
Ryerson University
Digital Commons @ Ryerson

Theses and dissertations

1-1-2012

Modelling surface evolution in abrasive jet
micromachining using level set methods
Tom Burzynski
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations
Part of the Mechanical Engineering Commons

This Dissertation is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and
dissertations by an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.

Recommended Citation
Burzynski, Tom, "Modelling surface evolution in abrasive jet micromachining using level set methods" (2012). Theses and dissertations.
Paper 654.

http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/654?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F654&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

MODELLING SURFACE EVOLUTION IN ABRASIVE JET MICROMACHINING
USING LEVEL SET METHODS

by

Tom Burzynski

MASc, Mechanical Engineering, Ryerson University, 2007

BEng, Mechanical Engineering, Ryerson University, 2005

A dissertation

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Program of

Mechanical Engineering

Toronto, Ontario, Canada, 2012

Tom Burzynski 2012

Author’s Declaration

AUTHOR'S DECLARATION FOR ELECTRONIC SUBMISSION OF A DISSERTATION

I hereby declare that I am the sole author of this dissertation. This is a true copy of the dissertation,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this dissertation to other institutions or individuals for the purpose

of scholarly research.

I further authorize Ryerson University to reproduce this dissertation by photocopying or by other means,

in total or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my dissertation may be made electronically available to the public.

 ii

MODELLING SURFACE EVOLUTION IN ABRASIVE JET MICROMACHINING
USING LEVEL SET METHODS

Tom Burzynski

Doctor of Philosophy

2012

Mechanical Engineering

Ryerson University

Abstract

The time dependent surface evolution in abrasive jet micromachining (AJM) is described by a

partial differential equation which is difficult to solve using analytical or traditional numerical techniques.

These techniques can yield incorrect predicted profile evolution or fail altogether under certain

conditions. More recently developed particle tracking cellular automaton simulations can address some

of these limitations but are difficult to implement and are computationally expensive.

In this work, level set methods (LSM) were introduced to develop novel surface evolution models

to predict resulting feature shapes in AJM. Initially, a LSM-based numerical model was developed to

predict the surface evolution of unmasked channels machined at normal and oblique jet impact angles

(incidence), as well as masked micro-channels and micro-holes at normal incidence, in both brittle and

ductile targets.

This model was then extended to allow the prediction of: surface evolution of inclined masked

micro-channels made using AJM at oblique incidence, where the developing profiles rapidly become

multi-valued necessitating a more complex formulation; mask erosive wear by permitting surface

evolution of both the mask and target micro-channels simultaneously at any jet incidence; and surface

damage due to secondary particle strikes in brittle target micro-channels resulting from particle mask-to-

target and target-to-target ricochets at any jet incidence. For all the models, a general ‘masking’ function

 iii

was developed by applying previous concepts to model the adjustment to abrasive mass flux incident to

the target or mask surfaces to reflect the range of particle sizes that are ‘visible’ to these surfaces. The

models were also optimized for computational efficiency using an adaptive Narrow Band LSM scheme.

All models were experimentally verified and, where possible, compared against existing models.

Generally, good predictive capabilities and improvements over previous attempts in terms of feature

prediction or execution time, were observed.

The proposed LSM-based models can be practical assistive tools during the micro-fabrication of

complex MEMS and microfluidic devices using AJM.

 iv

Acknowledgements

I would like to sincerely thank my supervisor, Prof. Marcello Papini, for his continual guidance,

advice and support in the research related to and the writing of this dissertation.

I am very thankful to my wife, Magda, and my parents, for their continual emotional and moral

support and advice.

I gratefully acknowledge the financial support of the Natural Sciences and Engineering Research

Council of Canada (NSERC), the Department of Mechanical and Industrial Engineering and the School of

Graduate Studies at Ryerson University.

Finally, I would like to thank my lab peers, Dr. David Ciampini and Levon Larson, for providing

unpublished experimental results (UR), i.e. the necessary mask mechanical properties and erosion

parameters (Chapter 4).

 v

Dedication

To my wife, Magda,

For her immense patience, emotional support and sacrifices.

I thank her for giving me the courage and strength to persevere through the biggest challenges on this

journey.

Most of all, I thank her for her unconditional love and for being my best friend and partner for life.

To my parents,

For their upbringing, love and countless sacrifices.

For their moral and financial support throughout the years.

I thank them for giving me life and for striving to be the best parents that they could be. I am forever

grateful to them.

 vi

Table of Contents

Author’s Declaration……………………………………………………………………………………..…ii

Abstract………………………………………………………………………………………….................iii

Acknowledgements…………………………………………………………………………………………v

Dedication………………………………………………………………………………………………….vi

Table of Contents……………………………………………………………………………………….....vii

List of Tables………………………………………………………………………………………………xi

List of Figures…………………………………………………………………………………………….xiii

List of Appendices……………………………………………………………………………………….xvii

Nomenclature……………………………………………………………………………………………xviii

Chapter 1 Introduction……………………………………………………………………………1

1.1 Motivation………………………………………………………………………………………….1

1.2 Literature review: Abrasive jet micromachining modelling and level set methods………………..3

1.2.1 Analytical and semi-empirical/computational AJM modelling……………………………………3

1.2.2 Traditional interface tracking techniques and cell-based methods………………………………...9

1.2.3 Level set methods and their advantages over other computational techniques…………………...10

1.3 Objectives, significance and organization………………………………………………………...14

Chapter 2 Level Set Methods for the Modelling of Surface Evolution in Abrasive
Jet Micromachining: Foundational Model…………………………………...16

2.1 Motivation………………………………………………………………………………………...16

2.2 AJM experiments: Unmasked and masked channels……………………………………………..17

2.3 Level set modelling of surface evolution in AJM………………………………………………...20

2.3.1 Transformation of coordinates…………………………………………………………………….20

2.3.2 Derivation of local normal velocity of evolving surface for unmasked channels and holes……...21

2.3.3 Derivation of local normal velocity of evolving surface for masked holes and channels………...23

2.3.4 Implementation of the LSM model……………………………………………………………….25

2.3.4.1 Finite differences and geometric variables………………………………………………………..25

2.3.4.2 LSM for non-convex Hamiltonians……………………………………………………………….26

 vii

2.3.4.3 Grid formulation, boundary conditions and CFL condition……………………………………....29

2.3.4.4 Surface initialization, re-initialization and interpolation………………………………………….30

2.4 Results and discussion…………………………………………………………………………….32

2.4.1 Comparison with experiments of Section 2.2…………………………………………………….32

2.4.1.1 Model execution and inputs………………………………………………………………………32

2.4.1.2 Fit of LSM model to experiments………………………………………………………………...41

2.4.2 Comparisons with previously published models and experiments……………………………….42

2.4.2.1 Model execution and inputs………………………………………………………………………42

2.4.2.2 Comparisons with previous analytical models…………………………………………………....46

2.4.2.3 Comparisons with previous computer simulation………………………………………………...49

Chapter 3 Level Set Methodology for Predicting the Surface Evolution of Inclined
Masked Micro-Channels Resulting from Abrasive Jet Micromachining
at Oblique Incidence………………………………………………………………..50

3.1 Motivation………………………………………………………………………………………...50

3.2 AJM experiments: Masked channels machined at oblique incidence…………………………….51

3.3 Level set modelling of surface evolution in AJM of oblique masked channels………………….53

3.3.1 Local normal velocity function of evolving surface for oblique masked channels……………....53

3.3.2 Approximation of decrease in mass flux near the mask edge at oblique incidence……………....53

3.3.2.1 Surface visibility………………………………………………………………………………….57

3.3.3 LSM model implementation……………………………………………………………………...58

3.3.3.1 Finite differences, signed distance function and geometric variables……………………………58

3.3.3.2 Simplified LSM for non-convex Hamiltonians…………………………………………………..59

3.3.3.3 Extension velocity methodology for non-convex Hamiltonians…………………………………60

3.3.3.4 Optimization using the narrow band LSM………………………………………………………..62

3.3.3.5 Grid formulation, boundary conditions and time step……………………………………………63

3.3.3.6 Surface partial derivatives and interpolation……………………………………………………...64

3.3.3.7 Summary of algorithm…………………………………………………………………………….67

3.4 Results and discussion…………………………………………………………………………….69

3.4.1 Model execution and inputs………………………………………………………………………69

3.4.2 Fits of model to experiments……………………………………………………………………...72

 viii

Chapter 4 Level Set Methodology for Predicting the Effect of Mask Wear on
Surface Evolution of Features in Abrasive Jet Micromachining……….76

4.1 Motivation………………………………………………………………………………………...76

4.2 AJM experiments: Channels and eroding masks………………………………………………....77

4.3 Level set modelling of surface evolution in AJM including mask erosive wear………………....79

4.3.1 Local normal velocity function of evolving surface for masked channels including mask erosive
wear……………………………………………………………………………………………….79

4.3.2 Masking function: Adjustment of particle mass flux to the target and the mask………………...80

4.3.2.1 Adjustment of mass flux to the target…………………………………………………………….81

4.3.2.2 Adjustment of mass flux to the mask edges……………………………………………………....83

4.3.2.3 General masking function for the entire mask…………………………………………………....86

4.3.2.4 General masking function for the target………………………………………………………….87

4.3.2.5 Unified masking function………………………………………………………………………...89

4.3.3 LSM model implementation……………………………………………………………………...89

4.3.3.1 Partial derivatives, surface initialization and geometric variables……………………………….89

4.3.3.2 Simplified NB LSM for non-convex Hamiltonians with EVM………………………………….91

4.3.3.3 Grid formulation, boundary conditions, time step and surface interpolation…………………….92

4.4 Results and discussion…………………………………………………………………………....94

4.4.1 Model execution and inputs/outputs……………………………………………………………...94

4.4.2 Comparison of predicted and measured surface evolution……………………………………...102

Chapter 5 Modelling of Surface Evolution in Abrasive Jet Micromachining
Including Particle Second Strikes: A Level Set Methodology………….104

5.1 Motivation……………………………………………………………………………………….104

5.2 Level set modelling of surface evolution in AJM including particle second strikes……………106

5.2.1 Local normal velocity and masking functions…………………………………………………..106

5.2.2 LSM model implementation…………………………………………………………………….106

5.2.2.1 Partial derivatives, surface initialization and geometric variables……………………………....106

5.2.2.2 Particle second strike formulation……………………………………………………………….107

5.2.2.3 Simplified LSM for non-convex Hamiltonians including particle second strikes……………....112

5.2.2.4 EVM and NB LSM……………………………………………………………………………...114

5.2.2.5 Grid formulation, boundary conditions, time step and surface interpolation…………………...114

 ix

5.3 Results and discussion…………………………………………………………………………..116

5.3.1 Model execution and inputs/outputs…………………………………………………………….116

5.3.2 Comparisons with LSM model and experiments at  = 90° from Section 2.4.1.1 (Figure
2.11)……………………………………………………………………………………………..122

5.3.3 Comparisons with LSM model and experiments at  = 45° from Section 3.4.1 (Figure 3.7)…..123

5.3.4 Comparisons with previously published semi-computational and cellular automaton based models
and experiments at  = 90°……………………………………………………………………...124

Chapter 6 Conclusions and Future Work…………………………………………………126

6.1 Summary………………………………………………………………………………………...126

6.2 Limitations of model…………………………………………………………………………….128

6.3 Conclusions and contributions…………………………………………………………………..130

6.4 Future work……………………………………………………………………………………...132

Appendix A Abrasive Mass Flow Rate Measurements for AJM Experiments….133

Appendix B Example Program for the Case Corresponding to Figure 5.3 (Case 2)
in Section 5.3.1…………………………………………………………………..140

References……………………………………………………………………………………………..209

 x

List of Tables

Table 3.1. Model inputs…………………………………………………………………………………...72

Table 4.1. Model inputs and numerical outputs………………………………………………………….101

Table 5.1. Model inputs and numerical outputs………………………………………………………….122

Table A-1. Abrasive mass flow rate measurements corresponding to Figure 2.5 and Sections 2.2 and
2.4.1.1…………………………………………………………………………………………………….133

Table A-2. Abrasive mass flow rate measurements corresponding to Figure 2.6 and Sections 2.2 and
2.4.1.1…………………………………………………………………………………………………….134

Table A-3. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
2.7 and Sections 2.2 and 2.4.1.1………………………………………………………………………….134

Table A-4. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
2.8 and Sections 2.2 and 2.4.1.1………………………………………………………………………….135

Table A-5. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
2.9 and Sections 2.2 and 2.4.1.1………………………………………………………………………….135

Table A-6. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
2.10 and Sections 2.2 and 2.4.1.1………………………………………………………………………...136

Table A-7. Abrasive mass flow rate measurements corresponding to Figure 2.11 and Sections 2.2 and
2.4.1.1…………………………………………………………………………………………………….136

Table A-8. Abrasive mass flow rate measurements corresponding to Figure 2.12 and Sections 2.2 and
2.4.1.1…………………………………………………………………………………………………….136

Table A-9. Abrasive mass flow rate measurements and resulting linear function corresponding to Figures
3.7 and 3.9, Table 3.1, and Sections 3.2 and 3.4.1……………………………………………………….137

Table A-10. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
3.8, Table 3.1, and Sections 3.2 and 3.4.1………………………………………………………………..137

Table A-11. Abrasive mass flow rate measurements corresponding to Figures 4.7 and 4.8, Table 4.1, and
Sections 4.2 and 4.4.1…………………………………………………………………………………….138

Table A-12. Abrasive mass flow rate measurements corresponding to Figure 4.9, Table 4.1, and Sections
4.2 and 4.4.1……………………………………………………………………………………………...138

Table A-13. Abrasive mass flow rate measurements corresponding to Figure 4.10 (x ≤ 0), Table 4.1, and
Sections 4.2 and 4.4.1………………………………………………………………………………….....138

Table A-14. Abrasive mass flow rate measurements corresponding to Figure 4.10 (x ≥ 0), Table 4.1, and
Sections 4.2 and 4.4.1…………………………………………………………………………………….139

 xi

Table A-15. Abrasive mass flow rate measurements corresponding to Figure 4.11 (x ≤ 0), Table 4.1, and
Sections 4.2 and 4.4.1…………………………………………………………………………………….139

Table A-16. Abrasive mass flow rate measurements corresponding to Figure 4.11 (x ≥ 0), Table 4.1, and
Sections 4.2 and 4.4.1…………………………………………………………………………………….139

 xii

List of Figures

Figure 1.1. Depiction of the AJM process………………………………………………………………….2

Figure 1.2. Schematic of typical brittle and ductile erosion rate, Er, as a function of α……………………4

Figure 1.3. Depiction of the second strike, mask edge and spatial hindering effects in glass at normal
incidence ( = 90°)…………………………………………………………………………………………6

Figure 1.4. Depiction of the level set method (LSM). In LSM, a level set function,),(tx



)

, evolves in

time and the surface location and shape can be determined by the zero level set, ,(tx


 = 0 (in the figure,

the intersection of),(tx


 and the 2D plane). The original image taken from [38] has been modified…..12

Figure 2.1. Schematic of AJM channel blasting apparatus for the experiments under consideration…….17

Figure 2.2. Schematic of coordinates used for unmasked channel and/or hole cross-sectional profiles….21

Figure 2.3. Depiction of the decrease in mass flux incident to the target as the mask edge is approached.
In the figure, a small particle arriving to the target at a distance x1’’ from the centre of the mask opening
will pass through the mask while a larger particle will collide with the mask edge. As the mask edge is
approached for x’’ > x1’’, e.g. when x’’ = x2’’, only successively smaller particles will arrive to the target
without colliding with the mask edge. Due to symmetry, only the right mask edge is shown…………...25

Figure 2.4. Visual representation of , including  = 0, i.e. the surface, and the computational grid for
the case in Figure 2.5 after 6 passes (see below)………………………………………………………… .31

Figure 2.5. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
glass at  = 90° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = 3.30 g min-1, = 5.0 x 10-5, FR =
1/20 time steps, ET = 25 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2………...34

Figure 2.6. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
glass at  = 60° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = 3.30 g min-1, ET = 16 min. All
other model inputs are specified in Sections 2.4.1.1 and 2.2……………………………………………...35

Figure 2.7. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
glass at  = 30° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (2.43 -1.19 x 10-3t (s)) g min-1, ET
= 16 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2……………………………...36

Figure 2.8. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
PMMA at  = 90° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (3.97 -2.05 x 10-3t (s)) g min-1,
ET = 141 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2………………………...37

Figure 2.9. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
PMMA at  = 60° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (3.88 -3.47 x 10-3t (s)) g min-1,
ET = 138 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2………………………...38

Figure 2.10. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
PMMA at  = 30° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (2.66 -1.19 x 10-3t(s)) g min-1,
ET = 135 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2………………………...39

 xiii

Figure 2.11. LSM predicted (—) and measured (◊) surface evolution of masked channels machined in
glass at  = 90° after 2, 4, 6 and 10 passes of the nozzle. M = 2.63 g min-1,  = 2.0 x 10-6, FR = 1/20 time
steps, ET = 21 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2…………………....40

Figure 2.12. LSM predicted (▬) and measured (◊) surface evolution of masked channels machined in
PMMA at  = 90° after 2, 4, 6 and 10 passes of the nozzle. M = 5.38 g min-1, ET = 245 min. All other
model inputs are specified in Sections 2.4.1.1 and 2.2……………………………………………………41

Figure 2.13. LSM predicted (+), analytical model predicted (—; ML) and measured (◊) surface evolution
for unmasked channels machined in glass at α = 90° after 1, 2, 3, 4, 5, 6, 7 and 8 passes of the nozzle.
Measured profile and analytical model data from [14]. M = 1.91 g min-1, vt = 1.0 mm s-1, ET = 3 min.
All other model inputs are specified in Section 2.4.2.1…………………………………………………...43

Figure 2.14. LSM predicted (+), analytical model predicted (▬ ▬; ML) and measured (◊) surface
evolution for masked holes machined in glass at α = 90° after 2, 5, 10, 15, 20, 30 s. Measured profile data
from [17] and analytical model data from [19]. M = 2.43 g min-1, Wm = 900 m, Hm = 1000 m, ET =
62 min. All other model inputs are specified in Section 2.4.2.1. Only half of the symmetric hole is
shown……………………………………………………………………………………………………...44

Figure 2.15. LSM predicted (+), analytical model predicted (♦; ML) and measured (◊) surface evolution
for masked holes machined in PMMA at α = 90° after 1, 3, 5, 7, 9, 11 and 13 passes of the nozzle.
Measured profile and analytical model data from [17]. M = 6.90 g min-1, vt = 0.25 mm s-1, Wm = 760 m,
Hm = 1000 m, ET = 737 min. All other model inputs are specified in Section 2.4.2.1. Only half of the
symmetric hole is shown…………………………………………………………………………………..45

Figure 2.16. LSM predicted (+), computer simulation predicted (▬; CS) and measured (◊) surface
evolution for unmasked channels machined in PMMA at α = 90° after 1, 3, 5 and 7 passes of the nozzle.
Measured profile from [2] and computer simulation data from [36]. M = 2.68 g min-1, vt = 0.25 mm s-1,
ET = 55 min. All other model inputs are specified in Section 2.4.2.1. Only half of the symmetric hole is
shown……………………………………………………………………………………………………...46

Figure 3.1. Front view schematic in the AJM of oblique incidence masked channels (see Figure 2.1 for
more details on the channel blasting apparatus)…………………………………………………………..51

Figure 3.2. Cross-sections of oblique (= 45°) masked channels in: (a) Glass and (b) PMMA, after 30
passes of the nozzle under the conditions described in Sections 2.2 and 3.2. Dashed lines show
approximate original locations of the masks……………………………………………………………....52

Figure 3.3. Geometry used for modelling flux reduction near mask edges for an inclined jet. xm, the mask
shadow width, measured from the left hand side of the mask opening, reduces the proportion of the target
surface in the mask opening that can see incoming particles. Case (a) 0 < xm < Wm/2; Case (b) Wm/2 ≤ xm
≤ Wm; Case (c) xm ≤ 0, i.e. no mask shadow. The mask opening width, Wm, is exaggerated with respect to
the standoff, h, for clarity………………………………………………………………………………….55

Figure 3.4. Portion of the jet which is outlined by the mask that is ‘visible’ to the grid. Without velocity
extension, the level sets are stationary beyond the masking boundary. Wm is exaggerated with respect to
h for
clarity…………………………………………………………………………………………………..62

 xiv

Figure 3.5. The level set function,  on the computational grid, along with the zero level set, , i.e. the
location of the machined surface, and the narrow band, after 6 passes in the machining of an inclined
masked channel in glass at  = 45°………………………………………………………………………..66

o

Figure 3.6. FD approximation of partial derivatives for the zero level set, o , for a surface entry/exit
point located in between the grid nodes: Case (a) along the x-direction; Case (b) along the z-direction,
used in eq. (3.24). The dots labelled A to X represent grid points, where F and Q are the reference points,

and the x’s represent locations of interpolation. The value of o at the circled entry/exit point is

obtained using linear interpolation. When o passes through a grid point, e.g. F, eq. (3.24) reduces to eq.
(2.12) at that point, and no interpolation is necessary………………………………………………….....67

Figure 3.7. Predicted () and measured (--) surface evolution of masked channels machined in glass at
 = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (2.70 -9.65 x 10-3·t (s)) g min-1. All other
model inputs are specified in Table 3.1…………………………………………………………………...70

Figure 3.8. Predicted () and measured (--) surface evolution of masked channels machined in PMMA
at  = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (1.86 -1.44 x 10-3·t (s)) g min-1. All other
model inputs are specified in Table 3.1…………………………………………………………………...71

Figure 3.9. Depiction of the relation between mask wear and profile propagation direction. Model
simulation of masked glass channels at  = 45° for Wm = 450 m (: Figure 3.7) and Wm = 550 m (: 20
and 30 passes. ET = 12 min, with band re-initialized 14 times approximately every 180 time steps and
mean t = 6.4 x 10-2 s. All other model inputs are specified in Table 3.1). The solid and dashed line
indicates the propagation direction with and without mask wear, respectively. The lines connect the
points of highest curvature of each profile………………………………………………………………...74

Figure 4.1. Front view schematic of masks used in the AJM of the micro-channels……………………...78

Figure 4.2. Geometry for modelling of flux adjustment for the target near the eroding mask edges at any
incidence angle, . The window shows the special case where the jet centreline intersects the eroding
mask surface. The effective vertical height and horizontal opening width of the eroding mask, Hm,eff,90,
and Wm,eff,90, are exaggerated with respect to h……………………………………………………………80

Figure 4.3. Modelling of adjustment to mass flux striking the mask edges for (a)  = 90° and (b)  ≤ 90°,
i.e. the general case. Due to symmetry, only the right mask edge is shown in (a). The effective eroding
mask heights and opening widths are exaggerated with respect to h……………………………………...83

Figure 4.4. Schematic representation of cases corresponding to eq. (4.14). Top left: eq. (4.14 (a)) and eq.
(4.14 (b)); top right: eq. (4.14 (c)); bottom left: eq. (4.14 (d)); and bottom right: eq. (4.14 (e)). The
rectangular regions in the bottom two schematics differentiate the different materials in the numerical
grid………………………………………………………………………………………………………...87

Figure 4.5. Schematic representation of cases corresponding to eq. (4.15). Left: eq. (4.15 (a)) and eq.
(4.15 (b)); and right: eq. (4.15 (c)). The rectangular regions differentiate the different materials in the
numerical grid……………………………………………………………………………………………..89

Figure 4.6. Initial surface and grid formulation. The grid is divided into regions, each of which represents
a different material. The grid spacing and mask dimensions are exaggerated with respect to h…………91

 xv

Figure 4.7. Predicted () and measured () surface evolution of glass channels (z ≤ 0) with FG mask (z ≥
0) machined at  = 45° after 0, 2, 4, 10, 20 and 40 passes of the nozzle. All model inputs are specified in
Table 4.1…………………………………………………………………………………………………...96

Figure 4.8. The case of Figure 4.7 re-plotted for the case where the predicted () surface evolution does
not consider mask wear……………………………………………………………………………………97

Figure 4.9. Predicted () and measured () surface evolution of glass channels (z ≤ 0) with RM mask (z ≥
0) machined at  = 45° after 0, 2, 4, 6, 8 and 10 passes of the nozzle. All model inputs are specified in
Table 4.1…………………………………………………………………………………………………...98

Figure 4.10. Predicted () and measured () surface evolution of glass (x ≤ 0) and PMMA (x ≥ 0)
channels (z ≤ 0) with FG masks (z ≥ 0) machined at  = 90° after 0, 2, 4, 10 and 0, 2, 4, 10, 20, 40 passes
of the nozzle, respectively. Only half the profiles are shown due to symmetry. All model inputs are
specified in Table 4.1……………………………………………………………………………………...99

Figure 4.11. Predicted () and measured () surface evolution of glass (x ≤ 0) and PMMA (x ≥ 0)
channels (z ≤ 0) with RM masks (z ≥ 0) machined at  = 90° after 0, 2, 4, 6, 8, 10, 16 and 0, 2, 4, 6, 8, 10
passes of the nozzle, respectively. Only half the profiles are shown due to symmetry. All model inputs
are specified in Table 4.1………………………………………………………………………………....100

Figure 5.1. Depiction of the particle second strike and mask edge effects in glass at oblique incidence (
< 90°)……………………………………………………………………………………………………..104

Figure 5.2. Geometry for modelling particle second strike……………………………………………....107

Figure 5.3. Comparison of measured (Section 2.4.1.1; Figure 2.11) (◊) surface evolution of glass FG
masked channels machined at  = 90° after 2, 4, 6 and 10 passes of the nozzle with predictions of: (●)
previous LSM model (Section 2.4.1.1; Figure 2.11) that did not consider mask wear and second strikes;
(——, Case 1) present model that considers mask wear and second strikes off the target only; (▬▬, Case
2) present model that considers mask wear and second strikes both off the target and the mask. All model
inputs are specified in Table 5.1…………………………………………………………………………118

Figure 5.4. Comparison of measured (Section 3.4.1; Figure 3.7) (—◊—) surface evolution of glass FG
masked channels machined at  = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle with predictions of:
(●, Case 3) present model that considers mask wear and does not consider second strikes. All model
inputs are specified in Table 5.1…………………………………………………………………………119

Figure 5.5. Comparison of measured (Section 3.4.1; Figure 3.7) (—◊—) surface evolution of glass FG
masked channels machined at  = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle with predictions of:
(●, Case 4) present model that considers mask wear and second strikes both off the target and the mask.
All model inputs are specified in Table 5.1……………………………………………………………...120

Figure 5.6. Comparison of measured [22] (◊) surface evolution of glass FG masked channels machined at
 = 90° after 1, 3, 5, 7, 9 and 12 passes of the nozzle with predictions of: (——) previous [22] computer
based analytical model that considered second strikes; (▬) previous [23] CA based model that considered
second strikes; (▬▬, Case 5) present model that does not consider mask wear and considers second
strikes both off the target and the mask. Only a small portion of the simulated mask profiles are shown
for ease of comparisons. All model inputs are specified in Table 5.1…………………………………..121

 xvi

List of Appendices

Appendix A Abrasive Mass Flow Rate Measurements for AJM Experiments…………………...133

Appendix B Example Program for the Case Corresponding to Figure 5.3 (Case 2) in Section

5.3.1……………………………………………………………………………….....140

 xvii

Nomenclature

+, - Superscripts, indicating that the physical quantity in question is measured to, at,

or corresponds to measurement at the right and left mask edges, respectively

1st, 2nd Superscripts, indicating first and second strike contributions, respectively

a, e Subscripts, indicating that the quantity in question corresponds to initially

eroding surface node and potentially eroding surface node, respectively

a


 Nearest point on the surface, measured from x


AR Aspect ratio, feature depth-to-width ratio

b, d Subscripts, indicating ‘brittle’ and ‘ductile’, respectively

c Superscript, indicating that for the quantity in question, the partial derivatives of

Ф are evaluated using central finite difference approximations

C Empirical brittle erosion constant ((m s-1)-kv)

dm Approximate length of the eroding mask edge measured along x’ (m)

Dmin Minimum distance between o and the upper or lower bands required to trigger

band re-initialization (m)

DLB, DUB Band width measured from o to the lower and upper bands, respectively (m)

ext Subscript, indicating extension variable (see Fext)

),(ef txE


 Erosive efficacy (power) (kg m-2 s-1)

Eef,st,, Eef,t tef,E Erosive efficacy for a stationary target/mask, scanning target/mask and its

average, respectively (kg m s) -2 -1

),(r txE


 Erosion rate, the mass of target material removed per mass of incident particles

ET Execution time (min (hrs.))

fv, f Surface rebound parameters defined as a fraction of the arriving particle speed

and angle, respectively

),(txF


 Local surface normal velocity function (m s-1)

Fext Extension velocity, the local surface normal velocity function extended from the

zero level set, , to the closest grid point o x


(m s-1)

 xviii

FR Frequency of re-initialization, how often the)(SDF x


 must be recalculated for
the entire computational grid during the course of a simulation, per fixed number
of time steps

g Denotes the global x or z spatial variable

h Nozzle to target standoff distance (mm)

))((xH


 , Ĥ Hamiltonian and numerical Hamiltonian function, respectively

Hm Pre-machined (unworn) mask height (m)

Hm,eff, Hm,eff,90 Effective height, measured parallel to the jet centreline, and vertical height,

respectively, of the eroding mask (m)

g
H Partial derivative of H with respect to Фg

Hv Initial Vickers target or mask hardness (GPa)

i (imax) , k (kmax) (Maximum) grid indices of the spatial global coordinates x and z, respectively

kv Velocity exponent

K Surface curvature

l Grid index i or k of the spatial direction x or z, of the partial derivative of 

lm,L, lm,R Pre-machined length of the left and right hand side of the unworn mask,

respectively (m)

L Target location that an infinitely small particle can reach without undergoing

collision with the mask edge, measured along the x’ direction at a given z’ (m)

m Iteration number, 0,1,2,…

M Subscript, indicating ‘mask surface’

M Particle mass at a given x’ (kg)

M Particle mass flow rate through the nozzle (kg s-1 (g min-1))

0/xM Proportion of the total incoming particle mass, M, arriving to the surface at a
given x’, or masking function, i.e. the adjustment to the incoming particle mass
flux incident to the surface at a given x’

edgeM,0/xM ,
edgeM,0/xM Masking function for the mask edge surface and its mean over the distance dm

genM,0/xM ,
genT,0/xM General masking function for the entire mask and the target surface, respectively

 xix

T0/xM Masking function for the target surface

Unif0/xM Unified masking function for both the mask and target surface

n


 Surface normal

n1, n2 Empirical ductile erosion constants

Np Number of passes

genM,0/xM is assumed to be 1 for the entire RM mask

o Superscript, indicating that the quantity in question is obtained at the point on the

zero level set, , which is closest to the grid point o x


prs The proportion of rs, measured along the scanning direction, used in defining y

rm Mask edge radius (m)

rp Particle radius (m)

rs Radius of the impact area of the jet on the unmasked target surface measured in

the y - z plane (m)

)(SDF x


 Signed distance function of x


, the minimum positive or negative distance

between and x


a


(positive if x


is in front of the surface propagation direction,
and negative if behind it)

t Time variable (s)

t


 Surface tangent

T Subscript, indicating ‘target surface’

Tpass The time it takes for the surface to propagate along the profile centreline to a

depth defined by the experimental first pass profile (s pass-1)

Ucrit Critical minimum distance between potentially eroding surface node and initially

eroding surface node (m)

eaU


 Unit vector distance from initially eroding surface node to potentially eroding
surface node (m)

%USV Percentage of unmachined surface visibility (%)

vt Scan speed, measured in the positive y direction (mm s-1)

 xx

),(txV


, Vo Particle velocity (distribution) incident to the surface and maximum jet centre
particle velocity, respectively (m s-1)

V


 Particle impact velocity vector (m s-1)

dV


 ‘Actual’ surface departing particle velocity vector, accounting for energy losses
(m s-1)

Wm Pre-machined, i.e. unworn, mask opening width (m)

Wm,eff/2, Wm,eff,90/2, Effective half opening width measured along x’, and effective half and full
Wm,eff,90 horizontal opening width, respectively, of the eroding mask (m)

Wm,min The minimum pre-machined, i.e. unworn, mask opening width, necessary so that

the surface is ‘visible’ to the nozzle (m)

x, y, z; x’, y’, z’ Global Cartesian and local transformed spatial coordinates, respectively (m)

x


 Vector representation of a point on the grid in terms of the global spatial
variables, i.e. x, y, and z (m)

x” Horizontal spatial coordinate, measured from the nozzle tip (m)

x’ lim The limit, measured along the x’ direction at a given z’, that an infinitesimally

small particle can surpass and reach the target, without colliding with the left
edge of the mask (m)

xm The mask shadow width, measured from the left hand edge of the mask opening

(m)

xmax, xmin Maximum and minimum horizontal grid limit, respectively (m)

x’max, x’min Maximum and minimum x’ to the mask surface, respectively, measured from the

jet centreline (m)

xoff Horizontal offset distance between the global and nozzle axes (m)

x’ tran x’ at transition between the mask edge and top of mask (m)

xyz Global axis, defined to the left of the nozzle axis, offset by xoff

x’’yz Nozzle axis, defined at the nozzle tip

x’y’z’ Transformed axis, defined at the nozzle tip

xoyozo Original, i.e. previously used, axis, defined on the unmachined target surface

y Transverse variable, defined in terms of prs, locating the point at which Eef,st best

approximates tef,E (m)

 xxi

zam Vertical grid distance above the mask (m)

zmax, zmin Maximum and minimum vertical grid limit, respectively (m)

zsurf Maximum expected feature depth (m)

adjT,z Vertical distance over which
genT,0/xM =

edgeM,0/xM to avoid unrealistic

slowdown of surface propagation of the mask edges (m)

 Impact angle (angle of incidence), measured from the horizontal axis

 ‘Focus coefficient’, measuring the spread of the abrasive jet

g Bound of the partial derivative of H with respect to g

x, z Horizontal and vertical spatial grid step, respectively (m)

scrit Critical displacement dictating whether a secondary collision will occur at a

potentially eroding surface node (m)

smin Minimum displacement between particle trajectories defined by the ‘actual’

surface departing particle velocity vector accounting for energy losses and
surface departing particle velocity vector arriving to a potentially eroding surface
node (m)

t Time step (s)

 Free parameter regulating the predicted speed of surface evolution in regions

containing elevated curvature

 Angle defining the maximum particle trajectory incident to the target surface

through the mask opening, measured from the jet centreline to the mask edge

lim Angle used in defining x’lim, measured from the jet centreline to the left mask

edge

, avg Angle between the surface normal and the particle impact velocity vector , and its

average of all the local slopes at the mask edge, respectively

d Angle between the surface normal at an initially eroding surface node and the
‘actual’ surface departing particle velocity vector accounting for energy losses

de' Angle between the ‘actual’ surface departing particle velocity vector accounting
for energy losses and surface departing particle velocity vector arriving to a
potentially eroding surface node

l, l Log-normal mean and standard deviation of rp respectively

 xxii

 Angle between the velocity vector and surface tangent

 Target or mask mass density (kg m-3)

),(tx


 Particle mass flux (distribution), the mass of particles per unit time arriving to a
unit surface area at a given surface location (kg m-2 s-1)

),(tx


 , Level set function and zero level set, o),(tx


 = 0, i.e. where the surface is located,

respectively

g , First and second partial derivative of Ф with respect to g, respectively gg

c
g , Central finite difference approximation to the first and second partial derivative

of Ф with respect to g, respectively

c
gg

g , Forward and backward finite difference approximation to the first partial

derivative of Ф with respect to g, respectively

 g

 Maximum jet spread angle for an unmasked surface

   Heaviside function

(rp) Particle radial size distribution

(rp)drp Proportion of particles having a radius between rp and rp + drp

)(x


 Gradient of),(tx




 xxiii

Chapter 1 Introduction

1.1 Motivation

Abrasive jet micromachining (AJM) is a relatively novel top-down technique for the micro-

machining of features such as micro-channels, micro-holes, etc. in glass and polymers. Pressurized air is

mixed with small particles and passed through a small nozzle, to produce a jet of abrasive particles which

is directed towards a target surface. The resulting mechanical erosion of the target substrate can be

controlled by applying patterned masks and by varying jet parameters such as the angle that the nozzle

makes with the surface, the impact angle, α, also known as angle of incidence, the standoff distance, the

nozzle to target distance, h (Figure 1.1), the particle mass flux, the mass of particles per unit area per unit

time, the particle velocity, shape and size as well as the substrate properties [1].

 AJM has been used to machine micro-components for use in the electronic, e.g. LCD or plasma

flat panel displays, microfluidic, Micro Electro Mechanical Systems (MEMS), and opto-electronic

industries [1-3]. For example, AJM can be used to micro-machine glass to produce three-dimensional

(3D) suspended micro-cantilever beams for inertial sensors [4], microfluidic channels [5] and other

features with aspect ratios (AR), feature depth-to-width ratios, as high as 7 [6]. AJM can also be used to

machine polymers, such as poly-methyl-methacrylate (PMMA) and acrylonitrile-butadiene-styrene (ABS)

[7], and with a recently developed cryogenic cooling technique, elastomers such as poly-dimethyl-

siloxane (PDMS) [8]. Polymers are of great interest for microfluidic and MEMS applications due to their

low cost and the fact that they are available with a wide variety of properties [9]. AJM may also be

suitable for the machining of micro-moulding dies for the mass production of micro-components [10].

AJM can be an attractive micro-fabrication alternative to traditional wet etch technologies due to its

relatively low capital cost, extremely high etch speed [11], and its ability to easily create multi-depth,

anisotropic patterns and structures [6,12].

The development of process models that are able to predict the surface evolution, i.e. the size and

shape of the machined feature, in AJM as a function of the process parameters is of great interest.

Analytical and semi-empirical/computational models have been developed to predict the evolution of

masked and unmasked features of relatively low aspect ratios and relatively simple geometrical shape,

e.g. micro-holes or channels machined at normal (α = 90°) jet incidence (Figure 1.1). However, the

majority of these models suffer from a number of limitations. For instance, they cannot predict the

evolution of two-dimensional (2D) features of more complex geometry, such as the asymmetric, i.e.

machined at oblique jet incidence (α < 90°), masked micro-channels that are required to fabricate

suspended micro-features, such as cantilever beams [4]. Furthermore, the majority of these models ignore

 1

mask wear, particle mask-to-target ricochet and second strike, i.e. particle ricochet from the target with a

subsequent second impact on the surface, effects, and do not consider curvature-based surface evolution.

Finally, presently utilized computer models that account for some of these effects by tracking individual

particles are relatively slow and cannot readily be made more computationally efficient. It is the aim of

the proposed research to develop more efficient and generally applicable computational models that are

able to address these shortcomings so that they could be used in the industry to predict the surface

evolution of complex features made using AJM under a wide variety of jet and impact conditions.

Figure 1.1. Depiction of the AJM process.

 2

1.2 Literature review: Abrasive jet micromachining modelling and level set methods

 In this section, a critical literature review is presented to provide a succinct summary of existing

AJM modelling efforts and to highlight areas that require further improvement. In addition, Level set

methods (LSM), a set of robust numerical techniques for studying evolving interfaces for a variety of

different settings, will be discussed, and the reason behind choosing these techniques over other available

computational approaches will be highlighted.

1.2.1 Analytical and semi-empirical/computational AJM modelling

Fundamental analytical and semi-empirical models

 Analytical models for profile evolution in masked glass (brittle) substrates were first developed

by ten Thije Boonkkamp-Jansen [1] and Slikkerveer and in’t Veld [13]. The models assume that the

surface evolution depends on the relationship between the erosion rate, Er, the amount of substrate mass

removed per mass of abrasive media used, the local impact angle, α, and the particle velocity. The

interdependency of these parameters generally is considered constant for a given ‘erosive system’,

consisting of a given erosive particle size and shape distribution, and a given substrate [14]. For brittle

erosion, which is characterized by deformation wear and fracture, the erosion rate can be assumed to

increase with increasing impact angle, reaching its maximum at normal incidence [1,14,15] (Figure 1.2).

In these early surface evolution models, the local surface evolution velocity as the surface erodes could

thus be related to the local surface slope, the particle mass flux and the velocity. The result was a partial

differential (surface evolution) equation that could be used to predict the shape and size of AJM features

as a function of time [1]. To model the decrease in particle flux near the mask edge due to particle-to-

mask collisions, a first order approximation, i.e. a linear decrease, was assumed [1]. Moreover, the

models did not consider the effect of local surface curvature on surface evolution. The models predicted

the evolution of low aspect ratio features (< 0.5) fairly well, although the resulting channel and hole

profiles had unrealistically sharp cusps at their centres that over-predicted the experimentally measured

profile depths. In addition, both models were developed for masked features only, using constant particle

velocity and simplified linear particle flux distributions. For unmasked features, the particle flux and

spatial distributions play a fundamental role in feature evolution. The effects of the particle size

distribution which affect the mass flux near the mask edge were ignored by the model of [13], whereas

the model of [1] ignored the effect of secondary particle impacts, which will be discussed in detail below.

Both models ignored mask wear, which can also affect the resulting surface evolution of the target.

 3

Figure 1.2. Schematic of typical brittle and ductile erosion rate, Er, as a function of α.

A semi-empirical analytical surface evolution model for brittle materials, based on the model of

ten Thije Boonkkamp-Jansen [1], which accounts for some of the above mentioned limitations, was

recently developed by Ghobeity et al. [14]. The governing equation describing the surface evolution for a

symmetric hole or channel cross-section was given by as [1,14]

 0)1)(()(2/2 vv  k
x

k
t zxxV

C
z 


 (1.1)

where zt and zx are the partial derivatives of the profile depth z with respect to exposure time t and the

coordinate x, defining the width dimension over which the profile is expected to develop. (x) and V(x)

are the particle mass flux and velocity distributions, respectively, C is constant for a given erosive system,

kv is the velocity exponent and  is the density of the substrate. For a scanning nozzle, the particle mass

flux and velocity distributions in eq. (1.1) are also a function of time and scanning speed vt. It was shown

that the eroded profile generated by a scanning nozzle is very close to that generated across the diameter

of a stationary nozzle, if the scanning speed is relatively high. This effect was modelled by fitting an

empirical exponential function for the net erosive power, the product of velocity to the power kv and the

particle mass flux, in eq. (1.1) from the experimentally obtained first pass profile for both masked and

unmasked channels. This approach made the analysis less complicated but deviated from a physical

model to a more empirical one. In addition, the model could not be extended to the oblique incidence

case for masked substrates, and it neglected secondary effects, such as the effects of mask wear and

particle secondary strikes. The predictions of the model compared much better to experimental profiles

than the model of [1] for aspect ratios up to 0.5 but still exhibited the cusp at the centre of the channels.

 4

The model of [14], developed for brittle erosive systems, was extended to ductile systems such as

the AJM of masked and unmasked channels and holes in PMMA [2]. For ductile erosion, which is

characterized by cutting wear, the erosion rate is highest at oblique impact angles [2,15] (Figure 1.2).

Ductile erosion rate and system depends on the same parameters and consists of the same components,

respectively, as in the brittle case discussed above. A semi-empirical function, g(α), describing the

dependence of erosion rate on the angle of incidence for ductile materials was incrorporated into the

equation of motion in [2], which can be obtained by multiplying the second term on the left-hand side of

eq. (1.1) by g(α) . The model predicted the centreline depth up to an aspect ratio of 0.6 for

masked channels and 0.25 for unmasked channels, but it successively over-predicted the channel width

with each pass [2]. The model had the same limitations as that of [14].

2/)1(2 v)1( k
xz

The models of [2] and [14] were improved by adding a smoothing parameter into the governing

equation defined by eq. (1.1), equivalent to a viscosity term [16], to regulate the predicted speed of

surface evolution in regions containing elevated curvature for masked and unmasked holes in glass [17].

This resulted in a significant improvement in feature shape prediction by smoothing out sharp corners up

to an aspect ratio of 1 [17]. The smoothing term is a free parameter which is used in numerical models to

stabilize the convergence of iterative solutions of partial differential equations [16]. In a related work,

Moktadir et al. [18] derived a continuum equation based on the change of surface free energy upon

particle impact that included this effect of curvature smoothing in masked glass substrates. However, the

model could only be used to predict the qualitative shape of machined features, but not the surface

evolution as a function of time.

 Ghobeity et al. [19] further extended the models of [2], [14] and [17] by developing a relatively

simple analytical model to estimate the spatial distribution of erosive power, or erosive efficacy, across

the mask opening in the machining of micro-holes and micro-channels in glass and PMMA. The model

allows the erosive efficacy close to the mask edge to be obtained as a function of the measured normal

and log-normal particle size distributions and the size of the mask opening for normal incidence cases.

The results showed good agreement with experimental channels in glass up to an aspect ratio of 1 and in

PMMA up to an aspect ratio of 0.2. The poorer fits for higher aspect ratios were likely caused by the

inability of the model to account for the particle second strike effect present during machining of glass

channels and particle embedding present during machining of PMMA channels [2,8,17]. The model is

quite powerful as it allows the surface evolution of micro-features to be predicted without using semi-

empirical or computer particle tracking techniques. However, it was only derived for normal incidence

cases and did not account for mask wear.

 5

Analytical and semi-computational models and second strike, mask edge and spatial hindering
effects

 Wensink et al. [20] and Wensink and Elwenspoek [21] showed that different shapes develop as

the erosion profile is machined in masked (brittle) glass channels with aspect ratios up to 2.5. Firstly, a

bowl shape develops into a ‘V’ shape, after which necking occurs, which results in a wider pocket, or an

‘udder shape’ near the bottom of the profile for AR > 1 [13,21], as shown in Figure 1.3. They explained

that the first two shapes originated from a ‘blast lag’ effect which caused narrower features to travel less

deep when compared to wider ones. They hypothesized that this resulted from the characteristics of

brittle erosion and from the more rapid formation of sloped sidewalls, and hence the ‘V’ shape, in

narrower features due to the inability for particles to impact the target near the mask edge walls, both of

which decrease the erosion rate. However, this could also result from the fact that as the profile deepens,

the ‘neck’ prevents larger particles from reaching the bottom of the narrowing profile and collide with the

side walls instead (spatial hindering effects) [13,22,23]. In addition, the udder shape results from the fact

that as the profile sidewalls become highly sloped, particle ricochets from the sidewalls and consequent

second strikes [13,21-24] at the centre of the target are made possible, as shown in Figure 1.3.

Figure 1.3. Depiction of the second strike, mask edge and spatial hindering effects in glass at normal
incidence ( = 90°).

This so called ‘second strike’ effect was initially modelled by Slikkerveer and in’t Veld [13] and

implemented into their analytical surface evolution model which was described above in Fundamental

analytical and semi-empirical models section. This was done by using ray tracing to calculate

approximate particle trajectories, thus estimating the loss of energy and the rebounding angle of initially

 6

striking particles. They found that the model was able to predict the udder shape, but it significantly over-

predicted the measured profile depths and the resulting profiles had unrealistically sharp cusps at their

centres, as mentioned before. The poor fits were attributed to spatial hindering effects originating from

the failure of larger particles to reach the bottom of narrowing deep profiles [13,22,23], as depicted in

Figure 1.3. The model provided clear evidence of a second strike effect causing the udder shape.

However, in addition to not modelling the particle spatial hindering effects, it did not account for the

mask-to-target particle ricochet effect, i.e. mask edge effect, shown in Figure 1.3.

More recently, Ghobeity et al. [22] developed a computer simulation which also utilized

numerical ray tracing to model second strike, and incorporated it into an analytical surface evolution

model. The model incorporated an ‘effective particle flux’, extracted from the computer simulation,

accounting for the mask edge and second strike effects, and was able to fairly accurately predict the centre

depth of the resulting channel profiles. However, although the results showed significant improvements

over the model of [13], the model could not predict the udder shape for higher AR, and the unrealistic

sharp cusps remained. This was likely because the analytical model did not consider curvature

smoothing, spatial hindering effects, and it ignored the effects of mask wear.

Semi-empirical model and mask erosive wear

Several investigators have studied the solid particle erosion of masks used in AJM. For example,

Wensink et al. [25] measured the erosion rate of elastic negative resist foil, polyimide, steel and

electroplated copper masks under typical AJM conditions, and found that the metallic masks eroded at a

lower rate than the polymeric ones. The electroplated copper mask, which was quite thin (~50 m), was

found to provide both good wear resistance and feature edge definition down to a minimum feature size

of < 50 m in glass. For machining deeper features, the effect of mask wear would have likely been

much more pronounced. Achtsnick et al. [26] reached similar conclusions by studying the erosive

characteristics of 8 metallic, elastomeric and photo-resistive masks. They also found that although

elastomeric masks can be used to produce relatively small features (~75 m) in glass, they are relatively

thin (50~100 m) and prone to elastic deformation, and thus they can only be used to produce a limited

range of AR. High AR (>2) features can be achieved through the use of thicker and inherently tougher

steel shadow masks [14]; however, they are prone to under-etching, caused by particles entering between

the substrate and the mask [26]. More recently, the use of a SU8/PDMS masking technique [27,28] has

led to an improvement in attainable AR (~2) and minimum feature size (~30 m) in glass targets.

However, these masks are also quite thin (~50 m), are difficult to apply and involve a significant capital

investment, when compared to standard masking techniques.

 7

In spite of its significant effect on the resolution of features machined using AJM, the modelling

of mask wear has thus far been very limited. Although Slikkerveer et al. [29] derived a semi-empirical

model that allowed the worn shape of masks made from three elastomeric materials to be predicted, the

model was applied to the mask alone, independent of the target erosion, and thus only qualitative

conclusions of the influence that mask wear had on surface evolution of the target could be drawn.

Analytical and semi-empirical models and oblique incidence

 All of the above mentioned models have been derived for normal incidence cases only. Due to its

complexity, the oblique erosion process in AJM has not been studied as extensively. Belloy et al. [30]

used AJM to machine low AR (< 0.33) masked glass holes using aluminum oxide particles at oblique

angles of attack. They extrapolated curves from experimental profiles in at attempt to quantify the under-

etching effect caused by the impact of secondary particles as function of the angle of incidence and

etching time. These curves were then used to formulate a simple coordinate transformation, i.e. a

correction of each point, from the normal incidence case to oblique case that would be used to match the

experimental profiles in the best way possible in order to try to quantify the under-etching effect. This

semi-empirical model was not a physical predictor of the oblique erosion process, i.e. it did not model the

surface evolution, and the fits to experimental profiles were poor. Park et al. [24] also studied the effect

of under-etching in masked glass samples machined at oblique incidence, and schematically showed that

mask wear and second strike effects discussed above can have a significant effect on the resulting shape

of the machined features. More recently, Getu et al. [31] extended the work of [14] by studying oblique

erosion in PMMA as well as in polymers such as LUCITE, an acrylic, and LEXAN, a polycarbonate, in

masked and unmasked holes and channels. The analytical model used the technique of [14] by fitting the

erosive power distribution across the mask opening with a polynomial function using the first pass

experimental profile. The work only considered oblique erosion by varying the angle of incidence along

the nozzle centreline and parallel to the scanning direction plane, which would result in symmetrical as

opposed to asymmetrical cross-sectional profiles. Asymmetrical profiles are only obtained by varying the

angle of incidence in the plane of the channel cross-section and perpendicular to the scanning direction

plane. The authors were able to quantify the effect of particle embedding that is present in micro-

machining of polymers under certain conditions and found a relation for a net embedding energy flux as a

function of scanning direction distance and angle of incidence. However, the model had the same

limitations as those in [14].

All of the above mentioned analytical and semi-empirical/computational models cannot be used

to predict the evolution of features which have two or more depth values at a given profile location along

 8

the width. Such 2D and 3D multi-valued profiles develop, for example, in the AJM of masked micro-

channels and holes at oblique jet incidence, which are of interest in the AJM of suspended components,

such as micro cantilever beams [4]. More sophisticated techniques must be employed to solve these

multi-valued partial differential equations. These will be discussed in the following sections.

1.2.2 Traditional interface tracking techniques and cell-based methods

Traditional interface tracking techniques

 The marker/string method and the volume-of-fluid technique are commonly used to numerically

track interfaces [16]. The marker/string method uses a Lagrangian approach where the boundary of the

interface, i.e. the evolving surface, is discretely parameterized. Surfaces are computed via the use of

marker particles in 2D and via nodal triangularization of the interfaces in 3D. The locations of the nodes

are updated by obtaining data about the normals and curvature from the representation of the markers.

This method can be quite accurate; however, it gives inaccurate solutions when corners and cusps develop

in the evolving front and has difficulty in handling complex interface changes. In addition, although the

method has been applied to track interfaces in 3D, its extension from 2D to 3D is difficult [16].

The volume-of-fluid technique utilizes a computational grid which is divided into cells, each of

which contains ‘volume fractions’ in the range from 0 to 1, which signify the fraction of each cell

containing material within the interface [16]. The front is propagated forward in time under a ‘transport

velocity’ in each coordinate direction by reconstructing the front based on these volume fractions. This

method can handle interface changes with ease and can be extended through adaptive methods to solve

3D problems. However, precise calculation of geometric properties such as the surface normal and

curvature can be difficult [16].

Cell-based methods

More recently, a 3D cellular automaton (CA), cell-based computational method used to model

AJM has been applied to obtain the shape of a glass channel along with the encompassing polymeric

mask [32]. The CA algorithm was composed of combinations of two orthogonal planes of 2D cells along

with a solid particle erosion model. The predicted eroded channel and worn mask shapes using both low

and high resistant masks showed good qualitative agreement with experiments but no quantitative

comparisons were made. In addition, the simulation did not account for a non-uniformly distributed

particle flux, oblique incidence, particle scattering and second strike effects, as well as the effect of

 9

interference between incident and rebounding particles which becomes important when considering high

flux cases [33-35]. A computer simulation for modelling surface evolution in AJM, which accounts for

some of these limitations, was recently developed by Shafiei et al. [36]. The simulation can predict the

size and shape of resulting unmasked hole and channel profiles as a function of all the process parameters.

Target propagation was obtained by discretizing the surface to form a 3D grid of cubic cells, each of

which was assigned a ‘damage limit’ based on the number of particle impacts it experienced. The

simulation can be adopted for any substrate and can simulate high flux cases by tracking individual

particles and implementing particle-particle and particle-surface collision detection and kinematics. The

simulation showed excellent agreement between predicted unmasked profile shapes and experiments at

low fluxes and fair agreement at high fluxes, i.e. it overestimated the feature depths.

Most recently, Ciampini and Papini [23] developed a CA-based model for the prediction of the

AJM of masked features which included algorithms for launching, tracking, and collision detection of

non-uniform particle size distributions. Their model implemented a better algorithm for surface damage

distribution than that used in [36], resulting in very good agreement with measured profiles for low and

high aspect glass micro-channels and micro-holes. It was the first model to account for all of the effects

of second strike, mask edge and spatial hindering described in Section 1.2.1. However, although the CA

method is quite powerful since it can emulate real-time conditions, it is very complex and difficult to

implement in terms of coding, and is thus less accessible to the machining community. Moreover, the

finite size of the cells in this method makes it difficult to calculate geometric quantities such as the

surface normal and curvature at sharp corners and complex geometrical shapes. Most importantly, to be

effective, this method must incorporate algorithms to track many particles simultaneously [23], making it

computationally very expensive, especially at high fluxes and in simulating large masked feature depths.

On a standard PC, highly optimized CA/particle tracking simulations may take more than 15 hours to

complete, for even low flux cases [23]. In addition to all of this, none of the above CA models considered

surface evolution of masked features that result from AJM at oblique incidence.

1.2.3 Level set methods and their advantages over other computational techniques

Level set methods

Level set methods (LSM), developed by Sethian and Osher [16,37], are powerful computational

techniques for analyzing and obtaining the evolution of dynamic fronts for a multitude of different

situations. LSM numerically estimate the governing equations of motion for a moving front by

transforming them into a distinctive solution of an initial value partial differential equation (PDE). LSM

 10

are based on a Hamilton-Jacobi type equation for the level set function, and utilize methods formed for

solving hyperbolic PDEs which rely on the connection between front propagation and hyperbolic

conservation laws [16]. Fundamentally, LSM abandon the Lagrangian (local) geometric perspective for

solving interface problems and move towards the Eulerian (global) perspective. They rely on viscosity

solutions for fitting PDEs to update the location of the interface, using the velocity of the front [16,37].

 LSM for evolving interfaces can be particularly useful for profiles that can: develop sharp corners

and cusps where singularities can form, undergo major changes in topology, e.g. where there is a

responsive dependence on the direction of the normal to the front and on the surface curvature or when

surfaces merge or break apart, undergo sensitive variations in the speed of propagation, and experience

complex motion in 3D. Hence, the method is versatile and stable for the formulation of arbitrary

geometries. LSM are utilized in computer vision, material science, image processing, computational fluid

dynamics, micro-fabrication, i.e. etching, deposition and lithography, and many other fields. The use of

LSM for simulating the evolution of machined profiles in AJM was first suggested by ten Thije

Boonkkamp [1], but no work on LSM implementation in AJM existed in the literature before the work of

the present dissertation. With respect to LSM implementation in the different research fields, the major

difference is only the definition of the velocity of surface propagation. As a result, LSM has become a

general computational method for solving arbitrary interface propagation problems, and hence it can be

extended to AJM [16,37].

