ik-1); 
                    phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik+1)-
phi_1(J_k_AR,I_min_ik+1))+phi_1(J_k_AR,I_min_ik+1); 
                    phi_x_cen_AR(b)=(phi_B_z_surf-phi_A_z_surf)./(2*dx); 
                end 
                                              
                if J_k_AR==1 
                    phi_z_pos_AR(b)=0; 
                else 
                    phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_AR-1))/(z_cord(J_k_AR)-z_cord(J_k_AR-1))).*(phi_1(J_k_AR,I_min_ik)-phi_1(J_k_AR-
1,I_min_ik))+phi_1(J_k_AR-1,I_min_ik);                     
                    phi_z_pos_AR(b)=(phi_C_z_surf-0)./dz; 
                end 
                 
                if J_k_AR==k_max 
                    phi_z_neg_AR(b)=0; 
                else 
                    phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_AR+1))/(z_cord(J_k_AR+2)-z_cord(J_k_AR+1))).*(phi_1(J_k_AR+2,I_min_ik)-
phi_1(J_k_AR+1,I_min_ik))+phi_1(J_k_AR+1,I_min_ik); 
                    phi_z_neg_AR(b)=(0-phi_D_z_surf)./dz; 
                end 
                               
                if (J_k_AR==k_max)||(J_k_AR==1)  
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                    phi_z_cen_AR(b)=0;                     
                else 
                    phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_AR-1))/(z_cord(J_k_AR)-z_cord(J_k_AR-1))).*(phi_1(J_k_AR,I_min_ik)-phi_1(J_k_AR-
1,I_min_ik))+phi_1(J_k_AR-1,I_min_ik);  
                    phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_AR+1))/(z_cord(J_k_AR+2)-z_cord(J_k_AR+1))).*(phi_1(J_k_AR+2,I_min_ik)-
phi_1(J_k_AR+1,I_min_ik))+phi_1(J_k_AR+1,I_min_ik); 
                    phi_z_cen_AR(b)=(phi_C_z_surf-phi_D_z_surf)./(2*dz); 
                end 
                   
                %Calculate phi_stars_AR 
                phi_x_star_AR(b)=(phi_x_pos_AR(b)+phi_x_neg_AR(b))/2; 
                phi_z_star_AR(b)=(phi_z_pos_AR(b)+phi_z_neg_AR(b))/2;                 
                 
                %Calculate Angles and x_surf'_AR 
                    cos_t_star_AR(b)=((xz_surf(b,1)-x_off).*(phi_x_star_AR(b))+xz_surf(b,2).*(phi_z_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));                     
                    theta_AR(b)=acos(cos_t_star_AR(b)); 
                    theta_AR_deg(b)=theta_AR(b)*(180/pi); 
                    cos_g_star_AR(b)=((xz_surf(b,1)-x_off).*(-phi_z_star_AR(b))+xz_surf(b,2).*(phi_x_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)); 
                    gamma_AR(b)=acos(cos_g_star_AR(b)); 
                    gamma_AR_deg(b)=gamma_AR(b)*(180/pi); 
                    if (alfa==90*pi/180) 
                        x_prime_surf_AR(b)=(xz_surf(b,1)-x_off); 
                    else 
                        x_prime_surf_AR(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); 
                    end                    
                     
                    if (xz_surf(b,2)>=(h*sin(alfa))) %T 
                        f_alfa_AR(b)=f_alfa_AR_T; 
                    else %M 
                        f_alfa_AR(b)=f_alfa_AR_M; 
                    end 
                    theta_DE(b)=pi-f_alfa_AR(b).*theta_AR(b); 
                    theta_DE_deg(b)=theta_DE(b)*(180/pi); 
%__________________________________________________________________________ 
          else  %xsurf used 
               
             if (b>=(3*i_max+1))&&(b<=(3*i_max+k_max))  %%Here, we use I_min_ik=''k'', acts as reference for phi interpolation to know ''k'' value (see below) 
                I_min_ik=b-3*i_max; %x_surf_1 used 
             end               
             if (b>=(3*i_max+k_max+1))&&(b<=b_max) 
                I_min_ik=b-3*i_max-k_max;  %x_surf_2 used  
             end 
                 
                %Repeat above algorithm but for xsurf 
                %Calculate nearest i index to surface 
                J_i_AR=floor(1+(xz_surf(b,1)-x_min_grid)/dx);  
  
                %Calculation of dphi/dx,dphi/dz; Define BC's                                
                if J_i_AR==i_max 
                    phi_x_pos_AR(b)=0; 
                else 
                    phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_AR+1))/(x_cord(J_i_AR+2)-x_cord(J_i_AR+1))).*(phi_1(I_min_ik,J_i_AR+2)-
phi_1(I_min_ik,J_i_AR+1))+phi_1(I_min_ik,J_i_AR+1); 
                    phi_x_pos_AR(b)=(phi_D_x_surf-0)./dx; 
                end 
                 
                if J_i_AR==1 
                    phi_x_neg_AR(b)=0; 
                else 
                    phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_AR-1))/(x_cord(J_i_AR)-x_cord(J_i_AR-1))).*(phi_1(I_min_ik,J_i_AR)-phi_1(I_min_ik,J_i_AR-
1))+phi_1(I_min_ik,J_i_AR-1); 
                    phi_x_neg_AR(b)=(0-phi_C_x_surf)./dx; 
                end 
                 
                if (J_i_AR==i_max)||(J_i_AR==1) 
                    phi_x_cen_AR(b)=0;                   
                else 
                    phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_AR-1))/(x_cord(J_i_AR)-x_cord(J_i_AR-1))).*(phi_1(I_min_ik,J_i_AR)-phi_1(I_min_ik,J_i_AR-
1))+phi_1(I_min_ik,J_i_AR-1); 
                    phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_AR+1))/(x_cord(J_i_AR+2)-x_cord(J_i_AR+1))).*(phi_1(I_min_ik,J_i_AR+2)-
phi_1(I_min_ik,J_i_AR+1))+phi_1(I_min_ik,J_i_AR+1); 
                    phi_x_cen_AR(b)=(phi_D_x_surf-phi_C_x_surf)./(2*dx); 
                end 
                                                   
                if I_min_ik==1 
                    phi_z_pos_AR(b)=0; 
                else                      
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phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik-1,J_i_AR+1)-phi_1(I_min_ik-
1,J_i_AR))+phi_1(I_min_ik-1,J_i_AR);  
                    phi_z_pos_AR(b)=(phi_A_x_surf-0)./dz; 
                end 
                 
                if I_min_ik==k_max 
                    phi_z_neg_AR(b)=0; 
                else 
                    phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik+1,J_i_AR+1)-
phi_1(I_min_ik+1,J_i_AR))+phi_1(I_min_ik+1,J_i_AR); 
                    phi_z_neg_AR(b)=(0-phi_B_x_surf)./dz;   
                end 
                                
                if (I_min_ik==k_max)||(I_min_ik==1) 
                    phi_z_cen_AR(b)=0;                     
                else 
                    phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik-1,J_i_AR+1)-phi_1(I_min_ik-
1,J_i_AR))+phi_1(I_min_ik-1,J_i_AR); 
                    phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik+1,J_i_AR+1)-
phi_1(I_min_ik+1,J_i_AR))+phi_1(I_min_ik+1,J_i_AR); 
                    phi_z_cen_AR(b)=(phi_A_x_surf-phi_B_x_surf)./(2*dz); 
                end 
  
                %Calculate phi_stars_AR 
                phi_x_star_AR(b)=(phi_x_pos_AR(b)+phi_x_neg_AR(b))/2; 
                phi_z_star_AR(b)=(phi_z_pos_AR(b)+phi_z_neg_AR(b))/2;                            
                 
                %Calculate Angles and x_surf'_AR 
                    cos_t_star_AR(b)=((xz_surf(b,1)-x_off).*(phi_x_star_AR(b))+xz_surf(b,2).*(phi_z_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)); 
                    theta_AR(b)=acos(cos_t_star_AR(b)); 
                    theta_AR_deg(b)=theta_AR(b)*(180/pi); 
                    cos_g_star_AR(b)=((xz_surf(b,1)-x_off).*(-phi_z_star_AR(b))+xz_surf(b,2).*(phi_x_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)); 
                    gamma_AR(b)=acos(cos_g_star_AR(b)); 
                    gamma_AR_deg(b)=gamma_AR(b)*(180/pi); 
                    if (alfa==90*pi/180) 
                        x_prime_surf_AR(b)=(xz_surf(b,1)-x_off); 
                    else 
                        x_prime_surf_AR(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); 
                    end   
                     
                    if (xz_surf(b,2)>=(h*sin(alfa))) %T 
                        f_alfa_AR(b)=f_alfa_AR_T; 
                    else %M 
                        f_alfa_AR(b)=f_alfa_AR_M; 
                    end 
                    theta_DE(b)=pi-f_alfa_AR(b).*theta_AR(b); 
                    theta_DE_deg(b)=theta_DE(b)*(180/pi);                     
  
          end 
           
     else  %Need this since it accounts for cases where surface wasn't encountered (i.e. x_surf and z_surf = 0 numerically)    
           %and theta_AR(b) would stay 0 since pre-allocated with 0's and the fact that theta_AR can actually = 0 
         theta_AR(b)=NaN;                  
         theta_AR_deg(b)=NaN;  
         gamma_AR(b)=NaN;  
         gamma_AR_deg(b)=NaN;  
         x_prime_surf_AR(b)=NaN;  
         f_alfa_AR(b)=NaN;  
         theta_DE(b)=NaN; 
         theta_DE_deg(b)=NaN; 
     end 
           
 end     
NaN_Chk_theta_AR=isnan(theta_AR); %If any entries are NaN, returns 1 for that entry, else 0 
  
%2nd Strike Detection Algorithm 
  
%NOTE: All values in array for phi_AR (arriving node 'AR'='a') or phi_D (damaged node 'D'='e') or corresponding xz_surf 
%values, or thetas , x'surf and others are the same, so can reuse above found values but the indices will 
%correspond to the right nodes (AR or D) 
  
f_v_AR=zeros(b_max,1); %f_v_AR for entire surface 
f_v_AR_fin=zeros(b_max,1); %Corrected f_v_AR for entire surface 
v_AR=zeros(b_max,1); %Velocity at node AR  
flux_AR=zeros(b_max,1); %Flux at node AR  
theta_D=zeros(b_max,1); %theta at node D 
theta_D_deg=zeros(b_max,1);   
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cos_t_pfx_pfz_D=zeros(b_max,1); %cos(theta) at node D 
cos_t_pfx_nfz_D=zeros(b_max,1); 
cos_t_nfx_pfz_D=zeros(b_max,1); 
cos_t_nfx_nfz_D=zeros(b_max,1);   
cos_t_star_D=zeros(b_max,1); 
cos_t_cen_D=zeros(b_max,1); 
  
c_max=b_max; 
ds_crit=dz; %Critical spacing to invoke inclusion of 2nd strike to node D 
No_ds_cr=3.75;%4; %No. of ds_crit to define limit of min U_D_AR_dist (see below) 
  
U_D_AR_dist=zeros(c_max,1); %Distance between nodes D and AR 
theta_D_prime=zeros(c_max,1); %Angle between 'actual' surface departing vel. vector and that arriving to node D 
theta_D_1=zeros(c_max,1); %theta_D only for checking in c=1...cmax loop 
ds_pre=zeros(c_max,1); %See below; used in obtaining min_ds 
  
I_min_ds=zeros(b_max,1); %Index of min_ds 
min_ds=zeros(b_max,1); %Min spacing, after 2nd strk. for each node AR (not necessarily small enough to include 2nd strk. yet) 
  
for b=1:1:b_max %Check each D node 
     if (((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0)))...
             &&(xz_surf(b,2)>(h*sin(alfa)-H_m+dz/2)) %Check if surf. found (numerically) AND if surf. is not top of mask  
         
         for c=1:1:c_max %Check AR nodes for each D node 
                    if (NaN_Chk_theta_AR(c)==0)&&(xz_surf(c,2)>(h*sin(alfa)-
H_m+dz/2))&&(b~=c)&&((theta_AR(c)<(pi/2))&&(theta_AR(c)>0))&&((theta_DE(c)<pi)&&(theta_DE(c)>(pi/2)))... 
&&(((gamma_AR(c)>(pi/2))&&(x_prime_surf_AR(b)>x_prime_surf_AR(c)))||((gamma_AR(c)<(pi/2))&&(x_prime_surf_AR(c)>x_prime_surf_AR(b))))                    
                        %Check if surf. found (numerically)-this check supercedes next checks; if surf is not top of mask; ignore check at node D=AR; 
                        %limit range of theta_AR; limit range of theta_DE; check if rebound direction makes sense                        
                         
                        %Calculate theta_D' and theta_D 
                        theta_D_prime(c)=acos(((xz_surf(b,1)-xz_surf(c,1)).*(phi_x_star_AR(c))+(xz_surf(b,2)-xz_surf(c,2)).*(phi_z_star_AR(c)))./... 
                            (sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2).*sqrt((phi_x_star_AR(c)).^2+(phi_z_star_AR(c)).^2))); 
                                                 
                        theta_D_1(c)=acos(((xz_surf(b,1)-xz_surf(c,1)).*(phi_x_star_AR(b))+(xz_surf(b,2)-xz_surf(c,2)).*(phi_z_star_AR(b)))./... 
                            (sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)));  
                                                 
                        %Calculate distance between nodes AR and D 
                        U_D_AR_dist(c)=sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2); 
                         
                        if ((theta_D_prime(c)>(pi/2))&&(theta_D_1(c)<(pi/2))) %If node D 'seen' by node AR 
                           ds_pre(c)=U_D_AR_dist(c).*tan(abs(theta_D_prime(c)-theta_DE(c))); 
                        else 
                           ds_pre(c)=NaN;  
                        end                                              
                         
                    else 
                        ds_pre(c)=NaN; 
                    end 
         end 
          [min_ds(b),I_min_ds(b)]=min(ds_pre); %Find min_ds, Will ignore NaN's  
           
          if (I_min_ds(b)~=0)&&(min_ds(b)<ds_crit)&&(U_D_AR_dist(I_min_ds(b))>(No_ds_cr*ds_crit))  
              %Check if possibility of 2nd strike even occurred, ds_min<ds_crit and if U_D_AR_dist is large enough 
               
                                %Calculate 2nd strike values - f_v_AR_fin, v_AR, 
                                %flux_AR, assign calc'd theta_D 
                                 
                                %f_v_AR_fin 
                                if (xz_surf(b,2)>=(h*sin(alfa))) %T 
                                     f_v_AR(b)=f_v_AR_T; 
                                else %M 
                                     f_v_AR(b)=f_v_AR_M; 
                                end                                 
                                f_v_AR_fin(b)=f_v_AR(b).*((ds_crit-min_ds(b))./ds_crit); 
                                 
                                %Define particle velocity at AR node                                 
                                v_AR(b)=v_o*(1-H_slp*(((xz_surf(I_min_ds(b),1)-x_off)*sin(alfa)-xz_surf(I_min_ds(b),2)*cos(alfa)).^2+(y_mean).^2).^0.5./... 
                                    ((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa))); 
                                if (v_AR(b)<0) 
                                v_AR(b)=0; 
                                end 
                             
                                %Define particle mass flux at AR node                                                           
                                flux_AR(b)=(MFR/pi)*(beta./((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa))).^2.... 
                                *exp(-(beta^2.*(((xz_surf(I_min_ds(b),1)-x_off)*sin(alfa)-xz_surf(I_min_ds(b),2)*cos(alfa)).^2+(y_mean).^2)./... 
                                ((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa)).^2)); 
                                 
                                %theta_D 
                                theta_D(b)=acos(((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_star_AR(b))+(xz_surf(b,2)-xz_surf(I_min_ds(b),2)).*(phi_z_star_AR(b)))./...                                          
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               (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)- 
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)));  
                                theta_D_deg(b)=theta_D(b)*(180/pi); 
                                 
                                %Calculate +/-,c,* cos_theta_D for F_ext Algorithm (Note, if 2nd strike not called 
                                %up, cos_thetas will remain 0 from pre-allocation, so F_2nd=0 in Fext 
                                 
  
                                cos_t_pfx_pfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_pos_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_pos_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_pos_AR(b)).^2+(phi_z_pos_AR(b)).^2)); 
                                 
                                cos_t_pfx_nfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_pos_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_neg_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_pos_AR(b)).^2+(phi_z_neg_AR(b)).^2)); 
                                 
                                cos_t_nfx_pfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_neg_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_pos_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_neg_AR(b)).^2+(phi_z_pos_AR(b)).^2)); 
                                 
                                cos_t_nfx_nfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_neg_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_neg_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_neg_AR(b)).^2+(phi_z_neg_AR(b)).^2)); 
                                 
                                cos_t_star_D(b)=cos(theta_D(b)); %Calculated above already 
                                 
                                cos_t_cen_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_cen_AR(b))+(xz_surf(b,2)-xz_surf(I_min_ds(b),2)).*(phi_z_cen_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_cen_AR(b)).^2+(phi_z_cen_AR(b)).^2));                                          
                            
          else 
              f_v_AR_fin(b)=0; 
              v_AR(b)=0; 
              flux_AR(b)=0; 
              theta_D(b)=NaN;   
              theta_D_deg(b)=NaN;                
          end 
          
     else 
         f_v_AR_fin(b)=0; 
         v_AR(b)=0; 
         flux_AR(b)=0; 
         theta_D(b)=NaN;   
         theta_D_deg(b)=NaN;                   
     end        
      
end 
NaN_Chk_theta_D=isnan(theta_D); %If any entries are NaN, returns 1 for that entry, else 0 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%END of 2nd Strike Algorithm %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             %START OF SDF AND F_EXT (Extension Velocity) ALGORITHM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%RE-initialize SDF (update phi) 
  
%Initialize SDF (NOTE: x_surf and z_surf entries should never be 0 in 
%reality since in array it is 0 numerically if NO surface is encountered for that 
%row or column of phi's) 
SDF=zeros(b_max,1); 
%Initialize F_ext's and corresponding cos(theta)'s 
cos_t_pfx_pfz_ext=zeros(k_max,i_max); 
cos_t_pfx_nfz_ext=zeros(k_max,i_max); 
cos_t_nfx_pfz_ext=zeros(k_max,i_max); 
cos_t_nfx_nfz_ext=zeros(k_max,i_max);   
cos_t_star_ext=zeros(k_max,i_max); 
cos_t_cen_ext=zeros(k_max,i_max); 
F_ext_pfx_pfz=zeros(k_max,i_max); 
F_ext_pfx_nfz=zeros(k_max,i_max); 
F_ext_nfx_pfz=zeros(k_max,i_max); 
F_ext_nfx_nfz=zeros(k_max,i_max);   
F_ext_star=zeros(k_max,i_max); 
F_ext_cen=zeros(k_max,i_max); 
%Initialize dphi/dx,dphi/dz (FD's)   
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phi_x_pos_ext=zeros(k_max,i_max); 
phi_x_neg_ext=zeros(k_max,i_max); 
phi_x_cen_ext=zeros(k_max,i_max); 
phi_z_pos_ext=zeros(k_max,i_max); 
phi_z_neg_ext=zeros(k_max,i_max); 
phi_z_cen_ext=zeros(k_max,i_max); 
phi_x_star_ext=zeros(k_max,i_max); 
phi_z_star_ext=zeros(k_max,i_max); 
%Initialize Erosive Power and Masking Function Properties - Extended 
x_prime_ext=zeros(k_max,i_max); 
z_prime_ext=zeros(k_max,i_max); 
L_mask_ext=zeros(k_max,i_max);  
x_lim_ext=zeros(k_max,i_max);  
M_r_x_prime_ext=zeros(k_max,i_max); 
Eros_pow_ext=zeros(k_max,i_max); 
v_ext=zeros(k_max,i_max); 
flux_ext=zeros(k_max,i_max); 
Int_P_r_x_prime_ext=zeros(k_max,i_max); 
Int_P_r_L_mask_ext=zeros(k_max,i_max); 
J_k_ext=0; %Initialize (see below) 
J_i_ext=0; 
I_min=zeros(k_max,i_max); %Index of SDF (see below) 
  
%2nd strike erosive power 
Eros_pow_ext_2nd=zeros(k_max,i_max); 
%Initial strike F_ext's 
F_ext_pfx_pfz_1st=zeros(k_max,i_max); 
F_ext_pfx_nfz_1st=zeros(k_max,i_max); 
F_ext_nfx_pfz_1st=zeros(k_max,i_max); 
F_ext_nfx_nfz_1st=zeros(k_max,i_max);   
F_ext_star_1st=zeros(k_max,i_max); 
F_ext_cen_1st=zeros(k_max,i_max); 
  
for k=1:1:k_max 
     for i=1:1:i_max 
          
         if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### IF IN NB 
             %NOTE, no BC's (i.e. where flag_NB==2) need to be specified since we 
             %calculate SDF and Fext only for grid pts IN the band (i.e., flag_NB==1) and all calculations are based on surface points 
             % which are always in the band. flag_NB==2 comes into play when the EOM 
             % is solved in the while loop: they must be specified at the 
             % beginning of each loop.  There is no issue here since band 
             % is re-initialized before boundary (where flag_NB==2) is hit 
             % so surface never reaches boundary so no checks need to be 
             % performed where boundary phi_x or phi_z would have free end B.C.'s.   
              
          for b=1:1:b_max  
              if (phi_1(k,i)==0) 
                  SDF(b)=0; %we are on the surface  
              elseif 
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))  
                  SDF(b)=((x_cord(i)-xz_surf(b,1)).^2+(z_cord(k)-xz_surf(b,2)).^2).^0.5; 
              else 
                  SDF(b)=NaN; %Need this since it accounts for cases where surface wasn't encountered (i.e. x_surf or z_surf are 0 numerically) 
              end             %and the fact that SDF can be actually 0, if we are on the surface (and if surface not encountered, SDF(b) would stay 0  
                              %since it is pre-allocated with zeros for speed                               
          end 
          %Obtain value and index at which SDF is MIN (ignores NaN's)           
          [min_SDF,I_min(k,i)]=min(SDF); 
           
