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Abstract

PRELIMINARY DESIGN OF UNMANNED AIRCRAFT USING GENETIC
ALGORITHMS AND DATA MINING

Daniel J. Neufeld
Master of Applied Science
Graduate Department of Mechanical Engineering

Ryerson University
2005

Aircraft design is a complex process involving multiple co-dependent design variables
and many design decisions. For commercial aircraft design, this difficulty is offset some-
what by the wealth of knowledge available. Observing existing designs has provided
useful empirical relationships and insights for the designer to apply, yielding a relatively
well defined problem. The wide variety of configuration possibilities, mission profiles,
and the relative lack of historical data leave the problem of unmanned aerial vehicle
(UAV) design less defined. The purpose of this research was to develop a robust opti-
mization package for UAV design using data mining to aid configuration decisions and
to develop empirical relationships applicable to a wide variety of mission profiles. An
optimization software package was developed using a Genetic Algorithm (GA) and Data
Mining. The algorithm proved successful in carrying out the preliminary design phase
of a number of test cases similar to existing UAVs. Designs produced by the algorithm
promise improved performance flight performance relative to existing systems, and re-
duced development time when compared with conventional design methodology. Future

work will introduce high fidelity analysis to the framework developed in this research.
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Chapter 1

Introduction

1.1 Overview

Traditional aircraft design methodology requires the combined effort of expert designers
from several disciplines to arrive at a satisfactory design complying to a set of mission
requirements [3]. It is often a lengthy and expensive process. Consequently, aircraft de-
signers have relied on past design trends and empirical equations developed over decades
of manned aviation to facilitate the design process. The design of Unmanned Aerial
Vehicles (UAV) adds additional complexity because UAV design is a recent development
with far less historical guidance to draw upon. UAVs are not bound by many of the con-
straints that apply to manned aircraft. Removing the ‘human factor’ eliminates many
constraints, leaving UAV design a less well defined problem. Empirical sizing and weight
equations developed for manned aircraft preliminary design are not necessarily applicable
over the broad spectrum of sizes and configuration possibilities for UAVs. Designs range
from inexpensive hand launched units to expensive and highly complex aircraft such as
the General Atomics Predator shown in figure 1.1.

Most research in aircraft design optimization is focused on a specific subset of design
possibilities according to a need at hand. This research was to develop an optimiza-
tion package that is adaptable, capable of handling designs ranging from small hand
launched aircraft to large unmanned combat aircraft by using Genetic Algorithms (GAs)
and data mining. GAs operate on Darwin’s theory of natural selection to “breed” supe-
rior designs from a pool of random designs. They can be defined as a“population based
model that uses selection and recombination operators and mutation operators to gener-

ate new sample points in a search space[4].” Work on GA techniques began as a means



Figure 1.1: General Atomics Predator B [1].

of modeling biological evolutionary systems in the 1960s. This work was not initially
intended to be applied to artificial systems, but eventually gave rise to the concept of
evolutionary programming, a technique for solving finite state problems (problems hav-
ing a finite number of possible solutions)[5]. Similar to GAs, evolutionary programming
introduced the concept of carrying populations of solution trials and selecting the fittest
examples for use in subsequent populations. However, not until Holland’s work in 1975
was the concept of crossover breeding of population members introduced|[6, 7]. Bethke’s
work in 1981 firmly established the application of GAs to function optimization[8]. Re-
cent developments in GA research have led to algorithms capable of handling multiple
optimization objectives simultaneously. Recent research has further improved GA per-
formance by introducing self adaptation of mutation rates, population size, and crossover
schemes. GAs have proved to be efficient optimization schemes for aircraft design opti-
mization [3, 9, 10, 11, 12, 13]. GAs are capable of handling problems with discontinuities,
discreet and continuous design variables, and multiple objective functions [12]. Addition-
ally, GAs do not require gradient information to proceed. For these reasons, GAs are
becoming increasingly popular as a numerical optimization scheme [ ko1

Data mining is a term that emerged in the early 1990s. It has its roots in classical sta-
tistics but has long been applied to Artificial Intelligence (Al) and heuristics. Advances
in computer technology gave rise to the concept of machine learning - an evolution of
Al, combining heuristics and statistical analysis. It is used to discover hidden trends
in information databases from which decisions can be made [14]. Data mining is most
commonly employed in business applications but recently it has proved effective in scien-
tific applications as well [10, 11]. In this research, data mining is applied to address the

complexity and diversity of UAV design by providing an artificially intelligent decision



model developed by automatic examination of a database of existing UAV designs.

1.2 Research Objectives

Interest in UAVs has grown substantially in recent years due to their improving capabil-
ities and low cost relative to manned aircraft. Much emphasis and effort in current UAV
research is focused on avionics, command and control, and airspace integration, leaving
airframe design optimization as an afterthought. It is important that advances in these
systems are matched with cost effective airframe designs optimized for efficient mission
operation. This research describes the development of a computer assisted conceptual
design package capable of categorizing existing UAV designs, assisting configuration de-
cisions using database driven methodology, and designing new aircraft optimized for a

set of mission goals using data mining and GAs. This research is restricted to the study

of fixed wing UAVs.

1.3 TUnmanned Aerial Vehicles

To fully appreciate the motivation for UAV research, it is pertinent to consider their
historical and present implications. The following is an outline of the history of unmanned
aircraft systems, a review of their current applications, and the unique challenges they
present to the aircraft designer. The study of UAV design is vital as the “UAV market
is expected to grow dramatically by 2020” in both commercial and military roles [15].
When one considers modern UAV systems such as the RQ-1 Predator, it is easy to
mistake the invention of unmanned aircraft as a very recent development. Certainly,
recent political circumstances have made clear the need for UAV aircraft and the corre-
sponding surge in popular interest is not surprising. However, unmanned aircraft have
served in various applications since the First World War; the first being remotely piloted
versions of manned aircraft used for target drones [16]. The Second World War gave rise
to more fervent attempts to develop unmanned aircraft yielding moderately successful
designs such as the German V1: an unpiloted aircraft equipped with a rudimentary me-
chanical guidance system consisting of a gyroscope and timer and tipped with a small
warhead. The United States Air Force experimented with aircraft that were designed to
be flown by a pilot into a stable condition near a target. The pilot would bail out of the

aircraft and control would be taken over by pilots in nearby aircraft by radio [17]. UAVs



played effective roles in the Vietnam War. Then called drones, UAVs were used for photo
reconnaissance and to troll for surface to air missile radar frequencies. These missions
were usually secretive, and the mainstream awareness and acceptance of UAVs was not
achieved until the first Gulf War. UAVs played a critical role in surveillance and were
touted in news broadcasts, bringing awareness to the general public [16]. The past decade
has seen major growth in UAV research. Modern electronics allow for fully autonomous
flight. Modern UAV systems range from small hand launched remote controlled aircraft
to large multi million dollar stealth aircraft. Figure 1.2 is a collection of typical UAVs
from Second World War to the modern era. With such emphasis and effort being placed
on UAV research for both civil and military applications, clearly UAVs have advantages

over the manned aircraft they are replacing.

Figure 1.2: UAVs in History: 1930 - Present[2] [1].

The motivation for UAV research stems from the need for vehicles that can fly missions
that are too dull, dirty or dangerous for manned aircraft. Jones describes the infamous
shoot down of Gary Powers’ U2 spy plane in 1960 as the “genesis event for the UAV [16].”
The desirability of a pilotless spy plane was made clear by the subsequent political disaster
brought about by the downed pilot’s confession to Soviet authorities. Aside from the
obvious benefit of operating in dangerous circumstances without human risk, UAVs can
provide unwavering attention for the duration of flights sometimes in excess of forty hours
- well beyond the capability of humans. In such missions, “by removing human factors
issues from the aircraft, its performance can be enhanced in many ways[18].” Another,

and perhaps even more crucial advantage of UAV systems, is cost. With the Cold War



long over, defense budgets have dwindled [16]. For manned aircraft design, much effort
is invested in systems designed to protect the pilot. Armour, ejection seats, life support
systems, and visual avionics systems add to the cost and complexity of modern combat
aircraft. UAVs are not bound by the constraint of protecting a human occupant, and
can be designed to be smaller, lighter, and cheaper than their manned counterparts.

Currently, the majority of UAV systems are designed to conduct military surveillance
in various scenarios. Some, like the AeroVironment Pointer are small and relatively in-
expensive aircraft carried by backpack and hand launched. These are used for short
endurance, low altitude missions at close range. Others, like the AAI Shadow are of an
intermediate level of complexity and are rail launched in the field by specially equipped
vehicles. Capable of endurance on the order of ten hours, these aircraft can be fully
autonomous. Highly complex and expensive UAVs such as the RQ-1 Predator must be
operated from airfields and are capable of high altitudes and endurance exceeding two
days carrying highly sophisticated imaging and avionics equipment. Another common
role for UAVs is the aerial target. These aircraft are used to train surface to air mis-
sile crews and gunnery by providing a realistic yet somewhat expendable target. Like
surveillance UAVs, there is much diversity observed in the ranks of target UAVs - some
being hand launched craft for small arms training, other being capable of near supersonic
speeds for surface to air missile testing. Applications are not limited, however, to mili-
tary roles. There are a wide variety of civil roles being considered for UAVs. DeGarmo
and Nelson envision scenarios where UAVs are employed for tasks such as border patrol,
telecommunications, high altitude imagery, media and traffic reporting, law enforcement,
and others areas where having continuous aerial observation is crucial [15]. Additionally,
tedious missions currently carried out by manned aircraft, such as coastal surveillance
and forest fire spotting, are being considered for UAV application[19].