The main principle behind LSM is to represent the location of a surface at a particular time t as a

zero level set, of a particular implicit function),(tx


 , the level set function, where the initial surface is

defined by }0)0,(|{  xx


. The variable x


can represent all spatial variables, i.e. x, y and z, including the

location of the surface, which is embedded in the level set function, and the arrow head indicates a vector

quantity. Thus, the desired surface location is implicitly defined by),(tx


 , which has one more

dimension than the surface. Surface movement with time results from, for instance, a driving physical

force or flux, whose effect is defined by a local surface normal velocity function, which depends on the

physics of the particular problem. The local normal velocity of any point on the surface,),(txF


, depends

on both spatial and time variables, and is assumed to be valid for the entire computational domain, not

just on the surface. As),t(x




),(tx

 evolves in time and the surface propagates, for t > 0, it becomes the zero

level set of


 , and it can be defined as a set of points }0) ,(|{  txx n 
 (see Figure 1.4).

 11

Figure 1.4. Depiction of the level set method (LSM). In LSM, a level set function,),(tx



)

, evolves in

time and the surface location and shape can be determined by the zero level set, ,(tx


 = 0 (in the figure,

the intersection of),(tx


 and the 2D plane). The original image taken from [38] has been modified.

The level set equation is defined as [16,37]

 0||),(



txF
t


 (1.2)

Since physical models derive the velocity function only at the zero level set, i.e. the surface is located

where),(tx


 = 0, it has to be extrapolated appropriately at grid points that are not adjacent to the zero

level set. The level set equation can then be iteratively solved to obtain surface profiles for t > 0.

 Numerically,),(tx


 is represented by its values on the grid nodes, and the computational

domain is approximated by a spatial grid. LSM uses finite differences, FDs, to approximate the solution

 12

to),(tx


 and vital geometric properties, such as the surface normal and curvature. It uses upwind FD

schemes to ensure that FD approximations follow the exact-solution PDE theory so that numerical

solutions can converge correctly [16,37]. In addition, LSM can be made more computationally efficient

through adaptive strategies [16]. These aspects will be explored in more detail in later chapters.

Advantages over other computational techniques

LSM can overcome all the limitations of traditional interface tracking techniques discussed in

Section 1.2.2 since it can handle singularities and complex changes in topology. Intrinsic geometric

quantities such as the surface normal or curvature can be easily obtained from the level set function and

LSM can be readily extended from 2D to 3D by simply extending the size of arrays and gradient

operators. Moreover, LSM can overcome all the limitations of cell-based methods since they are less

complex and much easier to implement and are more computationally efficient. In addition, geometric

quantities can be easily calculated as mentioned above. As a result, LSM were chosen over cell-based

methods and traditional interface tracking techniques to model surface evolution in AJM.

 13

1.3 Objectives, significance and organization

The proposed dissertation will utilize LSM to develop surface evolution models in AJM based on

less simplifying assumptions than previous analytical and semi-empirical/computational models discussed

in Section 1.2.1. These models would also address the limitations of previous computational models

discussed in Section 1.2.2. Specifically, the main objective of the research is to develop 2D LSM models,

which are relatively easy to implement as well as computationally efficient, for the surface evolution of

both brittle and ductile materials during the AJM process. The models would be able to predict 2D

features of complex geometry, as well as account for mask wear [24,29,32] and particle behaviour near

the mask edge and the second strike effect [13,21-24]. The models will be verified by comparison with

experimentally determined AJM feature profiles. Ultimately, such models could be used to perform

parametric studies, on how the process parameters such as the standoff distance, angle of incidence,

scanning speed, width and height of the mask, etc. affect the resulting feature shapes. This would allow

the optimization of AJM operations. The main objective will be accomplished by achieving the following

secondary objectives:

1. The development of a 2D LSM numerical model for the AJM of masked and unmasked holes and

channels in glass (brittle material) and polymethylmethacrylate (PMMA) (ductile material) at

normal incidence (α = 90°) and unmasked channels in glass and PMMA at oblique incidence (α <

90°). For the masked cases, only ARs of up to approximately 1 will be modelled in this

preliminary step. These situations, which do not include secondary effects such as mask wear

[24,29,32] and particle second strike [13,21-24], have already been modelled analytically in, e.g.

[2,14,17], and thus can serve as a foundation for achieving the main objective and as a means to

evaluate the level set methodology, which has not been previously used in modelling the AJM

process. This will be considered in Chapter 2.

2. Extension of the LSM model described in objective 1 for the AJM of masked channels in glass

and PMMA at normal incidence to oblique incidence. This model will demonstrate the power of

LSM for solving the multi-valued PDEs that result from oblique incidence AJM of masked

features, which has not been previously considered. This step will also include optimization of

the LSM model to increase computational efficiency by utilizing the Narrow Band (NB) LSM

[16]. The NB LSM [16] is an adaptive scheme which is based on the notion that calculations

need not be performed for points far away from the interface, and hence only for points in its

vicinity; hence, up to an order of magnitude decrease in execution time can result [16]. This will

demonstrate that the LSM approach is more efficient than other computational approaches in

 14

solving the AJM problem, which would also make it possible to perform parametric studies with

more ease. This will be considered in Chapter 3.

3. Extension of the LSM models described in objectives 1 and 2 for the AJM of masked channels in

glass and PMMA at any incidence to include mask erosive wear [24,29,32], by modelling the

surface as a composite material, where portions of the surface represented by the mask have

different material properties than portions represented by the target, and hence erode differently.

This approach has never been used in modelling the AJM process, and the effect of mask erosive

wear on the development of target features has only been studied at normal incidence [29,32].

This will be considered in Chapter 4.

4. Extension of the LSM models described in objectives 1 to 3 for the AJM of masked channels in

glass at any incidence to features having an AR > 1, when the effects of second strike [13,21-24]

must be included. These effects will be included by extending the Slikkerveer and in’t Veld [13]

model of second strike from normal to oblique incidence, which has not been previously

considered. It will involve the use of ray-tracing and expressions for reduced rebound velocity

and rebound angle, based on the point of impact. This will be considered in Chapter 5.

 15

Chapter 2 Level Set Methods for the Modelling of Surface Evolution in
Abrasive Jet Micromachining: Foundational Model

2.1 Motivation

In this chapter, a new methodology for the prediction of surface evolution in AJM based on LSM

[16,37] is introduced. It has the potential to address shortcomings of existing analytical and computer

models, as explained in Chapter 1, so that it can be used to predict the surface evolution of complex

multi-valued AJM features using a wide variety of jet and impact conditions. To demonstrate its

feasibility, the methodology is used to predict the surface evolution of unmasked micro-channels

machined at normal and oblique jet incidence, and masked micro-channels and micro-holes at normal

incidence, in both glass and PMMA, assuming conditions in which secondary effects such as mask wear

[24,29,32] and second strike [13,21-24] are neglected. The level set predicted eroded profiles are

compared to those experimentally obtained, as well as to those predicted by existing analytical and

computer models. The advantages of the current level set methodology over previous modelling efforts

are discussed. The majority of the material in this chapter has been published in [39].

 16

2.2 AJM experiments: Unmasked and masked channels

All AJM experiments were conducted using a round 0.76 mm inner diameter nozzle fitted to a

commercial microblaster (MB 1005 Microblaster, Comco Inc., Burbank, CA, USA) into which a mixing

device was incorporated to prevent particle bed compaction [2]. The blasting pressure was held constant

at 200 kPa, and the maximum jet centre velocity of the 25 m (nominal diameter) alumina powder at the

utilized nozzle to target standoff distance, h = 20 mm (Figure 2.1), was approximately 162 m s-1. The 25

m aluminum oxide particles are the most widely used abrasives because of their excellent hardness and

angular shape, which promotes high erosion rates [2,14].

Figure 2.1. Schematic of AJM channel blasting apparatus for the experiments under consideration.

Unmasked and masked channels were machined in 5 mm thick Borofloat (Schott North America

Inc., Elmsford, NY, USA) glass plates (density,  = 2200 kg m-3), and 1.5 mm thick PMMA ( = 1190

 17

kg m-3) sheets (Piedmont Plastics Inc., Brampton, ON, Canada). Glass is the most common material

utilized in microfluidics and MEMS applications [6] due to its hardness, transparency and ease of

machinability. In AJM, it represents a brittle erosive system having a maximum erosion rate at normal

incidence (α = 90°), when the nozzle is perpendicular to the surface (Figure 2.1) [24]. Its erosive

behaviour is similar to that of silicon. PMMA is one of the polymeric materials commonly used in

microfluidics and MEMS applications [9]. In AJM, it represents a ductile erosive system in which the

erosion rate increases with the impact angle to a maximum value of approximately 15–40°, after which it

begins to rapidly decrease [2,24] (Figure 1.2). The AJM process models developed for these two

materials are thus applicable to a wider class of brittle and ductile erosive systems by simply specifying

different erosive system parameters.

The target samples were mounted on parallel screw mounts and clamped to a programmable

computer controlled linear stage having an accuracy of 0.5 m (Aerotech, Pittsburgh, PA, USA) which

moved relative to the stationary nozzle. Scanning speeds of 1 mm s-1 and 0.5 mm s-1 were used in

machining the glass and PMMA channels, respectively, over a 15 mm length. The utilized scanning

speed ensured that particle embedding [2,8,17,31] and temperature, i.e. target surface heating effects in

PMMA were minimized, as in [2]. Nevertheless, even if surface heating had existed, its effect would be

accounted for in the surface evolution because, as explained in the next section, the fundamental erosion

rate used as an input in the surface evolution model is obtained under the same conditions as the

machining. In addition, these scanning speeds ensured that appreciable slopes along the channel length

are avoided in both materials. For slow scanning speeds and high erosion rates, i.e. higher mass fluxes,

an appreciable slope in the scan direction at the leading edge of the jet can develop. This may affect the

local erosion conditions at a particular channel cross-section, and thus the effective erosion rate may

change [14]. This is important when modelling a scanning nozzle in 2D, as in the present case. As a

result, the scanning speeds were balanced to ensure this was avoided but at the same time guaranteed an

efficient erosion rate. All unmasked channels were machined at incidence angles of 90°, 60° and 30° and

masked channels at incidence angles of 90°. The average abrasive particle mass flow rate was measured

3 times before and after each channel was machined, by weighing with a micro mass balance of accuracy

= 0.01 mg the amount of powder blasted for a minute into a special container that was covered with filter

material which prevented the particles escaping, while also preventing back pressure. The measured mass

flow rate, i.e. mass flux, range of 2.16-5.38 g min-1 (see Appendix A, Tables A-1-A-8) was sufficiently

low to ensure that particles rebounding from the surface did not interfere with incoming particles [33-35].

The mask was made by securely taping two parallel tempered steel (Starret Co., Athol, MA,

USA) feeler gages to the workpiece a known distance apart, aligned with a reference gage. The mask

width, Wm, and height, Hm (Figure 2.1), were approximately 400 m and 100 m, respectively. To

 18

ensure that the mask adhered to the surface during blasting, an industrial magnet spanning the length of

the channel was attached and secured below the 1.5 mm thick PMMA workpiece, and a rare-earth magnet

was attached below the 5 mm thick glass workpiece.

The cross-sectional profiles of the machined channels were measured with a non-contact optical

profilometer (Nanovea ST400, Micro Photonics Inc, Allentown, PA, USA), which was accurate to within

a depth of 10 nm. Between 200-850 and 350-450 data points were obtained over scanning width ranges

of 6-10.5 mm and 0.65-0.725 mm for all the unmasked and masked channel profiles, respectively.

 19

2.3 Level set modelling of surface evolution in AJM

2.3.1 Transformation of coordinates

In order to model features machined with the jet at oblique incidence as shown in Figures 2.1 and

2.2, the coordinate system used to describe previous analytical 1D models [1,2,14] of surface evolution

described in Section 1.2.1, developed for normal incidence, was modified. The original xo – zo axis was

moved up to the nozzle and rotated about the y-axis by the angle  (Figure 2.2), to define a new x’- z’

axis. To be consistent with the LSM formulation, using geometry, the local x’ and z’ coordinates can be

expressed in terms of the global x and z coordinates as follows

off

sincos

cossin

xxx''

zx''z'

zx''x'








 (2.1)

where xoff is the offset distance between the global and nozzle axes (Figure 2.2), necessary to ensure

generality for both oblique and normal incidence. For the unmasked case, xoff = htan, where  is the

maximum jet spread angle (Figure 2.1) [34]. In the equations that follow, x” will be used instead of x –

xoff for brevity.

 20

Figure 2.2. Schematic of coordinates used for unmasked channel and/or hole cross-sectional profiles.

2.3.2 Derivation of local normal velocity of evolving surface for unmasked channels and
holes

For the AJM of brittle targets such as glass, the velocity of the surface in the direction of the local

normal required for the solution of eq. (1.2) can be expressed as [1]

)),,,((
),,,(

),,,(br,
b ntzyx

tzyxE
tzyxF


 


 (2.2)

and for ductile targets, such as PMMA, as [2]

),,,(
),,,(

),,,(dr,
d tzyx

tzyxE
tzyxF 


 (2.3)

where (x,y,z,t) is the particle mass flux, the mass of particles per unit time arriving to a unit surface area

at a given spatial location on the surface, n


is the surface normal (Figure 2.2), and Er(x,y,z,t) is the erosion

rate, the mass of target material removed per mass of incident particles. The subscripts ‘b’ and ‘d’ stand

for ‘brittle’ and ‘ductile’, respectively.

 21

The brittle erosion rate can be expressed as [1,14]

 v)),,,((),,,(br,
kntzyxVCtzyxE


 (2.4)

where V(x,y,z,t) is the distribution of particle velocities incident to the surface, kv is a velocity exponent

and C is an empirical erosion constant which can be obtained by fitting the modelled erosive efficacy (see

Section 2.4.1.1) to the experimentally obtained first pass profile [14,36]. C and kv generally depend on

particle and target hardness and toughness, as well as particle size, type and velocity. kv can be obtained

by performing erosion test at various angles of attack and curve fitting the results [14].

For ductile erosion, a more complex relationship between erosion rate and angle of attack exists.

Following Getu et al. [2], the angular dependence of erosion due to Oka et al. [40] can be adopted for the

AJM of many polymers such as PMMA, and Er in these cases can be expressed as

21

v

),,,(

),,,(
11

),,,(

),,,(
)),,,((),,,(dr,

nn

k

tzyxV

ntzyxV
Hv

tzyxV

ntzyxV
tzyxVCtzyxE





























 














 
 







 (2.5)

where Hv (GPa), the initial Vickers target hardness, and the constants n1 and n2 are determined using a

microhardness tester and experiments similar to that when obtaining kv, respectively [2,40]. The last two

terms in the brackets in the RHS of eq. (2.5) are the surface normal and tangential components of the

erosion rate [2,40].

 For the AJM of holes machined at  = 90° using a round nozzle, V in eqs. (2.4) and (2.5) is

independent of t and y = y’ = 0 due to symmetry. For the blasting conditions used in the present work, the

measured velocity distribution across the jet [14] can be expressed as

 





 

z

x''
VzxV 92.41),(o (2.6)

where Vo is the maximum jet centre velocity.

For the AJM of channels at any , the target is scanned relative to the stationary round nozzle at a

scan speed of vt in the positive y direction (Figure 2.1), where y = y’ = (rs - vtt), and rs = htan, which is

the radius of the impact area of the jet on the unmasked target surface measured in the y - z plane [14]

(Figure 2.1). In one pass, each channel cross-section in the x - z plane is exposed to a jet of particles for a

 22

total time of 2rs/vt [14]. Using the coordinate system of eq. (2.1), the velocity distribution for the

scanning target in eqs. (2.4) and (2.5) can be expressed as

   























sincos

cossin
92.41),,(

2
ts

2

o zx''

tvrzx''
VtzxV (2.7)

The particle mass flux  in eqs. (2.2) and (2.3) for holes machined at  = 90° under the conditions

described in Section 2.2 can be obtained as [14]

2
2 '

2

2

),(








 z

'x

e
z

M
zx







 (2.8)

where M is the particle mass flow rate through the nozzle and  is the ‘focus coefficient’ which

describes the spread of the abrasive jet. Generally,  depends on the internal nozzle roughness, particle

velocity and type [41] and can be obtained through mass measurements at different radial locations of the

jet and curve fitting the results [14,42]. A higher  implies a more focused jet [14,41,42].

 For channels machined at any  with a scan speed of vt, the particle mass flux in eqs. (2.2) and

(2.3) can be expressed in the coordinates of eq. (2.1) as

 

   
 2

2
ts

2
2

sincos

cossin

2

2

sincos
),,(





 zx''

tvrzx''

e
zx''

M
tzx 








 (2.9)

2.3.3 Derivation of local normal velocity of evolving surface for masked holes and
channels

For masked features, particle mass flux passing through the mask and striking the surface

decreases as the mask edge is approached. This occurs because only smallest incoming particles can

avoid colliding with the mask edge as it is approached, as depicted in Figure 2.3. As a result, the

proportion of the total particle size distribution that can pass through the mask decreases as the mask edge

is approached. The analytical model of [19] for  = 90° describes this effect which depends on the

particle size distribution and the size of the mask opening. According to the model, the proportion of the

 23

total incoming particle mass, M, that passes through the mask opening and arrives to the surface at a given

location, can be expressed as [19]
















2/

0
pp

3
p

2/

0
pp

3
p

0/
m

m

)(

)(

)0(

)(
W

x''W

x

drrr

drrr

x''M

x''M
M (2.10)

where (rp)drp is the proportion of particles having a radius, rp, between rp and rp + drp, and Wm is the

width of the mask opening (Figure 2.1). x’’ is defined in a similar manner as for unmasked cases (eq.

(2.1)), where xoff = Wm/2 (Figure 2.1) so that x’’ = 0 corresponds to the centre of the mask opening. For

the 25 m alumina used in the experiments of Section 2.2, the size distribution was measured as log-

normal [19],

  2

l
2

lp 2/)ln(

lp
p

2

1
)(



















 r

e
r

r (2.11)

where l and l are the log-normal mean and standard deviation of rp. This model was applied to masked

holes and channels at normal incidence by multiplying the mass flux, eqs. (2.8) or (2.9), by eq. (2.10).

 24

Figure 2.3. Depiction of the decrease in mass flux incident to the target as the mask edge is approached.
In the figure, a small particle arriving to the target at a distance x1’’ from the centre of the mask opening
will pass through the mask while a larger particle will collide with the mask edge. As the mask edge is
approached for x’’ > x1’’, e.g. when x’’ = x2’’, only successively smaller particles will arrive to the target
without colliding with the mask edge. Due to symmetry, only the right mask edge is shown.

2.3.4 Implementation of the LSM model

2.3.4.1 Finite differences and geometric variables

LSM use finite differences (FDs) to approximate the solution to),(tx


 , the surface normals, and

the curvature. Most commonly, first order FDs are used to approximate first and second partial

derivatives,

gg
ll

g 






 


 1 ,
gg

ll
g 







 1
-

- ,

gg

ll
g 







 

2
11

c
c ,

2
11

c

2

2
c

)(

2

gg
lll

gg








  (2.12)

where g denotes the x or z spatial variable for the symmetric 2D problems considered in the present work.

The superscripts ‘+’, ‘-’ and ‘c’ denote forward, backward and central FD, respectively, and l denotes the

appropriate grid index (i, k) of the spatial direction (x, z) of the partial derivative. First order

approximations are much simpler to implement and require less stringent boundary conditions than higher

 25

order FDs. The loss of accuracy can be compensated for by increasing the grid resolution. Using FDs,

the gradient of),(tx


 can be defined by [16,37]

),(,),()(zxzx
zxx 

















 (2.13)

From this, the surface normal, n


, and curvature, K, can be obtained as [16,37]

22

),(

||
zx

zxn











 ,   2/322

22 2

||
zx

xxzxzzxzzxK








 (2.14)

The motion of the surface can be regulated by multiplying F(x,z,t) in eqs. (2.2) or (2.3) by (1- K), where

 is a free parameter that regulates, i.e. smoothes out, the predicted speed of surface evolution in regions

containing elevated curvature [16,17,37].

2.3.4.2 LSM for non-convex Hamiltonians

Equation (1.2) relates the change in time to the gradient of (x,z,t) using F(x,z,t) and can be

recast to Hamilton-Jacobi form, and generalized to include curvature, as [16,37]

),(),,()()),((zxtzxFKzxH
t



  (2.15)

where the Hamiltonian, H, is defined by

),(),,()),((zxtzxFzxH  (2.16)

Here, use of the term ‘Hamiltonian’ refers to the Hamiltonian function and not an operator. Combining

eqs. (2.2)-(2.5), (2.10), (2.14), and (2.16), and expressing the result in the x’’ and z components, the

Hamiltonians for brittle erosive (glass) and ductile erosive (PMMA) targets, respectively, can be

expressed as

 26

   

  2/)1(22

2/221

0/b
v

vv
v










k

k
zx

k
zxk

x
zx''

zx''
V

C
MH 


 (2.17)

and

     22
0/d

21v)cos1(1cos zx
nnk

x HvV
C

MH  


 (2.18)

with

2222

cos
zx''

zx''

zx

zx




 (2.19)

where  is the angle between the surface normal n


and the particle impact velocity vector V (Figure 2.2),

and V and  are solved with eqs. (2.6) and (2.8) for a stationary target, and eqs. (2.7) and (2.9) for a

scanning target, respectively.



To determine whether H is convex, and if F(x,z,t) is smooth for all time and position, the

following condition must be fulfilled [16]:

 0
2






zx

H
 (2.20)

For more than one dimension, the Jacobian matrix must be evaluated. For the present cases of eqs. (2.17)

and (2.18), the inequality in eq. (2.20) is not satisfied, and the H is said to be non-convex. This implies

that the F(x,z,t) depends on (x,z,t) and H is non-smooth or singular [16,37]. As a result, a special class

of numerical schemes for dealing with these more complex non-convex cases is used. Equation (2.15)

must be redefined as follows [16,37]

),(),,()(ˆ zxtzxFKH
t



  (2.21)

where Ĥ is the numerical Hamiltonian [16],

 27

 
















 


zxg

gggzxHH
,

c

2
)),((ˆ  (2.22)

H is evaluated using g
c, i.e. central FDs, and g are bounds of the partial derivative of H with respect to

g [16],

)),((max zxH
g

g 
  (2.23)

where the maximum of is evaluated using all the combinations of 
g

H g
+ and g

-, and the superscript

‘g’ differentiates between the spatial variables. These terms are second-order linear smoothing viscosity

terms which act as second derivatives. If they are too large, the results will yield unrealistic smoothing of

sharp corners; if they are too small, numerical instabilities will result [37]. All the quantities on the RHS

of eq. (2.21) are evaluated using g
c, since these terms are parabolic contributions to the equation of

motion and information propagates in both directions [16]. The temporal partial derivative in eq. (2.21) is

evaluated using appropriate first order forward FD.

 The numerical schemes for evaluating Ĥ differ from each other in the manner in which g is

found. For example, the Lax-Fredrichs scheme evaluates eq. (2.23) by searching for the maximum in the

entire computational domain. This is very computationally expensive, and can also result in unnecessary

smoothing which can lead to inaccurate results. To avoid this, the present work utilized the Local Local

Lax-Fredrichs scheme, which evaluates eq. (2.23) by using g
+ and g

- at a specific grid point [37]. To

evaluate eq. (2.23), and for glass and PMMA can be obtained by taking the partial derivatives

of eqs. (2.17) and (2.18) with respect to 

x
H z

H

x and z,





















 22
vv

b;b
);(

)(

);)(1(
)(

zx

zx

zx

k

zx''

zx''k
HH

zx
 (2.24)





















 

22
;2;1

22

d
;d

);(
)()()(

zx

zx

zx
zxzxzx

BHvnAn
H

H (2.25)

with

 28

22

2

;
)(

);();)(;(
)(

zxzx

zxxz

zx''

x''zzx''
A

zx



 (2.26)

 

 )cos1(1)(

);();)(;(
)(

2222

2

;





Hvzx''

x''zzx''
B

zx

zxxz
zx

 (2.27)

where the notations (x’’; z) and (x; z) in eq. (2.24) indicate that x’’ and x are used to calculate

while z and 
x

H )(b z are used to calculate , etc.
z

H )(b

2.3.4.3 Grid formulation, boundary conditions and CFL condition

For all cases, the vertical grid limits were set at zmin = hsin and zmax = hsin + zsurf, where zsurf is

the maximum expected feature depth. For unmasked cases, using the geometry of Figure 2.1 (top, right),

the horizontal grid limits were defined by xmin/max = htan + hsin/tan( ± ). For a spatial particle

distribution corresponding to eq. (2.8), the jet spread angle at which 99.9% of particles arrive to the

surface was assumed to be  =)/)001.0ln((tan 1  [34]. For masked cased at  = 90°, xmin = 0 and

xmax = Wm. These limits were used to obtain appropriate spatial grid steps; i.e. x = (xmax – xmin)/(imax - 1),

and z = (zmax – zmin)/(kmax - 1), where imax · kmax is the grid size. The global spatial coordinates at the

grid nodes were thus obtained as x = (i - 1)x + xmin and z = (k - 1)z + zmin. The boundary conditions

were assumed such that the partial derivatives of (x,z,t) directed towards outside the computational

domain were zero. Finally, the time step t was limited by the Courant-Friedreichs-Lewy (CFL)

condition, i.e. that the numerical wave speed should be greater than or equal to the physical wave speed to

ensure stability [37],

 1
2)(

max
,

2








































 






zxg gg

H
t

g 
 (2.28)

where the superscript ‘g’ differentiates between spatial variables. The maximum is calculated by

searching the entire computational domain.

 29

2.3.4.4 Surface initialization, re-initialization and interpolation

The initial surface was represented by a horizontal line, and the level set function was initialized

at t = 0 using the signed distance function, SDF, of a point x


 from the surface [37],

)0(),min()(SDF),( aaxxtx


 (2.29)

where x


is the position of some grid node and a


is the nearest point on the surface, and the function is

positive if x


is in front of the surface propagation direction, and negative if behind the surface

propagation direction. The zero level set evolves naturally unless it encounters discontinuities, which can

occur when the surface is propagated with curvature smoothing [16,37], since the SDF is not

differentiable. In this case, the SDF must be re-initialized, i.e. re-calculated, every fixed number of time

steps to ensure the level sets are evenly spaced around the front, using eq. (2.29) for t > 0 [16]. In order to

do this, and to visualize the evolving surface profile for t > 0, the surface, i.e. the zero level set, must be

interpolated since it is usually located between the grid nodes, as shown in Figure 2.4. The entry and exit

points of the zero level set were interpolated linearly in order to maintain monotonicity and hence

stability.

 30

Figure 2.4. Visual representation of , including  = 0, i.e. the surface, and the computational grid for
the case in Figure 2.5 after 6 passes (see below).

 31

2.4 Results and discussion

2.4.1 Comparison with experiments of Section 2.2

2.4.1.1 Model execution and inputs

The LSM model presented in Section 2.3 was implemented in MATLAB 7.7 (The MathWorks,

Inc., Natick, MA, USA). MATLAB was chosen as the programming platform as it has many built-in

standard functions. Although LSM libraries have been (scarcely) made available commercially, they are

not easily adaptable to difficult LSM problems. As a result, LSM was applied to the current problem

from the ground up, i.e. from ‘scratch’.

The resulting predicted surface evolution profiles are compared to the measured ones in Figures

2.5-2.12. On a 2.6 GHz Quad-core Intel CPU with 4 MB of RAM, the execution times, ETs, for most

cases were between 16 min and 2.5 hrs. For the majority of cases, the average particle mass flow rate was

used since repeatability over the course of machining was good. However, for cases where the mass flow

rate fluctuation over the course of machining was significant (Figures 2.7-2.10), it was modelled as a

linearly decreasing function of time (see Appendix A, Tables A-3-A-6). In addition to particle

compaction in the particle reservoir of the microblaster mentioned in Section 2.2, three other factors that

can affect mass flow rate repeatability are particle size stratification, relative humidity of storage air and

the effect of powder level in the reservoir [43]. It is difficult to control for all these factors during the

course of experimental runs. Thus, for the cases in Figures 2.8-2.10, the mass flow rate decrease with

time was most likely caused by the decrease in powder level in the reservoir since a longer machining

time was required for those cases by using a slower scan speed of 0.5 mm s-1 to obtain a desired depth up

to 30 passes for the slowly eroding PMMA, when compared to glass. For the case in Figure 2.7, the

decrease in the flow rate could have been due to a combination of all these factors.

For the present nozzle, particle, and jet conditions,  =15 in eqs. (2.8) and (2.9) and Vo= 162 m s-1

in eqs. (2.6) and (2.7) were assumed, based on values measured in [14]. For glass targets, kv = 1.43 in

eqs. (2.17) and (2.24) [14], while for PMMA targets, kv = 2.0, n1 = 1.27, n2 = 15.5 and Hv = 0.25 GPa

were assumed in eqs. (2.18), (2.25) and (2.27), based on the measurements in [2]. For masked cases,

values of l = -11.6 and l = 0.5 were assumed in eq. (2.11) from the measurements made in [19], for the

25 m alumina particles utilized in the present work. The erosion constants C = 8.0 x 10-6 (m s-1)-kv

(glass) and C = 5.7 x 10-8 (m s-1)-kv (PMMA) used in eqs. (2.17) and (2.18) were obtained from [36].

 32

 For most cases, it was not necessary to smooth the results based on curvature, and = 0 was

assumed. This is especially true for unmasked and masked PMMA features, where the profile bottoms

remain rounded and flat, respectively. However, for glass targets, the modelled profiles in Figures 2.5

and 2.11 resulted in converging sidewalls at the profile bottom that tended to create a pointed profile, i.e.

a high K. In these cases, beyond AR of roughly 0.2 for unmasked and 0.5 for masked profiles, the

smoothing parameter  [16,17,37] described in Section 2.3.4.1 was estimated based on the

recommendations of [17], which gives a range of of (0.2-1.0) x 10-4 and (0.09-2.25) x 10-5 for unmasked

and masked cases, respectively. In these cases, the frequency of re-initialization, FR, (Section 2.3.4.4)

was obtained through a numerical convergence study by ensuring that numerical stability was maintained,

but at the same time the FR minimized, since this step was computationally expensive [16,37]. Similarly,

for all cases, imax · kmax = 101 · 101 and the spatial grid steps x and z, calculated as described in Section

2.3.4.3, were in the range of 4–220 m, which ensured the convergence and accuracy of the numerical

solution, i.e. the grid steps for each case were decreased until the profile plots between successive

simulations varied by no more than 1%. The mean representative time step calculated with eq. (2.28) for

all cases was in the range of (0.53-5.3) x 10-2 s.

 For the majority of cases, V and  were calculated using eqs. (2.6) and (2.8) for the micro-

machining of holes, and eqs. (2.7) and (2.9) for the micro-machining of channels. However, for the

unmasked PMMA channels in Figures 2.8-2.10, eqs. (2.7) and (2.9) had to be slightly modified by

assuming a stationary target approach, i.e. y = y’ = (rs - vtt) = 0. This modification was necessary

because, for ductile erosive systems, the 2D approximation for the scanning target, i.e. y’ = (rs - vtt), used

in eq. (2.18) introduces a component of the erosive efficacy, Eef = v , in the y scanning direction that

incorrectly cause the surface to grow in the x - z plane. This y component, originating from eqs. (2.3) and

(2.5), cannot be eliminated from the 2D channel formulation, and ultimately causes the channel cross-

section in the x - z plane to erode and widen, due to the surface tangential component of the erosion law in

eq. (2.5). In reality, this tangential component should mostly represent damage done by cutting and

ploughing mechanisms in the y direction, and thus should primarily cause the surface to erode in along the

channel in the y direction. The net result is the y direction erosive efficacy causes the channels to grow

too rapidly wide. This ‘widening’ effect is minimal in glass since its erosion law depends only on the

components of erosive efficacy related to energy transfers normal to the surface (eq. (2.17)), and hence

eqs. (2.7) and (2.9) are valid.

kCV

The use of a stationary target assumption for channels is acceptable for ductile targets because

[14] demonstrated that, to a first approximation, the dose, i.e. mass, of particles that a given channel

cross-section receives in the direction normal to the surface during one scanning pass over a time of 2rs/vt

 33

is roughly equivalent to the dose that the cross-section at the centre of a hole receives for a stationary

target during the time it takes to reach the same depth. However, since the scanning target erosive

efficacy has a smooth bell shape, whereas the stationary target erosive efficacy has a bell shape with a

cusp at x’ = 0, the use of eqs. (2.7) and (2.9) delays the onset of high curvature, K , i.e. a pointed profile,

and hence avoids the use of curvature smoothing in many cases, which is computationally expensive. It is

therefore efficient to use it for glass targets that develop such sharp profiles. For example, Figure 2.13

compares the LSM model which used the scanning target erosive efficacy, with the model of [14] which

used the stationary target erosive efficacy, both with  = 0. The use of the model of [14] resulted in

pointed profiles, while the use of the LSM model resulted in smooth profiles. However, since the pointed

profile only occurs in glass, this difference was not significant for PMMA. For masked PMMA channels,

the modification was not required since the small mask opening limited the range of incident angles of

attack over a narrow range near to perpendicular.

-2.5

-2

-1.5

-1

-0.5

0

1 3 5 7 9

x (mm)

z (mm)

Figure 2.5. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
glass at  = 90° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = 3.30 g min-1, = 5.0 x 10-5, FR =
1/20 time steps, ET = 25 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2.

 34

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 2 4 6

x (mm)

z (mm)

8

Figure 2.6. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
glass at  = 60° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = 3.30 g min-1, ET = 16 min. All
other model inputs are specified in Sections 2.4.1.1 and 2.2.

 35

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0 2 4 6 8

x (mm)

z (mm)

10

Figure 2.7. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
glass at  = 30° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (2.43 -1.19 x 10-3t (s)) g min-1, ET
= 16 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2.

 36

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 2 4 6

x (mm)

z (mm)

Figure 2.8. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
PMMA at  = 90° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (3.97 -2.05 x 10-3t (s)) g min-1,
ET = 141 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2.

 37

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 2 4 6 8

x (mm)

z (mm)

Figure 2.9. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
PMMA at  = 60° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (3.88 -3.47 x 10-3t (s)) g min-1,
ET = 138 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2.

 38

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 2 4 6 8 10

x (mm)

z (mm)

12

Figure 2.10. LSM predicted (—) and measured (◊) surface evolution of unmasked channels machined in
PMMA at  = 30° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (2.66 -1.19 x 10-3t(s)) g min-1,
ET = 135 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2.

 39

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.2 0.4 0.6

x (mm)

z (mm)

Figure 2.11. LSM predicted (—) and measured (◊) surface evolution of masked channels machined in
glass at  = 90° after 2, 4, 6 and 10 passes of the nozzle. M = 2.63 g min-1,  = 2.0 x 10-6, FR = 1/20 time
steps, ET = 21 min. All other model inputs are specified in Sections 2.4.1.1 and 2.2.

 40

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1 0.3 0.5 0.7 0.9

x (mm)

z (mm)

Figure 2.12. LSM predicted (▬) and measured (◊) surface evolution of masked channels machined in
PMMA at  = 90° after 2, 4, 6 and 10 passes of the nozzle. M = 5.38 g min-1, ET = 245 min. All other
model inputs are specified in Sections 2.4.1.1 and 2.2.

2.4.1.2 Fit of LSM model to experiments

Comparisons of the LSM model with experiments of Section 2.2 (Figures 2.5-2.12) showed

excellent agreement for the majority of cases, showing the promise of the LSM for modelling surface

evolution in AJM. For all cases, relatively minor discrepancies between the model and experiments could

have been caused by localized mass flow rate fluctuations, as seen in Figure 2.5 (pass 30), Figure 2.6

(passes 20 and 30), Figure 2.7 (pass 30), Figure 2.8 (passes 10 and 20) and Figure 2.12 (pass 6), and by

nozzle misalignments, as seen in Figure 2.9 (passes 20 and 30) and Figure 2.10 (pass 30). However, for

the deep profiles in Figure 2.11, the modelled predicted profiles began to significantly deviate from

experimental ones beyond AR > 1. The poor fit for deep masked profiles can be understood in the

context of two effects that were not considered by the present LSM model: second strikes of particles, and

spatial hindering [13,21-24]. These were discussed in Chapter 1 and will be considered in more detail in

Chapter 5. In addition, in Figure 2.12, the experimental profiles were wider for deeper profiles than the

 41

modelled profiles due to mask wear [24,29,32], which was not considered in the present model. This

effect will be considered in detail in Chapter 4.

2.4.2 Comparisons with previously published models and experiments

2.4.2.1 Model execution and inputs

To further validate the predictions of the present LSM methodology, comparisons were also made

to previously published models and experiments for selected cases at α = 90°. The ETs for most cases

were between 3 min and 1 hr. (Figures 2.13-2.16). In all cases, the M , vt, Wm,and Hmvalues that were

obtained based on data presented in [2], [14], [17], [19] and [36], are indicated in the figure captions. For

all cases, M had to be slightly adjusted to match the initial pass profile due to a lack of published

experimental details, and M variability. In all cases, except Figure 2.15, where a rectangular 0.3 mm x

3.8 mm nozzle was used, , Vo, kv, n1, n2, Hv, l, and l were obtained from the same references as

specified in Section 2.4.1.1, since all the previous models assumed the same nozzle, particles and jet

conditions as those used in Section 2.2. For the predictions of Figure 2.15, a uniform flux along the mask

width and a scanning target were assumed; i.e. x’’ = 0 in eq. (2.8) since the target was oscillated during

the machining of the PMMA hole [17]. Also, for Figure 2.15, Vo = 148 m s-1 and  = 15 were used for the

rectangular nozzle, obtained from unpublished measurements [44]. All other variables were the same as

for the circular nozzle. C and  (= 0) (Figures 2.13-2.16) were obtained and used in the same manner as

described in Section 2.4.1.1. For all cases, the same grid size was used as for Figures 2.5-2.12, and x

and z were in the range of 7.6–70 m, obtained in the same way as described in Section 2.4.1.1. The

mean representative time step calculated with eq. (2.28) for all cases was in the range of (0.13-5.6) x 10-2

s. Finally, for the unmasked PMMA channels in Figure 2.16, the stationary target approach was used for

the same reasons as described in Section 2.4.1.1.

 42

-0.5

-0.4

-0.3

-0.2

-0.1

0

-4 -3 -2 -1 0 1 2 3 4

x (mm)

z (mm)

Figure 2.13. LSM predicted (+), analytical model predicted (—; ML) and measured (◊) surface evolution
for unmasked channels machined in glass at α = 90° after 1, 2, 3, 4, 5, 6, 7 and 8 passes of the nozzle.
Measured profile and analytical model data from [14]. M = 1.91 g min-1, vt = 1.0 mm s-1, ET = 3 min.
All other model inputs are specified in Section 2.4.2.1.

 43

-0.8

-0.6

-0.4

-0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6

x (mm)

z (mm)

Figure 2.14. LSM predicted (+), analytical model predicted (▬ ▬; ML) and measured (◊) surface
evolution for masked holes machined in glass at α = 90° after 2, 5, 10, 15, 20, 30 s. Measured profile data
from [17] and analytical model data from [19]. M = 2.43 g min-1, Wm = 900 m, Hm = 1000 m, ET =
62 min. All other model inputs are specified in Section 2.4.2.1. Only half of the symmetric hole is

own.

sh

 44

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.1 0.2 0.3 0.4 0.5 0.6

x (mm)

z (mm)

Figure 2.15. LSM predicted (+), analytical model predicted (♦; ML) and measured (◊) surface evolution
for masked holes machined in PMMA at α = 90° after 1, 3, 5, 7, 9, 11 and 13 passes of the nozzle.
Measured profile and analytical model data from [17]. M = 6.90 g min-1, vt = 0.25 mm s-1, Wm = 760 m,
Hm = 1000 m, ET = 737 min. All other model inputs are specified in Section 2.4.2.1. Only half of the
symmetric hole is shown.

 45

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5 3

x (mm)

z (mm)

Figure 2.16. LSM predicted (+), computer simulation predicted (▬; CS) and measured (◊) surface
evolution for unmasked channels machined in PMMA at α = 90° after 1, 3, 5 and 7 passes of the nozzle.
Measured profile from [2] and computer simulation data from [36]. M = 2.68 g min-1, vt = 0.25 mm s-1,
ET = 55 min. All other model inputs are specified in Section 2.4.2.1. Only half of the symmetric hole is
shown.

2.4.2.2 Comparisons with previous analytical models

The LSM model was compared against previous experiments and analytical models [14,17,19] in

Figures 2.13-2.15. The analytical models of [2], [14], [17], and [19] used Mathcad software (Mathsoft,

Inc., Cambridge, MA, USA), which applies a pre-coded method of lines (ML) [45] to solve the equations

of motion. The ML method, is similar to LSM in that it also uses FDs to approximate spatial and

temporal variables. Both methods utilize upwind FD schemes to ensure that FD approximations follow

the exact-solution PDE theory so that numerical solutions can converge correctly; i.e. either forward,

backward or central FD are used, depending on the situation [16,37].

 The underlying difference between the ML and LSM methods is that LSM defines the surface

implicitly [16,37], whereas ML defines the surface explicitly, i.e. the surface is directly defined by the

spatial variable. LSM can thus be used to solve more complex cases and can be more easily extended to

higher dimensions [16] than ML. For the present study, the general difference between the LSM model

 46

and the ML solutions to previous analytical models stem from this implicit surface formulation, described

in Section 2.3.4, and the difference in modelling the physical aspects of the erosion process, described in

Sections 2.3.1-2.3.3. These are summarized as follows:

i. The present LSM model formulation allows the modelling of features which are multi-valued, i.e.

there are two or more depth values at a given profile location along the width, or with

approximately vertical sidewalls, something which is not possible with previous analytical

models.

ii. The present model incorporated a transformed coordinate system (Section 2.3.1) allowing the

modelling of obliquely shaped features in the cross-sectional plane (Figures 2.6, 2.7, 2.9 and

2.10), something not previously considered in the analytical models.

iii. The previous analytical models assumed that particles were all incident at the nominal angle of

incidence, and thus neglected the variation in incident angles of attack brought about by the

nozzle divergence. The present model took this spread in angles of attack into account in eqs.

(2.17)-(2.19) and (2.24)-(2.27).

iv. In previous models, the incident particle flux and velocity at the surface were assigned based on

the coordinates of the unmachined flat surface. In the present model, eqs. (2.6)-(2.9) utilized a

depth spatial coordinate, i.e. z or z’, that accounted for the change in particle velocities and fluxes

from those at the flat surface (Figure 2.2).

v. For glass masked and unmasked channels, masked PMMA channels and holes, the 2D

approximation of a scanning target described in Section 2.3.2 was used, whereas all previous

analytical models assumed a stationary target approach for modelling such features.

vi. For masked features, the analytical model of [19] along with actual erosive efficacy, defined by

Eef = vkCV , were used to model the normal incidence cases. The previous analytical models of

[2], [14] and [17] (Figure 2.15) utilized an empirical exponential function for the net erosive

efficacy from the experimentally obtained first pass profile. However, this did not physically

account for the effect of particle size near the mask edge.

Refinement ii is relevant to features machined with oblique nozzles, something that has not been

previously attempted with analytical models. Refinements iii and iv, when implemented in the present

LSM scheme, were found to make very little improvement over analytical modelling of the surface

evolution of the channels and holes considered in [2], [14], [17] and [19]. These refinements are likely

more important for future modelling efforts of the machining of: 1) very deep features, where the

implementation of refinement iv would account for the more drastic change in particle velocities and

 47

fluxes with increasing depth; and 2) very wide features, where the implementation of refinement iii

would account for the more drastic variation in  across the width of feature with increasing 'x . This

variation in  is even more significant for wide features machined at oblique incidence (refinement ii).

For instance, for an initially flat target attacked by the jet at oblique incidence, the  to the left and right

of the jet centreline becomes smaller and larger, respectively with increasing jet divergence. In both cases

1) and 2), there would be a more profound effect on the local speed of surface evolution, especially near

the bottom or periphery of the very deep or wide features, respectively. It should also be emphasized that

refinements iii and iv are necessary when second strike [13,21-24] and mask wear [24,29,32] are to be

considered, i.e. when exact particle trajectories need to be specified. Refinements i, v and vi, however,

were found to significantly improve the predicted surface evolution, and are therefore discussed in more

detail. Although refinements ii-v have not been previously implemented, in theory they could be

incorporated into the analytical modelling framework presented in [2], [14], [17] and [19].

Figure 2.13 shows that use of the scanning nozzle technique (refinement v) resulted in an

improvement in the prediction of the shape of the experimental unmasked glass channel profiles over the

analytical model of [14], mainly due the smoothing that the LSM model introduces, as explained in

Section 2.4.1.1.

In Figure 2.14, the LSM model was comparable with that of [19] in predicting the experimental

masked glass hole profile, since both models accounted for particle size near the mask edge (refinement

vi), where the minor variations in the model fits could be due to the way the initial pass fit was obtained

and due to the implementation of refinements iii and iv, since refinements i, ii and v play no role in this

case. The LSM model matched the experimental profiles quite well, providing an improvement in the

under-prediction of the profile depth after 30 s. The under-prediction at 30 s is likely due to a localized

mass flow rate fluctiation during the experiment.

Use of refinements i, v and vi resulted in a large improvement in the prediction of the

experimental masked PMMA hole profiles shown in Figure 2.15, over the existing analytical model of

[17], in terms of both depth and shape. The most likely reason for the improvement is refinement i, which

because of the nature of LSM, allows for the modelling of feature sidewalls that are multi-valued or

vertical, such as in Figure 2.15 (or Figure 2.12). This is not possible with the ML solution of the

analytical model. The over-predicted depths beyond 7 passes could be the result of particle embedding

[2,8,17,31], which can be significant for hole profiles and could decrease the effective erosion rate.

 48

2.4.2.3 Comparisons with previous computer simulation

In Figure 2.16, the LSM model was also compared against the computer simulation (CS) of [36],

described in Section 1.2.2. Figure 2.16 shows excellent agreement with experiments and the CS of [36]

for unmasked PMMA channels, and in most cases, a slight improvement over the CS (see passes 1, 3 and

7).

The simulation of [36] is very computationally expensive, more so than the LSM model proposed

here. For the LSM model, ETs for the majority of cases varied approximately between 3 min and 2.5 hrs.

(Figures 2.5-2.16), using a standard PC platform, which is quite efficient. However, some of the masked

cases, e.g. such as in Figures 2.12 and 2.15, took quite a long time. This problem will be addressed in the

next chapter.

 The LSM model presented in this chapter provides a foundation for modelling more complex

cases, such as the modelling of obliquely shaped masked features which will be considered in the next

chapter.

 49

Chapter 3 Level Set Methodology for Predicting the Surface Evolution of
Inclined Masked Micro-Channels Resulting from Abrasive Jet
Micromachining at Oblique Incidence

3.1 Motivation

In this chapter, a novel implementation of narrow band (NB) LSM [16,37] (Section 1.3) is used to

predict the surface evolution of inclined masked micro-channels in glass and PMMA made using AJM at

oblique incidence. The formulation extends the LSM model presented in Chapter 2 for masked features

machined at normal incidence to the never before considered case of masked features machined at oblique

incidence. The resulting inclined micro-channels rapidly become multi-valued, and the Hamilton-Jacobi

type partial differential equation describing their evolution cannot be solved using traditional analytical or

semi-empirical/computational techniques such as those mentioned in Section 1.2.1. To predict the

decrease in particle flux at the mask edge, the previously developed analytical model of [19] described in

Section 2.3.3 is generalized from the normal to the oblique incidence case. The local surface velocity

function is non-convex (Section 2.3.4.2), necessitating the development of a modified extension velocity

methodology to address the problem of grid ‘visibility’ of the particle flux. The formulation developed in

the present chapter ignores mask wear [24,29,32] and particle second strike effects [13,21-24], to be

considered in Chapters 4 and 5, respectively. The agreement between LSM-predicted and measured

surface evolution, as well as the feasibility of the model in predicting AJM surface evolution of inclined

masked features given its present assumptions, is discussed. The majority of the material in this chapter

has been published in [46].

 50

3.2 AJM experiments: Masked channels machined at oblique incidence

All AJM experiments were conducted using the same channel blasting apparatus and almost the

same experimental conditions as those described in Section 2.2. Some differences and extra details are

outlined below.

 The masked glass and PMMA channels were machined with the jet at a 45° angle to the surface

(Figure 3.1), measured using an angular level which was accurate to approximately 1°. To ensure correct

alignment with the small mask opening, a micro-drill bit with a diameter similar to that of the nozzle was

temporarily placed in the nozzle, with a protruding length of 20 mm (= h) and aligned with the mask

opening through contact. The mask widths, Wm (Figure 3.1), were approximately 450 m and 430 m in

the machining of glass and PMMA channels, respectively. The measured mass flow rate was in the range

of 0.67-2.70 g min-1 (see Appendix A, Tables A-9 and A-10), which was low enough for particle

interference to be neglected, as in Section 2.2 [33-35].

The machined samples were cross-sectioned at two locations along the channel using a low speed

diamond saw, and the cross-sections were compared to ensure repeatability, i.e. to ensure that no chipping

occurred during the cross-sectioning. Where necessary, the cross-sections were polished with corundum

abrasive paper (type AW-C, grit P-1200) to obtain clear edges. Images of the cross-sections were

obtained using a 5 megapixel digital camera attached to a 40X magnification optical microscope.

Examples of typical channel cross-sections in glass and PMMA are shown in Figure 3.2. Digital image

analysis software (ImageJ, http://rsb.info.nih.gov/ij/) was used to digitize the coordinates of the cross-

sectional channel profiles. Between 30-50 and 50-70 data points were obtained for all the resulting glass

and PMMA channel profiles, respectively.

Figure 3.1. Front view schematic in the AJM of oblique incidence masked channels (see Figure 2.1 for
more details on the channel blasting apparatus).

 51

Figure 3.2. Cross-sections of oblique (= 45°) masked channels in: (a) Glass and (b) PMMA, after 30
passes of the nozzle under the conditions described in Sections 2.2 and 3.2. Dashed lines show
approximate original locations of the masks.

 52

3.3 Level set modelling of surface evolution in AJM of oblique masked channels

3.3.1 Local normal velocity function of evolving surface for oblique masked channels

In order to model the masked channels machined at oblique incidence (Figure 3.1), the same

transformed coordinate system defined by eq. (2.1) was used as that in Section 2.3.1 and Figure 2.2 for

unmasked channels, but with xoff = Wm/2. By combining eqs. (2.2) and (2.4), and eqs. (2.3) and (2.5), the

velocity of the surface in the direction of the local normal in eq. (1.2) can be re-written conveniently as

)),,,((
)),,,((

),,,(
v

b ntzyx
ntzyxVC

tzyxF
k 




 


 (3.1)

and

),,,(
),,,(

),,,(
11

),,,(

),,,()),,,((
),,,(

21
v

d tzyx
tzyxV

ntzyxV
Hv

tzyxV

ntzyxVtzyxVC
tzyxF

nn
k
































 














 
 







 (3.2)

for the AJM of glass and PMMA channels, respectively, where all the variables were previously defined

in Sections 2.2 and 2.3.2. For the AJM of glass channels, V and  in eq. (3.1) are defined by eqs. (2.7)

and (2.9), i.e. scanning target approach, since for the present problem the same blasting conditions were

used as in Section 2.2. However, as discussed in Section 2.4.1.1, for the AJM of ductile targets such as

the PMMA channels, the 2D approximation for the scanning target used in eq. (3.2) cannot correctly

account for the portion of the total erosive efficacy in the y scanning direction that is due to the surface

tangential component of velocity; therefore, the stationary target approach whereby y = y’ = (rs - vtt) = 0

in eqs. (2.7) and (2.9) is instead used.

3.3.2 Approximation of decrease in mass flux near the mask edge at oblique incidence

As described in Section 2.3.3 and depicted in Figure 2.3, as the mask edge is approached, only

progressively smaller particles can pass through the mask opening without colliding with the mask, and

the particle mass flux incident to the surface thus decreases. The effect was modelled in [19] for the case

of a non-diverging jet incident perpendicular to the surface, and is now generalized to the oblique

incidence case including the effect of the jet divergence. To do this, it was necessary to employ the

 53

transformed coordinates of eq. (2.1), and consider the effect of the mask shadow and height, as shown in

Figure 3.3. By re-writing eq. (2.10), the resulting expression for the proportion of the total incoming M

that passes through the mask opening and arrives to the surface at a given x’ is
















L

xL

x

drrr

drrr

xM

xM
M

0
pp

3
p

'

0
pp

3
p

0/

)(

)(

)0'(

)'((3.3)

where the same lognormal particle size distribution was used as in eq. (2.11) since the same abrasives

were used as in Section 2.2. L is the target location that an infinitely small particle can reach without

undergoing collision with the edge of the mask, measured along the x’ direction at a given z’ (Figure 3.3),

 (3.4)
)0'(

)0'(








 



xL

xL
L

The model assumes that the jet centre is aligned with the centre of the mask opening.

 54

 55

Figure 3.3. Geometry used for modelling flux reduction near mask edges for an inclined jet. xm, the
mask shadow width, measured from the left hand side of the mask opening, reduces the proportion of the
target surface in the mask opening that can see incoming particles. Case (a) 0 < xm < Wm/2; Case (b)
Wm/2 ≤ xm ≤ Wm; Case (c) xm ≤ 0, i.e. no mask shadow. The mask opening width, Wm, is exaggerated
with respect to the standoff, h, for clarity.

as

Depending on the values of Wm, , h, and Hm, the three cases in Figure 3.3 must be considered,

so that L+
 and L- can be obtained

 (3.5)

)bCase()2/(

0

)''(0

)''(')tan('

)cCase()0(or)aCase()2/0(
)tan('

)tan('

mmmlim

limlim

mmm

WxW

L

xx

xxxz
L

xWx
zL

zL














































where xm is the mask shadow width, measured horizontally from the left hand edge of the mask opening,

 56

m

mm
m sin

)2/cos(

Hh

WhH
x








 (3.6)

x’ lim is defined in Figure 3.3 (b),

 (3.7))tan(''lim
 zx

and  and are the angles defining the maximum particle trajectories that may be incident to the

surface through the mask, measured from the jet centreline to the left and right mask edges, respectively,

























































)cCase(
cos/2

sin
tan

)bCase(tan

)aCase(tan

m

1

m

m1

m

m1










Wh

x

H

x

H

 (3.8)

 









 

2/cos

sin
tan

m

1

Wh

h


 (3.9)

The variation of the flux across the mask opening can be obtained by multiplying the mass flux, eq. (2.9),

by eq. (3.3). It should be noted that when xm < 0 in eq. (3.6), the negative value holds no physical

significance, i.e. xm = 0; however, it is useful to identify the transition to where Case (c) must be used in

solving eqs. (3.5) and (3.8).

3.3.2.1 Surface visibility

The modified model presented in Section 3.3.2 can be used to calculate the percentage of

unmachined surface visibility, %USV,

 

m

mm%100USV%
W

xW 
 (3.10)

 57

This quantity is useful for setting up machining runs, since it is difficult to visually discern whether any of

the surface is exposed to the jet. A smaller %USV will result in a narrower feature shape and a %USV of

0% will result in no machining of the surface. For example, using eqs. (3.6) and (3.10), with h, , Hm and

Wm (for glass) from Sections 2.2 and 3.2, %USV = 77%, showing that the exposed surface was ‘seen’

fairly well for the case presented here. Equation (3.10) can also be used in determining the minimum

mask width, Wm,min, necessary so that the surface is ‘visible’ to the nozzle for a given h,  and Hm, for xm

> 0. Substituting %USV = 0% and eqs. (3.6) in (3.10), Wm,min can be obtained as

2/sin

cos

m

m
0min,m

m Hh

hH
W

x 


 


 (3.11)

For example, using eq. (3.11), with h,  and Hm from Sections 2.2 and 3.2, Wm,min = 100.4 m. Thus, the

mask opening must be larger than Wm,min to allow for machining of the surface.

3.3.3 LSM model implementation

3.3.3.1 Finite differences, signed distance function and geometric variables

In order to approximate the solution to),,(tzx and geometric variables, first order FDs in eq.