          %Update phi 
          if (phi_1(k,i)>0)           %Checking sign of pre re-initialized phi's and thus new phi's (no change in sign) 
                  phi(k,i)=min_SDF;                                                                                 
          elseif (phi_1(k,i)<0)  
                  phi(k,i)=-min_SDF;                  
          else 
                  phi(k,i)=phi_1(k,i); %i.e., phi(k,i)=0, we are on the surface 
          end 
         
          
          %---------------------------------------------------------------- 
          %%%%%%%%%%%%%%%%%%%%F_ext Algorithm%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
          %----------------------------------------------------------------                    
                   
          if (I_min(k,i)>=1)&&(I_min(k,i)<=(3*i_max))&&(phi_1(k,i)~=0) %zsurf used; phi_1(k,i)~=0, since if it is 0,  
              %use regular eq'ns to calculate Fext where surface node = grid node (see below) 
             
            if (I_min(k,i)>=1)&&(I_min(k,i)<=i_max)  %%Here, we use I_min_ik=''i'', acts as reference for phi interpolation to know ''i'' value (see below) 
               I_min_ik=I_min(k,i); %z_surf_1 used 
            end                
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            if (I_min(k,i)>=(i_max+1))&&(I_min(k,i)<=(2*i_max)) 
               I_min_ik=I_min(k,i)-i_max;  %z_surf_2 used  
            end 
             
            if (I_min(k,i)>=(2*i_max+1))&&(I_min(k,i)<=(3*i_max)) 
               I_min_ik=I_min(k,i)-2*i_max;  %z_surf_3 used   
            end 
                 
                %Calculate nearest (reference) k index to surface 
                J_k_ext=floor(k_max-(xz_surf(I_min(k,i),2)-z_min_grid)/dz);                  
%__________________________________________________________________________               
                %Calculation of dphi/dx,dphi/dz (in b/w grid nodes); Define BC's 
              
                if I_min_ik==i_max 
                    phi_x_pos_ext(k,i)=0; 
                else 
                    phi_B_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik+1)-
phi_1(J_k_ext,I_min_ik+1))+phi_1(J_k_ext,I_min_ik+1); 
                    phi_x_pos_ext(k,i)=(phi_B_z_surf-0)./dx; 
                end 
                 
                if I_min_ik==1 
                    phi_x_neg_ext(k,i)=0; 
                else 
                    phi_A_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik-1)-phi_1(J_k_ext,I_min_ik-
1))+phi_1(J_k_ext,I_min_ik-1); 
                    phi_x_neg_ext(k,i)=(0-phi_A_z_surf)./dx; 
                end 
                 
                if (I_min_ik==i_max)||(I_min_ik==1) 
                    phi_x_cen_ext(k,i)=0;                   
                else 
                    phi_A_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik-1)-phi_1(J_k_ext,I_min_ik-
1))+phi_1(J_k_ext,I_min_ik-1); 
                    phi_B_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik+1)-
phi_1(J_k_ext,I_min_ik+1))+phi_1(J_k_ext,I_min_ik+1); 
                    phi_x_cen_ext(k,i)=(phi_B_z_surf-phi_A_z_surf)./(2*dx); 
                end                 
                                
                if J_k_ext==1 
                    phi_z_pos_ext(k,i)=0; 
                else 
                    phi_C_z_surf=((xz_surf(I_min(k,i),2)+dz-z_cord(J_k_ext-1))/(z_cord(J_k_ext)-z_cord(J_k_ext-1))).*(phi_1(J_k_ext,I_min_ik)-phi_1(J_k_ext-
1,I_min_ik))+phi_1(J_k_ext-1,I_min_ik);                     
                    phi_z_pos_ext(k,i)=(phi_C_z_surf-0)./dz; 
                end 
                 
                if J_k_ext==k_max 
                    phi_z_neg_ext(k,i)=0; 
                else 
                    phi_D_z_surf=((xz_surf(I_min(k,i),2)-dz-z_cord(J_k_ext+1))/(z_cord(J_k_ext+2)-z_cord(J_k_ext+1))).*(phi_1(J_k_ext+2,I_min_ik)-
phi_1(J_k_ext+1,I_min_ik))+phi_1(J_k_ext+1,I_min_ik); 
                    phi_z_neg_ext(k,i)=(0-phi_D_z_surf)./dz; 
                end 
                 
                if (J_k_ext==k_max)||(J_k_ext==1) 
                    phi_z_cen_ext(k,i)=0;                     
                else 
                    phi_C_z_surf=((xz_surf(I_min(k,i),2)+dz-z_cord(J_k_ext-1))/(z_cord(J_k_ext)-z_cord(J_k_ext-1))).*(phi_1(J_k_ext,I_min_ik)-phi_1(J_k_ext-
1,I_min_ik))+phi_1(J_k_ext-1,I_min_ik);  
                    phi_D_z_surf=((xz_surf(I_min(k,i),2)-dz-z_cord(J_k_ext+1))/(z_cord(J_k_ext+2)-z_cord(J_k_ext+1))).*(phi_1(J_k_ext+2,I_min_ik)-
phi_1(J_k_ext+1,I_min_ik))+phi_1(J_k_ext+1,I_min_ik); 
                    phi_z_cen_ext(k,i)=(phi_C_z_surf-phi_D_z_surf)./(2*dz); 
                end 
                   
                %Now calculate phi_stars 
                phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2; 
                phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2; 
%__________________________________________________________________________                 
                %Masking Function for T and M               
                x_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*sin(alfa)-xz_surf(I_min(k,i),2).*cos(alfa); %Rotated local x 
                z_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*cos(alfa)+xz_surf(I_min(k,i),2).*sin(alfa); %Rotated local z 
                 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                 
                        if (max_x_prime_surf_LM<0) %Case (a) and (c) 
                            if (x_prime_ext(k,i)<0) 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            else %i.e., when x_prime>=0 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;  
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                            end             
                        else %i.e., when x_m>=W_m/2 Case (b) 
                            x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            if (x_prime_ext(k,i)<x_lim_ext(k,i)) 
                                L_mask_ext(k,i)=0; 
                            else %i.e., when x_prime>=x_lim 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i); 
                            end 
                        end 
  
                        %Define proportion of mass of particles that pass through mask opening having a 
                        %specific particle size (of radius r) distribution            
                        if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i)) 
                            M_r_x_prime_ext(k,i)=0; 
                        else 
                            Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));   
                            Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));  
                            M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i); 
                        end 
             
                        else  %M; Below for F, will check if M(x')=0 if cos(theta)<0 so apply it there (initial iteration assumption for small initial dt)           
                            M_r_x_prime_ext(k,i)=1; 
                        end 
                         
%__________________________________________________________________________                         
                        %Define velocity v(x,z) at each grid node                             
                            v_ext(k,i)=v_o*(1-H_slp*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2).^0.5./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))); 
                        if (v_ext(k,i)<0) 
                            v_ext(k,i)=0; 
                        end 
                         
                        %Define particle mass flux(x,z) at each grid node 
                            flux_ext(k,i)=(MFR/pi)*(beta./((xz_surf(I_min(k,i),1)-x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))).^2.... 
                            *exp(-(beta^2.*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2)./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)).^2));   
                         
                        %Define Erosive Power Eros_pow(k,i) at each grid 
                        %node (1st Strike) 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T                    
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i); 
                        else %M 
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i); 
                        end 
                         
                        %Define Erosive Power for 2nd strike 
                        %NOTE: No Mask here 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) %If second strike occurred 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0;     
                            end 
                        else %M 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0; 
                            end 
                        end 
                        
%__________________________________________________________________________   
                %Calculate F_extensions  
                 
                    cos_t_pfx_pfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_pfx_nfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_nfx_pfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_nfx_nfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_star_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_star_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_star_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_cen_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_cen_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_cen_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    if (cos_t_pfx_pfz_ext(k,i)>1) %limit cos(theta) to be b/w -1 and 1 
                        cos_t_pfx_pfz_ext(k,i)=1; 
                    end 
                    if (cos_t_pfx_nfz_ext(k,i)>1)   
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                        cos_t_pfx_nfz_ext(k,i)=1; 
                    end 
                    if (cos_t_nfx_pfz_ext(k,i)>1)   
                        cos_t_nfx_pfz_ext(k,i)=1; 
                    end 
                    if (cos_t_nfx_nfz_ext(k,i)>1)   
                        cos_t_nfx_nfz_ext(k,i)=1; 
                    end 
                    if (cos_t_star_ext(k,i)>1)  
                        cos_t_star_ext(k,i)=1; 
                    end 
                    if (cos_t_cen_ext(k,i)>1)  
                        cos_t_cen_ext(k,i)=1; 
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_pfx_pfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_pfz_1st(k,i)=0; 
                       else 
                       F_ext_pfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_pfx_nfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_nfz_1st(k,i)=0; 
                       else 
                       F_ext_pfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_nfx_pfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_pfz_1st(k,i)=0; 
                       else 
                       F_ext_nfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext(k,i))).^n_2_M));  
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_nfx_nfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_nfz_1st(k,i)=0;                        
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   else 
                       F_ext_nfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_star_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_star_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_star_1st(k,i)=0; 
                       else 
                       F_ext_star_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_star_ext(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_cen_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_cen_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_cen_1st(k,i)=0; 
                       else 
                       F_ext_cen_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_cen_ext(k,i))).^n_2_M));     
                       end 
                    end     
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
             
          elseif (I_min(k,i)>=(3*i_max+1))&&(I_min(k,i)<=b_max)&&(phi_1(k,i)~=0) %xsurf used; phi_1(k,i)~=0 (see above)  
               
             if (I_min(k,i)>=(3*i_max+1))&&(I_min(k,i)<=(3*i_max+k_max))  %%Here, we use I_min_ik=''k'', acts as reference for phi interpolation to know ''k'' value 
(see below) 
                I_min_ik=I_min(k,i)-3*i_max; %x_surf_1 used 
             end               
             if (I_min(k,i)>=(3*i_max+k_max+1))&&(I_min(k,i)<=b_max) 
                I_min_ik=I_min(k,i)-3*i_max-k_max;  %x_surf_2 used  
             end 
                 
                %Repeat above algorithm but for xsurf 
                %Calculate nearest i index to surface 
                J_i_ext=floor(1+(xz_surf(I_min(k,i),1)-x_min_grid)/dx);  
%__________________________________________________________________________ 
                %Calculation of dphi/dx,dphi/dz, Define BC's                                
                if J_i_ext==i_max 
                    phi_x_pos_ext(k,i)=0; 
                else 
                    phi_D_x_surf=((xz_surf(I_min(k,i),1)+dx-x_cord(J_i_ext+1))/(x_cord(J_i_ext+2)-x_cord(J_i_ext+1))).*(phi_1(I_min_ik,J_i_ext+2)-
phi_1(I_min_ik,J_i_ext+1))+phi_1(I_min_ik,J_i_ext+1); 
                    phi_x_pos_ext(k,i)=(phi_D_x_surf-0)./dx; 
                end 
                 
                if J_i_ext==1 
                    phi_x_neg_ext(k,i)=0; 
                else 
                    phi_C_x_surf=((xz_surf(I_min(k,i),1)-dx-x_cord(J_i_ext-1))/(x_cord(J_i_ext)-x_cord(J_i_ext-1))).*(phi_1(I_min_ik,J_i_ext)-phi_1(I_min_ik,J_i_ext-
1))+phi_1(I_min_ik,J_i_ext-1);  
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                    phi_x_neg_ext(k,i)=(0-phi_C_x_surf)./dx; 
                end 
                 
                if (J_i_ext==i_max)||(J_i_ext==1) 
                    phi_x_cen_ext(k,i)=0;                   
                else 
                    phi_C_x_surf=((xz_surf(I_min(k,i),1)-dx-x_cord(J_i_ext-1))/(x_cord(J_i_ext)-x_cord(J_i_ext-1))).*(phi_1(I_min_ik,J_i_ext)-phi_1(I_min_ik,J_i_ext-
1))+phi_1(I_min_ik,J_i_ext-1); 
                    phi_D_x_surf=((xz_surf(I_min(k,i),1)+dx-x_cord(J_i_ext+1))/(x_cord(J_i_ext+2)-x_cord(J_i_ext+1))).*(phi_1(I_min_ik,J_i_ext+2)-
phi_1(I_min_ik,J_i_ext+1))+phi_1(I_min_ik,J_i_ext+1); 
                    phi_x_cen_ext(k,i)=(phi_D_x_surf-phi_C_x_surf)./(2*dx); 
                end 
                                                   
                if I_min_ik==1 
                    phi_z_pos_ext(k,i)=0; 
                else 
                    phi_A_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik-1,J_i_ext+1)-phi_1(I_min_ik-
1,J_i_ext))+phi_1(I_min_ik-1,J_i_ext); 
                    phi_z_pos_ext(k,i)=(phi_A_x_surf-0)./dz; 
                end 
                 
                if I_min_ik==k_max 
                    phi_z_neg_ext(k,i)=0; 
                else 
                    phi_B_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik+1,J_i_ext+1)-
phi_1(I_min_ik+1,J_i_ext))+phi_1(I_min_ik+1,J_i_ext); 
                    phi_z_neg_ext(k,i)=(0-phi_B_x_surf)./dz;   
                end 
                 
                if (I_min_ik==k_max)||(I_min_ik==1) 
                    phi_z_cen_ext(k,i)=0;                     
                else 
                    phi_A_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik-1,J_i_ext+1)-phi_1(I_min_ik-
1,J_i_ext))+phi_1(I_min_ik-1,J_i_ext); 
                    phi_B_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik+1,J_i_ext+1)-
phi_1(I_min_ik+1,J_i_ext))+phi_1(I_min_ik+1,J_i_ext); 
                    phi_z_cen_ext(k,i)=(phi_A_x_surf-phi_B_x_surf)./(2*dz); 
                end 
  
                %Calculate phi_stars 
                phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2; 
                phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2; 
%__________________________________________________________________________                             
                %Masking function for T, M (analogous to above)                 
                x_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*sin(alfa)-xz_surf(I_min(k,i),2).*cos(alfa); %Rotated local x 
                z_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*cos(alfa)+xz_surf(I_min(k,i),2).*sin(alfa); %Rotated local z 
                 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                 
                        if (max_x_prime_surf_LM<0) %Case (a) and (c) 
                            if (x_prime_ext(k,i)<0) 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            else %i.e., when x_prime>=0 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;  
                            end             
                        else %i.e., when x_m>=W_m/2 Case (b) 
                            x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            if (x_prime_ext(k,i)<x_lim_ext(k,i)) 
                                L_mask_ext(k,i)=0; 
                            else %i.e., when x_prime>=x_lim 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i); 
                            end 
                        end 
  
                        %Define proportion of mass of particle that pass through mask opening having a 
                        %specific particle size (of radius r) distribution            
                        if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i)) 
                            M_r_x_prime_ext(k,i)=0; 
                        else 
                            Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));   
                            Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));  
                            M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i); 
                        end 
             
                        else  %M            
                            M_r_x_prime_ext(k,i)=1; 
                        end 
                         
%__________________________________________________________________________                         
                        %Define velocity v(x,z) at each grid node                                                                     
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        v_ext(k,i)=v_o*(1-H_slp*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2).^0.5./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))); 
                        if (v_ext(k,i)<0) 
                            v_ext(k,i)=0; 
                        end 
                         
                        %Define particle mass flux(x,z) at each grid node 
                            flux_ext(k,i)=(MFR/pi)*(beta./((xz_surf(I_min(k,i),1)-x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))).^2.... 
                            *exp(-(beta^2.*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2)./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)).^2));   
                         
                        %Define Erosive Power Eros_pow(k,i) at each grid 
                        %node (1st Strike) 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T                    
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i); 
                        else %M 
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i); 
                        end                         
                         
                        %Define Erosive Power for 2nd strike 
                        %NOTE: No Mask here 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0;     
                            end 
                        else %M 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0; 
                            end 
                        end 
                        
%__________________________________________________________________________   
                %Calculate F_extensions  
                 
                    cos_t_pfx_pfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_pfx_nfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_nfx_pfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_nfx_nfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_star_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_star_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_star_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_cen_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_cen_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_cen_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    if (cos_t_pfx_pfz_ext(k,i)>1)  
                        cos_t_pfx_pfz_ext(k,i)=1; 
                    end 
                    if (cos_t_pfx_nfz_ext(k,i)>1)  
                        cos_t_pfx_nfz_ext(k,i)=1; 
                    end 
                    if (cos_t_nfx_pfz_ext(k,i)>1)   
                        cos_t_nfx_pfz_ext(k,i)=1; 
                    end 
                    if (cos_t_nfx_nfz_ext(k,i)>1)   
                        cos_t_nfx_nfz_ext(k,i)=1; 
                    end 
                    if (cos_t_star_ext(k,i)>1)  
                        cos_t_star_ext(k,i)=1; 
                    end 
                    if (cos_t_cen_ext(k,i)>1)  
                        cos_t_cen_ext(k,i)=1; 
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_pfx_pfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_pfz_1st(k,i)=0; 
                       else 
                       F_ext_pfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext(k,i))).^n_2_M)); 
                       end 
                    end                      
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                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_pfx_nfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_nfz_1st(k,i)=0; 
                       else 
                       F_ext_pfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_nfx_pfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_pfz_1st(k,i)=0; 
                       else 
                       F_ext_nfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext(k,i))).^n_2_M));  
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_nfx_nfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_nfz_1st(k,i)=0; 
                       else 
                       F_ext_nfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_star_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_star_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_star_1st(k,i)=0; 
                       else 
                       F_ext_star_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_star_ext(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)                                          

 165



                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_cen_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_cen_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_cen_1st(k,i)=0; 
                       else 
                       F_ext_cen_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_cen_ext(k,i))).^n_2_M));     
                       end 
                    end     
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));                         
                    end 
             
          else %we are on surface and grid node = surface node (and phi=0)               
                %Repeat above algorithm but using grid nodes 
                 
%__________________________________________________________________________                 
                %Calculation of dphi/dx,dphi/dz; Define BC's 
                if i==i_max 
                    phi_x_pos_ext(k,i)=0; 
                else 
                    phi_x_pos_ext(k,i)=(phi_1(k,i+1)-phi_1(k,i))./dx; 
                end 
                 
                if i==1 
                    phi_x_neg_ext(k,i)=0; 
                else 
                    phi_x_neg_ext(k,i)=(phi_1(k,i)-phi_1(k,i-1))./dx; 
                end 
                 
                if (i==i_max)||(i==1) 
                    phi_x_cen_ext(k,i)=0;               
                else 
                    phi_x_cen_ext(k,i)=(phi_1(k,i+1)-phi_1(k,i-1))./(2*dx);                     
                end 
                 
                if k==1 
                    phi_z_pos_ext(k,i)=0; 
                else 
                    phi_z_pos_ext(k,i)=(phi_1(k-1,i)-phi_1(k,i))./dz; 
                end 
                 
                if k==k_max 
                    phi_z_neg_ext(k,i)=0; 
                else 
                    phi_z_neg_ext(k,i)=(phi_1(k,i)-phi_1(k+1,i))./dz; 
                end 
                 
                if (k==k_max)||(k==1) 
                    phi_z_cen_ext(k,i)=0;               
                else 
                    phi_z_cen_ext(k,i)=(phi_1(k-1,i)-phi_1(k+1,i))./(2*dz);    
                end 
  
                %Calculate phi_stars 
                phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2; 
                phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2;                             
%__________________________________________________________________________                 
                %Masking function for T, M (analogous to above)                 
                x_prime_ext(k,i)=x_cord_local(i).*sin(alfa)-z_cord(k).*cos(alfa); %Rotated local x 
                z_prime_ext(k,i)=x_cord_local(i).*cos(alfa)+z_cord(k).*sin(alfa); %Rotated local z 
                 
                        if (z_cord(k)>=(h*sin(alfa))) %T 
                 
                        if (max_x_prime_surf_LM<0) %Case (a) and (c) 
                            if (x_prime_ext(k,i)<0) 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            else %i.e., when x_prime>=0                                 

 166



                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;  
                            end             
                        else %i.e., when x_m>=W_m/2 Case (b) 
                            x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            if (x_prime_ext(k,i)<x_lim_ext(k,i)) 
                                L_mask_ext(k,i)=0; 
                            else %i.e., when x_prime>=x_lim 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i); 
                            end 
                        end 
  
                        %Define proportion of mass of particle that pass through mask opening having a 
                        %specific particle size (of radius r) distribution            
                        if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i)) 
                            M_r_x_prime_ext(k,i)=0; 
                        else 
                            Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));   
                            Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));  
                            M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i); 
                        end 
             
                        else  %M            
                            M_r_x_prime_ext(k,i)=1; 
                        end 
                         
%__________________________________________________________________________                         
                        %Define velocity v(x,z) at each grid node 
                            v_ext(k,i)=v_o*(1-H_slp*((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2).^0.5./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)));   
                        if (v_ext(k,i)<0) 
                            v_ext(k,i)=0; 
                        end 
                         
                        %Define particle mass flux(x,z) at each grid node 
                            flux_ext(k,i)=(MFR/pi)*(beta./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa))).^2.... 
                            *exp(-(beta^2.*((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2)./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)).^2)); 
                         
                        %Define Erosive Power Eros_pow(k,i) at each grid 
                        %node (1st strike) 
                        if (z_cord(k)>=(h*sin(alfa))) %T                    
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i); 
                        else %M 
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i); 
                        end 
                         