The design of UAVs is a unique challenge. It is easy to assume that because UAVs
lack pilots and passengers, the designer is relieved of constraints such as the airworthiness
requirements and safety factors. This is not the case. Any UAV designed to operate in
open airspace over inhabited areas must be designed to operate safely. Operating a UAV
inside airspace crowded with other aircraft and over inhabited land requires that the UAV
must be sufficiently reliable to pose little risk to people and property on the ground and
other aircraft in the air. Airspace integration is the focus of significant work by NASA and
other government agencies [20]. A second challenge designers face is developing command

and control systems. Remotely piloted UAVs require ground control stations from which



the pilot can operate the aircraft. Imagery must be streamed from the UAV to the ground
station without interruption, otherwise the aircraft would be lost. Autonomous UAVs
have complex control systems and intelligent behavior. They must be able to adapt to
situations such as inclement weather and possible in-flight collisions with other aircraft.
A third challenge, and the one that this research is intended to address is diversity. A
commercial aircraft designer has a long history of successful designs to build from. New
commercial aircraft are nearly always developments of previous designs. The designer
knows that the final outcome of the aircraft will consist of swept wings fixed to a tube like
fuselage, large enough to safely accommodate some number of passengers, with turbofan
engines fixed either by pylons underneath the wing for larger aircraft, or fixed aft on
the fuselage for smaller aircraft. This design has been developed and refined over sixty
years and many examples of this philosophy can be observed in the fleets of all major
manufacturers including Airbus, Boeing, Bombardier, and Embraer. All these designs
are optimized to minimize cost while flying over the commercial routes for which they are
intended at high subsonic speeds. UAV design is not nearly as straightforward. Designs
ranging from small hand launched vehicles to large high subsonic stealth aircraft are not
all optimized to operate at similar speeds, altitudes, or to perform the same task as in
commercial aircraft design. A relatively high percentage of UAVs are unconventional
designs by manned aircraft standards. Many have twin booms, pusher propellers, or
canard wings and ‘V’ tails. This complexity is in part due to tremendous diversity in
mission requirements. Since commercial and civil aircraft are nearly always designed to
carry some payload from one point to another as efficiently as possible, it is not surprising
that many commercial and civil aircraft, though designed and optimized by different
companies, are very similar. UAV designs are optimized with completely different and
diverse goals in mind. Some designs minimize size, while some minimize weight. Others
maximize endurance at extremely high altitudes, while some maximize endurance at -
very low altitudes. Many do not take off and land in the conventional manner, but are
launched by rail, hand, or rocket. Some are recovered by parachute, while some are
expendable and not recovered at all. Figure 1.3 is a collection of typical UAVs showing
the diversity in design philosophy.

This complexity has led to a standardized system of UAV classification. Table 1.1
shows the definitions of these classification categories and their abbreviations[20]. Under-
lying all of these goals is the general objective also found in commercial and civil aircraft

design - minimizing cost. This research was undertaken to address the complexity of
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Figure 1.3: Diversity in UAV designs [1].

UAYV Category Acronym Range Altitude Endurance Takeoff
(km) (m) (h) Mass (kg)

Micro Micro <10 250 1 <5
Miniature Mini <10 150-300 <2 <30
Close Range CR 10-30 3000 2-4 150
Short Range SR 30-70 3000 3-6 200
Medium Range MR 70-200 5000 6-10 1250
Medium Range Endurance MRE >500 8000 10-18 1250
Low Altitude Deep Penetration LADP >250 50-9000 0.5-1 350
Low Altitude Long Endurance LALE >500 3000 >24 <30
Medium Altitude Long Endurance MALE >500 14000 24-48 1500
High Altitude Long Endurance HALE >2000 20000 24-48 12000

Table 1.1: UAV Classification Table

UAV design. It highlights the development of a conceptual design optimization software
package. This package combines database driven artificial intelligence for aiding con-
figuration decisions as well as an airframe optimizer for design refinement developed to
handle diverse mission objectives and constraints. While this research does not contain
a direct costing model for UAV design, it does address the need for cost reduction by
greatly speeding preliminary design of UAV airframes.

Canadian interest in UAVs has grown recently. Canadian geography and topography
present challenges that UAVs are particularly suited to meet. Canada is a vast coun-
try featuring the longest undefended border in the world, coastlines bordering on three
oceans. and vast areas of wilderness with little or no population. Additionally, Canada
has a very low population for its size and consequently a small armed force, making border
and coastline patrol a very difficult challenge. The cost of adequate manned patrols over
S0 vast an area is daunting. UAVs can address these challenges because they can operate

autonomously, with multiple vehicles being under the command of one ground station.



Tedious missions such as forest fire spotting can be undertaken by UAV systems with a
greater degree of efficiency than manned flights. Also, patrolling the Northwest Passage
has become an important issue since its status as Canadian waters is under dispute.
Operating manned aircraft in the hostile wilderness of northern Canada is certainly a
daunting prospect, whereas designing a high endurance UAV system capable of operating
in the extreme conditions would allow for better coverage from fewer permanent bases.
These concepts, however, depend on the establishment of an infrastructure to control and
communicate with the aircraft and integrate them safely into the airspace and is the sub-

Al

ject of much ongoing research[20]. Canada’s role as a peacekeeping nation has recently

Figure 1.4: SAGEM Sperwer [1].

led to the purchase of battlefield surveillance UAVs for deployment in Afghanistan. The
system is a French designed aircraft and ground station called the SAGEM Sperwer. It
is classified as a Medium Range UAV and has an endurance capability of 6 hours[21].
and is shown in figure 1.4. There have been several successful Canadian designed UAVs,
the most famous being the Bombardier/Canadair CL series UAVs. Although never fully
adopted by the Canadian armed forces, the CL series UAVs are enjoying “continued
success in use by both France and Germany([21].” The CL-227 UAV is shown in figure

1.5.

1.4 The UAVOpt Package

The software developed in this research is called UAVOpt. It was developed in the Java
programming language. It is capable of interacting with decision models produced by a

public domain data mining package called Weka, developed by Witten et al.[14]. Addi-
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Figure 1.5: CL-227 Sentinal [1].

tionally, UAVOpt interacts with an engine and airfoil database compiled in the Microsoft
Access format. It contains performance analysis modules, database query modules, user
interface modules, and a genetic algorithm optimizer. The algorithm was designed to
handle several different objective functions including weight minimization, range maxi-

mization. and endurance maximization. It can provide advise to the user in qualitative

design decisions including landing gear type, engine type, engine location, and aircraft

configuration layout by examining a UAV specification database. The algorithm can pro-

vide the user with conceptual designs complying with a set of user defined constraints,

optimized for maximum performance in a user selected objective. Details on the devel-

opment and operation of UAVOpt is discussed in later chapters.



1.5 Literature Review

Design optimization techniques have been applied to aircraft design for some time with
generally positive results. Some research such as the work conducted by Perez et al[3].
has focused more on the feasibility of the optimization scheme itself than the fidelity of
the analysis used. Bartholomew defined a set of three fidelity levels for describing fluid
and structural analysis as they relate to optimization packages[22]. The first, called Level
1, covers analysis founded upon empirical equations. Level 2 is an intermediate level and
can involve basic beam theory for structural analysis and vortex panel methodology for
aerodynamic analysis. Level 3 refers to computational fluid dynamics and finite element
analysis. Most previous aircraft optimization schemes have relied on level 1 methodol-
ogy. These low fidelity methods are not, however, without merit. Low fidelity does not
necessarily mean poor accuracy. It can be more precisely defined as a lack of assurance
that the real world is being faithfully simulated [23]. Markish proposed level 1 tech-
niques for studying the interaction between engineering design and financial impact, and
developed useful an optimization tool[24]. Additionally, Raymer’s work relies upon “so-
phisticated implementations of classical methods[13].” Raymer’s research compared the
effectiveness of several optimization schemes in addition to genetic algorithms. Raymer’s
optimization algorithm was designed to take an aircraft concept developed by the user
and tweak the design to optimize the results. This was done by relying heavily on rig-
orously developed statistical analysis methods rather than computational methods for
aerodynamic and structural design. Zang et al. proposed a novel approach, avoiding
the long computational time that CFD analysis entails by using primarily low fidelity
methods and turning to CFD for occasional corrections[25]. However, with the increasing
availability of powerful computers and with the continued development and refinement of
high fidelity methods, as asserted by Giesing, the design optimization industry is rapidly
moving toward these methods[23]. In fact, Chung et al. developed an optimization
algorithm that relies on high fidelity CFD solution entirely[9]. This research aims to
eliminate level 1 techniques wherever possible by relying heavily on database component
selection for engine and airfoil data instead of low fidelity empirical engine sizing and
airfoil design. Traditional performance equations were discarded in favor of a simulation
approach. Level 1 methods were only used for weight analysis, and this should be con-
sidered a temporary stand in, as the vision for this project includes incorporation of full

structural design.
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The application of Al for aircraft design has also been previously explored. In 1991,
Nah successfully tested a sophisticated Al based expert system for aiding configuration
of commercial aircraft[26]. Later work by Rentema combined AI based reasoning with
a solid modeling tool as a computer assisted design package[27]. Subsequently, AI for
aircraft design has been largely replaced by design optimization. Expert systems are very
complex, built upon hard coded reasoning that must be physically entered by expert
aircraft designers, leaving such systems unable to adapt to new trends. While the GA
optimization algorithm can replace the expert system when it comes to decisions that
have clear numeric advantages, it cannot carry out logical decisions that have little or
no influence on directly quantifiable aircraft performance characteristics. Most design
optimization research takes a basic design layout and refines and optimizes that layout,
previously chosen by an aircraft designer. While design optimization, as in Raymer’s
research, has already been used to design UAVs, no attempt has yet been made to design a
system capable of offering configuration decision assistance that addresses the tremendous
diversity in design philosophy observed in UAV designs today. This research attempts to
combine the advantages of design optimization with a reasoning system capable of offering
“artificially expert” advice on configuration decisions faced by the designer, specifically
for UAV design. The pace of UAV growth renders the concept of an expert system
useless since such a system would quickly become obsolete. To address this, a new
approach was taken. Decision advice is generated by data mining of UAV specification
database, generating decision trees to aid configuration layout problems. Data mining,
having its roots in a number of fields including statistics, Al, and information theory,
“has been applied with significant success in a number of areas|28).” Other research has
incorporated data mining in aerospace related problems. Letourneau et al. tested a data
mining system for predicting aircraft component failure[10]. Liu employed data mining
to aid the development of flight control systems[29]. However, to the author’s knowledge,

the usage of data mining to aid preliminary design is novel.
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Chapter 2

Data Mining

2.1 Overview

Data mining is defined as the extraction of hidden and useful information from databases.
It is a broad term that can apply to a wide variety of methodologies, including well known
techniques like regression analysis[14, 30]. It usually applies to automated or computer
assisted techniques and is often referred to as machine learning and is widely used in
Al applications “that address the formulation and modification of theories as a result of
observations[31, 32].”