(2.12) were used to approximate the partial derivatives, as explained in Section 2.3.4.1. The initial

surface was represented by a horizontal line, and the level set function was initialized at t = 0 by using the

signed distance function (SDF) defined by eq. (2.29). A useful property of SDFs that can greatly simplify

the analysis is that the norm of the gradient (eq. (2.13)) of the level set function must be unity [37],

 1),( zx (3.12)

However, as explained in Section 2.3.4.4, as the surface evolves for t > 0,),,(tzx generally deviates

from the initial value of the signed distance due to numerical instability. In order to ensure that

remains equal to the signed distance and hence ensure that eq. (3.12) remains valid,

must be re-initialized at fixed time intervals [37]. To ensure a high degree of accuracy,

was re-initialized every time step; although this is computationally expensive, it is simple to

implement. Using eq. (3.12),

),,(tzx

),,(tzx

),,(tzx

n


and K in eq. (2.14) can be re-defined simply as [37]

 58

),(
|| zxn 







, zzxxK 




||

 (3.13)

3.3.3.2 Simplified LSM for non-convex Hamiltonians

As was shown in Section 2.3.4.2, the LSM equation of motion for non-convex Hamiltonians, H,

is defined by eq. (2.21). The methodology presented here is the same as that used in Section 2.3.4.2;

however, it is greatly simplified due to the definition in eq. (3.12). In addition, this definition allows the

extension velocity methodology presented in Section 3.3.3.3, and necessary in the present formulation, to

be extended to cases where the Hamiltonian function, i.e. the velocity function, is non-convex. For the

present case, the surface evolution did not depend on curvature, i.e.  = 0, since the smoothing of the

evolving surface profiles was not necessary. This resulted due to the application of the scanning target

approach in modelling the erosive efficacy for glass, which delays the formation of cusps at the profile

centres, and the fact that curvature-based surface evolution need not be considered in modelling ductile

targets, i.e. PMMA, as explained in Section 2.4.1.1. Thus, eq. (2.21) can be reduced to

 0ˆ 



H
t

 (3.14)

where once again, Ĥ is the numerical Hamiltonian defined by eq. (2.22) along with eq. (2.23). Using eq.

(3.12), H in eq. (2.22) can be reduced to [37]

),,(tzxFH  (3.15)

Combining eqs. (3.1)-(3.3), (3.12), (3.13), and (3.15), and expressing the result in the x’’ and z

components, the H for glass and PMMA defined by eqs. (2.17)-(2.19), respectively, can be reduced to

   1
0/b

vv cos  kk
x V

C
MH 


 (3.16)

and

 59

    21v)cos1(1cos0/d
nnk

x HvV
C

MH 


  (3.17)

with

22''

''
cos

zx

zx zx




 (3.18)

where  is the angle between n


and the particle impact velocity vector V


(Figure 2.2), V and  are

obtained using eqs. (2.7) and (2.9), respectively, as described in Section 3.3.1, and is now defined

by eq. (3.3).

0/xM

 Finally, the partial derivatives of eq. (3.16) and eq. (3.17) with respect to x and z , and

, used in eq. (2.23), are obtained as

x
H

z
H


















cos''

)1)(;''(
)(

22

v
b;b

zx

kzx
HH

zx
 (3.19)

and

























)cos1(1cos''

);''(
)(21

22
d;d  Hv

Hvnn

zx

zx
HH

zx
 (3.20)

where the notation (x’’; z) in eqs. (3.19) and (3.20) indicates that x’’ is used to calculate and z to

calculate . Equations (3.19) and (3.20) are the simplified versions of eqs. (2.24)-(2.27) due to eq.

(3.12).

x
H

z
H

3.3.3.3 Extension velocity methodology for non-convex Hamiltonians

The velocity function),(txF


 has physical meaning only for the zero level set, , i.e. o),(tx


 =

0 (Section 1.2.3), which defines the actual surface evolution [16]. However, since eq. (1.2) is written for

the function),(tx


 defined over the entire computational space, the equation must have a consistent

 60

physical meaning for all the level sets on the grid, i.e. at every x


, so that o is allowed to propagate

naturally [16]. The velocity function),(txF


 obtains its physical meaning from the position of o and

not the geometry of),(tx


 . The use of a mask (Section 3.3.2) introduces a boundary beyond which the

level sets are slowed down since only the portion of the incoming particle jet which is outlined by the

mask is ‘visible’ to the grid. As a result, o will stop once that boundary is reached, as depicted in

Figure 3.4. For the present formulation, where only the surface evolution of the target is considered, as

opposed to the surface evolution of both the target and the mask which will be considered in Chapter 4,

this effect occurs only at oblique incidence, since at normal incidence, the entire jet is ‘visible’ to the grid,

and visibility is thus not a problem. As a result, for the oblique case, the velocity function must be

extended from the surface, i.e. , to all other level sets [16]. Henceforth, this procedure will be referred

to as the extension velocity methodology (EVM).

o

When there is no natural choice available for an extension velocity, as in the present case, the

most common method of implementing EVM is to assign to every point x


 in the domain, the velocity of

the nearest point on the surface, a


 [16],

)0(),()(ext  aaFxF
 

 (3.21)

where Fext is the extension velocity. Although this step is computationally expensive, it is necessary in

order to ensure that the level sets do not collide. It should be emphasized that the sole purpose of Fext is

to force the motion of the level sets in the vicinity of o , and it need not correspond to the velocity

implied by the physics of the problem [16]. The only requirement is that it must equal the velocity at

o , as the distanc betw en x


and a


 approaches zero [16], which eq. (3.21e plies. e) im

EVM is usually applied to cases where the H is convex, meaning that eq. (2.15) (Section 2.3.4.2)

without considering motion with curvature, i.e.  = 0, can be used to propagate the surface with time,

instead of eq. (3.14). Equation (2.15) with  = 0 can be solved by using simpler upwind FD schemes that

ensure FD approximations follow the exact-solution PDE theory [16,37], where the evaluation of the

partial derivative of H with respect to g is not required. In such cases, the extension velocity can be

easily applied by substituting Fext, eq. (3.21), for F in eq. (3.15) [16,37]. However, for the present

problem, H is non-convex, meaning that Fext must also be applied to determine eqs. (3.19) and (3.20) in

solving eq. (2.23) defined in Section 2.3.4.2. This necessitated a novel extension of EVM theory in order

to treat these non-convex H cases, by factoring out F in eqs. (3.19) and (3.20), using eq. (3.15) and

applying eq. (3.21), to obtain

 61

 (3.22))0(),,,(),,,,(),,,(oooooooo
extext  zxzxzx zxzxFzxFH

where the superscript ‘o’ indicates that the quantity in question is obtained at the point on which is

closest to the grid point (x, z). H

o

b and Hd in eqs. (3.19) and (3.20) are replaced with Hb,ext and Hd,ext,

according to eq. (3.22), in order to obtain and , respectively. H
zx

H  ;extb,)(
zx

H  ;extd,)(

H

b,ext and Hd,ext

are evaluated using eqs. (3.16) and (3.17) but with xo, zo, x
o and z

o in place of x, z, x and z,

respectively. All remaining quantities in eqs. (3.19) and (3.20) are evaluated with x, z, x and z, i.e. the

grid node values. These new expressions are then used in place of H and in eqs. (2.22) and (2.23), in

order to solve eq. (3.14).

g

Figure 3.4. Portion of the jet which is outlined by the mask that is ‘visible’ to the grid. Without velocity
extension, the level sets are stationary beyond the masking boundary. Wm is exaggerated with respect to
h for clarity.

3.3.3.4 Optimization using the narrow band LSM

 62

As mentioned in Section 1.3, the narrow band (NB) LSM [16] is an adaptive scheme that is based

on the notion that calculations need only be performed for points in the vicinity of the surface, since only

the has any physical meaning. Thus, in the NB LSM, a narrow band is defined around the o o

where all computations are only performed at grid points, (x, z), within this boundary, or ‘tube’. As a

result, when compared to the full-grid LSM approach, less grid points are considered for each iteration

step, thus greatly improving the computational efficiency [16]. The NB LSM also has the advantage that

the extension velocity described in Section 3.3.3.3 need only be calculated for points situated within the

narrow band [16], which makes the method even more computationally efficient for cases such as the

present, where EVM is required.

The band is initialized based on the position and shape of o , by searching the grid for DUB,

which forms the ‘upper band’ ahead of o , and for DLB, which forms the ‘lower band’ behind o .

DUB and DLB are the band widths measured from the o to the upper and lower bands, respectively. As

evolves and approaches the boundary, calculations are temporarily halted and a new band is re-

initialized around . for all the (x, z) within the new band are calculated with the SDF

defined by eq. (2.29), while for all (x, z) on or outside the ‘tube’ are frozen. Since re-

initialization is computationally expensive, the size of the band is chosen as a compromise between

assigning a band width large enough to prevent recurrent re-initialization, and small enough to not include

too large a domain. In the present work, D

o

o),,(tzx

,(x

o

o

)t,z

UB = 4z (= 4x) and DLB = 2z, where x and z are the

horizontal and vertical spatial grid steps, respectively, were found to be appropriate by maintaining a

good balance between computational effort and band re-initialization. Re-initialization occurred when a

minimum distance between and the upper or lower bands, Dmin, was reached. A Dmin = z/2 was

used, which ensured that did not pass the boundary while also minimizing the frequency of re-

initialization. Dmin was evaluated at each time step. The whole process was repeated until the required

propagation time was reached.

3.3.3.5 Grid formulation, boundary conditions and time step

For the present problem, the vertical grid limits were the same as that presented in Section

2.3.4.3. Using the geometry of Figure 3.3, the horizontal grid limits were defined as xmin = xoff + hcos -

Wm/2 + xm and xmax = xoff + hcos + Wm/2 + zsurf /tan( - +). These limits were then used to calculate

the spatial grid steps and global spatial coordinates at the grid nodes as shown in Section 2.3.4.3. The

boundary conditions were obtained in the same way as in Section 2.3.4.3, where now the computational

 63

domain was defined by the narrow band boundary, as opposed to the entire grid. Finally, t was once

again calculated using the CFL condition [37], and with  = 0 and extension, eq. (2.28) can be re-defined

as

 

1
)(

max
,

ext





















 






zxg g

H
t

g (3.23)

The maximum was evaluated by searching within the entire narrow band.

3.3.3.6 Surface partial derivatives and interpolation

As mentioned in Section 2.3.4.4, in order to re-initialize the level set function using the SDF of

eq. (2.29), and to visualize the evolving surface profile for t > 0, the surface, i.e. o , must be interpolated

since it is usually located between the grid nodes as shown in Figure 3.5. The entry/exit point of the zero

level set shown in Figure 3.6 was interpolated linearly in order to maintain monotonicity and hence

stability (Section 2.3.4.4). In addition, in order to extend the velocity from o to other level sets and

thus evaluate the Hb,ext and Hd,ext described in Section 3.3.3.3, it was necessary to obtain FD

approximations of the partial derivatives, x
o and z

o, and coordinates, xo and zo, for the surface

entry/exit point. xo and zo were obtained with linear interpolation based on the value of o and adjacent

nodes. Following eq. (2.12), forward, backward and central FD approximations of x
o and z

o were

obtained for Case (a) and Case (b) in Figure 3.6 using the following relations

 64

 

 

 



































































)bCase(
2

)aCase(
2

)bCase(
0

)aCase(
0

)bCase(
0

)aCase(
0

PSRU

EFGH

oc

PS

EF

o

RU

GH

o

x

x

x

x

x

x

x

x

x

 

 

 



































































)bCase(
2

)aCase(
2

)bCase(
0

)aCase(
0

)bCase(
0

)aCase(
0

NQTW

BCJK

oc

NQ

BC

o

TW

JK

o

z

z

z

z

z

z

z

z

z

 (3.24)

where, for example, GH was obtained using linear interpolation between the nodes G and H, etc.

 Finally, in construction of the narrow band of Section 3.3.3.4, the upper and lower bands were

also located through linear interpolation between the grid nodes, based on the position of . o

 65

Figure 3.5. The level set function,  on the computational grid, along with the zero level set, o , i.e.
the location of the machined surface, and the narrow band, after 6 passes in the machining of an inclined
masked channel in glass at  = 45°.

 66

Figure 3.6. FD approximation of partial derivatives for the zero level set, o , for a surface entry/exit
point located in between the grid nodes: Case (a) along the x-direction; Case (b) along the z-direction,
used in eq. (3.24). The dots labelled A to X represent grid points, where F and Q are the reference points,

and the x’s represent locations of interpolation. The value of o at the circled entry/exit point is

obtained using linear interpolation. When o passes through a grid point, e.g. F, eq. (3.24) reduces to eq.
(2.12) at that point, and no interpolation is necessary.

3.3.3.7 Summary of algorithm

The algorithm used in solving eq. (3.14) can be summarized as follows:

1. Initialize  with the SDF, eq. (2.29), at each grid point (i,k). Build a narrow band around the

o , as described in Section 3.3.3.4.

2. For the initial iteration, m = 0, where m = 0,1,2,… is the iteration number, compute H using either

eq. (3.16) or (3.17), and
g

H using either eq. (3.19) or (3.20), for each grid point (i,k) inside the

narrow band without the use of extension. For m > 0, compute the extended Hamiltonian Hext

using eq. (3.16) or (3.17), with xo, zo, x
o and z

o obtained as described in Section 3.3.3.6, and

 
g

H ext using eq. (3.19) or (3.20), with xo, zo, x
o and z

o and x, z, x and z, as explained in

Section 3.3.3.3, for each grid point (i,k) inside the narrow band.

 67

3. Solve eq. (3.14) with eqs. (2.22) and (2.23) (Section 2.3.4.2) using the unextended (m = 0) or

extended (m > 0) quantities from step 2, along with m, to obtain m+1.

4. Using linear interpolation, obtain a set of points that represent the physical surface (i.e. o),

}|) , as explained in Section 3.3.3.6. ,{(ooo zx

5. If o reaches Dmin defined in Section 3.3.3.4, stop the computation and re-build a new upper and

lower band around the o ; otherwise, continue to the next step.

6. Re-initialize  with the SDF, eq. (2.29), at each grid point (i,k) in the narrow band.

7. Repeat steps 2-6 until the simulation reaches the desired time.

 68

3.4 Results and discussion

3.4.1 Model execution and inputs

The model presented in Section 3.3 was implemented in MATLAB 7.7 (The MathWorks, Inc.,

Natick, MA, USA), as in Chapter 2. The LSM predicted surface evolution profiles are compared to the

measured ones in Figures 3.7 and 3.8. Using the same PC as outlined in Section 2.4.1.1, the ETs were 9

min and 76 min for the simulation of channels machined in glass (Figure 3.7) and PMMA (Figure 3.8),

respectively, using the NB LSM approach described in Section 3.3.3.4. The implementation of the NB

LSM approach decreased the ETs by approximately 7 and 3 times for the glass and PMMA channels,

respectively, when compared to simulations using the full-grid approach. Using the DUB, DLB and Dmin

presented in Section 3.3.3.4, the band was re-initialized 12 and 20 times, approximately every 220 and

1200 time steps, for the glass and PMMA channels shown in Figures 3.7 and 3.8, respectively.

 A summary of the required model inputs appears in Table 3.1. The parameters h, Hm, Wm, , vt,

and  were obtained based on experimental conditions of Section 3.2 and are specified in Table 3.1. The

measured particle mass flow rate, M , given in Table 3.1, was assumed to linearly decrease with time to

account for the mass flow rate fluctuations, as described in Section 2.4.1.1 (see Appendix A, Tables A-9

and A-10). The parameters , Vo, l, l, kv, C, n1, n2 and Hv specified in Table 3.1 were obtained from

Section 2.4.1.1 based on previous measurements for the same nozzle, jet conditions, abrasives, and target

materials as presently used.

 The grid dimensions, imax · kmax, and zsurf defined in Section 2.3.4.3, given in Table 3.1, were

chosen such that, for the channels machined in glass, x = z = 8.8 m, while for PMMA, x = z = 20

m, which ensured the convergence and accuracy of the numerical solution as described in Section

2.4.1.1. For the present simulations, representative mean values of t determined by eq. (3.23) were 5.6 x

10-2 s and 1.8 x 10-2 s for glass and PMMA, respectively. The simulation time was set based on the

maximum number of required nozzle passes (Table 3.1), in multiples of 2rs/vt (Section 2.3.2).

 69

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

13.8 14.0 14.2 14.4 14.6 14.8 15.0

x (mm)

z (mm)

Figure 3.7. Predicted () and measured (--) surface evolution of masked channels machined in glass at
 = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (2.70 -9.65 x 10-3·t (s)) g min-1. All other
model inputs are specified in Table 3.1.

 70

-1.30

-1.10

-0.90

-0.70

-0.50

-0.30

-0.10

0.10

14.1 14.3 14.5 14.7 14.9 15.1 15.3 15.5 15.7

x (mm)

z (mm)

Figure 3.8. Predicted () and measured (--) surface evolution of masked channels machined in PMMA
at  = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle. M = (1.86 -1.44 x 10-3·t (s)) g min-1. All other
model inputs are specified in Table 3.1.

 71

Table 3.1. Model inputs.

Model inputs Figure 3.7
(glass)

Figure 3.8
(PMMA)

Figure 3.9
(glass)

h (mm) 20 20 20
Hm (m) 100 100 100
Wm (m) 450 430 550
 (°) 45 45 45
vt (mm s-1) 1.0 0.5 1.0
 (kg m-3) 2200 1190 2200
M (g min-1) 2.70 -9.65 x 10-3·t (s) 1.86 -1.44 x 10-3·t (s) 2.70 -9.65 x 10-3·t (s)
 () 15 [14] 15 [14] 15 [14]
Vo (m s-1) 162 [14] 162 [14] 162 [14]
l () -11.6 [19] -11.6 [19] -11.6 [19]
l () 0.5 [19] 0.5 [19] 0.5 [19]
kv () 1.43 [14] 2.0 [2] 1.43 [14]
C (m s-1)-kv 8.0 x 10-6 [36] 5.7 x 10-8 [36] 8.0 x 10-6 [36]
n1 () - 1.27 [2] -
n2 () - 15.5 [2] -
Hv (GPa) - 0.25 [2] -
imax () 91 76 115
kmax () 90 60 90
zsurf (m) 780 1200 780
Max. no.
of nozzle passes ()

30 30 30

3.4.2 Fits of model to experiments

 It is evident from Figures 3.2, 3.7 and 3.8 that the measured profiles of the inclined masked

channels for glass and PMMA differ in shape, as was also noted previously for channels machined at

normal incidence [2]. The glass profiles in Figure 3.2 have curved walls and rounded bottoms, while the

PMMA profiles have straighter walls and more rectangular bottoms. This difference in shape arises due

to the different erosion laws that govern the surface evolution of the two target materials, i.e. eqs. (3.1)

and (3.2), or in more expanded form, eqs. (3.16) and (3.17). For PMMA, the local velocity of surface

erosion is highest when the particle incident velocity vectors are at a shallow angle to the surface, i.e.

when  in Figure 2.2 is large. This has the tendency to rapidly create side walls which are approximately

parallel to the incident velocity vectors, i.e. approximately parallel to the nozzle inclination angle, while

the bottom of the channel, which is approximately at normal incidence to the particles, advances

relatively slowly. This alignment of the walls with the inclination angle of the nozzle does not occur for

glass because its maximum erosion rate occurs at normal incidence, i.e. at the bottom of the channel, and

not at the shallower angles on the inclined side walls. The inclined straight walls in the PMMA targets

 72

may be desirable in the micro-fabrication of ‘V’ grooves in microstructures such as hydraulic resistors

[47] and pressure-flow sensors [48].

For the case of the glass micro-channels in Figure 3.7, there was quite a significant discrepancy

between the measured and modelled profiles, both in terms of depth and overall shape, although the

depths were predicted quite well up to 10 passes. The discrepancy in shape is likely due to a combination

of mask wear [24,29,32] and particle second strike effects [13,21-24], that the present model cannot

account for. It is hypothesized that the particles arriving to one side of the target profile ricochet, and

strike the opposite side, resulting in the significant under-etching seen in the experimental profiles, as

well as deeper experimental profiles than those predicted by the model. In addition, particle mask-to-

target ricochet, i.e. mask edge effect, [23] can further contribute to this effect.

As the surface became deeper, the glass experimental profiles tended to shift their direction of

propagation to the right, likely caused by the combination of increase in mask width due to mask wear

with time and second strike particles. This can be seen by comparing the predicted and experimental

profiles after 20 and 30 passes of the nozzle in Figure 3.7. The effect of mask wear in causing this change

in propagation direction is partially demonstrated in Figure 3.9, where the modelled profiles of Figure 3.7

with Wm = 450 m are compared against modelled profiles with a representative worn mask having a

width of Wm = 550 m. This approximate value was obtained by measuring the mask width after

machining using a reference gage and micro callipers. It can be seen that the profiles with the larger mask

opening are shifted more to the right and travel deeper. Assuming that most of the mask wear occurred

between 10 to 20 passes, and Wm increased from 450 m to 550 m during that time, the change in

surface propagation direction is also indicated by the solid line shown in Figure 3.9. This is, of course, a

simplified view of the increase in mask width, which, in reality, would be a more complex function of the

erosion mechanism of the mask and second strike effects, as indicated by the experimental profiles in

Figure 3.7.

 73

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9

x (mm)

z (mm)

Figure 3.9. Depiction of the relation between mask wear and profile propagation direction. Model
simulation of masked glass channels at  = 45° for Wm = 450 m (: Figure 3.7) and Wm = 550 m (: 20
and 30 passes. ET = 12 min, with band re-initialized 14 times approximately every 180 time steps and
mean t = 6.4 x 10-2 s. All other model inputs are specified in Table 3.1). The solid and dashed line
indicates the propagation direction with and without mask wear, respectively. The lines connect the
points of highest curvature of each profile.

Figure 3.8 shows a good agreement between the predicted and measured profiles of the micro-

channels machined in PMMA, both in terms of depth and overall shape. The agreement is better when

compared to the predicted and measured profiles in glass (Figure 3.7). Since the PMMA channels

develop straight sidewalls which are approximately aligned with the incoming particle velocity vectors,

ricochet and second strike of particles to the opposite side wall is unlikely. In addition, the effect of mask

wear in causing a shift in the propagation direction of the profiles does not occur in PMMA because the

profile bottoms remain flat, as opposed to curved as in glass. However, the effect of mask wear in

increasing the mask width size did result in a discrepancy between the measured and modelled profile

width in Figure 3.8.

The present model was only implemented for one representative inclination angle. A change in

the incident angle would likely change the inclination of the micro-channels; however, experiments were

performed at only 45°, which represents a realistic balance between feature width and inclination angle.

 74

Moreover, for impact angles other than 45°, the general shape of the PMMA channels should not

significantly change, i.e. they will always have straight walls and rectangular bottoms, regardless of angle

of incidence, as also was shown in Chapter 2 at normal incidence, e.g. as seen in Figure 2.12. On the

other hand, the shape of glass would most likely change with the angle. However, it would not be

practical to machine brittle masked substrates at angles < 45°, because, for brittle targets, the erosion rate

rapidly decreases with decreasing incident angle (Section 2.2), thus requiring much longer machining

times which also increases the mask wear. In the more practical range of 45° - 90°, the shape would still

have curved walls and round bottoms, approaching symmetry as normal incidence is approached.

It was demonstrated in Chapter 2 that LSM can fairly accurately predict the surface evolution of

micro-channels machined in glass at 90° up to AR = 1, e.g. as seen in Figure 2.11. Beyond that, the

modelled predicted profiles begin to deviate from experimental ones due to particle second strike and

spatial hindering effects [13,21-24] described in Section 1.2.1. For the present case in Figure 3.7 ( =

45°), the effective AR, the ratio of maximum feature depth to width at zero depth multiplied by 1/(sin)2,

approaches 1 after just 6 passes, which is much more rapidly than at 90°. Hence these effects, and

consequently deviations in the model predictions, are expected to be more significant in the case of

oblique blasting. In addition, the effect of mask wear is likely more significant at oblique incidence since

masks are normally made from ductile materials that have a peak erosion rate at oblique incidence, as in

the present case. Hence, for the model to accurately predict the experimental profiles in glass, the effects

of mask wear and second strike must be included. Thus, the current formulation is suitable only in cases

where these effects are minimal, and so is generally not applicable for predictions of the AJM in brittle

substrates.

 In the next chapter, the formulation will be extended to include mask erosive wear.

 75

Chapter 4 Level Set Methodology for Predicting the Effect of Mask Wear on
Surface Evolution of Features in Abrasive Jet Micromachining

4.1 Motivation

 As shown in Chapters 2 and 3, mask wear effects affect the surface evolution of target features

during AJM, e.g. such as can be seen in Figures 2.15, 3.7 and 3.9. In many cases mask wear cannot be

avoided, i.e. when (thin) polymeric masks are used or when large particle doses, and hence long

machining times, are necessary to create high aspect ratio features.

In spite of its significant effect on the resolution of features machined using AJM, the modelling

of mask wear has thus far been limited to only two previous models: Slikkerveer at al. [29], described in

Section 1.2.1, and Yagyu and Tabata [32], described in Section 1.2.2. However, in both cases, the work

did not make direct comparisons between the model predictions and experiments on both the target and

the mask together; thus only qualitative conclusions in terms of influence of mask wear on surface

evolution of the target could be drawn. In addition, these models did not consider the influence of mask

wear on features machined at oblique incidence such as those presented in Chapter 3.

This chapter extends the NB LSM-based methodology presented in Chapter 3 to allow the surface

evolution of both the mask and target to be predicted simultaneously, by representing them as a hybrid,

yet continuous, mask-target surface. The general methodology is based on a previous level set approach

developed for ion beam milling a masked substrate at normal incidence [49]. The extension of this

methodology to make it suitable for the modelling of mask wear in AJM presented unique challenges

because, in contrast to ion beam milling, it considers finite size particles, and thus requires an estimate of

the change in abrasive mass flux incident to the target through the mask opening, such as in Sections 2.3.3

and 3.3.2, and, for the first time, onto the eroding mask edge itself. The modelling of oblique incidence

also presents additional complications that have not been previously considered. The predicted channel

and eroded mask shapes were directly compared against measurements on channels machined in both

glass and PMMA targets, using two different masks, thus verifying the predictive capability of the

methodology. The majority of the material in this chapter has been submitted for publication and is

currently under review [50].

 76

4.2 AJM experiments: Channels and eroding masks

All AJM experiments were conducted using the same channel blasting apparatus and similar

experimental conditions as those described in Section 2.2. Some differences, especially with respect to

the masking technique, and extra details, are outlined below.

Two mask materials were used for the glass and PMMA targets: tempered steel feeler gauge (FG)

stock (Starret Co., Athol, MA, USA) and High Tack RapidMaskTM (RM) (IKONICS Imaging, Duluth,

MN, USA). The densities of FG and RM were  = 7712 kg m-3 and  = 1292 kg m-3, respectively,

obtained from unpublished experimental results (UR) from the author’s laboratory (see

Acknowledgements). The initial hardness of the FG stock was measured as Hv = 5.67 GPa using a micro

hardness tester, and a value of Hv = 0.1 GPa was assumed for RM (UR). Both mask materials exhibited

ductile erosive properties, as in the case of PMMA, although RM is an elastomer.

The FG masks were made by securely clamping two gauges to the target a specified distance

apart, parallel to each other. The RM masks were made by placing a patterned photomask (Fine Line

Imaging, Colorado Springs, CO, USA) over an RM sheet, and exposing it to a fused quartz silicon

dioxide curing lamp (5.04 W/mm) for 40 passes at 76 mm/s using a mini conveyor UV cure system

(American Ultraviolet Company, Lebabon, IN, USA). A squeegee was used to ensure that no air bubbles

formed around the exposed feature, which acquired brittle properties after exposure. The resulting pre-

machined FG and RM masks had a height, Hm, of approximately 100 m and opening widths, Wm of

approximately 180 m and 130 m, respectively. Figure 4.1 shows a schematic of the mask arrangement.

The glass masked channels were machined at impact angles, , of 90° and 45°, and the PMMA

masked channels at impact angles of 90°, as shown in Figures 2.1 and 3.1. Scanning speeds of 1 mm s-1

and 2 mm s-1 were used in machining the channels with FG and RM masks, respectively. The measured

abrasive mass flow rate was in the range of 2.24-3.84 g min-1 (see Appendix A, Tables A-11-A-16),

which again was low enough for particle interference to be neglected, as in Section 2.2 [33-35].

Cross-sectional target channel profiles with the masks attached were measured before and after

machining using a non-contact optical profilometer described in Section 2.2. After machining, the masks

were removed, the targets cleaned with alcohol, and the cross-sectional profiles of the target channels

were measured. Approximately between 33-456 and 26-111 data points were obtained over scanning

width ranges of 0.33-3.30 mm and 0.23-0.62 mm for all the mask profiles and channel profiles machined

at  = 90°, respectively. As in Section 3.2, the inclined channel profiles were multi-valued, and could not

be scanned using the optical profilometer. Instead, they were sectioned, and their cross-sectional profiles

were measured and digitized using a 1.3 megapixel CMOS digital camera mounted to a 50X

magnification optical microscope (ViewMet, Buehler Ltd., Lake Bluff, IL, USA), together with ImageJ

 77

software. Between 21-80 data points were obtained for all the resulting inclined channel profiles. A FG

mask edge radius, rm, depicted in Figure 4.6 and given in Table 4.1 (see below), was measured before

machining using the same hardware as that used in obtaining the cross-sectional profiles.

Figure 4.1. Front view schematic of masks used in the AJM of the micro-channels.

 78

4.3 Level set modelling of surface evolution in AJM including mask erosive wear

4.3.1 Local normal velocity function of evolving surface for masked channels including
mask erosive wear

In order to model masked channels including mask erosive wear, as shown in Figure 4.2, the

same transformed coordinate system defined in eq. (2.1) from Section 2.3.1 and shown Figure 3.1 was

used, but with xoff = Wm/2 + lm,L, where lm,L is the pre-machined length of the left hand side of the mask

shown in Figure 4.1. The velocity of the surface in the direction of the local normal for the AJM of brittle

materials (glass) and ductile materials (PMMA, FG and RM) is defined by eqs. (3.1) and (3.2),

respectively, with the particle velocity, V, and particle flux, , distributions defined as previously in eqs.

(2.7) and (2.9), since similar blasting conditions were used as those in Sections 2.2 and 3.2.

As explained in Sections 2.4.1.1 and 3.3.1, eqs. (2.7) and (2.9) can be used to express the erosive

efficacy of the jet, Eef = , for the AJM of channels in brittle targets, but for ductile materials in

general, a stationary approach that approximates E

vkCV

ef of a moving target/mask by a stationary one must be

used. Since for the present problem, the hybrid surface consists of both the target (glass, brittle or

PMMA, ductile) and the mask (FG or RM, ductile), for consistency and without loss of accuracy, in the

present formulation the stationary target/mask approach was also used for the brittle glass targets.

In general, to use the stationary approach for a channel, the time dependencies of eqs. (2.7) and

(2.9), represented by the (rs - vtt) terms, are removed by calculating a single y location along the scanning

direction where the erosive efficacy distribution seen by a cross-section of a hole, Eef,st, is closest to the

erosive efficacy distribution seen by a cross-section of a channel, Eef,t, over a full pass. For instance, in

Chapters 2 and 3, y = 0 was used in place of y = (rs - vtt), as explained in Sections 2.4.1.1 and 3.3.1.

However, in the present case, a slightly different approach was taken. In a single pass of the nozzle, the

average erosive efficacy for a scanning target with the mask, tef,E , is obtained as

 dtCV
r

v
E

ts vr
k

s

t 
/2

0
tef,

v

2
 (4.1)

where V and  are defined by eqs. (2.7) and (2.9), respectively, with the time dependencies in place. The

equivalent stationary erosive efficacy was then obtained by calculating the location y = prs·rs where the

Eef,st best fit eq. (4.1) over the full range of x’ and z’, i.e. prs (i.e. y) was varied until the mean ratio of

tef,E / Eef,st(y) over the full range of x’ and z’ was equal to 1. y was then used in place of y = (rs - vtt) in

 79

eqs. (2.7) and (2.9) to represent the equivalent stationary erosive efficacy, Eef,st(y). This approach better

approximates the mean Eef,t for the present formulation than the stationary approach used in Chapters 2

and 3. prs can vary with vt, kv,  and rs (see Table 4.1).

Figure 4.2. Geometry for modelling of flux adjustment for the target near the eroding mask edges at any
incidence angle, . The window shows the special case where the jet centreline intersects the eroding
mask surface. The effective vertical height and horizontal opening width of the eroding mask, Hm,eff,90,
and Wm,eff,90, are exaggerated with respect to h.

4.3.2 Masking function: Adjustment of particle mass flux to the target and the mask

 80

In Sections 2.3.3 and 3.3.2, the reduction in particle mass flux incident to the target surface in the

vicinity of the mask edges was modelled. In the present approach, since the surface is composed of both

the target and the mask, the formulation is generalized by introducing the concept of a masking function,

i.e. the adjustment to the incoming particle mass flux incident to the hybrid mask-target surface at a given

x’ to reflect the range of particle sizes that are ‘visible’ to this surface. The following sections derive this

function.

4.3.2.1 Adjustment of mass flux to the target

 In Sections 2.3.3 and 3.3.2, the effect of reduction in mass flux through the mask opening and

incident to the target surface near the mask edges was modelled for non-eroding masks. In contrast to the

previous approach, the present involves an eroding mask, so that the mass flux incident to the target

surface adjacent to the edge changes with time and must thus be updated at each time step. The following

formulation generalizes the approach presented in Section 3.3.2 to eroding masks.

At any instant, the masking function for the target surface,
T0/xM , defined as the ratio of the

mass of particles, M, that can reach the target surface at x’ to the M that can reach the target surface at x’

= 0, across the eroding mask opening, is
















L

xL

x

drrr

drrr

xM

xM
M

0
pp

3
p

'

0
pp

3
p

T
T0/

)(

)(

)0'(

)'((4.2)

where eq. (4.2) is the same as eq. (3.3), and is repeated here to maintain continuity, and the subscript ‘T’

indicates ‘target surface’ (Figure 4.2). The same lognormal particle size distribution was assumed in eq.

(4.2) as in eq. (2.11) since the same abrasives were used as in Sections 2.2. Note that eq. (4.2) can also be

interpreted as the ratio of the expected value of the particle volume incident to the target at a given x’ to

the expected value of the particle volume at x’ = 0, where particles of any size can reach the target.

Following Section 3.3.2, L represents the target location that an infinitely small particle can reach without

undergoing collision with the right (+) or left (-) edge of the eroding mask, measured along the x’

direction at a given z’ (Figure 4.2),

 (4.3)
)0'(

)0'(

)tan('

)tan('










 



x

x

zL

zL
L




 81

 and are the angles defining the maximum particle trajectories incident to the target surface through

the eroding mask opening, measured from the jet centreline to the right (+) and left (-) mask edges. For

the typical case presented in Figure 4.2 and at normal incidence, the angles are calculated at each time

step by searching for the minimum point x’ to the right (+)/left (-) mask surface, , measured

from the jet centreline,



min
/' x

)
'

'
(tan

min
/'

min
/

1/




 

x
z

x
 (4.4)

where
min

/'
' x

z is the z’ that corresponds to min
/' x . The analysis assumes that the jet centre coincides

with the centre of the pre-machined mask opening. For the special case presented in the window of

Figure 4.2, when the jet centreline intersects the mask surface on the left hand side, eq. (4.3) must be

modified as follows

 (4.5)


























0

)''(0

)''(')tan('

lim

limlim

L

xx

xxxz
L

L


where is obtained using eq. (4.4) and x’ lim is defined in the window of Figure 4.2,

)tan('' limlim zx  (4.6)

The angle lim is calculated by searching for the maximum x’ to the mask surface on the left hand side,

 defined in the window of Figure 4.2, measured from the jet centreline, max'x

)
'

'
(tan

max'

max1
lim






x
z

x (4.7)

where
max'

' x
z is the z’ that corresponds to . It should be noted that when max'x Lx ' in eq. (4.2),

T0/xM = 0, as expected.

 82

4.3.2.2 Adjustment of mass flux to the mask edges

In addition to the adjustment to particle mass flux ‘visible’ to the target surface near the mask

edges, the finite size of the particles also limits the flux ‘seen’ by the mask edges themselves. For

example, the particle shown in Figure 4.3 (a) is too large to strike the inclined edge of the mask, and

would instead strike the top of the mask near . Similarly, only small particles can strike the mask

edge at its bottom near the surface. This effect has never been previously modelled.


tran'x

Figure 4.3. Modelling of adjustment to mass flux striking the mask edges for (a)  = 90° and (b)  ≤ 90°,
i.e. the general case. Due to symmetry, only the right mask edge is shown in (a). The effective eroding
mask heights and opening widths are exaggerated with respect to h.

Modifying eq. (4.2), the masking function for the mask edge surface,
edgeM,0/xM , defined as the

ratio of the portion of incident M that can arrive at x’ and strike the mask edge surface, to the M that can

arrive at x’ = 0, across the eroding mask opening and edge, can be expressed as

 83

 

m,eff
m

m,eff

m,eff
m

'
2

3
p p

' 1
2

/0 M,edge
M,edge 2

3
p p p

0

()

(')

(' 0)

()

W
d x

W
x

x W
d

r r dr

M x
M

M x

r r dr

 

 
    
 





 








p

=

 (4.8)

where the subscript ‘M’ indicates ‘mask surface’ (Figure 4.2). Wm,eff /2 is the effective half opening

width of the eroding mask measured along x’, and dm is the approximated length of the eroding mask

edge measured along x’ (Figure 4.3). The Heaviside function,   'x -Wm,eff/2 is defined as  = 0 if

'x < Wm,eff/2 and  = 1 f i 'x ≥ Wm,eff/2. It should be noted that when 'x ≥ Wm,eff/2 + dm in eq. (4.8),

edgeM,0/xM = 0, as expected.

The LSM model allows for the mask edge to evolve a curved profile, i.e. with a non-uniform 

defined in Figures 2.2 and 4.2). As a first-order approximation, for the purposes of determining Wm,eff/2

and dm at any given time step, it was nevertheless assumed that the eroded mask edge could be

represented by a single line (Figure 4.3) having a slope determined by the average of all the local over

the mask edge, avgWith this approximation, for the typical case (Figure 4.2) for the right (+) or left (-)

mask,

)0'(

)0'(

'2/

'2/
2/

mineffm,

mineffm,
effm, 










 



x

x

xW

xW
W (4.9)

and for the special case depicted in the window of Figure 4.2,

 (4.10)


























02/

)''(0

)''(''
2/

2/

effm,

lim

limlimmin
effm,

effm,

W

xx

xxxx
W

W

where and x’min
/' x lim were defined in Section 4.3.2.1 and Figure 4.2. The distance dm in Figure 4.3 is

approximated as

 84

 (4.11))0'(

)0'(

2/

2/

)cot(

0

)cot(

avg

avg

avgeffm,
m

avgeffm,m

m 


































x

x

H
d

Hd

d








where and are the effective heights of the eroding right and left masks, respectively,

measured parallel to the jet centreline (Figure 4.3),


effm,H 

effm,H

)2/sin(

)sin(
/

avg

/
avg

/
eff,90m,/

effm,










 H

H (4.12)

The value of 
min'x in eq. (4.9) only needs to be evaluated when dm is non-zero. For a FG mask, and for a

RM mask after the ‘brittle’ RM (BRM) layer (Figure 4.1) has been fully etched through to the target

surface, (Figures 4.2 and 4.3) is calculated as the distance from the transition point between the

eroding mask edge and the top of the mask, (Figure 4.3), to the unmachined target surface. For a

RM mask before the BRM layer has been fully etched through, is calculated numerically from

 to the assumed flat eroding bottom of the BRM surface (see Section 4.3.2.3 and bottom of Figure

4.4). is obtained by searching the mask surface and locating a point of sharp transition in local 

-/
eff,90m,

H

tran

 /
tran'x

-/
eff,90m,

H

 /
tran'x

'x

 In the analysis, particles incident to 'x < Wm,eff/2 were considered incident to the target surface,

whereas ones incident to 'x ≥ Wm,eff/2 were considered incident to the eroding mask edge, thus ignoring

unlikely glancing collisions. In addition, the eroded mask edge was represented by a line having a single

average slope, avg. As a result, the overall adjustment to the flux at the sloped mask edge was modelled

as the mean of the masking function in eq. (4.8) over the range of Wm,eff/2 ≤ 'x ≤ Wm,eff/2 + dm,

 



meffm,

effm,

2/

2/
edgeM,0/

m
edgeM,0/ '

1
dW

W
xx dxM

d
M (4.13)

Since the distance dm is generally small, the error introduced by this averaging is also small.

 85

4.3.2.3 General masking function for the entire mask

The general masking function for the entire mask surface,
genM,0/xM , defined within the global

range of  sinsin m hzHh  (Figure 4.2), where Hm is the pre-machined mask height, and the full

horizontal length of the computational space is































)e(Region)Mask (Centre/2)Wcos/2Wcos(1

)d(Mask) RMfor (Only)/(1

:Cases Special

)c(Edge)Mask Left /2,for (Only /2)(0

)b(Mask) of (Top)''(1

)a(Edges)Mask for (4.13) (eq.)'' /2(W

mm

pass

/
tran

/
traneffm,edgeM,0/

genM,0/





hxh

NTt

xx

xxM

M

p

x

x

 (4.14)

The various cases that must be considered in eq. (4.14) are shown in Figure 4.4. Equation (4.14 (a)) is

defined in eq. (4.13), and eq. (4.14 (b)) describes the masking function for the top of the mask that was

originally horizontal. Equation (4.14 (c)) reflects the fact that, at oblique incidence, any point on the left

mask edge surface does not see the incoming particle flux until its local slope is at least parallel with the

incident velocity vector.

In the case of the RM, the entire initial surface is flat, and the region of width Wm exposed to the

UV light becomes brittle (BRM). Thus, the initial surface is composed of two different eroding materials:

RM and BRM (see Section 4.3.3.1). The use of a hybrid surface with continuous connectivity can

introduce complications at the points of intersection of the surfaces; in this case, the points connecting

RM and BRM. This results solely from the introduction of a masking function for the mask edges. If the

conditions of eq. (4.14 (a)) were assumed from the beginning, although the BRM surface would propagate

downwards towards the target relatively quickly, the lateral propagation of the eroding RM mask edge

surfaces would be unrealistically slowed down due to the low initial in eqs. (4.11) and (4.12),

and hence

 /
eff,90m,H

edgeM,0/xM ≈ 0. To overcome this difficulty,
genM,0/xM = 1 was assumed in eq. (4.14 (d)),

for both the BRM and RM, until the RM began to develop an inclined mask edge, after passes of the

nozzle. After passes, the eroded profile was partially in the RM and the BRM, and eq. (4.14 (a)) was

assumed on the inclined RM surface, and

pN

pN

genM,0/xM = 1 was assumed in eq. (4.14 (e)) for the remaining

BRM. As a result, for the RM-BRM profile surface, the mask edge effect was partially accounted for

 86

until the target region was reached. corresponds to the experimental initial pass profile used to

determine the time, T

pN

pass, that it takes for the surface to propagate to a depth defined by the first pass

profile (see Section 4.4.1).

Figure 4.4. Schematic representation of cases corresponding to eq. (4.14). Top left: eq. (4.14 (a)) and eq.
(4.14 (b)); top right: eq. (4.14 (c)); bottom left: eq. (4.14 (d)); and bottom right: eq. (4.14 (e)). The
rectangular regions in the bottom two schematics differentiate the different materials in the numerical
grid.

4.3.2.4 General masking function for the target

Equation (4.2) is used to model the adjustment to the mass flux incident to the target surface near

the mask edges, and greatly improves the fits of the modelled target profiles to measured ones [19].

However, when the intersection points between the lines of the maximum particle trajectories incident to

the target defined by and and the horizontal line at  )sin(hz  match the connectivity points

between the target and the mask, the target masking function
T0/xM = 0, while the mask edge masking

function
edgeM,0/xM is generally non-zero (Figure 4.5). If uncorrected, this causes an unrealistic

 87

slowdown in the surface propagation of the mask edges similar to that encountered for the RM-BRM

surface in Section 4.3.2.3, however this time due to the target masking function. This problem was not

encountered in previous LSM studies of e.g. ion milling when applied to source etching of a substrate and

a mask [49], because the masking function in that case was 1 at such locations, since the particles were all

considered infinitely small. Thus, in the present work, it was necessary to adopt a procedure whereby the

target was allowed to erode to a depth under the same flux adjustment, i.e. masking function, as the

mask shown on the left hand side of Figure 4.5. This allowed the target and mask edges to evolve

together over the depth . Beyond that depth, the target evolved under the usual flux adjustment

according to eq. (4.2). Hence, the general masking function for the target surface,

adjT,z

adjT,z

genT,0/xM , defined

globally for sinhz  (Figures 4.2 and 4.5) and over the full computational horizontal length, is



















)c()Length ShadowMask Left over (0

)b())a)(14.4(eq.() Possible All,sinsin(

:Cases Special

)a((4.2)) (eq.) Possible All,(

adjT,edgeM,0/

adjT,T0/

genT,0/

hz

xzhhM

xzM

M
x

x

x 



4.15)

The value of was h numerical experimentation to be as large as possible so as

not to a





 ,sin

sin

x

z

hz





chosen throug

 (

adjT,z

ffect the propagation of the mask edges, but at the same time small enough to not significantly

affect the shape of the target profile within adjT,sinsin zhzh   . To do this, the simulation was

successively run to different adjT,z depths w o the target, i.e. infinitely small

particles impacting the target w

ith no flux adjustment t

ith
genT,0/xM = 1. z was decreased until a transition between rapid

mask propagation and slow mask propagation was noted, i.e. such that there was an insignificant

difference in mask propagation between the chosen adjT,z and a large adjT,z . In general, adjT,z was found

to be in the range of 2 to 3 grid steps (see Table 4.1). Since the resultin adj was gener only on the

order of 10 - 20 m (see Table 4.1), which is less than the maximum depth of the resulting target profile

(see Section 4.4.1), the resulting error in the target profile evolution was relatively small.

 For the special case when  < 90° and  ≥ 90° shown on the right hand side

adjT,

g T,z ally

of Figure 4.5, a

portion of the target to the right of the connectiv point is in the shadow of the left hand side of the

mask, and

ity

genT,0/xM = 0 was assumed in eq. (4.15 (c)) over this shadow length.

 88

Figure 4.5. Schematic representation of cases corresponding to eq. (4.15). Left: eq. (4.15 (a)) and eq.
(4.15 (b)); and right: eq. (4.15 (c)). The rectangular regions differentiate the different materials in the
numerical grid.

4.3.2.5 Unified masking function

The unified masking function,
Unif0/xM , for the hybrid surface consisting of both the mask and

the target surface, can be summarized as








)b(Surface)Target for (4.15) (eq.

)a(Surface)Mask for (4.14) (eq.

genT,0/

genM,0/

Unif0/
x

x
x M

M
M (4.16)

where /0 M,genxM and /0 T,genxM are the general masking functions for the entire mask and target surfaces,

respectively. The effective flux for the entire hybrid mask-target surface at each time step can be

obtained by multiplying the modified eq. (2.9) (Section 4.3.1) by eq. (4.16).

4.3.3 LSM model implementation

4.3.3.1 Partial derivatives, surface initialization and geometric variables

Following the approach of Sections 2.3.4.1 and 3.3.3.1, eq. (2.12) was used to approximate partial

derivatives used in obtaining the solution to),,(tzx and geometric variables. The initial hybrid surface

was represented either by a horizontal line consisting of the RM and ‘brittle’ RM (BRM) mask surfaces at

 89

the same height, or, in the case of the FG, an inverse ‘hat’ shape, consisting of the FG mask and the

target which is at a lower height over the mask opening width, as shown in Figure 4.6. Following the

approach of [49], the grid was divided into regions, each of which represents a different material. For

simulations involving a FG mask, there were 2 regions consisting of the FG and the target. For

simulations involving a RM mask, there were 3 regions consisting of the RM, BRM, and the target

(Figure 4.6). For this case, the hybrid surface consisted of the RM mask and the target once the BRM

layer was etched through to the target. The),,(tzx was initialized and re-initialized using the SDF

defined by eq. (2.29) as explained in Section 3.3.3.1. The geometric variables n


 and K were obtained

using eq. (3.13).

 90

Figure 4.6. Initial surface and grid formulation. The grid is divided into regions, each of which
represents a different material. The grid spacing and mask dimensions are exaggerated with respect to h.

4.3.3.2 Simplified NB LSM for non-convex Hamiltonians with EVM

 The same simplified LSM for non-convex H presented in Section 3.3.3.2 is used in the present

formulation, however, with two exceptions: 1) Equation (2.21) with 1),( zx (see eq. (3.12)) is used

instead of eq. (3.14) since the present formulation considers motion with curvature, i.e. ≠; and 2)

 91

Unif0/xM defined by eq. (4.16) is used in eqs. (3.16) (for glass) and (3.17) (for PMMA, FG and RM),

instead of defined by eq. (3.3), since the present formulation considers eroding masks. 0/xM

 The same EVM presented in Section 3.3.3.3 is used in the present formulation but it should be

added that the ‘jet visibility’ effect (Figure 3.4) which necessitates the application of EVM described in

that section now occurs at any , i.e. both oblique and normal incidence. This occurs since the present

formulation includes the mask as part of the hybrid zero level set surface, which affects the visibility of

the grid ‘below’ the mask at any incidence. In other words, the use of a mask (Section 4.3.2) introduces a

boundary for the target for sinhz 



 formed by lines of the maximum particle trajectories incident to

the target defined with and in Figure 4.2, beyond which = 0 for the level sets below the

mask to the left or right of the lines, respectively, at any incidence. Thus, EVM was used at any

incidence, and for both the target and the mask to maintain consistency and numerical stability, i.e. by

extending from the entire hybrid mask-target surface to all the material regions defined in Figure 4.6.

),,(tzxF

 Finally, the same NB LSM presented in Section 3.3.3.4 is applied in the present formulation. The

NB-extension algorithm was the same as outlined in Section 3.3.3.7.

4.3.3.3 Grid formulation, boundary conditions, time step and surface interpolation

For the present problem, using the geometry of Figure 4.6, the vertical grid limits were obtained

as zmin = hsinα – (Hm + zam) and zmax = hsin + zsurf, where zsurf was defined in Section 2.3.4.3 and zam is

the vertical grid distance above the mask necessary to initiate) ,,(tzx with the SDF in eq. (2.29) and

adjusted to maintain uniform grid spacing, i.e. x =z. The horizontal grid limits were obtained as xmin =

xoff + hcos– (Wm/2 + lm,L) and xmax = xoff + hcos + (Wm/2 + lm,R), where lm,L and lm,R are the pre-

machined lengths of the left and right hand sides of the mask, respectively, shown in Figures 4.1 and 4.6.

These limits were then used to calculate the spatial grid steps and global spatial coordinates at the grid

nodes as described in Section 2.3.4.3. The boundary conditions were obtained in the same way as

described in Sections 2.3.4.3 and 3.3.3.5. The time step was once again calculated using the CFL

condition [37] by combining eqs. (2.28) and (3.23) with a slight modification,

   

1
)(2)(

max
,

2

c
extext










































 








zxg g

H

g

H
t

gg


 (4.17)

 92

where the maximum was obtained in the same way as in Section 3.3.3.5. Equation (4.17) differs from the

approach originally suggested by Osher and Fedkiw [37], and which was adapted in Chapter 2 and eq.

(2.28), only through the introduction of)(c g
H in the second term, related to the motion due to

curvature in eq. (2.21) with 1 (Section 4.3.3.2). In Section 2.3.4.2 the term multiplying cK

ccc  FH in eq. (2.21) was applied to the c term, whereas now it is applied directly to the

term which more accurately reflects the motion due to curvature defined in eq. (2.21) with

cF

1c .

This greatly reduces the time step restriction required in eq. (4.17) for cases where curvature is used, and

hence increases the computational efficiency.

 Finally, the location of the surface, used in obtaining),,(tzx with the SDF in eq. (2.29), in

calculating
Unif0/xM defined in Sections 4.3.2.5 and in locating the upper and lower bands described in

Section 3.3.3.4, as well as FD approximations of the partial derivatives at surface nodes (Figure 3.6 and

eq. (3.24)) used in EVM described in Section 4.3.3.2, were obtained using interpolation as described in

Section 3.3.3.6.

 93

4.4 Results and discussion

4.4.1 Model execution and inputs/outputs

 The model presented in Section 4.3 was implemented in MATLAB 7.9 (The MathWorks, Inc.,

Natick, MA, USA) and experimentally verified by comparing the LSM predicted surface evolution

profiles to the measured ones in Figures 4.7-4.11. The required model inputs and resulting numerical

outputs corresponding to simulations in Figures 4.7-4.11 are specified in Table 4.1. The parameters h,

Hm, Wm, rm, , vt, M and  were obtained based on experimental conditions of Sections 2.2 and 4.2 and

are specified in Table 4.1. For BRM, was assumed to be the same as for RM (UR). Hv for PMMA was

obtained from Section 2.4.1.1 and for FG and RM from Section 4.2. Attempts to measure the hardness of

the thin BRM sheet failed due to its tendency to fracture into small pieces upon contact with the indenter

when using a micro hardness tester. Therefore, the Hv for this material was assumed to increase from the

unexposed RM value of 0.1 (UR) to 0.25 GPa after exposure, reflecting the transition from ductile to

brittle behaviour. The higher value for BRM was estimated based on the previously measured value for

PMMA [2], which is harder than the unexposed RM (elastomer).

The parameters Vo, , l, l, kv, C, n1 and n2 specified in Table 4.1 were obtained from Section

2.4.1.1 or UR based on previous measurements for the same nozzle, jet conditions, abrasives, target and

mask materials as presently utilized. Although the RM after exposure was labelled as ‘brittle’, the

resulting experimental BRM profiles implied an intermediate brittle and ductile erosive response as

shown in the Figure 4.11 measured profile after 2 passes since, as shown in Section 3.4.2, brittle target

profiles generally have sloped walls and rounded bottoms, while ductile target profiles have straight walls

and rectangular bottoms. Thus, the general erosion-angle of incidence model proposed by Oka et al. [40]

and used in eq. (3.2) was assumed for BRM. The constant n1 in eq. (3.2) for BRM can be calculated

knowing kv = 1.41 (Table 4.1) from the relationship due to Oka et al., n1 = kv + 1 [40]. The constant n2 =

9 was obtained by numerically fitting the model-predicted to the measured sidewall slope of the BRM

mask after the initial pass, in terms of side wall slope, analogous to the approach used to obtain Tpass (see

below). Thus, the particular value of Hv = 0.25 GPa used for BRM, as explained in the previous

paragraph, is not of great importance as long as it is of the correct order of magnitude, since it is a curve

fitting parameter used along with n1 and n2 to obtain a best fit of the model-predicted to measured initial

pass profile shape. Use of a different value would only yield a new n2 without significantly affecting the

resulting profile shape.

 94

The parameters prs, and specified in Table 4.1 were obtained as explained in Sections

4.3.1, 4.3.2.3 and 4.3.2.4, respectively. The parameter [16,17,37] was used to smooth the results in

modelling glass targets and RM masks, estimated based on the recommendations of [17] as explained in

Section 2.4.1.1.

pN adjT,z

For all the present simulations, the grid dimensions imax·kmax and geometrical parameters zsurf, zam,

lm,L and lm,R defined in Section 4.3.3.3 and Figure 4.6 were chosen such that x = z, which ensured the

convergence and accuracy of the numerical solution as described in Section 2.4.1.1 (Table 4.1).

Following the approach taken in [2,14,17], the time it takes for the surface to propagate along the

profile centreline to a depth defined by the experimental first pass profile, Tpass, was used in the

simulations to obtain an equivalent time, i.e. 2rs/vt, that a given masked channel cross-section is exposed

to the particle jet during a single pass of the nozzle, as explained in Section 2.3.2. Tpass for the target

(glass and PMMA) and the mask (FG, RM and BRM) in Table 4.1 was obtained from a best fit of the

simulated and experimental initial pass profile depths, by matching the depths within the total percentage

standard deviations of the corresponding mass flow rate measurements (see Appendix A, Tables A-11-A-

16). This is similar to the method used in [36] to estimate the erosive efficacy due to a single pass of the

nozzle and hence C, as explained in Sections 2.3.2. For all cases in Figures 4.7-4.11, Tpass for glass,

PMMA, FG, RM and BRM varied between 2.5-5.1 s pass-1, 3.9-11.2 s pass-1, 2.7-18.9 s pass-1, 1.1-2.8 s

pass-1 and 5.6-7.5 s pass-1, respectively. The different values resulted from experimental fluctuations in

flux and/or velocity between experiments, and the fact that different scanning speeds were used in Figures

4.7, 4.8 and 4.10, and Figures 4.9 and 4.11.

The total simulation times for each case in Figures 4.7-4.11 were obtained by multiplying the

maximum number of nozzle passes (Table 4.1) by (the chosen) Tpass for the target. Thus, since the target

and the mask surfaces evolve in the simulation simultaneously, and, as shown in Table 4.1, the Tpass for

the target and the mask in each case were generally not equal, the Hb and Hd in eqs. (3.16), (3.17), (3.19)

and (3.20) for the mask had to be multiplied by the ratio of Tpass,mask/Tpass,target in order to solve the

equation of motion defined by eq. (2.21) as described in Section 4.3.3.2. The resulting representative

mean values of t determined by eq. (4.17) and the number of iterations and band re-initializations

(Section 3.3.3.4) are listed in Table 4.1. On a 2.93 GHz Quad-core Intel i7 CPU with 8 GB of RAM, the

ETs for all the cases were approximately between 8 to 135 min.

 95

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1 1.2

x (mm)

z (mm) FG Mask

Glass

Figure 4.7. Predicted () and measured () surface evolution of glass channels (z ≤ 0) with FG mask (z ≥
0) machined at  = 45° after 0, 2, 4, 10, 20 and 40 passes of the nozzle. All model inputs are specified in
Table 4.1.