                        %Define Erosive Power for 2nd strike 
                        %NOTE: No Mask here 
                        if (z_cord(k)>=(h*sin(alfa))) %T 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0;     
                            end 
                        else %M 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0; 
                            end 
                        end 
                         
                        
%__________________________________________________________________________   
                %Calculate F_extensions  
                 
                    cos_t_pfx_pfz_ext(k,i)=(x_cord_local(i).*(phi_x_pos_ext(k,i))+z_cord(k).*(phi_z_pos_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_pfx_nfz_ext(k,i)=(x_cord_local(i).*(phi_x_pos_ext(k,i))+z_cord(k).*(phi_z_neg_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_nfx_pfz_ext(k,i)=(x_cord_local(i).*(phi_x_neg_ext(k,i))+z_cord(k).*(phi_z_pos_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_nfx_nfz_ext(k,i)=(x_cord_local(i).*(phi_x_neg_ext(k,i))+z_cord(k).*(phi_z_neg_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_star_ext(k,i)=(x_cord_local(i).*(phi_x_star_ext(k,i))+z_cord(k).*(phi_z_star_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_cen_ext(k,i)=(x_cord_local(i).*(phi_x_cen_ext(k,i))+z_cord(k).*(phi_z_cen_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    if (cos_t_pfx_pfz_ext(k,i)>1)  
                        cos_t_pfx_pfz_ext(k,i)=1; 
                    end 
                    if (cos_t_pfx_nfz_ext(k,i)>1)   
                        cos_t_pfx_nfz_ext(k,i)=1; 
                    end 
                    if (cos_t_nfx_pfz_ext(k,i)>1)   
                        cos_t_nfx_pfz_ext(k,i)=1; 
                    end 
                    if (cos_t_nfx_nfz_ext(k,i)>1)    
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                        cos_t_nfx_nfz_ext(k,i)=1; 
                    end 
                    if (cos_t_star_ext(k,i)>1)  
                        cos_t_star_ext(k,i)=1; 
                    end 
                    if (cos_t_cen_ext(k,i)>1)  
                        cos_t_cen_ext(k,i)=1; 
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_pfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_pfx_pfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_pfz_1st(k,i)=0; 
                       else 
                       F_ext_pfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_pfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_pfx_nfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_nfz_1st(k,i)=0; 
                       else 
                       F_ext_pfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_nfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_nfx_pfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_pfz_1st(k,i)=0; 
                       else 
                       F_ext_nfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext(k,i))).^n_2_M));  
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_nfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_nfx_nfz_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_nfz_1st(k,i)=0; 
                       else 
                       F_ext_nfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext(k,i))).^n_2_M));   
                       end 
                    end 
                                         

 168



                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_star_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_star_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_star_1st(k,i)=0; 
                       else 
                       F_ext_star_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_star_ext(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_cen_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i))^(k_vel+1)));          
                    else %M 
                       if (cos_t_cen_ext(k,i)<=0) %Apply mask visibility for M 
                       F_ext_cen_1st(k,i)=0; 
                       else 
                       F_ext_cen_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_cen_ext(k,i))).^n_2_M));     
                       end 
                    end     
                     
                    %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs) 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));                         
                    end 
          
          end 
           
      
         end  %#####*****#####$$$$$#####*****##### 
     end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        %END OF SDF AND F_EXT ALGORITHM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Time Counter 
time=time+dt; 
  
%Iteration counter  
counter=counter+1; 
  
%Initialize variables for NB collision detection (see below) 
flag_RE=0; 
Num_iter_RE_TOT=0; 
  
%########################################################################## 
%                         END OF INITIAL ITERATION  
%########################################################################## 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                                 %Main Loop 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
while (time<=t_in) 
  
%__________________________________________________________________________ 
%Define FD's and BC's  
phi_x_pos=zeros(k_max,i_max); 
phi_x_neg=zeros(k_max,i_max); 
phi_x_cen=zeros(k_max,i_max);  
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phi_x_x_cen=zeros(k_max,i_max); 
phi_z_pos=zeros(k_max,i_max); 
phi_z_neg=zeros(k_max,i_max); 
phi_z_cen=zeros(k_max,i_max); 
phi_z_z_cen=zeros(k_max,i_max); 
  
%FD's where there is a NB boundary 1st  
for k=1:1:k_max 
        for i=1:1:i_max 
             
            if (flag_NB(k,i)==2) %#####*****#####$$$$$#####*****##### 
                 
                if i==i_max 
                    phi_x_pos(k,i)=0; 
                elseif ((flag_NB(k,i+1)==3)||(flag_NB(k,i+1)==4)) 
                    phi_x_pos(k,i)=0;                     
                else 
                    phi_x_pos(k,i)=(phi(k,i+1)-phi(k,i))./dx; 
                end 
                                 
                if i==1 
                    phi_x_neg(k,i)=0; 
                elseif ((flag_NB(k,i-1)==3)||(flag_NB(k,i-1)==4)) 
                    phi_x_neg(k,i)=0;                    
                else 
                    phi_x_neg(k,i)=(phi(k,i)-phi(k,i-1))./dx; 
                end 
                 
                if (i==i_max)||(i==1) 
                    phi_x_cen(k,i)=0; 
                    phi_x_x_cen(k,i)=0; 
                elseif ((flag_NB(k,i+1)==3)||(flag_NB(k,i+1)==4))||((flag_NB(k,i-1)==3)||(flag_NB(k,i-1)==4)) 
                    phi_x_cen(k,i)=0; 
                    phi_x_x_cen(k,i)=0; 
                else 
                    phi_x_cen(k,i)=(phi(k,i+1)-phi(k,i-1))./(2*dx); 
                    phi_x_x_cen(k,i)=(phi(k,i+1)-2*phi(k,i)+phi(k,i-1))./(dx^2); 
                end 
                                 
                if k==1 
                    phi_z_pos(k,i)=0; 
                elseif ((flag_NB(k-1,i)==3)||(flag_NB(k-1,i)==4)) 
                    phi_z_pos(k,i)=0; 
                else 
                    phi_z_pos(k,i)=(phi(k-1,i)-phi(k,i))./dz; 
                end 
                 
                if k==k_max 
                    phi_z_neg(k,i)=0; 
                elseif ((flag_NB(k+1,i)==3)||(flag_NB(k+1,i)==4)) 
                    phi_z_neg(k,i)=0; 
                else 
                    phi_z_neg(k,i)=(phi(k,i)-phi(k+1,i))./dz; 
                end 
                 
                if (k==k_max)||(k==1) 
                    phi_z_cen(k,i)=0; 
                    phi_z_z_cen(k,i)=0; 
                elseif ((flag_NB(k-1,i)==3)||(flag_NB(k-1,i)==4))||((flag_NB(k+1,i)==3)||(flag_NB(k+1,i)==4)) 
                    phi_z_cen(k,i)=0; 
                    phi_z_z_cen(k,i)=0; 
                else 
                    phi_z_cen(k,i)=(phi(k-1,i)-phi(k+1,i))./(2*dz); 
                    phi_z_z_cen(k,i)=(phi(k-1,i)-2*phi(k,i)+phi(k+1,i))./(dz^2); 
                end 
                 
            end %#####*****#####$$$$$#####*****##### 
        end 
end 
  
%FD's inside the NB 
for k=1:1:k_max 
        for i=1:1:i_max 
             
            if (flag_NB(k,i)==1) %#####*****#####$$$$$#####*****##### 
                 
                if i==i_max 
                    phi_x_pos(k,i)=0; 
                else 
                    phi_x_pos(k,i)=(phi(k,i+1)-phi(k,i))./dx;                 
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                end 
                 
                if i==1 
                    phi_x_neg(k,i)=0; 
                else 
                    phi_x_neg(k,i)=(phi(k,i)-phi(k,i-1))./dx; 
                end 
                 
                if (i==i_max)||(i==1) 
                    phi_x_cen(k,i)=0; 
                    phi_x_x_cen(k,i)=0; 
                else 
                    phi_x_cen(k,i)=(phi(k,i+1)-phi(k,i-1))./(2*dx); 
                    phi_x_x_cen(k,i)=(phi(k,i+1)-2*phi(k,i)+phi(k,i-1))./(dx^2); 
                end 
                 
                if k==1 
                    phi_z_pos(k,i)=0; 
                else 
                    phi_z_pos(k,i)=(phi(k-1,i)-phi(k,i))./dz; 
                end 
                 
                if k==k_max 
                    phi_z_neg(k,i)=0; 
                else 
                    phi_z_neg(k,i)=(phi(k,i)-phi(k+1,i))./dz; 
                end 
                 
                if (k==k_max)||(k==1) 
                    phi_z_cen(k,i)=0; 
                    phi_z_z_cen(k,i)=0; 
                else 
                    phi_z_cen(k,i)=(phi(k-1,i)-phi(k+1,i))./(2*dz); 
                    phi_z_z_cen(k,i)=(phi(k-1,i)-2*phi(k,i)+phi(k+1,i))./(dz^2); 
                end 
                 
            end %#####*****#####$$$$$#####*****##### 
        end 
end     
     
%__________________________________________________________________________ 
%Define Curvature K 
K=zeros(k_max,i_max);  
 if (epsilon==0)  
     for k=1:1:k_max 
        for i=1:1:i_max    
            if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### IN NB, etc.  
                    K(k,i)=0; 
            end %#####*****#####$$$$$#####*****##### 
        end 
     end 
 else 
     for k=1:1:k_max 
         for i=1:1:i_max 
             if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
                        K(k,i)=phi_x_x_cen(k,i)+phi_z_z_cen(k,i);   
             end  %#####*****#####$$$$$#####*****##### 
          end                
     end 
 end 
  
%__________________________________________________________________________ 
%Define Partial Hamiltonians for LLLF Scheme (analogous to initial iteration) 
cos_t_pfx_pfz=zeros(k_max,i_max); 
cos_t_pfx_nfz=zeros(k_max,i_max); 
cos_t_nfx_pfz=zeros(k_max,i_max); 
cos_t_nfx_nfz=zeros(k_max,i_max); 
H1_LLLF_pfx_pfz=zeros(k_max,i_max); %Partial H wrt phi_x (all +/- FD combinations) 
H1_LLLF_pfx_nfz=zeros(k_max,i_max); 
H1_LLLF_nfx_pfz=zeros(k_max,i_max); 
H1_LLLF_nfx_nfz=zeros(k_max,i_max); 
H3_LLLF_pfx_pfz=zeros(k_max,i_max); %Partial H wrt phi_z (all +/- FD combinations) 
H3_LLLF_pfx_nfz=zeros(k_max,i_max); 
H3_LLLF_nfx_pfz=zeros(k_max,i_max); 
H3_LLLF_nfx_nfz=zeros(k_max,i_max); 
for k=1:1:k_max 
        for i=1:1:i_max 
          if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####  
             
            if (flag_NB(k,i)==1)  
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            cos_t_pfx_pfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_pos(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
            cos_t_pfx_nfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_neg(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
            cos_t_nfx_pfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_pos(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
            cos_t_nfx_nfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_neg(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
            else %Need this condition since NB boundary pts can incorrectly evaluate cos() since either phi_x or phi_z is forced to 0 there 
             
             if (phi_x_pos(k,i)==0)&&(phi_z_pos(k,i)==0) 
             cos_t_pfx_pfz(k,i)=0; 
             else 
             
cos_t_pfx_pfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_pos(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_pos(k,i)).^2+(phi_z_pos(k,i)
).^2)); 
             end 
              
             if (phi_x_pos(k,i)==0)&&(phi_z_neg(k,i)==0) 
             cos_t_pfx_nfz(k,i)=0; 
             else 
             
cos_t_pfx_nfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_neg(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_pos(k,i)).^2+(phi_z_neg(k,i
)).^2)); 
             end 
              
             if (phi_x_neg(k,i)==0)&&(phi_z_pos(k,i)==0) 
             cos_t_nfx_pfz(k,i)=0; 
             else 
             
cos_t_nfx_pfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_pos(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_neg(k,i)).^2+(phi_z_pos(k,i
)).^2)); 
             end 
              
             if (phi_x_neg(k,i)==0)&&(phi_z_neg(k,i)==0) 
             cos_t_nfx_nfz(k,i)=0; 
             else 
             
cos_t_nfx_nfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_neg(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_neg(k,i)).^2+(phi_z_neg(k,i
)).^2));  
             end 
              
            end 
             
            if (cos_t_pfx_pfz(k,i)>1) %limit cos(theta) to be b/w -1 and 1 
                   cos_t_pfx_pfz(k,i)=1; 
            end 
            if (cos_t_pfx_nfz(k,i)>1)   
                    cos_t_pfx_nfz(k,i)=1; 
            end 
            if (cos_t_nfx_pfz(k,i)>1)   
                    cos_t_nfx_pfz(k,i)=1; 
            end 
            if (cos_t_nfx_nfz(k,i)>1)   
                    cos_t_nfx_nfz(k,i)=1; 
            end 
            %_________ 
            if cos_t_pfx_pfz(k,i)==0 %Done to ensure 0/0 doesn't results and hence an error - F=H=0 when this occurs 
                H3_LLLF_pfx_pfz(k,i)=0; 
                H1_LLLF_pfx_pfz(k,i)=0;                 
            else 
                if flag_T_M(k,i)==1 %T 
                    H3_LLLF_pfx_pfz(k,i)=real(F_ext_pfx_pfz(k,i)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_pfx_pfz(k,i)));   
                else %M 
                    H3_LLLF_pfx_pfz(k,i)=real(F_ext_pfx_pfz(k,i)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_pfx_pfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_pfx_pfz(k,i)))));                
                end 
                 
                H1_LLLF_pfx_pfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_pfx_pfz(k,i); 
            end 
            %_________ 
            if cos_t_pfx_nfz(k,i)==0  
                H3_LLLF_pfx_nfz(k,i)=0; 
                H1_LLLF_pfx_nfz(k,i)=0;                 
            else 
                if flag_T_M(k,i)==1 %T 
                    H3_LLLF_pfx_nfz(k,i)=real(F_ext_pfx_nfz(k,i)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_pfx_nfz(k,i)));   
                else %M 
                    H3_LLLF_pfx_nfz(k,i)=real(F_ext_pfx_nfz(k,i)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_pfx_nfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_pfx_nfz(k,i)))));                
                end 
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                H1_LLLF_pfx_nfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_pfx_nfz(k,i); 
            end 
            %_________ 
            if cos_t_nfx_pfz(k,i)==0  
                H3_LLLF_nfx_pfz(k,i)=0; 
                H1_LLLF_nfx_pfz(k,i)=0;                 
            else 
                if flag_T_M(k,i)==1 %T 
                    H3_LLLF_nfx_pfz(k,i)=real(F_ext_nfx_pfz(k,i)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_nfx_pfz(k,i)));   
                else %M 
                    H3_LLLF_nfx_pfz(k,i)=real(F_ext_nfx_pfz(k,i)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_nfx_pfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_nfx_pfz(k,i)))));                
                end 
                 
                H1_LLLF_nfx_pfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_nfx_pfz(k,i); 
            end 
            %_________ 
            if cos_t_nfx_nfz(k,i)==0  
                H3_LLLF_nfx_nfz(k,i)=0; 
                H1_LLLF_nfx_nfz(k,i)=0;                 
            else 
                if flag_T_M(k,i)==1 %T 
                    H3_LLLF_nfx_nfz(k,i)=real(F_ext_nfx_nfz(k,i)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_nfx_nfz(k,i)));   
                else %M 
                    H3_LLLF_nfx_nfz(k,i)=real(F_ext_nfx_nfz(k,i)... 
                        .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_nfx_nfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_nfx_nfz(k,i)))));                
                end 
                 
                H1_LLLF_nfx_nfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_nfx_nfz(k,i); 
            end 
          end %#####*****#####$$$$$#####*****##### 
             
        end 
end 
  
%__________________________________________________________________________ 
%LLLF Scheme 
%Initialization (preallocation) to increase computational speed 
alpha_x=zeros(k_max,i_max); 
alpha_z=zeros(k_max,i_max); 
Ham=zeros(k_max,i_max); 
Ham_num=zeros(k_max,i_max); 
 for k=1:1:k_max 
        for i=1:1:i_max 
            if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
                H1_LLLF_array=[abs(H1_LLLF_pfx_pfz(k,i)),abs(H1_LLLF_pfx_nfz(k,i)),abs(H1_LLLF_nfx_pfz(k,i)),abs(H1_LLLF_nfx_nfz(k,i))]; 
                alpha_x(k,i)=max(H1_LLLF_array);  
                H3_LLLF_array=[abs(H3_LLLF_pfx_pfz(k,i)),abs(H3_LLLF_pfx_nfz(k,i)),abs(H3_LLLF_nfx_pfz(k,i)),abs(H3_LLLF_nfx_nfz(k,i))]; 
                alpha_z(k,i)=max(H3_LLLF_array);  
             
            %Define Numerical Hamiltonian              
              
            Ham(k,i)=real(F_ext_star(k,i)); %No need to differentiate b/w cases T & M since taken care of in Fext Algorithm                      
             
            Ham_num(k,i)=Ham(k,i)-(alpha_x(k,i)/2).*(phi_x_pos(k,i)-phi_x_neg(k,i))-(alpha_z(k,i)/2).*(phi_z_pos(k,i)-phi_z_neg(k,i)); 
             
            end %#####*****#####$$$$$#####*****##### 
        end 
 end 
  
%__________________________________________________________________________ 
 %Define Central Difference Hamiltonian   
Ham_cen=zeros(k_max,i_max); 
 if (epsilon==0) 
     for k=1:1:k_max 
        for i=1:1:i_max 
            if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
                Ham_cen(k,i)=0; 
            end %#####*****#####$$$$$#####*****##### 
        end 
     end 
 else 
               for k=1:1:k_max 
                    for i=1:1:i_max  
                            if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
                                Ham_cen(k,i)=real(F_ext_cen(k,i)); %No need to differentiate b/w cases T & M since taken care of in Fext Algorithm 
                            end %#####*****#####$$$$$#####*****##### 
                    end  
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                end             
 end 
  
%__________________________________________________________________________ 
%Calculate dt (CFL Condition) 
  
%Find absolute Max of alpha_x and alpha_z used to obtain time step 
alpha_x_vector=zeros(1,k_max*i_max); 
alpha_z_vector=zeros(1,k_max*i_max); 
for W=1:1:(k_max*i_max) 
        alpha_x_vector(1,W)=alpha_x(W);  
end 
for X=1:1:(k_max*i_max) 
        alpha_z_vector(1,X)=alpha_z(X);  
end 
%No need to take absolute value of above vectors since alphas already 
%absolute positive (from previous evaluation) 
max_alpha_x=max(alpha_x_vector); 
max_alpha_z=max(alpha_z_vector);    
  
%CFL condition  
Ham_cen1=zeros(k_max,i_max); %Partial H wrt phi_x (all central FD) used to multiply epsilon 
Ham_cen3=zeros(k_max,i_max); %Partial H wrt phi_z (all central FD) 
cos_t_cen=zeros(k_max,i_max); 
 if (epsilon==0) %No need to evaluate the Partial H's 
     for k=1:1:k_max 
        for i=1:1:i_max 
            if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
                Ham_cen1(k,i)=0; 
                Ham_cen3(k,i)=0; 
            end %#####*****#####$$$$$#####*****##### 
        end 
     end 
 else 
               for k=1:1:k_max 
                    for i=1:1:i_max  
                            if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
                                 
                                if (flag_NB(k,i)==1) 
                                cos_t_cen(k,i)=(x_cord_local(i).*(phi_x_cen(k,i))+z_cord(k).*(phi_z_cen(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);             
  
                                else %Need this condition since NB boundary pts can incorrectly evaluate cos() since either phi_x or phi_z is forced to 0 there 
             
                                if (phi_x_cen(k,i)==0)&&(phi_z_cen(k,i)==0) %Done to ensure 0/0 doesn't results 
                                cos_t_cen(k,i)=0; 
                                else 
                                
cos_t_cen(k,i)=(x_cord_local(i).*(phi_x_cen(k,i))+z_cord(k).*(phi_z_cen(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_cen(k,i)).^2+(phi_z_cen(k,i)).^2
)); 
                                end              
              
                                end 
                        
                                if (cos_t_cen(k,i)>1) %limit cos(theta) to be b/w -1 and 1 
                                    cos_t_cen(k,i)=1; 
                                end 
  
                                %_________ 
                                if (cos_t_cen(k,i)==0)||(cos_t_cen(k,i)<=0.01) %Done to ensure 0/0 doesn't results and hence an error - F=H=0 when this occurs 
                                    Ham_cen3(k,i)=0; 
                                    Ham_cen1(k,i)=0;                 
                                else 
                                    if flag_T_M(k,i)==1 %T 
                                        Ham_cen3(k,i)=real(F_ext_cen(k,i)... 
                                            .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_cen(k,i)));   
                                    else %M 
                                        Ham_cen3(k,i)=real(F_ext_cen(k,i)... 
                                            .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_cen(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_cen(k,i)))));          
                                    end 
                 
                                    Ham_cen1(k,i)=(x_cord_local(i)./z_cord(k)).*Ham_cen3(k,i); 
                                end 
                                       
                      
                            end %#####*****#####$$$$$#####*****##### 
                    end 
                end             
 end 
   
 max_Ham_cen1=max(max(Ham_cen1)); %Max Ham_cen's  
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 max_Ham_cen3=max(max(Ham_cen3)); 
  
dt_alpha=0.9;%Used to scale down dt if necessary  
  
if ((max_alpha_x==0)&&(max_alpha_z==0)&&(epsilon==0)) 
   dt=t_in/Num_iter;  
else 
    dt=dt_alpha/(max_alpha_x/dx+max_alpha_z/dz+2*epsilon*max_Ham_cen1/dx^2+2*epsilon*max_Ham_cen3/dz^2); 
end 
  