A major goal of this research was to provide a UAV designer with decision advice.
Other research involved developing an expert system as a decision model to accomplish
this goal[26]. Expert systems are a subset of Al and are developed by consultation of an
expert in the field to which the system is to be applied. For the case of aircraft design,
an aerospace engineer would try to envision all the possible decisions that must be made
during the preliminary design phase and how they are affected by various performance
targets and applications the aircraft will be required to fulfill. These design decisions
may include the choicc among turboprop, piston, or jet engines. The expert designer
knows the advantages and disadvantages of each engine type and where they are best
applied and can suggest a set of rules for selecting the engine type. These rules can be
encoded as if - then statements such as: if speed < Mach 0.5 then use piston engines, if
speed > Mach 0.5 and < Mach 0.8, then use turboprop engines, and finally if speed >
Mach 0.8, use jet engines. Despite the fact that this is perhaps an oversimplified example,
it becomes clear that the development of expert systems is a painstaking process. The

complex interaction between design decisions, their justification, and their influence on
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other aspects of design must be modeled accurately covering as broad a base as possible
to handle diverse mission goals. As a consequence, expert system design is a complex and
lengthy process. The end result can justify the effort for applications such as medicine,
civil engineering, and fields where rapid change in philosophy is not common.

For the case of UAV design, new designs are constantly emerging and new applications
are being regularly envisioned. Any attempt to build an expert system for aiding the
development of UAVs would be subject to almost immediate obsolescence and would
require constant updating and revision to remain useful. This research proposes data
mining of a UAV specification database as an alternative to the expert system for aiding
design decisions that are not readily quantifiable. The advantages of this approach are
obvious, as an automated data mining algorithm can rapidly construct complex decision
trees and new data can easily be added to the specification database. As a consequence,
it is easy for the system to remain current and applicable. Such a system would be akin
to consulting an expert who can instantly recall any UAV built in exacting detail, and
advise on decisions applicable to new designs based on that knowledge. As previously
mentioned, data mining is a term having broad applicability. For this research, the type
of data mining employed is called the decision tree, and will be introduced later. First, a

description of the specification database to which these methods are applied is necessary.

2.2 The Database

The database compiled for this research contains four tables. The first is a UAV specifica-
tion table containing detailed information on many existing UAV designs. The categories
and a sampling of several entries are shown in table 2.1. Most of the categories shown
are self explanatory, but clarification of several of the more ambiguous categories is war-
ranted. The full database is available on CD.

Under the Mission heading, what is referred to here is the primary mission goal of
the UAV. In this database, attributes under the Mission heading can become either
of the following: surveillance, multirole, civil, target, and combat. The surveillance
category contains aircraft that are primarily designed to loiter about a target area for
a period of time, sending visual information back to the ground station. The multirole
category contains UAVs designed to perform adequately for several mission types. Target
UAVs are craft designed to serve as targets for surface-to-air missile tests and gunnery

or small arms training. Combat UAVs are designed to carry and deploy ordinance to
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1D 1 2

Name AAI Shadow 200 | AAI Shadow 400
Mission Surveillance Multirole
Classification MR MR
Launch Conventional Conventional
Landing Gear Fixed Fixed
Engine Location Pusher Pusher
Engine Type Piston Piston
Engine Number 1 1

Tail Type H H
Empty Weight (kg) 91 Unknown
Payload Weight (kg) 27 45

Fuel Weight (kg) 29 Unknown
Gross Weight (kg) 149 220
Wing Area m?) 2.14 Unknown
Wing Span (m) 3.89 4.3
Aspect Ratio 7.07 Unknown
Fuselage Length (m) 34 Unknown
Fuselage Height (m) 091 Unknown
Maximum Velocity (km/h) | 228 222
Service Ceiling (m) 4575 4755
Range (km) 125 185
Endurance (h) 6 8

Table 2.1: UAV Database Sample

a target. Values under the Launch heading refer to the takeoff method of the UAV
and can take on one of either conventional, rail, catapult, rocket assisted, vertical, or
hand. The conventional takeoff category refers to launch by rolling takeoff on a runway.
Rail launched UAVs takeoff under their own power from a field deployed rail structure.
Catapult launch refers to a rail system with a pneumatic or spring mechanism designed
to rapidly accelerate the UAV. Rocket assisted takeoff systems are comprised of a small
rocket motor fixed to the UAV to aid the acceleration of the craft on takeoff. Hand
launched UAVs are launched by the operator, who must pick up and throw the aircraft.
The software developed in this research simulates conventional takeoff only. However,
UAVs can be designed with the other takeoff methods by setting a stall speed constraint
appropriate for the desired method. For example, a hand launched UAV can be designed
by setting reasonable weight and sizing constraints and a stall speed constraint such
that an operator can easily impart sufficient velocity to the craft. Similarly, the stall
speed constraint can be set to apply to a specific catapult or rocket system the designer
has in mind. Vertical takeoff refers to UAVs that can takeoff vertically under their own
power. The Classification heading refers to the performance classification group of which

the UAV is a member. A chart of this standard classification scheme is given in table
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1.1, adapted from UAVs: A Vision of the Future [33]. The Landing Gear category
describes the type of landing gear (if any) the UAV has and can take on any one of
the following attributes: fixed, retractable, or none. The Engine Location category
describes the location and orientation of the UAV’s power plant. Attributes can take on
one of the following values: tractor (engines having front mounted propellers) , pusher
(engines having rear facing propellers), or wing mounted. The Tail Type category refers
to the configuration of the horizontal and vertical stabilizers and can take on one of the
following values: H (for twin boom arrangements) V, T, conventional, or canard. The

remaining database categories are numerical and their meaning is evident with no further

explanation.
1D 1 2 3
Name Rotax 914UL Honeywell TPE331 | .
Type Piston Turboprop
Length (mm) 581 1168
Width (mm) 575 660
Height (mm) 409 660
Weight (kg) 64 174.6
Power (BHP) or Thrust (Ib) | 115 940
SFC (Ibm/hr/hp) or TSFC 0.54 0.5
Flat Rate Altitude (m) 4877 4400

Table 2.2: Engine Database Sample

The second table in the database is an engine specification table. A truncated table
is shown in table 2.2. Again, the meaning of most of the categories is readily apparent.
The SFC or TSFC category refers to specific fuel consumption or thrust specific fuel
consumption. The former is a measure of the ratio of engine fuel consumption per hour
per horsepower produced and applies to piston or turboprop engines. The latter is a
measure of the ratio of engine fuel consumption per hour per pound of thrust and applies
to jet engines.

The third table in the database is a collection of airfoil specification data pre-calculated
using computational fluid dynamics. The basic geometric information about each airfoil
is stored in the airfoil table shown in figure 2.3. The aerodynamic data is stored in a sub-
table for each entry and contains data relevant to a number of different Reynolds number
regimes. An example of these tables is shown in table 2.4. The primary table of the
airfoil database contains constants that do not change with conditions, such as naming
conventions and geometric properties. The sub-table includes aerodynamic properties of

the airfoil for a number of different Reynolds numbers.
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In the main table, the Maximum Thickness Ratio category refers the the ratio of
the airfoil maximum thickness to chord length. The Location of Maximum Thickness
is expressed in percentage of chord length. The Maximum Camber category refers to
the maximum distance between the chord line (the line from the airfoil leading edge to
the trailing edge) and the mean line (a curve exactly bisecting the airfoil thickness from
leading to trailing edge). The Reference Perimeter and the Reference Tip Area represent

the ratio of the airfoil perimeter to chord and the ratio of tip area to chord.

1D 1 2 3
Name S1020 N0009

Usage Wing Empennage
Designer Selig NACA

Max Thickness Ratio 15.08 9

Location of Max Thickness | 35 29.7

Max Camber 5.04 0

Location of Max Camber 50.9 0

Reference Perimeter 2.0594 2.0239
Reference Tip Area 0.0987 0.0618

Table 2.3: Airfoil Database Sample

Reynolds Number 100000 150000
Clyesign 1.4497 1.4643
L/Dmax 52.3357 62.8455
CLo 1.151 1.1636
Chiyo -0.2644 -0.2665
Lift Slope 5.502279 6.050557
Cr..max 1.915 2.1645

Table 2.4: Airfoil Aerodynamic Properties Sub-Table

The first category of the sub-table is the Reynolds number at which the CFD tests
were carried out. When the GA calls for airfoil properties, it will query the database
for properties corresponding to the Reynolds number regime in which the aircraft under
study is intended to operate. The Cl design Category is the lift coeflicient at which the
airfoil was designed to operate. The L/Daz category is the maximum lift to drag ratio
the airfoil can achieve. The Cy ¢ category contains the lift coefficient value produced by
the airfoil at an angle of attack of zero. The Ca,o category is the moment coefficient of

the airfoil at zero angle. The Lift Slope is a measure of the airfoil lift coefficient to angle
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of attack expressed in 1/rad. The Cp, mq, category is the maximum lift coefficient the
airfoil can operate at before stalling. It should be noted that these are all two-dimensional
airfoil properties, that is, properties calculated based on the assumption of an infinite
wing, considering none of the spillage effects observed on finite wings. Accounting for
the effects of spillage on three-dimensional wings is a topic discussed later.