 96

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1 1.2

x (mm)

z (mm) FG Mask

Glass

Figure 4.8. The case of Figure 4.7 re-plotted for the case where the predicted () surface evolution does
not consider mask wear.

 97

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.4 0.8 1.2 1.6 2 2.4 2.8

x (mm)

z (mm) RM Mask

Glass

Figure 4.9. Predicted () and measured () surface evolution of glass channels (z ≤ 0) with RM mask (z
≥ 0) machined at  = 45° after 0, 2, 4, 6, 8 and 10 passes of the nozzle. All model inputs are specified in
Table 4.1.

 98

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

x (mm)

z (mm)

FG Mask

Target

Glass PMMA

Figure 4.10. Predicted () and measured () surface evolution of glass (x ≤ 0) and PMMA (x ≥ 0)
channels (z ≤ 0) with FG masks (z ≥ 0) machined at  = 90° after 0, 2, 4, 10 and 0, 2, 4, 10, 20, 40 passes
of the nozzle, respectively. Only half the profiles are shown due to symmetry. All model inputs are
specified in Table 4.1.

 99

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

x (mm)

z (mm)

RM Mask

Target

Glass PMMA

Figure 4.11. Predicted () and measured () surface evolution of glass (x ≤ 0) and PMMA (x ≥ 0)
channels (z ≤ 0) with RM masks (z ≥ 0) machined at  = 90° after 0, 2, 4, 6, 8, 10, 16 and 0, 2, 4, 6, 8, 10
passes of the nozzle, respectively. Only half the profiles are shown due to symmetry. All model inputs
are specified in Table 4.1.

 100

 101

4.4.2 Comparison of predicted and measured surface evolution

 Figures 4.10 and 4.11 show profiles for a given mask, FG and RM, respectively, and two target

materials, glass and PMMA, to compare the extent of mask wear and the differences in the evolution of

the two features. From these figures, it can be directly seen that: 1) the glass profiles had curved walls

and rounded bottoms, while the PMMA profiles had relatively straight walls and rectangular bottoms,

consistent with observations in Chapters 2 and 3; and 2) the etch rate of glass was greater than that of

PMMA as has been noted in several other studies, e.g. in [17].

In Section 3.4.2, the lack of a mask wear model was identified as a major contributor to the

inaccurate prediction of the surface evolution of inclined channels in glass at oblique incidence. For the

presently considered cases, the necessity of modelling mask wear can be seen by comparing Figure 4.7,

which shows the model-predicted profiles when mask wear is considered, to Figure 4.8, which shows the

predictions when mask wear is not modelled, for the oblique incidence case of a FG mask on a glass

target. Modelling the mask wear resulted in an increase in width and depth of the target profiles resulting

from the surface evolution of the mask. Without mask wear, the portion of the jet outlined by the mask

that is ‘visible’ to the target defined with + in Figure 4.2 does not increase with time, and hence

the modelled target profiles maintain a constant width. As a result, their propagation begins to slow down

beyond a certain depth, as also noted in Section 3.4.2. An analogous argument explains the increase in

width and depth of the glass target profiles, as well as the increase in width of the PMMA target profiles

as explained in Section 3.4.2, for the  = 90° cases in Figures 4.10 and 4.11.

 

In general, the agreement between the predicted and measured glass and PMMA target profiles of

the micro-channels machined at  = 45° and  = 90° in Figures 4.7, 4.9, 4.10 and 4.11 were good, both in

terms of depth and overall shape. In the majority of cases, e.g. Figures 4.7 and 4.11, the model fairly

accurately predicted the increase in width (and depth) of the target profiles resulting from the surface

evolution of the FG and RM masks. However, in Figure 4.9, there was a slight discrepancy between the

measured and modelled glass profile shapes. This was likely due to the deformation of the RM mask on

the right hand side caused by the poor structural integrity of the elastomeric RM mask resulting from the

exposure of interface between the mask and the substrate to the incoming jet at oblique incidence.

On the left hand side of Figure 4.10, discrepancies between the measured and modelled profiles

of the channels machined in glass at  = 90° when using a FG mask likely resulted from particle second

strike and spatial hindering effects [13,21-24], as also explained in Sections 2.4.1.2 and 3.4.2. As a result

of this, in comparison to the modelled profiles in glass, the experimental profiles were deeper beyond 4

passes. Additional discrepancies in Figure 4.10 resulted from mask under-etch, as also seen in [26] when

 102

using steel masks as explained in Section 1.2.1, where the measured profiles were wider near the mask-

target interface, i.e. z = 0 in the figure, and tapered off towards the bottom beyond 2 and 4 passes in glass

and PMMA, respectively, when compared to the modelled profiles.

In the modelled PMMA profiles on the right hand side of Figure 4.10, there was a slight ‘under-

etching effect’ at the target side walls, just below the zero depth, due to a combination of the rapid lateral

target propagation caused by the high local erosion rate of PMMA at shallow impact angles and the

application of in eq. (4.15 (b)), as opposed to eq. (4.15 (a)), necessary so that the slowdown in the

numerical surface propagation of the mask edges is avoided, as explained in Section 4.3.2.4. This was not

evident in the predicted glass profiles since the local erosion rate of glass is minimal at shallow angles, as

explained in Sections 2.2 and 3.4.2.

adjT,z

Overall, the agreement between the predicted and measured FG and RM mask profiles machined

on glass and PMMA targets at  = 45° and  = 90° in Figures 4.7, 4.9, 4.10 and 4.11 was fair, both in

terms of depth and overall shape. Figure 4.7 shows relatively fair agreement up to ~ 4 passes, and poor

agreement beyond that, especially at the right mask. Figure 4.9 shows good agreement up to 8 passes on

the left mask, and poor agreement on the right mask. This is partially due to the RM mask deformation

on the right side that was mentioned above. Another reason for the discrepancies between the measured

and predicted mask profiles in Figures 4.7, 4.9, 4.10 and 4.11 may be the first-order approximation

discussed in Section 4.3.2.2 that assumes the masking function at the sloped mask edge to be constant at

an average value, determined by assuming a linear mask edge. Nevertheless, it is the prediction of the

surface evolution of the target profiles incorporating mask wear that is of practical importance, rather than

the shape of the eroding mask itself. Since the model predicts the target profiles quite well, in the

majority of cases, it is nevertheless useful.

As a final practical note, RM masks erode relatively fast, when compared to FG masks. From

Figures 4.9 and 4.11, it can deduced that in machining features using RM, i.e. elastomeric, masks, the

maximum achievable AR is ~ 1, taking into account the increase in feature width due to mask wear. Thus

RM masks can be viewed as being more suited to machine small shallow features, whereas FG, i.e. steel,

masks can be used to achieve higher ARs such as the PMMA channels in Figure 4.10 where AR > 2.

The next chapter considers the effect of particle second strikes [13,21-24] in an attempt to

improve feature predictions in glass (brittle) features for AR > 1.

 103

Chapter 5 Modelling of Surface Evolution in Abrasive Jet Micromachining
Including Particle Second Strikes: A Level Set Methodology

5.1 Motivation

 As shown in Figures 2.11, 3.7 and 4.10 (x ≤ 0), the particle second strike effect [13,21-24] can

significantly affect the surface evolution of brittle (glass) target features with AR > 1. As discussed in

Section 1.2.1, this effect was initially modelled and implemented into an analytical surface evolution

model by Slikkerveer and in’t Veld [13], which was later extended to include the mask edge effect by

Ghobeity et al. [22]. These previous models could not account for all the pertinent effects in order to

accurately model the second strike effect. In addition, as discussed in Section 1.2.2, Ciampini and Papini

[23] developed a CA computer simulation which addressed the previous limitations of the above

mentioned models. However, these types of computer simulations are very computationally expensive.

In addition, none of the previous models have considered second strike and mask edge effects for cases in

which the nozzle is incident at oblique angles, such as the case depicted in Figure 5.1.

Figure 5.1. Depiction of the particle second strike and mask edge effects in glass at oblique incidence (
< 90°).

In the present chapter, the LSM model developed in Chapter 4 is extended to include second

strike and mask edge effects in brittle (glass) features made using AJM, using a ray tracing/node tracking

algorithm. The second strike model is generalized to any impact angle, and thus presents an improvement

upon previous modelling attempts, i.e. for the first time, the prediction of the particle second strike effects

from inclined masked brittle features is made possible. The model is verified against previous

measurements on masked micro-channels in glass with AR > 1. The present model is also compared

 104

against the model of Ghobeity et al. [22] and Ciampini and Papini [23], as well as previous LSM

formulations developed in Chapters 2 and 3, which consider and do not consider the effects of second

strikes, respectively. Particle second strike effects do not need to be considered in the surface evolution

of ductile, e.g. PMMA, features made using AJM since, as explained in Section 3.4.2, ductile features

develop straight sidewalls which are approximately aligned with the incoming particle velocity vectors.

Thus, ricochet and second strike of particles to the opposite side walls is highly unlikely. As shown in

Figures 2.12, 3.8 and 4.10 (x ≥ 0), there was no significant discrepancy between predicted and measured

surface evolution of ductile (PMMA) features in terms of profile depth and overall shape well beyond AR

of 1, without consideration of second strike effects. The majority of the material in this chapter has been

accepted for publication in [51].

 105

5.2 Level set modelling of surface evolution in AJM including particle second strikes

5.2.1 Local normal velocity and masking functions

In order to model masked channels including mask erosive wear, as shown in Figure 4.2, and

second strikes, the same transformed coordinate system defined by eq. (2.1) was used as that in Section

2.3.1, Figure 3.1 and Section 4.3.1. The velocity of the surface in the direction of the local normal for the

AJM of brittle target (glass) and ductile mask (FG) presently considered is defined by eqs. (3.1) and (3.2),

respectively, where V and  are defined by eqs. (2.7) and (2.9) with y used in place of y = (rs - vtt) from

Section 4.3.1, since similar blasting conditions were used as those in Sections 2.2, 3.2 and 4.2. In

addition, the same masking function
Unif0/xM defined by eq. (4.16) is used to adjust the particle mass

flux  incident to the glass target and the FG mask as that in Section 4.3.2.

5.2.2 LSM model implementation

5.2.2.1 Partial derivatives, surface initialization and geometric variables

Following the approach of Sections 2.3.4.1, 3.3.3.1 and 4.3.3.1, eq. (2.12) was used to

approximate partial derivatives used in obtaining the solution to),,(tzx and geometric variables. The

initial hybrid mask-target surface was represented by an inverse ‘hat’ shape, and the grid was divided into

2 material regions, FG and glass, as shown in Figure 4.6. The),,(tzx was initialized and re-initialized

using the SDF defined by eq. (2.29) as explained in Section 3.3.3.1. The geometric variables n


 and K

were obtained using eq. (3.13). In addition, with 1),( zx from eq. (3.12) and Section 3.3.3.1, the

tangent to the surface, (Figure 5.2), becomes t


),(xzt 


 (5.1)

 106

Figure 5.2. Geometry for modelling particle second strike.

5.2.2.2 Particle second strike formulation

 The following assumptions were made in modelling the particle second strike effect:

a. First and secondary particle strike contributions occurred over the same time step. The same

modelling approach was used in [13,22]. Since the particle velocities were on the order of 150 m

s-1, and the maximum distance a particle can travel after ricocheting is on the order of the mask

opening width (~500 m), the time for a particle to ricochet is on the order of 3.3 s, which was

much smaller than the average time step, which was on the order of 14-40 ms (see Section 5.3.1).

Therefore, this assumption introduces negligible error.

b. All particles travelled in the x-z plane, at a y location along the scanning direction that

approximates the total flux seen in a single scan of the nozzle by an equivalent 2 dimensional

system, as discussed in Sections 4.3.1 and 5.2.1.

 107

c. Only first and secondary strike contributions were considered, assuming that third and higher

ricochets would carry negligible energy towards erosion, as in [13,22].

d. Inter-particle collision were ignored since the range of the particle mass flow rate typically used

in AJM, and considered in the present study (see Section 5.3.1) was low enough such that

particles ricocheting from the surface did not interfere with arriving particles [33-35], as in

Sections 2.2, 3.2 and 4.2.

In the analysis, the hybrid mask-target surface is composed of surface nodes (Figure 5.2), or a

collection of points which are not the same as the grid nodes, since the actual surface is usually in

between the grid nodes, as explained in Sections 2.3.4.4 and 3.3.3.6 and shown in Figures 2.4 and 3.5.

The initial particle strike is calculated by tracking particle trajectories originating from the nozzle and

arriving to each of the surface nodes, which could be the mask or the target. The example in Figure 5.2

only shows an initial particle arriving to the target, but can be generalized to the entire mask-target

surface. Surface nodes which define the ‘top’ of the mask as shown in Figure 4.4, and which are not

visible to the initial particle trajectory, as shown in Figure 4.4 along with eq. (4.14 (c)) and Figure 4.5

along with eq. (4.15 (c)), resulting from the application of a mask as described in Sections 4.3.2 and 5.2.1,

will obviously not contribute to the secondary strike effect.

The secondary impact can result from particle target-to-target or mask-to-target ricochet, i.e.

mask edge effect. The algorithm uses ray tracing and iterates through each of the surface nodes where an

initial particle strike already occurred, e.g. node ‘e’ in Figure 5.2, and checks whether a secondary

collision is plausible from any of the other surface nodes, e.g. node ‘a’ in Figure 5.2. Following the

example in Figure 5.2, a particle arrives with a velocity vector aV


to a node ‘a’ where, using eqs. (3.13)

and (5.1), the surface normal and tangent are defined as

 aa),(zxn 


 (5.2)

and

 aa),(xzt 


 (5.3)

and with this, the angles between aV


and an


, a , and between aV


 and at


, a , are defined as

 108

   


















 

2
a

2
a

aaaa1
a

a

a1
a

''

''
cos)(cos

zx

zx
n

V

V zx




 (5.4)

and

   


















 

2
a

2
a

aaaa1
a

a

a1
a

''

''
cos)(cos

zx

zx
t

V

V xz




 (5.5)

Ideally, the particle will rebound from node ‘a’ and arrive at a potentially eroding surface node ‘e’ under

consideration with a velocity vector eV


 where with eq. (3.13) the surface normal is defined as

 ee),(zxn 


 (5.6)

and the unit vector distance from nodes ‘a’ to ‘e’, eaU


, can be obtained as

2

ae
2

ae

aeae

ae

ae
ea

)()''''(

),''''(

zzxx

zzxx

xx

xx
U









 


 (5.7)

The angle between eV


 and en


, e , can then be calculated as

   


















 

2
ae

2
ae

eaeeae1
eea

1
e

)()''''(

)()''''(
cos)(cos

zzxx

zzxx
nU zx

 (5.8)

However, the ‘actual’ departing velocity from node ‘a’, dV


, must be determined using particle kinematics

accounting for energy losses. The method of Slikkerveer and in’t Veld [13] was adopted for this purpose,

where the departing speed dV


was defined as a fraction, fv, of the arriving speed aV


,

 avd VfV


 (5.9)

 109

and the departing angle, defined as 180° - d in the present formulation, was defined as a fraction, f of

the arriving angle a , where d is the angle between dV


and an


in Figure 5.2,

 aθd  f (5.10)

It is noted that fv and f can be different for the mask and the target. Thus, a particle is assumed to strike

node ‘e’ a second time only when the particle trajectory defined by dV


 ‘closely’ matches that defined by

eV


 in Figure 5.2. For each node ‘e’, the algorithm iterates through each plausible node ‘a’ and calculates

a single minimum displacement, smin, between these trajectories as

)min(tan aede'min xxs


  (5.11)

where de' is defined in Figure 5.2,

 de'de'   (5.12)

and using eqs. (5.2) and (5.7), the angle between eV


 and an


, e' , can be calculated as

   


















 

2
ae

2
ae

aaeaae1
aea

1
e'

)()''''(

)()''''(
cos)(cos

zzxx

zzxx
nU zx

 (5.13)

A secondary collision will occur at node ‘e’ if the following conditions are met:

 critmin ss  (5.14)

and

 critae Uxx 


 (5.15)

 110

where scrit in eq. (5.14) is a critical displacement on the order of 1 node spacing dictating whether a

secondary collision will occur at node ‘e’ and Ucrit in eq. (5.15) is a critical minimum distance between

nodes ‘e’ and ‘a’ on the order of mean particle diameter. The condition in eq. (5.15) ensures that eq.

(5.11) remains valid and approximates a realistic scenario such that the distance between nodes ‘e’ and ‘a’

must be larger than the mean particle diameter so that a particle has enough room to rebound. Since a

secondary particle trajectory will usually pass between nodes, the secondary strike contribution between

successive ‘e’ surface nodes needs to be linearly weighed to evenly distribute the erosive energy across

the nodes. Thus, eq. (5.9) is re-written to obtain the speed eV


as

 a
crit

mincrit
vd

crit

mincrit
e V

s

ss
fV

s

ss
V


























 (5.16)

where aV


 is defined by eq. (2.7) as described in Section 5.2.1 but with x’’a and za, i.e. surface nodal

values, in place of x’’ and z, respectively. The particle mass flux simply becomes

 ae 


 (5.17)

where a


 is defined by eq. (2.9) as described in Section 5.2.1 but with x’’a and za in place of x’’ and z,

respectively.

 This above procedure is repeated for all the nodes ‘e’. Only a single secondary strike

contribution from a given node ‘a’ is possible to a given node ‘e’ if conditions in eqs. (5.14) and (5.15)

hold; otherwise there is no secondary strike at node ‘e’. Although at first glance the algorithm seems

computationally expensive, the algorithm avoids many redundant calculations by checking the visibility

between nodes ‘a’ and ‘e’ and the rebound direction of the potential secondary strike trajectory. Thus,

node ‘e’ is visible to the potential secondary strike trajectory from node ‘a’ only if e' > 90° and e < 90°

in Figure 5.2, which ensures that glancing collisions never occur. The assumption is valid for smooth

surfaces that do not have excessive irregularities. In addition, by checking the rebound direction of the

potential secondary strike trajectory, many nodes can be ignored. For instance, if a > 90°, as shown in

Figure 5.2, the particle will rebound from left to right, with respect to the x’-z’ axis. Thus, node ‘e’ must

be to the right of node ‘a’, or x’e > x’a, for any calculations to be performed. Similarly, for a < 90°, a

particle will rebound from right to left, thus node ‘e’ must be to the left of node ‘a’, or x’a > x’e, for any

 111

calculations to be performed. Finally, for a = 90°, the particle will rebound back along the same arrival

trajectory from the nozzle, and thus no secondary strike is possible.

 The entire procedure is repeated at each time step and is valid for any impact angle, .

5.2.2.3 Simplified LSM for non-convex Hamiltonians including particle second strikes

The simplified LSM for non-convex H presented in Sections 3.3.3.2 and 4.3.3.2, and based on

Section 2.3.4.2, is now generalized to include the effect of particle second strike. Thus, eq. (2.21)

with 1),( zx can be rewritten as

  2ndc1stcc)()()(Kˆ 



HHH
t

 (5.18)

where the superscripts 1st and 2nd indicate first and second strike contributions. Ĥ from eq. (2.22) now

includes the effect of second strike,

 
















 
1st

zxg

gggHHH
,

2ndcc

2
)()(ˆ  (5.19)

Combining eqs. (3.2), (3.12), (3.13), (4.16), (5.8), (5.16) and (5.17), the Hamiltonians for the first and

second strike contributions on a ductile FG mask, respectively, can be expressed as

 21v)]cos1(1[)(cos)(V
C


1st
e

1st
e

1st
e

1st
eUnif0/

1st nnk
x HvMH   (5.20)

and

 21v)k)]cos1(1[)(cos(2nd
e

2nd
e

2nd
e

2nd
e

2nd nn HvV
C

H 


 (5.21)

 112

where , and are defined by eqs. (5.8), (5.16) and (5.17), respectively, is the angle

between the initial particle trajectory velocity,

2nd
e

2nd
e

2nd
eV 1st

e

1st
eV


, arriving from the nozzle to node ‘e’ and en


(Figure

5.2),

   


















 

2
e

2
e

eeee1
e1st

e

1st
e11st

e
''

''
cos)(cos

zx

zx
n

V

V zx




 (5.22)

and and are obtained using eqs. (2.7) and (2.9) as described in Section 5.2.1, respectively, but

with x’’

1st
eV 1st

e

e and ze in place of x’’ and z, respectively. It is noted that the Hamiltonians for the first and

second strike contributions on a brittle glass target corresponding to eq. (3.1) can be obtained by

substituting both n1 = kv + 1 and n2 = 0 in eqs. (5.20) and (5.21). It should also be noted that the masking

function
Unif0/xM only applies to the first strike in eq. (5.20), and not eq. (5.21). g in eq. (5.19),

originally defined by eq. (2.23), now includes the effect of second strike,

  )()(max 2nd1st 



 

gg
HHg (5.23)

From the results of eqs. (3.18) and (3.20), in eq. (5.23), the partial derivatives of eqs. (5.20) and (5.21)

with respect to x and z, can be expressed as

























)cos1(1cos''

);''(
)(21

22

1st
;

1st

 Hv

Hvnn

zx

zx
HH

zx
 (5.24)

and

























)cos1(1cos''

);''(
)(21

22

2nd
;

2nd

 Hv

Hvnn

zx

zx
HH

zx
 (5.25)

where

 113
















 

22

1

''

''
cos

zx

zx zx (5.26)

It is again noted that the brittle target versions of eqs. (5.24) and (5.25) can be obtained by substituting in

n1 = kv + 1 and n2 = 0. The notation (x’’; z) in eqs. (5.24) and (5.25) indicates that x’’ and z were used

when evaluating and , respectively. All the non-constant quantities in eq. (5.26), in the square

brackets on the right hand side of eqs. (5.24) and (5.25), in K from eq. (3.13) used in eq. (5.18), and

and from eq. (2.12) used in eq. (5.19), are evaluated at the grid nodes, rather than the surface nodes.

In contrast, eqs. (5.20)-(5.22) are evaluated at the surface nodes, which is consistent with EVM from

Sections 3.3.3.3 and 4.3.3.2 (and 5.2.2.4).

x
H z

H

 g

-
g

5.2.2.4 EVM and NB LSM

The same EVM presented in Sections 3.3.3.3 and 4.3.3.2 is used in the present formulation.

Using eq. (3.22), 1stH and 2ndH in eqs. (5.20), (5.21), (5.24) and (5.25) at the surface nodes become

 and at the grid nodes. Equations (5.24) and (5.25) thus become nd

. These new expressions now replace

1st
extH

H 2nd
ext(

2nd
extH

z

zx
H  ;

1st
ext)(a

x  ;) 1stH , 2ndH , and in eqs. (5.18), (5.19)

and (5.23) in solving eq. (5.18) for t > 0. In addition, the same NB LSM presented in Section 3.3.3.4 is

applied in the present formulation. The NB-extension algorithm in solving eq. (5.18) was analogous to

the one outlined in Section 3.3.3.7 in solving eq. (3.14).

1st
g

H 
2nd

g
H 

5.2.2.5 Grid formulation, boundary conditions, time step and surface interpolation

 For the present problem, using the geometry of Figure 4.6, the vertical and horizontal grid limits

were obtained in the same way as described in Section 4.3.3.3. These limits were then used to calculate

the spatial grid steps and global spatial coordinates at the grid nodes as described in Section 2.3.4.3. The

boundary conditions were obtained in the same way as described in Sections 2.3.4.3 and 3.3.3.5. The

time step was calculated using the CFL condition [37] described by eq. (4.17), which is now modified to

include the effect of second strike,

 114

       
1

)()(2)()(
max

,
2

c2nd
ext

c1st
ext

2nd
ext

1st
ext














































 









 

 










zxg g

HH

g

HH
t

gggg


(5.27)

where the maximum was obtained in the same way as described in Section 3.3.3.5.

 Finally, as described in Section 4.3.3.3, the location of the surface, used in obtaining),,(tzx ,

Unif0/xM and the upper and lower bands, as well as FD approximations of the partial derivatives at

surface nodes, used in EVM and the presently considered second strike formulation, were obtained using

interpolation as described in Section 3.3.3.6.

 115

5.3 Results and discussion

5.3.1 Model execution and inputs/outputs

 The second strike LSM-based model presented in Section 5.2 was verified by comparison with

experimental profiles and LSM models from Sections 2.4.1.1 (Figure 2.11) and 3.4.1 (Figure 3.7) in

Figures 5.3-5.5, as well as previously published experimental profiles and computer simulation based

analytical model from [22] along with CA based model from [23] in Figure 5.6. The necessary model

inputs and resulting outputs for the current model simulations corresponding to Cases 1-5 in Figures 5.3-

5.6 are summarized in Table 5.1. In all figures, a zero depth, i.e. z = 0, represents the mask-target

interface.

 For Cases 1-4 in Table 5.1 (Figures 5.3-5.5), the parameters h, Hm, Wm, rm, , vt, M , Hv and 

(for glass) were obtained based on experimental conditions and measurements as specified in Sections

2.2, 2.4.1.1, 3.2, 3.4.1 and 4.2. The parameters Vo, , l, l,  (for FG), kv, C, n1 and n2 were obtained

from Sections 2.4.1.1, 4.2 and 4.4.1 based on previous measurements for the same nozzle, jet conditions,

abrasives, target and mask materials as presently utilized.

 For Case 5 in Table 5.1 (Figure 5.6), almost the same experimental setup, jet conditions,

abrasives and target material were used in [22] as that specified in Sections 2.2, 2.4.1.1, 3.2 and 3.4.1.

Thus, the parameters l,  l, h,  and vt, as well as kv and C for the glass target were the same as that

for Cases 1-4, with the exception of for Cases 3 and 4, where the jet was at oblique incidence to the

target. However, the abrasives were blasted from a 3.8 x 0.3 mm rectangular nozzle in [22] instead of a

0.76 mm inner diameter nozzle, as in Cases 1-4. Thus, for this case, a constant velocity across the target

and the mask was assumed, i.e. V = Vo rather than that defined by eq. (2.7) as described in Section 5.2.1,

in order to be consistent with the approach in [22]. Also, Vo and  were obtained from measurements in

[44] as described in Section 2.4 .1, and .2 M from measurements in [17]. In addition, the assumed

tempered steel FG mask attached to the target via clamps in [22] had different dimensions than that for

Cases 1-4, and due to a lack of published data, erosion and material constants for this mask could not be

verified to be the same as that for Cases 1-4. Thus, it was assumed that no mask wear occurred in Case 5,

as was also done in [22], and thus the parameters Hv, kv, C, n1 and n2 for the mask were not specified.

For all cases in Table 5.1, the parameters prs and were obtained as explained in Sections

4.3.1 and 4.3.2.4, respectively. The parameter [16,17,37] was used to smooth the results in modelling

glass targets, estimated based on the recommendations of [17] described in Section 2.4.1.1. The

parameter for Cases 1-4 in Figures 5.3-5.5 was different than that used previously in Figure 2.11 and

adjT,z

 116

Figure 3.7 where the scanning target approach described in Sections 2.4.1.1 and 3.3.1 was used, since the

present formulation used the stationary target approach described in Sections 4.3.1 and 5.2.1.

For all cases in Table 5.1, the parameters f and fv were adjusted to obtain a best fit to the

experimental glass profiles for AR > 1 where second strike effects begin to take effect, as was also done

in [13,23]. These values were within the ranges of 0.8 ≤ f ≤ 1.2 and 0.2 ≤ fv ≤ 0.5 quoted by Slikkerveer

and in’t Veld [13], and almost the same as those assumed in [13,23], under similar experimental

conditions. The parameters scrit and Ucrit were obtained as defined in Section 5.2.2.2.

For all the present simulations in Table 5.1, the grid dimensions imax·kmax and geometrical

parameters zsurf, zam, lm,L and lm,R defined in Section 4.3.3.3 and Figure 4.6 were chosen such that x = z,

which ensured the convergence and accuracy of the numerical solution as described in Section 2.4.1.1.

Tpass for the glass target and the FG mask was obtained in the same way as explained in Section 4.4.1,

except for Case 5 where it was assumed that no mask wear resulted, as explained above, and thus Tpass for

the mask was not specified. For all cases in Table 5.1, Tpass for the target and the mask varied between

1.5-7.6 s pass-1 and 9.1-12.0 s pass-1, respectively, which resulted from possible variations in flux and/or

velocity between experiments, and the fact that different nozzles were used for Cases 1-4 and Case 5.

 As explained in Section 4.4.1, the total simulation times for all the cases were obtained by

multiplying the maximum number of nozzle passes (Table 5.1) by (the chosen) Tpass for the target. The

1stH and 2ndH in eqs. (5.20), (5.21), (5.24) and (5.25) for the mask were multiplied by the ratio of

Tpass,mask/Tpass,target. The resulting mean t values obtained with eq. (5.27) and the number of iterations and

band re-initializations (Section 3.3.3.4) are listed in Table 5.1.

 The model was implemented in MATLAB 7.9 (The MathWorks, Inc., Natick, MA, USA). All

cases were simulated on a 2.93 GHz Quad-core Intel i7 CPU with 8 GB of RAM and the resulting ETs

were approximately between 0.5-2.5 hours. An example program, corresponding to Case 2 in Figure 5.3,

is given in Appendix B.

 117

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35

x (mm)

z (mm)

Figure 5.3. Comparison of measured (Section 2.4.1.1; Figure 2.11) (◊) surface evolution of glass FG
masked channels machined at  = 90° after 2, 4, 6 and 10 passes of the nozzle with predictions of: (●)
previous LSM model (Section 2.4.1.1; Figure 2.11) that did not consider mask wear and second strikes;
(——, Case 1) present model that considers mask wear and second strikes off the target only; (▬▬, Case
2) present model that considers mask wear and second strikes both off the target and the mask. All model
inputs are specified in Table 5.1.

 118

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

13.9 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 15.0

x (mm)

z (mm)

Figure 5.4. Comparison of measured (Section 3.4.1; Figure 3.7) (—◊—) surface evolution of glass FG
masked channels machined at  = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle with predictions of:
(●, Case 3) present model that considers mask wear and does not consider second strikes. All model
inputs are specified in Table 5.1.

 119

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

13.9 14.0 14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 15.0

x (mm)

z (mm)

Figure 5.5. Comparison of measured (Section 3.4.1; Figure 3.7) (—◊—) surface evolution of glass FG
masked channels machined at  = 45° after 2, 4, 6, 10, 20 and 30 passes of the nozzle with predictions of:
(●, Case 4) present model that considers mask wear and second strikes both off the target and the mask.
All model inputs are specified in Table 5.1.

 120

-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

-0.125 -0.1 -0.075 -0.05 -0.025 0 0.025 0.05 0.075 0.1 0.125

x (mm)

z (mm)

Figure 5.6. Comparison of measured [22] (◊) surface evolution of glass FG masked channels machined at
 = 90° after 1, 3, 5, 7, 9 and 12 passes of the nozzle with predictions of: (——) previous [22] computer
based analytical model that considered second strikes; (▬) previous [23] CA based model that considered
second strikes; (▬▬, Case 5) present model that does not consider mask wear and considers second
strikes both off the target and the mask. Only a small portion of the simulated mask profiles are shown
for ease of comparisons. All model inputs are specified in Table 5.1.

 121

Table 5.1. Model inputs and numerical outputs.

Model parameters Case 1 and {Case 2}*
(Figure 5.3)

Case 3
(Figure 5.4)

Case 4
(Figure 5.5)

Case 5
(Figure 5.6)

Model inputs
V0 (m s-1) () 162 [14],15 [14] 162 [14],15 [14] 162 [14],15 [14] 148 [44],15 [44]
 l (),  l () -11.6 [19],0.5 [19] -11.6 [19],0.5 [19] -11.6 [19],0.5 [19] -11.6 [19],0.5 [19]
h (mm) 20 20 20 20 [22]
Hm (m) 100 100 100 1000 [22]
Wm (m) 400 450 450 200 [22]
rm (m) 14 14 14 300 [22]
 (°) 90 45 45 90 [22]
vt (mm s-1) 1.0 1.0 1.0 1.0 [22]
M (g min-1) 2.63 2.70 - 9.65 x 10-3·t (s) 2.70 - 9.65 x 10-3·t (s) 5.21 [17]
 (kg m-3) 2200 (glass),

7712 (UR) (FG)
2200 (glass),
7712 (UR) (FG)

2200 (glass),
7712 (UR) (FG)

2200 (glass),
- (FG)

Hv (GPa) - (glass),5.67 (FG) - (glass),5.67 (FG) - (glass),5.67 (FG) - (glass),- (FG)
kv () 1.43 [14] (glass),

1.73 (UR) (FG)
1.43 [14] (glass),
1.73 (UR) (FG)

1.43 [14] (glass),
1.73 (UR) (FG)

1.43 [14] (glass),
- (FG)

C (m s-1)-kv 8.00 x 10-6 [36] (glass),
7.90 x 10-8 (UR) (FG)

8.00 x 10-6 [36] (glass),
7.90 x 10-8 (UR) (FG)

8.00 x 10-6 [36] (glass),
7.90 x 10-8 (UR) (FG)

8.00 x 10-6 [36] (glass),
- (FG)

n1 () - (glass),0.69 (UR) (FG) - (glass),0.69 (UR) (FG) - (glass),0.69 (UR) (FG) - (glass),- (FG)
n2 () - (glass),1.40 (UR) (FG) - (glass),1.40 (UR) (FG) - (glass),1.40 (UR) (FG) - (glass),- (FG)
prs () 0.3536 0.3501 0.3501 0.3536
zT,adj (m) 20 10 10 20
() 8.0 x 10-6 (glass),0 (FG) 9.0 x 10-6 (glass),0 (FG) 9.0 x 10-6 (glass),0 (FG) 4.0 x 10-6 (glass),0 (FG)
fv () 0.4 (glass),0 {0.4} (FG) 0 (glass),0 (FG) 0.4 (glass),0.4 (FG) 0.4 (glass),0.4 (FG)
f () 0.9 (glass),1.0 (FG) 0.9 (glass),1.0 (FG) 0.9 (glass),1.0 (FG) 0.8 (glass),1.0 (FG)
scrit (m), Ucrit (m) 6.7,25 6.7,25 6.7,25 6.7,25
imax·kmax () 105·151 211·92 211·92 121·226
z surf (m) 850 450 450 450
lm,L (m), lm,R (m) 150,150 400,549 400,549 300,300
zam (m) 50.0 54.7 54.7 50.0
x (m) = z (m) 6.7 6.7 6.7 6.7
Tpass (s pass-1) 7.6 (glass),12.0 (FG) 7.0 (glass),9.1 (FG) 7.0 (glass),9.1 (FG) 1.5 (glass),- (FG)
Max. no. of
nozzle passes ()

10 30 30 12

Numerical outputs
t (mean) (s) 4.06 x 10-2 {4.16 x 10-2} 3.80 x 10-2 1.81 x 10-2 1.40 x 10-2
ET (min) 32.5 {30.6} 55.7 154.2 39.8
No. iterations () 3324 {3318} 3870 8921 1729
No. band
re-initializations ()

27 {28} 16 22 17

 *{Quantity} in the column entries indicates respective input/output for Case 2 if different than that for Case 1.

5.3.2 Comparisons with LSM model and experiments at  = 90° from Section 2.4.1.1
(Figure 2.11)

 In Figure 5.3, the predictions of the current LSM model which includes the effects of particle

second strike and mask wear are compared to experiments at  = 90° and LSM model which did not

consider particle second strikes and mask wear from Section 2.4.1.1 (Figure 2.11). The effect of mask

wear in increasing the width and depth of the feature was insignificant for this case. However, the

importance of modelling the second strike effect can be seen in Figure 5.3. Whereas the previous LSM

model failed to predict the udder shape and under-predicted the measured profile depths for AR > 1, the

present model successfully predicted the udder shape and had a much better overall agreement with the

 122

measured glass profiles both in terms of centre depth and overall shape. Figure 5.3 also compared the

present model predicted surface evolution considering ricochet and second particles strikes from both the

target and the mask (Table 5.1, Case 2), with that considering second strikes off the target only (Table

5.1, Case 1). The mask edge effects were minor in this case due to the low mask height which resulted in

only a slightly deeper and wider target profile after 10 passes when compared to the case which did not

consider mask edge effects. For 2-6 passes, the simulated profiles with and without consideration of the

mask edge effects overlapped.

5.3.3 Comparisons with LSM model and experiments at  = 45° from Section 3.4.1
(Figure 3.7)

 In Figures 5.4 and 5.5, the predictions of the present LSM model were compared to experiments

at  = 45° from Section 3.4.1 (Figure 3.7). The predictions of the LSM model which did not consider

particle second strikes and mask wear are shown in Figure 3.7. As can be seen in Figure 3.7, the overall

agreement between the previous model predicted and the measured glass profiles of the micro-channels

machined at  = 45° was poor both in terms of the overall shape and the depth, which were under-

predicted beyond 10 passes where the effective AR > 1. In Figure 5.4, in order to isolate the effects of

second strike, the present model, but considering only mask wear effects (Case 3) and not second strike,

was compared against the same experiments. Figure 5.4 showed some improvement in agreement

between predicted and measured profiles over the previous LSM model of Figure 3.7 in terms of the

overall shape, i.e. the simulated profiles in Figure 5.4 were slightly wider and deeper than those in Figure

3.7. Finally, in Figure 5.5, the present model considering both mask wear and second strike effects from

both the mask and the target (Case 4) was again compared to the same experimental results as Figures 3.7

and 5.4. In this case, a significant improvement in agreement between predicted and measured profiles

was achieved. The simulated profiles in Figure 5.5 were not only much wider and deeper than those in

Figure 3.7, but also deeper than those in Figure 5.4. The simulated profiles in Figure 5.5 over-predicted

the measured profile centre depths beyond 6 passes, more so than those in Figure 3.7 or 5.4. This perhaps

resulted from the fact that the present model did not consider spatial hindering effects. Nonetheless, the

overall model predictions which considered both effect of second strike and mask wear were much better

than those which did not consider both of these effects. It is thus clear that both the effect of second strike

and mask wear must be considered for a fair prediction of surface evolution of inclined micro-channels.

 In Section 3.4.2, it was stated that the glass experimental profiles in Figure 3.7 tended to shift

their direction of propagation to the right, likely caused by the combination of increase in mask width due

to mask wear with time, as shown in Figure 3.9, and second strike particles. Figure 5.5 shows that this

 123

effect was actually less significant than previously thought, i.e. the simulated profiles did slightly

propagate to the right, but less so than the experimental profiles. The additional discrepancy between

predicted and measured profiles beyond 10 passes shown in Figure 5.5 was likely caused by mask under-

etch that resulted in a wider profile, and thus a more significant shift in profile propagation direction than

that predicted by the model. Mask under-etch, discussed in Section 1.2.1, was also seen in Figure 4.10 in

Section 4.4.2 and in [26] when using steel masks.

It should be noted that mask edge effects were very minor for the case presented in Figure 5.5,

even more so than for the  = 90° case in Figure 5.3, and hence simulated profiles considering mask wear

and second strikes off the target only were not shown, i.e. the simulated profiles with and without

consideration of the mask edge effects overlapped.

Finally, for the case presented in Figure 4.7, where the model of Chapter 4 which only considered

mask wear effects was compared against similar experiments as that presently considered in Figures 3.7,

5.4, and 5.5 but using a narrower Wm, second strike effects were not significant. This can be said since

the agreement between predicted and measured target profiles in Figure 4.7 was very good. This likely

resulted since for the case in Figure 4.7, the mask wore and target etched at a rate such that the resulting

increase in target width preserved an effective AR such that second strikes were not significant, when

compared to the present cases.

5.3.4 Comparisons with previously published semi-computational and cellular automaton
based models and experiments at  = 90°

 Figure 5.6 shows the predictions of the current LSM model compared to previously published

experimental profiles at  = 90° [22] and to semi-computational [22] and cellular automaton (CA) based

models [23] described in Sections 1.2.1 and 1.2.2, respectively, which considered particle second strikes.

The overall agreement between the predictions of both the current model (Case 5), and those of the CA

model with the measured glass profiles of the micro-channels in Figure 5.6 were quite good, in terms of

overall profile shape. Both models were able to predict the udder shape for AR > 1, since both models

account for the second strike and mask edge effects. However, the present model slightly over-predicted

the centre profile depths beyond 5 passes. This likely resulted from the fact that the present model did not

consider spatial hindering effects, while the CA model of [23] did.

The computer simulation based analytical model of [22] predicted the measured centre profile

depths well in Figure 5.6, but did not predict the overall profile shape well for AR > 1. Instead, the

resulting simulated profiles revealed sharp cusps at their centres. In addition, the udder shape was not

predicted. This is likely because the model of [22] did not directly model the second strike effect; instead

 124

an additional ‘effective particle flux’ originating from the second strike contribution was obtained from

the computer simulation and incorporated into the analytical model. In addition, the model of [22] did not

consider curvature smoothing, i.e. when ≠0 in eq. (5.18), which the current LSM model took into

account, and spatial hindering effects, which the CA model of [23] took into account.

The present LSM formulation presented an improvement over the model of [22] in terms of

feature shape prediction as can be seen in Figure 5.6. Also, the current formulation is more

computationally efficient than the CA approach, as mentioned in Sections 1.2.2 and 1.2.3. For the case in

Figure 5.6, ET ≈ 40 min for the current LSM model, whereas ET ≈ 15 hrs. for the CA model of [23],

using similar hardware. In addition, the current model considers particle second strike effects in inclined

masked features, as shown in Section 5.3.3, and thus presents a significant improvement over previous

modelling work of [13,22,23], which only considered normal incidence cases.

Finally, it should be noted that mask edge effects were very minor for Case 5 in Figure 5.6, as

was the case in Figure 5.5, and thus simulated profiles considering second strikes off the target only were

not shown. The same conclusion was reached in [22], where the computer simulation showed that the

combination of large mask thickness and narrow mask opening width used in this case resulted in

particles ricocheting off the mask edge wall and striking the mask edge wall a second time, as opposed to

the target surface. The mask edge effect is likely to become important in cases where the ratio of mask

thickness, i.e. height, to mask opening width, i.e. feature width, approaches unity.

 125

Chapter 6 Conclusions and Future Work

6.1 Summary

In Chapter 2, a LSM-based approach was presented to model the surface evolution in AJM of

unmasked channels machined at normal and oblique jet incidence, as well as masked micro-channels and

micro-holes at normal incidence, in both brittle (glass) and ductile (PMMA) targets. The approach was

developed to address the limitations of previous modelling approaches, as described in Chapter 1. A

previously developed analytical model of the AJM surface advancement problem was recast into level set

form. The level set predicted eroded profiles were compared to those experimentally obtained, and to

those predicted by existing analytical models and a computer simulation. The proposed model generally

showed good predictive capability and improvements over previous modelling attempts. The model

developed provided a foundation for simulation of more complicated cases that followed.

In Chapter 3, the formulation presented in Chapter 2 for masked features was extended to allow

the prediction of surface evolution in AJM of masked micro-channels in glass and PMMA machined at

oblique incidence. The resulting profiles were multi-valued, which necessitated the development of a

more complex and computationally efficient NB LSM-based formulation. An extension of a previously

developed analytical model from the normal to oblique incidence case allowed the decrease in particle

flux near the mask edge to be predicted as a function of the mask height and the jet angular spread.

Utilizing the NB LSM approach resulted in, on average, 5 times faster execution times. The general

agreement between measured and predicted profiles was fair due to the fact that the proposed model

ignored particle second strikes and mask wear effects.

In Chapter 4, the formulation presented in Chapter 3 was extended to allow for the modelling of

mask erosive wear in AJM. The model permitted the prediction of the surface evolution at any jet

incidence of both the mask and the target simultaneously, by representing them as a hybrid and

continuous mask-target surface. The concept of a masking function was introduced to model the

adjustment to abrasive mass flux incident to the hybrid surface to reflect the range of particle sizes that

are ‘visible’ to this surface. The predictions of the channel surface and eroded mask profiles were

compared with measurements on micro-channels machined in both glass and PMMA targets at both

normal and oblique incidence, using tempered steel and elastomeric masks. Taking mask wear into

account showed significant improvement in agreement between measured and predicted target profiles.

 In Chapter 5, the formulation presented in Chapter 4 was extended to include the effect of particle

second strikes off a brittle target and the mask, i.e. mask edge effects, at any jet incidence. When

compared to LSM models developed in Chapters 2 and 3 that did not account for mask wear and second

 126

strike effects, the model significantly improved the prediction of measured masked micro-channels

machined in glass. The model also showed improvement over previous semi-computational and cellular

automaton based models which considered particle second strikes, either in terms of feature prediction or

in execution time.

 127

6.2 Limitations of model

The LSM-based model presented in Chapter 5 predicts the surface evolution of masked micro-

channels abrasive jet micromachined at any jet incidence in brittle targets considering particle second

strikes, mask edge effects and erosive wear of masks where the target is exposed to the jet from time zero,

e.g. FG mask. This model also applies to: 1) cases using ductile targets, e.g. PMMA, by simply changing

the target material and erosive parameters and by ignoring the effects of second strike; 2) cases using

masks which are initially flat where the target is initially unexposed, e.g. RM mask, by simply changing

the initial surface conditions for the mask; 3) surface evolution of masked micro-holes at normal

incidence since the model of Chapter 5 uses the stationary target/mask approach to approximate the

erosive efficacy for the AJM of micro-channels; and 4) surface evolution of unmasked channels at any

incidence and unmasked holes at normal incidence, by simply allowing the masking function to be unity

everywhere and by modifying the initial surface conditions and grid limits. Thus, the model of Chapter 5

is general and can be used to model any of the previous cases presented in Chapters 2-4. It has the

following limitations:

1. The model can only be used in cases where the particle mass flux, i.e. flow rate, is relatively low.

For higher mass fluxes, particles ricocheting from the surface can interfere with arriving particles

[33-35], thus decreasing the effective flux incident to the surface, and hence the erosion rate.

However, the analytical model of Burzynski and Papini [34] showed that the ranges of the

particle mass flux used in the present study, typical of those used in AJM operations, were

sufficiently low for these effects to be negligible.

2. For the AJM of ductile targets, the model can only be used in cases where particle embedding and

temperature, i.e. target surface heating, effects are minimal [2,8,17,31], as shown in Section 2.2.

For example, in the AJM of PMMA holes at a scan speed of 0.25 mm s-1 in Figure 2.15, the

profile depths were over-predicted by the model beyond 7 passes. This was likely due to particle

embedding which decreases the effective erosion rate [2,8,17,31]. In addition, for much higher

fluxes and longer blasting times than that considered in the present study, the PMMA targets can

begin to experience surface heating [2,31] which can affect the erosion rate. Furthermore, the

present model cannot be used for ductile polymeric targets such as ABS or soft PDMS that can be

very difficult to machine or have very low erosion rates when abrasive jet machined at room

temperature [8]. However, the model is still applicable to these materials when machining at

cryogenic temperatures, and to a wide range of typical experimental conditions and ductile targets

used in AJM, such as, e.g. LUCITE and LEXAN [31].

 128

3. As discussed in Section 4.3.2.2, the model uses a the first-order approximation that assumes the

masking function at the sloped mask edge to be constant at an average value, determined by

assuming a linear mask edge. This leads to discrepancies between the measured and predicted

mask profiles, as was seen in, for instance, Figure 4.7. Nevertheless, as explained in Section

4.4.2, it is the prediction of the surface evolution of the target profiles incorporating mask wear

that is of practical importance, which in most cases, the model does fairly well.

4. As discussed in Sections 5.3.3 and 5.3.4, the model ignores spatial hindering effects [13,22,23],

and thus can only be used for cases where such effects are minimal, i.e. when the width at the top

of the developing udder shape is significantly larger than the mean particle size. For example, for

the same mean particle size, the udder shape width in Figure 5.3 was approximately twice as large

as that in Figure 5.6, and this was reflected in the better model predictions in Figure 5.3 when

compared to Figure 5.6. Nevertheless, for the case presented in Figure 5.6, the CA simulation of

[23] showed that the maximum percentage of spatially hindered particles at the profile centres

was only approximately 9%, and thus this effect is likely to become significant only at much

higher ARs in brittle features than those presently considered.

5. The model cannot be used for prediction of the AJM of holes at oblique incidence, or channels at

very slow scan speeds or high mass fluxes, where an appreciable slope in the scan direction at the

leading edge of the jet can develop [14], as discussed in Section 2.2. These cases require a 3D

formulation because, in the former case, there is no profile symmetry across the scanning

direction, and in the latter case, the slope on the leading edge can strongly affect the erosion rate

under the given circumstances. However, scan speeds and mass fluxes can be chosen such that

the effect of the development of an appreciable slope in the scan direction can be ignored, while

still maintaining an efficient erosion rate, as was done in the present study.

 129

6.3 Conclusions and contributions

The main conclusions and contributions of the present study can be summarized as follows:

1. In Chapter 2, a novel approach was presented to model the surface evolution in AJM of

unmasked and masked features in both brittle and ductile targets using LSM.

2. For most of the cases considered in Chapter 2, excellent agreement with the experimental surface

profiles was obtained using the foundational LSM-based model. The model also showed

improvement in terms of feature prediction over existing analytical models and a computer

simulation, especially in cases where the evolving feature developed steep sidewalls, e.g. as seen

in the surface evolution of PMMA, which could not be predicted by the analytical models.

3. In Chapters 2 and 3, the scanning target approach was used for the first time in modelling the

erosive efficacy for the AJM of micro-channels, whereas all previous analytical models assumed

a stationary target approach. This approach proved to be useful in modelling brittle, e.g., glass,

targets that develop sharp profiles since it delays the onset of high curvature, and hence in many

cases avoids the use of curvature smoothing which is computationally expensive.

4. In Chapter 3, an NB LSM-based formulation was developed that, for the first time, allowed the

prediction of surface evolution in AJM of inclined masked features.

5. In Chapter 3, it was shown that the developed model for predicting the decrease in particle flux

near the mask edge at oblique incidence could also be used in setting up successful experimental

runs by calculating the portion of the target that is exposed to the jet prior to machining.

6. In the LSM formulation of Chapter 3, the resulting surface velocity function was non-convex,

necessitating a novel extension of an existing extension velocity methodology (EVM) to allow

the problem of grid ‘visibility’ of the particle flux to be properly addressed.

7. The results of Chapter 3 showed that the inclined masked PMMA micro-channels had straight

walls and rectangular bottoms, while the glass micro-channels had curved walls and rounded

bottoms. It was also shown that changing the angle of incidence does not significantly affect the

general shape of masked PMMA channels.

8. Since the LSM-based model developed in Chapter 3 ignored particle second strike and mask wear

effects, it was best suited for predicting surface evolution at oblique incidence in ductile

substrates with non-eroding masks, since the straight sidewalls in PMMA result in a low

likelihood of particle ricochet. The model was not suitable for use on glass, where mask wear

and second strike effects significantly affected its ability to accurately predict the resulting

surface evolution for AR > 1. In addition, it was shown that the combination of the effects of

 130

mask wear and second strike particles can cause a shift in the propagation direction of the

developing glass profiles, although it was later shown that that this effect is actually less

significant than originally thought.

9. In Chapter 4, the LSM-based formulation of Chapter 3 was extended to permit the prediction of

the surface evolution of both the target and the mask simultaneously. It was the first model that

considered the influence of mask wear on features machined using AJM at oblique incidence.

10. The work of Chapter 4 demonstrated for the first time the need to model the adjustment in the

mass flux at the mask edge walls themselves, as opposed to the target only, due to the finite size

of the particles which limit the flux that is visible to the mask edges. This led to the development

of a masking function which generalized the adjustment in the flux to the entire mask-target

surface.

11. In Chapter 4, the use of a continuous mask-target surface in the formulation introduced

complications that were nevertheless resolved to obtain significant improvement in agreement

between measured and predicted target surface profiles when mask wear was taken into account,

although the mask profiles were not predicted as well. Mask wear generally resulted in wider and

deeper target profiles, when compared to cases where no mask wear was present.

12. In Chapter 5, the LSM-based formulation of Chapter 4 was extended to include second strike and

mask edge effects. The model presented was the first to allow prediction of these effects in

inclined masked features made using AJM.

13. The work of Chapter 5 demonstrated that the second strike effect becomes important in the

prediction of surface evolution of brittle (glass) features abrasive jet micromachined at any

incidence for AR > 1. The inclusion of the second strike effect into the formulation led to a

significant improvement in feature prediction when compared to LSM models which did not

account for these effects. The model presented also showed significant improvement over

previous semi-computational and cellular automaton based models which accounted for these

effects, either in terms of feature prediction or in execution time.

14. The work of Chapter 5 showed that the mask edge effect is not a significant contributor to the

overall second strike effect; thus, in the majority of cases, it can be ignored.

15. The proposed LSM-based feature predictive models can prove to be practical assistive tools

during the micro-fabrication of complex MEMS and microfluidic devices using AJM.

 131

6.4 Future work

The general LSM-based model presented in Chapter 5 can be improved by addressing the

limitation outlined in Section 6.2. Firstly, it can be extended to model high flux cases by incorporating

the analytical model of particle interference effects developed in [34]. However, since the model of [34]

was developed for divergent erosive jets incident to a flat target surface at normal incidence only, it would

have to be generalized to work for cases where the jet is incident to a non-flat, i.e. evolving, target surface

at any incidence, as in the present study. Secondly, the model can be extended to account for particle

embedding effects in ductile targets by incorporating the model of [31] where a relation for a net

embedding energy flux as a function of scanning direction distance and angle of incidence was used. This

would enable the modelling of surface evolution in AJM of a wider class of polymeric targets where these

effects are significant. Thirdly, the first-order approximation in modelling the mask edge could be

improved by extending the formulation of Section 4.3.2.2 to work for cases where the mask edge slope is

non-linear. Furthermore, spatial hindering effects could be modelled by extending the formulation of

Section 4.3.2.1 for the masking function for the target by assuming that the width of the udder shape is

analogous to the mask opening width. This would ensure that particles only as wide as the udder shape

itself and smaller can reach the bottom of the profile. If necessary, the model could be extended to 3D by

extending the size of arrays and gradient operators for the level set function. This would also require the

development of a new 3D formulation to model the erosive efficacy, masking function and the grid, more

difficult techniques in visualizing the evolving surface, and more efficient use of computational resources,

i.e. by taking advantage of parallel computing to maintain computational efficiency.

The model in its present form could be made more computationally efficient by minimizing the

frequency of re-initialization, FR, of the level set function, while still ensuring that eq. (3.12) remains

valid (see Section 3.3.3.1). This can be achieved through numerical convergence studies or the

introduction of a metric, although this would make the approach more complicated and less accurate,

when compared to the present approach where re-initializaton is performed at each time step to ensure the

highest degree of accuracy. As a final note, the present model can be used to predict more intricate

shapes that can be sculpted for a desired application through superposition of individual features made

using AJM, i.e. the resulting surface shape from the initial simulation can be used as an input for the next

one, etc. Such sculpted features could be abrasive jet micromachined by using a combination of different

nozzle passes, mask patterns, mask dimensions, and jet parameters, e.g. scan speed, angle of incidence,

standoff distance, particle flux, velocity, shape and size. This could be considered for future work.

 132

Appendix A Abrasive Mass Flow Rate Measurements for AJM Experiments

In the analysis, the mass flow rate fluctuation over the course of the machining experiment,

originally described in Section 2.4.1.1, was deemed to be significant if the percentage change in average

M before and after the experiment was more than 10%. In such cases, the mass flow rate was modelled

as a linearly decreasing function of time t (cases in Tables A-3-A-6, A-9 and A-10). Otherwise, the total

average M was used (cases in Tables A-1, A-2, A-7, A-8 and A-11-A-16).

For the cases in Tables A-3-A-6, A-9 and A-10, the linear M function was obtained using the

average M before and after the experiment and the total machining time for the respective cases, i.e. the

maximum number of nozzle passes multiplied by 2rs/vt (Section 2.3.2), since all such cases corresponded

to the machining of channels. For all these cases, the maximum number of nozzle passes was 30, as

indicated in Sections 2.4.1.1 and 3.4.1. From Sections 2.3.2 and 2.3.4.3, rscan be obtained as rs =

/)001.0ln(h , where h = 20 mm from Sections 2.2 and 3.2 and = 15 from Sections 2.4.1.1 and

3.4.1. Using scanning speeds vt of 1 mm s-1 (glass, Tables A-3 and A-9) and 0.5 mm s-1 (PMMA, Tables

A-4-A-6 and A-10) from Sections 2.2 and 3.2, the resulting total machining times were obtained

approximately as 210 s and 420 s, respectively. The resulting linear M functions are listed in Tables A-3-

A-6, A-9 and A-10.

Table A-1. Abrasive mass flow rate measurements corresponding to Figure 2.5 and Sections 2.2 and
2.4.1.1.
 Trial M avg. (stand.

dev.) (g min-1)
 1 2 3
M before experiment
(g min-1)

3.41 3.32 3.35 3.36 (0.04)

M after experiment
(g min-1)

3.20 3.29 3.23 3.24 (0.04)

M total avg. (total stand.
dev.) (g min-1)

 3.30 (0.07)

Change in M avg.
before/after experiment (%)

 3.6 (< 10)

 133

Table A-2. Abrasive mass flow rate measurements corresponding to Figure 2.6 and Sections 2.2 and
2.4.1.1.
 Trial M avg. (stand.

dev.) (g min-1)
 1 2 3
M before experiment
(g min-1)

3.37 3.29 3.30 3.32 (0.04)

M after experiment
(g min-1)

3.27 3.31 3.26 3.28 (0.02)

M total avg. (total stand.
dev.) (g min-1)

 3.30 (0.04)

Change in M avg.
before/after experiment (%)

 1.2 (< 10)

Table A-3. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
2.7 and Sections 2.2 and 2.4.1.1.