%Curvature coefficient 
%NOTE can scale up/down 'epsilon' to obtain different epsilons for M and T 
%BUT 'epsilon' must be maximum  
epsilon_gen=zeros(k_max,i_max); 
for k=1:1:k_max 
        for i=1:1:i_max  
            if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
            if flag_T_M(k,i)==1 %T 
                epsilon_gen(k,i)=epsilon;             
            else %M 
                epsilon_gen(k,i)=0; 
            end 
            end %#####*****#####$$$$$#####*****##### 
        end 
end 
  
%__________________________________________________________________________ 
%Solve EOM for phi's to pass onto while loop 
phi_1=zeros(k_max,i_max); 
for k=1:1:k_max 
        for i=1:1:i_max  
            if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
                phi_1(k,i)=phi(k,i)+dt.*(-Ham_num(k,i)+epsilon_gen(k,i).*K(k,i).*Ham_cen(k,i)); 
            end %#####*****#####$$$$$#####*****##### 
        end 
end 
  
%__________________________________________________________________________ 
%Surface Interpolation algorithm (analogous to initial iteration) 
  
z_surf_1=zeros(i_max,1); 
z_surf_2=zeros(i_max,1); 
z_surf_3=zeros(i_max,1); 
for i=1:1:i_max  
    flag_1=0; 
    flag_2=0; 
     for k=1:1:k_max  
         if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
           if ((flag_1==0)&&(((phi_1(k,i)>0)&&(phi_1(k+1,i)<0))||(phi_1(k,i)==0)))  
               z_surf_1(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);                
               flag_1=i;  
               continue  
           end 
           if (((flag_2==0)&&(flag_1==i)&&(k~=k_max))&&(((phi_1(k,i)<0)&&(phi_1(k+1,i)>0))||(phi_1(k,i)==0)))  
               z_surf_2(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);    
               flag_2=i; 
               continue 
           end 
           if ((flag_2==i)&&(((phi_1(k,i)>0)&&(phi_1(k+1,i)<0))||(phi_1(k,i)==0))) 
               z_surf_3(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k); 
           end 
         end %#####*****#####$$$$$#####*****##### 
     end 
end 
  
x_surf_1=zeros(1,k_max); 
x_surf_2=zeros(1,k_max); 
for k=1:1:k_max  
    flag_3=0; 
     for i=1:1:i_max  
         if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### 
            if (((flag_3==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>0)&&(phi_1(k,i+1)<0))||(phi_1(k,i)==0)))                         
                x_surf_1(k)=((phi_1(k,i).*(x_cord(i)-x_cord(i+1)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                
                flag_3=k; 
                continue 
            end 
            if (((flag_3==k)&&(i~=i_max))&&(((phi_1(k,i)<0)&&(phi_1(k,i+1)>0))||(phi_1(k,i)==0)))                                     
                x_surf_2(k)=((phi_1(k,i).*(x_cord(i)-x_cord(i+1)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                  
            end 
         end %#####*****#####$$$$$#####*****#####  
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     end 
end 
  
%__________________________________________________________________________ 
% Convert all z_surf and x_surf to one array 
xz_surf=[x_cord', z_surf_1;x_cord', z_surf_2;x_cord', z_surf_3;x_surf_1',z_cord;x_surf_2',z_cord]; 
b_max=3*i_max+2*k_max; 
for b=1:1:(3*i_max) 
        if xz_surf(b,2)==0 
        xz_surf(b,1)=0; 
        xz_surf(b,2)=0; 
        else 
        xz_surf(b,1)=xz_surf(b,1); 
        xz_surf(b,2)=xz_surf(b,2);     
        end 
end 
  
for b=(3*i_max+1):1:b_max 
        if xz_surf(b,1)==0 
        xz_surf(b,1)=0; 
        xz_surf(b,2)=0; 
        else 
        xz_surf(b,1)=xz_surf(b,1); 
        xz_surf(b,2)=xz_surf(b,2);     
        end 
end         
             
%__________________________________________________________________________ 
%COLLISSION DETECTION ALGORITHM 
  
%Calculate (roughly) how many iterations it will take to hit band before 
%Band Re-initialization (RE) 
Num_iter_RE=round(((BS_U-Crit_D/dz)*Num_iter)/(z_in/dz));  
  
%Re-initialization counter; goes to 0 as band is rebuilt and starts 
%over.  flag_RE and Num_iter_RE_TOT are pre-allocated to 0 before while 
%loop and afterwards are defined by values in REBUILD BAND ALGORITHM  
counter_RE=counter-flag_RE*Num_iter_RE_TOT;  
  
%Pre-allocate variables for CHECK DISTANCE ALGORITHM  
c_max=b_max; 
D_o_U=zeros(b_max,1); 
D_o_L=zeros(b_max,1); 
min_D_o_U=zeros(c_max,1); 
min_D_o_L=zeros(c_max,1); 
MIN_D_o_U=0; 
MIN_D_o_L=0; 
D_o_LU=0; %Min. distance b/w surface and Upper and Lower bands 
  
%Pre-allocate variables for REBUILD BAND ALGORITHM  
SDF_RE=zeros(b_max,1); 
  
prop_Num_iter_RE=0.0001; %Defines proportion of Num_iter_RE before begin checking distance for every 
%iteration.  The larger this value, the less check are performed but run 
%the risk of surface passing band; Makes insignificant difference wrt comp. efficiency so 
%assumed ~0 so checks performed every iteration so surface does not collide 
%with the band 
  
counter_RE_chk=round(prop_Num_iter_RE*Num_iter_RE); %Round the result (to get integer) 
if (counter_RE>=counter_RE_chk) %Start to perform checks after some specified time 
   
    %CHECK DISTANCE ALGORITHM  
        for c=1:1:c_max %Check Upper Band 
            if  ((xz_surf_U(c,1)==0)&&(xz_surf_U(c,2)==0)) 
                min_D_o_U(c)=NaN; %Need this since values could be 0 from pre-allocation 
            else 
                for b=1:1:b_max 
                    if 
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0)) 
                        D_o_U(b)=((xz_surf_U(c,1)-xz_surf(b,1)).^2+(xz_surf_U(c,2)-xz_surf(b,2)).^2).^0.5; 
                    else 
                        D_o_U(b)=NaN;  
                    end 
                end 
                min_D_o_U(c)=min(D_o_U); %Will ignore the NaN's; Min. distances from surface to Upper band pts. 
            end 
        end 
         
        for c=1:1:c_max %Check Lower Band 
            if  ((xz_surf_L(c,1)==0)&&(xz_surf_L(c,2)==0))                 
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                min_D_o_L(c)=NaN;  
            else 
                for b=1:1:b_max 
                    if 
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))  
                        D_o_L(b)=((xz_surf_L(c,1)-xz_surf(b,1)).^2+(xz_surf_L(c,2)-xz_surf(b,2)).^2).^0.5; 
                    else 
                        D_o_L(b)=NaN;  
                    end 
                end 
                min_D_o_L(c)=min(D_o_L); %Will ignore the NaN's; Min. distances from surface to Lower band pts. 
            end 
        end 
         
        MIN_D_o_U=min(min_D_o_U); %Will ignore the NaN's; Absolute Min. dist. from surf. to Upper band pts. 
        MIN_D_o_L=min(min_D_o_L); %Will ignore the NaN's; Absolute Min. dist. from surf. to Lower band pts. 
        MIN_D_o_LU_matrix=[MIN_D_o_U,MIN_D_o_L]; %Make matrix to evaluate Min. 
        D_o_LU=min(MIN_D_o_LU_matrix); %Min. distance b/w surface and Upper AND Lower bands 
     
    if (D_o_LU<=Crit_D) %If surface 'near' band 
         
        %REBUILD BAND ALGORITHM  
         
        for k=1:1:k_max 
            for i=1:1:i_max  
                 
                if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) 
                     for b=1:1:b_max  
                        if (phi_1(k,i)==0) 
                            SDF_RE(b)=0; 
                        elseif 
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))   
                            SDF_RE(b)=((x_cord(i)-xz_surf(b,1)).^2+(z_cord(k)-xz_surf(b,2)).^2).^0.5; 
                        else 
                            SDF_RE(b)=NaN; %Need this since it accounts for cases where surface wasn't encountered (i.e. x_surf or z_surf are 0 numerically) 
                        end              
                    end  
                    min_SDF_RE=min(SDF_RE); %Will ignore the NaN's   
                     
                    if (phi_1(k,i)>0)            
                        phi_1(k,i)=min_SDF_RE;                                                                            
                    elseif (phi_1(k,i)<0)  
                        phi_1(k,i)=-min_SDF_RE;               
                    else 
                        phi_1(k,i)=phi_1(k,i); %i.e.,phi(k,i)=0; i.e., we are on the surface!!! 
                    end 
                     
                else 
                    for b=1:1:b_max %No need to check if are on the surface since these are band or outer band pts 
                        if 
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))   
                            SDF_RE(b)=((x_cord(i)-xz_surf(b,1)).^2+(z_cord(k)-xz_surf(b,2)).^2).^0.5;  
                        else 
                            SDF_RE(b)=NaN;  
                        end              
                    end 
                    min_SDF_RE=min(SDF_RE);  
                     
                    if (((flag_NB(k,i)==4))) 
                        phi_1(k,i)=min_SDF_RE; %Positive phi_1's for upper band and in front upper band pts.  
                    else 
                        phi_1(k,i)=-min_SDF_RE; %Accounts for all other cases when flag_NB=3 
                    end 
                end 
            end 
        end 
         
        %Calculate NEW Upper and Lower Band        
  
        %NEW UPPER BAND 
                 
        z_surf_1_U=zeros(i_max,1); 
        z_surf_2_U=zeros(i_max,1); 
        z_surf_3_U=zeros(i_max,1); 
        for i=1:1:i_max  
            flag_1_U=0; 
            flag_2_U=0; 
            for k=1:1:k_max 
                if ((flag_1_U==0)&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k+1,i)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))                            
                    z_surf_1_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);                
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                    flag_1_U=i; 
                    continue  
                end 
                if (((flag_2_U==0)&&(flag_1_U==i)&&(k~=k_max))&&(((phi_1(k,i)<(BS_U*dz))&&(phi_1(k+1,i)>(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))  
                    z_surf_2_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);   
                    flag_2_U=i; 
                    continue 
                end 
                if ((flag_2_U==i)&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k+1,i)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz)))) 
                    z_surf_3_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k); 
                end 
            end 
        end 
           
        x_surf_1_U=zeros(1,k_max); 
        x_surf_2_U=zeros(1,k_max); 
        for k=1:1:k_max  
            flag_3_U=0; 
            for i=1:1:i_max  
                    if (((flag_3_U==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k,i+1)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))                        
                            x_surf_1_U(k)=(((BS_U*dz-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);      
                        flag_3_U=k; 
                        continue 
                    end 
                    if (((flag_3_U==k)&&(i~=i_max))&&(((phi_1(k,i)<(BS_U*dz))&&(phi_1(k,i+1)>(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))                                          
                            x_surf_2_U(k)=(((BS_U*dz-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                  
                    end 
            end 
        end 
  
        % Convert all z_surf_U and x_surf_U to one array 
        xz_surf_U=[x_cord', z_surf_1_U;x_cord', z_surf_2_U;x_cord', z_surf_3_U;x_surf_1_U',z_cord;x_surf_2_U',z_cord];         
        for b=1:1:(3*i_max) 
                if xz_surf_U(b,2)==0 %Means it was not called up 
                xz_surf_U(b,1)=0; 
                xz_surf_U(b,2)=0;   
                end 
        end 
  
        for b=(3*i_max+1):1:b_max 
                if xz_surf_U(b,1)==0 
                xz_surf_U(b,1)=0; 
                xz_surf_U(b,2)=0;    
                end 
        end 
  
        %NEW LOWER BAND 
  
        z_surf_1_L=zeros(i_max,1); 
        z_surf_2_L=zeros(i_max,1); 
        z_surf_3_L=zeros(i_max,1); 
        for i=1:1:i_max  
            flag_1_L=0; 
            flag_2_L=0; 
            for k=1:1:k_max  
                if ((flag_1_L==0)&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k+1,i)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))                            
                    z_surf_1_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);                
                    flag_1_L=i;  
                    continue  
                end 
                if (((flag_2_L==0)&&(flag_1_L==i)&&(k~=k_max))&&(((phi_1(k,i)<(-dz*BS_L))&&(phi_1(k+1,i)>(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))  
                    z_surf_2_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);    
                    flag_2_L=i; 
                    continue 
                end 
                if ((flag_2_L==i)&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k+1,i)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L)))) 
                    z_surf_3_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);  
                end 
            end 
        end 
           
        x_surf_1_L=zeros(1,k_max); 
        x_surf_2_L=zeros(1,k_max); 
        for k=1:1:k_max  
            flag_3_L=0; 
            for i=1:1:i_max  
                    if (((flag_3_L==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k,i+1)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))                       
                            x_surf_1_L(k)=(((-dz*BS_L-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                        
                        flag_3_L=k; 
                        continue                     
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                    end 
                    if (((flag_3_L==k)&&(i~=i_max))&&(((phi_1(k,i)<(-dz*BS_L))&&(phi_1(k,i+1)>(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))                                            
                            x_surf_2_L(k)=(((-dz*BS_L-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);                         
                    end 
            end 
        end 
  
        % Convert all z_surf_L and x_surf_L to one array 
        xz_surf_L=[x_cord', z_surf_1_L;x_cord', z_surf_2_L;x_cord', z_surf_3_L;x_surf_1_L',z_cord;x_surf_2_L',z_cord];      
        for b=1:1:(3*i_max) 
                if xz_surf_L(b,2)==0 %Means it was not called up 
                xz_surf_L(b,1)=0; 
                xz_surf_L(b,2)=0;   
                end 
        end 
  
        for b=(3*i_max+1):1:b_max 
                if xz_surf_L(b,1)==0 
                xz_surf_L(b,1)=0; 
                xz_surf_L(b,2)=0;    
                end 
        end 
  
        %Create flags for points IN the NEW Narrow Band 
        %These flags will only change after band is re-initialized 
        flag_NB=zeros(k_max,i_max); %Initialize flag_NB to zeros again 
        for k=1:1:k_max 
            for i=1:1:i_max 
                if (((phi_1(k,i)>=0)&&(abs(phi_1(k,i))<BS_U*dz))||((phi_1(k,i)<0)&&(abs(phi_1(k,i))<BS_L*dz))) %Don't consider points on boundary 
                    flag_NB(k,i)=1; %else they will remain 0 (are outside the band) 
                end 
            end 
        end 
  
        %Create flags to indicate NEW BC pts (adjacent to NB boundary) 
        %These will be later used to give phi_i=0 for values where flag_NB=2 in the 
        %beginning of while loop 
        %These flags will only change after band is re-initialized 
        for k=1:1:k_max 
            for i=1:1:i_max 
         
                if (i~=1)&&(i~=i_max)&&(k~=1)&&(k~=k_max) 
                    if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1)) 
                        flag_NB(k,i)=2; 
                    end 
                elseif (i==1)&&(k~=1)&&(k~=k_max) 
                    if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1)) 
                        flag_NB(k,i)=2; 
                    end     
                elseif (i==i_max)&&(k~=1)&&(k~=k_max) 
                    if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1)) 
                        flag_NB(k,i)=2; 
                    end 
                elseif (k==1)&&(i~=1)&&(i~=i_max) 
                    if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)) 
                        flag_NB(k,i)=2; 
                    end 
                elseif (k==k_max)&&(i~=1)&&(i~=i_max) 
                    if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k-1,i)==1)) 
                        flag_NB(k,i)=2; 
                    end    
                elseif  (i==1)&&(k==1)  
                    if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k+1,i)==1)) 
                        flag_NB(k,i)=2; 
                    end 
                elseif  (i==i_max)&&(k==1)     
                    if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)) 
                        flag_NB(k,i)=2; 
                    end 
                elseif  (i==1)&&(k==k_max)     
                    if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k-1,i)==1)) 
                        flag_NB(k,i)=2; 
                    end 
                else %(i==i_max)&&(k==k_max) 
                    if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k-1,i)==1)) 
                        flag_NB(k,i)=2; 
                    end 
                end 
         
            end  
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        end 
  
        %Create flags for the NEW remaining pts. so when rebuild band, we know where 
        %phi's should be +ve or -ve; i.e. assign flag_NB(k,i) = 4 and 3 so as to 
        %later indicate +ve and -ve phi 
        for k=1:1:k_max 
            for i=1:1:i_max 
                if (flag_NB(k,i)~=1)&&(flag_NB(k,i)~=2) 
                    if (phi_1(k,i)>0) %we only need to check +ve phi_1 since these are outside the band 
                        flag_NB(k,i)=4; %label +ve phi_1's outside band 
                    else 
                        flag_NB(k,i)=3; %label -ve phi_1's outside band 
                    end 
                end 
            end 
        end        
         
        flag_RE=1; %will not change until the rest of simulation 
        counter_current=counter; %Stores current counter value at re-building 
        Num_iter_RE_TOT=counter_current; %Assigns current counter value until next re-building 
         
        No_RE=No_RE+1; %Counts number of re-initializations 
        phi=zeros(k_max,i_max); %Done to ensure ''old'' phi's don't interfere with new ones in the update process 
  
    end 
end 
  
%__________________________________________________________________________ 
%Adjustment to Mass Flux due to Mask Model for Target M(x'): Algorithm to obtain mask angles for T 
  
%Calculate visibility angles based on zero level set (M) 
x_prime_surf_LM=zeros(b_max,1); %M surface in local coordinates 
z_prime_surf_LM=zeros(b_max,1); 
x_prime_surf_RM=zeros(b_max,1); 
z_prime_surf_RM=zeros(b_max,1); 
  
for b=1:1:b_max 
    if ((xz_surf(b,1)>=x_min_grid)&&(xz_surf(b,1)<=(x_min_grid+leng_M_L)))&&... 
            ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa))) %This check also ensures that if surf was not encountered 
        % (i.e. xz surfs are 0) then it will ignore those values  
        x_prime_surf_LM(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); %Rotated local x 
        z_prime_surf_LM(b)=(xz_surf(b,1)-x_off).*cos(alfa)+xz_surf(b,2).*sin(alfa); %Rotated local z         
    else 
        x_prime_surf_LM(b)=NaN; 
        z_prime_surf_LM(b)=NaN;         
    end 
  
    if ((xz_surf(b,1)>=(x_max_grid-leng_M_R))&&(xz_surf(b,1)<=x_max_grid))&&... 
            ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa))) 
        x_prime_surf_RM(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); %Rotated local x 
        z_prime_surf_RM(b)=(xz_surf(b,1)-x_off).*cos(alfa)+xz_surf(b,2).*sin(alfa); %Rotated local z         
    else 
        x_prime_surf_RM(b)=NaN; 
        z_prime_surf_RM(b)=NaN;         
    end 
     
end 
  
%By evaluating Max of x_prime_surf_LM, we can check if any entries are 
%positive, ignoring NaN's; if any are, then we have case (b), 
%where mask shadow is >= W_m/2 from left mask edge, else have case (a) and 
%(c), mask shadow is < W_m/2  
[max_x_prime_surf_LM,I_max_LM]=max(x_prime_surf_LM); %Will ignore NaN's 
  
%Min tan of left 'spread' angle defined by mask 
if (max_x_prime_surf_LM>=0) %Case (b) 
    tan_fi_min=max_x_prime_surf_LM/z_prime_surf_LM(I_max_LM); 
else %Case (a) and (c) 
    %Find min |x_prime_surf_LM| 
    [min_x_prime_surf_LM,I_min_LM]=min(abs(x_prime_surf_LM)); 
     
    if (alfa==90*pi/180) 
        tan_fi_min=min_x_prime_surf_LM/h; 
    else 
        tan_fi_min=min_x_prime_surf_LM/z_prime_surf_LM(I_min_LM); 
    end 
end 
     
%Find min x_prime_surf_RM 
[min_x_prime_surf_RM,I_min_RM]=min(x_prime_surf_RM);
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%Max tan of right 'spread' angle defined by mask 
if (alfa==90*pi/180) 
    tan_fi_max=min_x_prime_surf_RM/h; 
else 
    tan_fi_max=min_x_prime_surf_RM/z_prime_surf_RM(I_min_RM);  
end 
  
%__________________________________________________________________________ 
%Adjustment to Mass Flux due to Mask Model for Mask Edges M(x') 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Initialize variables before loop entry 
NaN_Chk_xps_LM=isnan(x_prime_surf_LM); %If any entries are NaN, returns 1 for that entry, else 0 
NaN_Chk_zps_LM=isnan(z_prime_surf_LM); %Mask surface in local coordinates (see above) 
NaN_Chk_xps_RM=isnan(x_prime_surf_RM); 
NaN_Chk_zps_RM=isnan(z_prime_surf_RM); 
  
SDF_LM=zeros(b_max,1); %See below 
SDF_RM=zeros(b_max,1); 
J_k_M=0;  
J_i_M=0; 
%theta, cos(theta) at mask edges (left and right) and corresponding FDs  
theta_LM=zeros(b_max,1);  
cos_t_star_LM=zeros(b_max,1); 
phi_x_pos_LM=zeros(b_max,1); 
phi_x_neg_LM=zeros(b_max,1); 
phi_z_pos_LM=zeros(b_max,1); 
phi_z_neg_LM=zeros(b_max,1); 
phi_x_star_LM=zeros(b_max,1); 
phi_z_star_LM=zeros(b_max,1); 
  
theta_RM=zeros(b_max,1); 
cos_t_star_RM=zeros(b_max,1); 
phi_x_pos_RM=zeros(b_max,1); 
phi_x_neg_RM=zeros(b_max,1); 
phi_z_pos_RM=zeros(b_max,1); 
phi_z_neg_RM=zeros(b_max,1); 
phi_x_star_RM=zeros(b_max,1); 
phi_z_star_RM=zeros(b_max,1); 
%Variables and limits used to evaluate M(x')edge (Masking function for M 
%edge); See below 
n_max=1001; 
x_n_LM=zeros(1,n_max);  
x_n_RM=zeros(1,n_max); 
L_NU_LM=zeros(1,n_max); 
L_NL_LM=zeros(1,n_max); 
L_NU_RM=zeros(1,n_max); 
L_NL_RM=zeros(1,n_max); 
Mrx_M_edge_LM=zeros(1,n_max); 
Mrx_M_edge_RM=zeros(1,n_max); 
  
No_p_MrxM_ON=0; %Number of passes before turn on Masking Function for edge (non-0 only for RapidMask mask) 
%Loop 
if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON)  
  
        M_r_x_prime_LM=1; 
        M_r_x_prime_RM=1; 
  
else 
    
     
%Calculate Wm_eff/2 
if (max_x_prime_surf_LM>=0) %Case (b) (see above Flux adjustment model for T) 
    x_prime_Wm_eff_2_LM=0; %rotated local x (used below) 
    x_prime_Wm_eff_2_RM=min_x_prime_surf_RM-max_x_prime_surf_LM;  %Used below 
else %Case (a) and (c) 
    x_prime_Wm_eff_2_LM=min_x_prime_surf_LM; %rotated local x  (used below) 
    x_prime_Wm_eff_2_RM=min_x_prime_surf_RM; % Used below 
end 
%Need to change variables to global values since theta calc. with global 
%variables - value of x where mask edge starts 
if (max_x_prime_surf_LM>=0) %Case (b) (see above Flux adjustment model for T) 
    x_Wm_eff_2_LM=max_x_prime_surf_LM*sin(alfa)+z_prime_surf_LM(I_max_LM)*cos(alfa)+x_off; %Global x     
    x_Wm_eff_2_RM=min_x_prime_surf_RM*sin(alfa)+z_prime_surf_RM(I_min_RM)*cos(alfa)+x_off; %See above results 
else %Case (a) and (c) 
    %For 1st expression below added a -1* at beginning since x_prime_Wm_eff_2_LM should be -ve but is +ve from above calcs.  
    %and needs to stay +ve  
    x_Wm_eff_2_LM=-1*x_prime_Wm_eff_2_LM*sin(alfa)+z_prime_surf_LM(I_min_LM)*cos(alfa)+x_off; %Global x  
    x_Wm_eff_2_RM=x_prime_Wm_eff_2_RM*sin(alfa)+z_prime_surf_RM(I_min_RM)*cos(alfa)+x_off;  
end   
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%Find x' limit beyond which have top of mask; for less than this limit 
%we have mask edge - the point on M surface with min. dist. from 
%(x',z')=(0,hsin(alfa)-Hm)= ref. pt.  
  