The final database table is an user input database. The table contains a list of input
criteria to be filled in by the aircraft designer running the algorithm. Basic performance
goals and constraints are entered for analysis by the algorithm and can be selected when
the software is executed. These parameters are shown in table 2.5. The meaning of
the input criterion are readily evident with no further explanation. One thing should
be noted regarding the performance target input criteria. If a particular target for a
proposed aircraft is desired, such as maximum velocity, the target value can be entered,
and the algorithm will not strive to produce aircraft exceeding that target. However, if
it is desired to design the fastest possible aircraft while meeting the other requirements,
a very large (and unattainable) number can be entered. The algorithm will function,
but will never cease striving to produce a faster aircraft, ensuring maximization of the
airspeed constraint. Alternatively, if airspeed is not an important factor for the aircraft’s
intended mission, the entry can be set to zero, leaving no incentive for the algorithm
to produce fast aircraft, allowing it to focus on other parameters. The decision making

methodology applied to the UAV database is introduced in the following section.

1D 1 2
Name RQ7-A Test | Gnat Test
Target Speed (m/s) 63 72
Target Weight (N) 892 2492
Maximum Allowable Fuel Weight (N) | 280 1893
Avionics Weight (N) 69 120
Payload Weight (N) 265 628
Payload Volume (m°) 0.1 0.5
Target Ceiling (m) 4575 7620
Target Takeoff Distance (m) 100 1200
Design Load Factor 2.5 2.5

Table 2.5: Input Database Sample

2.3 Decision Trees

Decision trees, also known as classification and regression trees (CART) were popularized

in Breiman’s work in 1983 [34]. This method is capable of searching historical data and
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constructing decision models with which new data can be classified [35]. For the case
of UAV design, these decision trees are generated by examination of a database of UAV
design specifications with the purpose of aiding the configuration decisions of new UAV
designs. Decision tree algorithms are expressed recursively[14]. The algorithm searches
through all possible variables and values by brute force through the entire database look-
ing for the best split - an attribute around which the population can best be divided
into two parts, minimizing incorrectly categorized instances such that both halves are
as close to homogeneous as possible with respect to the splitting attribute. For the case
of engine type selection, as shown in figure 2.1, the first splitting attribute was speed.
Aircraft having a maximum speed capability less than 370 km/h are almost always pow-
ered by piston engines. Those having maximum speeds over 370 km/h are almost always
powered by something else - in this case, either turboprop or jet engines. This process is
repéated, acting on each of the two new branches. Clearly, the piston branch is very close
to homogeneous, with only 6.7% of the members of this group incorrectly classified, so no
further split is undertaken. For the other branch, however, there still remains significant
representation from both jet and turboprop engine catagories, requiring another split.
Speed again was selected (this is coincidental, often attributes other than the first are
chosen) as the optimal splitting attribute - aircraft that have maximum speeds greater
than 370 km/h and speeds less than a new split point, 444 km/h, tend to have turbo-
prop powerplants. Those having speeds greater than 444 km/h usually have jet engines.
As shown in figure 2.2, the new branches, turboprop and jet, are close to homogeneous.
Not surprisingly, the turboprop branch has some representation from both piston engines
and jet engines, as the capabilities of turboprop engines place them into a narrow niche
between piston and jet engines. Engine type selection happend to be a very simple ex-
ample. However, decision trees, as observed in others generated for this research, can be
much more complex. With the basic approach to decision tree construction introduced,

the mathematics behind the algorithm is briefly summarized.

The data mining software used for this research was Weka, a public domain pack-
age developed by Witten et al. [14]. The software has several data mining algorithms
available, but for this research, study was restricted to the use of the J48 decision tree
algorithm, an extended implementation of Quinlan’s C4.5 algorithm [36]. The mathe-
matical basis of this algorithm lies with the concept of entropy as defined in equation

(2.1) where I is a measure of “goodness of split” and f (,7) is a function of correctly
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Figure 2.1: First Split

Figure 2.2: Second Split

classified instances, 7, and incorrectly classified instances, j.

m
Ig(i) = =) _f(i,5)log f(i, 5) (2.1)
j=1
The J48 algorithm defines the entropy value as a function of data members having a
certain attribute and the total number of data entries. This definition is given in equation
(2.2) where the value T' refers to the total number of data points and T refers to data

points having the attribute under study.

Entropy(T Z ||T| (2.2)

It is a measure of uniformity and is used to determine which attribute is the best
attribute about which to divide the population. If the user wishes, for example, to know
whether to design the aircraft with a V tail or a conventional tail, the first attribute that
provides the best split could be related to the UAV category, dividing the population of
data into two groups, the first being, for example, MR UAVs and the second, not MR
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UAVs. The entropy is determined by adding up the number of aircraft in each group that
have V tails, then the number with conventional tails. If the groups are relatively homo-
geneous, and no other attribute provides a better split between V and conventional tailed
aircraft, then the algorithm is free to continue to the next node. Operating recursively,
this is how the J48 algorithm constructs a decision tree. There are additional complex-
ities that allow the algorithm to “prune” the decision tree into reasonable size while
preserving model accuracy. Additionally, the J48 algorithm constructs many decision
trees due to the large number of permutations possible. The tree having the minimum
entropy is saved and the rest, discarded.

The advantages of this technique are numerous. The J48 algorithm, like most decision
tree algorithms, can “easily handle both numerical and categorical variables[13].” The
algorithm selects only the most relevant variables, not requiring anyone to theorize as to
which variables are significant or not. They can handle missing data points and outliers
- an important feature since complete data is difficult to find. Additionally, they are
very easy to interpret[35]. Decision trees were generated using the J48 algorithm to aid a

number of design decisions. The implementation and results of this analysis is discussed

in the next section.

2.4 Implementation

What would be referred to as unconventional in conventional aircraft design can be ob-
served frequently in UAV aircraft. For example, the twin boom pusher arrangement
is somewhat of an oddity in conventional aircraft and represents a tiny fraction of the
total aircraft population. V tailed aircraft and canard aircraft are also very uncom-
mon. However, V tailed designs and twin boom designs account for a large proportion
of the population in the UAV database compiled for this research. In fact, pusher pro-
peller arrangements are even more frequently observed than tractor arrangements. The
designers of these aircraft clearly understood the advantages of these formerly unique
arrangements toward the application for which their aircraft were designed. Therefore,
using data mining to establish a pattern in these design choices as they relate to the UAV
design goals and mission requirements is a useful exercise and is used in this research to
aid these configuration decisions. To carry out the analysis, it was presumed that the

designer has a set of mission goals and performance targets in mind. These include the

following.
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Target airspeed

Target altitude

e Target range

Desired launch mode (hand, conventional, rail...)

Required payload

Target aircraft weight

The decision trees are formulated based on the known desired attributes and can

advise the designer with regards to the following design choices.

e Landing gear type (fixed, retractable, skid, or none)
e Engine type (jet, turboprop, or piston)
e Engine location (pusher, tractor, or wing) -

e Empennage type (H, V, T, conventional, or canard)

The results of the decision tree algorithm are shown in figures 2.3, 2.4, 2.5, and 2.6.
The logic of these decision trees is readily apparent. Refer to the engine type decision tree
in figure 2.5. Clearly, speed is the determining factor when it comes to engine selection.
Engines having speeds less than 370 km/h strongly correlate to a piston engine selection.
Those having speeds between 444 km/h and 370 km/h correlate to turboprops with a
probability of 0.73, due to the overlap of piston and jet capabilities in this region. The
aircraft having speeds in excess of 444 km/h strongly correlate to the selection of jet
engines. More complex decision trees such as figure 2.6 and figure 2.3 are harder to
follow, but the logic that is readily apparent in the simple engine selection example holds
for these as well.

In these figures, the numeric percentages shown refer to the percentage of correctly
classified instances in that block. The remaining fraction of the members are all incor-
rectly classified attributes in the block.

The engine location decision tree, shown in figure 2.4, determines the placement of

the engine. Tractor refers to a propeller arrangement with a front mounted engine and
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Figure 2.3: Landing Gear Decision Tree

<=113.4 >113.4

=su ancemultirole =cjvil =target =combat

Figure 2.4: Engine Location Decision Tree

propeller. This arrangement is not applicable to jets. Pusher refers to aft mounted
engines and propellers. Jet engines can take on this attribute.

The tail type decision tree, shown in figure 2.6, determines the empennage type. In
the figure, C refers to conventional tails, where the vertical and horizontal stabilizer are
fixed to the fuselage and mounted aft. V refers to the V tail arrangement, where the
horizontal and vertical stabilizers are combined into two wing surfaces mounted at high

dihedral angles with coupled controls, providing both yaw and pitch control. H refers to a
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Figure 2.5: Engine Type Decision Tree

twin boom arrangement, with two slender fuselage booms running aft with a horizontal
stabilizer in between, and two vertical stabilizers fixed aft on the booms. T refers to
an arrangement where the vertical stabilizer is mounted aft on the fuselage and the
horizontal stabilizer is fixed to the top of the vertical stabilizer. A canard arrangement
refers to a layout where the horizontal stabilizer is fixed to the front of the fuselage and

the main wings are fixed further aft.
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Chapter 3

Genetic Algorithms

3.1 Overview

A genetic algorithm (GA) is an optimization strategy designed to mimic Darwin’s theory
of natural selection and was first conceived by Holland in 1975 and further developed by
Goldberg in 1983[7, 37). Natural selection theory states that in a population of organ-
isms, individuals with advantageous genetic traits are more likely to survive and breed
further generations, acquiring other advantageous genetic traits yielding organisms that
are better adapted to environmental conditions in subsequent generations. GAs follow
this principle. An initial population of designs with strictly random attributes is created
and each design is evaluated for its performance in the selected optimization objective.
ce are more likely to be permitted to reproduce. Repro-

Designs with superior performan

duction is usually carried out by pairing two designs selected probabilistically based on

rank, and crossing over attributes of each design to the other. Repetition of this process

yields a new and hopefully better population than the previous generation. This is carried
out for many generations until some reasonable level of convergence has been observed.