 Trial M avg. (stand. dev.)
(g min-1)

 1 2 3
M before experiment
(g min-1)

2.27 2.46 2.56 2.43 (0.12)

M after experiment
(g min-1)

2.09 2.12 2.33 2.18 (0.11)

M total avg. (total stand.
dev.) (g min-1)

 2.31 (0.17)

Change in M avg.
before/after experiment (%)

 10.3 (> 10)

Resulting M function
(g min-1)

 2.43-1.19 x 10-3t(s)

 134

Table A-4. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
2.8 and Sections 2.2 and 2.4.1.1.
 Trial M avg. (stand. dev.)

(g min-1)
 1 2 3
M before experiment
(g min-1)

4.17 3.96 3.78 3.97 (0.16)

M after experiment
(g min-1)

2.98 3.21 3.13 3.11 (0.10)

M total avg. (total stand.
dev.) (g min-1)

 3.54 (0.45)

Change in M avg.
before/after experiment (%)

 21.7 (> 10)

Resulting M function
(g min-1)

 3.97-2.05 x 10-3t(s)

Table A-5. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
2.9 and Sections 2.2 and 2.4.1.1.

 Trial M avg. (stand. dev.)
(g min-1)

 1 2 3
M before experiment
(g min-1)

3.77 4.05 3.82 3.88 (0.12)

M after experiment
(g min-1)

2.21 2.53 2.52 2.42 (0.15)

M total avg. (total stand.
dev.) (g min-1)

 3.15 (0.74)

Change in M avg.
before/after experiment (%)

 37.6 (> 10)

Resulting M function
(g min-1)

 3.88-3.47 x 10-3t(s)

 135

Table A-6. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
2.10 and Sections 2.2 and 2.4.1.1.
 Trial M avg. (stand. dev.)

(g min-1)
 1 2 3
M before experiment
(g min-1)

2.77 2.43 2.78 2.66 (0.16)

M after experiment
(g min-1)

2.25 2.31 1.92 2.16 (0.17)

M total avg. (total stand.
dev.) (g min-1)

 2.41 (0.30)

Change in M avg.
before/after experiment (%)

 18.8 (> 10)

Resulting M function
(g min-1)

 2.66-1.19 x 10-3t(s)

Table A-7. Abrasive mass flow rate measurements corresponding to Figure 2.11 and Sections 2.2 and
2.4.1.1.
 Trial M avg. (stand.

dev.) (g min-1)
 1 2 3
M before experiment
(g min-1)

2.63 2.81 2.69 2.71 (0.07)

M after experiment
(g min-1)

2.47 2.58 2.60 2.55 (0.06)

M total avg. (total stand.
dev.) (g min-1)

 2.63 (0.10)

Change in M avg.
before/after experiment (%)

 5.9 (< 10)

Table A-8. Abrasive mass flow rate measurements corresponding to Figure 2.12 and Sections 2.2 and
2.4.1.1.
 Trial M avg. (stand.

dev.) (g min-1)
 1 2 3
M before experiment
(g min-1)

5.31 5.55 5.61 5.49 (0.13)

M after experiment
(g min-1)

5.29 5.19 5.33 5.27 (0.06)

M total avg. (total stand.
dev.) (g min-1)

 5.38 (0.15)

Change in M avg.
before/after experiment (%)

 4.0 (< 10)

 136

Table A-9. Abrasive mass flow rate measurements and resulting linear function corresponding to Figures
3.7 and 3.9, Table 3.1, and Sections 3.2 and 3.4.1.
 Trial M avg. (stand. dev.)

(g min-1)
 1 2 3
M before experiment
(g min-1)

2.78 2.49 2.83 2.70 (0.15)

M after experiment
(g min-1)

0.58 0.91 0.52 0.67 (0.17)

M total avg. (total stand.
dev.) (g min-1)

 1.69 (1.03)

Change in M avg.
before/after experiment (%)

 75.2 (> 10)

Resulting M function
(g min-1)

 2.70-9.65 x 10-3t(s)

Table A-10. Abrasive mass flow rate measurements and resulting linear function corresponding to Figure
3.8, Table 3.1, and Sections 3.2 and 3.4.1.
 Trial M avg. (stand. dev.)

(g min-1)
 1 2 3
M before experiment
(g min-1)

1.71 1.99 1.88 1.86 (0.12)

M after experiment
(g min-1)

1.31 1.12 1.33 1.25 (0.09)

M total avg. (total stand.
dev.) (g min-1)

 1.56 (0.32)

Change in M avg.
before/after experiment (%)

 32.8 (> 10)

Resulting M function
(g min-1)

 1.86-1.44 x 10-3t(s)

 137

Table A-11. Abrasive mass flow rate measurements corresponding to Figures 4.7 and 4.8, Table 4.1, and
Sections 4.2 and 4.4.1.
 Trial M avg. (stand.

dev.) (g min-1)
 1 2 3
M before experiment
(g min-1)

2.70 2.12 3.01 2.61 (0.37)

M after experiment
(g min-1)

2.08 2.62 2.83 2.51 (0.32)

M total avg. (total stand.
dev.) (g min-1)

 2.56 (0.35)

Change in M avg.
before/after experiment (%)

 3.8 (< 10)

Table A-12. Abrasive mass flow rate measurements corresponding to Figure 4.9, Table 4.1, and Sections
4.2 and 4.4.1.

 Trial M avg. (stand.
dev.) (g min-1)

 1 2 3
M before experiment
(g min-1)

3.84 3.82 3.86 3.84 (0.02)

M after experiment
(g min-1)

3.85 3.84 3.83 3.84 (0.01)

M total avg. (total stand.
dev.) (g min-1)

 3.84 (0.01)

Change in M avg.
before/after experiment (%)

 0 (< 10)

Table A-13. Abrasive mass flow rate measurements corresponding to Figure 4.10 (x ≤ 0), Table 4.1, and
Sections 4.2 and 4.4.1.

 Trial M avg. (stand.
dev.) (g min-1)

 1 2 3
M before experiment
(g min-1)

2.81 3.39 3.16 3.12 (0.24)

M after experiment
(g min-1)

3.17 3.03 4.06 3.42 (0.46)

M total avg. (total stand.
dev.) (g min-1)

 3.27 (0.39)

Change in M avg.
before/after experiment (%)

 9.6 (< 10)

 138

Table A-14. Abrasive mass flow rate measurements corresponding to Figure 4.10 (x ≥ 0), Table 4.1, and
Sections 4.2 and 4.4.1.
 Trial M avg. (stand.

dev.) (g min-1)
 1 2 3
M before experiment
(g min-1)

2.13 2.67 2.25 2.35 (0.23)

M after experiment
(g min-1)

2.05 1.79 2.52 2.12 (0.30)

M total avg. (total stand.
dev.) (g min-1)

 2.24 (0.29)

Change in M avg.
before/after experiment (%)

 9.8 (< 10)

Table A-15. Abrasive mass flow rate measurements corresponding to Figure 4.11 (x ≤ 0), Table 4.1, and
Sections 4.2 and 4.4.1.

 Trial M avg. (stand.
dev.) (g min-1)

 1 2 3
M before experiment
(g min-1)

2.97 3.97 3.86 3.60 (0.45)

M after experiment
(g min-1)

3.07 3.68 4.05 3.60 (0.40)

M total avg. (total stand.
dev.) (g min-1)

 3.60 (0.43)

Change in M avg.
before/after experiment (%)

 0 (< 10)

Table A-16. Abrasive mass flow rate measurements corresponding to Figure 4.11 (x ≥ 0), Table 4.1, and
Sections 4.2 and 4.4.1.

 Trial M avg. (stand.
dev.) (g min-1)

 1 2 3
M before experiment
(g min-1)

3.45 3.62 3.55 3.54 (0.07)

M after experiment
(g min-1)

3.56 3.58 3.60 3.58 (0.02)

M total avg. (total stand.
dev.) (g min-1)

 3.56 (0.05)

Change in M avg.
before/after experiment (%)

 1.1 (< 10)

 139

Appendix B Example Program for the Case Corresponding to Figure 5.3
(Case 2) in Section 5.3.1

%2D LLLF LSM with Curvature, F Extended, Narrow Band
%AJM of Masked Glass Channels with Mask Wear, Second Strike
clc
clear all
tic; %Start timer
%__
%Target (T) Properties
%Input Constants of Target (all in metric units)
MFR =2.63/60000; %MFR (kg/s)
C=8.0e-6; %T %Empirical constant (m/s)^-k_vel
H_slp=4.92; %Velocity distribution slope
beta=15; %Focus coefficient
v_o=162; %v(0) (m/s)
v_scan=0.001; %Scan Velocity (m/s)
rho_s=2200; %T %Target surface mass density (kg/m^3)
k_vel=1.43; %T %Velocity exponent
alfa=90*pi/180; %Angle of incidence (rad)
epsilon=8e-6; %Curvature coefficient - NOTE has to be MAX if have epsilon for T & M (SEE CFL condition)
h=0.02; %Standoff distance (m)
W_m=400e-6; %Mask width (m)
H_m=100e-6; %Mask height (m)
%__
%Mask (M) Properties
C_M=7.9e-8; %Empirical constant (Mask)(m/s)^-k_vel_M
rho_s_M=7712; %Mass density (Mask) (kg/m^3)
k_vel_M=1.73; %Velocity exponent (Mask)
H_vic_M=5.67; %Vicker's hardness (Mask) (GPa)
n_1_M=0.69; %Ductile Erosion constants (Mask)
n_2_M=1.399;
leng_M_L=150e-6; %Mask length on left side (m)
leng_M_R=150e-6; %Mask length on right side (m)
%__
%Other Inputs
pas_des=10; %Desired number of passes
adj_r_s=1.08; %r_s (radius of impact area of jet on surface; see r_s) fit, i.e. Tpass_T (the time it takes to reach initial profile depth; see t_in) - applied here for code
simplicity
Num_iter=200000; %Used for initial time step dt=tin/Num_iter (see below)
adj_r_s_M=1.71; %T_pass_M fit (Mask); See adj_r_s
C_M=C_M*(adj_r_s_M/adj_r_s); %Equivalent to Hamiltonian_M*(T_pass_M/T_pass_T) since C_M in Hamiltonian_M - applied here for code simplicity
z_in=850e-6; %Maximum expected feature(target) depth (m) (ensure large enough to account for upper band size BS)
z_air=50e-6; %Vertical distance above mask (m); (ensure large enough to account for lower band size)
i_max=105; %Grid size, x
k_max=151; %Grid size, z
BS_L=2; %Define LOWER band size (Integer), in multiples of dz (need 1 grid pt. clearance from end of grid)
BS_U=4; %Define UPPER band size (Integer), in multiples of dz (need 1 grid pt. clearance from end of grid)
MT_pt_dist=3; %Define zTadj distance, in multiples of dz
%__
%Specify output name of excel file
if (alfa==90*pi/180)
 fil_name='G_2DMOb_FxNB_MWr_2S_90FGch.xls';
end
if (alfa==60*pi/180)
 fil_name='G_2DMOb_FxNB_MWr_2S_60FGch.xls';
end
if (alfa==45*pi/180)
 fil_name='G_2DMOb_FxNB_MWr_2S_45FGch.xls';
end
if (alfa==30*pi/180)
 fil_name='G_2DMOb_FxNB_MWr_2S_30FGch.xls';
end
%__
%Calculate Spread angle (rad), assume 99.9% particles from r=0 to
%(r+dr)_max and radius of impact area (r_s) of jet on surface in scan direction
fi=atan(sqrt(-log(0.001))/beta);
r_s=adj_r_s*h*tan(fi); %Adjusted r_s to obtain Tpass_T - applied here for code simplicity
y_mean=0.3536*(r_s/adj_r_s); %Mean y used in stationary erosive power/efficacy (see below) simulating Avg. scanning erosive power/efficacy
%__
%Calculate input 'blasting time'
pass_spec=pas_des;
t_in=pass_spec*(2*r_s)/v_scan;
T_pass_T=(2*r_s)/v_scan; %Tpass_T
T_pass_M=(2*r_s)/v_scan*(adj_r_s_M/adj_r_s); %Tpass_M
%__

 140

%Calculate minimum and maximum x & z grid limits
x_off=W_m/2+leng_M_L; %Offset distance between global and nozzle axes

if (alfa==90*pi/180) %Need this condition since Matlab creates error for cos(90)
x_min_grid=0;
x_max_grid=W_m/2+leng_M_R+x_off;
else
x_min_grid=h*cos(alfa);
x_max_grid=h*cos(alfa)+W_m/2+leng_M_R+x_off;
end

z_min_grid=h*sin(alfa)-(H_m+z_air);
z_max_grid=h*sin(alfa)+z_in;

%Define grid spacing
dx=(x_max_grid-x_min_grid)/(i_max-1);
dz=(z_max_grid-z_min_grid)/(k_max-1);
%__
Crit_D=dz/2; %Define critical distance that must be achieved before bands are rebuilt
%__
%Define x and z coordinates
x_cord=zeros(1,i_max);
for i=1:1:i_max
 x_cord(i)=(i-1).*dx+x_min_grid;
end
%Local x, nozzle origin
x_cord_local=zeros(1,i_max);
for i=1:1:i_max
x_cord_local(i)=x_cord(i)-x_off;
end
z_cord=zeros(k_max,1);
for k=1:1:k_max
z_cord(k)=(k_max-k).*dz+z_min_grid;
end
%__
%INITIALIZATION of phi (level set function)

%Create arrays for initial surface, inc. mask
r_UCt=14e-6; %Mask radius

%Top mask surface (left and right)
z_rTL=h*sin(alfa)-H_m+r_UCt; %Centre pos'n of radial circle
x_rTL=x_min_grid+leng_M_L-r_UCt;
i_max_1L=1+ceil(leng_M_L/dx);
dx_1L=leng_M_L/(i_max_1L-1);
xz_surf_ini_1L=zeros(i_max_1L,2);
for i_1L=1:1:i_max_1L
 xz_surf_ini_1L(i_1L,1)=(i_1L-1)*dx_1L+x_min_grid;
 if (xz_surf_ini_1L(i_1L,1)<x_rTL)
 xz_surf_ini_1L(i_1L,2)=h*sin(alfa)-H_m;
 else
 xz_surf_ini_1L(i_1L,2)=real(-sqrt(r_UCt^2-(xz_surf_ini_1L(i_1L,1)-x_rTL).^2)+z_rTL);
 end
end

z_rTR=h*sin(alfa)-H_m+r_UCt; %Centre pos'n of radial circle
x_rTR=x_max_grid-leng_M_R+r_UCt;
i_max_1R=1+ceil(leng_M_R/dx);
dx_1R=leng_M_R/(i_max_1R-1);
xz_surf_ini_1R=zeros(i_max_1R,2);
for i_1R=1:1:i_max_1R
 xz_surf_ini_1R(i_1R,1)=(i_1R-1)*dx_1R+(x_max_grid-leng_M_R);
 if (xz_surf_ini_1R(i_1R,1)>x_rTR)
 xz_surf_ini_1R(i_1R,2)=h*sin(alfa)-H_m;
 else
 xz_surf_ini_1R(i_1R,2)=real(-sqrt(r_UCt^2-(xz_surf_ini_1R(i_1R,1)-x_rTR).^2)+z_rTR);
 end
end
%Target surface
i_max_2=1+ceil((W_m)/dx);
dx_2=(W_m)/(i_max_2-1);
xz_surf_ini_2=zeros(i_max_2,2);
for i_2=1:1:i_max_2
 xz_surf_ini_2(i_2,1)=(i_2-1)*dx_2+(x_min_grid+leng_M_L);
 xz_surf_ini_2(i_2,2)=h*sin(alfa);
end
%Vertical Mask edge surface (left and right)
k_max_3=1+ceil((H_m-r_UCt)/dz);
dz_3=(H_m-r_UCt)/(k_max_3-1);
xz_surf_ini_3=zeros(k_max_3,2);

 141

for k_3=1:1:k_max_3
 xz_surf_ini_3(k_3,1)=x_min_grid+leng_M_L;
 xz_surf_ini_3(k_3,2)=(k_3-1)*dz_3+(h*sin(alfa)-H_m+r_UCt);
end

k_max_4=k_max_3;
dz_4=dz_3;
xz_surf_ini_4=zeros(k_max_4,2);
for k_4=1:1:k_max_4
 xz_surf_ini_4(k_4,1)=x_max_grid-leng_M_R;
 xz_surf_ini_4(k_4,2)=(k_4-1)*dz_4+(h*sin(alfa)-H_m+r_UCt);
end

%Combine all into 1 array
xz_surf_ini=[xz_surf_ini_1L;xz_surf_ini_1R;xz_surf_ini_2;xz_surf_ini_3;xz_surf_ini_4];

%Calculate SDF and hence initialize phi
b_max_ini=i_max_1L+i_max_1R+i_max_2+k_max_3+k_max_4;
SDF_ini=zeros(b_max_ini,1);
phi=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 for b_ini=1:1:b_max_ini
 SDF_ini(b_ini)=((x_cord(i)-xz_surf_ini(b_ini,1)).^2+(z_cord(k)-xz_surf_ini(b_ini,2)).^2).^0.5;
 end

 min_SDF_ini=min(SDF_ini);

 %Assign signage (+ or -)
 if (min_SDF_ini==0)
 phi(k,i)=0;
 else
 if (z_cord(k)<(h*sin(alfa)-H_m))
 phi(k,i)=-min_SDF_ini;
 elseif (z_cord(k)>(h*sin(alfa)))
 phi(k,i)=min_SDF_ini;
 else %if (h*sin(alfa)-H_m) <= z <= h*sin(alfa)

 if ((x_cord(i)>=x_min_grid)&&(x_cord(i)<(x_min_grid+leng_M_L-r_UCt)))||...
 ((x_cord(i)>(x_max_grid-leng_M_R+r_UCt))&&(x_cord(i)<=x_max_grid))
 phi(k,i)=min_SDF_ini;
 elseif ((x_cord(i)>(x_min_grid+leng_M_L))&&(x_cord(i)<(x_max_grid-leng_M_R))) %if x_min_grid+leng_M_L < x < x_max_grid-leng_M_R
 phi(k,i)=-min_SDF_ini;
 elseif ((x_cord(i)>=x_min_grid+leng_M_L-r_UCt)&&(x_cord(i)<=(x_min_grid+leng_M_L)))

 if (z_cord(k)>(h*sin(alfa)-H_m+r_UCt))&&(z_cord(k)<(h*sin(alfa)))
 phi(k,i)=min_SDF_ini;
 else
 if (((x_cord(i)-x_rTL)^2+(z_cord(k)-z_rTL)^2)>=r_UCt^2)
 phi(k,i)=-min_SDF_ini;
 else
 phi(k,i)=min_SDF_ini;
 end
 end

 else

 if (z_cord(k)>(h*sin(alfa)-H_m+r_UCt))&&(z_cord(k)<(h*sin(alfa)))
 phi(k,i)=min_SDF_ini;
 else
 if (((x_cord(i)-x_rTR)^2+(z_cord(k)-z_rTR)^2)>=r_UCt^2)
 phi(k,i)=-min_SDF_ini;
 else
 phi(k,i)=min_SDF_ini;
 end
 end

 end
 end
 end

 end
end
%__
%Define flags for M and T
flag_T_M=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 if (z_cord(k)<(h*sin(alfa)))
 flag_T_M(k,i)=2; %M

 142

 else
 flag_T_M(k,i)=1; %T
 end
 end
end
%__
%Define (initial) mask "Visibility", Ratio of what flux "sees" at
%initial surface w.r.t mask opening
x_m=H_m*(h*cos(alfa)-W_m/2)/(h*sin(alfa)-H_m); %(Initial) Mask shadow at top of surface

if (x_m<=0) %i.e., when (alfa+fi_min)>= 90 deg
 Visibility=1;
elseif (x_m>=W_m) %i.e., when shadow is larger than mask opening
 Visibility=0;
else
 Visibility=(W_m-x_m)/W_m;
end
%__
%Adjustment to Mass Flux due to Mask Model for Target M(x') for initial iteration

%Calculate visibility angles based on zero level set (M)
x_prime_surf_LM=zeros(b_max_ini,1); %Initial surface for M in local coordinates
z_prime_surf_LM=zeros(b_max_ini,1);
x_prime_surf_RM=zeros(b_max_ini,1);
z_prime_surf_RM=zeros(b_max_ini,1);
for b_ini=1:1:b_max_ini
 if ((xz_surf_ini(b_ini,1)>=x_min_grid)&&(xz_surf_ini(b_ini,1)<=(x_min_grid+leng_M_L)))&&...
 ((xz_surf_ini(b_ini,2)>=(h*sin(alfa)-H_m))&&(xz_surf_ini(b_ini,2)<h*sin(alfa))) %This check also ensures that if surf was not encountered
 % (i.e. xz surfs are 0) then it will ignore those values (this will occur below after interpolation)
 x_prime_surf_LM(b_ini)=(xz_surf_ini(b_ini,1)-x_off).*sin(alfa)-xz_surf_ini(b_ini,2).*cos(alfa); %Rotated local x
 z_prime_surf_LM(b_ini)=(xz_surf_ini(b_ini,1)-x_off).*cos(alfa)+xz_surf_ini(b_ini,2).*sin(alfa); %Rotated local z
 else
 x_prime_surf_LM(b_ini)=NaN;
 z_prime_surf_LM(b_ini)=NaN;
 end

 if ((xz_surf_ini(b_ini,1)>=(x_max_grid-leng_M_R))&&(xz_surf_ini(b_ini,1)<=x_max_grid))&&...
 ((xz_surf_ini(b_ini,2)>=(h*sin(alfa)-H_m))&&(xz_surf_ini(b_ini,2)<h*sin(alfa)))
 x_prime_surf_RM(b_ini)=(xz_surf_ini(b_ini,1)-x_off).*sin(alfa)-xz_surf_ini(b_ini,2).*cos(alfa); %Rotated local x
 z_prime_surf_RM(b_ini)=(xz_surf_ini(b_ini,1)-x_off).*cos(alfa)+xz_surf_ini(b_ini,2).*sin(alfa); %Rotated local z
 else
 x_prime_surf_RM(b_ini)=NaN;
 z_prime_surf_RM(b_ini)=NaN;
 end

end

%By evaluating Max of x_prime_surf_LM, we can check if any entries are
%positive, ignoring NaN's; if any are, then we have case (b),
%where mask shadow is >= W_m/2 from left mask edge, else have case (a) and
%(c), mask shadow is < W_m/2
[max_x_prime_surf_LM,I_max_LM]=max(x_prime_surf_LM); %Will ignore NaN's

%Min tan of left 'spread' angle defined by mask
if (max_x_prime_surf_LM>=0) %Case (b)
 tan_fi_min=max_x_prime_surf_LM/z_prime_surf_LM(I_max_LM);
else %Case (a) and (c)
 %Find min |x_prime_surf_LM|
 [min_x_prime_surf_LM,I_min_LM]=min(abs(x_prime_surf_LM));

 if (alfa==90*pi/180)
 tan_fi_min=min_x_prime_surf_LM/h;
 else
 tan_fi_min=min_x_prime_surf_LM/z_prime_surf_LM(I_min_LM);
 end
end

%Find min x_prime_surf_RM
[min_x_prime_surf_RM,I_min_RM]=min(x_prime_surf_RM);
%Max tan of right 'spread' angle defined by mask
if (alfa==90*pi/180)
 tan_fi_max=min_x_prime_surf_RM/h;
else
 tan_fi_max=min_x_prime_surf_RM/z_prime_surf_RM(I_min_RM);
end

%Define more Mask "Visibility" Parameters
x_prime=zeros(k_max,i_max);
z_prime=zeros(k_max,i_max);
for k=1:1:k_max

 143

 for i=1:1:i_max
 x_prime(k,i)=x_cord_local(i).*sin(alfa)-z_cord(k).*cos(alfa); %Rotated local x
 z_prime(k,i)=x_cord_local(i).*cos(alfa)+z_cord(k).*sin(alfa); %Rotated local z
 end
end

%Define Parameters for particle size distribution (mean and standard
%deviation)
mu_l=-11.615;
sigma_l=0.5;

%Constants for M(x') closed form fit (T)
P_1=0.11338616706948672477e-14;
P_2=-1.4142135623730950488;
P_3=15.365430355183677705;

%Define Left/Right rotated local x limit for mask (L)
L_mask=zeros(k_max,i_max);
x_lim=zeros(k_max,i_max); %Lower x_prime L_mask limit when x_m>=W_m/2
Int_P_r_x_prime=zeros(k_max,i_max);
Int_P_r_L_mask=zeros(k_max,i_max);
M_r_x_prime=zeros(k_max,i_max); %Initial masking function
for k=1:1:k_max
 for i=1:1:i_max

 if flag_T_M(k,i)==1 %T

 if (max_x_prime_surf_LM<0) %Case (a) and (c)
 if (x_prime(k,i)<0)
 L_mask(k,i)=z_prime(k,i).*tan_fi_min;
 else %i.e., when x_prime>=0
 L_mask(k,i)=z_prime(k,i).*tan_fi_max;
 end
 else %i.e., when x_m>=W_m/2 Case (b)
 x_lim(k,i)=z_prime(k,i).*tan_fi_min;
 if (x_prime(k,i)<x_lim(k,i))
 L_mask(k,i)=0;
 else %i.e., when x_prime>=x_lim
 L_mask(k,i)=z_prime(k,i).*tan_fi_max-x_lim(k,i);
 end
 end

 %Define proportion of mass of particles that pass through mask opening having a
 %specific particle size (of radius r) distribution
 if (abs(x_prime(k,i))>=L_mask(k,i))
 M_r_x_prime(k,i)=0;
 else
 Int_P_r_x_prime(k,i)=real(P_1-P_1*erf(P_2*log(L_mask(k,i)-abs(x_prime(k,i)))-P_3));
 Int_P_r_L_mask(k,i)=real(P_1-P_1*erf(P_2*log(L_mask(k,i))-P_3));
 M_r_x_prime(k,i)=Int_P_r_x_prime(k,i)./Int_P_r_L_mask(k,i);
 end

 else %M (for initial iteration only over very small dt) %Below, calculate this using theta to check visibility for M and M(x') for edge

 if (alfa==90*pi/180) %90deg case
 M_r_x_prime(k,i)=1;
 else

 %Spread angle covering range not seen by nozzle due to mask
 tan_fi_M=abs(((x_min_grid+leng_M_L)-x_off).*sin(alfa)-h*sin(alfa).*cos(alfa))/...
 abs(((x_min_grid+leng_M_L)-x_off).*cos(alfa)+h*sin(alfa).*sin(alfa));

 if (max_x_prime_surf_LM<0) %Case (a) and (c)
 if (((z_prime(k,i)*tan_fi_min<abs(x_prime(k,i)))&&(z_prime(k,i)*tan_fi_M>abs(x_prime(k,i))))&&...
 (x_cord(i)>=(x_min_grid+leng_M_L))&&(x_prime(k,i)<0))
 M_r_x_prime(k,i)=0;
 else
 M_r_x_prime(k,i)=1;
 end

 else %Case (b)
 if ((((-z_prime(k,i)*tan_fi_M)<x_prime(k,i))&&((z_prime(k,i)*tan_fi_min)>x_prime(k,i)))&&...
 (x_cord(i)>=(x_min_grid+leng_M_L)))
 M_r_x_prime(k,i)=0;
 else
 M_r_x_prime(k,i)=1;
 end

 144

 end

 end

 end

 end
end
%__
%Initialize time and counters
time=0;
counter=0;
No_RE=0; %Initialize band re-initialization counter

%##
%INITIAL ITERATION (W/O F_EXT & NB) TO CALCULATE/INITIALIZE F_EXT FOR WHILE
%LOOP;
%##

%__
%USE STATIONARY APPROACH
%Define velocity v(x,z) at each grid node
v=zeros(k_max,i_max);
 for k=1:1:k_max
 for i=1:1:i_max
 v(k,i)=v_o*(1-H_slp*((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2).^0.5./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)));
 if (v(k,i)<0)
 v(k,i)=0;
 end
 end
 end

%Define particle mass flux(x,z) at each grid node
 flux=zeros(k_max,i_max);
 for k=1:1:k_max
 for i=1:1:i_max
 flux(k,i)=(MFR/pi)*(beta./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa))).^2....
 exp(-(beta^2.((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2)./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)).^2));
 end
 end

%Define Erosive Power Eros_pow(k,i) at each grid node
Eros_pow=zeros(k_max,i_max);
 for k=1:1:k_max
 for i=1:1:i_max
 if flag_T_M(k,i)==1 %T
 Eros_pow(k,i)=M_r_x_prime(k,i).*v(k,i).^k_vel.*flux(k,i);
 else %M
 Eros_pow(k,i)=M_r_x_prime(k,i).*v(k,i).^k_vel_M.*flux(k,i);
 end
 end
 end
%__
%Define FD's and BC's
%Initialization (preallocation) to increase computational speed
phi_x_pos=zeros(k_max,i_max);
phi_x_neg=zeros(k_max,i_max);
phi_x_cen=zeros(k_max,i_max);
phi_x_x_cen=zeros(k_max,i_max);
phi_z_pos=zeros(k_max,i_max);
phi_z_neg=zeros(k_max,i_max);
phi_z_cen=zeros(k_max,i_max);
phi_z_z_cen=zeros(k_max,i_max);
phi_x_z_cen=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 if i==i_max
 phi_x_pos(k,i)=0;
 else
 phi_x_pos(k,i)=(phi(k,i+1)-phi(k,i))./dx;
 end

 if i==1
 phi_x_neg(k,i)=0;
 else
 phi_x_neg(k,i)=(phi(k,i)-phi(k,i-1))./dx;
 end

 if (i==i_max)||(i==1)

 145

 phi_x_cen(k,i)=0;
 phi_x_x_cen(k,i)=0;
 else
 phi_x_cen(k,i)=(phi(k,i+1)-phi(k,i-1))./(2*dx);
 phi_x_x_cen(k,i)=(phi(k,i+1)-2*phi(k,i)+phi(k,i-1))./(dx^2);
 end
 %Note direction (k+1 is k-1) and
 %BC (k==k_max is k==1)) since z is +ve 'downward'
 if k==1
 phi_z_pos(k,i)=0;
 else
 phi_z_pos(k,i)=(phi(k-1,i)-phi(k,i))./dz;
 end
 %Note direction (k-1 is k+1) and
 %BC (k==1 is k==k_max)
 if k==k_max
 phi_z_neg(k,i)=0;
 else
 phi_z_neg(k,i)=(phi(k,i)-phi(k+1,i))./dz;
 end
 %Note direction (k+1 is k-1)
 if (k==k_max)||(k==1)
 phi_z_cen(k,i)=0;
 phi_z_z_cen(k,i)=0;
 else
 phi_z_cen(k,i)=(phi(k-1,i)-phi(k+1,i))./(2*dz);
 phi_z_z_cen(k,i)=(phi(k-1,i)-2*phi(k,i)+phi(k+1,i))./(dz^2);
 end
 end
end
%__
%Define Curvature K
K=zeros(k_max,i_max);
 if (epsilon==0) %If Epsilon=0,there is no need to compute K
 for k=1:1:k_max
 for i=1:1:i_max
 K(k,i)=0;
 end
 end
 else
 for k=1:1:k_max
 for i=1:1:i_max
 K(k,i)=phi_x_x_cen(k,i)+phi_z_z_cen(k,i);
 end
 end
 end
%__
%Define Partial Hamiltonians H for LLLF Scheme
cos_t_pfx_pfz=zeros(k_max,i_max); %cos(theta) with all combinations of +/- FD's
cos_t_pfx_nfz=zeros(k_max,i_max);
cos_t_nfx_pfz=zeros(k_max,i_max);
cos_t_nfx_nfz=zeros(k_max,i_max);
H1_LLLF_pfx_pfz=zeros(k_max,i_max); %Partial H wrt phi_x (all +/- FD combinations)
H1_LLLF_pfx_nfz=zeros(k_max,i_max);
H1_LLLF_nfx_pfz=zeros(k_max,i_max);
H1_LLLF_nfx_nfz=zeros(k_max,i_max);
H3_LLLF_pfx_pfz=zeros(k_max,i_max); %Partial H wrt phi_z (all +/- FD combinations)
H3_LLLF_pfx_nfz=zeros(k_max,i_max);
H3_LLLF_nfx_pfz=zeros(k_max,i_max);
H3_LLLF_nfx_nfz=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 cos_t_pfx_pfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_pos(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_pfx_nfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_neg(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_nfx_pfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_pos(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_nfx_nfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_neg(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 if (cos_t_pfx_pfz(k,i)>1) %Limit cos(theta)
 cos_t_pfx_pfz(k,i)=1;
 end
 if (cos_t_pfx_nfz(k,i)>1)
 cos_t_pfx_nfz(k,i)=1;
 end
 if (cos_t_nfx_pfz(k,i)>1)
 cos_t_nfx_pfz(k,i)=1;
 end
 if (cos_t_nfx_nfz(k,i)>1)
 cos_t_nfx_nfz(k,i)=1;
 end
 %_________
 if cos_t_pfx_pfz(k,i)==0 %Done to ensure 0/0 doesn't results and hence an error - F=H=0 when this occurs

 146

 H3_LLLF_pfx_pfz(k,i)=0;
 H1_LLLF_pfx_pfz(k,i)=0;
 else
 if flag_T_M(k,i)==1 %T
 H3_LLLF_pfx_pfz(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_pfx_pfz(k,i))^(k_vel+1))...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_pfx_pfz(k,i)));
 else %M
 H3_LLLF_pfx_pfz(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_pfx_pfz(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_pfx_pfz(k,i))).^n_2_M)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_pfx_pfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_pfx_pfz(k,i)))));
 end

 H1_LLLF_pfx_pfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_pfx_pfz(k,i);
 end
 %_________
 if cos_t_pfx_nfz(k,i)==0
 H3_LLLF_pfx_nfz(k,i)=0;
 H1_LLLF_pfx_nfz(k,i)=0;
 else
 if flag_T_M(k,i)==1 %T
 H3_LLLF_pfx_nfz(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_pfx_nfz(k,i))^(k_vel+1))...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_pfx_nfz(k,i)));
 else %M
 H3_LLLF_pfx_nfz(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_pfx_nfz(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_pfx_nfz(k,i))).^n_2_M)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_pfx_nfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_pfx_nfz(k,i)))));
 end

 H1_LLLF_pfx_nfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_pfx_nfz(k,i);
 end
 %_________
 if cos_t_nfx_pfz(k,i)==0
 H3_LLLF_nfx_pfz(k,i)=0;
 H1_LLLF_nfx_pfz(k,i)=0;
 else
 if flag_T_M(k,i)==1 %T
 H3_LLLF_nfx_pfz(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_nfx_pfz(k,i))^(k_vel+1))...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_nfx_pfz(k,i)));
 else %M
 H3_LLLF_nfx_pfz(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_nfx_pfz(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_nfx_pfz(k,i))).^n_2_M)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_nfx_pfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_nfx_pfz(k,i)))));
 end

 H1_LLLF_nfx_pfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_nfx_pfz(k,i);
 end
 %_________
 if cos_t_nfx_nfz(k,i)==0
 H3_LLLF_nfx_nfz(k,i)=0;
 H1_LLLF_nfx_nfz(k,i)=0;
 else
 if flag_T_M(k,i)==1 %T
 H3_LLLF_nfx_nfz(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_nfx_nfz(k,i))^(k_vel+1))...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_nfx_nfz(k,i)));
 else %M
 H3_LLLF_nfx_nfz(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_nfx_nfz(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_nfx_nfz(k,i))).^n_2_M)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_nfx_nfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_nfx_nfz(k,i)))));
 end

 H1_LLLF_nfx_nfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_nfx_nfz(k,i);
 end

 end
end
%__
%LLLF Scheme
%Initialization (preallocation) to increase computational speed
phi_x_star=zeros(k_max,i_max); %FD used in numerical Hamiltonian H (star)
phi_z_star=zeros(k_max,i_max);
alpha_x=zeros(k_max,i_max); %Bounds of partial deriv. of H
alpha_z=zeros(k_max,i_max);
Ham=zeros(k_max,i_max); %Hamiltonian
Ham_num=zeros(k_max,i_max); %Numerical Hamiltonian
cos_t_star=zeros(k_max,i_max);
 for k=1:1:k_max
 for i=1:1:i_max
 phi_x_star(k,i)=(phi_x_pos(k,i)+phi_x_neg(k,i))/2;
 phi_z_star(k,i)=(phi_z_pos(k,i)+phi_z_neg(k,i))/2;
 H1_LLLF_array=[abs(H1_LLLF_pfx_pfz(k,i)),abs(H1_LLLF_pfx_nfz(k,i)),abs(H1_LLLF_nfx_pfz(k,i)),abs(H1_LLLF_nfx_nfz(k,i))];
 alpha_x(k,i)=max(H1_LLLF_array);
 H3_LLLF_array=[abs(H3_LLLF_pfx_pfz(k,i)),abs(H3_LLLF_pfx_nfz(k,i)),abs(H3_LLLF_nfx_pfz(k,i)),abs(H3_LLLF_nfx_nfz(k,i))];
 alpha_z(k,i)=max(H3_LLLF_array);

 147

 %Define Numerical Hamiltonian
 cos_t_star(k,i)=(x_cord_local(i).*(phi_x_star(k,i))+z_cord(k).*(phi_z_star(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 if (cos_t_star(k,i)>1)
 cos_t_star(k,i)=1;
 end

 if flag_T_M(k,i)==1 %T
 Ham(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_star(k,i))^(k_vel+1)));
 else %M
 Ham(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_star(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_star(k,i))).^n_2_M));
 end

 Ham_num(k,i)=Ham(k,i)-(alpha_x(k,i)/2).*(phi_x_pos(k,i)-phi_x_neg(k,i))-(alpha_z(k,i)/2).*(phi_z_pos(k,i)-phi_z_neg(k,i));

 end
 end
%__
%Define Central Difference Hamiltonian
Ham_cen=zeros(k_max,i_max);
cos_t_cen=zeros(k_max,i_max);
 if (epsilon==0)
 for k=1:1:k_max
 for i=1:1:i_max
 Ham_cen(k,i)=0;
 end
 end
 else
 for k=1:1:k_max
 for i=1:1:i_max
 cos_t_cen(k,i)=(x_cord_local(i).*(phi_x_cen(k,i))+z_cord(k).*(phi_z_cen(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 if (cos_t_cen(k,i)>1)
 cos_t_cen(k,i)=1;
 end

 if flag_T_M(k,i)==1 %T
 Ham_cen(k,i)=real((C/rho_s)*Eros_pow(k,i).*((cos_t_cen(k,i))^(k_vel+1)));
 else %M
 Ham_cen(k,i)=real((C_M/rho_s_M).*Eros_pow(k,i).*((cos_t_cen(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_cen(k,i))).^n_2_M));
 end
 end
 end
 end
%__
%Initial small dt
dt=t_in/Num_iter;

%Curvature coefficient
%NOTE can scale up/down 'epsilon' to use different epsilons for M and T
%but 'epsilon' must be maximum for CFL condition
epsilon_gen=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 if flag_T_M(k,i)==1 %T
 epsilon_gen(k,i)=epsilon;
 else %M
 epsilon_gen(k,i)=0;
 end
 end
end

%__
%Solve EOM (1st iteration) for phi's to pass onto while loop
phi_1=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 phi_1(k,i)=phi(k,i)+dt.*(-Ham_num(k,i)+epsilon_gen(k,i).*K(k,i).*Ham_cen(k,i));
 end
end
%__
%Surface Interpolation Algorithm (where phi=0)

z_surf_1=zeros(i_max,1); %Initial z surface value at a given x
z_surf_2=zeros(i_max,1); %Second z surface value at a given x (if multi-valued surface)
z_surf_3=zeros(i_max,1); %Third z surface value at a given x (if multi-valued surface)
for i=1:1:i_max %Order matters
 flag_1=0;
 flag_2=0;
 for k=1:1:k_max %Order matters
 if ((flag_1==0)&&(((phi_1(k,i)>0)&&(phi_1(k+1,i)<0))||(phi_1(k,i)==0)))
 z_surf_1(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);

 148

 flag_1=i; %Done to ensure that the rest of code executes only if this 'if condition' occurs (see below)
 continue %go to next iteration in the for loop, skipping whatever remains below for this iteration
 end
 if (((flag_2==0)&&(flag_1==i)&&(k~=k_max))&&(((phi_1(k,i)<0)&&(phi_1(k+1,i)>0))||(phi_1(k,i)==0))) %put in AND expression for k~=kmax since grid
ends (no z surface there)
 z_surf_2(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_2=i;
 continue
 end
 if ((flag_2==i)&&(((phi_1(k,i)>0)&&(phi_1(k+1,i)<0))||(phi_1(k,i)==0)))
 z_surf_3(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 end
 end
end

x_surf_1=zeros(1,k_max); %First x surface value at a given z
x_surf_2=zeros(1,k_max); %Second x surface value at a given z
for k=1:1:k_max %Order matters
 flag_3=0;
 for i=1:1:i_max %Order matters
 if (((flag_3==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>0)&&(phi_1(k,i+1)<0))||(phi_1(k,i)==0))) %put in AND expression for i~=imax or 1 since grid
ends (no x surface there)
 x_surf_1(k)=((phi_1(k,i).*(x_cord(i)-x_cord(i+1)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 flag_3=k;
 continue
 end
 if (((flag_3==k)&&(i~=i_max))&&(((phi_1(k,i)<0)&&(phi_1(k,i+1)>0))||(phi_1(k,i)==0)))
 x_surf_2(k)=((phi_1(k,i).*(x_cord(i)-x_cord(i+1)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 end
 end
end

% Convert all z_surf and x_surf to one array
xz_surf=[x_cord', z_surf_1;x_cord', z_surf_2;x_cord', z_surf_3;x_surf_1',z_cord;x_surf_2',z_cord];
b_max=3*i_max+2*k_max;
for b=1:1:(3*i_max)
 if xz_surf(b,2)==0 %Ignore this part of array-see below (no surface there)
 xz_surf(b,1)=0;
 xz_surf(b,2)=0;
 else
 xz_surf(b,1)=xz_surf(b,1);
 xz_surf(b,2)=xz_surf(b,2);
 end
end

for b=(3*i_max+1):1:b_max
 if xz_surf(b,1)==0 %Ignore this part of array-see below (no surface there)
 xz_surf(b,1)=0;
 xz_surf(b,2)=0;
 else
 xz_surf(b,1)=xz_surf(b,1);
 xz_surf(b,2)=xz_surf(b,2);
 end
end
%__
%Calculate Upper and Lower Band

%UPPER BAND

z_surf_1_U=zeros(i_max,1); %Analogous to phi=0 surface
z_surf_2_U=zeros(i_max,1);
z_surf_3_U=zeros(i_max,1);
for i=1:1:i_max
 flag_1_U=0;
 flag_2_U=0;
 for k=1:1:k_max
 if ((flag_1_U==0)&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k+1,i)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 z_surf_1_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_1_U=i;
 continue
 end
 if (((flag_2_U==0)&&(flag_1_U==i)&&(k~=k_max))&&(((phi_1(k,i)<(BS_U*dz))&&(phi_1(k+1,i)>(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 z_surf_2_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_2_U=i;
 continue
 end
 if ((flag_2_U==i)&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k+1,i)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 z_surf_3_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 end
 end

 149

end

x_surf_1_U=zeros(1,k_max);
x_surf_2_U=zeros(1,k_max);
for k=1:1:k_max
 flag_3_U=0;
 for i=1:1:i_max
 if (((flag_3_U==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k,i+1)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 x_surf_1_U(k)=(((BS_U*dz-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 flag_3_U=k;
 continue
 end
 if (((flag_3_U==k)&&(i~=i_max))&&(((phi_1(k,i)<(BS_U*dz))&&(phi_1(k,i+1)>(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 x_surf_2_U(k)=(((BS_U*dz-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 end
 end
end

% Convert all z_surf_U and x_surf_U to one array
xz_surf_U=[x_cord', z_surf_1_U;x_cord', z_surf_2_U;x_cord', z_surf_3_U;x_surf_1_U',z_cord;x_surf_2_U',z_cord];
for b=1:1:(3*i_max)
 if xz_surf_U(b,2)==0 %Means it was not called up (no surface there)
 xz_surf_U(b,1)=0;
 xz_surf_U(b,2)=0;
 end
end

for b=(3*i_max+1):1:b_max
 if xz_surf_U(b,1)==0
 xz_surf_U(b,1)=0;
 xz_surf_U(b,2)=0;
 end
end

%LOWER BAND

z_surf_1_L=zeros(i_max,1); %Analogous to phi=0 surface
z_surf_2_L=zeros(i_max,1);
z_surf_3_L=zeros(i_max,1);
for i=1:1:i_max
 flag_1_L=0;
 flag_2_L=0;
 for k=1:1:k_max
 if ((flag_1_L==0)&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k+1,i)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 z_surf_1_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_1_L=i;
 continue
 end
 if (((flag_2_L==0)&&(flag_1_L==i)&&(k~=k_max))&&(((phi_1(k,i)<(-dz*BS_L))&&(phi_1(k+1,i)>(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 z_surf_2_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_2_L=i;
 continue
 end
 if ((flag_2_L==i)&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k+1,i)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 z_surf_3_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 end
 end
end

x_surf_1_L=zeros(1,k_max);
x_surf_2_L=zeros(1,k_max);
for k=1:1:k_max
 flag_3_L=0;
 for i=1:1:i_max
 if (((flag_3_L==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k,i+1)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 x_surf_1_L(k)=(((-dz*BS_L-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 flag_3_L=k;
 continue
 end
 if (((flag_3_L==k)&&(i~=i_max))&&(((phi_1(k,i)<(-dz*BS_L))&&(phi_1(k,i+1)>(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 x_surf_2_L(k)=(((-dz*BS_L-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 end
 end
end

% Convert all z_surf_L and x_surf_L to one array
xz_surf_L=[x_cord', z_surf_1_L;x_cord', z_surf_2_L;x_cord', z_surf_3_L;x_surf_1_L',z_cord;x_surf_2_L',z_cord];
for b=1:1:(3*i_max)
 if xz_surf_L(b,2)==0
 xz_surf_L(b,1)=0;

 150

 xz_surf_L(b,2)=0;
 end
end

for b=(3*i_max+1):1:b_max
 if xz_surf_L(b,1)==0
 xz_surf_L(b,1)=0;
 xz_surf_L(b,2)=0;
 end
end
%__
%Create flags for points IN the Narrow Band
%These flags will only change after band is re-initialized
flag_NB=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 if (((phi_1(k,i)>=0)&&(abs(phi_1(k,i))<BS_U*dz))||((phi_1(k,i)<0)&&(abs(phi_1(k,i))<BS_L*dz))) %Don't consider points on boundary
 flag_NB(k,i)=1; %else they will remain 0 (are outside the band)
 end
 end
end

%Create flags to indicate BC pts (adjacent to NB boundary)
%These flags will only change after band is re-initialized
for k=1:1:k_max
 for i=1:1:i_max

 if (i~=1)&&(i~=i_max)&&(k~=1)&&(k~=k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==1)&&(k~=1)&&(k~=k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==i_max)&&(k~=1)&&(k~=k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (k==1)&&(i~=1)&&(i~=i_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (k==k_max)&&(i~=1)&&(i~=i_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==1)&&(k==1)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k+1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==i_max)&&(k==1)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==1)&&(k==k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 else %(i==i_max)&&(k==k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 end

 end
end

%Create flags for the remaining pts. so when rebuild band, we know where
%phi's should be +ve or -ve; i.e. assign flag_NB(k,i) = 4 and 3 so as to
%later indicate +ve and -ve phi
for k=1:1:k_max
 for i=1:1:i_max
 if (flag_NB(k,i)~=1)&&(flag_NB(k,i)~=2)
 if (phi_1(k,i)>0) %we only need to check +ve phi_1 since these are outside the band
 flag_NB(k,i)=4; %label +ve phi_1's outside band
 else
 flag_NB(k,i)=3; %label -ve phi_1's outside band
 end
 end

 151

 end
end
%__
%Algorithm to obtain mask angles for T

%Adjustment to Mass Flux due to Mask Model for Target M(x')

%Calculate visibility angles based on zero level set (M)
x_prime_surf_LM=zeros(b_max,1); %Initial surface for M in local coordinates
z_prime_surf_LM=zeros(b_max,1);
x_prime_surf_RM=zeros(b_max,1);
z_prime_surf_RM=zeros(b_max,1);
for b=1:1:b_max
 if ((xz_surf(b,1)>=x_min_grid)&&(xz_surf(b,1)<=(x_min_grid+leng_M_L)))&&...
 ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa)))
 x_prime_surf_LM(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); %Rotated local x
 z_prime_surf_LM(b)=(xz_surf(b,1)-x_off).*cos(alfa)+xz_surf(b,2).*sin(alfa); %Rotated local z
 else
 x_prime_surf_LM(b)=NaN;
 z_prime_surf_LM(b)=NaN;
 end

 if ((xz_surf(b,1)>=(x_max_grid-leng_M_R))&&(xz_surf(b,1)<=x_max_grid))&&...
 ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa)))
 x_prime_surf_RM(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); %Rotated local x
 z_prime_surf_RM(b)=(xz_surf(b,1)-x_off).*cos(alfa)+xz_surf(b,2).*sin(alfa); %Rotated local z
 else
 x_prime_surf_RM(b)=NaN;
 z_prime_surf_RM(b)=NaN;
 end

end

%Find min x_prime_surf_LM
[max_x_prime_surf_LM,I_max_LM]=max(x_prime_surf_LM); %Will ignore NaN's

%Min tan of left 'spread' angle defined by mask
if (max_x_prime_surf_LM>=0) %Case (b)
 tan_fi_min=max_x_prime_surf_LM/z_prime_surf_LM(I_max_LM);
else %Case (b) and (c)
 %Find min |x_prime_surf_LM|
 [min_x_prime_surf_LM,I_min_LM]=min(abs(x_prime_surf_LM));

 if (alfa==90*pi/180)
 tan_fi_min=min_x_prime_surf_LM/h;
 else
 tan_fi_min=min_x_prime_surf_LM/z_prime_surf_LM(I_min_LM);
 end
end

%Find min x_prime_surf_RM
[min_x_prime_surf_RM,I_min_RM]=min(x_prime_surf_RM);
%Max tan of right 'spread' angle defined by mask
if (alfa==90*pi/180)
 tan_fi_max=min_x_prime_surf_RM/h;
else
 tan_fi_max=min_x_prime_surf_RM/z_prime_surf_RM(I_min_RM);
end

%%%
%%%%START of 2nd Strike Algorithm %%%
%%%

%Kinematic rebound parameters (angle and velocity)
f_alfa_AR_T=0.9; %angle (T)
f_v_AR_T=0.4; %velocity (T)
f_alfa_AR_M=1; %angle (M)
f_v_AR_M=0.4; %velocity (M)

%Obtain arriving node 'a'='AR' theta_AR, gamma_AR & departing 'd'='DE' theta_DE at surface

%Initialize variables before loop entry
J_k_AR=0; %Nearest reference node index for interpolation
J_i_AR=0;
phi_x_pos_AR=zeros(b_max,1); %FD's at 'AR' node
phi_x_neg_AR=zeros(b_max,1);
phi_x_cen_AR=zeros(b_max,1);
phi_z_pos_AR=zeros(b_max,1);
phi_z_neg_AR=zeros(b_max,1);
phi_z_cen_AR=zeros(b_max,1);

 152

phi_x_star_AR=zeros(b_max,1);
phi_z_star_AR=zeros(b_max,1);
cos_t_star_AR=zeros(b_max,1); %Cos(theta) star
cos_g_star_AR=zeros(b_max,1); %Cos(gamma) star

theta_AR=zeros(b_max,1);
theta_AR_deg=zeros(b_max,1);
gamma_AR=zeros(b_max,1);
gamma_AR_deg=zeros(b_max,1);
x_prime_surf_AR=zeros(b_max,1); %Local x of AR node
f_alfa_AR=zeros(b_max,1); %f_alfa for entire surface
theta_DE=zeros(b_max,1);
theta_DE_deg=zeros(b_max,1);

 for b=1:1:b_max

 if ((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))
 %if surface pt; Need 2nd condition since AT 90deg xcord=0 for 1,imax+1,2imax+1 and code thinks no surface there

 if (b>=1)&&(b<=(3*i_max)) %zsurf used

 if (b>=1)&&(b<=i_max) %%Here, we use I_min_ik=''i'', acts as reference for phi interpolation to know ''i'' value (see below)
 I_min_ik=b; %z_surf_1 used
 end
 if (b>=(i_max+1))&&(b<=(2*i_max))
 I_min_ik=b-i_max; %z_surf_2 used
 end

 if (b>=(2*i_max+1))&&(b<=(3*i_max))
 I_min_ik=b-2*i_max; %z_surf_3 used
 end

 %Calculate nearest k index to surface
 J_k_AR=floor(k_max-(xz_surf(b,2)-z_min_grid)/dz);

 %FD's at 'AR' node using surface nodes (in b/w grid nodes)
 %i.e. Calculation of dphi/dx,dphi/dz; Define BC's
 if I_min_ik==i_max
 phi_x_pos_AR(b)=0;
 else
 phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik+1)-
phi_1(J_k_AR,I_min_ik+1))+phi_1(J_k_AR,I_min_ik+1);
 phi_x_pos_AR(b)=(phi_B_z_surf-0)./dx;
 end

 if I_min_ik==1
 phi_x_neg_AR(b)=0;
 else
 phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik-1)-phi_1(J_k_AR,I_min_ik-
1))+phi_1(J_k_AR,I_min_ik-1);
 phi_x_neg_AR(b)=(0-phi_A_z_surf)./dx;
 end

 if (I_min_ik==i_max)||(I_min_ik==1)
 phi_x_cen_AR(b)=0;
 else
 phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik-1)-phi_1(J_k_AR,I_min_ik-
1))+phi_1(J_k_AR,I_min_ik-1);
 phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik+1)-
phi_1(J_k_AR,I_min_ik+1))+phi_1(J_k_AR,I_min_ik+1);
 phi_x_cen_AR(b)=(phi_B_z_surf-phi_A_z_surf)./(2*dx);
 end

 if J_k_AR==1
 phi_z_pos_AR(b)=0;
 else
 phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_AR-1))/(z_cord(J_k_AR)-z_cord(J_k_AR-1))).*(phi_1(J_k_AR,I_min_ik)-phi_1(J_k_AR-
1,I_min_ik))+phi_1(J_k_AR-1,I_min_ik);
 phi_z_pos_AR(b)=(phi_C_z_surf-0)./dz;
 end

 if J_k_AR==k_max
 phi_z_neg_AR(b)=0;
 else
 phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_AR+1))/(z_cord(J_k_AR+2)-z_cord(J_k_AR+1))).*(phi_1(J_k_AR+2,I_min_ik)-
phi_1(J_k_AR+1,I_min_ik))+phi_1(J_k_AR+1,I_min_ik);
 phi_z_neg_AR(b)=(0-phi_D_z_surf)./dz;
 end

 if (J_k_AR==k_max)||(J_k_AR==1)

 153

 phi_z_cen_AR(b)=0;
 else
 phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_AR-1))/(z_cord(J_k_AR)-z_cord(J_k_AR-1))).*(phi_1(J_k_AR,I_min_ik)-phi_1(J_k_AR-
1,I_min_ik))+phi_1(J_k_AR-1,I_min_ik);
 phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_AR+1))/(z_cord(J_k_AR+2)-z_cord(J_k_AR+1))).*(phi_1(J_k_AR+2,I_min_ik)-
phi_1(J_k_AR+1,I_min_ik))+phi_1(J_k_AR+1,I_min_ik);
 phi_z_cen_AR(b)=(phi_C_z_surf-phi_D_z_surf)./(2*dz);
 end

 %Calculate phi_stars_AR
 phi_x_star_AR(b)=(phi_x_pos_AR(b)+phi_x_neg_AR(b))/2;
 phi_z_star_AR(b)=(phi_z_pos_AR(b)+phi_z_neg_AR(b))/2;

 %Calculate Angles and x_surf'_AR
 cos_t_star_AR(b)=((xz_surf(b,1)-x_off).*(phi_x_star_AR(b))+xz_surf(b,2).*(phi_z_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));
 theta_AR(b)=acos(cos_t_star_AR(b));
 theta_AR_deg(b)=theta_AR(b)*(180/pi);
 cos_g_star_AR(b)=((xz_surf(b,1)-x_off).*(-phi_z_star_AR(b))+xz_surf(b,2).*(phi_x_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));
 gamma_AR(b)=acos(cos_g_star_AR(b));
 gamma_AR_deg(b)=gamma_AR(b)*(180/pi);
 if (alfa==90*pi/180)
 x_prime_surf_AR(b)=(xz_surf(b,1)-x_off);
 else
 x_prime_surf_AR(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa);
 end

 if (xz_surf(b,2)>=(h*sin(alfa))) %T
 f_alfa_AR(b)=f_alfa_AR_T;
 else %M
 f_alfa_AR(b)=f_alfa_AR_M;
 end
 theta_DE(b)=pi-f_alfa_AR(b).*theta_AR(b);
 theta_DE_deg(b)=theta_DE(b)*(180/pi);
%__
 else %xsurf used

 if (b>=(3*i_max+1))&&(b<=(3*i_max+k_max)) %%Here, we use I_min_ik=''k'', acts as reference for phi interpolation to know ''k'' value (see below)
 I_min_ik=b-3*i_max; %x_surf_1 used
 end
 if (b>=(3*i_max+k_max+1))&&(b<=b_max)
 I_min_ik=b-3*i_max-k_max; %x_surf_2 used
 end