%Define reference pt. 
if (alfa==90*pi/180) %Need this condition to avoid small Matlab numerical error  
    x_prime_ref=0; %Rotated local x 
    z_prime_ref=(h*sin(alfa)-H_m); %Rotated local z 
else 
    x_prime_ref=((x_min_grid+leng_M_L+W_m/2)-x_off)*sin(alfa)-(h*sin(alfa)-H_m)*cos(alfa); %Rotated local x 
    z_prime_ref=((x_min_grid+leng_M_L+W_m/2)-x_off)*cos(alfa)+(h*sin(alfa)-H_m)*sin(alfa); %Rotated local z 
end 
%Calculate min. distance from ref. pt. to mask edge 
for b=1:1:b_max     
        if (NaN_Chk_xps_LM(b)==0)&&(NaN_Chk_zps_LM(b)==0) %if Entry is NOT NaN 
            SDF_LM(b)=((x_prime_ref-x_prime_surf_LM(b)).^2+(z_prime_ref-z_prime_surf_LM(b)).^2).^0.5;         
        else 
            SDF_LM(b)=NaN;         
        end 
         
        if (NaN_Chk_xps_RM(b)==0)&&(NaN_Chk_zps_RM(b)==0) 
            SDF_RM(b)=((x_prime_ref-x_prime_surf_RM(b)).^2+(z_prime_ref-z_prime_surf_RM(b)).^2).^0.5;         
        else 
            SDF_RM(b)=NaN;         
        end        
end 
[min_SDF_LM,J_min_LM]=min(SDF_LM); %Will ignore the NaNs 
[min_SDF_RM,J_min_RM]=min(SDF_RM); 
%Calculate x'tran 
x_prime_lim_LM=x_prime_surf_LM(J_min_LM); %rotated local x 
x_prime_lim_RM=x_prime_surf_RM(J_min_RM); 
x_lim_LM=x_prime_lim_LM*sin(alfa)+z_prime_surf_LM(J_min_LM)*cos(alfa)+x_off; %Global x 
x_lim_RM=x_prime_lim_RM*sin(alfa)+z_prime_surf_RM(J_min_RM)*cos(alfa)+x_off;  
  
%Obtain theta avg. over mask edges  
  
%%Avg. theta for Left Mask (LM) Edge - calculations analogous to 2nd strike algorithm 
           
 for b=1:1:b_max  
                
     if (((xz_surf(b,1)>=x_min_grid)&&(xz_surf(b,1)<=(x_min_grid+leng_M_L)))&&... 
            ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa))))&&((xz_surf(b,1)>=(x_lim_LM-dx))&&(xz_surf(b,1)<=(x_Wm_eff_2_LM+dx))) %LM 
edge & within dx   
        %to obtain entire edge. This check also ensures that if surf. was not encountered (i.e. xz_surfs are 0) then it will ignore those values      
      
          if (b>=1)&&(b<=(3*i_max)) %zsurf used 
             
            if (b>=1)&&(b<=i_max)   
               I_min_ik=b; %z_surf_1 used 
            end               
            if (b>=(i_max+1))&&(b<=(2*i_max)) 
               I_min_ik=b-i_max;  %z_surf_2 used  
            end 
             
            if (b>=(2*i_max+1))&&(b<=(3*i_max)) 
               I_min_ik=b-2*i_max;  %z_surf_3 used   
            end 
                 
                %Calculate nearest k index to surface 
                J_k_M=floor(k_max-(xz_surf(b,2)-z_min_grid)/dz);                                
                 
                %Calculation of dphi/dx,dphi/dz; Define BC's  
                if I_min_ik==i_max 
                    phi_x_pos_LM(b)=0; 
                else 
                    phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_M))/(z_cord(J_k_M+1)-z_cord(J_k_M))).*(phi_1(J_k_M+1,I_min_ik+1)-
phi_1(J_k_M,I_min_ik+1))+phi_1(J_k_M,I_min_ik+1); 
                    phi_x_pos_LM(b)=(phi_B_z_surf-0)./dx; 
                end 
                 
                if I_min_ik==1 
                    phi_x_neg_LM(b)=0; 
                else 
                    phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_M))/(z_cord(J_k_M+1)-z_cord(J_k_M))).*(phi_1(J_k_M+1,I_min_ik-1)-phi_1(J_k_M,I_min_ik-
1))+phi_1(J_k_M,I_min_ik-1); 
                    phi_x_neg_LM(b)=(0-phi_A_z_surf)./dx; 
                end                
                                                            
                if J_k_M==1                     
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                    phi_z_pos_LM(b)=0; 
                else 
                    phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_M-1))/(z_cord(J_k_M)-z_cord(J_k_M-1))).*(phi_1(J_k_M,I_min_ik)-phi_1(J_k_M-
1,I_min_ik))+phi_1(J_k_M-1,I_min_ik);                     
                    phi_z_pos_LM(b)=(phi_C_z_surf-0)./dz; 
                end 
                 
                if J_k_M==k_max 
                    phi_z_neg_LM(b)=0; 
                else 
                    phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_M+1))/(z_cord(J_k_M+2)-z_cord(J_k_M+1))).*(phi_1(J_k_M+2,I_min_ik)-
phi_1(J_k_M+1,I_min_ik))+phi_1(J_k_M+1,I_min_ik); 
                    phi_z_neg_LM(b)=(0-phi_D_z_surf)./dz; 
                end 
                                  
                %Calculate phi_stars 
                phi_x_star_LM(b)=(phi_x_pos_LM(b)+phi_x_neg_LM(b))/2; 
                phi_z_star_LM(b)=(phi_z_pos_LM(b)+phi_z_neg_LM(b))/2;                 
                                                 
                    cos_t_star_LM(b)=((xz_surf(b,1)-x_off).*(phi_x_star_LM(b))+xz_surf(b,2).*(phi_z_star_LM(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_LM(b)).^2+(phi_z_star_LM(b)).^2));                   
                     
                    if (cos_t_star_LM(b)>1)  
                        cos_t_star_LM(b)=1; 
                    end 
                    theta_LM(b)=acos(cos_t_star_LM(b)); 
%__________________________________________________________________________ 
          else  %xsurf used 
               
             if (b>=(3*i_max+1))&&(b<=(3*i_max+k_max))   
                I_min_ik=b-3*i_max; %x_surf_1 used 
             end               
             if (b>=(3*i_max+k_max+1))&&(b<=b_max) 
                I_min_ik=b-3*i_max-k_max;  %x_surf_2 used  
             end 
                 
                %Repeat above algorithm but for xsurf 
                %Calculate nearest i index to surface 
                J_i_M=floor(1+(xz_surf(b,1)-x_min_grid)/dx);  
  
                %Calculation of dphi/dx,dphi/dz; Define BC's                                
                if J_i_M==i_max 
                    phi_x_pos_LM(b)=0; 
                else 
                    phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_M+1))/(x_cord(J_i_M+2)-x_cord(J_i_M+1))).*(phi_1(I_min_ik,J_i_M+2)-
phi_1(I_min_ik,J_i_M+1))+phi_1(I_min_ik,J_i_M+1); 
                    phi_x_pos_LM(b)=(phi_D_x_surf-0)./dx; 
                end 
                 
                if J_i_M==1 
                    phi_x_neg_LM(b)=0; 
                else 
                    phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_M-1))/(x_cord(J_i_M)-x_cord(J_i_M-1))).*(phi_1(I_min_ik,J_i_M)-phi_1(I_min_ik,J_i_M-
1))+phi_1(I_min_ik,J_i_M-1); 
                    phi_x_neg_LM(b)=(0-phi_C_x_surf)./dx; 
                end 
                                                                  
                if I_min_ik==1 
                    phi_z_pos_LM(b)=0; 
                else 
                    phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_M))/(x_cord(J_i_M+1)-x_cord(J_i_M))).*(phi_1(I_min_ik-1,J_i_M+1)-phi_1(I_min_ik-
1,J_i_M))+phi_1(I_min_ik-1,J_i_M); 
                    phi_z_pos_LM(b)=(phi_A_x_surf-0)./dz; 
                end 
                 
                if I_min_ik==k_max 
                    phi_z_neg_LM(b)=0; 
                else 
                    phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_M))/(x_cord(J_i_M+1)-x_cord(J_i_M))).*(phi_1(I_min_ik+1,J_i_M+1)-
phi_1(I_min_ik+1,J_i_M))+phi_1(I_min_ik+1,J_i_M); 
                    phi_z_neg_LM(b)=(0-phi_B_x_surf)./dz;   
                end                 
  
                %Calculate phi_stars 
                phi_x_star_LM(b)=(phi_x_pos_LM(b)+phi_x_neg_LM(b))/2; 
                phi_z_star_LM(b)=(phi_z_pos_LM(b)+phi_z_neg_LM(b))/2;                            
                             
                    cos_t_star_LM(b)=((xz_surf(b,1)-x_off).*(phi_x_star_LM(b))+xz_surf(b,2).*(phi_z_star_LM(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_LM(b)).^2+(phi_z_star_LM(b)).^2)); 
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                    if (cos_t_star_LM(b)>1) 
                        cos_t_star_LM(b)=1; 
                    end 
                    theta_LM(b)=acos(cos_t_star_LM(b)); 
  
          end 
           
     else      
         theta_LM(b)=NaN;  
     end 
           
 end    
  
 NaN_Chk_theta_LM=isnan(theta_LM); %If any entries are NaN, returns 1 for that entry, else 0 
 count_theta_LM=0; %Mask edge points 
 for b=1:1:b_max 
     if (NaN_Chk_theta_LM(b)==0) %if Entry is NOT NaN (i.e. if surface encountered) 
         theta_LM(b)=theta_LM(b); 
         count_theta_LM=count_theta_LM+1; 
     else 
         theta_LM(b)=0; %It will not count towards the sum avg. if no surface 
     end 
 end 
%Average theta (Left Mask Edge) 
 if count_theta_LM==0 %To avoid 0/0 error  
     theta_LM_avg=0; %This occurs if no mask edges seen yet 
 else 
     theta_LM_avg=sum(theta_LM)/count_theta_LM; 
 end 
  
 %Avg. theta for Right Mask (RM) Edge (analogous to LM calcs.) 
  
%Initialize variables 
J_k_M=0; %See below 
J_i_M=0; 
           
 for b=1:1:b_max  
                
     if (((xz_surf(b,1)>=(x_max_grid-leng_M_R))&&(xz_surf(b,1)<=x_max_grid))&&... 
            ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa))))&&((xz_surf(b,1)>=(x_Wm_eff_2_RM-dx))&&(xz_surf(b,1)<=(x_lim_RM+dx)))           
      
          if (b>=1)&&(b<=(3*i_max)) %zsurf used 
             
            if (b>=1)&&(b<=i_max)   
               I_min_ik=b; %z_surf_1 used 
            end               
            if (b>=(i_max+1))&&(b<=(2*i_max)) 
               I_min_ik=b-i_max;  %z_surf_2 used  
            end 
             
            if (b>=(2*i_max+1))&&(b<=(3*i_max)) 
               I_min_ik=b-2*i_max;  %z_surf_3 used   
            end 
                 
                %Calculate nearest k index to surface 
                J_k_M=floor(k_max-(xz_surf(b,2)-z_min_grid)/dz);                                
                 
                %Calculation of dphi/dx,dphi/dz; Define BC's  
                if I_min_ik==i_max 
                    phi_x_pos_RM(b)=0; 
                else 
                    phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_M))/(z_cord(J_k_M+1)-z_cord(J_k_M))).*(phi_1(J_k_M+1,I_min_ik+1)-
phi_1(J_k_M,I_min_ik+1))+phi_1(J_k_M,I_min_ik+1); 
                    phi_x_pos_RM(b)=(phi_B_z_surf-0)./dx; 
                end 
                 
                if I_min_ik==1 
                    phi_x_neg_RM(b)=0; 
                else 
                    phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_M))/(z_cord(J_k_M+1)-z_cord(J_k_M))).*(phi_1(J_k_M+1,I_min_ik-1)-phi_1(J_k_M,I_min_ik-
1))+phi_1(J_k_M,I_min_ik-1); 
                    phi_x_neg_RM(b)=(0-phi_A_z_surf)./dx; 
                end                
              
                if J_k_M==1 
                    phi_z_pos_RM(b)=0; 
                else 
                    phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_M-1))/(z_cord(J_k_M)-z_cord(J_k_M-1))).*(phi_1(J_k_M,I_min_ik)-phi_1(J_k_M-
1,I_min_ik))+phi_1(J_k_M-1,I_min_ik);                     
                    phi_z_pos_RM(b)=(phi_C_z_surf-0)./dz;                 
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                end 
                 
                if J_k_M==k_max 
                    phi_z_neg_RM(b)=0; 
                else 
                    phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_M+1))/(z_cord(J_k_M+2)-z_cord(J_k_M+1))).*(phi_1(J_k_M+2,I_min_ik)-
phi_1(J_k_M+1,I_min_ik))+phi_1(J_k_M+1,I_min_ik); 
                    phi_z_neg_RM(b)=(0-phi_D_z_surf)./dz; 
                end 
                   
                %Calculate phi_stars 
                phi_x_star_RM(b)=(phi_x_pos_RM(b)+phi_x_neg_RM(b))/2; 
                phi_z_star_RM(b)=(phi_z_pos_RM(b)+phi_z_neg_RM(b))/2;                 
                                                 
                    cos_t_star_RM(b)=((xz_surf(b,1)-x_off).*(phi_x_star_RM(b))+xz_surf(b,2).*(phi_z_star_RM(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_RM(b)).^2+(phi_z_star_RM(b)).^2)); 
                     
                    if (cos_t_star_RM(b)>1)  
                        cos_t_star_RM(b)=1; 
                    end 
                    theta_RM(b)=acos(cos_t_star_RM(b)); 
%__________________________________________________________________________ 
          else  %xsurf used 
               
             if (b>=(3*i_max+1))&&(b<=(3*i_max+k_max))   
                I_min_ik=b-3*i_max; %x_surf_1 used 
             end               
             if (b>=(3*i_max+k_max+1))&&(b<=b_max) 
                I_min_ik=b-3*i_max-k_max;  %x_surf_2 used  
             end 
                 
                %Repeat above algorithm but for xsurf 
                %Calculate nearest i index to surface 
                J_i_M=floor(1+(xz_surf(b,1)-x_min_grid)/dx);  
  
                %Calculation of dphi/dx,dphi/dz; Define BC's                                
                if J_i_M==i_max 
                    phi_x_pos_RM(b)=0; 
                else 
                    phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_M+1))/(x_cord(J_i_M+2)-x_cord(J_i_M+1))).*(phi_1(I_min_ik,J_i_M+2)-
phi_1(I_min_ik,J_i_M+1))+phi_1(I_min_ik,J_i_M+1); 
                    phi_x_pos_RM(b)=(phi_D_x_surf-0)./dx; 
                end 
                 
                if J_i_M==1 
                    phi_x_neg_RM(b)=0; 
                else 
                    phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_M-1))/(x_cord(J_i_M)-x_cord(J_i_M-1))).*(phi_1(I_min_ik,J_i_M)-phi_1(I_min_ik,J_i_M-
1))+phi_1(I_min_ik,J_i_M-1); 
                    phi_x_neg_RM(b)=(0-phi_C_x_surf)./dx; 
                end 
  
                if I_min_ik==1 
                    phi_z_pos_RM(b)=0; 
                else 
                    phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_M))/(x_cord(J_i_M+1)-x_cord(J_i_M))).*(phi_1(I_min_ik-1,J_i_M+1)-phi_1(I_min_ik-
1,J_i_M))+phi_1(I_min_ik-1,J_i_M); 
                    phi_z_pos_RM(b)=(phi_A_x_surf-0)./dz; 
                end 
                 
                if I_min_ik==k_max 
                    phi_z_neg_RM(b)=0; 
                else 
                    phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_M))/(x_cord(J_i_M+1)-x_cord(J_i_M))).*(phi_1(I_min_ik+1,J_i_M+1)-
phi_1(I_min_ik+1,J_i_M))+phi_1(I_min_ik+1,J_i_M); 
                    phi_z_neg_RM(b)=(0-phi_B_x_surf)./dz;   
                end 
                 
                %Calculate phi_stars 
                phi_x_star_RM(b)=(phi_x_pos_RM(b)+phi_x_neg_RM(b))/2; 
                phi_z_star_RM(b)=(phi_z_pos_RM(b)+phi_z_neg_RM(b))/2;                            
                             
                    cos_t_star_RM(b)=((xz_surf(b,1)-x_off).*(phi_x_star_RM(b))+xz_surf(b,2).*(phi_z_star_RM(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_RM(b)).^2+(phi_z_star_RM(b)).^2)); 
                     
                    if (cos_t_star_RM(b)>1)  
                        cos_t_star_RM(b)=1; 
                    end 
                    theta_RM(b)=acos(cos_t_star_RM(b)); 
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          end 
           
     else      
         theta_RM(b)=NaN;  
     end 
           
 end     
  
  NaN_Chk_theta_RM=isnan(theta_RM); %If any entries are NaN, returns 1 for that entry, else 0 
 count_theta_RM=0; 
 for b=1:1:b_max 
     if (NaN_Chk_theta_RM(b)==0) %if Entry is NOT NaN 
         theta_RM(b)=theta_RM(b); 
         count_theta_RM=count_theta_RM+1; 
     else 
         theta_RM(b)=0; %It will not count towards the sum avg. (no surface) 
     end 
 end 
  
%Average theta (Right Mask Edge) 
 if count_theta_RM==0 %To avoid 0/0 error 
     theta_RM_avg=0; %This occurs if no mask edges seen yet 
 else 
     theta_RM_avg=sum(theta_RM)/count_theta_RM; 
 end 
  
%Effective height (LM,RM) 
  
%Need to obtain global z_lim LM/RM to calculate Heff90 LM/RM from local 
%x'lim, z'lim (see above) 
z_lim_LM=-x_prime_surf_LM(J_min_LM)*cos(alfa)+z_prime_surf_LM(J_min_LM)*sin(alfa); %Global x 
z_lim_RM=-x_prime_surf_RM(J_min_RM)*cos(alfa)+z_prime_surf_RM(J_min_RM)*sin(alfa);  
  
if (alfa==90*pi/180)    
        Heff_LM=h+dz-z_prime_surf_LM(J_min_LM); %Effective height  
        Heff_RM=h+dz-z_prime_surf_RM(J_min_RM); %within dz to obtain top of mask    
else %alfa<90deg     
         
        Heff_LM_90=h*sin(alfa)+dz-z_lim_LM; %Vertical Effective height  
        Heff_RM_90=h*sin(alfa)+dz-z_lim_RM; 
         
        Heff_LM=(Heff_LM_90*sin(theta_LM_avg))/(sin(-pi/2+alfa+theta_LM_avg)); 
        Heff_RM=(Heff_RM_90*sin(theta_RM_avg))/(sin(pi/2-alfa+theta_RM_avg)); 
end  
  
%Using avg. theta, Hmeff and Wmeff/2 calculate the masking 
%function for the mask edges 
  