Additionally, mutation is introduced as a means of adding fresh genetic material into the

scheme at random intervals. Usually done at a rate of 20% or so, a particular design is

picked at random and is randomly altered, preventing convergence on local optimua[12].
GAs have many advantages over conventional optimization methods. Firstly, GAs

can optimize an objective function containing both continuous and discreet variables[12].

Secondly, GAs are less prone to convergence on local optima, a useful trait for optimiz-

ing functions that have complex shapes and many constraints [13]. Additionally, GAs

can find useful solutions for objective functions containing too many design variables for
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traditional methods to be practical. Since this research is focused on a database driven
approach to design, there are several discreet variables under study such as index ref-
erences to a parts database. In addition to the discreet variables, there are continuous
variables such as wing span under consideration as well. GAs were the clear choice for
the optimization scheme since an objective function having both discreet and continuous
variables is unsuitable for gradient optimization methods. GAs, however, do present the
algorithm designer with significant challenges. Diverse methods for handling constraints,
for evaluating fitness and ranking, for selecting and crossing over breeding pairs, for pe-
nalizing constraint violation and for carrying out mutation have been studied. This has
left GA designers with many options available, making the design of the algorithm itself
a study in optimization. This has led to the concept of self-adaptation, where these
parameters change when certain trends in the solution emerge. Despite these issues,
GAs have been successfully employed for many optimization problems and are known
to be robust, reliable, and efficient. Successful application of GAs in aircraft design can
be observed in Raymer’s work, where GAs are used to optimize a number of different
aircraft concepts[13]. Obayashi used a GA optimization algorithm to improve wing plan-
form configurations[12]. Applications of GAs are certainly not limited to aircraft design.
Yong proposed a GA system for optimizing cancer treatment[38] et al. and Pires et al.
applied a GA to robotic control systems(38, 39]. Clearly, the advantages offered by the
GA optimization scheme have led to the successful application of the technique toward

diverse problems in many fields.

3.2 GA Implementation

For this research, a GA was developed to optimize UAV designs with the objective of
either maximizing flight endurance or minimizing weight. The objective function in any
optimization problem is the function that defines a primary variable that the designer
wishes to maximize or minimize and is often subjected to a number of constraints. In
this case, the objective function is to maximize endurance, or minimize weight subject
to performance requirements and is a function of design variables that define the shape
and dimensions of the aircraft, the power plant used, and the airfoil selected. In order
to reduce computational time, the number of design variables was limited to six key
parameters, thought to be the minimum practical number of variables needed to build

an airplane as discussed in Raymer’s work[13]. The design variables were defined as the
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following.

e Airfoil

Engine

Fuselage Length

Wing Span

Aspect Ratio
e Taper Ratio

The objective function formulation is given by equation (3.1) where E is aircraft
endurance and W is aircraft weight, both being functions of the chosen design variable
values including the airfoil, engine, fuselage length denoted by fl, wing span denoted by

b, aspect ratio denoted by AR, and taper ratio denoted by A respectively.

maz(E) = f(airfoil, engine, fl,b, AR, \) 51)
min(W) = f(airfoil, engine, fl,b, AR, )\)' '
This objective function is subject to geometric and performance constraints shown in

equation (3.2) where Lmaz, Bmaz, and ARmaz are maximum length, span, and aspect
ratio constraints input by the user, respectively. Vmin, TOdist, Wmaz, and Hmin

are the minimum velocity requirement, the maximum allowable takeoff distance, the

maximum allowable weight, and the minimum required altitude achieved by the design.

These performance constraints are also defined by the user.

Length <= Lmaz
Span <= Bmaz
AspectRatio <= ARmaz
MazimumSpeed >= Vmin (3.2)
Takeof f Distance <= TOdist

Weight <= Wmaz

Ceiling >= Hmin
Two of these variables are discreet. In this research, rather than using empirical

“rubber engine sizing” and primitive airfoil analysis, engines and airfoils are selected

29



from a database of actual specifications. The engine size, weight, and output do not need
to be guessed based on empirical methods. Traditional methods are dubious at best for
this application since they were developed before the prevalence of UAVs and do not
allow for easy distinction between the power plant choices common among UAV designs.
The engine database for this research contains specification information for electric, jet,
rocket, piston, and rotary engines. The airfoil variable simply is a database index that
points to pre-calculated Computational Fluid Dynamics (CFD) solutions for existing
 airfoil designs. This reduces computation time while not adversely affecting the accuracy
of the airfoil analysis by oversimplification. For the logic of the GA procedure to work
on something like a database entry, the entries must be sorted based on a parameter,
in this case, engine power output, or maximum lift coefficient. Because of this, in the
case of the engine database, engines of higher index have clear and logical distinction
from those with lower index values - namely, the higher the value, the higher the power
output. This is necessary for there to be a logical progression from one generation to
the next; otherwise, engine and airfoil selection would be effectively random. These
variable are expressed as floating point (double) numbers between 0 and 1, representing
the fraction between the first entry index number and the last, rounded to the nearest
integer. The remaining four variables are continuous and are also expressed as floating
point (double) numbers between 0 and 1, they represent the fraction between defined
variable limits that the variable has taken on but are not rounded. For the case of aspect
ratio, the limits are defined as between 5 and 20, since aspect ratios lower than 5 cannot
be accurately analyzed with the methodology used in this research and wings having
aspect ratios greater than 20 become too slender to be feasible. This floating point
representation of the six variables forms a design variable vector and is not a typical GA
representation. Design variables are usually represented by binary numbers, and the GA
crossover function operates at the binary level, swapping digits. Obayashi asserts that

the vector approach is a “more natural” representation of real function optimization[12].
pp

With the objective function defined, the next step in the algorithm is to initialize
a population from which offspring can be derived. After some experimentation, the
algorithm developed in this research seemed to perform best when the population size
was fairly large: over 100 and as high as 1000. These populations are simply matrices of
random real numbers between 0 and 1, with the number of columns equaling the number
of design variables, 6 in this case, and the number of rows equal to the population size.

These random numbers are converted into design variable values by finding the distance
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they represent between the variable limits defined earlier. Once the initial population of
design variables is initialized, aircraft are designed around them and tested for fitness, or
rather, tested for their relative quality according to their objective function results, either
being weight or endurance in this research. This step is called fitness evaluation and is
discussed in detail in later chapters. Ultimately, the random aircraft designs are ranked
according to their objective function performance and constraint violation. Like many
aspects of GA design, the handling of constraint violation is not an exact science. A
penalty function was used in this research to ensure constraint satisfaction. The penalty
function is a function of the difference between performance of a design and a constraint
and is given by equation (3.3) where k is a gain factor set by the user to assign priority

to a particular constraint, R is the required value and A is the achieved value.

P = e(-kE=-2? (3.3)
If, for example, an aircraft was found to have a maximum altitude much lower than
the altitude constraint specifies, the penalty function yields the decimal multiplier P
by which the fitness value is scaled. A bell shaped penalty function was used in this
research because this shape allows for designs that come very close to the constraint
values to be not so heavily penalized that they have no likelihood of reproduction. This
is important because often an optimum design will lie exactly on one or more constraints.
The best performers are assigned an 80% chance of reproduction and the worst designs are

assigned a 20% chance, ensuring that no genetic material is lost with absolute certainty.

These values were selected after rigorous testing of the GA. Allowing the best designs to
have a 100% breeding probability often resulted in premature convergence because the
first child generation would often contain too many designs based on the same parents
with little diversity. Assigning a 0% breeding probability eliminates the potential for
breeding between good and poor designs. This is undesirable since cases may arise where

pairing designs with low fitness can breed good designs. The selection process simply

scans through the population, selecting individuals in a random, but weighted manner

such that their selection probabilities are matched. Individuals can be selected multiple

times or not all. Two arrays, each half the size of the population, comprised of selected

individuals, are built up in this manner. Members of the two arrays are then crossed
over, each producing two offspring to form a new population of equal size to the original.

Crossover functions usually occur at the binary level. As shown in figure 3.1, parts of
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the binary expression defining a design variable value are exchanged with that of another
design variable yielding a new value. Crossover functions serve as the model by which

genetic material is passed from parents to the child population.

— [0[1]0]1]

Figure 3.1: Binary Crossover

In this research, a real number crossover was used since the design variables under
study include both real number values and integer values. The crossover function was

defined in Obayashi and is given in equation 3.4[12].

Childl = (ranl)Parentl + (1 — ranl)Parent2

3.4
Child2 = (1 — ranl)Parentl + (ranl)Parent2 (3:4)

To prevent premature convergence on local optima in the solution space, a random
mutation operator was introduced. This has the effect of introducing new genetic material
into the population and prevents stagnation of the design convergence. A mutation rate
of 20% was found to be satisfactory by rigorous testing of the algorithm. The mutation
operator simply changes one or more design variable values carried by a member of
the child population to random numbers. If the algorithm has converged on a local
optimum point, the addition of new genetic material provides opportunity for designs
to emerge from that location, evolving the population towards regions of higher fitness.
The algorithm tracks the fittest member of the population, displaying the corresponding
fitness value. New generations are created until there is no significant change in the

solution from one generation to the next.
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Chapter 4

Algorithm Description

4.1 Overview

The algorithm consists of a user input form followed by a data mining module respon-
sible for making configuration decisions and a genetic algorithm to carry out the design
optimization. The data mining algorithm results (in the form of decision trees) are pre-
calculated using the Weka data mining software package and saved in the database so no
actual data mining computation occurs in the algorithm loop, saving computation time.
These decision trees only need to be regenerated when significant changes are made to

the aircraft database. A simplified algorithm block diagram is shown in 4.1.