 %Repeat above algorithm but for xsurf
 %Calculate nearest i index to surface
 J_i_AR=floor(1+(xz_surf(b,1)-x_min_grid)/dx);

 %Calculation of dphi/dx,dphi/dz; Define BC's
 if J_i_AR==i_max
 phi_x_pos_AR(b)=0;
 else
 phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_AR+1))/(x_cord(J_i_AR+2)-x_cord(J_i_AR+1))).*(phi_1(I_min_ik,J_i_AR+2)-
phi_1(I_min_ik,J_i_AR+1))+phi_1(I_min_ik,J_i_AR+1);
 phi_x_pos_AR(b)=(phi_D_x_surf-0)./dx;
 end

 if J_i_AR==1
 phi_x_neg_AR(b)=0;
 else
 phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_AR-1))/(x_cord(J_i_AR)-x_cord(J_i_AR-1))).*(phi_1(I_min_ik,J_i_AR)-phi_1(I_min_ik,J_i_AR-
1))+phi_1(I_min_ik,J_i_AR-1);
 phi_x_neg_AR(b)=(0-phi_C_x_surf)./dx;
 end

 if (J_i_AR==i_max)||(J_i_AR==1)
 phi_x_cen_AR(b)=0;
 else
 phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_AR-1))/(x_cord(J_i_AR)-x_cord(J_i_AR-1))).*(phi_1(I_min_ik,J_i_AR)-phi_1(I_min_ik,J_i_AR-
1))+phi_1(I_min_ik,J_i_AR-1);
 phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_AR+1))/(x_cord(J_i_AR+2)-x_cord(J_i_AR+1))).*(phi_1(I_min_ik,J_i_AR+2)-
phi_1(I_min_ik,J_i_AR+1))+phi_1(I_min_ik,J_i_AR+1);
 phi_x_cen_AR(b)=(phi_D_x_surf-phi_C_x_surf)./(2*dx);
 end

 if I_min_ik==1
 phi_z_pos_AR(b)=0;
 else

 154

phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik-1,J_i_AR+1)-phi_1(I_min_ik-
1,J_i_AR))+phi_1(I_min_ik-1,J_i_AR);
 phi_z_pos_AR(b)=(phi_A_x_surf-0)./dz;
 end

 if I_min_ik==k_max
 phi_z_neg_AR(b)=0;
 else
 phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik+1,J_i_AR+1)-
phi_1(I_min_ik+1,J_i_AR))+phi_1(I_min_ik+1,J_i_AR);
 phi_z_neg_AR(b)=(0-phi_B_x_surf)./dz;
 end

 if (I_min_ik==k_max)||(I_min_ik==1)
 phi_z_cen_AR(b)=0;
 else
 phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik-1,J_i_AR+1)-phi_1(I_min_ik-
1,J_i_AR))+phi_1(I_min_ik-1,J_i_AR);
 phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik+1,J_i_AR+1)-
phi_1(I_min_ik+1,J_i_AR))+phi_1(I_min_ik+1,J_i_AR);
 phi_z_cen_AR(b)=(phi_A_x_surf-phi_B_x_surf)./(2*dz);
 end

 %Calculate phi_stars_AR
 phi_x_star_AR(b)=(phi_x_pos_AR(b)+phi_x_neg_AR(b))/2;
 phi_z_star_AR(b)=(phi_z_pos_AR(b)+phi_z_neg_AR(b))/2;

 %Calculate Angles and x_surf'_AR
 cos_t_star_AR(b)=((xz_surf(b,1)-x_off).*(phi_x_star_AR(b))+xz_surf(b,2).*(phi_z_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));
 theta_AR(b)=acos(cos_t_star_AR(b));
 theta_AR_deg(b)=theta_AR(b)*(180/pi);
 cos_g_star_AR(b)=((xz_surf(b,1)-x_off).*(-phi_z_star_AR(b))+xz_surf(b,2).*(phi_x_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));
 gamma_AR(b)=acos(cos_g_star_AR(b));
 gamma_AR_deg(b)=gamma_AR(b)*(180/pi);
 if (alfa==90*pi/180)
 x_prime_surf_AR(b)=(xz_surf(b,1)-x_off);
 else
 x_prime_surf_AR(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa);
 end

 if (xz_surf(b,2)>=(h*sin(alfa))) %T
 f_alfa_AR(b)=f_alfa_AR_T;
 else %M
 f_alfa_AR(b)=f_alfa_AR_M;
 end
 theta_DE(b)=pi-f_alfa_AR(b).*theta_AR(b);
 theta_DE_deg(b)=theta_DE(b)*(180/pi);

 end

 else %Need this since it accounts for cases where surface wasn't encountered (i.e. x_surf and z_surf = 0 numerically)
 %and theta_AR(b) would stay 0 since pre-allocated with 0's and the fact that theta_AR can actually = 0
 theta_AR(b)=NaN;
 theta_AR_deg(b)=NaN;
 gamma_AR(b)=NaN;
 gamma_AR_deg(b)=NaN;
 x_prime_surf_AR(b)=NaN;
 f_alfa_AR(b)=NaN;
 theta_DE(b)=NaN;
 theta_DE_deg(b)=NaN;
 end

 end
NaN_Chk_theta_AR=isnan(theta_AR); %If any entries are NaN, returns 1 for that entry, else 0

%2nd Strike Detection Algorithm

%NOTE: All values in array for phi_AR (arriving node 'AR'='a') or phi_D (damaged node 'D'='e') or corresponding xz_surf
%values, or thetas , x'surf and others are the same, so can reuse above found values but the indices will
%correspond to the right nodes (AR or D)

f_v_AR=zeros(b_max,1); %f_v_AR for entire surface
f_v_AR_fin=zeros(b_max,1); %Corrected f_v_AR for entire surface
v_AR=zeros(b_max,1); %Velocity at node AR
flux_AR=zeros(b_max,1); %Flux at node AR
theta_D=zeros(b_max,1); %theta at node D
theta_D_deg=zeros(b_max,1);

 155

cos_t_pfx_pfz_D=zeros(b_max,1); %cos(theta) at node D
cos_t_pfx_nfz_D=zeros(b_max,1);
cos_t_nfx_pfz_D=zeros(b_max,1);
cos_t_nfx_nfz_D=zeros(b_max,1);
cos_t_star_D=zeros(b_max,1);
cos_t_cen_D=zeros(b_max,1);

c_max=b_max;
ds_crit=dz; %Critical spacing to invoke inclusion of 2nd strike to node D
No_ds_cr=3.75;%4; %No. of ds_crit to define limit of min U_D_AR_dist (see below)

U_D_AR_dist=zeros(c_max,1); %Distance between nodes D and AR
theta_D_prime=zeros(c_max,1); %Angle between 'actual' surface departing vel. vector and that arriving to node D
theta_D_1=zeros(c_max,1); %theta_D only for checking in c=1...cmax loop
ds_pre=zeros(c_max,1); %See below; used in obtaining min_ds

I_min_ds=zeros(b_max,1); %Index of min_ds
min_ds=zeros(b_max,1); %Min spacing, after 2nd strk. for each node AR (not necessarily small enough to include 2nd strk. yet)

for b=1:1:b_max %Check each D node
 if (((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0)))...
 &&(xz_surf(b,2)>(h*sin(alfa)-H_m+dz/2)) %Check if surf. found (numerically) AND if surf. is not top of mask

 for c=1:1:c_max %Check AR nodes for each D node
 if (NaN_Chk_theta_AR(c)==0)&&(xz_surf(c,2)>(h*sin(alfa)-
H_m+dz/2))&&(b~=c)&&((theta_AR(c)<(pi/2))&&(theta_AR(c)>0))&&((theta_DE(c)<pi)&&(theta_DE(c)>(pi/2)))...
&&(((gamma_AR(c)>(pi/2))&&(x_prime_surf_AR(b)>x_prime_surf_AR(c)))||((gamma_AR(c)<(pi/2))&&(x_prime_surf_AR(c)>x_prime_surf_AR(b))))
 %Check if surf. found (numerically)-this check supercedes next checks; if surf is not top of mask; ignore check at node D=AR;
 %limit range of theta_AR; limit range of theta_DE; check if rebound direction makes sense

 %Calculate theta_D' and theta_D
 theta_D_prime(c)=acos(((xz_surf(b,1)-xz_surf(c,1)).*(phi_x_star_AR(c))+(xz_surf(b,2)-xz_surf(c,2)).*(phi_z_star_AR(c)))./...
 (sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2).*sqrt((phi_x_star_AR(c)).^2+(phi_z_star_AR(c)).^2)));

 theta_D_1(c)=acos(((xz_surf(b,1)-xz_surf(c,1)).*(phi_x_star_AR(b))+(xz_surf(b,2)-xz_surf(c,2)).*(phi_z_star_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)));

 %Calculate distance between nodes AR and D
 U_D_AR_dist(c)=sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2);

 if ((theta_D_prime(c)>(pi/2))&&(theta_D_1(c)<(pi/2))) %If node D 'seen' by node AR
 ds_pre(c)=U_D_AR_dist(c).*tan(abs(theta_D_prime(c)-theta_DE(c)));
 else
 ds_pre(c)=NaN;
 end

 else
 ds_pre(c)=NaN;
 end
 end
 [min_ds(b),I_min_ds(b)]=min(ds_pre); %Find min_ds, Will ignore NaN's

 if (I_min_ds(b)~=0)&&(min_ds(b)<ds_crit)&&(U_D_AR_dist(I_min_ds(b))>(No_ds_cr*ds_crit))
 %Check if possibility of 2nd strike even occurred, ds_min<ds_crit and if U_D_AR_dist is large enough

 %Calculate 2nd strike values - f_v_AR_fin, v_AR,
 %flux_AR, assign calc'd theta_D

 %f_v_AR_fin
 if (xz_surf(b,2)>=(h*sin(alfa))) %T
 f_v_AR(b)=f_v_AR_T;
 else %M
 f_v_AR(b)=f_v_AR_M;
 end
 f_v_AR_fin(b)=f_v_AR(b).*((ds_crit-min_ds(b))./ds_crit);

 %Define particle velocity at AR node
 v_AR(b)=v_o*(1-H_slp*(((xz_surf(I_min_ds(b),1)-x_off)*sin(alfa)-xz_surf(I_min_ds(b),2)*cos(alfa)).^2+(y_mean).^2).^0.5./...
 ((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa)));
 if (v_AR(b)<0)
 v_AR(b)=0;
 end

 %Define particle mass flux at AR node
 flux_AR(b)=(MFR/pi)*(beta./((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa))).^2....
 exp(-(beta^2.(((xz_surf(I_min_ds(b),1)-x_off)*sin(alfa)-xz_surf(I_min_ds(b),2)*cos(alfa)).^2+(y_mean).^2)./...
 ((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa)).^2));

 %theta_D
 theta_D(b)=acos(((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_star_AR(b))+(xz_surf(b,2)-xz_surf(I_min_ds(b),2)).*(phi_z_star_AR(b)))./...

 156

 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)));
 theta_D_deg(b)=theta_D(b)*(180/pi);

 %Calculate +/-,c,* cos_theta_D for F_ext Algorithm (Note, if 2nd strike not called
 %up, cos_thetas will remain 0 from pre-allocation, so F_2nd=0 in Fext

 cos_t_pfx_pfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_pos_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_pos_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_pos_AR(b)).^2+(phi_z_pos_AR(b)).^2));

 cos_t_pfx_nfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_pos_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_neg_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_pos_AR(b)).^2+(phi_z_neg_AR(b)).^2));

 cos_t_nfx_pfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_neg_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_pos_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_neg_AR(b)).^2+(phi_z_pos_AR(b)).^2));

 cos_t_nfx_nfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_neg_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_neg_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_neg_AR(b)).^2+(phi_z_neg_AR(b)).^2));

 cos_t_star_D(b)=cos(theta_D(b)); %Calculated above already

 cos_t_cen_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_cen_AR(b))+(xz_surf(b,2)-xz_surf(I_min_ds(b),2)).*(phi_z_cen_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_cen_AR(b)).^2+(phi_z_cen_AR(b)).^2));

 else
 f_v_AR_fin(b)=0;
 v_AR(b)=0;
 flux_AR(b)=0;
 theta_D(b)=NaN;
 theta_D_deg(b)=NaN;
 end

 else
 f_v_AR_fin(b)=0;
 v_AR(b)=0;
 flux_AR(b)=0;
 theta_D(b)=NaN;
 theta_D_deg(b)=NaN;
 end

end
NaN_Chk_theta_D=isnan(theta_D); %If any entries are NaN, returns 1 for that entry, else 0

%%%
%%%%END of 2nd Strike Algorithm %%%
%%%

%%%
 %START OF SDF AND F_EXT (Extension Velocity) ALGORITHM
%%%
%RE-initialize SDF (update phi)

%Initialize SDF (NOTE: x_surf and z_surf entries should never be 0 in
%reality since in array it is 0 numerically if NO surface is encountered for that
%row or column of phi's)
SDF=zeros(b_max,1);
%Initialize F_ext's and corresponding cos(theta)'s
cos_t_pfx_pfz_ext=zeros(k_max,i_max);
cos_t_pfx_nfz_ext=zeros(k_max,i_max);
cos_t_nfx_pfz_ext=zeros(k_max,i_max);
cos_t_nfx_nfz_ext=zeros(k_max,i_max);
cos_t_star_ext=zeros(k_max,i_max);
cos_t_cen_ext=zeros(k_max,i_max);
F_ext_pfx_pfz=zeros(k_max,i_max);
F_ext_pfx_nfz=zeros(k_max,i_max);
F_ext_nfx_pfz=zeros(k_max,i_max);
F_ext_nfx_nfz=zeros(k_max,i_max);
F_ext_star=zeros(k_max,i_max);
F_ext_cen=zeros(k_max,i_max);
%Initialize dphi/dx,dphi/dz (FD's)

 157

phi_x_pos_ext=zeros(k_max,i_max);
phi_x_neg_ext=zeros(k_max,i_max);
phi_x_cen_ext=zeros(k_max,i_max);
phi_z_pos_ext=zeros(k_max,i_max);
phi_z_neg_ext=zeros(k_max,i_max);
phi_z_cen_ext=zeros(k_max,i_max);
phi_x_star_ext=zeros(k_max,i_max);
phi_z_star_ext=zeros(k_max,i_max);
%Initialize Erosive Power and Masking Function Properties - Extended
x_prime_ext=zeros(k_max,i_max);
z_prime_ext=zeros(k_max,i_max);
L_mask_ext=zeros(k_max,i_max);
x_lim_ext=zeros(k_max,i_max);
M_r_x_prime_ext=zeros(k_max,i_max);
Eros_pow_ext=zeros(k_max,i_max);
v_ext=zeros(k_max,i_max);
flux_ext=zeros(k_max,i_max);
Int_P_r_x_prime_ext=zeros(k_max,i_max);
Int_P_r_L_mask_ext=zeros(k_max,i_max);
J_k_ext=0; %Initialize (see below)
J_i_ext=0;
I_min=zeros(k_max,i_max); %Index of SDF (see below)

%2nd strike erosive power
Eros_pow_ext_2nd=zeros(k_max,i_max);
%Initial strike F_ext's
F_ext_pfx_pfz_1st=zeros(k_max,i_max);
F_ext_pfx_nfz_1st=zeros(k_max,i_max);
F_ext_nfx_pfz_1st=zeros(k_max,i_max);
F_ext_nfx_nfz_1st=zeros(k_max,i_max);
F_ext_star_1st=zeros(k_max,i_max);
F_ext_cen_1st=zeros(k_max,i_max);

for k=1:1:k_max
 for i=1:1:i_max

 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### IF IN NB
 %NOTE, no BC's (i.e. where flag_NB==2) need to be specified since we
 %calculate SDF and Fext only for grid pts IN the band (i.e., flag_NB==1) and all calculations are based on surface points
 % which are always in the band. flag_NB==2 comes into play when the EOM
 % is solved in the while loop: they must be specified at the
 % beginning of each loop. There is no issue here since band
 % is re-initialized before boundary (where flag_NB==2) is hit
 % so surface never reaches boundary so no checks need to be
 % performed where boundary phi_x or phi_z would have free end B.C.'s.

 for b=1:1:b_max
 if (phi_1(k,i)==0)
 SDF(b)=0; %we are on the surface
 elseif
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))
 SDF(b)=((x_cord(i)-xz_surf(b,1)).^2+(z_cord(k)-xz_surf(b,2)).^2).^0.5;
 else
 SDF(b)=NaN; %Need this since it accounts for cases where surface wasn't encountered (i.e. x_surf or z_surf are 0 numerically)
 end %and the fact that SDF can be actually 0, if we are on the surface (and if surface not encountered, SDF(b) would stay 0
 %since it is pre-allocated with zeros for speed
 end
 %Obtain value and index at which SDF is MIN (ignores NaN's)
 [min_SDF,I_min(k,i)]=min(SDF);

 %Update phi
 if (phi_1(k,i)>0) %Checking sign of pre re-initialized phi's and thus new phi's (no change in sign)
 phi(k,i)=min_SDF;
 elseif (phi_1(k,i)<0)
 phi(k,i)=-min_SDF;
 else
 phi(k,i)=phi_1(k,i); %i.e., phi(k,i)=0, we are on the surface
 end

 %--
 %%%%%%%%%%%%%%%%%%%%F_ext Algorithm%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %--

 if (I_min(k,i)>=1)&&(I_min(k,i)<=(3*i_max))&&(phi_1(k,i)~=0) %zsurf used; phi_1(k,i)~=0, since if it is 0,
 %use regular eq'ns to calculate Fext where surface node = grid node (see below)

 if (I_min(k,i)>=1)&&(I_min(k,i)<=i_max) %%Here, we use I_min_ik=''i'', acts as reference for phi interpolation to know ''i'' value (see below)
 I_min_ik=I_min(k,i); %z_surf_1 used
 end

 158

 if (I_min(k,i)>=(i_max+1))&&(I_min(k,i)<=(2*i_max))
 I_min_ik=I_min(k,i)-i_max; %z_surf_2 used
 end

 if (I_min(k,i)>=(2*i_max+1))&&(I_min(k,i)<=(3*i_max))
 I_min_ik=I_min(k,i)-2*i_max; %z_surf_3 used
 end

 %Calculate nearest (reference) k index to surface
 J_k_ext=floor(k_max-(xz_surf(I_min(k,i),2)-z_min_grid)/dz);
%__
 %Calculation of dphi/dx,dphi/dz (in b/w grid nodes); Define BC's

 if I_min_ik==i_max
 phi_x_pos_ext(k,i)=0;
 else
 phi_B_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik+1)-
phi_1(J_k_ext,I_min_ik+1))+phi_1(J_k_ext,I_min_ik+1);
 phi_x_pos_ext(k,i)=(phi_B_z_surf-0)./dx;
 end

 if I_min_ik==1
 phi_x_neg_ext(k,i)=0;
 else
 phi_A_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik-1)-phi_1(J_k_ext,I_min_ik-
1))+phi_1(J_k_ext,I_min_ik-1);
 phi_x_neg_ext(k,i)=(0-phi_A_z_surf)./dx;
 end

 if (I_min_ik==i_max)||(I_min_ik==1)
 phi_x_cen_ext(k,i)=0;
 else
 phi_A_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik-1)-phi_1(J_k_ext,I_min_ik-
1))+phi_1(J_k_ext,I_min_ik-1);
 phi_B_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik+1)-
phi_1(J_k_ext,I_min_ik+1))+phi_1(J_k_ext,I_min_ik+1);
 phi_x_cen_ext(k,i)=(phi_B_z_surf-phi_A_z_surf)./(2*dx);
 end

 if J_k_ext==1
 phi_z_pos_ext(k,i)=0;
 else
 phi_C_z_surf=((xz_surf(I_min(k,i),2)+dz-z_cord(J_k_ext-1))/(z_cord(J_k_ext)-z_cord(J_k_ext-1))).*(phi_1(J_k_ext,I_min_ik)-phi_1(J_k_ext-
1,I_min_ik))+phi_1(J_k_ext-1,I_min_ik);
 phi_z_pos_ext(k,i)=(phi_C_z_surf-0)./dz;
 end

 if J_k_ext==k_max
 phi_z_neg_ext(k,i)=0;
 else
 phi_D_z_surf=((xz_surf(I_min(k,i),2)-dz-z_cord(J_k_ext+1))/(z_cord(J_k_ext+2)-z_cord(J_k_ext+1))).*(phi_1(J_k_ext+2,I_min_ik)-
phi_1(J_k_ext+1,I_min_ik))+phi_1(J_k_ext+1,I_min_ik);
 phi_z_neg_ext(k,i)=(0-phi_D_z_surf)./dz;
 end

 if (J_k_ext==k_max)||(J_k_ext==1)
 phi_z_cen_ext(k,i)=0;
 else
 phi_C_z_surf=((xz_surf(I_min(k,i),2)+dz-z_cord(J_k_ext-1))/(z_cord(J_k_ext)-z_cord(J_k_ext-1))).*(phi_1(J_k_ext,I_min_ik)-phi_1(J_k_ext-
1,I_min_ik))+phi_1(J_k_ext-1,I_min_ik);
 phi_D_z_surf=((xz_surf(I_min(k,i),2)-dz-z_cord(J_k_ext+1))/(z_cord(J_k_ext+2)-z_cord(J_k_ext+1))).*(phi_1(J_k_ext+2,I_min_ik)-
phi_1(J_k_ext+1,I_min_ik))+phi_1(J_k_ext+1,I_min_ik);
 phi_z_cen_ext(k,i)=(phi_C_z_surf-phi_D_z_surf)./(2*dz);
 end

 %Now calculate phi_stars
 phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2;
 phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2;
%__
 %Masking Function for T and M
 x_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*sin(alfa)-xz_surf(I_min(k,i),2).*cos(alfa); %Rotated local x
 z_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*cos(alfa)+xz_surf(I_min(k,i),2).*sin(alfa); %Rotated local z

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T

 if (max_x_prime_surf_LM<0) %Case (a) and (c)
 if (x_prime_ext(k,i)<0)
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 else %i.e., when x_prime>=0
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;

 159

 end
 else %i.e., when x_m>=W_m/2 Case (b)
 x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 if (x_prime_ext(k,i)<x_lim_ext(k,i))
 L_mask_ext(k,i)=0;
 else %i.e., when x_prime>=x_lim
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i);
 end
 end

 %Define proportion of mass of particles that pass through mask opening having a
 %specific particle size (of radius r) distribution
 if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i))
 M_r_x_prime_ext(k,i)=0;
 else
 Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));
 Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));
 M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i);
 end

 else %M; Below for F, will check if M(x')=0 if cos(theta)<0 so apply it there (initial iteration assumption for small initial dt)
 M_r_x_prime_ext(k,i)=1;
 end

%__
 %Define velocity v(x,z) at each grid node
 v_ext(k,i)=v_o*(1-H_slp*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2).^0.5./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)));
 if (v_ext(k,i)<0)
 v_ext(k,i)=0;
 end

 %Define particle mass flux(x,z) at each grid node
 flux_ext(k,i)=(MFR/pi)*(beta./((xz_surf(I_min(k,i),1)-x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))).^2....
 exp(-(beta^2.(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2)./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)).^2));

 %Define Erosive Power Eros_pow(k,i) at each grid
 %node (1st Strike)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i);
 else %M
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i);
 end

 %Define Erosive Power for 2nd strike
 %NOTE: No Mask here
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (NaN_Chk_theta_D(I_min(k,i))==0) %If second strike occurred
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 else %M
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 end

%__
 %Calculate F_extensions

 cos_t_pfx_pfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_pfx_nfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_nfx_pfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_nfx_nfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_star_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_star_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_star_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_cen_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_cen_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_cen_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 if (cos_t_pfx_pfz_ext(k,i)>1) %limit cos(theta) to be b/w -1 and 1
 cos_t_pfx_pfz_ext(k,i)=1;
 end
 if (cos_t_pfx_nfz_ext(k,i)>1)

 160

 cos_t_pfx_nfz_ext(k,i)=1;
 end
 if (cos_t_nfx_pfz_ext(k,i)>1)
 cos_t_nfx_pfz_ext(k,i)=1;
 end
 if (cos_t_nfx_nfz_ext(k,i)>1)
 cos_t_nfx_nfz_ext(k,i)=1;
 end
 if (cos_t_star_ext(k,i)>1)
 cos_t_star_ext(k,i)=1;
 end
 if (cos_t_cen_ext(k,i)>1)
 cos_t_cen_ext(k,i)=1;
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_pfx_pfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_pfz_1st(k,i)=0;
 else
 F_ext_pfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_pfx_nfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_nfz_1st(k,i)=0;
 else
 F_ext_pfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_nfx_pfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_pfz_1st(k,i)=0;
 else
 F_ext_nfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_nfx_nfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_nfz_1st(k,i)=0;

 161

 else
 F_ext_nfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_star_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_star_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_star_1st(k,i)=0;
 else
 F_ext_star_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_star_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_cen_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_cen_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_cen_1st(k,i)=0;
 else
 F_ext_cen_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_cen_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));
 end

 elseif (I_min(k,i)>=(3*i_max+1))&&(I_min(k,i)<=b_max)&&(phi_1(k,i)~=0) %xsurf used; phi_1(k,i)~=0 (see above)

 if (I_min(k,i)>=(3*i_max+1))&&(I_min(k,i)<=(3*i_max+k_max)) %%Here, we use I_min_ik=''k'', acts as reference for phi interpolation to know ''k'' value
(see below)
 I_min_ik=I_min(k,i)-3*i_max; %x_surf_1 used
 end
 if (I_min(k,i)>=(3*i_max+k_max+1))&&(I_min(k,i)<=b_max)
 I_min_ik=I_min(k,i)-3*i_max-k_max; %x_surf_2 used
 end

 %Repeat above algorithm but for xsurf
 %Calculate nearest i index to surface
 J_i_ext=floor(1+(xz_surf(I_min(k,i),1)-x_min_grid)/dx);
%__
 %Calculation of dphi/dx,dphi/dz, Define BC's
 if J_i_ext==i_max
 phi_x_pos_ext(k,i)=0;
 else
 phi_D_x_surf=((xz_surf(I_min(k,i),1)+dx-x_cord(J_i_ext+1))/(x_cord(J_i_ext+2)-x_cord(J_i_ext+1))).*(phi_1(I_min_ik,J_i_ext+2)-
phi_1(I_min_ik,J_i_ext+1))+phi_1(I_min_ik,J_i_ext+1);
 phi_x_pos_ext(k,i)=(phi_D_x_surf-0)./dx;
 end

 if J_i_ext==1
 phi_x_neg_ext(k,i)=0;
 else
 phi_C_x_surf=((xz_surf(I_min(k,i),1)-dx-x_cord(J_i_ext-1))/(x_cord(J_i_ext)-x_cord(J_i_ext-1))).*(phi_1(I_min_ik,J_i_ext)-phi_1(I_min_ik,J_i_ext-
1))+phi_1(I_min_ik,J_i_ext-1);

 162

 phi_x_neg_ext(k,i)=(0-phi_C_x_surf)./dx;
 end

 if (J_i_ext==i_max)||(J_i_ext==1)
 phi_x_cen_ext(k,i)=0;
 else
 phi_C_x_surf=((xz_surf(I_min(k,i),1)-dx-x_cord(J_i_ext-1))/(x_cord(J_i_ext)-x_cord(J_i_ext-1))).*(phi_1(I_min_ik,J_i_ext)-phi_1(I_min_ik,J_i_ext-
1))+phi_1(I_min_ik,J_i_ext-1);
 phi_D_x_surf=((xz_surf(I_min(k,i),1)+dx-x_cord(J_i_ext+1))/(x_cord(J_i_ext+2)-x_cord(J_i_ext+1))).*(phi_1(I_min_ik,J_i_ext+2)-
phi_1(I_min_ik,J_i_ext+1))+phi_1(I_min_ik,J_i_ext+1);
 phi_x_cen_ext(k,i)=(phi_D_x_surf-phi_C_x_surf)./(2*dx);
 end

 if I_min_ik==1
 phi_z_pos_ext(k,i)=0;
 else
 phi_A_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik-1,J_i_ext+1)-phi_1(I_min_ik-
1,J_i_ext))+phi_1(I_min_ik-1,J_i_ext);
 phi_z_pos_ext(k,i)=(phi_A_x_surf-0)./dz;
 end

 if I_min_ik==k_max
 phi_z_neg_ext(k,i)=0;
 else
 phi_B_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik+1,J_i_ext+1)-
phi_1(I_min_ik+1,J_i_ext))+phi_1(I_min_ik+1,J_i_ext);
 phi_z_neg_ext(k,i)=(0-phi_B_x_surf)./dz;
 end

 if (I_min_ik==k_max)||(I_min_ik==1)
 phi_z_cen_ext(k,i)=0;
 else
 phi_A_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik-1,J_i_ext+1)-phi_1(I_min_ik-
1,J_i_ext))+phi_1(I_min_ik-1,J_i_ext);
 phi_B_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik+1,J_i_ext+1)-
phi_1(I_min_ik+1,J_i_ext))+phi_1(I_min_ik+1,J_i_ext);
 phi_z_cen_ext(k,i)=(phi_A_x_surf-phi_B_x_surf)./(2*dz);
 end

 %Calculate phi_stars
 phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2;
 phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2;
%__
 %Masking function for T, M (analogous to above)
 x_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*sin(alfa)-xz_surf(I_min(k,i),2).*cos(alfa); %Rotated local x
 z_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*cos(alfa)+xz_surf(I_min(k,i),2).*sin(alfa); %Rotated local z

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T

 if (max_x_prime_surf_LM<0) %Case (a) and (c)
 if (x_prime_ext(k,i)<0)
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 else %i.e., when x_prime>=0
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;
 end
 else %i.e., when x_m>=W_m/2 Case (b)
 x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 if (x_prime_ext(k,i)<x_lim_ext(k,i))
 L_mask_ext(k,i)=0;
 else %i.e., when x_prime>=x_lim
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i);
 end
 end

 %Define proportion of mass of particle that pass through mask opening having a
 %specific particle size (of radius r) distribution
 if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i))
 M_r_x_prime_ext(k,i)=0;
 else
 Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));
 Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));
 M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i);
 end

 else %M
 M_r_x_prime_ext(k,i)=1;
 end

%__
 %Define velocity v(x,z) at each grid node

 163

 v_ext(k,i)=v_o*(1-H_slp*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2).^0.5./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)));
 if (v_ext(k,i)<0)
 v_ext(k,i)=0;
 end

 %Define particle mass flux(x,z) at each grid node
 flux_ext(k,i)=(MFR/pi)*(beta./((xz_surf(I_min(k,i),1)-x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))).^2....
 exp(-(beta^2.(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2)./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)).^2));

 %Define Erosive Power Eros_pow(k,i) at each grid
 %node (1st Strike)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i);
 else %M
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i);
 end

 %Define Erosive Power for 2nd strike
 %NOTE: No Mask here
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 else %M
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 end

%__
 %Calculate F_extensions

 cos_t_pfx_pfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_pfx_nfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_nfx_pfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_nfx_nfz_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_star_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_star_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_star_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_cen_ext(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_cen_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_cen_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 if (cos_t_pfx_pfz_ext(k,i)>1)
 cos_t_pfx_pfz_ext(k,i)=1;
 end
 if (cos_t_pfx_nfz_ext(k,i)>1)
 cos_t_pfx_nfz_ext(k,i)=1;
 end
 if (cos_t_nfx_pfz_ext(k,i)>1)
 cos_t_nfx_pfz_ext(k,i)=1;
 end
 if (cos_t_nfx_nfz_ext(k,i)>1)
 cos_t_nfx_nfz_ext(k,i)=1;
 end
 if (cos_t_star_ext(k,i)>1)
 cos_t_star_ext(k,i)=1;
 end
 if (cos_t_cen_ext(k,i)>1)
 cos_t_cen_ext(k,i)=1;
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_pfx_pfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_pfz_1st(k,i)=0;
 else
 F_ext_pfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext(k,i))).^n_2_M));
 end
 end

 164

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_pfx_nfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_nfz_1st(k,i)=0;
 else
 F_ext_pfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_nfx_pfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_pfz_1st(k,i)=0;
 else
 F_ext_nfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_nfx_nfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_nfz_1st(k,i)=0;
 else
 F_ext_nfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_star_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_star_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_star_1st(k,i)=0;
 else
 F_ext_star_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_star_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)

 165

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_cen_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_cen_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_cen_1st(k,i)=0;
 else
 F_ext_cen_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_cen_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));
 end

 else %we are on surface and grid node = surface node (and phi=0)
 %Repeat above algorithm but using grid nodes

%__
 %Calculation of dphi/dx,dphi/dz; Define BC's
 if i==i_max
 phi_x_pos_ext(k,i)=0;
 else
 phi_x_pos_ext(k,i)=(phi_1(k,i+1)-phi_1(k,i))./dx;
 end

 if i==1
 phi_x_neg_ext(k,i)=0;
 else
 phi_x_neg_ext(k,i)=(phi_1(k,i)-phi_1(k,i-1))./dx;
 end

 if (i==i_max)||(i==1)
 phi_x_cen_ext(k,i)=0;
 else
 phi_x_cen_ext(k,i)=(phi_1(k,i+1)-phi_1(k,i-1))./(2*dx);
 end

 if k==1
 phi_z_pos_ext(k,i)=0;
 else
 phi_z_pos_ext(k,i)=(phi_1(k-1,i)-phi_1(k,i))./dz;
 end

 if k==k_max
 phi_z_neg_ext(k,i)=0;
 else
 phi_z_neg_ext(k,i)=(phi_1(k,i)-phi_1(k+1,i))./dz;
 end

 if (k==k_max)||(k==1)
 phi_z_cen_ext(k,i)=0;
 else
 phi_z_cen_ext(k,i)=(phi_1(k-1,i)-phi_1(k+1,i))./(2*dz);
 end

 %Calculate phi_stars
 phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2;
 phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2;
%__
 %Masking function for T, M (analogous to above)
 x_prime_ext(k,i)=x_cord_local(i).*sin(alfa)-z_cord(k).*cos(alfa); %Rotated local x
 z_prime_ext(k,i)=x_cord_local(i).*cos(alfa)+z_cord(k).*sin(alfa); %Rotated local z

 if (z_cord(k)>=(h*sin(alfa))) %T

 if (max_x_prime_surf_LM<0) %Case (a) and (c)
 if (x_prime_ext(k,i)<0)
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 else %i.e., when x_prime>=0

 166

 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;
 end
 else %i.e., when x_m>=W_m/2 Case (b)
 x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 if (x_prime_ext(k,i)<x_lim_ext(k,i))
 L_mask_ext(k,i)=0;
 else %i.e., when x_prime>=x_lim
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i);
 end
 end

 %Define proportion of mass of particle that pass through mask opening having a
 %specific particle size (of radius r) distribution
 if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i))
 M_r_x_prime_ext(k,i)=0;
 else
 Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));
 Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));
 M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i);
 end

 else %M
 M_r_x_prime_ext(k,i)=1;
 end

%__
 %Define velocity v(x,z) at each grid node
 v_ext(k,i)=v_o*(1-H_slp*((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2).^0.5./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)));
 if (v_ext(k,i)<0)
 v_ext(k,i)=0;
 end

 %Define particle mass flux(x,z) at each grid node
 flux_ext(k,i)=(MFR/pi)*(beta./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa))).^2....
 exp(-(beta^2.((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2)./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)).^2));

 %Define Erosive Power Eros_pow(k,i) at each grid
 %node (1st strike)
 if (z_cord(k)>=(h*sin(alfa))) %T
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i);
 else %M
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i);
 end

 %Define Erosive Power for 2nd strike
 %NOTE: No Mask here
 if (z_cord(k)>=(h*sin(alfa))) %T
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 else %M
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 end

%__
 %Calculate F_extensions

 cos_t_pfx_pfz_ext(k,i)=(x_cord_local(i).*(phi_x_pos_ext(k,i))+z_cord(k).*(phi_z_pos_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_pfx_nfz_ext(k,i)=(x_cord_local(i).*(phi_x_pos_ext(k,i))+z_cord(k).*(phi_z_neg_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_nfx_pfz_ext(k,i)=(x_cord_local(i).*(phi_x_neg_ext(k,i))+z_cord(k).*(phi_z_pos_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_nfx_nfz_ext(k,i)=(x_cord_local(i).*(phi_x_neg_ext(k,i))+z_cord(k).*(phi_z_neg_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_star_ext(k,i)=(x_cord_local(i).*(phi_x_star_ext(k,i))+z_cord(k).*(phi_z_star_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_cen_ext(k,i)=(x_cord_local(i).*(phi_x_cen_ext(k,i))+z_cord(k).*(phi_z_cen_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 if (cos_t_pfx_pfz_ext(k,i)>1)
 cos_t_pfx_pfz_ext(k,i)=1;
 end
 if (cos_t_pfx_nfz_ext(k,i)>1)
 cos_t_pfx_nfz_ext(k,i)=1;
 end
 if (cos_t_nfx_pfz_ext(k,i)>1)
 cos_t_nfx_pfz_ext(k,i)=1;
 end
 if (cos_t_nfx_nfz_ext(k,i)>1)

 167

 cos_t_nfx_nfz_ext(k,i)=1;
 end
 if (cos_t_star_ext(k,i)>1)
 cos_t_star_ext(k,i)=1;
 end
 if (cos_t_cen_ext(k,i)>1)
 cos_t_cen_ext(k,i)=1;
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_pfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_pfx_pfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_pfz_1st(k,i)=0;
 else
 F_ext_pfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_pfz(k,i)=F_ext_pfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_pfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_pfx_nfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_nfz_1st(k,i)=0;
 else
 F_ext_pfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_nfz(k,i)=F_ext_pfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_nfx_pfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_nfx_pfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_pfz_1st(k,i)=0;
 else
 F_ext_nfx_pfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_pfz(k,i)=F_ext_nfx_pfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_nfx_nfz_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_nfx_nfz_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_nfz_1st(k,i)=0;
 else
 F_ext_nfx_nfz_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext(k,i))).^n_2_M));
 end
 end

 168

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_nfz(k,i)=F_ext_nfx_nfz_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_star_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_star_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_star_1st(k,i)=0;
 else
 F_ext_star_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_star_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_star(k,i)=F_ext_star_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_cen_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i))^(k_vel+1)));
 else %M
 if (cos_t_cen_ext(k,i)<=0) %Apply mask visibility for M
 F_ext_cen_1st(k,i)=0;
 else
 F_ext_cen_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext(k,i)).^n_1_M).*((1+H_vic_M*(1-cos_t_cen_ext(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk, so OK (no NaNs)
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_cen(k,i)=F_ext_cen_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));
 end

 end

 end %#####*****#####$$$$$#####*****#####
 end
end
%%%
 %END OF SDF AND F_EXT ALGORITHM
%%%

%Time Counter
time=time+dt;

%Iteration counter
counter=counter+1;

%Initialize variables for NB collision detection (see below)
flag_RE=0;
Num_iter_RE_TOT=0;

%##
% END OF INITIAL ITERATION
%##

%%%
 %Main Loop
%%%

while (time<=t_in)

%__
%Define FD's and BC's
phi_x_pos=zeros(k_max,i_max);
phi_x_neg=zeros(k_max,i_max);
phi_x_cen=zeros(k_max,i_max);

 169

phi_x_x_cen=zeros(k_max,i_max);
phi_z_pos=zeros(k_max,i_max);
phi_z_neg=zeros(k_max,i_max);
phi_z_cen=zeros(k_max,i_max);
phi_z_z_cen=zeros(k_max,i_max);

%FD's where there is a NB boundary 1st
for k=1:1:k_max
 for i=1:1:i_max

 if (flag_NB(k,i)==2) %#####*****#####$$$$$#####*****#####

 if i==i_max
 phi_x_pos(k,i)=0;
 elseif ((flag_NB(k,i+1)==3)||(flag_NB(k,i+1)==4))
 phi_x_pos(k,i)=0;
 else
 phi_x_pos(k,i)=(phi(k,i+1)-phi(k,i))./dx;
 end

 if i==1
 phi_x_neg(k,i)=0;
 elseif ((flag_NB(k,i-1)==3)||(flag_NB(k,i-1)==4))
 phi_x_neg(k,i)=0;
 else
 phi_x_neg(k,i)=(phi(k,i)-phi(k,i-1))./dx;
 end

 if (i==i_max)||(i==1)
 phi_x_cen(k,i)=0;
 phi_x_x_cen(k,i)=0;
 elseif ((flag_NB(k,i+1)==3)||(flag_NB(k,i+1)==4))||((flag_NB(k,i-1)==3)||(flag_NB(k,i-1)==4))
 phi_x_cen(k,i)=0;
 phi_x_x_cen(k,i)=0;
 else
 phi_x_cen(k,i)=(phi(k,i+1)-phi(k,i-1))./(2*dx);
 phi_x_x_cen(k,i)=(phi(k,i+1)-2*phi(k,i)+phi(k,i-1))./(dx^2);
 end

 if k==1
 phi_z_pos(k,i)=0;
 elseif ((flag_NB(k-1,i)==3)||(flag_NB(k-1,i)==4))
 phi_z_pos(k,i)=0;
 else
 phi_z_pos(k,i)=(phi(k-1,i)-phi(k,i))./dz;
 end

 if k==k_max
 phi_z_neg(k,i)=0;
 elseif ((flag_NB(k+1,i)==3)||(flag_NB(k+1,i)==4))
 phi_z_neg(k,i)=0;
 else
 phi_z_neg(k,i)=(phi(k,i)-phi(k+1,i))./dz;
 end

 if (k==k_max)||(k==1)
 phi_z_cen(k,i)=0;
 phi_z_z_cen(k,i)=0;
 elseif ((flag_NB(k-1,i)==3)||(flag_NB(k-1,i)==4))||((flag_NB(k+1,i)==3)||(flag_NB(k+1,i)==4))
 phi_z_cen(k,i)=0;
 phi_z_z_cen(k,i)=0;
 else
 phi_z_cen(k,i)=(phi(k-1,i)-phi(k+1,i))./(2*dz);
 phi_z_z_cen(k,i)=(phi(k-1,i)-2*phi(k,i)+phi(k+1,i))./(dz^2);
 end

 end %#####*****#####$$$$$#####*****#####
 end
end

%FD's inside the NB
for k=1:1:k_max
 for i=1:1:i_max

 if (flag_NB(k,i)==1) %#####*****#####$$$$$#####*****#####

 if i==i_max
 phi_x_pos(k,i)=0;
 else
 phi_x_pos(k,i)=(phi(k,i+1)-phi(k,i))./dx;

 170

 end

 if i==1
 phi_x_neg(k,i)=0;
 else
 phi_x_neg(k,i)=(phi(k,i)-phi(k,i-1))./dx;
 end

 if (i==i_max)||(i==1)
 phi_x_cen(k,i)=0;
 phi_x_x_cen(k,i)=0;
 else
 phi_x_cen(k,i)=(phi(k,i+1)-phi(k,i-1))./(2*dx);
 phi_x_x_cen(k,i)=(phi(k,i+1)-2*phi(k,i)+phi(k,i-1))./(dx^2);
 end

 if k==1
 phi_z_pos(k,i)=0;
 else
 phi_z_pos(k,i)=(phi(k-1,i)-phi(k,i))./dz;
 end

 if k==k_max
 phi_z_neg(k,i)=0;
 else
 phi_z_neg(k,i)=(phi(k,i)-phi(k+1,i))./dz;
 end

 if (k==k_max)||(k==1)
 phi_z_cen(k,i)=0;
 phi_z_z_cen(k,i)=0;
 else
 phi_z_cen(k,i)=(phi(k-1,i)-phi(k+1,i))./(2*dz);
 phi_z_z_cen(k,i)=(phi(k-1,i)-2*phi(k,i)+phi(k+1,i))./(dz^2);
 end

 end %#####*****#####$$$$$#####*****#####
 end
end

%__
%Define Curvature K
K=zeros(k_max,i_max);
 if (epsilon==0)
 for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****##### IN NB, etc.
 K(k,i)=0;
 end %#####*****#####$$$$$#####*****#####
 end
 end
 else
 for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####
 K(k,i)=phi_x_x_cen(k,i)+phi_z_z_cen(k,i);
 end %#####*****#####$$$$$#####*****#####
 end
 end
 end

%__
%Define Partial Hamiltonians for LLLF Scheme (analogous to initial iteration)
cos_t_pfx_pfz=zeros(k_max,i_max);
cos_t_pfx_nfz=zeros(k_max,i_max);
cos_t_nfx_pfz=zeros(k_max,i_max);
cos_t_nfx_nfz=zeros(k_max,i_max);
H1_LLLF_pfx_pfz=zeros(k_max,i_max); %Partial H wrt phi_x (all +/- FD combinations)
H1_LLLF_pfx_nfz=zeros(k_max,i_max);
H1_LLLF_nfx_pfz=zeros(k_max,i_max);
H1_LLLF_nfx_nfz=zeros(k_max,i_max);
H3_LLLF_pfx_pfz=zeros(k_max,i_max); %Partial H wrt phi_z (all +/- FD combinations)
H3_LLLF_pfx_nfz=zeros(k_max,i_max);
H3_LLLF_nfx_pfz=zeros(k_max,i_max);
H3_LLLF_nfx_nfz=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####

 if (flag_NB(k,i)==1)

 171

 cos_t_pfx_pfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_pos(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_pfx_nfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_neg(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_nfx_pfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_pos(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_nfx_nfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_neg(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 else %Need this condition since NB boundary pts can incorrectly evaluate cos() since either phi_x or phi_z is forced to 0 there

 if (phi_x_pos(k,i)==0)&&(phi_z_pos(k,i)==0)
 cos_t_pfx_pfz(k,i)=0;
 else

cos_t_pfx_pfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_pos(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_pos(k,i)).^2+(phi_z_pos(k,i)
).^2));
 end

 if (phi_x_pos(k,i)==0)&&(phi_z_neg(k,i)==0)
 cos_t_pfx_nfz(k,i)=0;
 else

cos_t_pfx_nfz(k,i)=(x_cord_local(i).*(phi_x_pos(k,i))+z_cord(k).*(phi_z_neg(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_pos(k,i)).^2+(phi_z_neg(k,i
)).^2));
 end

 if (phi_x_neg(k,i)==0)&&(phi_z_pos(k,i)==0)
 cos_t_nfx_pfz(k,i)=0;
 else

cos_t_nfx_pfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_pos(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_neg(k,i)).^2+(phi_z_pos(k,i
)).^2));
 end

 if (phi_x_neg(k,i)==0)&&(phi_z_neg(k,i)==0)
 cos_t_nfx_nfz(k,i)=0;
 else

cos_t_nfx_nfz(k,i)=(x_cord_local(i).*(phi_x_neg(k,i))+z_cord(k).*(phi_z_neg(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_neg(k,i)).^2+(phi_z_neg(k,i
)).^2));
 end

 end

 if (cos_t_pfx_pfz(k,i)>1) %limit cos(theta) to be b/w -1 and 1
 cos_t_pfx_pfz(k,i)=1;
 end
 if (cos_t_pfx_nfz(k,i)>1)
 cos_t_pfx_nfz(k,i)=1;
 end
 if (cos_t_nfx_pfz(k,i)>1)
 cos_t_nfx_pfz(k,i)=1;
 end
 if (cos_t_nfx_nfz(k,i)>1)
 cos_t_nfx_nfz(k,i)=1;
 end
 %_________
 if cos_t_pfx_pfz(k,i)==0 %Done to ensure 0/0 doesn't results and hence an error - F=H=0 when this occurs
 H3_LLLF_pfx_pfz(k,i)=0;
 H1_LLLF_pfx_pfz(k,i)=0;
 else
 if flag_T_M(k,i)==1 %T
 H3_LLLF_pfx_pfz(k,i)=real(F_ext_pfx_pfz(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_pfx_pfz(k,i)));
 else %M
 H3_LLLF_pfx_pfz(k,i)=real(F_ext_pfx_pfz(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_pfx_pfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_pfx_pfz(k,i)))));
 end

 H1_LLLF_pfx_pfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_pfx_pfz(k,i);
 end
 %_________
 if cos_t_pfx_nfz(k,i)==0
 H3_LLLF_pfx_nfz(k,i)=0;
 H1_LLLF_pfx_nfz(k,i)=0;
 else
 if flag_T_M(k,i)==1 %T
 H3_LLLF_pfx_nfz(k,i)=real(F_ext_pfx_nfz(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_pfx_nfz(k,i)));
 else %M
 H3_LLLF_pfx_nfz(k,i)=real(F_ext_pfx_nfz(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_pfx_nfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_pfx_nfz(k,i)))));
 end

 172

 H1_LLLF_pfx_nfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_pfx_nfz(k,i);
 end
 %_________
 if cos_t_nfx_pfz(k,i)==0
 H3_LLLF_nfx_pfz(k,i)=0;
 H1_LLLF_nfx_pfz(k,i)=0;
 else
 if flag_T_M(k,i)==1 %T
 H3_LLLF_nfx_pfz(k,i)=real(F_ext_nfx_pfz(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_nfx_pfz(k,i)));
 else %M
 H3_LLLF_nfx_pfz(k,i)=real(F_ext_nfx_pfz(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_nfx_pfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_nfx_pfz(k,i)))));
 end

 H1_LLLF_nfx_pfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_nfx_pfz(k,i);
 end
 %_________
 if cos_t_nfx_nfz(k,i)==0
 H3_LLLF_nfx_nfz(k,i)=0;
 H1_LLLF_nfx_nfz(k,i)=0;
 else
 if flag_T_M(k,i)==1 %T
 H3_LLLF_nfx_nfz(k,i)=real(F_ext_nfx_nfz(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_nfx_nfz(k,i)));
 else %M
 H3_LLLF_nfx_nfz(k,i)=real(F_ext_nfx_nfz(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_nfx_nfz(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_nfx_nfz(k,i)))));
 end

 H1_LLLF_nfx_nfz(k,i)=(x_cord_local(i)./z_cord(k)).*H3_LLLF_nfx_nfz(k,i);
 end
 end %#####*****#####$$$$$#####*****#####

 end
end

%__
%LLLF Scheme
%Initialization (preallocation) to increase computational speed
alpha_x=zeros(k_max,i_max);
alpha_z=zeros(k_max,i_max);
Ham=zeros(k_max,i_max);
Ham_num=zeros(k_max,i_max);
 for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####
 H1_LLLF_array=[abs(H1_LLLF_pfx_pfz(k,i)),abs(H1_LLLF_pfx_nfz(k,i)),abs(H1_LLLF_nfx_pfz(k,i)),abs(H1_LLLF_nfx_nfz(k,i))];
 alpha_x(k,i)=max(H1_LLLF_array);
 H3_LLLF_array=[abs(H3_LLLF_pfx_pfz(k,i)),abs(H3_LLLF_pfx_nfz(k,i)),abs(H3_LLLF_nfx_pfz(k,i)),abs(H3_LLLF_nfx_nfz(k,i))];
 alpha_z(k,i)=max(H3_LLLF_array);

 %Define Numerical Hamiltonian

 Ham(k,i)=real(F_ext_star(k,i)); %No need to differentiate b/w cases T & M since taken care of in Fext Algorithm

 Ham_num(k,i)=Ham(k,i)-(alpha_x(k,i)/2).*(phi_x_pos(k,i)-phi_x_neg(k,i))-(alpha_z(k,i)/2).*(phi_z_pos(k,i)-phi_z_neg(k,i));

 end %#####*****#####$$$$$#####*****#####
 end
 end

%__
 %Define Central Difference Hamiltonian
Ham_cen=zeros(k_max,i_max);
 if (epsilon==0)
 for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####
 Ham_cen(k,i)=0;
 end %#####*****#####$$$$$#####*****#####
 end
 end
 else
 for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####
 Ham_cen(k,i)=real(F_ext_cen(k,i)); %No need to differentiate b/w cases T & M since taken care of in Fext Algorithm
 end %#####*****#####$$$$$#####*****#####
 end

 173

 end
 end

%__
%Calculate dt (CFL Condition)

%Find absolute Max of alpha_x and alpha_z used to obtain time step
alpha_x_vector=zeros(1,k_max*i_max);
alpha_z_vector=zeros(1,k_max*i_max);
for W=1:1:(k_max*i_max)
 alpha_x_vector(1,W)=alpha_x(W);
end
for X=1:1:(k_max*i_max)
 alpha_z_vector(1,X)=alpha_z(X);
end
%No need to take absolute value of above vectors since alphas already
%absolute positive (from previous evaluation)
max_alpha_x=max(alpha_x_vector);
max_alpha_z=max(alpha_z_vector);

%CFL condition
Ham_cen1=zeros(k_max,i_max); %Partial H wrt phi_x (all central FD) used to multiply epsilon
Ham_cen3=zeros(k_max,i_max); %Partial H wrt phi_z (all central FD)
cos_t_cen=zeros(k_max,i_max);
 if (epsilon==0) %No need to evaluate the Partial H's
 for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####
 Ham_cen1(k,i)=0;
 Ham_cen3(k,i)=0;
 end %#####*****#####$$$$$#####*****#####
 end
 end
 else
 for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####

 if (flag_NB(k,i)==1)
 cos_t_cen(k,i)=(x_cord_local(i).*(phi_x_cen(k,i))+z_cord(k).*(phi_z_cen(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);

 else %Need this condition since NB boundary pts can incorrectly evaluate cos() since either phi_x or phi_z is forced to 0 there

 if (phi_x_cen(k,i)==0)&&(phi_z_cen(k,i)==0) %Done to ensure 0/0 doesn't results
 cos_t_cen(k,i)=0;
 else

cos_t_cen(k,i)=(x_cord_local(i).*(phi_x_cen(k,i))+z_cord(k).*(phi_z_cen(k,i)))./(sqrt(x_cord_local(i).^2+z_cord(k).^2).*sqrt((phi_x_cen(k,i)).^2+(phi_z_cen(k,i)).^2
));
 end

 end

 if (cos_t_cen(k,i)>1) %limit cos(theta) to be b/w -1 and 1
 cos_t_cen(k,i)=1;
 end

 %_________
 if (cos_t_cen(k,i)==0)||(cos_t_cen(k,i)<=0.01) %Done to ensure 0/0 doesn't results and hence an error - F=H=0 when this occurs
 Ham_cen3(k,i)=0;
 Ham_cen1(k,i)=0;
 else
 if flag_T_M(k,i)==1 %T
 Ham_cen3(k,i)=real(F_ext_cen(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*((k_vel+1)./cos_t_cen(k,i)));
 else %M
 Ham_cen3(k,i)=real(F_ext_cen(k,i)...
 .*(z_cord(k)./sqrt(x_cord_local(i).^2+z_cord(k).^2)).*(n_1_M./cos_t_cen(k,i)-n_2_M*H_vic_M./(1+H_vic_M*(1-cos_t_cen(k,i)))));
 end

 Ham_cen1(k,i)=(x_cord_local(i)./z_cord(k)).*Ham_cen3(k,i);
 end

 end %#####*****#####$$$$$#####*****#####
 end
 end
 end

 max_Ham_cen1=max(max(Ham_cen1)); %Max Ham_cen's

 174

 max_Ham_cen3=max(max(Ham_cen3));

dt_alpha=0.9;%Used to scale down dt if necessary

if ((max_alpha_x==0)&&(max_alpha_z==0)&&(epsilon==0))
 dt=t_in/Num_iter;
else
 dt=dt_alpha/(max_alpha_x/dx+max_alpha_z/dz+2*epsilon*max_Ham_cen1/dx^2+2*epsilon*max_Ham_cen3/dz^2);
end

%Curvature coefficient
%NOTE can scale up/down 'epsilon' to obtain different epsilons for M and T
%BUT 'epsilon' must be maximum
epsilon_gen=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####
 if flag_T_M(k,i)==1 %T
 epsilon_gen(k,i)=epsilon;
 else %M
 epsilon_gen(k,i)=0;
 end
 end %#####*****#####$$$$$#####*****#####
 end
end

%__
%Solve EOM for phi's to pass onto while loop
phi_1=zeros(k_max,i_max);
for k=1:1:k_max
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####
 phi_1(k,i)=phi(k,i)+dt.*(-Ham_num(k,i)+epsilon_gen(k,i).*K(k,i).*Ham_cen(k,i));
 end %#####*****#####$$$$$#####*****#####
 end
end