%Calculate d_m  
if ((theta_LM_avg==0)||(theta_LM_avg>(pi/2))) %When LM edge not seen yet (for alfa=90deg and alfa<90deg), thus d_m=0 
    d_m_LM=0; %Need this so cot(0) does not result in infinity 
else 
    d_m_LM=Heff_LM*cot(theta_LM_avg); 
end 
  
if theta_RM_avg==0 %When RM edge not seen yet (alfa=90deg only), thus d_m=0 
    d_m_RM=0; %Need this so cot(0) does not result in infinity 
else 
    d_m_RM=Heff_RM*cot(theta_RM_avg); 
end 
  
%LM x' integration range 
x_n_min_LM=0; 
x_n_max_LM=d_m_LM+x_prime_Wm_eff_2_LM; 
dx_n_LM=(x_n_max_LM-x_n_min_LM)/(n_max-1); 
  
for n=1:1:n_max 
    x_n_LM(n)=(n-1).*dx_n_LM; 
end 
%RM x' integration range 
x_n_min_RM=0; 
x_n_max_RM=d_m_RM+x_prime_Wm_eff_2_RM; 
dx_n_RM=(x_n_max_RM-x_n_min_RM)/(n_max-1); 
  
for n=1:1:n_max 
    x_n_RM(n)=(n-1).*dx_n_RM; 
end 
  
%Define limits of integration  
%LM  
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%Upper numerator limit 
for n=1:1:n_max 
    L_NU_LM(n)=d_m_LM+x_prime_Wm_eff_2_LM-x_n_LM(n); 
end 
  
 %Lower numerator limit 
for n=1:1:n_max 
    L_NL_LM(n)=x_prime_Wm_eff_2_LM-x_n_LM(n); 
end 
  
L_DU_LM=d_m_LM+x_prime_Wm_eff_2_LM; %Upper denominator limit (Note: lower denom. limit is 0) 
%RM 
 %Upper numerator limit 
for n=1:1:n_max 
    L_NU_RM(n)=d_m_RM+x_prime_Wm_eff_2_RM-x_n_RM(n); 
end 
  
 %Lower numerator limit 
for n=1:1:n_max 
    L_NL_RM(n)=x_prime_Wm_eff_2_RM-x_n_RM(n); 
end 
  
L_DU_RM=d_m_RM+x_prime_Wm_eff_2_RM; %Upper denominator limit (Note: lower denom. limit is 0) 
  
%LM Integral: closed form fit 
n_max_new_LM=0; 
for n=1:1:n_max-1 
    if (x_n_LM(n)<=x_prime_Wm_eff_2_LM) 
        Mrx_M_edge_LM(n)=0; 
    else 
        Mrx_M_edge_LM(n)=real((erf(-P_2*log(L_NU_LM(n))+P_3)+1)./(1-erf(P_2*log(L_DU_LM)-P_3))); 
        n_max_new_LM=n_max_new_LM+1; 
    end 
end 
Mrx_M_edge_LM(n_max)=0; %Need this since error results for L_NU_LM(1001) = very small 
  
%RM Integral: closed form fit 
n_max_new_RM=0; 
for n=1:1:n_max-1 
    if (x_n_RM(n)<=x_prime_Wm_eff_2_RM) 
        Mrx_M_edge_RM(n)=0; 
    else 
        Mrx_M_edge_RM(n)=real((erf(-P_2*log(L_NU_RM(n))+P_3)+1)./(1-erf(P_2*log(L_DU_RM)-P_3))); 
        n_max_new_RM=n_max_new_RM+1; 
    end 
end 
Mrx_M_edge_RM(n_max)=0; %Need this since error results for L_NU_RM(1001) = very small 
  
%Define avg. M(x')_edge over edge  
M_r_x_prime_LM=sum(Mrx_M_edge_LM)/n_max_new_LM; 
M_r_x_prime_RM=sum(Mrx_M_edge_RM)/n_max_new_RM; 
  
     
end 
     
%__________________________________________________________________________ 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%__________________________________________________________________________ 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%START of 2nd Strike Algorithm %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%See initial iteration (analogous here) 
  
%Initialize variables before loop entry  
J_k_AR=0;  
J_i_AR=0; 
phi_x_pos_AR=zeros(b_max,1); 
phi_x_neg_AR=zeros(b_max,1); 
phi_x_cen_AR=zeros(b_max,1); 
phi_z_pos_AR=zeros(b_max,1); 
phi_z_neg_AR=zeros(b_max,1); 
phi_z_cen_AR=zeros(b_max,1); 
phi_x_star_AR=zeros(b_max,1); 
phi_z_star_AR=zeros(b_max,1); 
cos_t_star_AR=zeros(b_max,1); 
cos_g_star_AR=zeros(b_max,1);  
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theta_AR=zeros(b_max,1); 
theta_AR_deg=zeros(b_max,1); 
gamma_AR=zeros(b_max,1); 
gamma_AR_deg=zeros(b_max,1); 
x_prime_surf_AR=zeros(b_max,1); 
f_alfa_AR=zeros(b_max,1); 
theta_DE=zeros(b_max,1); 
theta_DE_deg=zeros(b_max,1); 
  
 for b=1:1:b_max  
                
     if ((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0)) 
%If surface 
      
          if (b>=1)&&(b<=(3*i_max)) %zsurf used 
             
            if (b>=1)&&(b<=i_max)  
               I_min_ik=b; %z_surf_1 used 
            end               
            if (b>=(i_max+1))&&(b<=(2*i_max)) 
               I_min_ik=b-i_max;  %z_surf_2 used  
            end 
             
            if (b>=(2*i_max+1))&&(b<=(3*i_max)) 
               I_min_ik=b-2*i_max;  %z_surf_3 used   
            end 
                 
                %Calculate nearest k index to surface 
                J_k_AR=floor(k_max-(xz_surf(b,2)-z_min_grid)/dz);                                
                 
                %Calculation of dphi/dx,dphi/dz; Define BC's 
                if I_min_ik==i_max 
                    phi_x_pos_AR(b)=0; 
                else 
                    phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik+1)-
phi_1(J_k_AR,I_min_ik+1))+phi_1(J_k_AR,I_min_ik+1); 
                    phi_x_pos_AR(b)=(phi_B_z_surf-0)./dx; 
                end 
                 
                if I_min_ik==1 
                    phi_x_neg_AR(b)=0; 
                else 
                    phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik-1)-phi_1(J_k_AR,I_min_ik-
1))+phi_1(J_k_AR,I_min_ik-1); 
                    phi_x_neg_AR(b)=(0-phi_A_z_surf)./dx; 
                end                
                 
                if (I_min_ik==i_max)||(I_min_ik==1) 
                    phi_x_cen_AR(b)=0;                   
                else 
                    phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik-1)-phi_1(J_k_AR,I_min_ik-
1))+phi_1(J_k_AR,I_min_ik-1); 
                    phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik+1)-
phi_1(J_k_AR,I_min_ik+1))+phi_1(J_k_AR,I_min_ik+1); 
                    phi_x_cen_AR(b)=(phi_B_z_surf-phi_A_z_surf)./(2*dx); 
                end 
               
                if J_k_AR==1 
                    phi_z_pos_AR(b)=0; 
                else 
                    phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_AR-1))/(z_cord(J_k_AR)-z_cord(J_k_AR-1))).*(phi_1(J_k_AR,I_min_ik)-phi_1(J_k_AR-
1,I_min_ik))+phi_1(J_k_AR-1,I_min_ik);                     
                    phi_z_pos_AR(b)=(phi_C_z_surf-0)./dz; 
                end 
                 
                if J_k_AR==k_max 
                    phi_z_neg_AR(b)=0; 
                else 
                    phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_AR+1))/(z_cord(J_k_AR+2)-z_cord(J_k_AR+1))).*(phi_1(J_k_AR+2,I_min_ik)-
phi_1(J_k_AR+1,I_min_ik))+phi_1(J_k_AR+1,I_min_ik); 
                    phi_z_neg_AR(b)=(0-phi_D_z_surf)./dz; 
                end 
  
                if (J_k_AR==k_max)||(J_k_AR==1) 
                    phi_z_cen_AR(b)=0;                     
                else 
                    phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_AR-1))/(z_cord(J_k_AR)-z_cord(J_k_AR-1))).*(phi_1(J_k_AR,I_min_ik)-phi_1(J_k_AR-
1,I_min_ik))+phi_1(J_k_AR-1,I_min_ik);                       
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                    phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_AR+1))/(z_cord(J_k_AR+2)-z_cord(J_k_AR+1))).*(phi_1(J_k_AR+2,I_min_ik)-
phi_1(J_k_AR+1,I_min_ik))+phi_1(J_k_AR+1,I_min_ik); 
                    phi_z_cen_AR(b)=(phi_C_z_surf-phi_D_z_surf)./(2*dz); 
                end 
                   
                %Calculate phi_stars 
                phi_x_star_AR(b)=(phi_x_pos_AR(b)+phi_x_neg_AR(b))/2; 
                phi_z_star_AR(b)=(phi_z_pos_AR(b)+phi_z_neg_AR(b))/2;                 
                 
                %Calculate Angles 
                    cos_t_star_AR(b)=((xz_surf(b,1)-x_off).*(phi_x_star_AR(b))+xz_surf(b,2).*(phi_z_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));                     
                    theta_AR(b)=acos(cos_t_star_AR(b)); 
                    theta_AR_deg(b)=theta_AR(b)*(180/pi); 
                    cos_g_star_AR(b)=((xz_surf(b,1)-x_off).*(-phi_z_star_AR(b))+xz_surf(b,2).*(phi_x_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)); 
                    gamma_AR(b)=acos(cos_g_star_AR(b)); 
                    gamma_AR_deg(b)=gamma_AR(b)*(180/pi); 
                    if (alfa==90*pi/180) 
                        x_prime_surf_AR(b)=(xz_surf(b,1)-x_off); 
                    else 
                        x_prime_surf_AR(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); 
                    end   
                     
                    if (xz_surf(b,2)>=(h*sin(alfa))) %T 
                        f_alfa_AR(b)=f_alfa_AR_T; 
                    else %M 
                        f_alfa_AR(b)=f_alfa_AR_M; 
                    end 
                    theta_DE(b)=pi-f_alfa_AR(b).*theta_AR(b); 
                    theta_DE_deg(b)=theta_DE(b)*(180/pi); 
%__________________________________________________________________________ 
          else  %xsurf used 
               
             if (b>=(3*i_max+1))&&(b<=(3*i_max+k_max))   
                I_min_ik=b-3*i_max; %x_surf_1 used 
             end               
             if (b>=(3*i_max+k_max+1))&&(b<=b_max) 
                I_min_ik=b-3*i_max-k_max;  %x_surf_2 used  
             end 
                 
                %Repeat above algorithm but for xsurf 
                %Calculate nearest i index to surface 
                J_i_AR=floor(1+(xz_surf(b,1)-x_min_grid)/dx);  
  
                %Calculation of dphi/dx,dphi/dz - Define BC's                                
                if J_i_AR==i_max 
                    phi_x_pos_AR(b)=0; 
                else 
                    phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_AR+1))/(x_cord(J_i_AR+2)-x_cord(J_i_AR+1))).*(phi_1(I_min_ik,J_i_AR+2)-
phi_1(I_min_ik,J_i_AR+1))+phi_1(I_min_ik,J_i_AR+1); 
                    phi_x_pos_AR(b)=(phi_D_x_surf-0)./dx; 
                end 
                 
                if J_i_AR==1 
                    phi_x_neg_AR(b)=0; 
                else 
                    phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_AR-1))/(x_cord(J_i_AR)-x_cord(J_i_AR-1))).*(phi_1(I_min_ik,J_i_AR)-phi_1(I_min_ik,J_i_AR-
1))+phi_1(I_min_ik,J_i_AR-1); 
                    phi_x_neg_AR(b)=(0-phi_C_x_surf)./dx; 
                end 
                 
                if (J_i_AR==i_max)||(J_i_AR==1) 
                    phi_x_cen_AR(b)=0;                   
                else 
                    phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_AR-1))/(x_cord(J_i_AR)-x_cord(J_i_AR-1))).*(phi_1(I_min_ik,J_i_AR)-phi_1(I_min_ik,J_i_AR-
1))+phi_1(I_min_ik,J_i_AR-1); 
                    phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_AR+1))/(x_cord(J_i_AR+2)-x_cord(J_i_AR+1))).*(phi_1(I_min_ik,J_i_AR+2)-
phi_1(I_min_ik,J_i_AR+1))+phi_1(I_min_ik,J_i_AR+1); 
                    phi_x_cen_AR(b)=(phi_D_x_surf-phi_C_x_surf)./(2*dx); 
                end 
                                   
                if I_min_ik==1 
                    phi_z_pos_AR(b)=0; 
                else 
                    phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik-1,J_i_AR+1)-phi_1(I_min_ik-
1,J_i_AR))+phi_1(I_min_ik-1,J_i_AR); 
                    phi_z_pos_AR(b)=(phi_A_x_surf-0)./dz; 
                end 
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                if I_min_ik==k_max 
                    phi_z_neg_AR(b)=0; 
                else 
                    phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik+1,J_i_AR+1)-
phi_1(I_min_ik+1,J_i_AR))+phi_1(I_min_ik+1,J_i_AR); 
                    phi_z_neg_AR(b)=(0-phi_B_x_surf)./dz;   
                end 
                              
                if (I_min_ik==k_max)||(I_min_ik==1) 
                    phi_z_cen_AR(b)=0;                     
                else 
                    phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik-1,J_i_AR+1)-phi_1(I_min_ik-
1,J_i_AR))+phi_1(I_min_ik-1,J_i_AR); 
                    phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik+1,J_i_AR+1)-
phi_1(I_min_ik+1,J_i_AR))+phi_1(I_min_ik+1,J_i_AR); 
                    phi_z_cen_AR(b)=(phi_A_x_surf-phi_B_x_surf)./(2*dz); 
                end 
  
                %Calculate phi_stars 
                phi_x_star_AR(b)=(phi_x_pos_AR(b)+phi_x_neg_AR(b))/2; 
                phi_z_star_AR(b)=(phi_z_pos_AR(b)+phi_z_neg_AR(b))/2;                            
                 
                %Calculate Angles and x_surf'_AR 
                    cos_t_star_AR(b)=((xz_surf(b,1)-x_off).*(phi_x_star_AR(b))+xz_surf(b,2).*(phi_z_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)); 
                    theta_AR(b)=acos(cos_t_star_AR(b)); 
                    theta_AR_deg(b)=theta_AR(b)*(180/pi); 
                    cos_g_star_AR(b)=((xz_surf(b,1)-x_off).*(-phi_z_star_AR(b))+xz_surf(b,2).*(phi_x_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)); 
                    gamma_AR(b)=acos(cos_g_star_AR(b)); 
                    gamma_AR_deg(b)=gamma_AR(b)*(180/pi); 
                    if (alfa==90*pi/180) 
                        x_prime_surf_AR(b)=(xz_surf(b,1)-x_off); 
                    else 
                        x_prime_surf_AR(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); 
                    end   
                     
                    if (xz_surf(b,2)>=(h*sin(alfa))) %T 
                        f_alfa_AR(b)=f_alfa_AR_T; 
                    else %M 
                        f_alfa_AR(b)=f_alfa_AR_M; 
                    end 
                    theta_DE(b)=pi-f_alfa_AR(b).*theta_AR(b); 
                    theta_DE_deg(b)=theta_DE(b)*(180/pi);                     
  
          end 
           
     else  %Need this since it accounts for cases where surface wasn't encountered (i.e. x_surf and z_surf = 0 numerically)    
           %and theta_AR(b) would stay 0 since pre-allocated with 0's for speed and the fact that theta_AR can actually = 0 
         theta_AR(b)=NaN;                  
         theta_AR_deg(b)=NaN;  
         gamma_AR(b)=NaN;  
         gamma_AR_deg(b)=NaN;  
         x_prime_surf_AR(b)=NaN;  
         f_alfa_AR(b)=NaN;  
         theta_DE(b)=NaN; 
         theta_DE_deg(b)=NaN; 
     end 
           
 end     
NaN_Chk_theta_AR=isnan(theta_AR); %If any entries are NaN, returns 1 for that entry, else 0 
  
%2nd Strike Detection Algorithm (see initial iteration) 
  
f_v_AR=zeros(b_max,1); 
f_v_AR_fin=zeros(b_max,1); 
v_AR=zeros(b_max,1); 
flux_AR=zeros(b_max,1); 
theta_D=zeros(b_max,1); 
theta_D_deg=zeros(b_max,1); 
  
cos_t_pfx_pfz_D=zeros(b_max,1); 
cos_t_pfx_nfz_D=zeros(b_max,1); 
cos_t_nfx_pfz_D=zeros(b_max,1); 
cos_t_nfx_nfz_D=zeros(b_max,1);   
cos_t_star_D=zeros(b_max,1); 
cos_t_cen_D=zeros(b_max,1); 
  
c_max=b_max; 
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%See first iteration  for definition of ds_crit and No_ds_cr 
U_D_AR_dist=zeros(c_max,1); %Distance between nodes D and AR 
theta_D_prime=zeros(c_max,1); 
theta_D_1=zeros(c_max,1); %theta_D only for checking in c=1...cmax loop 
ds_pre=zeros(c_max,1); 
  
I_min_ds=zeros(b_max,1); 
min_ds=zeros(b_max,1); %Min spacing, after 2nd strk. for each node AR (not necessarily small enough to include 2nd strk yet) 
  
for b=1:1:b_max %Check each D node 
     if (((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0)))...
             &&((xz_surf(b,2)>=(h*sin(alfa)))||((xz_surf(b,2)<(h*sin(alfa)))&&(xz_surf(b,1)>=(x_lim_LM-dx))&&(xz_surf(b,1)<=(x_lim_RM+dx)))) 
      %Check if surf. found (numerically) AND if surf is not top of mask  
         
         for c=1:1:c_max %Check AR nodes for each D node                     
                    if (NaN_Chk_theta_AR(c)==0)&&((xz_surf(c,2)>=(h*sin(alfa)))||((xz_surf(c,2)<(h*sin(alfa)))&&(xz_surf(c,1)>=(x_lim_LM-
dx))&&(xz_surf(c,1)<=(x_lim_RM+dx))))... 
                            &&(b~=c)&&((theta_AR(c)<(pi/2))&&(theta_AR(c)>0))&&((theta_DE(c)<pi)&&(theta_DE(c)>(pi/2)))... 
                            
&&(((gamma_AR(c)>(pi/2))&&(x_prime_surf_AR(b)>x_prime_surf_AR(c)))||((gamma_AR(c)<(pi/2))&&(x_prime_surf_AR(c)>x_prime_surf_AR(b))))      
                        %Check if surf found (numerically)-this check supercedes next checks; if surf is not top of mask; ignore check at node D=AR; 
                        %limit range of theta_AR; limit range of theta_DE; check if rebound direction makes sense                       
                         
                        %Calculate theta_D' and theta_D 
                        theta_D_prime(c)=acos(((xz_surf(b,1)-xz_surf(c,1)).*(phi_x_star_AR(c))+(xz_surf(b,2)-xz_surf(c,2)).*(phi_z_star_AR(c)))./... 
                            (sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2).*sqrt((phi_x_star_AR(c)).^2+(phi_z_star_AR(c)).^2))); 
                                                 
                        theta_D_1(c)=acos(((xz_surf(b,1)-xz_surf(c,1)).*(phi_x_star_AR(b))+(xz_surf(b,2)-xz_surf(c,2)).*(phi_z_star_AR(b)))./... 
                            (sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)));  
                                                 
                        %Calculate distance between nodes AR and D 
                        U_D_AR_dist(c)=sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2); 
                         
                        if ((theta_D_prime(c)>(pi/2))&&(theta_D_1(c)<(pi/2))) %If node D 'seen' by node AR 
                           ds_pre(c)=U_D_AR_dist(c).*tan(abs(theta_D_prime(c)-theta_DE(c))); 
                        else 
                           ds_pre(c)=NaN;  
                        end                                              
                         
                    else 
                        ds_pre(c)=NaN; 
                    end 
         end 
          [min_ds(b),I_min_ds(b)]=min(ds_pre); %Find min_ds, Will ignore NaN's  
           
          if (I_min_ds(b)~=0)&&(min_ds(b)<ds_crit)&&(U_D_AR_dist(I_min_ds(b))>(No_ds_cr*ds_crit))  
              %Check if possibility of 2nd strike even occurred, ds_min<ds_crit and if U_D_AR_dist is large enough 
               
                                %Calculate 2nd strike values - f_v_AR_fin, v_AR, 
                                %flux_AR, assign calc'd theta_D 
                                 
                                %f_v_AR_fin 
                                if (xz_surf(b,2)>=(h*sin(alfa))) %T 
                                     f_v_AR(b)=f_v_AR_T; 
                                else %M 
                                     f_v_AR(b)=f_v_AR_M; 
                                end                                 
                                f_v_AR_fin(b)=f_v_AR(b).*((ds_crit-min_ds(b))./ds_crit); 
                                 
                                %Define particle velocity at AR node                                 
                                v_AR(b)=v_o*(1-H_slp*(((xz_surf(I_min_ds(b),1)-x_off)*sin(alfa)-xz_surf(I_min_ds(b),2)*cos(alfa)).^2+(y_mean).^2).^0.5./... 
                                    ((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa))); 
                                if (v_AR(b)<0) 
                                v_AR(b)=0; 
                                end 
                             
                                %Define particle mass flux at AR node                                                           
                                flux_AR(b)=(MFR/pi)*(beta./((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa))).^2.... 
                                *exp(-(beta^2.*(((xz_surf(I_min_ds(b),1)-x_off)*sin(alfa)-xz_surf(I_min_ds(b),2)*cos(alfa)).^2+(y_mean).^2)./... 
                                ((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa)).^2)); 
                                 