4.2 Fitness Evaluation Module

The fitness evaluation block of the genetic algorithm consists of two libraries of interacting
software modules, the role of which is to design new aircraft around each unique set of
design variables and calculate their estimated performance. Each library is responsible
for handling different aspects of the aircraft design layout and performance analysis.
The following section describes the function of each code group and the methodology
and assumptions used. The first group is called ‘UAVPart’ and contains six program
blocks representing each significant component a given aircraft possesses. The second is

called “‘UAVPerformance’ and contains performance estimation code.
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Figure 4.1: Simplified Algorithm Block Diagram

4.2.1 UAVPart Library

The UAVPart library is responsible for designing and assembling the aircraft based on

the design variables and decisions undertaken earlier.

e Engine

Airfoil

e Wing

Fuselage
e Empennage

Aircraft

The airfoil analysis block, represented by figure 4.2, handles the two dimensional airfoil
analysis. Rather than resorting to low fidelity estimates or computationally expensive
airfoil optimization, the airfoil analysis is a database driven system. Many popular airfoil
profiles were compiled into a database. Key airfoil properties, shown in figure 4.2, were

computed using computational fluid dynamics. These results are pre-calculated and
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stored in the airfoil database for a number of different Reynolds number values. The
airfoil algorithm, given an index indicated by the airfoil design variable and an operating

Reynolds number, returns the required two dimensional airfoil properties.

Cl,
L B oy
Cl
max >
Airfoil Index Gl
[ o >
Reynolds Number LID

ref. perimeter

thickness/chord

Figure 4.2: Airfoil Analysis Block

Like the airfoil block, the engine block, represented by figure 4.3, submits performance
data to the algorithm by querying a database of actual engine specifications and dimen-
sions rather than empirical equations. This database driven approach removes errors of
assumption associated with traditional “rubber engine sizing” methodology and easily

allows for many different and unusual types of engines, such as rotary and electric, to be

considered.

Power
Fuel Consumption

Design Variables Dimensions

v

Flat Rate Altitude

Figure 4.3: Engine Analysis Block

The fuselage design block, represented by figure 4.4 assembles the fuselage geometry
such that the required payload volume is accommodated. Additionally, the fuselage is
sized to accommodate the engine. The basic fuselage layout is selected by the data
mining algorithm, leading to several possible geometries including twin or single boom,

and pusher or tractor configurations.

The wing analysis block, shown in figure 4.5 accounts for the aerodynamic effects on a

three-dimensional wing. Two dimensional airfoil analysis fails to account for air spillage
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Figure 4.4: Fuselage Analysis Block

over the tip of a wing caused by the pressure differential on the upper and lower surface
of the wing. This spillage induces vorticies about the wing tips and leads to drag that is

not accounted for in the two-dimensional analysis and is referred to as induced drag.

Design Variables

Airfoil

Figure 4.5: Wing Analysis Block

The magnitude of this drag is affected by the planform configuration of the wing.
There are a number of numerical techniques available to estimate the magnitude of the
induced drag based on airfoil properties and planform shapes. The Prandtl Lifting Line
technique was selected and implemented in this research. This technique is relatively
computationally inexpensive and provides good results for wings having aspect ratios
greater than five[40]. The lifting line theory is briefly summarized below. Lifting line
theory begins with the surmise that lift is distributed along a wing such that it is maxi-
mum at the middle of the span and zero at the tips as shown in the left diagram in figure
4.6. Prandtl’s theory replaces the wing and lift curve with a series of vorticies along a
line, increasing then decreasing in magnitude proportional to spanwise location.

The fundamental equation of the Prandtl lifting line theory was developed by assessing
the influence of each vortex on any point beyond the lifting line. The reader may refer
to Anderson where the full derivation is available. Equation (4.1) is the fundamental
equation of the Prandtl lifting line theory. Applied to a finite wing of span length b, it
states that “the geometric angle of attack is equal to the sum of the effective angle plus

the induced angle of attack - shown below in figure 4.7[40]. Here, I' is the strength of
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Figure 4.6: Lift distribution over a finite wing is approximated by a line of vorticies of
strength [’

the fluid vortex, « is the angle of attack, and y is the distance along the lifting line to

the vortex in question.

b/2
o [(yo) | 1 (dl/dy)dy
o) = gy oo+ o | ST NG,
“b/2
14

Figure 4.7: The induced angle created by downwash, «;, effectively reduces the wing
angle of attack relative to incoming airflow

Fluid circulation along a finite wing of span b is approximated by a Fourier sine series.
Spanwise locations y are transformed to a function of the non dimensional parameter, #

expressed by y = —2 cos # and the circulation function is given by equation (4.2).
Yy 5 )

N
TGi= QI)VOCZAW sin(n#) (4.2)
1

Combining this result with (4.1) yields equation 4.3. Clearly, with incoming angles
of attack known, as well as the two dimensional airfoil properties gathered from the
airfoil analysis block, equation (4.3) contains the unknown parameters A, which can
be calculated for each of N divisions along the wing by solving the resulting system of

equations.
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sin(nf)

a(bp) = ZA sin(nfy) + ar=o(fo) +Z An Sinlo) (4.3)

,aC(b’ )4
The wing analysis block solves this equation over nine stations along the span of a
wing having a previously determined airfoil, span length, taper ratio, and aspect ratio.
The number of divisions was limited to nine because, upon testing, increases beyond nine
did not significantly improve or change results and greatly increased the computational
demands and time required for the algorithm to complete.
Upon calculating the A, constants, the desired parameters shown in figure 4.5 are

computed beginning with the Oswald Efficiency Factor, e given in equation 4.4.

1
(1+9)

Here, 6 is a non-dimensional parameter given by 4.5, expressed in terms of the con-

e= (4.4)

stants A,, computed by equation (4.3).

N AN\?2
d=)> n|= )
() 49
The induced drag constant, k is then computed by equation (4.6). This result is
considered in all performance calculations - induced drag, given by (4.7), is computed

and added to friction and proﬁle drag in the classic drag polar equation (4.8) where AR

is the aspect ratio of the wing and e is the Oswald efficiency factor.

L1
" 7ARe (4.6)
Cp; =kCL (4.7)
Cp = Cpp +kC} (4.8)

Having computed the aerodynamic properties, the geometric properties (including
total wetted area, frontal area, and tip area) are calculated.

The aircraft block, shown in figure 4.8 is a construct of the parts previously discussed,
containing a wing, engine, fuselage, and an empennage part. The remaining properties

needed before carrying out performance estimates is the zero lift drag coefficient, Cb,,
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Figure 4.8: Aircraft Block

and an estimate of the aircraft weight. The drag coefficient is estimated using the com-
ponent drag buildup method outlined by Raymer[13]. The weight is estimated by a series

of semi-empirical equations adjusted to fit the database trends found relating weight to

aircraft type and geometry.

4.2.2 UAVPerformance Library

The performance library carries out performance estimates of proposed designs. The
software developed in this research has modules for estimating takeoff, climb, endurance,
and flight envelope performance. These performance estimates are based upon time
integration of the two dimensional equations of aircraft motion. This is achieved by
computing the forces acting on an aircraft to find the resultant acceleration values and
conducting numeric integration to solve for velocity and position values. This method
-an achieve higher fidelity than those presented in Anderson, where the equations of
motion are simplified enough to provide direct solutions[40]. However, this comes at the
expense of computation time.

The thrust module, represented by figure 4.9 is responsible for relaying the thrust
force value to the various performance modules based on some input conditions. For a
piston engine, with thrust being a strong function of shaft power, as well as incoming air
velocity, the model is given by equation (4.9), where 7, is a propeller efficiency factor,

P is engine power, and Vy is the incoming air velocity.

(19 o
T=—
Voo

For jet and rocket engines, the thrust is assumed to be constant with incoming air

(4.9)

velocity.
The takeoff analysis module, shown in figure 4.10, simulates an aircraft as it rolls from

an initial velocity of zero until it has exceeded stall speed by a sufficient margin to leave

the ground safely. The forces acting on the aircraft during takeoff roll are computed, the
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Figure 4.9: Thrust Block

residual forces divided by the aircraft mass yield the lateral acceleration. These forces
are reassessed many times per second. Between each three second interval, the aircraft is
assumed to have a constant acceleration. The change in velocity during this time, At, is
then computed followed by the change in position, ds. Time is allowed to advance until
the aircraft velocity exceeds the stall speed of the aircraft sufficiently to allow it to safely

leave the ground.

Aircraft

Takeoff Distance
Atmosphere g = ' '

Figure 4.10: Takeoff Block

During the takeoff roll, the forces acting on the aircraft include the thrust produced
by the power plant, rolling friction between the wheels and ground, lift created by the
wing, and drag. These forces are illustrated in figure 4.11. A summation of these forces
yields the acceleration value shown in equation (4.10), with the value ¢ representing the

surface friction coeflicient.

a=T—-D—puW-L) (4.10)

Translating this equation to known coefficient values computed by the UAVPart li-

brary discussed above yields equation (4.11).

1 1
a=T— 5pVQS(CD,O + kC3?) — (W — 5pVQSCL) (4.11)

Acceleration is computed for a zero initial velocity and then recalculated every three

seconds until liftoff is achieved. Velocity change, AV is computed with the assumption
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Figure 4.11: Takeoff Free Body Diagram

that acceleration is constant over the time interval, and is given as AV = aAt. Position
change, AS, is then given by AS = VAt. Summation of these quantities over the time
span of the takeoff roll yields final takeoff distance. The flight envelope block calculates
the altitudes and velocities at which the aircraft is capable of operating. Beginning
at sea level, the flight envelope block calculates the stall speed of the aircraft and the
maximum speed. The altitude of the aircraft is advanced and the process is repeated
until the stall speed is equal to the maximum speed of the aircraft, representing the

absolute maximum attainable altitude that can be achieved. Flight envelopes are often

represented graphically as shown in figure 4.13[41].