%__
%Surface Interpolation algorithm (analogous to initial iteration)

z_surf_1=zeros(i_max,1);
z_surf_2=zeros(i_max,1);
z_surf_3=zeros(i_max,1);
for i=1:1:i_max
 flag_1=0;
 flag_2=0;
 for k=1:1:k_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####
 if ((flag_1==0)&&(((phi_1(k,i)>0)&&(phi_1(k+1,i)<0))||(phi_1(k,i)==0)))
 z_surf_1(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_1=i;
 continue
 end
 if (((flag_2==0)&&(flag_1==i)&&(k~=k_max))&&(((phi_1(k,i)<0)&&(phi_1(k+1,i)>0))||(phi_1(k,i)==0)))
 z_surf_2(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_2=i;
 continue
 end
 if ((flag_2==i)&&(((phi_1(k,i)>0)&&(phi_1(k+1,i)<0))||(phi_1(k,i)==0)))
 z_surf_3(i)=((phi_1(k,i).*(z_cord(k)-z_cord(k+1)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 end
 end %#####*****#####$$$$$#####*****#####
 end
end

x_surf_1=zeros(1,k_max);
x_surf_2=zeros(1,k_max);
for k=1:1:k_max
 flag_3=0;
 for i=1:1:i_max
 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####
 if (((flag_3==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>0)&&(phi_1(k,i+1)<0))||(phi_1(k,i)==0)))
 x_surf_1(k)=((phi_1(k,i).*(x_cord(i)-x_cord(i+1)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 flag_3=k;
 continue
 end
 if (((flag_3==k)&&(i~=i_max))&&(((phi_1(k,i)<0)&&(phi_1(k,i+1)>0))||(phi_1(k,i)==0)))
 x_surf_2(k)=((phi_1(k,i).*(x_cord(i)-x_cord(i+1)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 end
 end %#####*****#####$$$$$#####*****#####

 175

 end
end

%__
% Convert all z_surf and x_surf to one array
xz_surf=[x_cord', z_surf_1;x_cord', z_surf_2;x_cord', z_surf_3;x_surf_1',z_cord;x_surf_2',z_cord];
b_max=3*i_max+2*k_max;
for b=1:1:(3*i_max)
 if xz_surf(b,2)==0
 xz_surf(b,1)=0;
 xz_surf(b,2)=0;
 else
 xz_surf(b,1)=xz_surf(b,1);
 xz_surf(b,2)=xz_surf(b,2);
 end
end

for b=(3*i_max+1):1:b_max
 if xz_surf(b,1)==0
 xz_surf(b,1)=0;
 xz_surf(b,2)=0;
 else
 xz_surf(b,1)=xz_surf(b,1);
 xz_surf(b,2)=xz_surf(b,2);
 end
end

%__
%COLLISSION DETECTION ALGORITHM

%Calculate (roughly) how many iterations it will take to hit band before
%Band Re-initialization (RE)
Num_iter_RE=round(((BS_U-Crit_D/dz)*Num_iter)/(z_in/dz));

%Re-initialization counter; goes to 0 as band is rebuilt and starts
%over. flag_RE and Num_iter_RE_TOT are pre-allocated to 0 before while
%loop and afterwards are defined by values in REBUILD BAND ALGORITHM
counter_RE=counter-flag_RE*Num_iter_RE_TOT;

%Pre-allocate variables for CHECK DISTANCE ALGORITHM
c_max=b_max;
D_o_U=zeros(b_max,1);
D_o_L=zeros(b_max,1);
min_D_o_U=zeros(c_max,1);
min_D_o_L=zeros(c_max,1);
MIN_D_o_U=0;
MIN_D_o_L=0;
D_o_LU=0; %Min. distance b/w surface and Upper and Lower bands

%Pre-allocate variables for REBUILD BAND ALGORITHM
SDF_RE=zeros(b_max,1);

prop_Num_iter_RE=0.0001; %Defines proportion of Num_iter_RE before begin checking distance for every
%iteration. The larger this value, the less check are performed but run
%the risk of surface passing band; Makes insignificant difference wrt comp. efficiency so
%assumed ~0 so checks performed every iteration so surface does not collide
%with the band

counter_RE_chk=round(prop_Num_iter_RE*Num_iter_RE); %Round the result (to get integer)
if (counter_RE>=counter_RE_chk) %Start to perform checks after some specified time

 %CHECK DISTANCE ALGORITHM
 for c=1:1:c_max %Check Upper Band
 if ((xz_surf_U(c,1)==0)&&(xz_surf_U(c,2)==0))
 min_D_o_U(c)=NaN; %Need this since values could be 0 from pre-allocation
 else
 for b=1:1:b_max
 if
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))
 D_o_U(b)=((xz_surf_U(c,1)-xz_surf(b,1)).^2+(xz_surf_U(c,2)-xz_surf(b,2)).^2).^0.5;
 else
 D_o_U(b)=NaN;
 end
 end
 min_D_o_U(c)=min(D_o_U); %Will ignore the NaN's; Min. distances from surface to Upper band pts.
 end
 end

 for c=1:1:c_max %Check Lower Band
 if ((xz_surf_L(c,1)==0)&&(xz_surf_L(c,2)==0))

 176

 min_D_o_L(c)=NaN;
 else
 for b=1:1:b_max
 if
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))
 D_o_L(b)=((xz_surf_L(c,1)-xz_surf(b,1)).^2+(xz_surf_L(c,2)-xz_surf(b,2)).^2).^0.5;
 else
 D_o_L(b)=NaN;
 end
 end
 min_D_o_L(c)=min(D_o_L); %Will ignore the NaN's; Min. distances from surface to Lower band pts.
 end
 end

 MIN_D_o_U=min(min_D_o_U); %Will ignore the NaN's; Absolute Min. dist. from surf. to Upper band pts.
 MIN_D_o_L=min(min_D_o_L); %Will ignore the NaN's; Absolute Min. dist. from surf. to Lower band pts.
 MIN_D_o_LU_matrix=[MIN_D_o_U,MIN_D_o_L]; %Make matrix to evaluate Min.
 D_o_LU=min(MIN_D_o_LU_matrix); %Min. distance b/w surface and Upper AND Lower bands

 if (D_o_LU<=Crit_D) %If surface 'near' band

 %REBUILD BAND ALGORITHM

 for k=1:1:k_max
 for i=1:1:i_max

 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2))
 for b=1:1:b_max
 if (phi_1(k,i)==0)
 SDF_RE(b)=0;
 elseif
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))
 SDF_RE(b)=((x_cord(i)-xz_surf(b,1)).^2+(z_cord(k)-xz_surf(b,2)).^2).^0.5;
 else
 SDF_RE(b)=NaN; %Need this since it accounts for cases where surface wasn't encountered (i.e. x_surf or z_surf are 0 numerically)
 end
 end
 min_SDF_RE=min(SDF_RE); %Will ignore the NaN's

 if (phi_1(k,i)>0)
 phi_1(k,i)=min_SDF_RE;
 elseif (phi_1(k,i)<0)
 phi_1(k,i)=-min_SDF_RE;
 else
 phi_1(k,i)=phi_1(k,i); %i.e.,phi(k,i)=0; i.e., we are on the surface!!!
 end

 else
 for b=1:1:b_max %No need to check if are on the surface since these are band or outer band pts
 if
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))
 SDF_RE(b)=((x_cord(i)-xz_surf(b,1)).^2+(z_cord(k)-xz_surf(b,2)).^2).^0.5;
 else
 SDF_RE(b)=NaN;
 end
 end
 min_SDF_RE=min(SDF_RE);

 if (((flag_NB(k,i)==4)))
 phi_1(k,i)=min_SDF_RE; %Positive phi_1's for upper band and in front upper band pts.
 else
 phi_1(k,i)=-min_SDF_RE; %Accounts for all other cases when flag_NB=3
 end
 end
 end
 end

 %Calculate NEW Upper and Lower Band

 %NEW UPPER BAND

 z_surf_1_U=zeros(i_max,1);
 z_surf_2_U=zeros(i_max,1);
 z_surf_3_U=zeros(i_max,1);
 for i=1:1:i_max
 flag_1_U=0;
 flag_2_U=0;
 for k=1:1:k_max
 if ((flag_1_U==0)&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k+1,i)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 z_surf_1_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);

 177

 flag_1_U=i;
 continue
 end
 if (((flag_2_U==0)&&(flag_1_U==i)&&(k~=k_max))&&(((phi_1(k,i)<(BS_U*dz))&&(phi_1(k+1,i)>(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 z_surf_2_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_2_U=i;
 continue
 end
 if ((flag_2_U==i)&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k+1,i)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 z_surf_3_U(i)=(((BS_U*dz-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 end
 end
 end

 x_surf_1_U=zeros(1,k_max);
 x_surf_2_U=zeros(1,k_max);
 for k=1:1:k_max
 flag_3_U=0;
 for i=1:1:i_max
 if (((flag_3_U==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>(BS_U*dz))&&(phi_1(k,i+1)<(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 x_surf_1_U(k)=(((BS_U*dz-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 flag_3_U=k;
 continue
 end
 if (((flag_3_U==k)&&(i~=i_max))&&(((phi_1(k,i)<(BS_U*dz))&&(phi_1(k,i+1)>(BS_U*dz)))||(phi_1(k,i)==(BS_U*dz))))
 x_surf_2_U(k)=(((BS_U*dz-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 end
 end
 end

 % Convert all z_surf_U and x_surf_U to one array
 xz_surf_U=[x_cord', z_surf_1_U;x_cord', z_surf_2_U;x_cord', z_surf_3_U;x_surf_1_U',z_cord;x_surf_2_U',z_cord];
 for b=1:1:(3*i_max)
 if xz_surf_U(b,2)==0 %Means it was not called up
 xz_surf_U(b,1)=0;
 xz_surf_U(b,2)=0;
 end
 end

 for b=(3*i_max+1):1:b_max
 if xz_surf_U(b,1)==0
 xz_surf_U(b,1)=0;
 xz_surf_U(b,2)=0;
 end
 end

 %NEW LOWER BAND

 z_surf_1_L=zeros(i_max,1);
 z_surf_2_L=zeros(i_max,1);
 z_surf_3_L=zeros(i_max,1);
 for i=1:1:i_max
 flag_1_L=0;
 flag_2_L=0;
 for k=1:1:k_max
 if ((flag_1_L==0)&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k+1,i)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 z_surf_1_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_1_L=i;
 continue
 end
 if (((flag_2_L==0)&&(flag_1_L==i)&&(k~=k_max))&&(((phi_1(k,i)<(-dz*BS_L))&&(phi_1(k+1,i)>(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 z_surf_2_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 flag_2_L=i;
 continue
 end
 if ((flag_2_L==i)&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k+1,i)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 z_surf_3_L(i)=(((-dz*BS_L-phi_1(k,i)).*(z_cord(k+1)-z_cord(k)))./(phi_1(k+1,i)-phi_1(k,i)))+z_cord(k);
 end
 end
 end

 x_surf_1_L=zeros(1,k_max);
 x_surf_2_L=zeros(1,k_max);
 for k=1:1:k_max
 flag_3_L=0;
 for i=1:1:i_max
 if (((flag_3_L==0)&&(i~=i_max)&&(i~=1))&&(((phi_1(k,i)>(-dz*BS_L))&&(phi_1(k,i+1)<(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 x_surf_1_L(k)=(((-dz*BS_L-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 flag_3_L=k;
 continue

 178

 end
 if (((flag_3_L==k)&&(i~=i_max))&&(((phi_1(k,i)<(-dz*BS_L))&&(phi_1(k,i+1)>(-dz*BS_L)))||(phi_1(k,i)==(-dz*BS_L))))
 x_surf_2_L(k)=(((-dz*BS_L-phi_1(k,i)).*(x_cord(i+1)-x_cord(i)))./(phi_1(k,i+1)-phi_1(k,i)))+x_cord(i);
 end
 end
 end

 % Convert all z_surf_L and x_surf_L to one array
 xz_surf_L=[x_cord', z_surf_1_L;x_cord', z_surf_2_L;x_cord', z_surf_3_L;x_surf_1_L',z_cord;x_surf_2_L',z_cord];
 for b=1:1:(3*i_max)
 if xz_surf_L(b,2)==0 %Means it was not called up
 xz_surf_L(b,1)=0;
 xz_surf_L(b,2)=0;
 end
 end

 for b=(3*i_max+1):1:b_max
 if xz_surf_L(b,1)==0
 xz_surf_L(b,1)=0;
 xz_surf_L(b,2)=0;
 end
 end

 %Create flags for points IN the NEW Narrow Band
 %These flags will only change after band is re-initialized
 flag_NB=zeros(k_max,i_max); %Initialize flag_NB to zeros again
 for k=1:1:k_max
 for i=1:1:i_max
 if (((phi_1(k,i)>=0)&&(abs(phi_1(k,i))<BS_U*dz))||((phi_1(k,i)<0)&&(abs(phi_1(k,i))<BS_L*dz))) %Don't consider points on boundary
 flag_NB(k,i)=1; %else they will remain 0 (are outside the band)
 end
 end
 end

 %Create flags to indicate NEW BC pts (adjacent to NB boundary)
 %These will be later used to give phi_i=0 for values where flag_NB=2 in the
 %beginning of while loop
 %These flags will only change after band is re-initialized
 for k=1:1:k_max
 for i=1:1:i_max

 if (i~=1)&&(i~=i_max)&&(k~=1)&&(k~=k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==1)&&(k~=1)&&(k~=k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==i_max)&&(k~=1)&&(k~=k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (k==1)&&(i~=1)&&(i~=i_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (k==k_max)&&(i~=1)&&(i~=i_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k,i-1)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==1)&&(k==1)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k+1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==i_max)&&(k==1)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k+1,i)==1))
 flag_NB(k,i)=2;
 end
 elseif (i==1)&&(k==k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i+1)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 else %(i==i_max)&&(k==k_max)
 if (flag_NB(k,i)==0)&&((flag_NB(k,i-1)==1)||(flag_NB(k-1,i)==1))
 flag_NB(k,i)=2;
 end
 end

 end

 179

 end

 %Create flags for the NEW remaining pts. so when rebuild band, we know where
 %phi's should be +ve or -ve; i.e. assign flag_NB(k,i) = 4 and 3 so as to
 %later indicate +ve and -ve phi
 for k=1:1:k_max
 for i=1:1:i_max
 if (flag_NB(k,i)~=1)&&(flag_NB(k,i)~=2)
 if (phi_1(k,i)>0) %we only need to check +ve phi_1 since these are outside the band
 flag_NB(k,i)=4; %label +ve phi_1's outside band
 else
 flag_NB(k,i)=3; %label -ve phi_1's outside band
 end
 end
 end
 end

 flag_RE=1; %will not change until the rest of simulation
 counter_current=counter; %Stores current counter value at re-building
 Num_iter_RE_TOT=counter_current; %Assigns current counter value until next re-building

 No_RE=No_RE+1; %Counts number of re-initializations
 phi=zeros(k_max,i_max); %Done to ensure ''old'' phi's don't interfere with new ones in the update process

 end
end

%__
%Adjustment to Mass Flux due to Mask Model for Target M(x'): Algorithm to obtain mask angles for T

%Calculate visibility angles based on zero level set (M)
x_prime_surf_LM=zeros(b_max,1); %M surface in local coordinates
z_prime_surf_LM=zeros(b_max,1);
x_prime_surf_RM=zeros(b_max,1);
z_prime_surf_RM=zeros(b_max,1);

for b=1:1:b_max
 if ((xz_surf(b,1)>=x_min_grid)&&(xz_surf(b,1)<=(x_min_grid+leng_M_L)))&&...
 ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa))) %This check also ensures that if surf was not encountered
 % (i.e. xz surfs are 0) then it will ignore those values
 x_prime_surf_LM(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); %Rotated local x
 z_prime_surf_LM(b)=(xz_surf(b,1)-x_off).*cos(alfa)+xz_surf(b,2).*sin(alfa); %Rotated local z
 else
 x_prime_surf_LM(b)=NaN;
 z_prime_surf_LM(b)=NaN;
 end

 if ((xz_surf(b,1)>=(x_max_grid-leng_M_R))&&(xz_surf(b,1)<=x_max_grid))&&...
 ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa)))
 x_prime_surf_RM(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa); %Rotated local x
 z_prime_surf_RM(b)=(xz_surf(b,1)-x_off).*cos(alfa)+xz_surf(b,2).*sin(alfa); %Rotated local z
 else
 x_prime_surf_RM(b)=NaN;
 z_prime_surf_RM(b)=NaN;
 end

end

%By evaluating Max of x_prime_surf_LM, we can check if any entries are
%positive, ignoring NaN's; if any are, then we have case (b),
%where mask shadow is >= W_m/2 from left mask edge, else have case (a) and
%(c), mask shadow is < W_m/2
[max_x_prime_surf_LM,I_max_LM]=max(x_prime_surf_LM); %Will ignore NaN's

%Min tan of left 'spread' angle defined by mask
if (max_x_prime_surf_LM>=0) %Case (b)
 tan_fi_min=max_x_prime_surf_LM/z_prime_surf_LM(I_max_LM);
else %Case (a) and (c)
 %Find min |x_prime_surf_LM|
 [min_x_prime_surf_LM,I_min_LM]=min(abs(x_prime_surf_LM));

 if (alfa==90*pi/180)
 tan_fi_min=min_x_prime_surf_LM/h;
 else
 tan_fi_min=min_x_prime_surf_LM/z_prime_surf_LM(I_min_LM);
 end
end

%Find min x_prime_surf_RM
[min_x_prime_surf_RM,I_min_RM]=min(x_prime_surf_RM);

 180

%Max tan of right 'spread' angle defined by mask
if (alfa==90*pi/180)
 tan_fi_max=min_x_prime_surf_RM/h;
else
 tan_fi_max=min_x_prime_surf_RM/z_prime_surf_RM(I_min_RM);
end

%__
%Adjustment to Mass Flux due to Mask Model for Mask Edges M(x')

%%%
%Initialize variables before loop entry
NaN_Chk_xps_LM=isnan(x_prime_surf_LM); %If any entries are NaN, returns 1 for that entry, else 0
NaN_Chk_zps_LM=isnan(z_prime_surf_LM); %Mask surface in local coordinates (see above)
NaN_Chk_xps_RM=isnan(x_prime_surf_RM);
NaN_Chk_zps_RM=isnan(z_prime_surf_RM);

SDF_LM=zeros(b_max,1); %See below
SDF_RM=zeros(b_max,1);
J_k_M=0;
J_i_M=0;
%theta, cos(theta) at mask edges (left and right) and corresponding FDs
theta_LM=zeros(b_max,1);
cos_t_star_LM=zeros(b_max,1);
phi_x_pos_LM=zeros(b_max,1);
phi_x_neg_LM=zeros(b_max,1);
phi_z_pos_LM=zeros(b_max,1);
phi_z_neg_LM=zeros(b_max,1);
phi_x_star_LM=zeros(b_max,1);
phi_z_star_LM=zeros(b_max,1);

theta_RM=zeros(b_max,1);
cos_t_star_RM=zeros(b_max,1);
phi_x_pos_RM=zeros(b_max,1);
phi_x_neg_RM=zeros(b_max,1);
phi_z_pos_RM=zeros(b_max,1);
phi_z_neg_RM=zeros(b_max,1);
phi_x_star_RM=zeros(b_max,1);
phi_z_star_RM=zeros(b_max,1);
%Variables and limits used to evaluate M(x')edge (Masking function for M
%edge); See below
n_max=1001;
x_n_LM=zeros(1,n_max);
x_n_RM=zeros(1,n_max);
L_NU_LM=zeros(1,n_max);
L_NL_LM=zeros(1,n_max);
L_NU_RM=zeros(1,n_max);
L_NL_RM=zeros(1,n_max);
Mrx_M_edge_LM=zeros(1,n_max);
Mrx_M_edge_RM=zeros(1,n_max);

No_p_MrxM_ON=0; %Number of passes before turn on Masking Function for edge (non-0 only for RapidMask mask)
%Loop
if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON)

 M_r_x_prime_LM=1;
 M_r_x_prime_RM=1;

else

%Calculate Wm_eff/2
if (max_x_prime_surf_LM>=0) %Case (b) (see above Flux adjustment model for T)
 x_prime_Wm_eff_2_LM=0; %rotated local x (used below)
 x_prime_Wm_eff_2_RM=min_x_prime_surf_RM-max_x_prime_surf_LM; %Used below
else %Case (a) and (c)
 x_prime_Wm_eff_2_LM=min_x_prime_surf_LM; %rotated local x (used below)
 x_prime_Wm_eff_2_RM=min_x_prime_surf_RM; % Used below
end
%Need to change variables to global values since theta calc. with global
%variables - value of x where mask edge starts
if (max_x_prime_surf_LM>=0) %Case (b) (see above Flux adjustment model for T)
 x_Wm_eff_2_LM=max_x_prime_surf_LM*sin(alfa)+z_prime_surf_LM(I_max_LM)*cos(alfa)+x_off; %Global x
 x_Wm_eff_2_RM=min_x_prime_surf_RM*sin(alfa)+z_prime_surf_RM(I_min_RM)*cos(alfa)+x_off; %See above results
else %Case (a) and (c)
 %For 1st expression below added a -1* at beginning since x_prime_Wm_eff_2_LM should be -ve but is +ve from above calcs.
 %and needs to stay +ve
 x_Wm_eff_2_LM=-1*x_prime_Wm_eff_2_LM*sin(alfa)+z_prime_surf_LM(I_min_LM)*cos(alfa)+x_off; %Global x
 x_Wm_eff_2_RM=x_prime_Wm_eff_2_RM*sin(alfa)+z_prime_surf_RM(I_min_RM)*cos(alfa)+x_off;
end

 181

%Find x' limit beyond which have top of mask; for less than this limit
%we have mask edge - the point on M surface with min. dist. from
%(x',z')=(0,hsin(alfa)-Hm)= ref. pt.

%Define reference pt.
if (alfa==90*pi/180) %Need this condition to avoid small Matlab numerical error
 x_prime_ref=0; %Rotated local x
 z_prime_ref=(h*sin(alfa)-H_m); %Rotated local z
else
 x_prime_ref=((x_min_grid+leng_M_L+W_m/2)-x_off)*sin(alfa)-(h*sin(alfa)-H_m)*cos(alfa); %Rotated local x
 z_prime_ref=((x_min_grid+leng_M_L+W_m/2)-x_off)*cos(alfa)+(h*sin(alfa)-H_m)*sin(alfa); %Rotated local z
end
%Calculate min. distance from ref. pt. to mask edge
for b=1:1:b_max
 if (NaN_Chk_xps_LM(b)==0)&&(NaN_Chk_zps_LM(b)==0) %if Entry is NOT NaN
 SDF_LM(b)=((x_prime_ref-x_prime_surf_LM(b)).^2+(z_prime_ref-z_prime_surf_LM(b)).^2).^0.5;
 else
 SDF_LM(b)=NaN;
 end

 if (NaN_Chk_xps_RM(b)==0)&&(NaN_Chk_zps_RM(b)==0)
 SDF_RM(b)=((x_prime_ref-x_prime_surf_RM(b)).^2+(z_prime_ref-z_prime_surf_RM(b)).^2).^0.5;
 else
 SDF_RM(b)=NaN;
 end
end
[min_SDF_LM,J_min_LM]=min(SDF_LM); %Will ignore the NaNs
[min_SDF_RM,J_min_RM]=min(SDF_RM);
%Calculate x'tran
x_prime_lim_LM=x_prime_surf_LM(J_min_LM); %rotated local x
x_prime_lim_RM=x_prime_surf_RM(J_min_RM);
x_lim_LM=x_prime_lim_LM*sin(alfa)+z_prime_surf_LM(J_min_LM)*cos(alfa)+x_off; %Global x
x_lim_RM=x_prime_lim_RM*sin(alfa)+z_prime_surf_RM(J_min_RM)*cos(alfa)+x_off;

%Obtain theta avg. over mask edges

%%Avg. theta for Left Mask (LM) Edge - calculations analogous to 2nd strike algorithm

 for b=1:1:b_max

 if (((xz_surf(b,1)>=x_min_grid)&&(xz_surf(b,1)<=(x_min_grid+leng_M_L)))&&...
 ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa))))&&((xz_surf(b,1)>=(x_lim_LM-dx))&&(xz_surf(b,1)<=(x_Wm_eff_2_LM+dx))) %LM
edge & within dx
 %to obtain entire edge. This check also ensures that if surf. was not encountered (i.e. xz_surfs are 0) then it will ignore those values

 if (b>=1)&&(b<=(3*i_max)) %zsurf used

 if (b>=1)&&(b<=i_max)
 I_min_ik=b; %z_surf_1 used
 end
 if (b>=(i_max+1))&&(b<=(2*i_max))
 I_min_ik=b-i_max; %z_surf_2 used
 end

 if (b>=(2*i_max+1))&&(b<=(3*i_max))
 I_min_ik=b-2*i_max; %z_surf_3 used
 end

 %Calculate nearest k index to surface
 J_k_M=floor(k_max-(xz_surf(b,2)-z_min_grid)/dz);

 %Calculation of dphi/dx,dphi/dz; Define BC's
 if I_min_ik==i_max
 phi_x_pos_LM(b)=0;
 else
 phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_M))/(z_cord(J_k_M+1)-z_cord(J_k_M))).*(phi_1(J_k_M+1,I_min_ik+1)-
phi_1(J_k_M,I_min_ik+1))+phi_1(J_k_M,I_min_ik+1);
 phi_x_pos_LM(b)=(phi_B_z_surf-0)./dx;
 end

 if I_min_ik==1
 phi_x_neg_LM(b)=0;
 else
 phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_M))/(z_cord(J_k_M+1)-z_cord(J_k_M))).*(phi_1(J_k_M+1,I_min_ik-1)-phi_1(J_k_M,I_min_ik-
1))+phi_1(J_k_M,I_min_ik-1);
 phi_x_neg_LM(b)=(0-phi_A_z_surf)./dx;
 end

 if J_k_M==1

 182

 phi_z_pos_LM(b)=0;
 else
 phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_M-1))/(z_cord(J_k_M)-z_cord(J_k_M-1))).*(phi_1(J_k_M,I_min_ik)-phi_1(J_k_M-
1,I_min_ik))+phi_1(J_k_M-1,I_min_ik);
 phi_z_pos_LM(b)=(phi_C_z_surf-0)./dz;
 end

 if J_k_M==k_max
 phi_z_neg_LM(b)=0;
 else
 phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_M+1))/(z_cord(J_k_M+2)-z_cord(J_k_M+1))).*(phi_1(J_k_M+2,I_min_ik)-
phi_1(J_k_M+1,I_min_ik))+phi_1(J_k_M+1,I_min_ik);
 phi_z_neg_LM(b)=(0-phi_D_z_surf)./dz;
 end

 %Calculate phi_stars
 phi_x_star_LM(b)=(phi_x_pos_LM(b)+phi_x_neg_LM(b))/2;
 phi_z_star_LM(b)=(phi_z_pos_LM(b)+phi_z_neg_LM(b))/2;

 cos_t_star_LM(b)=((xz_surf(b,1)-x_off).*(phi_x_star_LM(b))+xz_surf(b,2).*(phi_z_star_LM(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_LM(b)).^2+(phi_z_star_LM(b)).^2));

 if (cos_t_star_LM(b)>1)
 cos_t_star_LM(b)=1;
 end
 theta_LM(b)=acos(cos_t_star_LM(b));
%__
 else %xsurf used

 if (b>=(3*i_max+1))&&(b<=(3*i_max+k_max))
 I_min_ik=b-3*i_max; %x_surf_1 used
 end
 if (b>=(3*i_max+k_max+1))&&(b<=b_max)
 I_min_ik=b-3*i_max-k_max; %x_surf_2 used
 end

 %Repeat above algorithm but for xsurf
 %Calculate nearest i index to surface
 J_i_M=floor(1+(xz_surf(b,1)-x_min_grid)/dx);

 %Calculation of dphi/dx,dphi/dz; Define BC's
 if J_i_M==i_max
 phi_x_pos_LM(b)=0;
 else
 phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_M+1))/(x_cord(J_i_M+2)-x_cord(J_i_M+1))).*(phi_1(I_min_ik,J_i_M+2)-
phi_1(I_min_ik,J_i_M+1))+phi_1(I_min_ik,J_i_M+1);
 phi_x_pos_LM(b)=(phi_D_x_surf-0)./dx;
 end

 if J_i_M==1
 phi_x_neg_LM(b)=0;
 else
 phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_M-1))/(x_cord(J_i_M)-x_cord(J_i_M-1))).*(phi_1(I_min_ik,J_i_M)-phi_1(I_min_ik,J_i_M-
1))+phi_1(I_min_ik,J_i_M-1);
 phi_x_neg_LM(b)=(0-phi_C_x_surf)./dx;
 end

 if I_min_ik==1
 phi_z_pos_LM(b)=0;
 else
 phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_M))/(x_cord(J_i_M+1)-x_cord(J_i_M))).*(phi_1(I_min_ik-1,J_i_M+1)-phi_1(I_min_ik-
1,J_i_M))+phi_1(I_min_ik-1,J_i_M);
 phi_z_pos_LM(b)=(phi_A_x_surf-0)./dz;
 end

 if I_min_ik==k_max
 phi_z_neg_LM(b)=0;
 else
 phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_M))/(x_cord(J_i_M+1)-x_cord(J_i_M))).*(phi_1(I_min_ik+1,J_i_M+1)-
phi_1(I_min_ik+1,J_i_M))+phi_1(I_min_ik+1,J_i_M);
 phi_z_neg_LM(b)=(0-phi_B_x_surf)./dz;
 end

 %Calculate phi_stars
 phi_x_star_LM(b)=(phi_x_pos_LM(b)+phi_x_neg_LM(b))/2;
 phi_z_star_LM(b)=(phi_z_pos_LM(b)+phi_z_neg_LM(b))/2;

 cos_t_star_LM(b)=((xz_surf(b,1)-x_off).*(phi_x_star_LM(b))+xz_surf(b,2).*(phi_z_star_LM(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_LM(b)).^2+(phi_z_star_LM(b)).^2));

 183

 if (cos_t_star_LM(b)>1)
 cos_t_star_LM(b)=1;
 end
 theta_LM(b)=acos(cos_t_star_LM(b));

 end

 else
 theta_LM(b)=NaN;
 end

 end

 NaN_Chk_theta_LM=isnan(theta_LM); %If any entries are NaN, returns 1 for that entry, else 0
 count_theta_LM=0; %Mask edge points
 for b=1:1:b_max
 if (NaN_Chk_theta_LM(b)==0) %if Entry is NOT NaN (i.e. if surface encountered)
 theta_LM(b)=theta_LM(b);
 count_theta_LM=count_theta_LM+1;
 else
 theta_LM(b)=0; %It will not count towards the sum avg. if no surface
 end
 end
%Average theta (Left Mask Edge)
 if count_theta_LM==0 %To avoid 0/0 error
 theta_LM_avg=0; %This occurs if no mask edges seen yet
 else
 theta_LM_avg=sum(theta_LM)/count_theta_LM;
 end

 %Avg. theta for Right Mask (RM) Edge (analogous to LM calcs.)

%Initialize variables
J_k_M=0; %See below
J_i_M=0;

 for b=1:1:b_max

 if (((xz_surf(b,1)>=(x_max_grid-leng_M_R))&&(xz_surf(b,1)<=x_max_grid))&&...
 ((xz_surf(b,2)>=(h*sin(alfa)-H_m))&&(xz_surf(b,2)<h*sin(alfa))))&&((xz_surf(b,1)>=(x_Wm_eff_2_RM-dx))&&(xz_surf(b,1)<=(x_lim_RM+dx)))

 if (b>=1)&&(b<=(3*i_max)) %zsurf used

 if (b>=1)&&(b<=i_max)
 I_min_ik=b; %z_surf_1 used
 end
 if (b>=(i_max+1))&&(b<=(2*i_max))
 I_min_ik=b-i_max; %z_surf_2 used
 end

 if (b>=(2*i_max+1))&&(b<=(3*i_max))
 I_min_ik=b-2*i_max; %z_surf_3 used
 end

 %Calculate nearest k index to surface
 J_k_M=floor(k_max-(xz_surf(b,2)-z_min_grid)/dz);

 %Calculation of dphi/dx,dphi/dz; Define BC's
 if I_min_ik==i_max
 phi_x_pos_RM(b)=0;
 else
 phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_M))/(z_cord(J_k_M+1)-z_cord(J_k_M))).*(phi_1(J_k_M+1,I_min_ik+1)-
phi_1(J_k_M,I_min_ik+1))+phi_1(J_k_M,I_min_ik+1);
 phi_x_pos_RM(b)=(phi_B_z_surf-0)./dx;
 end

 if I_min_ik==1
 phi_x_neg_RM(b)=0;
 else
 phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_M))/(z_cord(J_k_M+1)-z_cord(J_k_M))).*(phi_1(J_k_M+1,I_min_ik-1)-phi_1(J_k_M,I_min_ik-
1))+phi_1(J_k_M,I_min_ik-1);
 phi_x_neg_RM(b)=(0-phi_A_z_surf)./dx;
 end

 if J_k_M==1
 phi_z_pos_RM(b)=0;
 else
 phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_M-1))/(z_cord(J_k_M)-z_cord(J_k_M-1))).*(phi_1(J_k_M,I_min_ik)-phi_1(J_k_M-
1,I_min_ik))+phi_1(J_k_M-1,I_min_ik);
 phi_z_pos_RM(b)=(phi_C_z_surf-0)./dz;

 184

 end

 if J_k_M==k_max
 phi_z_neg_RM(b)=0;
 else
 phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_M+1))/(z_cord(J_k_M+2)-z_cord(J_k_M+1))).*(phi_1(J_k_M+2,I_min_ik)-
phi_1(J_k_M+1,I_min_ik))+phi_1(J_k_M+1,I_min_ik);
 phi_z_neg_RM(b)=(0-phi_D_z_surf)./dz;
 end

 %Calculate phi_stars
 phi_x_star_RM(b)=(phi_x_pos_RM(b)+phi_x_neg_RM(b))/2;
 phi_z_star_RM(b)=(phi_z_pos_RM(b)+phi_z_neg_RM(b))/2;

 cos_t_star_RM(b)=((xz_surf(b,1)-x_off).*(phi_x_star_RM(b))+xz_surf(b,2).*(phi_z_star_RM(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_RM(b)).^2+(phi_z_star_RM(b)).^2));

 if (cos_t_star_RM(b)>1)
 cos_t_star_RM(b)=1;
 end
 theta_RM(b)=acos(cos_t_star_RM(b));
%__
 else %xsurf used

 if (b>=(3*i_max+1))&&(b<=(3*i_max+k_max))
 I_min_ik=b-3*i_max; %x_surf_1 used
 end
 if (b>=(3*i_max+k_max+1))&&(b<=b_max)
 I_min_ik=b-3*i_max-k_max; %x_surf_2 used
 end

 %Repeat above algorithm but for xsurf
 %Calculate nearest i index to surface
 J_i_M=floor(1+(xz_surf(b,1)-x_min_grid)/dx);

 %Calculation of dphi/dx,dphi/dz; Define BC's
 if J_i_M==i_max
 phi_x_pos_RM(b)=0;
 else
 phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_M+1))/(x_cord(J_i_M+2)-x_cord(J_i_M+1))).*(phi_1(I_min_ik,J_i_M+2)-
phi_1(I_min_ik,J_i_M+1))+phi_1(I_min_ik,J_i_M+1);
 phi_x_pos_RM(b)=(phi_D_x_surf-0)./dx;
 end

 if J_i_M==1
 phi_x_neg_RM(b)=0;
 else
 phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_M-1))/(x_cord(J_i_M)-x_cord(J_i_M-1))).*(phi_1(I_min_ik,J_i_M)-phi_1(I_min_ik,J_i_M-
1))+phi_1(I_min_ik,J_i_M-1);
 phi_x_neg_RM(b)=(0-phi_C_x_surf)./dx;
 end

 if I_min_ik==1
 phi_z_pos_RM(b)=0;
 else
 phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_M))/(x_cord(J_i_M+1)-x_cord(J_i_M))).*(phi_1(I_min_ik-1,J_i_M+1)-phi_1(I_min_ik-
1,J_i_M))+phi_1(I_min_ik-1,J_i_M);
 phi_z_pos_RM(b)=(phi_A_x_surf-0)./dz;
 end

 if I_min_ik==k_max
 phi_z_neg_RM(b)=0;
 else
 phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_M))/(x_cord(J_i_M+1)-x_cord(J_i_M))).*(phi_1(I_min_ik+1,J_i_M+1)-
phi_1(I_min_ik+1,J_i_M))+phi_1(I_min_ik+1,J_i_M);
 phi_z_neg_RM(b)=(0-phi_B_x_surf)./dz;
 end

 %Calculate phi_stars
 phi_x_star_RM(b)=(phi_x_pos_RM(b)+phi_x_neg_RM(b))/2;
 phi_z_star_RM(b)=(phi_z_pos_RM(b)+phi_z_neg_RM(b))/2;

 cos_t_star_RM(b)=((xz_surf(b,1)-x_off).*(phi_x_star_RM(b))+xz_surf(b,2).*(phi_z_star_RM(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_RM(b)).^2+(phi_z_star_RM(b)).^2));

 if (cos_t_star_RM(b)>1)
 cos_t_star_RM(b)=1;
 end
 theta_RM(b)=acos(cos_t_star_RM(b));

 185

 end

 else
 theta_RM(b)=NaN;
 end

 end

 NaN_Chk_theta_RM=isnan(theta_RM); %If any entries are NaN, returns 1 for that entry, else 0
 count_theta_RM=0;
 for b=1:1:b_max
 if (NaN_Chk_theta_RM(b)==0) %if Entry is NOT NaN
 theta_RM(b)=theta_RM(b);
 count_theta_RM=count_theta_RM+1;
 else
 theta_RM(b)=0; %It will not count towards the sum avg. (no surface)
 end
 end

%Average theta (Right Mask Edge)
 if count_theta_RM==0 %To avoid 0/0 error
 theta_RM_avg=0; %This occurs if no mask edges seen yet
 else
 theta_RM_avg=sum(theta_RM)/count_theta_RM;
 end

%Effective height (LM,RM)

%Need to obtain global z_lim LM/RM to calculate Heff90 LM/RM from local
%x'lim, z'lim (see above)
z_lim_LM=-x_prime_surf_LM(J_min_LM)*cos(alfa)+z_prime_surf_LM(J_min_LM)*sin(alfa); %Global x
z_lim_RM=-x_prime_surf_RM(J_min_RM)*cos(alfa)+z_prime_surf_RM(J_min_RM)*sin(alfa);

if (alfa==90*pi/180)
 Heff_LM=h+dz-z_prime_surf_LM(J_min_LM); %Effective height
 Heff_RM=h+dz-z_prime_surf_RM(J_min_RM); %within dz to obtain top of mask
else %alfa<90deg

 Heff_LM_90=h*sin(alfa)+dz-z_lim_LM; %Vertical Effective height
 Heff_RM_90=h*sin(alfa)+dz-z_lim_RM;

 Heff_LM=(Heff_LM_90*sin(theta_LM_avg))/(sin(-pi/2+alfa+theta_LM_avg));
 Heff_RM=(Heff_RM_90*sin(theta_RM_avg))/(sin(pi/2-alfa+theta_RM_avg));
end

%Using avg. theta, Hmeff and Wmeff/2 calculate the masking
%function for the mask edges

%Calculate d_m
if ((theta_LM_avg==0)||(theta_LM_avg>(pi/2))) %When LM edge not seen yet (for alfa=90deg and alfa<90deg), thus d_m=0
 d_m_LM=0; %Need this so cot(0) does not result in infinity
else
 d_m_LM=Heff_LM*cot(theta_LM_avg);
end

if theta_RM_avg==0 %When RM edge not seen yet (alfa=90deg only), thus d_m=0
 d_m_RM=0; %Need this so cot(0) does not result in infinity
else
 d_m_RM=Heff_RM*cot(theta_RM_avg);
end

%LM x' integration range
x_n_min_LM=0;
x_n_max_LM=d_m_LM+x_prime_Wm_eff_2_LM;
dx_n_LM=(x_n_max_LM-x_n_min_LM)/(n_max-1);

for n=1:1:n_max
 x_n_LM(n)=(n-1).*dx_n_LM;
end
%RM x' integration range
x_n_min_RM=0;
x_n_max_RM=d_m_RM+x_prime_Wm_eff_2_RM;
dx_n_RM=(x_n_max_RM-x_n_min_RM)/(n_max-1);

for n=1:1:n_max
 x_n_RM(n)=(n-1).*dx_n_RM;
end

%Define limits of integration
%LM

 186

%Upper numerator limit
for n=1:1:n_max
 L_NU_LM(n)=d_m_LM+x_prime_Wm_eff_2_LM-x_n_LM(n);
end

 %Lower numerator limit
for n=1:1:n_max
 L_NL_LM(n)=x_prime_Wm_eff_2_LM-x_n_LM(n);
end

L_DU_LM=d_m_LM+x_prime_Wm_eff_2_LM; %Upper denominator limit (Note: lower denom. limit is 0)
%RM
 %Upper numerator limit
for n=1:1:n_max
 L_NU_RM(n)=d_m_RM+x_prime_Wm_eff_2_RM-x_n_RM(n);
end

 %Lower numerator limit
for n=1:1:n_max
 L_NL_RM(n)=x_prime_Wm_eff_2_RM-x_n_RM(n);
end

L_DU_RM=d_m_RM+x_prime_Wm_eff_2_RM; %Upper denominator limit (Note: lower denom. limit is 0)

%LM Integral: closed form fit
n_max_new_LM=0;
for n=1:1:n_max-1
 if (x_n_LM(n)<=x_prime_Wm_eff_2_LM)
 Mrx_M_edge_LM(n)=0;
 else
 Mrx_M_edge_LM(n)=real((erf(-P_2*log(L_NU_LM(n))+P_3)+1)./(1-erf(P_2*log(L_DU_LM)-P_3)));
 n_max_new_LM=n_max_new_LM+1;
 end
end
Mrx_M_edge_LM(n_max)=0; %Need this since error results for L_NU_LM(1001) = very small

%RM Integral: closed form fit
n_max_new_RM=0;
for n=1:1:n_max-1
 if (x_n_RM(n)<=x_prime_Wm_eff_2_RM)
 Mrx_M_edge_RM(n)=0;
 else
 Mrx_M_edge_RM(n)=real((erf(-P_2*log(L_NU_RM(n))+P_3)+1)./(1-erf(P_2*log(L_DU_RM)-P_3)));
 n_max_new_RM=n_max_new_RM+1;
 end
end
Mrx_M_edge_RM(n_max)=0; %Need this since error results for L_NU_RM(1001) = very small

%Define avg. M(x')_edge over edge
M_r_x_prime_LM=sum(Mrx_M_edge_LM)/n_max_new_LM;
M_r_x_prime_RM=sum(Mrx_M_edge_RM)/n_max_new_RM;

end

%__
%%%

%__

%%%
%%%%START of 2nd Strike Algorithm %%%
%%%

%See initial iteration (analogous here)

%Initialize variables before loop entry
J_k_AR=0;
J_i_AR=0;
phi_x_pos_AR=zeros(b_max,1);
phi_x_neg_AR=zeros(b_max,1);
phi_x_cen_AR=zeros(b_max,1);
phi_z_pos_AR=zeros(b_max,1);
phi_z_neg_AR=zeros(b_max,1);
phi_z_cen_AR=zeros(b_max,1);
phi_x_star_AR=zeros(b_max,1);
phi_z_star_AR=zeros(b_max,1);
cos_t_star_AR=zeros(b_max,1);
cos_g_star_AR=zeros(b_max,1);

 187

theta_AR=zeros(b_max,1);
theta_AR_deg=zeros(b_max,1);
gamma_AR=zeros(b_max,1);
gamma_AR_deg=zeros(b_max,1);
x_prime_surf_AR=zeros(b_max,1);
f_alfa_AR=zeros(b_max,1);
theta_DE=zeros(b_max,1);
theta_DE_deg=zeros(b_max,1);

 for b=1:1:b_max

 if ((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))
%If surface

 if (b>=1)&&(b<=(3*i_max)) %zsurf used

 if (b>=1)&&(b<=i_max)
 I_min_ik=b; %z_surf_1 used
 end
 if (b>=(i_max+1))&&(b<=(2*i_max))
 I_min_ik=b-i_max; %z_surf_2 used
 end

 if (b>=(2*i_max+1))&&(b<=(3*i_max))
 I_min_ik=b-2*i_max; %z_surf_3 used
 end

 %Calculate nearest k index to surface
 J_k_AR=floor(k_max-(xz_surf(b,2)-z_min_grid)/dz);

 %Calculation of dphi/dx,dphi/dz; Define BC's
 if I_min_ik==i_max
 phi_x_pos_AR(b)=0;
 else
 phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik+1)-
phi_1(J_k_AR,I_min_ik+1))+phi_1(J_k_AR,I_min_ik+1);
 phi_x_pos_AR(b)=(phi_B_z_surf-0)./dx;
 end

 if I_min_ik==1
 phi_x_neg_AR(b)=0;
 else
 phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik-1)-phi_1(J_k_AR,I_min_ik-
1))+phi_1(J_k_AR,I_min_ik-1);
 phi_x_neg_AR(b)=(0-phi_A_z_surf)./dx;
 end

 if (I_min_ik==i_max)||(I_min_ik==1)
 phi_x_cen_AR(b)=0;
 else
 phi_A_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik-1)-phi_1(J_k_AR,I_min_ik-
1))+phi_1(J_k_AR,I_min_ik-1);
 phi_B_z_surf=((xz_surf(b,2)-z_cord(J_k_AR))/(z_cord(J_k_AR+1)-z_cord(J_k_AR))).*(phi_1(J_k_AR+1,I_min_ik+1)-
phi_1(J_k_AR,I_min_ik+1))+phi_1(J_k_AR,I_min_ik+1);
 phi_x_cen_AR(b)=(phi_B_z_surf-phi_A_z_surf)./(2*dx);
 end

 if J_k_AR==1
 phi_z_pos_AR(b)=0;
 else
 phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_AR-1))/(z_cord(J_k_AR)-z_cord(J_k_AR-1))).*(phi_1(J_k_AR,I_min_ik)-phi_1(J_k_AR-
1,I_min_ik))+phi_1(J_k_AR-1,I_min_ik);
 phi_z_pos_AR(b)=(phi_C_z_surf-0)./dz;
 end

 if J_k_AR==k_max
 phi_z_neg_AR(b)=0;
 else
 phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_AR+1))/(z_cord(J_k_AR+2)-z_cord(J_k_AR+1))).*(phi_1(J_k_AR+2,I_min_ik)-
phi_1(J_k_AR+1,I_min_ik))+phi_1(J_k_AR+1,I_min_ik);
 phi_z_neg_AR(b)=(0-phi_D_z_surf)./dz;
 end

 if (J_k_AR==k_max)||(J_k_AR==1)
 phi_z_cen_AR(b)=0;
 else
 phi_C_z_surf=((xz_surf(b,2)+dz-z_cord(J_k_AR-1))/(z_cord(J_k_AR)-z_cord(J_k_AR-1))).*(phi_1(J_k_AR,I_min_ik)-phi_1(J_k_AR-
1,I_min_ik))+phi_1(J_k_AR-1,I_min_ik);

 188

 phi_D_z_surf=((xz_surf(b,2)-dz-z_cord(J_k_AR+1))/(z_cord(J_k_AR+2)-z_cord(J_k_AR+1))).*(phi_1(J_k_AR+2,I_min_ik)-
phi_1(J_k_AR+1,I_min_ik))+phi_1(J_k_AR+1,I_min_ik);
 phi_z_cen_AR(b)=(phi_C_z_surf-phi_D_z_surf)./(2*dz);
 end

 %Calculate phi_stars
 phi_x_star_AR(b)=(phi_x_pos_AR(b)+phi_x_neg_AR(b))/2;
 phi_z_star_AR(b)=(phi_z_pos_AR(b)+phi_z_neg_AR(b))/2;

 %Calculate Angles
 cos_t_star_AR(b)=((xz_surf(b,1)-x_off).*(phi_x_star_AR(b))+xz_surf(b,2).*(phi_z_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));
 theta_AR(b)=acos(cos_t_star_AR(b));
 theta_AR_deg(b)=theta_AR(b)*(180/pi);
 cos_g_star_AR(b)=((xz_surf(b,1)-x_off).*(-phi_z_star_AR(b))+xz_surf(b,2).*(phi_x_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));
 gamma_AR(b)=acos(cos_g_star_AR(b));
 gamma_AR_deg(b)=gamma_AR(b)*(180/pi);
 if (alfa==90*pi/180)
 x_prime_surf_AR(b)=(xz_surf(b,1)-x_off);
 else
 x_prime_surf_AR(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa);
 end

 if (xz_surf(b,2)>=(h*sin(alfa))) %T
 f_alfa_AR(b)=f_alfa_AR_T;
 else %M
 f_alfa_AR(b)=f_alfa_AR_M;
 end
 theta_DE(b)=pi-f_alfa_AR(b).*theta_AR(b);
 theta_DE_deg(b)=theta_DE(b)*(180/pi);
%__
 else %xsurf used

 if (b>=(3*i_max+1))&&(b<=(3*i_max+k_max))
 I_min_ik=b-3*i_max; %x_surf_1 used
 end
 if (b>=(3*i_max+k_max+1))&&(b<=b_max)
 I_min_ik=b-3*i_max-k_max; %x_surf_2 used
 end

 %Repeat above algorithm but for xsurf
 %Calculate nearest i index to surface
 J_i_AR=floor(1+(xz_surf(b,1)-x_min_grid)/dx);

 %Calculation of dphi/dx,dphi/dz - Define BC's
 if J_i_AR==i_max
 phi_x_pos_AR(b)=0;
 else
 phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_AR+1))/(x_cord(J_i_AR+2)-x_cord(J_i_AR+1))).*(phi_1(I_min_ik,J_i_AR+2)-
phi_1(I_min_ik,J_i_AR+1))+phi_1(I_min_ik,J_i_AR+1);
 phi_x_pos_AR(b)=(phi_D_x_surf-0)./dx;
 end

 if J_i_AR==1
 phi_x_neg_AR(b)=0;
 else
 phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_AR-1))/(x_cord(J_i_AR)-x_cord(J_i_AR-1))).*(phi_1(I_min_ik,J_i_AR)-phi_1(I_min_ik,J_i_AR-
1))+phi_1(I_min_ik,J_i_AR-1);
 phi_x_neg_AR(b)=(0-phi_C_x_surf)./dx;
 end

 if (J_i_AR==i_max)||(J_i_AR==1)
 phi_x_cen_AR(b)=0;
 else
 phi_C_x_surf=((xz_surf(b,1)-dx-x_cord(J_i_AR-1))/(x_cord(J_i_AR)-x_cord(J_i_AR-1))).*(phi_1(I_min_ik,J_i_AR)-phi_1(I_min_ik,J_i_AR-
1))+phi_1(I_min_ik,J_i_AR-1);
 phi_D_x_surf=((xz_surf(b,1)+dx-x_cord(J_i_AR+1))/(x_cord(J_i_AR+2)-x_cord(J_i_AR+1))).*(phi_1(I_min_ik,J_i_AR+2)-
phi_1(I_min_ik,J_i_AR+1))+phi_1(I_min_ik,J_i_AR+1);
 phi_x_cen_AR(b)=(phi_D_x_surf-phi_C_x_surf)./(2*dx);
 end

 if I_min_ik==1
 phi_z_pos_AR(b)=0;
 else
 phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik-1,J_i_AR+1)-phi_1(I_min_ik-
1,J_i_AR))+phi_1(I_min_ik-1,J_i_AR);
 phi_z_pos_AR(b)=(phi_A_x_surf-0)./dz;
 end

 189

 if I_min_ik==k_max
 phi_z_neg_AR(b)=0;
 else
 phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik+1,J_i_AR+1)-
phi_1(I_min_ik+1,J_i_AR))+phi_1(I_min_ik+1,J_i_AR);
 phi_z_neg_AR(b)=(0-phi_B_x_surf)./dz;
 end

 if (I_min_ik==k_max)||(I_min_ik==1)
 phi_z_cen_AR(b)=0;
 else
 phi_A_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik-1,J_i_AR+1)-phi_1(I_min_ik-
1,J_i_AR))+phi_1(I_min_ik-1,J_i_AR);
 phi_B_x_surf=((xz_surf(b,1)-x_cord(J_i_AR))/(x_cord(J_i_AR+1)-x_cord(J_i_AR))).*(phi_1(I_min_ik+1,J_i_AR+1)-
phi_1(I_min_ik+1,J_i_AR))+phi_1(I_min_ik+1,J_i_AR);
 phi_z_cen_AR(b)=(phi_A_x_surf-phi_B_x_surf)./(2*dz);
 end

 %Calculate phi_stars
 phi_x_star_AR(b)=(phi_x_pos_AR(b)+phi_x_neg_AR(b))/2;
 phi_z_star_AR(b)=(phi_z_pos_AR(b)+phi_z_neg_AR(b))/2;

 %Calculate Angles and x_surf'_AR
 cos_t_star_AR(b)=((xz_surf(b,1)-x_off).*(phi_x_star_AR(b))+xz_surf(b,2).*(phi_z_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));
 theta_AR(b)=acos(cos_t_star_AR(b));
 theta_AR_deg(b)=theta_AR(b)*(180/pi);
 cos_g_star_AR(b)=((xz_surf(b,1)-x_off).*(-phi_z_star_AR(b))+xz_surf(b,2).*(phi_x_star_AR(b)))./(sqrt((xz_surf(b,1)-
x_off).^2+xz_surf(b,2).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2));
 gamma_AR(b)=acos(cos_g_star_AR(b));
 gamma_AR_deg(b)=gamma_AR(b)*(180/pi);
 if (alfa==90*pi/180)
 x_prime_surf_AR(b)=(xz_surf(b,1)-x_off);
 else
 x_prime_surf_AR(b)=(xz_surf(b,1)-x_off).*sin(alfa)-xz_surf(b,2).*cos(alfa);
 end

 if (xz_surf(b,2)>=(h*sin(alfa))) %T
 f_alfa_AR(b)=f_alfa_AR_T;
 else %M
 f_alfa_AR(b)=f_alfa_AR_M;
 end
 theta_DE(b)=pi-f_alfa_AR(b).*theta_AR(b);
 theta_DE_deg(b)=theta_DE(b)*(180/pi);

 end

 else %Need this since it accounts for cases where surface wasn't encountered (i.e. x_surf and z_surf = 0 numerically)
 %and theta_AR(b) would stay 0 since pre-allocated with 0's for speed and the fact that theta_AR can actually = 0
 theta_AR(b)=NaN;
 theta_AR_deg(b)=NaN;
 gamma_AR(b)=NaN;
 gamma_AR_deg(b)=NaN;
 x_prime_surf_AR(b)=NaN;
 f_alfa_AR(b)=NaN;
 theta_DE(b)=NaN;
 theta_DE_deg(b)=NaN;
 end

 end
NaN_Chk_theta_AR=isnan(theta_AR); %If any entries are NaN, returns 1 for that entry, else 0

%2nd Strike Detection Algorithm (see initial iteration)

f_v_AR=zeros(b_max,1);
f_v_AR_fin=zeros(b_max,1);
v_AR=zeros(b_max,1);
flux_AR=zeros(b_max,1);
theta_D=zeros(b_max,1);
theta_D_deg=zeros(b_max,1);

cos_t_pfx_pfz_D=zeros(b_max,1);
cos_t_pfx_nfz_D=zeros(b_max,1);
cos_t_nfx_pfz_D=zeros(b_max,1);
cos_t_nfx_nfz_D=zeros(b_max,1);
cos_t_star_D=zeros(b_max,1);
cos_t_cen_D=zeros(b_max,1);

c_max=b_max;

 190

%See first iteration for definition of ds_crit and No_ds_cr
U_D_AR_dist=zeros(c_max,1); %Distance between nodes D and AR
theta_D_prime=zeros(c_max,1);
theta_D_1=zeros(c_max,1); %theta_D only for checking in c=1...cmax loop
ds_pre=zeros(c_max,1);

I_min_ds=zeros(b_max,1);
min_ds=zeros(b_max,1); %Min spacing, after 2nd strk. for each node AR (not necessarily small enough to include 2nd strk yet)

for b=1:1:b_max %Check each D node
 if (((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0)))...
 &&((xz_surf(b,2)>=(h*sin(alfa)))||((xz_surf(b,2)<(h*sin(alfa)))&&(xz_surf(b,1)>=(x_lim_LM-dx))&&(xz_surf(b,1)<=(x_lim_RM+dx))))
 %Check if surf. found (numerically) AND if surf is not top of mask

 for c=1:1:c_max %Check AR nodes for each D node
 if (NaN_Chk_theta_AR(c)==0)&&((xz_surf(c,2)>=(h*sin(alfa)))||((xz_surf(c,2)<(h*sin(alfa)))&&(xz_surf(c,1)>=(x_lim_LM-
dx))&&(xz_surf(c,1)<=(x_lim_RM+dx))))...
 &&(b~=c)&&((theta_AR(c)<(pi/2))&&(theta_AR(c)>0))&&((theta_DE(c)<pi)&&(theta_DE(c)>(pi/2)))...