                                %theta_D 
                                theta_D(b)=acos(((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_star_AR(b))+(xz_surf(b,2)-xz_surf(I_min_ds(b),2)).*(phi_z_star_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)));  
                                theta_D_deg(b)=theta_D(b)*(180/pi); 
                                 
                                %Calculate +/-,c,* cos_theta_D for F_ext Algorithm (Note, if 2nd strike not called 
                                %up, cos_thetas will remain 0, so F_2nd=0 in Fext                                 
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                                cos_t_pfx_pfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_pos_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_pos_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_pos_AR(b)).^2+(phi_z_pos_AR(b)).^2)); 
                                 
                                cos_t_pfx_nfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_pos_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_neg_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_pos_AR(b)).^2+(phi_z_neg_AR(b)).^2)); 
                                 
                                cos_t_nfx_pfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_neg_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_pos_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_neg_AR(b)).^2+(phi_z_pos_AR(b)).^2)); 
                                 
                                cos_t_nfx_nfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_neg_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_neg_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_neg_AR(b)).^2+(phi_z_neg_AR(b)).^2)); 
                                 
                                cos_t_star_D(b)=cos(theta_D(b)); %Calculated above already 
                                 
                                cos_t_cen_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_cen_AR(b))+(xz_surf(b,2)-xz_surf(I_min_ds(b),2)).*(phi_z_cen_AR(b)))./... 
                                    (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_cen_AR(b)).^2+(phi_z_cen_AR(b)).^2));                                          
               
               
          else 
              f_v_AR_fin(b)=0; 
              v_AR(b)=0; 
              flux_AR(b)=0; 
              theta_D(b)=NaN;   
              theta_D_deg(b)=NaN;                
          end 
          
     else 
         f_v_AR_fin(b)=0; 
         v_AR(b)=0; 
         flux_AR(b)=0; 
         theta_D(b)=NaN;   
         theta_D_deg(b)=NaN;                   
     end        
      
end 
NaN_Chk_theta_D=isnan(theta_D); %If any entries are NaN, returns 1 for that entry, else 0 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%END of 2nd Strike Algorithm %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        %START OF SDF AND F_EXT ALGORITHM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%RE-initialize SDF (update phi) 
  
%Initialize SDF  
SDF=zeros(b_max,1); 
%Initialize F_ext's and corresponding cos(theta)'s  
cos_t_pfx_pfz_ext_1=zeros(k_max,i_max); 
cos_t_pfx_nfz_ext_1=zeros(k_max,i_max); 
cos_t_nfx_pfz_ext_1=zeros(k_max,i_max); 
cos_t_nfx_nfz_ext_1=zeros(k_max,i_max);   
cos_t_star_ext_1=zeros(k_max,i_max); 
cos_t_cen_ext_1=zeros(k_max,i_max); 
F_ext_pfx_pfz_1=zeros(k_max,i_max); 
F_ext_pfx_nfz_1=zeros(k_max,i_max); 
F_ext_nfx_pfz_1=zeros(k_max,i_max); 
F_ext_nfx_nfz_1=zeros(k_max,i_max);   
F_ext_star_1=zeros(k_max,i_max); 
F_ext_cen_1=zeros(k_max,i_max); 
%Initialize dphi/dx,dphi/dz (FD's)  
phi_x_pos_ext=zeros(k_max,i_max); 
phi_x_neg_ext=zeros(k_max,i_max); 
phi_x_cen_ext=zeros(k_max,i_max); 
phi_z_pos_ext=zeros(k_max,i_max); 
phi_z_neg_ext=zeros(k_max,i_max); 
phi_z_cen_ext=zeros(k_max,i_max); 
phi_x_star_ext=zeros(k_max,i_max); 
phi_z_star_ext=zeros(k_max,i_max);  
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%Initialize Erosive Power and Masking Function Properties - Extended 
x_prime_ext=zeros(k_max,i_max); 
z_prime_ext=zeros(k_max,i_max); 
L_mask_ext=zeros(k_max,i_max);  
x_lim_ext=zeros(k_max,i_max);  
M_r_x_prime_ext=zeros(k_max,i_max); 
Eros_pow_ext=zeros(k_max,i_max); 
v_ext=zeros(k_max,i_max); 
flux_ext=zeros(k_max,i_max); 
Int_P_r_x_prime_ext=zeros(k_max,i_max); 
Int_P_r_L_mask_ext=zeros(k_max,i_max); 
J_k_ext=0; %Initialize 
J_i_ext=0; 
I_min=zeros(k_max,i_max); %Index of SDF  
  
%2nd strike erosive power 
Eros_pow_ext_2nd=zeros(k_max,i_max); 
%Initial strike F_ext's 
F_ext_pfx_pfz_1_1st=zeros(k_max,i_max); 
F_ext_pfx_nfz_1_1st=zeros(k_max,i_max); 
F_ext_nfx_pfz_1_1st=zeros(k_max,i_max); 
F_ext_nfx_nfz_1_1st=zeros(k_max,i_max);   
F_ext_star_1_1st=zeros(k_max,i_max); 
F_ext_cen_1_1st=zeros(k_max,i_max); 
  
for k=1:1:k_max 
     for i=1:1:i_max 
          
         if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####              
              
          for b=1:1:b_max  
              if (phi_1(k,i)==0) 
                  SDF(b)=0; %we are on the surface  
              elseif 
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))   
                  SDF(b)=((x_cord(i)-xz_surf(b,1)).^2+(z_cord(k)-xz_surf(b,2)).^2).^0.5; 
              else 
                  SDF(b)=NaN; %Need this since it accounts for cases where surface wasn't encountered  
              end             %and the fact that SDF can be actually 0 
  
          end 
          %Obtain value and index at which SDF is MIN (ignores NaN's) 
          [min_SDF,I_min(k,i)]=min(SDF); 
           
          %Update phi 
          if (phi_1(k,i)>0)              
                  phi(k,i)=min_SDF;                                                                                    
          elseif (phi_1(k,i)<0)  
                  phi(k,i)=-min_SDF;                  
          else 
                  phi(k,i)=phi_1(k,i); %i.e.,phi(k,i)=0; i.e., we are on the surface 
          end 
         
          
          %---------------------------------------------------------------- 
          %%%%%%%%%%%%%%%%%%%%F_ext Algorithm%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
          %----------------------------------------------------------------                    
                   
          if (I_min(k,i)>=1)&&(I_min(k,i)<=(3*i_max))&&(phi_1(k,i)~=0) %zsurf used 
             
            if (I_min(k,i)>=1)&&(I_min(k,i)<=i_max)   
               I_min_ik=I_min(k,i); %z_surf_1 used 
            end               
            if (I_min(k,i)>=(i_max+1))&&(I_min(k,i)<=(2*i_max)) 
               I_min_ik=I_min(k,i)-i_max;  %z_surf_2 used  
            end 
             
            if (I_min(k,i)>=(2*i_max+1))&&(I_min(k,i)<=(3*i_max)) 
               I_min_ik=I_min(k,i)-2*i_max;  %z_surf_3 used   
            end 
                 
                %Calculate nearest k index to surface 
                J_k_ext=floor(k_max-(xz_surf(I_min(k,i),2)-z_min_grid)/dz);                  
%__________________________________________________________________________               
                %Calculation of dphi/dx,dphi/dz; Define BC's 
              
                if I_min_ik==i_max 
                    phi_x_pos_ext(k,i)=0; 
                else                      
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                    phi_B_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik+1)-
phi_1(J_k_ext,I_min_ik+1))+phi_1(J_k_ext,I_min_ik+1); 
                    phi_x_pos_ext(k,i)=(phi_B_z_surf-0)./dx; 
                end 
                 
                if I_min_ik==1 
                    phi_x_neg_ext(k,i)=0; 
                else 
                    phi_A_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik-1)-phi_1(J_k_ext,I_min_ik-
1))+phi_1(J_k_ext,I_min_ik-1); 
                    phi_x_neg_ext(k,i)=(0-phi_A_z_surf)./dx; 
                end 
                 
                if (I_min_ik==i_max)||(I_min_ik==1) 
                    phi_x_cen_ext(k,i)=0;                   
                else 
                    phi_A_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik-1)-phi_1(J_k_ext,I_min_ik-
1))+phi_1(J_k_ext,I_min_ik-1); 
                    phi_B_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik+1)-
phi_1(J_k_ext,I_min_ik+1))+phi_1(J_k_ext,I_min_ik+1); 
                    phi_x_cen_ext(k,i)=(phi_B_z_surf-phi_A_z_surf)./(2*dx); 
                end                 
                               
                if J_k_ext==1 
                    phi_z_pos_ext(k,i)=0; 
                else 
                    phi_C_z_surf=((xz_surf(I_min(k,i),2)+dz-z_cord(J_k_ext-1))/(z_cord(J_k_ext)-z_cord(J_k_ext-1))).*(phi_1(J_k_ext,I_min_ik)-phi_1(J_k_ext-
1,I_min_ik))+phi_1(J_k_ext-1,I_min_ik);                     
                    phi_z_pos_ext(k,i)=(phi_C_z_surf-0)./dz; 
                end 
                 
                if J_k_ext==k_max 
                    phi_z_neg_ext(k,i)=0; 
                else 
                    phi_D_z_surf=((xz_surf(I_min(k,i),2)-dz-z_cord(J_k_ext+1))/(z_cord(J_k_ext+2)-z_cord(J_k_ext+1))).*(phi_1(J_k_ext+2,I_min_ik)-
phi_1(J_k_ext+1,I_min_ik))+phi_1(J_k_ext+1,I_min_ik); 
                    phi_z_neg_ext(k,i)=(0-phi_D_z_surf)./dz; 
                end 
                 
                if (J_k_ext==k_max)||(J_k_ext==1) 
                    phi_z_cen_ext(k,i)=0;                     
                else 
                    phi_C_z_surf=((xz_surf(I_min(k,i),2)+dz-z_cord(J_k_ext-1))/(z_cord(J_k_ext)-z_cord(J_k_ext-1))).*(phi_1(J_k_ext,I_min_ik)-phi_1(J_k_ext-
1,I_min_ik))+phi_1(J_k_ext-1,I_min_ik);  
                    phi_D_z_surf=((xz_surf(I_min(k,i),2)-dz-z_cord(J_k_ext+1))/(z_cord(J_k_ext+2)-z_cord(J_k_ext+1))).*(phi_1(J_k_ext+2,I_min_ik)-
phi_1(J_k_ext+1,I_min_ik))+phi_1(J_k_ext+1,I_min_ik); 
                    phi_z_cen_ext(k,i)=(phi_C_z_surf-phi_D_z_surf)./(2*dz); 
                end 
                   
                %Calculate phi_stars 
                phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2; 
                phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2; 
%__________________________________________________________________________                 
                %Masking function for T, M                  
                x_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*sin(alfa)-xz_surf(I_min(k,i),2).*cos(alfa); %Rotated local x 
                z_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*cos(alfa)+xz_surf(I_min(k,i),2).*sin(alfa); %Rotated local z 
                 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                         
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa)+dz*MT_pt_dist))     
                             
                        if (max_x_prime_surf_LM<0) %Case (a) and (c) 
                            if (x_prime_ext(k,i)<0) 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            else %i.e., when x_prime>=0 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;  
                            end             
                        else %i.e., when x_m>=W_m/2 Case (b) 
                            x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            if (x_prime_ext(k,i)<x_lim_ext(k,i)) 
                                L_mask_ext(k,i)=0; 
                            else %i.e., when x_prime>=x_lim 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i); 
                            end 
                        end 
  
                        %Define proportion of mass of particle that pass through mask opening having a 
                        %specific particle size (of radius r) distribution            
                        if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i)) 
                            M_r_x_prime_ext(k,i)=0;                         
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                        else 
                            Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));   
                            Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));  
                            M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i); 
                        end 
                         
                        else %T w/in zTadj 
                            if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON) 
                                    M_r_x_prime_ext(k,i)=1;                               
                            else 
                                 
                            if ((xz_surf(I_min(k,i),1)>=x_min_grid)&&(xz_surf(I_min(k,i),1)<=(x_min_grid+leng_M_L)))%TL 
                                if (xz_surf(I_min(k,i),1)<(x_lim_LM-dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                  M_r_x_prime_ext(k,i)=M_r_x_prime_LM;   
                                end 
                            elseif ((xz_surf(I_min(k,i),1)>=(x_max_grid-leng_M_R))&&(xz_surf(I_min(k,i),1)<=x_max_grid)) %TR 
                                if (xz_surf(I_min(k,i),1)>(x_lim_RM+dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                   M_r_x_prime_ext(k,i)=M_r_x_prime_RM;  
                                end 
                                 
                            else  
                                M_r_x_prime_ext(k,i)=1;  
                            end 
                             
                            end                           
                        end 
             
                        else  %M    
                            if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON) 
                                    M_r_x_prime_ext(k,i)=1;                                 
                            else 
                                 
                            if ((xz_surf(I_min(k,i),1)>=x_min_grid)&&(xz_surf(I_min(k,i),1)<=(x_min_grid+leng_M_L)))%ML 
                                if (xz_surf(I_min(k,i),1)<(x_lim_LM-dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                  M_r_x_prime_ext(k,i)=M_r_x_prime_LM;   
                                end 
                            elseif ((xz_surf(I_min(k,i),1)>=(x_max_grid-leng_M_R))&&(xz_surf(I_min(k,i),1)<=x_max_grid)) %MR 
                                if (xz_surf(I_min(k,i),1)>(x_lim_RM+dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                   M_r_x_prime_ext(k,i)=M_r_x_prime_RM;  
                                end 
                                 
                            else  
                                M_r_x_prime_ext(k,i)=1;  
                            end 
                             
                            end 
                                                                                   
                        end 
                         
%__________________________________________________________________________                         
                        %Define velocity v(x,z) at each grid node                            
                            v_ext(k,i)=v_o*(1-H_slp*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2).^0.5./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))); 
                        if (v_ext(k,i)<0) 
                            v_ext(k,i)=0; 
                        end 
                         
                        %Define particle mass flux(x,z) at each grid node 
                            flux_ext(k,i)=(MFR/pi)*(beta./((xz_surf(I_min(k,i),1)-x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))).^2.... 
                            *exp(-(beta^2.*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2)./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)).^2));   
                         
                        %Define Erosive Power Eros_pow(k,i) at each grid 
                        %node (1st Strike) 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T                    
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i); 
                        else %M 
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i); 
                        end 
                         
                        %Define Erosive Power for 2nd strike 
                        %NOTE: No Mask here  
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                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0;     
                            end 
                        else %M 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0; 
                            end 
                        end 
                        
%__________________________________________________________________________   
                %Calculate F_extensions  
                 
                    cos_t_pfx_pfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_pfx_nfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_nfx_pfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_nfx_nfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_star_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_star_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_star_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_cen_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_cen_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_cen_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    if (cos_t_pfx_pfz_ext_1(k,i)>1)  
                        cos_t_pfx_pfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_pfx_nfz_ext_1(k,i)>1)  
                        cos_t_pfx_nfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_nfx_pfz_ext_1(k,i)>1)   
                        cos_t_nfx_pfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_nfx_nfz_ext_1(k,i)>1)   
                        cos_t_nfx_nfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_star_ext_1(k,i)>1)  
                        cos_t_star_ext_1(k,i)=1; 
                    end 
                    if (cos_t_cen_ext_1(k,i)>1)  
                        cos_t_cen_ext_1(k,i)=1; 
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_pfx_pfz_ext_1(k,i)<=0)  
                       F_ext_pfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i))^(k_vel+1)));  
                        end 
                    else %M 
                       if (cos_t_pfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext_1(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_pfx_nfz_ext_1(k,i)<=0)  
                       F_ext_pfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i))^(k_vel+1)));   
                        end 
                    else %M 
                       if (cos_t_pfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M                        
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                       F_ext_pfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext_1(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk.) 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_nfx_pfz_ext_1(k,i)<=0)  
                       F_ext_nfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i))^(k_vel+1)));    
                        end 
                    else %M 
                       if (cos_t_nfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext_1(k,i))).^n_2_M));  
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_nfx_nfz_ext_1(k,i)<=0)  
                       F_ext_nfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i))^(k_vel+1)));      
                        end 
                    else %M 
                       if (cos_t_nfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext_1(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_star_ext_1(k,i)<=0)  
                       F_ext_star_1_1st(k,i)=0; 
                       else 
                       F_ext_star_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i))^(k_vel+1)));    
                        end 
                    else %M 
                       if (cos_t_star_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_star_1_1st(k,i)=0; 
                       else 
                       F_ext_star_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_ext_1(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk.  
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                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_cen_ext_1(k,i)<=0)  
                       F_ext_cen_1_1st(k,i)=0; 
                       else 
                       F_ext_cen_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i))^(k_vel+1)));   
                        end 
                    else %M 
                       if (cos_t_cen_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_cen_1_1st(k,i)=0; 
                       else 
                       F_ext_cen_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_ext_1(k,i))).^n_2_M));     
                       end 
                    end         
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
             
          elseif (I_min(k,i)>=(3*i_max+1))&&(I_min(k,i)<=b_max)&&(phi_1(k,i)~=0) %xsurf used 
               
             if (I_min(k,i)>=(3*i_max+1))&&(I_min(k,i)<=(3*i_max+k_max))   
                I_min_ik=I_min(k,i)-3*i_max; %x_surf_1 used 
             end               
             if (I_min(k,i)>=(3*i_max+k_max+1))&&(I_min(k,i)<=b_max) 
                I_min_ik=I_min(k,i)-3*i_max-k_max;  %x_surf_2 used  
             end 
                 
                %Repeat above algorithm but for xsurf 
                %Calculate nearest i index to surface 
                J_i_ext=floor(1+(xz_surf(I_min(k,i),1)-x_min_grid)/dx);  
%__________________________________________________________________________ 
                %Calculation of dphi/dx,dphi/dz; Define BC's                                
                if J_i_ext==i_max 
                    phi_x_pos_ext(k,i)=0; 
                else 
                    phi_D_x_surf=((xz_surf(I_min(k,i),1)+dx-x_cord(J_i_ext+1))/(x_cord(J_i_ext+2)-x_cord(J_i_ext+1))).*(phi_1(I_min_ik,J_i_ext+2)-
phi_1(I_min_ik,J_i_ext+1))+phi_1(I_min_ik,J_i_ext+1); 
                    phi_x_pos_ext(k,i)=(phi_D_x_surf-0)./dx; 
                end 
                 
                if J_i_ext==1 
                    phi_x_neg_ext(k,i)=0; 
                else 
                    phi_C_x_surf=((xz_surf(I_min(k,i),1)-dx-x_cord(J_i_ext-1))/(x_cord(J_i_ext)-x_cord(J_i_ext-1))).*(phi_1(I_min_ik,J_i_ext)-phi_1(I_min_ik,J_i_ext-
1))+phi_1(I_min_ik,J_i_ext-1); 
                    phi_x_neg_ext(k,i)=(0-phi_C_x_surf)./dx; 
                end 
                 
                if (J_i_ext==i_max)||(J_i_ext==1) 
                    phi_x_cen_ext(k,i)=0;                   
                else 
                    phi_C_x_surf=((xz_surf(I_min(k,i),1)-dx-x_cord(J_i_ext-1))/(x_cord(J_i_ext)-x_cord(J_i_ext-1))).*(phi_1(I_min_ik,J_i_ext)-phi_1(I_min_ik,J_i_ext-
1))+phi_1(I_min_ik,J_i_ext-1); 
                    phi_D_x_surf=((xz_surf(I_min(k,i),1)+dx-x_cord(J_i_ext+1))/(x_cord(J_i_ext+2)-x_cord(J_i_ext+1))).*(phi_1(I_min_ik,J_i_ext+2)-
phi_1(I_min_ik,J_i_ext+1))+phi_1(I_min_ik,J_i_ext+1); 
                    phi_x_cen_ext(k,i)=(phi_D_x_surf-phi_C_x_surf)./(2*dx); 
                end 
                                   
                if I_min_ik==1 
                    phi_z_pos_ext(k,i)=0; 
                else 
                    phi_A_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik-1,J_i_ext+1)-phi_1(I_min_ik-
1,J_i_ext))+phi_1(I_min_ik-1,J_i_ext); 
                    phi_z_pos_ext(k,i)=(phi_A_x_surf-0)./dz; 
                end 
                 
                if I_min_ik==k_max                     
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                    phi_z_neg_ext(k,i)=0; 
                else 
                    phi_B_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik+1,J_i_ext+1)-
phi_1(I_min_ik+1,J_i_ext))+phi_1(I_min_ik+1,J_i_ext); 
                    phi_z_neg_ext(k,i)=(0-phi_B_x_surf)./dz;   
                end 
                 
                if (I_min_ik==k_max)||(I_min_ik==1) 
                    phi_z_cen_ext(k,i)=0;                     
                else 
                    phi_A_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik-1,J_i_ext+1)-phi_1(I_min_ik-
1,J_i_ext))+phi_1(I_min_ik-1,J_i_ext); 
                    phi_B_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik+1,J_i_ext+1)-
phi_1(I_min_ik+1,J_i_ext))+phi_1(I_min_ik+1,J_i_ext); 
                    phi_z_cen_ext(k,i)=(phi_A_x_surf-phi_B_x_surf)./(2*dz); 
                end 
  
                %Calculate phi_stars 
                phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2; 
                phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2; 
%__________________________________________________________________________                             
                %Masking function for T, M                  
                x_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*sin(alfa)-xz_surf(I_min(k,i),2).*cos(alfa); %Rotated local x 
                z_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*cos(alfa)+xz_surf(I_min(k,i),2).*sin(alfa); %Rotated local z 
                 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa)+dz*MT_pt_dist))     
                             