Maximum Velocity

Aircraft

Maximum Altitude

Figure 4.12: Flight Envelope Block

The stall speed of the aircraft is given by equation (4.12), where the term p represents
the atmospheric density surrounding the aircraft.
2w

o) —_— S——— A K)
Vistau V2S5 (4.12)

As altitude increases. the air density, p, decreases. In this research, density change
is assumed to follow the International Standard Atmosphere (ISA) model. As the at-

5 x g 3 P e | 2 .
mosphere thins out with altitude, the dynamic pressure ¢ = 5pV'< at a constant airspeed
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Figure 4.13: Example of a Flight Envelope Graph

decreases, meaning that there are less aerodynamic forces acting on an aircraft at a given
speed at high altitudes than at low altitudes. This would seem to indicate that the
aircraft should fly faster as altitude increases. However, the power output of air breath-
ing engines is also proportional to atmospheric pressure. As intake pressure decreases,
engine output at full power is reduced. This effect is modeled by equation (4.13), pre-
sented by Anderson [40], where P is the power produced by the engine at altitude and
Py is the power produced by the engine at sea level. Equation (4.13) is an empirical
equation based on atmospheric measurements, where the decimal numbers are statistical
constants. Some air breathing engines are turbocharged such that they can maintain
constant power output as altitude increases until the turbocharger’s capacity is reached.
The altitude at which this occurs is referred to as the flat rate altitude of the engine.
Referring to figure 4.13, the stall speed of the aircraft is shown by the left outer curve. As
shown, the aircraft stall speed increases with altitude because of the reduced air density.
The maximum velocity of the aircraft is defined by the outer right curve. With increasing
altitude, the aircraft will be able to fly faster until the engine flat rate altitude is reached.
The maximum speed then decreases until the stall curve intersects with the maximum
velocity curve, defining the maximum altitude at which the aircraft can operate. The
effect of turbo charging is clearly shown in figure 4.13. Aircraft having turbochargers
gain maximum velocity performance with increasing altitude until the flat rate altitude

is reached, after which velocity performance begins to decrease.
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D 11322 _ 0132 41
p = 1132~ 0. (4.13)

Maximum velocity is calculated by simulating the aircraft flying at stall speed and
advancing the throttle to full power. Again, forces are balanced, yielding acceleration
values which are integrated over time to yield velocity. This simulation is carried out
in three second intervals until the aircraft no longer accelerates. In this case, the only
forces acting on the aircraft are thrust, lift, and drag. Here, with no vertical acceleration,
lift equals weight, so the force imbalance is simply given by a = T"— D. The free body

diagram for this case is shown in figure 4.14. Substituting to write in terms of known

coefficients yields equation (4.14).

Figure 4.14: Steady Level Flight Free Body Diagram

oW 1\ 2
Cbg+k<aﬁ§> (4.14)

a=T~—
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Figure 4.15: Endurance block

The endurance block, shown in figure 4.15, is responsible for estimating the loiter
performance of the aircraft. Traditional methods for computing range assume that the

aircraft is maintaining the optimal coefficient ratio for endurance in piston powered air-
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craft, ( %2;—2),,1”. This method was rejected since it requires an unrealistic flight program
that constantly adjusts power and airspeed to sustain the maximum ratio as fuel burns
off and consequently yields optimistic results. Instead, a time integration simulation
approach was used as before. The program simply holds a constant power setting that
yields a low airspeed that exceeds the aircraft stall speed by a suitable margin both with
maximum and minimum fuel loads. The simulation maintains this speed at the required
cruise altitude, deducting the fuel consumed at each time step, dt until the fuel supply
is exhausted. At the time of writing, the UAVOpt software can be set to maximize en-
durance or minimize weight. Due to its modular design, simple modifications can allow

for optimization of any of the performance or geometric constraints.
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Chapter 5

Results

The algorithm was tested by entering constraints and design goals to match several typical
UAV systems. The aircraft design given in the algorithm output was then compared to
the existing UAV design to evaluate the quality of the results. The first test compares
the algorithm output with the RQ-7A Shadow 200 UAV and the second, the General
Atomics Gnat 750. The final two tests are modifications of the Gnat 750 design carried
out to test the influence of changing constraint values. The test cases were run on an

AMD Athlon XP 3200+ desktop computer having 1 gigabyte of RAM.

5.1 Test One - Lightweight Medium Range

The RQ-7A Shadow 200 is classified as a medium range (MR) UAV, and has typical
capabilities compared to other UAVs in this popular class. MR UAVs are the single
largest group represented in the UAV database compiled for this research, providing a
suitable vehicle against which to test the algorithm. The performance specifications of
the RQ-TA were entered as performance target constraints to the algorithm in order to
cause the algorithm to design an aircraft capable of similar performance, with weight,
velocity, altitude, and payload capacity targets set to match the RQ-7A while maxi-
mizing endurance. These specifications are shown in table5.1 and are compared to the
algorithm output. The target constraints were assigned a moderate weight such that
the algorithm was permitted to undershoot these goals if the benefits to the objective
function (maximizing endurance) are large enough.

The algorithm was permitted to run for 150 generations carrying a population of 200

aircraft. The convergence history plot shown in figure 5.1 shows definite convergence
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Figure 5.1: Test 1 Convergence History

(a) Test 1 Aircraft (b) RQ7-A Shadow

Figure 5.2: Test 1 Results: (a) Resulting Aircraft (b) The RQ7-A Shadow UAV

toward higher fitness values and appears to level out beyond 850 generations. Slightly
better results may have been achieved if the algorithm had been permitted to run longer,
but at great cost to computational time. For GAs, convergence is not something that
can be explicitly proved, and it may be found that many generations go by with little or
no improvement, then a sudden jump to a higher fitness level occurs. With this being
the case, the user must become accustomed to the behavior of the GA to understand
when convergence can be expected. This was done by running many trials. It was found
that when carrying a population size of 100 members, good convergence usually occurred

before 100 generations and very little change was ever observed after 200 generations.

Based on the data mining results, the aircraft was configured with a piston engine in
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Objective:
Maximize endurance while matching
RQ-7A specifications

Specifications RQ-7A Test 1 Results
Gear Fixed Fixed
Engine Location Pusher Pusher
Tail Inverted V H
Engine Type Piston Piston
Empty Weight (kg) 91 88.7
Payload Weight (kg) [27.2 27.2
Gross Weight (kg) 149 144 .5
Airfoil Unknown Selig 1223
Engine UEL AR741 UEL AR741
BHP 38 38
Length (m) 3.4 3.08
Wing Span (m) 3.89 3.97
Wing Area (sq. m) 2.14 2.08
Aspect Ratio 7.07 7855
Taper Ratio 1 0.37
Max Speed (km/h) 228 333
Altitude (m) 4575 4900
Endurance (h) 6 13.03

Table 5.1: Test 1 Results

47

a pusher layout with an "H” style tail and fixed landing gear. The comparison chart in
tables.1 indicates that the test aircraft would have superior endurance than the RQ7-A
at greater maximum speed and altitude. This is achieved by optimizing the wing design.
The algorithm selected a taper ratio of 0.37 which, according to lifting line theory, is
close to the optimum planform efficiency of a single tapered wing, coming within a few
percentage points of the performance of elliptical wings. Also, the test aircraft has a
higher aspect ratio than that of the RQT7-A. Interestingly, the algorithm selected the UEL
ART741 engine, which is precisely the same power plant as that of the RQ7-A. Endurance
capabilities exceed that of the RQ7-A by a factor of 2, a surprisingly large margin. Much
of this margin can be attributed to the test aircraft’s superior aerodynamic configuration
discussed earlier. With its rectangular wings, simple inverted V tail, and square fuselage,

it is apparent that the RQ7-A was designed to maximize simplicity rather than efficiency,




something that the algorithm developed in this research does not consider but should be
addressed in future work. Refer to figure 5.2 for a comparison of aircraft geometries. To
ensure that the performance calculations do not overstate the performance of the test
aircraft, several additional tests were run against an aircraft that has the appearance
of being designed for maximum endurance and efficiency, providing a better basis for

comparison.

5.2 Test Two - High Altitude Long Endurance

The second aircraft used for comparison was the General Atomics Gnat 750. It is clas-
sified as a MALE UAV and is typical of the category, designed with the aerodynamic
efficiency needed for extreme endurance. The algorithm was once again set with per-
formance targets equivalent to the Gnat 750 performance specifications. As before, the
constraints were given weights such that undershooting the performance targets while
significantly benefiting the objective function remained permissible. To obtain the re-
sult, the algorithm was run for 100 generations carrying a population of 200 aircraft. The
convergence history plot is shown in figure 5.3. The algorithm output is compared with
the performance and geometric specifications of the Gnat 750 and shown in table5.2.
Once again, the resulting aircraft design had an estimated endurance capability in
excess of the existing aircraft under comparison. The configuration selected by the data
mining algorithm was a V-tail design with a piston engine in pusher configuration and
retractile landing gear. Refer to figure 5.4 for a comparison of the Gnat 750 to a draw-
ing of the algorithm’s proposed design. In this case, the superior endurance of the test
aircraft can be attributed to its engine selection. The Gnat 750 is powered by a Rotax
582 producing 64hp while the test aircraft has a 51hp UEL AR801, a much smaller and
lighter engine. The test aircraft has a shorter wingspan and lower aspect ratio, lead-
ing to a lighter structural weight, allowing the aircraft to perform adequately with the
smaller engine. However, the superior endurance of the test aircraft comes altitude ca-
pability, which is inferior to the Gnat 750. Evidently, the weight applied to the altitude
constraint was such that the benefits of the superior endurance afforded by the smaller
engine outweighed the ability to reach the altitude target. If desired, constraint weights
can be assigned very high values, effectively eliminating the possibility of undershoot-
ing design goals. This is not advisable, however. Doing so may eliminate potentially

successful designs that come close to the design goals. Additional tests were carried
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Figure 5.3: Test 2 Convergence History

out to study the influence of assigning more aggressive performance goals to the basic
Gnat 750 specification input. The stock aircraft based on the unaltered Gnat 750 UAV
specifications is compared to aircraft with mostly identical design goals except for one
key parameter under study for each of the tests. The first is an attempt at matching
the Gnat 750 performance while minimizing weight. The second attempts to maximize
endurance while having the target capability of flying at 320 km/h, much higher than
the stock test aircraft. The third test also maximizes endurance but attempts to reach
the target capability of an 8500 m altitude ceiling.