&&(((gamma_AR(c)>(pi/2))&&(x_prime_surf_AR(b)>x_prime_surf_AR(c)))||((gamma_AR(c)<(pi/2))&&(x_prime_surf_AR(c)>x_prime_surf_AR(b))))
 %Check if surf found (numerically)-this check supercedes next checks; if surf is not top of mask; ignore check at node D=AR;
 %limit range of theta_AR; limit range of theta_DE; check if rebound direction makes sense

 %Calculate theta_D' and theta_D
 theta_D_prime(c)=acos(((xz_surf(b,1)-xz_surf(c,1)).*(phi_x_star_AR(c))+(xz_surf(b,2)-xz_surf(c,2)).*(phi_z_star_AR(c)))./...
 (sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2).*sqrt((phi_x_star_AR(c)).^2+(phi_z_star_AR(c)).^2)));

 theta_D_1(c)=acos(((xz_surf(b,1)-xz_surf(c,1)).*(phi_x_star_AR(b))+(xz_surf(b,2)-xz_surf(c,2)).*(phi_z_star_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)));

 %Calculate distance between nodes AR and D
 U_D_AR_dist(c)=sqrt((xz_surf(b,1)-xz_surf(c,1)).^2+(xz_surf(b,2)-xz_surf(c,2)).^2);

 if ((theta_D_prime(c)>(pi/2))&&(theta_D_1(c)<(pi/2))) %If node D 'seen' by node AR
 ds_pre(c)=U_D_AR_dist(c).*tan(abs(theta_D_prime(c)-theta_DE(c)));
 else
 ds_pre(c)=NaN;
 end

 else
 ds_pre(c)=NaN;
 end
 end
 [min_ds(b),I_min_ds(b)]=min(ds_pre); %Find min_ds, Will ignore NaN's

 if (I_min_ds(b)~=0)&&(min_ds(b)<ds_crit)&&(U_D_AR_dist(I_min_ds(b))>(No_ds_cr*ds_crit))
 %Check if possibility of 2nd strike even occurred, ds_min<ds_crit and if U_D_AR_dist is large enough

 %Calculate 2nd strike values - f_v_AR_fin, v_AR,
 %flux_AR, assign calc'd theta_D

 %f_v_AR_fin
 if (xz_surf(b,2)>=(h*sin(alfa))) %T
 f_v_AR(b)=f_v_AR_T;
 else %M
 f_v_AR(b)=f_v_AR_M;
 end
 f_v_AR_fin(b)=f_v_AR(b).*((ds_crit-min_ds(b))./ds_crit);

 %Define particle velocity at AR node
 v_AR(b)=v_o*(1-H_slp*(((xz_surf(I_min_ds(b),1)-x_off)*sin(alfa)-xz_surf(I_min_ds(b),2)*cos(alfa)).^2+(y_mean).^2).^0.5./...
 ((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa)));
 if (v_AR(b)<0)
 v_AR(b)=0;
 end

 %Define particle mass flux at AR node
 flux_AR(b)=(MFR/pi)*(beta./((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa))).^2....
 exp(-(beta^2.(((xz_surf(I_min_ds(b),1)-x_off)*sin(alfa)-xz_surf(I_min_ds(b),2)*cos(alfa)).^2+(y_mean).^2)./...
 ((xz_surf(I_min_ds(b),1)-x_off)*cos(alfa)+xz_surf(I_min_ds(b),2)*sin(alfa)).^2));

 %theta_D
 theta_D(b)=acos(((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_star_AR(b))+(xz_surf(b,2)-xz_surf(I_min_ds(b),2)).*(phi_z_star_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_star_AR(b)).^2+(phi_z_star_AR(b)).^2)));
 theta_D_deg(b)=theta_D(b)*(180/pi);

 %Calculate +/-,c,* cos_theta_D for F_ext Algorithm (Note, if 2nd strike not called
 %up, cos_thetas will remain 0, so F_2nd=0 in Fext

 191

 cos_t_pfx_pfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_pos_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_pos_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_pos_AR(b)).^2+(phi_z_pos_AR(b)).^2));

 cos_t_pfx_nfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_pos_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_neg_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_pos_AR(b)).^2+(phi_z_neg_AR(b)).^2));

 cos_t_nfx_pfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_neg_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_pos_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_neg_AR(b)).^2+(phi_z_pos_AR(b)).^2));

 cos_t_nfx_nfz_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_neg_AR(b))+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).*(phi_z_neg_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_neg_AR(b)).^2+(phi_z_neg_AR(b)).^2));

 cos_t_star_D(b)=cos(theta_D(b)); %Calculated above already

 cos_t_cen_D(b)=((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).*(phi_x_cen_AR(b))+(xz_surf(b,2)-xz_surf(I_min_ds(b),2)).*(phi_z_cen_AR(b)))./...
 (sqrt((xz_surf(b,1)-xz_surf(I_min_ds(b),1)).^2+(xz_surf(b,2)-
xz_surf(I_min_ds(b),2)).^2).*sqrt((phi_x_cen_AR(b)).^2+(phi_z_cen_AR(b)).^2));

 else
 f_v_AR_fin(b)=0;
 v_AR(b)=0;
 flux_AR(b)=0;
 theta_D(b)=NaN;
 theta_D_deg(b)=NaN;
 end

 else
 f_v_AR_fin(b)=0;
 v_AR(b)=0;
 flux_AR(b)=0;
 theta_D(b)=NaN;
 theta_D_deg(b)=NaN;
 end

end
NaN_Chk_theta_D=isnan(theta_D); %If any entries are NaN, returns 1 for that entry, else 0

%%%
%%%%END of 2nd Strike Algorithm %%%
%%%

%%%
 %START OF SDF AND F_EXT ALGORITHM
%%%
%RE-initialize SDF (update phi)

%Initialize SDF
SDF=zeros(b_max,1);
%Initialize F_ext's and corresponding cos(theta)'s
cos_t_pfx_pfz_ext_1=zeros(k_max,i_max);
cos_t_pfx_nfz_ext_1=zeros(k_max,i_max);
cos_t_nfx_pfz_ext_1=zeros(k_max,i_max);
cos_t_nfx_nfz_ext_1=zeros(k_max,i_max);
cos_t_star_ext_1=zeros(k_max,i_max);
cos_t_cen_ext_1=zeros(k_max,i_max);
F_ext_pfx_pfz_1=zeros(k_max,i_max);
F_ext_pfx_nfz_1=zeros(k_max,i_max);
F_ext_nfx_pfz_1=zeros(k_max,i_max);
F_ext_nfx_nfz_1=zeros(k_max,i_max);
F_ext_star_1=zeros(k_max,i_max);
F_ext_cen_1=zeros(k_max,i_max);
%Initialize dphi/dx,dphi/dz (FD's)
phi_x_pos_ext=zeros(k_max,i_max);
phi_x_neg_ext=zeros(k_max,i_max);
phi_x_cen_ext=zeros(k_max,i_max);
phi_z_pos_ext=zeros(k_max,i_max);
phi_z_neg_ext=zeros(k_max,i_max);
phi_z_cen_ext=zeros(k_max,i_max);
phi_x_star_ext=zeros(k_max,i_max);
phi_z_star_ext=zeros(k_max,i_max);

 192

%Initialize Erosive Power and Masking Function Properties - Extended
x_prime_ext=zeros(k_max,i_max);
z_prime_ext=zeros(k_max,i_max);
L_mask_ext=zeros(k_max,i_max);
x_lim_ext=zeros(k_max,i_max);
M_r_x_prime_ext=zeros(k_max,i_max);
Eros_pow_ext=zeros(k_max,i_max);
v_ext=zeros(k_max,i_max);
flux_ext=zeros(k_max,i_max);
Int_P_r_x_prime_ext=zeros(k_max,i_max);
Int_P_r_L_mask_ext=zeros(k_max,i_max);
J_k_ext=0; %Initialize
J_i_ext=0;
I_min=zeros(k_max,i_max); %Index of SDF

%2nd strike erosive power
Eros_pow_ext_2nd=zeros(k_max,i_max);
%Initial strike F_ext's
F_ext_pfx_pfz_1_1st=zeros(k_max,i_max);
F_ext_pfx_nfz_1_1st=zeros(k_max,i_max);
F_ext_nfx_pfz_1_1st=zeros(k_max,i_max);
F_ext_nfx_nfz_1_1st=zeros(k_max,i_max);
F_ext_star_1_1st=zeros(k_max,i_max);
F_ext_cen_1_1st=zeros(k_max,i_max);

for k=1:1:k_max
 for i=1:1:i_max

 if ((flag_NB(k,i)==1)||(flag_NB(k,i)==2)) %#####*****#####$$$$$#####*****#####

 for b=1:1:b_max
 if (phi_1(k,i)==0)
 SDF(b)=0; %we are on the surface
 elseif
((xz_surf(b,1)~=0)&&(xz_surf(b,2)~=0))||((alfa==(90*pi/180))&&((b==1)||(b==(i_max+1))||(b==(2*i_max+1)))&&(xz_surf(b,1)==0)&&(xz_surf(b,2)~=0))
 SDF(b)=((x_cord(i)-xz_surf(b,1)).^2+(z_cord(k)-xz_surf(b,2)).^2).^0.5;
 else
 SDF(b)=NaN; %Need this since it accounts for cases where surface wasn't encountered
 end %and the fact that SDF can be actually 0

 end
 %Obtain value and index at which SDF is MIN (ignores NaN's)
 [min_SDF,I_min(k,i)]=min(SDF);

 %Update phi
 if (phi_1(k,i)>0)
 phi(k,i)=min_SDF;
 elseif (phi_1(k,i)<0)
 phi(k,i)=-min_SDF;
 else
 phi(k,i)=phi_1(k,i); %i.e.,phi(k,i)=0; i.e., we are on the surface
 end

 %--
 %%%%%%%%%%%%%%%%%%%%F_ext Algorithm%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 %--

 if (I_min(k,i)>=1)&&(I_min(k,i)<=(3*i_max))&&(phi_1(k,i)~=0) %zsurf used

 if (I_min(k,i)>=1)&&(I_min(k,i)<=i_max)
 I_min_ik=I_min(k,i); %z_surf_1 used
 end
 if (I_min(k,i)>=(i_max+1))&&(I_min(k,i)<=(2*i_max))
 I_min_ik=I_min(k,i)-i_max; %z_surf_2 used
 end

 if (I_min(k,i)>=(2*i_max+1))&&(I_min(k,i)<=(3*i_max))
 I_min_ik=I_min(k,i)-2*i_max; %z_surf_3 used
 end

 %Calculate nearest k index to surface
 J_k_ext=floor(k_max-(xz_surf(I_min(k,i),2)-z_min_grid)/dz);
%__
 %Calculation of dphi/dx,dphi/dz; Define BC's

 if I_min_ik==i_max
 phi_x_pos_ext(k,i)=0;
 else

 193

 phi_B_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik+1)-
phi_1(J_k_ext,I_min_ik+1))+phi_1(J_k_ext,I_min_ik+1);
 phi_x_pos_ext(k,i)=(phi_B_z_surf-0)./dx;
 end

 if I_min_ik==1
 phi_x_neg_ext(k,i)=0;
 else
 phi_A_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik-1)-phi_1(J_k_ext,I_min_ik-
1))+phi_1(J_k_ext,I_min_ik-1);
 phi_x_neg_ext(k,i)=(0-phi_A_z_surf)./dx;
 end

 if (I_min_ik==i_max)||(I_min_ik==1)
 phi_x_cen_ext(k,i)=0;
 else
 phi_A_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik-1)-phi_1(J_k_ext,I_min_ik-
1))+phi_1(J_k_ext,I_min_ik-1);
 phi_B_z_surf=((xz_surf(I_min(k,i),2)-z_cord(J_k_ext))/(z_cord(J_k_ext+1)-z_cord(J_k_ext))).*(phi_1(J_k_ext+1,I_min_ik+1)-
phi_1(J_k_ext,I_min_ik+1))+phi_1(J_k_ext,I_min_ik+1);
 phi_x_cen_ext(k,i)=(phi_B_z_surf-phi_A_z_surf)./(2*dx);
 end

 if J_k_ext==1
 phi_z_pos_ext(k,i)=0;
 else
 phi_C_z_surf=((xz_surf(I_min(k,i),2)+dz-z_cord(J_k_ext-1))/(z_cord(J_k_ext)-z_cord(J_k_ext-1))).*(phi_1(J_k_ext,I_min_ik)-phi_1(J_k_ext-
1,I_min_ik))+phi_1(J_k_ext-1,I_min_ik);
 phi_z_pos_ext(k,i)=(phi_C_z_surf-0)./dz;
 end

 if J_k_ext==k_max
 phi_z_neg_ext(k,i)=0;
 else
 phi_D_z_surf=((xz_surf(I_min(k,i),2)-dz-z_cord(J_k_ext+1))/(z_cord(J_k_ext+2)-z_cord(J_k_ext+1))).*(phi_1(J_k_ext+2,I_min_ik)-
phi_1(J_k_ext+1,I_min_ik))+phi_1(J_k_ext+1,I_min_ik);
 phi_z_neg_ext(k,i)=(0-phi_D_z_surf)./dz;
 end

 if (J_k_ext==k_max)||(J_k_ext==1)
 phi_z_cen_ext(k,i)=0;
 else
 phi_C_z_surf=((xz_surf(I_min(k,i),2)+dz-z_cord(J_k_ext-1))/(z_cord(J_k_ext)-z_cord(J_k_ext-1))).*(phi_1(J_k_ext,I_min_ik)-phi_1(J_k_ext-
1,I_min_ik))+phi_1(J_k_ext-1,I_min_ik);
 phi_D_z_surf=((xz_surf(I_min(k,i),2)-dz-z_cord(J_k_ext+1))/(z_cord(J_k_ext+2)-z_cord(J_k_ext+1))).*(phi_1(J_k_ext+2,I_min_ik)-
phi_1(J_k_ext+1,I_min_ik))+phi_1(J_k_ext+1,I_min_ik);
 phi_z_cen_ext(k,i)=(phi_C_z_surf-phi_D_z_surf)./(2*dz);
 end

 %Calculate phi_stars
 phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2;
 phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2;
%__
 %Masking function for T, M
 x_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*sin(alfa)-xz_surf(I_min(k,i),2).*cos(alfa); %Rotated local x
 z_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*cos(alfa)+xz_surf(I_min(k,i),2).*sin(alfa); %Rotated local z

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa)+dz*MT_pt_dist))

 if (max_x_prime_surf_LM<0) %Case (a) and (c)
 if (x_prime_ext(k,i)<0)
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 else %i.e., when x_prime>=0
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;
 end
 else %i.e., when x_m>=W_m/2 Case (b)
 x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 if (x_prime_ext(k,i)<x_lim_ext(k,i))
 L_mask_ext(k,i)=0;
 else %i.e., when x_prime>=x_lim
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i);
 end
 end

 %Define proportion of mass of particle that pass through mask opening having a
 %specific particle size (of radius r) distribution
 if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i))
 M_r_x_prime_ext(k,i)=0;

 194

 else
 Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));
 Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));
 M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i);
 end

 else %T w/in zTadj
 if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON)
 M_r_x_prime_ext(k,i)=1;
 else

 if ((xz_surf(I_min(k,i),1)>=x_min_grid)&&(xz_surf(I_min(k,i),1)<=(x_min_grid+leng_M_L)))%TL
 if (xz_surf(I_min(k,i),1)<(x_lim_LM-dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_LM;
 end
 elseif ((xz_surf(I_min(k,i),1)>=(x_max_grid-leng_M_R))&&(xz_surf(I_min(k,i),1)<=x_max_grid)) %TR
 if (xz_surf(I_min(k,i),1)>(x_lim_RM+dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_RM;
 end

 else
 M_r_x_prime_ext(k,i)=1;
 end

 end
 end

 else %M
 if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON)
 M_r_x_prime_ext(k,i)=1;
 else

 if ((xz_surf(I_min(k,i),1)>=x_min_grid)&&(xz_surf(I_min(k,i),1)<=(x_min_grid+leng_M_L)))%ML
 if (xz_surf(I_min(k,i),1)<(x_lim_LM-dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_LM;
 end
 elseif ((xz_surf(I_min(k,i),1)>=(x_max_grid-leng_M_R))&&(xz_surf(I_min(k,i),1)<=x_max_grid)) %MR
 if (xz_surf(I_min(k,i),1)>(x_lim_RM+dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_RM;
 end

 else
 M_r_x_prime_ext(k,i)=1;
 end

 end

 end

%__
 %Define velocity v(x,z) at each grid node
 v_ext(k,i)=v_o*(1-H_slp*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2).^0.5./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)));
 if (v_ext(k,i)<0)
 v_ext(k,i)=0;
 end

 %Define particle mass flux(x,z) at each grid node
 flux_ext(k,i)=(MFR/pi)*(beta./((xz_surf(I_min(k,i),1)-x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))).^2....
 exp(-(beta^2.(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2)./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)).^2));

 %Define Erosive Power Eros_pow(k,i) at each grid
 %node (1st Strike)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i);
 else %M
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i);
 end

 %Define Erosive Power for 2nd strike
 %NOTE: No Mask here

 195

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 else %M
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 end

%__
 %Calculate F_extensions

 cos_t_pfx_pfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_pfx_nfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_nfx_pfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_nfx_nfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_star_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_star_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_star_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_cen_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_cen_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_cen_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 if (cos_t_pfx_pfz_ext_1(k,i)>1)
 cos_t_pfx_pfz_ext_1(k,i)=1;
 end
 if (cos_t_pfx_nfz_ext_1(k,i)>1)
 cos_t_pfx_nfz_ext_1(k,i)=1;
 end
 if (cos_t_nfx_pfz_ext_1(k,i)>1)
 cos_t_nfx_pfz_ext_1(k,i)=1;
 end
 if (cos_t_nfx_nfz_ext_1(k,i)>1)
 cos_t_nfx_nfz_ext_1(k,i)=1;
 end
 if (cos_t_star_ext_1(k,i)>1)
 cos_t_star_ext_1(k,i)=1;
 end
 if (cos_t_cen_ext_1(k,i)>1)
 cos_t_cen_ext_1(k,i)=1;
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_pfx_pfz_ext_1(k,i)<=0)
 F_ext_pfx_pfz_1_1st(k,i)=0;
 else
 F_ext_pfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_pfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_pfz_1_1st(k,i)=0;
 else
 F_ext_pfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_pfx_nfz_ext_1(k,i)<=0)
 F_ext_pfx_nfz_1_1st(k,i)=0;
 else
 F_ext_pfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_pfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M

 196

 F_ext_pfx_nfz_1_1st(k,i)=0;
 else
 F_ext_pfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_nfx_pfz_ext_1(k,i)<=0)
 F_ext_nfx_pfz_1_1st(k,i)=0;
 else
 F_ext_nfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_nfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_pfz_1_1st(k,i)=0;
 else
 F_ext_nfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_nfx_nfz_ext_1(k,i)<=0)
 F_ext_nfx_nfz_1_1st(k,i)=0;
 else
 F_ext_nfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_nfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_nfz_1_1st(k,i)=0;
 else
 F_ext_nfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_star_ext_1(k,i)<=0)
 F_ext_star_1_1st(k,i)=0;
 else
 F_ext_star_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_star_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_star_1_1st(k,i)=0;
 else
 F_ext_star_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.

 197

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_cen_ext_1(k,i)<=0)
 F_ext_cen_1_1st(k,i)=0;
 else
 F_ext_cen_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_cen_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_cen_1_1st(k,i)=0;
 else
 F_ext_cen_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));
 end

 elseif (I_min(k,i)>=(3*i_max+1))&&(I_min(k,i)<=b_max)&&(phi_1(k,i)~=0) %xsurf used

 if (I_min(k,i)>=(3*i_max+1))&&(I_min(k,i)<=(3*i_max+k_max))
 I_min_ik=I_min(k,i)-3*i_max; %x_surf_1 used
 end
 if (I_min(k,i)>=(3*i_max+k_max+1))&&(I_min(k,i)<=b_max)
 I_min_ik=I_min(k,i)-3*i_max-k_max; %x_surf_2 used
 end

 %Repeat above algorithm but for xsurf
 %Calculate nearest i index to surface
 J_i_ext=floor(1+(xz_surf(I_min(k,i),1)-x_min_grid)/dx);
%__
 %Calculation of dphi/dx,dphi/dz; Define BC's
 if J_i_ext==i_max
 phi_x_pos_ext(k,i)=0;
 else
 phi_D_x_surf=((xz_surf(I_min(k,i),1)+dx-x_cord(J_i_ext+1))/(x_cord(J_i_ext+2)-x_cord(J_i_ext+1))).*(phi_1(I_min_ik,J_i_ext+2)-
phi_1(I_min_ik,J_i_ext+1))+phi_1(I_min_ik,J_i_ext+1);
 phi_x_pos_ext(k,i)=(phi_D_x_surf-0)./dx;
 end

 if J_i_ext==1
 phi_x_neg_ext(k,i)=0;
 else
 phi_C_x_surf=((xz_surf(I_min(k,i),1)-dx-x_cord(J_i_ext-1))/(x_cord(J_i_ext)-x_cord(J_i_ext-1))).*(phi_1(I_min_ik,J_i_ext)-phi_1(I_min_ik,J_i_ext-
1))+phi_1(I_min_ik,J_i_ext-1);
 phi_x_neg_ext(k,i)=(0-phi_C_x_surf)./dx;
 end

 if (J_i_ext==i_max)||(J_i_ext==1)
 phi_x_cen_ext(k,i)=0;
 else
 phi_C_x_surf=((xz_surf(I_min(k,i),1)-dx-x_cord(J_i_ext-1))/(x_cord(J_i_ext)-x_cord(J_i_ext-1))).*(phi_1(I_min_ik,J_i_ext)-phi_1(I_min_ik,J_i_ext-
1))+phi_1(I_min_ik,J_i_ext-1);
 phi_D_x_surf=((xz_surf(I_min(k,i),1)+dx-x_cord(J_i_ext+1))/(x_cord(J_i_ext+2)-x_cord(J_i_ext+1))).*(phi_1(I_min_ik,J_i_ext+2)-
phi_1(I_min_ik,J_i_ext+1))+phi_1(I_min_ik,J_i_ext+1);
 phi_x_cen_ext(k,i)=(phi_D_x_surf-phi_C_x_surf)./(2*dx);
 end

 if I_min_ik==1
 phi_z_pos_ext(k,i)=0;
 else
 phi_A_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik-1,J_i_ext+1)-phi_1(I_min_ik-
1,J_i_ext))+phi_1(I_min_ik-1,J_i_ext);
 phi_z_pos_ext(k,i)=(phi_A_x_surf-0)./dz;
 end

 if I_min_ik==k_max

 198

 phi_z_neg_ext(k,i)=0;
 else
 phi_B_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik+1,J_i_ext+1)-
phi_1(I_min_ik+1,J_i_ext))+phi_1(I_min_ik+1,J_i_ext);
 phi_z_neg_ext(k,i)=(0-phi_B_x_surf)./dz;
 end

 if (I_min_ik==k_max)||(I_min_ik==1)
 phi_z_cen_ext(k,i)=0;
 else
 phi_A_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik-1,J_i_ext+1)-phi_1(I_min_ik-
1,J_i_ext))+phi_1(I_min_ik-1,J_i_ext);
 phi_B_x_surf=((xz_surf(I_min(k,i),1)-x_cord(J_i_ext))/(x_cord(J_i_ext+1)-x_cord(J_i_ext))).*(phi_1(I_min_ik+1,J_i_ext+1)-
phi_1(I_min_ik+1,J_i_ext))+phi_1(I_min_ik+1,J_i_ext);
 phi_z_cen_ext(k,i)=(phi_A_x_surf-phi_B_x_surf)./(2*dz);
 end

 %Calculate phi_stars
 phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2;
 phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2;
%__
 %Masking function for T, M
 x_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*sin(alfa)-xz_surf(I_min(k,i),2).*cos(alfa); %Rotated local x
 z_prime_ext(k,i)=(xz_surf(I_min(k,i),1)-x_off).*cos(alfa)+xz_surf(I_min(k,i),2).*sin(alfa); %Rotated local z

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa)+dz*MT_pt_dist))

 if (max_x_prime_surf_LM<0) %Case (a) and (c)
 if (x_prime_ext(k,i)<0)
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 else %i.e., when x_prime>=0
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;
 end
 else %i.e., when x_m>=W_m/2 Case (b)
 x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 if (x_prime_ext(k,i)<x_lim_ext(k,i))
 L_mask_ext(k,i)=0;
 else %i.e., when x_prime>=x_lim
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i);
 end
 end

 %Define proportion of mass of particle that pass through mask opening having a
 %specific particle size (of radius r) distribution
 if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i))
 M_r_x_prime_ext(k,i)=0;
 else
 Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));
 Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));
 M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i);
 end

 else %T w/in zTadj
 if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON)
 M_r_x_prime_ext(k,i)=1;
 else

 if ((xz_surf(I_min(k,i),1)>=x_min_grid)&&(xz_surf(I_min(k,i),1)<=(x_min_grid+leng_M_L)))%TL
 if (xz_surf(I_min(k,i),1)<(x_lim_LM-dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_LM;
 end
 elseif ((xz_surf(I_min(k,i),1)>=(x_max_grid-leng_M_R))&&(xz_surf(I_min(k,i),1)<=x_max_grid)) %TR
 if (xz_surf(I_min(k,i),1)>(x_lim_RM+dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_RM;
 end

 else
 M_r_x_prime_ext(k,i)=1;
 end

 end
 end

 else %M

 199

 if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON)
 M_r_x_prime_ext(k,i)=1;
 else

 if ((xz_surf(I_min(k,i),1)>=x_min_grid)&&(xz_surf(I_min(k,i),1)<=(x_min_grid+leng_M_L)))%ML
 if (xz_surf(I_min(k,i),1)<(x_lim_LM-dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_LM;
 end
 elseif ((xz_surf(I_min(k,i),1)>=(x_max_grid-leng_M_R))&&(xz_surf(I_min(k,i),1)<=x_max_grid)) %MR
 if (xz_surf(I_min(k,i),1)>(x_lim_RM+dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_RM;
 end

 else
 M_r_x_prime_ext(k,i)=1;
 end

 end

 end

%__
 %Define velocity v(x,z) at each grid node
 v_ext(k,i)=v_o*(1-H_slp*(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2).^0.5./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)));
 if (v_ext(k,i)<0)
 v_ext(k,i)=0;
 end

 %Define particle mass flux(x,z) at each grid node
 flux_ext(k,i)=(MFR/pi)*(beta./((xz_surf(I_min(k,i),1)-x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa))).^2....
 exp(-(beta^2.(((xz_surf(I_min(k,i),1)-x_off)*sin(alfa)-xz_surf(I_min(k,i),2)*cos(alfa)).^2+(y_mean).^2)./((xz_surf(I_min(k,i),1)-
x_off)*cos(alfa)+xz_surf(I_min(k,i),2)*sin(alfa)).^2));

 %Define Erosive Power Eros_pow(k,i) at each grid
 %node (1st Strike)
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i);
 else %M
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i);
 end

 %Define Erosive Power for 2nd strike
 %NOTE: No Mask here
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 else %M
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 end

%__
 %Calculate F_extensions

 cos_t_pfx_pfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_pfx_nfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_pos_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_nfx_pfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_pos_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_nfx_nfz_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_neg_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_neg_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_star_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_star_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_star_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 cos_t_cen_ext_1(k,i)=((xz_surf(I_min(k,i),1)-x_off).*(phi_x_cen_ext(k,i))+xz_surf(I_min(k,i),2).*(phi_z_cen_ext(k,i)))./sqrt((xz_surf(I_min(k,i),1)-
x_off).^2+xz_surf(I_min(k,i),2).^2);
 if (cos_t_pfx_pfz_ext_1(k,i)>1)
 cos_t_pfx_pfz_ext_1(k,i)=1;
 end

 200

 if (cos_t_pfx_nfz_ext_1(k,i)>1)
 cos_t_pfx_nfz_ext_1(k,i)=1;
 end
 if (cos_t_nfx_pfz_ext_1(k,i)>1)
 cos_t_nfx_pfz_ext_1(k,i)=1;
 end
 if (cos_t_nfx_nfz_ext_1(k,i)>1)
 cos_t_nfx_nfz_ext_1(k,i)=1;
 end
 if (cos_t_star_ext_1(k,i)>1)
 cos_t_star_ext_1(k,i)=1;
 end
 if (cos_t_cen_ext_1(k,i)>1)
 cos_t_cen_ext_1(k,i)=1;
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_pfx_pfz_ext_1(k,i)<=0)
 F_ext_pfx_pfz_1_1st(k,i)=0;
 else
 F_ext_pfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_pfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_pfz_1_1st(k,i)=0;
 else
 F_ext_pfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_pfx_nfz_ext_1(k,i)<=0)
 F_ext_pfx_nfz_1_1st(k,i)=0;
 else
 F_ext_pfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_pfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_nfz_1_1st(k,i)=0;
 else
 F_ext_pfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_nfx_pfz_ext_1(k,i)<=0)
 F_ext_nfx_pfz_1_1st(k,i)=0;
 else
 F_ext_nfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_nfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_pfz_1_1st(k,i)=0;
 else
 F_ext_nfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.

 201

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_nfx_nfz_ext_1(k,i)<=0)
 F_ext_nfx_nfz_1_1st(k,i)=0;
 else
 F_ext_nfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_nfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_nfz_1_1st(k,i)=0;
 else
 F_ext_nfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_star_ext_1(k,i)<=0)
 F_ext_star_1_1st(k,i)=0;
 else
 F_ext_star_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_star_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_star_1_1st(k,i)=0;
 else
 F_ext_star_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));
 end

 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 if (cos_t_cen_ext_1(k,i)<=0)
 F_ext_cen_1_1st(k,i)=0;
 else
 F_ext_cen_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_cen_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_cen_1_1st(k,i)=0;
 else
 F_ext_cen_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (xz_surf(I_min(k,i),2)>=(h*sin(alfa))) %T
 F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));
 end

 else %we are on surface and grid node = surface node (and phi=0)

 202

 %Repeat above algorithm but using grid nodes
%__
 %Calculation of dphi/dx,dphi/dz; Define BC's
 if i==i_max
 phi_x_pos_ext(k,i)=0;
 else
 phi_x_pos_ext(k,i)=(phi_1(k,i+1)-phi_1(k,i))./dx;
 end

 if i==1
 phi_x_neg_ext(k,i)=0;
 else
 phi_x_neg_ext(k,i)=(phi_1(k,i)-phi_1(k,i-1))./dx;
 end

 if (i==i_max)||(i==1)
 phi_x_cen_ext(k,i)=0;
 else
 phi_x_cen_ext(k,i)=(phi_1(k,i+1)-phi_1(k,i-1))./(2*dx);
 end

 if k==1
 phi_z_pos_ext(k,i)=0;
 else
 phi_z_pos_ext(k,i)=(phi_1(k-1,i)-phi_1(k,i))./dz;
 end

 if k==k_max
 phi_z_neg_ext(k,i)=0;
 else
 phi_z_neg_ext(k,i)=(phi_1(k,i)-phi_1(k+1,i))./dz;
 end

 if (k==k_max)||(k==1)
 phi_z_cen_ext(k,i)=0;
 else
 phi_z_cen_ext(k,i)=(phi_1(k-1,i)-phi_1(k+1,i))./(2*dz);
 end

 %Calculate phi_stars
 phi_x_star_ext(k,i)=(phi_x_pos_ext(k,i)+phi_x_neg_ext(k,i))/2;
 phi_z_star_ext(k,i)=(phi_z_pos_ext(k,i)+phi_z_neg_ext(k,i))/2;
%__
 %Masking function for T, M
 x_prime_ext(k,i)=x_cord_local(i).*sin(alfa)-z_cord(k).*cos(alfa); %Rotated local x
 z_prime_ext(k,i)=x_cord_local(i).*cos(alfa)+z_cord(k).*sin(alfa); %Rotated local z

 if (z_cord(k)>=(h*sin(alfa))) %T

 if (z_cord(k)>=(h*sin(alfa)+dz*MT_pt_dist))

 if (max_x_prime_surf_LM<0) %Case (a) and (c)
 if (x_prime_ext(k,i)<0)
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 else %i.e., when x_prime>=0
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max;
 end
 else %i.e., when x_m>=W_m/2 Case (b)
 x_lim_ext(k,i)=z_prime_ext(k,i).*tan_fi_min;
 if (x_prime_ext(k,i)<x_lim_ext(k,i))
 L_mask_ext(k,i)=0;
 else %i.e., when x_prime>=x_lim
 L_mask_ext(k,i)=z_prime_ext(k,i).*tan_fi_max-x_lim_ext(k,i);
 end
 end

 %Define proportion of mass of particle that pass through mask opening having a
 %specific particle size (of radius r) distribution
 if (abs(x_prime_ext(k,i))>=L_mask_ext(k,i))
 M_r_x_prime_ext(k,i)=0;
 else
 Int_P_r_x_prime_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i)-abs(x_prime_ext(k,i)))-P_3));
 Int_P_r_L_mask_ext(k,i)=real(P_1-P_1*erf(P_2*log(L_mask_ext(k,i))-P_3));
 M_r_x_prime_ext(k,i)=Int_P_r_x_prime_ext(k,i)./Int_P_r_L_mask_ext(k,i);
 end

 else %T w/in zTadj
 if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON)
 M_r_x_prime_ext(k,i)=1;
 else

 203

 if ((x_cord(i)>=x_min_grid)&&(x_cord(i)<=(x_min_grid+leng_M_L)))%TL
 if (x_cord(i)<(x_lim_LM-dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_LM;
 end
 elseif ((x_cord(i)>=(x_max_grid-leng_M_R))&&(x_cord(i)<=x_max_grid)) %TR
 if (x_cord(i)>(x_lim_RM+dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_RM;
 end

 else
 M_r_x_prime_ext(k,i)=1;
 end

 end
 end

 else %M
 if ((time*v_scan/(2*r_s))<=No_p_MrxM_ON)
 M_r_x_prime_ext(k,i)=1;
 else

 if ((x_cord(i)>=x_min_grid)&&(x_cord(i)<=(x_min_grid+leng_M_L)))%ML
 if (x_cord(i)<(x_lim_LM-dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_LM;
 end
 elseif ((x_cord(i)>=(x_max_grid-leng_M_R))&&(x_cord(i)<=x_max_grid)) %MR
 if (x_cord(i)>(x_lim_RM+dx))
 M_r_x_prime_ext(k,i)=1;
 else
 M_r_x_prime_ext(k,i)=M_r_x_prime_RM;
 end

 else
 M_r_x_prime_ext(k,i)=1;
 end

 end

 end

%__
 %Define velocity v(x,z) at each grid node
 v_ext(k,i)=v_o*(1-H_slp*((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2).^0.5./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)));
 if (v_ext(k,i)<0)
 v_ext(k,i)=0;
 end

 %Define particle mass flux(x,z) at each grid node
 flux_ext(k,i)=(MFR/pi)*(beta./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa))).^2....
 exp(-(beta^2.((x_cord_local(i)*sin(alfa)-z_cord(k)*cos(alfa)).^2+(y_mean).^2)./(x_cord_local(i)*cos(alfa)+z_cord(k)*sin(alfa)).^2));

 %Define Erosive Power Eros_pow(k,i) at each grid
 %node (1st Strike)
 if (z_cord(k)>=(h*sin(alfa))) %T
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel.*flux_ext(k,i);
 else %M
 Eros_pow_ext(k,i)=M_r_x_prime_ext(k,i).*v_ext(k,i).^k_vel_M.*flux_ext(k,i);
 end

 %Define Erosive Power for 2nd strike
 %NOTE: No Mask here
 if (z_cord(k)>=(h*sin(alfa))) %T
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end
 else %M
 if (NaN_Chk_theta_D(I_min(k,i))==0)
 Eros_pow_ext_2nd(k,i)=(f_v_AR_fin(I_min(k,i)).*v_AR(I_min(k,i))).^k_vel_M.*flux_AR(I_min(k,i));
 else
 Eros_pow_ext_2nd(k,i)=0;
 end

 204

 end

%__
 %Calculate F_extensions

 cos_t_pfx_pfz_ext_1(k,i)=(x_cord_local(i).*(phi_x_pos_ext(k,i))+z_cord(k).*(phi_z_pos_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_pfx_nfz_ext_1(k,i)=(x_cord_local(i).*(phi_x_pos_ext(k,i))+z_cord(k).*(phi_z_neg_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_nfx_pfz_ext_1(k,i)=(x_cord_local(i).*(phi_x_neg_ext(k,i))+z_cord(k).*(phi_z_pos_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_nfx_nfz_ext_1(k,i)=(x_cord_local(i).*(phi_x_neg_ext(k,i))+z_cord(k).*(phi_z_neg_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_star_ext_1(k,i)=(x_cord_local(i).*(phi_x_star_ext(k,i))+z_cord(k).*(phi_z_star_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 cos_t_cen_ext_1(k,i)=(x_cord_local(i).*(phi_x_cen_ext(k,i))+z_cord(k).*(phi_z_cen_ext(k,i)))./sqrt(x_cord_local(i).^2+z_cord(k).^2);
 if (cos_t_pfx_pfz_ext_1(k,i)>1)
 cos_t_pfx_pfz_ext_1(k,i)=1;
 end
 if (cos_t_pfx_nfz_ext_1(k,i)>1)
 cos_t_pfx_nfz_ext_1(k,i)=1;
 end
 if (cos_t_nfx_pfz_ext_1(k,i)>1)
 cos_t_nfx_pfz_ext_1(k,i)=1;
 end
 if (cos_t_nfx_nfz_ext_1(k,i)>1)
 cos_t_nfx_nfz_ext_1(k,i)=1;
 end
 if (cos_t_star_ext_1(k,i)>1)
 cos_t_star_ext_1(k,i)=1;
 end
 if (cos_t_cen_ext_1(k,i)>1)
 cos_t_cen_ext_1(k,i)=1;
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 if (cos_t_pfx_pfz_ext_1(k,i)<=0)
 F_ext_pfx_pfz_1_1st(k,i)=0;
 else
 F_ext_pfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_pfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_pfz_1_1st(k,i)=0;
 else
 F_ext_pfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_pfz_1(k,i)=F_ext_pfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 if (cos_t_pfx_nfz_ext_1(k,i)<=0)
 F_ext_pfx_nfz_1_1st(k,i)=0;
 else
 F_ext_pfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_pfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_pfx_nfz_1_1st(k,i)=0;
 else
 F_ext_pfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_pfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_pfx_nfz_1(k,i)=F_ext_pfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_pfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_pfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 if (cos_t_nfx_pfz_ext_1(k,i)<=0)

 205

 F_ext_nfx_pfz_1_1st(k,i)=0;
 else
 F_ext_nfx_pfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_nfx_pfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_pfz_1_1st(k,i)=0;
 else
 F_ext_nfx_pfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_pfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_pfz_1(k,i)=F_ext_nfx_pfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_pfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_pfz_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 if (cos_t_nfx_nfz_ext_1(k,i)<=0)
 F_ext_nfx_nfz_1_1st(k,i)=0;
 else
 F_ext_nfx_nfz_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_nfx_nfz_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_nfx_nfz_1_1st(k,i)=0;
 else
 F_ext_nfx_nfz_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_nfx_nfz_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i)))^(k_vel+1)));
 else %M

F_ext_nfx_nfz_1(k,i)=F_ext_nfx_nfz_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_nfx_nfz_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_nfx_nfz_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 if (cos_t_star_ext_1(k,i)<=0)
 F_ext_star_1_1st(k,i)=0;
 else
 F_ext_star_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_star_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_star_1_1st(k,i)=0;
 else
 F_ext_star_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_star_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_star_1(k,i)=F_ext_star_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_star_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_star_D(I_min(k,i)))).^n_2_M));
 end

 if (z_cord(k)>=(h*sin(alfa))) %T
 if (cos_t_cen_ext_1(k,i)<=0)
 F_ext_cen_1_1st(k,i)=0;
 else
 F_ext_cen_1_1st(k,i)=real((C/rho_s)*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i))^(k_vel+1)));
 end
 else %M
 if (cos_t_cen_ext_1(k,i)<=0) %Apply mask visibility for M
 F_ext_cen_1_1st(k,i)=0;
 else

 206

 F_ext_cen_1_1st(k,i)=real((C_M/rho_s_M).*Eros_pow_ext(k,i).*((cos_t_cen_ext_1(k,i)).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_ext_1(k,i))).^n_2_M));
 end
 end

 %Note: cos_theta_D = 0 if no 2nd strk.
 if (z_cord(k)>=(h*sin(alfa))) %T
 F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C/rho_s)*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i)))^(k_vel+1)));
 else %M
 F_ext_cen_1(k,i)=F_ext_cen_1_1st(k,i)+real((C_M/rho_s_M).*Eros_pow_ext_2nd(k,i).*((cos_t_cen_D(I_min(k,i))).^n_1_M).*((1+H_vic_M*(1-
cos_t_cen_D(I_min(k,i)))).^n_2_M));
 end

 end

 end %#####*****#####$$$$$#####*****#####
 end
end
%%%
 %END OF SDF AND F_EXT ALGORITHM
%%%

%__
%Update F_ext for next iteration
F_ext_pfx_pfz=F_ext_pfx_pfz_1;
F_ext_pfx_nfz=F_ext_pfx_nfz_1;
F_ext_nfx_pfz=F_ext_nfx_pfz_1;
F_ext_nfx_nfz=F_ext_nfx_nfz_1;
F_ext_star=F_ext_star_1;
F_ext_cen=F_ext_cen_1;

%__
%Time counter
time=time+dt;

%Iteration counter
counter=counter+1;

%__
%XX
%XX
%Save data to Data Files

N_chk=v_scan/(2*r_s); %Extract data when specified pass reached
if ((time*N_chk>=2)&&(time*N_chk<(2+dt*N_chk)))||((time*N_chk>=4)&&(time*N_chk<(4+dt*N_chk)))...
 ||((time*N_chk>=6)&&(time*N_chk<(6+dt*N_chk)))||((time*N_chk>=10)&&(time*N_chk<(10+dt*N_chk)))

xz_surf_final=zeros(b_max,2); %Transformed surface points for plotting
for b=1:1:b_max
 if (xz_surf(b,1)==0)&&(xz_surf(b,2)==0)
 xz_surf_final(b,1)=NaN; %Not a Number (no cell entry in Excel)
 xz_surf_final(b,2)=NaN;
 else
 xz_surf_final(b,1)=xz_surf(b,1)-x_min_grid; %Transform x
 xz_surf_final(b,2)=-(xz_surf(b,2)-(h*sin(alfa)-H_m)); %Transform z
 end
end

%Input Data
inputs_xls={'time(s)=',time;'MFR(kg/s)=',MFR;'C()=',C;'H_slp()=',H_slp;'beta()=',beta;'v_o(m/s)=',v_o;'v_scan(m/s)=',v_scan;'rho_s(kg/m3)=',rho_s;...
 'k_vel()=',k_vel;'alfa(rad)=',alfa;'epsilon()=',epsilon;'h()=',h;'i_max()=',i_max;'k_max()=',k_max;'dx(m)=',dx;'dz(m)=',dz;'dt(m)=',dt;...
'z_in(m)=',z_in;'z_air(m)=',z_air;'W_m(m)=',W_m;'H_m(m)=',H_m;'mu_l()=',mu_l;'sigma_l()=',sigma_l;'C_M()=',C_M*(adj_r_s/adj_r_s_M);'rho_s_M(kg/m3)=',rho
_s_M;...
 'k_vel_M()=',k_vel_M;'H_vic_M(GPa)=',H_vic_M;'n_1_M()=',n_1_M;'n_2_M()=',n_2_M;'leng_M_L(m)=',leng_M_L;'leng_M_R(m)=',leng_M_R};

%Write data to Excel
if ((time*N_chk>=2)&&(time*N_chk<(2+dt*N_chk)))
headings_xls={'2passes',NaN,'x_surf_fin','z_surf_fin'};
xlswrite(fil_name,headings_xls,'Sheet1','A1');
xlswrite(fil_name,inputs_xls,'Sheet1','A2');
xlswrite(fil_name,xz_surf_final,'Sheet1','C2');
end
if ((time*N_chk>=4)&&(time*N_chk<(4+dt*N_chk)))
headings_xls={'4passes',NaN,'x_surf_fin','z_surf_fin'};
xlswrite(fil_name,headings_xls,'Sheet1','E1');
xlswrite(fil_name,inputs_xls,'Sheet1','E2');
xlswrite(fil_name,xz_surf_final,'Sheet1','G2');
end
if ((time*N_chk>=6)&&(time*N_chk<(6+dt*N_chk)))

 207

headings_xls={'6passes',NaN,'x_surf_fin','z_surf_fin'};
xlswrite(fil_name,headings_xls,'Sheet1','I1');
xlswrite(fil_name,inputs_xls,'Sheet1','I2');
xlswrite(fil_name,xz_surf_final,'Sheet1','K2');
end
if ((time*N_chk>=10)&&(time*N_chk<(10+dt*N_chk)))
headings_xls={'10passes',NaN,'x_surf_fin','z_surf_fin'};
xlswrite(fil_name,headings_xls,'Sheet1','M1');
xlswrite(fil_name,inputs_xls,'Sheet1','M2');
xlswrite(fil_name,xz_surf_final,'Sheet1','O2');
end

end

end

%%%
 %END OF Main Loop
%%%

%__
%Number of iterations
counter;

toc; %Stop timer
Exec_time=toc; %Execution time
%__
%Write other data to Excel at end of execution
other_data_xls={'execution time(s)=',Exec_time;'Number of Iterations=',counter;'r_s(m)=',(1/adj_r_s)*r_s;'Visibility=',Visibility;...
'BS_L=',BS_L;'BS_U=',BS_U;'Num_iter_RE=',Num_iter_RE;'prop_Num_iter_RE=',prop_Num_iter_RE;'Crit_D=',Crit_D;'No_RE=',No_RE;'adj_r_s=',adj_r_s;'adj_r
_s_M=',adj_r_s_M;...
'T_pass_T=',T_pass_T;'T_pass_M=',T_pass_M;'dt_alpha=',dt_alpha;'prs=',(y_mean*adj_r_s)/r_s;'MT_pt_dist=',MT_pt_dist;'No_p_MrxM_ON=',No_p_MrxM_ON;'r
_UCt=',r_UCt;...
 'f_alfa_AR_T=',f_alfa_AR_T;'f_v_AR_T=',f_v_AR_T;'f_alfa_AR_M=',f_alfa_AR_M;'f_v_AR_M=',f_v_AR_M;'ds_crit=',ds_crit;'No_ds_cr',No_ds_cr};
xlswrite(fil_name,other_data_xls,'Sheet1','Y1');

 208

References

[1] J.H.M. ten Thije Boonkkamp, J.K.M. Jansen, An analytical solution for mechanical etching of
glass by powder blasting, J. Eng. Math. 43 (2002) 385–399.

[2] H. Getu, A. Ghobeity, J.K. Spelt, M. Papini, Abrasive jet micromachining of

polymethylmethacrylate, Wear 263 (2007) 1008–1015.

[3] Y.H. Kim, H.W. Lee, K.W. Lee, Y.S. Kim, Formation of barrier ribs for plasma display panels

via a powder-blasting process: Part I. Effects of binder content and baking treatment, J. Am.
Ceram. Soc. 87 (2004) 342–347.

[4] E. Belloy, A. Sayah, M.A.M. Gijs, Micromachining of glass inertial sensors, J.

Microelectromech. Syst. 11 (1) (2002) 85–90.

[5] S. Schelautmann, H. Wensink, R. Schasfoort, M. Elwenspoek, A.V.D. Berg, Powder-blasting

technology as an alternative tool for microfabrication of capillary electrophoresis chips with
integrated conductivity sensors, J. Micromech. Microeng. 11 (2001) 386–389.

[6] E. Belloy, A.G. Pawlowski, A. Sayah, M.A.M. Gijs, Microfabrication of high-aspect ratio and

complex monolithic structures in glass, J. Microelectromech. Syst. 11 (5) (2002) 521–526.

[7] Q.S. Yan, Z.Q. Zhang, Present situation and developing trend of abrasive air jet micromachining,

Key Eng. Mater. 259-260 (2004) 648-652.

[8] H. Getu, J.K. Spelt, M. Papini, Cryogenically Assisted Abrasive Jet Micromachining of

Polymers, J. Micromech. Microeng. 18 (2008) 115010.

[9] C. Liu, J. Chen, J. Engel, J. Zou, X. Wang, Z. Fan, K. Ryu, K. Shaikh, D. Bullen, Polymer

micromachining and applications in sensors, microfluidics, and nanotechnology, The 226th
National Meeting of the American Chemical Society (ACS), New York, NY, 11–17 September,
2003.

[10] D.S. Park, M.W. Cho, T.I. Seo, Mechanical etching of micro pockets by powder blasting,

International Journal of Advanced Manufacturing Technology 25 (11-12) (2005) 1098–1104.

[11] D. Belder, F. Kohler, M. Ludwig, K. Tolba, N. Piehl, Coating of powder-blasted channels for

high-performance microchip electrophoresis, Electrophoresis 27 (2006) 3277–3283.

[12] A.G. Pawlowski, E. Belloy, A. Sayah, M.A.M. Gijs, Powder blasting patterning technology for

microfabrication of complex suspended structures in glass, Microelectron. Eng. 67–68 (2003)
557–565.

[13] P. J. Slikkerveer and F. H. in‘t Veld, Model for patterned erosion, Wear 233-235 (1999) 377–386.

[14] A. Ghobeity, T. Krajac, T. Burzynski, M. Papini, J.K. Spelt, Surface evolution models in abrasive

jet micromachining, Wear 264 (2008) 185–198.

[15] J.G.A. Bitter, A study of erosion phenomena - Part II, Wear 6 (1963) 169–190.

 209

[16] J.A. Sethian, Level Set and Fast Marching Methods: Evolving interfaces in computational
geometry, fluid mechanics, computer vision, and material science, second ed., Cambridge
University Press, Cambridge, 1999.

[17] A. Ghobeity, H Getu, M Papini, J K Spelt, Surface evolution models for abrasive jet

micromachining of holes in glass and polymethylmethacrylate (PMMA), J. Micromech.
Microeng. 17 (2007) 2175–2185.

[18] Z. Moktadir, H. Wensink, M. Kraft, Analytical model of micromachining of brittle materials with

sharp particles, Microelectronics Journal 36 (2005) 608–611.

[19] A. Ghobeity, D. Ciampini, M. Papini, An analytical model of the effect of particle size

distribution on the surface profile evolution in abrasive jet micromachining, J. Mater. Process.
Technol. 209 (20) (2009) 6067-6077.

[20] H. Wensink , J.W. Berenschot, H.V. Jansen, M. C. Elwenspoek, High resolution powder blast

micromachining, Proc. 13th Int. Workshop on Micro Electro Mechanical Systems, MEMS 2000,
Miyazaki, Japan (2000) 769–774.

[21] H. Wensink, M.C. Elwenspoek, Reduction of sidewall inclination and blast lag of powder blasted

channels, Sensors and Actuators A 102 (2002) 157–164.

[22] A. Ghobeity, M. Papini, J.K. Spelt, Computer simulation of particle interference in abrasive jet

micromachining, Wear 263 (1-6) (2007) 265–269.

[23] D. Ciampini, M. Papini, Cellular-automata and particle-tracking simulation of abrasive jet

micromachining considering particle spatial hindering and second strikes, J. Micromech.
Microeng. 20 (2010) 045025.

[24] D.S. Park, M.W. Cho, H. Lee, Effects of the impact angle variations on the erosion rate of glass

in powder blasting process, Int. J. Adv. Manuf. Technol. 23 (2004) 444–450.

[25] H. Wensink, H.V. Jansen, J.W. Berenschot, M.C. Elwenspoek, Mask materials for powder

blasting, J. Micromech. Microeng. 10 (2000) 175–180.

[26] M. Achtsnick, J. Drabbe, A.M. Hoogstrate, B. Karpuschewski, Erosion behaviour and pattern

transfer accuracy of protecting masks for micro-abrasive blasting, Journal of Materials
Processing Technology 149 (2004) 43–49.

[27] A.G. Pawlowski, A. Sayah, M.A.M Gijs, Accurate masking technology for high-resolution

powder blasting, J. Micromech. Microeng. 15 (2005) S60–S64.

[28] A. Sayah, V.K. Parashar, A.G. Pawlowski, M.A.M Gijs, Elastomer mask for powder blasting

microfabrication, Sensors and Actuators A 125 (2005) 84–90.

[29] P.J. Slikkerveer, P.C.P. Bouten, F.C.M. de Haas, High quality mechanical etching of brittle

materials by powder blasting, Sensors and Actuators A 85 (2000) 296–303.

[30] E. Belloy, A. Sayah, M.A.M. Gijs, Oblique powder blasting for three-dimensional

micromachining of brittle matrials, Sensors and Actuators A 92 (2001) 358–363.

 210

[31] H. Getu, A. Ghobeity, J.K. Spelt, and M. Papini, Abrasive jet micromachining of acrylic and
polycarbonate polymers at oblique angles of attack, Wear 265 (5-6) (2008) 888-901.

[32] H. Yagyu, O. Tabata, Three-dimensional simulation of powder blasting with a polymer mask

using a cellular automaton, J. Micromech. Microeng., 18 (2008) 1–9.

[33] T. Burzynski, M. Papini, Analytical models of the interference between incident and rebounding

articles within an abrasive jet: Comparison with computer simulation, Wear 263 (7-12) (2007)
1593-1601.

[34] T. Burzynski, M. Papini, Analytical model of particle interference effects in divergent erosive

jets, Tribol. Int. 43 (3) (2010) 554-567.

[35] D. Ciampini, J.K. Spelt, M. Papini, Simulation of interference effects in particle streams

following impact with a flat surface, Part I: Theory and analysis, Wear 254 (2003) 237–249.

[36] N. Shafiei, H. Getu, A. Sadeghian, M. Papini, Computer simulation of developing abrasive jet

machined profiles including particle interference, J. Mater. Process. Technol. 209 (9) (2009)
4366-4378.

[37] S. Osher, R.P. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, first ed., Springer,

Verlag New York, 2002.

[38] Wikipedia: The free encyclopedia, File: Level set method.jpg (2004, November 25). Retrieved

September 12, 2011, from http://en.wikipedia.org/wiki/File:Level_set_method.jpg.

[39] T. Burzynski, M. Papini, Level set methods for the modelling of surface evolution in the abrasive

jet micromachining of features used in MEMS and microfluidic devices, J. Micromech.
Microeng. 20 (2010) 085004.

[40] Y.I. Oka, H. Ohnogi, T. Hosokawa, M. Matsumura, The impact angle dependence of erosion

damage caused by solid particle impact, Wear 203-204 (1997) 573-579.

[41] P.H. Shipway, I.M. Hutchings, Influence of nozzle roughness on conditions in gas-blast erosion

rig, Wear 162-164 (1993) 148–158.

[42] T. Burzynski, M. Papini, Measurement of the particle spatial and velocity distributions in micro-

abrasive jets, Measurement Science and Technology 22 (2011) 025104.

[43] A. Ghobeity, H. Getu, T. Krajac, J.K. Spelt, M. Papini, Process repeatability in abrasive jet

micro-machining, J. Mater. Process. Technol. 190 (1-3) (2007) 51-60.

[44] A. Ghobeity, Beta and velocity for 0.3 mm x 3.8 mm rectangular nozzle [e-mail], Personal

communication, 15 April, 2010.

[45] W.E. Schiesser, G.W. Griffiths, A Compendium of Partial Differential Equation Models: Method

of Lines Analysis with Matlab, first ed., Cambridge University Press, New York, 2009.

[46] T. Burzynski, M. Papini, A level set methodology for predicting the surface evolution of inclined

masked micro-channels resulting from abrasive jet micro-machining at oblique incidence,
International Journal of Machine Tools and Manufacture 51 (2011) 628–641.

 211

 212

[47] T.S.J. Lammerink, V.L. Spiering, M. Elwenspoek, J.H.J. Fluitman, A. Berg van den, Modular

concept for fluid handling systems: a demonstrator micro analysis system, The Ninth Annual
International Workshop on Micro Electro Mechanical Systems, MEMS, 'An Investigation of
Micro Structures, Sensors, Actuators, Machines and Systems', San Diego, CA, 11-15 February,
1996.

[48] R.E. Oosterbroek, T.S.J. Lammerink, J.W. Berenschot, G.J.M. Krijnen, M.C. Elwenspoek, A.

Berg van den, A micromachined pressure/flow-sensor, Sens. Actuators A Phys.77 (3) (1999) 167–
177.

[49] D. Adalsteinsson, J.A. Sethian, A level set approach to a unified model for etching, deposition,

and lithography I: Algorithms and two-dimensional simulations, Journal of Computational
Physics 120 (1995) 128-144.

[50] T. Burzynski, M. Papini, A level set methodology for predicting the effect of mask wear on

surface evolution of features in abrasive jet micro-machining, J. Micromech. Microeng.,
submitted July 2011 (under review).

[51] T. Burzynski, M. Papini, Modelling of surface evolution in the abrasive jet micro-machining

including particle second strikes: A level set methodology, J. Mater. Process. Technol., accepted
January 2012.

	Ryerson University
	Digital Commons @ Ryerson
	1-1-2012

	Modelling surface evolution in abrasive jet micromachining using level set methods
	Tom Burzynski
	Recommended Citation