                        if (max_x_prime_surf_LM<0) %Case (a) and (c) 
                            if (x_prime_ext(k,i)<0) 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            else %i.e., when x_prime>=0 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;  
                            end             
                        else %i.e., when x_m>=W_m/2 Case (b) 
                            x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            if (x_prime_ext(k,i)<x_lim_ext(k,i)) 
                                L_mask_ext(k,i)=0; 
                            else %i.e., when x_prime>=x_lim 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i); 
                            end 
                        end 
  
                        %Define proportion of mass of particle that pass through mask opening having a 
                        %specific particle size (of radius r) distribution            
                        if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i)) 
                            M_r_x_prime_ext(k,i)=0; 
                        else 
                            Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));   
                            Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));  
                            M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i); 
                        end 
                         
                        else %T w/in zTadj 
                            if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON) 
                                    M_r_x_prime_ext(k,i)=1;                 
                            else 
                                 
                            if ((xz_surf(I_min(k,i),1)>=x_min_grid)&&(xz_surf(I_min(k,i),1)<=(x_min_grid+leng_M_L)))%TL 
                                if (xz_surf(I_min(k,i),1)<(x_lim_LM-dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                  M_r_x_prime_ext(k,i)=M_r_x_prime_LM;   
                                end 
                            elseif ((xz_surf(I_min(k,i),1)>=(x_max_grid-leng_M_R))&&(xz_surf(I_min(k,i),1)<=x_max_grid)) %TR 
                                if (xz_surf(I_min(k,i),1)>(x_lim_RM+dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                   M_r_x_prime_ext(k,i)=M_r_x_prime_RM;  
                                end 
                                 
                            else  
                                M_r_x_prime_ext(k,i)=1;  
                            end 
                             
                            end                             
                        end 
             
                        else  %M  
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                            if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON) 
                                    M_r_x_prime_ext(k,i)=1;                                 
                            else 
                             
                            if ((xz_surf(I_min(k,i),1)>=x_min_grid)&&(xz_surf(I_min(k,i),1)<=(x_min_grid+leng_M_L)))%ML 
                                if (xz_surf(I_min(k,i),1)<(x_lim_LM-dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                  M_r_x_prime_ext(k,i)=M_r_x_prime_LM;   
                                end 
                            elseif ((xz_surf(I_min(k,i),1)>=(x_max_grid-leng_M_R))&&(xz_surf(I_min(k,i),1)<=x_max_grid)) %MR 
                                if (xz_surf(I_min(k,i),1)>(x_lim_RM+dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                   M_r_x_prime_ext(k,i)=M_r_x_prime_RM;  
                                end 
                                 
                            else  
                                M_r_x_prime_ext(k,i)=1;  
                            end 
                             
                            end 
                                                                                   
                        end 
                         
%__________________________________________________________________________                         
                        %Define velocity v(x,z) at each grid node                             
                            v_ext(k,i)=v_o*(1-H_slp*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2).^0.5./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))); 
                        if (v_ext(k,i)<0) 
                            v_ext(k,i)=0; 
                        end 
                         
                        %Define particle mass flux(x,z) at each grid node 
                            flux_ext(k,i)=(MFR/pi)*(beta./((xz_surf(I_min(k,i),1)-x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))).^2.... 
                            *exp(-(beta^2.*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2)./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)).^2));   
                         
                        %Define Erosive Power Eros_pow(k,i) at each grid 
                        %node (1st Strike) 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T                    
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i); 
                        else %M 
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i); 
                        end 
                         
                        %Define Erosive Power for 2nd strike 
                        %NOTE: No Mask here 
                        if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0;     
                            end 
                        else %M 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0; 
                            end 
                        end 
                        
%__________________________________________________________________________   
                %Calculate F_extensions  
                 
                    cos_t_pfx_pfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_pfx_nfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_nfx_pfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_nfx_nfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_star_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_star_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_star_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    cos_t_cen_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_cen_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_cen_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2); 
                    if (cos_t_pfx_pfz_ext_1(k,i)>1)  
                        cos_t_pfx_pfz_ext_1(k,i)=1; 
                    end                     
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                    if (cos_t_pfx_nfz_ext_1(k,i)>1)   
                        cos_t_pfx_nfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_nfx_pfz_ext_1(k,i)>1)   
                        cos_t_nfx_pfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_nfx_nfz_ext_1(k,i)>1)   
                        cos_t_nfx_nfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_star_ext_1(k,i)>1)  
                        cos_t_star_ext_1(k,i)=1; 
                    end 
                    if (cos_t_cen_ext_1(k,i)>1)  
                        cos_t_cen_ext_1(k,i)=1; 
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_pfx_pfz_ext_1(k,i)<=0)  
                       F_ext_pfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i))^(k_vel+1)));     
                        end 
                    else %M 
                       if (cos_t_pfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext_1(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_pfx_nfz_ext_1(k,i)<=0)  
                       F_ext_pfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i))^(k_vel+1)));   
                        end 
                    else %M 
                       if (cos_t_pfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext_1(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_nfx_pfz_ext_1(k,i)<=0)  
                       F_ext_nfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i))^(k_vel+1)));   
                        end 
                    else %M 
                       if (cos_t_nfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext_1(k,i))).^n_2_M));  
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk.  
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                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_nfx_nfz_ext_1(k,i)<=0)  
                       F_ext_nfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i))^(k_vel+1)));    
                        end 
                    else %M 
                       if (cos_t_nfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext_1(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_star_ext_1(k,i)<=0)  
                       F_ext_star_1_1st(k,i)=0; 
                       else 
                       F_ext_star_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i))^(k_vel+1)));   
                        end 
                    else %M 
                       if (cos_t_star_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_star_1_1st(k,i)=0; 
                       else 
                       F_ext_star_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_ext_1(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                        if (cos_t_cen_ext_1(k,i)<=0)  
                       F_ext_cen_1_1st(k,i)=0; 
                       else 
                       F_ext_cen_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i))^(k_vel+1)));  
                        end 
                    else %M 
                       if (cos_t_cen_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_cen_1_1st(k,i)=0; 
                       else 
                       F_ext_cen_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_ext_1(k,i))).^n_2_M));     
                       end 
                    end   
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T 
                       F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
             
          else %we are on surface and grid node = surface node (and phi=0)                              
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                %Repeat above algorithm but using grid nodes 
%__________________________________________________________________________                 
                %Calculation of dphi/dx,dphi/dz; Define BC's 
                if i==i_max 
                    phi_x_pos_ext(k,i)=0; 
                else 
                    phi_x_pos_ext(k,i)=(phi_1(k,i+1)-phi_1(k,i))./dx; 
                end 
                 
                if i==1 
                    phi_x_neg_ext(k,i)=0; 
                else 
                    phi_x_neg_ext(k,i)=(phi_1(k,i)-phi_1(k,i-1))./dx; 
                end 
                 
                if (i==i_max)||(i==1) 
                    phi_x_cen_ext(k,i)=0;               
                else 
                    phi_x_cen_ext(k,i)=(phi_1(k,i+1)-phi_1(k,i-1))./(2*dx);                     
                end 
  
                if k==1 
                    phi_z_pos_ext(k,i)=0; 
                else 
                    phi_z_pos_ext(k,i)=(phi_1(k-1,i)-phi_1(k,i))./dz; 
                end 
  
                if k==k_max 
                    phi_z_neg_ext(k,i)=0; 
                else 
                    phi_z_neg_ext(k,i)=(phi_1(k,i)-phi_1(k+1,i))./dz; 
                end 
  
                if (k==k_max)||(k==1) 
                    phi_z_cen_ext(k,i)=0;               
                else 
                    phi_z_cen_ext(k,i)=(phi_1(k-1,i)-phi_1(k+1,i))./(2*dz);    
                end 
  
                %Calculate phi_stars 
                phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2; 
                phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2;                             
%__________________________________________________________________________                 
                %Masking function for T, M                 
                x_prime_ext(k,i)=x_cord_local(i).*sin(alfa)-z_cord(k).*cos(alfa); %Rotated local x 
                z_prime_ext(k,i)=x_cord_local(i).*cos(alfa)+z_cord(k).*sin(alfa); %Rotated local z 
                 
                        if (z_cord(k)>=(h*sin(alfa))) %T 
                         
                        if (z_cord(k)>=(h*sin(alfa)+dz*MT_pt_dist))     
                             
                        if (max_x_prime_surf_LM<0) %Case (a) and (c) 
                            if (x_prime_ext(k,i)<0) 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            else %i.e., when x_prime>=0 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;  
                            end             
                        else %i.e., when x_m>=W_m/2 Case (b) 
                            x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min; 
                            if (x_prime_ext(k,i)<x_lim_ext(k,i)) 
                                L_mask_ext(k,i)=0; 
                            else %i.e., when x_prime>=x_lim 
                                L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i); 
                            end 
                        end 
  
                        %Define proportion of mass of particle that pass through mask opening having a 
                        %specific particle size (of radius r) distribution            
                        if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i)) 
                            M_r_x_prime_ext(k,i)=0; 
                        else 
                            Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));   
                            Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));  
                            M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i); 
                        end 
                         
                        else %T w/in zTadj 
                            if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON) 
                                    M_r_x_prime_ext(k,i)=1;             
                            else  

 203



                                 
                            if ((x_cord(i)>=x_min_grid)&&(x_cord(i)<=(x_min_grid+leng_M_L)))%TL 
                                if (x_cord(i)<(x_lim_LM-dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                  M_r_x_prime_ext(k,i)=M_r_x_prime_LM;   
                                end 
                            elseif ((x_cord(i)>=(x_max_grid-leng_M_R))&&(x_cord(i)<=x_max_grid)) %TR 
                                if (x_cord(i)>(x_lim_RM+dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                   M_r_x_prime_ext(k,i)=M_r_x_prime_RM;  
                                end 
                                 
                            else  
                                M_r_x_prime_ext(k,i)=1;  
                            end 
                             
                            end 
                        end 
             
                        else  %M     
                            if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON) 
                                    M_r_x_prime_ext(k,i)=1;                             
                            else 
                                 
                            if ((x_cord(i)>=x_min_grid)&&(x_cord(i)<=(x_min_grid+leng_M_L)))%ML 
                                if (x_cord(i)<(x_lim_LM-dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                  M_r_x_prime_ext(k,i)=M_r_x_prime_LM;   
                                end 
                            elseif ((x_cord(i)>=(x_max_grid-leng_M_R))&&(x_cord(i)<=x_max_grid)) %MR 
                                if (x_cord(i)>(x_lim_RM+dx)) 
                                   M_r_x_prime_ext(k,i)=1;  
                                else 
                                   M_r_x_prime_ext(k,i)=M_r_x_prime_RM;  
                                end 
                                 
                            else  
                                M_r_x_prime_ext(k,i)=1;  
                            end 
                             
                            end 
                                                                                   
                        end 
                         
%__________________________________________________________________________                         
                        %Define velocity v(x,z) at each grid node 
                            v_ext(k,i)=v_o*(1-H_slp*((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2).^0.5./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)));   
                        if (v_ext(k,i)<0) 
                            v_ext(k,i)=0; 
                        end 
                         
                        %Define particle mass flux(x,z) at each grid node 
                            flux_ext(k,i)=(MFR/pi)*(beta./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa))).^2.... 
                            *exp(-(beta^2.*((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2)./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)).^2)); 
                         
                        %Define Erosive Power Eros_pow(k,i) at each grid 
                        %node (1st Strike) 
                        if (z_cord(k)>=(h*sin(alfa))) %T                    
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i); 
                        else %M 
                            Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i); 
                        end 
                         
                        %Define Erosive Power for 2nd strike 
                        %NOTE: No Mask here 
                        if (z_cord(k)>=(h*sin(alfa))) %T 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0;     
                            end 
                        else %M 
                            if (NaN_Chk_theta_D(I_min(k,i))==0) 
                                Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i)); 
                            else 
                                Eros_pow_ext_2nd(k,i)=0; 
                            end                         
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                        end 
                        
%__________________________________________________________________________   
                %Calculate F_extensions  
                 
                    cos_t_pfx_pfz_ext_1(k,i)=(x_cord_local(i).*(phi_x_pos_ext(k,i))+z_cord(k).*(phi_z_pos_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_pfx_nfz_ext_1(k,i)=(x_cord_local(i).*(phi_x_pos_ext(k,i))+z_cord(k).*(phi_z_neg_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_nfx_pfz_ext_1(k,i)=(x_cord_local(i).*(phi_x_neg_ext(k,i))+z_cord(k).*(phi_z_pos_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_nfx_nfz_ext_1(k,i)=(x_cord_local(i).*(phi_x_neg_ext(k,i))+z_cord(k).*(phi_z_neg_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_star_ext_1(k,i)=(x_cord_local(i).*(phi_x_star_ext(k,i))+z_cord(k).*(phi_z_star_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    cos_t_cen_ext_1(k,i)=(x_cord_local(i).*(phi_x_cen_ext(k,i))+z_cord(k).*(phi_z_cen_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2); 
                    if (cos_t_pfx_pfz_ext_1(k,i)>1)  
                        cos_t_pfx_pfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_pfx_nfz_ext_1(k,i)>1)   
                        cos_t_pfx_nfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_nfx_pfz_ext_1(k,i)>1)   
                        cos_t_nfx_pfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_nfx_nfz_ext_1(k,i)>1)   
                        cos_t_nfx_nfz_ext_1(k,i)=1; 
                    end 
                    if (cos_t_star_ext_1(k,i)>1)  
                        cos_t_star_ext_1(k,i)=1; 
                    end 
                    if (cos_t_cen_ext_1(k,i)>1)  
                        cos_t_cen_ext_1(k,i)=1; 
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                        if (cos_t_pfx_pfz_ext_1(k,i)<=0)  
                       F_ext_pfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i))^(k_vel+1)));  
                        end 
                    else %M 
                       if (cos_t_pfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext_1(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                        if (cos_t_pfx_nfz_ext_1(k,i)<=0)  
                       F_ext_pfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i))^(k_vel+1)));    
                        end 
                    else %M 
                       if (cos_t_pfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_pfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_pfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext_1(k,i))).^n_2_M)); 
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                        if (cos_t_nfx_pfz_ext_1(k,i)<=0)   
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                       F_ext_nfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i))^(k_vel+1)));         
                        end 
                    else %M 
                       if (cos_t_nfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_pfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext_1(k,i))).^n_2_M));  
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                        if (cos_t_nfx_nfz_ext_1(k,i)<=0) 
                       F_ext_nfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i))^(k_vel+1)));   
                        end 
                    else %M 
                       if (cos_t_nfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_nfx_nfz_1_1st(k,i)=0; 
                       else 
                       F_ext_nfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext_1(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       
F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                        if (cos_t_star_ext_1(k,i)<=0)  
                       F_ext_star_1_1st(k,i)=0; 
                       else 
                       F_ext_star_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i))^(k_vel+1)));    
                        end 
                    else %M 
                       if (cos_t_star_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_star_1_1st(k,i)=0; 
                       else 
                       F_ext_star_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_ext_1(k,i))).^n_2_M));   
                       end 
                    end 
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));                         
                    end 
                     
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                        if (cos_t_cen_ext_1(k,i)<=0)  
                       F_ext_cen_1_1st(k,i)=0; 
                       else 
                       F_ext_cen_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i))^(k_vel+1)));     
                        end 
                    else %M 
                       if (cos_t_cen_ext_1(k,i)<=0) %Apply mask visibility for M 
                       F_ext_cen_1_1st(k,i)=0; 
                       else                         
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                       F_ext_cen_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_ext_1(k,i))).^n_2_M));     
                       end 
                    end   
                     
                    %Note: cos_theta_D = 0 if no 2nd strk. 
                    if (z_cord(k)>=(h*sin(alfa))) %T 
                       F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1))); 
                    else %M 
                       F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));                         
                    end 
          
          end 
           
      
         end  %#####*****#####$$$$$#####*****##### 
     end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                        %END OF SDF AND F_EXT ALGORITHM 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%__________________________________________________________________________ 
%Update F_ext for next iteration 
F_ext_pfx_pfz=F_ext_pfx_pfz_1; 
F_ext_pfx_nfz=F_ext_pfx_nfz_1; 
F_ext_nfx_pfz=F_ext_nfx_pfz_1; 
F_ext_nfx_nfz=F_ext_nfx_nfz_1; 
F_ext_star=F_ext_star_1; 
F_ext_cen=F_ext_cen_1; 
  
%__________________________________________________________________________ 
%Time counter 
time=time+dt; 
  
%Iteration counter  
counter=counter+1;    
  
%__________________________________________________________________________ 
%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
%XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 
%Save data to Data Files 
  
N_chk=v_scan/(2*r_s); %Extract data when specified pass reached 
if ((time*N_chk>=2)&&(time*N_chk<(2+dt*N_chk)))||((time*N_chk>=4)&&(time*N_chk<(4+dt*N_chk)))... 
   ||((time*N_chk>=6)&&(time*N_chk<(6+dt*N_chk)))||((time*N_chk>=10)&&(time*N_chk<(10+dt*N_chk)))   
  
xz_surf_final=zeros(b_max,2); %Transformed surface points for plotting 
for b=1:1:b_max 
        if (xz_surf(b,1)==0)&&(xz_surf(b,2)==0) 
        xz_surf_final(b,1)=NaN; %Not a Number (no cell entry in Excel) 
        xz_surf_final(b,2)=NaN; 
        else 
        xz_surf_final(b,1)=xz_surf(b,1)-x_min_grid; %Transform x  
        xz_surf_final(b,2)=-(xz_surf(b,2)-(h*sin(alfa)-H_m)); %Transform z     
        end 
end 
  
%Input Data   
inputs_xls={'time(s)=',time;'MFR(kg/s)=',MFR;'C()=',C;'H_slp()=',H_slp;'beta()=',beta;'v_o(m/s)=',v_o;'v_scan(m/s)=',v_scan;'rho_s(kg/m3)=',rho_s;... 
    'k_vel()=',k_vel;'alfa(rad)=',alfa;'epsilon()=',epsilon;'h()=',h;'i_max()=',i_max;'k_max()=',k_max;'dx(m)=',dx;'dz(m)=',dz;'dt(m)=',dt;... 
'z_in(m)=',z_in;'z_air(m)=',z_air;'W_m(m)=',W_m;'H_m(m)=',H_m;'mu_l()=',mu_l;'sigma_l()=',sigma_l;'C_M()=',C_M*(adj_r_s/adj_r_s_M);'rho_s_M(kg/m3)=',rho
_s_M;... 
    'k_vel_M()=',k_vel_M;'H_vic_M(GPa)=',H_vic_M;'n_1_M()=',n_1_M;'n_2_M()=',n_2_M;'leng_M_L(m)=',leng_M_L;'leng_M_R(m)=',leng_M_R}; 
  
%Write data to Excel 
if ((time*N_chk>=2)&&(time*N_chk<(2+dt*N_chk))) 
headings_xls={'2passes',NaN,'x_surf_fin','z_surf_fin'}; 
xlswrite(fil_name,headings_xls,'Sheet1','A1'); 
xlswrite(fil_name,inputs_xls,'Sheet1','A2'); 
xlswrite(fil_name,xz_surf_final,'Sheet1','C2'); 
end 
if ((time*N_chk>=4)&&(time*N_chk<(4+dt*N_chk))) 
headings_xls={'4passes',NaN,'x_surf_fin','z_surf_fin'}; 
xlswrite(fil_name,headings_xls,'Sheet1','E1'); 
xlswrite(fil_name,inputs_xls,'Sheet1','E2'); 
xlswrite(fil_name,xz_surf_final,'Sheet1','G2'); 
end 
if ((time*N_chk>=6)&&(time*N_chk<(6+dt*N_chk)))  

 207



headings_xls={'6passes',NaN,'x_surf_fin','z_surf_fin'}; 
xlswrite(fil_name,headings_xls,'Sheet1','I1'); 
xlswrite(fil_name,inputs_xls,'Sheet1','I2'); 
xlswrite(fil_name,xz_surf_final,'Sheet1','K2'); 
end 
if ((time*N_chk>=10)&&(time*N_chk<(10+dt*N_chk))) 
headings_xls={'10passes',NaN,'x_surf_fin','z_surf_fin'}; 
xlswrite(fil_name,headings_xls,'Sheet1','M1'); 
xlswrite(fil_name,inputs_xls,'Sheet1','M2'); 
xlswrite(fil_name,xz_surf_final,'Sheet1','O2'); 
end 
  
  
end 
  
  
     
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                                 %END OF Main Loop 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%__________________________________________________________________________ 
%Number of iterations 
counter; 
  
toc; %Stop timer 
Exec_time=toc; %Execution time 
%__________________________________________________________________________ 
%Write other data to Excel at end of execution 
other_data_xls={'execution time(s)=',Exec_time;'Number of Iterations=',counter;'r_s(m)=',(1/adj_r_s)*r_s;'Visibility=',Visibility;... 
'BS_L=',BS_L;'BS_U=',BS_U;'Num_iter_RE=',Num_iter_RE;'prop_Num_iter_RE=',prop_Num_iter_RE;'Crit_D=',Crit_D;'No_RE=',No_RE;'adj_r_s=',adj_r_s;'adj_r
_s_M=',adj_r_s_M;... 
'T_pass_T=',T_pass_T;'T_pass_M=',T_pass_M;'dt_alpha=',dt_alpha;'prs=',(y_mean*adj_r_s)/r_s;'MT_pt_dist=',MT_pt_dist;'No_p_MrxM_ON=',No_p_MrxM_ON;'r
_UCt=',r_UCt;... 
    'f_alfa_AR_T=',f_alfa_AR_T;'f_v_AR_T=',f_v_AR_T;'f_alfa_AR_M=',f_alfa_AR_M;'f_v_AR_M=',f_v_AR_M;'ds_crit=',ds_crit;'No_ds_cr',No_ds_cr}; 
xlswrite(fil_name,other_data_xls,'Sheet1','Y1');  
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