Figure 5.5 shows the results of this test. Clearly, the algorithm successfully adapted
to these altered design goals. The weight minimization test yielded an aircraft weighing
significantly less than the stock aircraft. The optimum design has a significantly smaller
wing span and area than that of the stock aircraft, effectively reducing the structural
weight of the aircraft. It is powered by a 51 hp engine, slightly smaller and lighter
than the engine powering the stock aircraft. The design is slightly inferior in endurance
and altitude performance, but had as superior maximum speed - all consequences of the
smaller wing design and smaller engine. The second test, with an increased velocity
constraint, vielded an aircraft with significantly narrower and shorter wings than the

stock aircraft, typical of high speed aircraft designs. Both the wing span and wing area
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Objective:
Maximize endurance while matching
Gnat 750 specifications
Specifications Gnat 750 Test 2 Results

Gear Retract Retract
Engine Location Pusher Pusher
Tail Inverted V \
Engine Type Piston Piston
Empty Weight (kg) 254 247.54
Payload Weight (kg) [63.5 63.5
Gross Weight (kg) 511 504.57
Airfoil Unknown Selig 1020
Engine Rotax 582 UEL AR801
BHP 64.4 51
Length (m) 5.33 6.86
Wing Span (m) 10.76 8.22
Wing Area (sq. m) 6.1 5.1
Aspect Ratio 19 13.24
Taper Ratio 0.4 0.33
Max Speed (km/h) 259 276.62
Altitude (m) 7620 7500
Endurance (h) 40 44 63

Table 5.2: Test 2 Results

is smaller than the stock aircraft by a significant margin and the aspect ratio is much
higher. These factors yielded a more efficient wing design for high speed flight. The
optimized aircraft is powered by the 65 hp Rotax 582 engine, significantly more power
than what was required for the stock aircraft, enabling the design to reach a maximum
altitude of 7600 m. Not surprisingly, the extra power and speed comes at a significant cost
to the endurance. At under 33 hours, it is significantly less capable than the 44 hours
achieved by the stock aircraft. The final test had the design goal of 8500 m altitude
capability. The optimized aircraft has a long and narrow wing design, similar to that of
the stock aircraft. However, the aircraft has significantly more power available than the
stock aircraft. The 65 hp Rotax was selected, being both more powerful and heavier than
the 51 hp engine powering the stock aircraft. The aircraft proved capable of flight at an

altitude of 8100 m, slightly undershooting the 8500 m target. This occurred because an



(a) Test 2 Aircraft (b) General Atomics Gnat 750

Figure 5.4: Test 2 Results: (a) Resulting Aircraft (b) The Gnat 750 UAV

aircraft capable of reaching the final 400 m would have likely required a larger engine,

and would have reduced the endurance objective too much to surpass the fitness of the

slightly less capable aircraft having the 65 hp engine.

5.3 X-Plane Simulation

To test the feasibility of the algorithm results, they were modeled in X Plane, a com-
mercially available flight simulator for personal computers. The X Plane simulator has a
realistic flight model that computes aircraft flight characteristics by applying the blade
element theory to the aircraft geometry, solving for forces and accelerations. Figure 5.6
shows the Test 1 aircraft X Plane model. While a direct comparison of performance
between the algorithm output and X Plane is not ecasily done because of the difficultly
of matching conditions precisely, the agreement between the algorithm estimated perfor-

mance and the X Plane simulation were generally very close. The static stability of the

test aircraft was verified as well[42].



i & uve LRI 2L S
Match Gnat 320 km/h 8500 m
[ 750 Specs Empty Weight Max Speed Ceiling
Gear Retract Retract Retract Retract
Engine Location Pusher Pusher Pusher Pusher
Tail V " \ vV
Engine Type Piston Piston Piston Piston
Empty Weight (kg) 247.54 149.01 200.21 251.99
Payload Weight (kg) |63.5 63.5 63.5 63.5
Gross Weight (kg)  |504.57 40601  |457.21  /508.99 -
Airfoil Selig 1020 Selig 1020 Selig 1223 Selig 1223
Engine UEL AR801 L-550E Rotax 582 Rotax 582
BHP 51 50 : B ol
Length (m)  |6.86 6.80 6.93 6.91
Wing Span (m) 8.22 6.43 6.15 7.89
Wing Area (sq. m) e 3.08 2.54 5.00
Aspect Ratio 13.24 11.26 14.91 12.47
Taper Ratio 0.33 0.30 032 029 |
Max Speed (km/h) 276.62 292.67 321.95 291.3
Altitude (m) 7500 7400 7600 8100
Endurance (h) 44.63 31.42 32.86 31.7
(a) Comparison
ot e s e oo
(b) Stock (Case 2) (¢) Decreased Weight  (d) Increased Speed  (e) Increased Altitude

Figure 5.5: These figures highlight the influence of modifications to the design require-
ments. Figure (b) is the result from the Gnat 750 comparison case. Figures (c), (d), and
(e) are modifications of this case, each with altered requirements as shown and figure (a)
is a specification comparison chart.

(a) X Plane Model of Test 1 (b) Test 1 with visible flight model

Figure 5.6: X Plane Model



Chapter 6

Conclusion

The software developed in this research was shown to be capable of designing efficient
aircraft, capable in theory of outperforming current designs with similar capabilities.
Data mining proved capable of aiding configuration decisions for a wide variety of design
possibilities, but in some instances it was hampered by insufficient data in the more
obscure UAV categories. Improved performance analysis would be of great benefit. The
solution of the two dimensional equations of motion, while superior to the simplified,
directly solvable equations, does not account for dynamic instability and control coupling.
Should a user desire to build and fly an aircraft designed by the algorithm, they would
have to conduct much additional analysis to ensure that the aircraft is dynamically stable,
and they may find that the empennage sizing must be altered. Since control coupling
(the influence, for example, of rudder on the roll axis, and ailerons on the yaw axis)
is not considered in two dimensional analysis, it is not possible to size control surfaces
except by “rule of thumb” methods that do not globally apply to all design configuration
possibilities available to the UAV designer. Propeller analysis is also an area of weakness
in this research and may account for some of the apparent optimism observed in the
performance analysis. Propellers were assumed to be continuously operating at maximum
efficiency. This is not possible in reality, particularly for fixed pitch propellers. This
research was aimed at conceptual aircraft design and did not carry out structural design.
This necessitated a statistical weight analysis method. The equations were borrowed
from statistical relationships used for civil, military, and commercial aircraft and scaled
to fit the UAV database wherever, possible. While the equations follow the right curve
- increasing weight for long, high aspect ratio wings and slender structures - they may

not always provide a realistic estimate and may contribute to the optimistic performance
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results.

Another factor worthy of note was the limitations to the UAV database. With over
200 entries, there was sufficient data available for certain UAV categories to have signif-
icant representation, allowing for meaningful patterns to be exposed by the data mining
algorithm. However, UAV categories pushing the envelope - either small, fast, high, or
otherwise exceptional, do not have sufficient representation in the database for meaning-
ful results to be extracted, making it necessary to limit algorithm tests covered in this
report to areas of strength. This issue can be resolved with continued expansion of the
database. Despite these concerns, the algorithm proved to be an excellent framework
upon which a full multidisciplinary optimization package can be built.

The goal of this research was to design a robust optimization package for UAV con-
ceptual design. A unique database driven approach was taken. Data mining was used to
extract knowledge from a database of existing UAV systems to build empirical decision
models to aid aircraft layout and configuration decisions. A genetic algorithm optimizer
was developed with the ability to handle continuous variables, such as wing sizing, as
well as discrete variables including indexing actual engine and airfoil specifications from a
parts database. A variety of performance constraints were considered with the objective
function being selectable between weight minimization or endurance maximization. Per-
formance evaluation was carried out by time integration of the two dimensional equations
of motion.

The algorithm was tested by entering performance data from existing UAV designs
as performance targets for new designs. In all cases, the algorithm was able to design
a concept aircraft with performance equal or superior to the aircraft under comparison,
proving the validity of the algorithm framework established in this research. Limitations
to be addressed in future work included the need for expansion of the UAV database,
the weakness of the weight and propeller analysis, the lack of structural analysis, and
the lack of dynamic performance and stability considerations. The algorithm developed
in this research is a promising framework for a full multidisciplinary UAV design opti-
mization package and continued development will increase its formidable capability and

performance.
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6.1 Future Work

Despite the success of this research, considerable improvements can be made upon the

framework of the algorithm and are summarized below.

e Greatly expanding the UAV specification database
e Incorporating structural design

Adding avionics and control component selection

e Allowing additional design variables and objective functions

Generate a cost model using data mining

e Add ability to suggest existing UAV systems to the user

Add the ability to handle multiple objective functions simultaneously

Expand the algorithm to a true Multidisciplinary Design Optimization system by

— Adding structural analysis
— Improving aerodynamic computation
— Handling 3d aircraft equations of motion

— Studying aerodynamic and structural interaction
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Appendix A

Appendix

A.1 Program Manual

The software developed in this research is called UAVOpt. It was programmed in Java
and requires the Java 5.0 virtual machine to run. This package is public domain and
available from www.java.com and must be installed prior to using UAVOpt. Additionally,
the UAVOpt database was developed using Mircrosoft Access 2000 and requires Access
2000 or newer for modifying database contents. The data mining package used in this
research was Weka 3.4. It is an open source Java based data mining environment and is
available from www.cs.waikato.ac.nx/ml/weka/.

UAVOpt can be installed into any directory. The package contains two files, the
database file, UAV.mdb, and the compiled software library, UAVOpt.jar, which can be
executed on any computer with Java virtual machine 5.0 installed. Before running,
the database must be mounted as a data source in the computer operating system. In
Microsoft Windows, this is accomplished from the Administrative Tools - Data Sources
entry in the system control panel. The database must be mounted as an ODBC database
and named UAVDB. Detailed information on how to add data sources in Windows, Linux,
or Macintosh can be found in the operating system manuals.

With Java 5.0 installed and the UAV.mdb database correctly mounted, input cases
must be defined before running UAVOpt. This is done by opening UAV.mdb with Mi-
crosoft Access or compatible database utilities. The cases to be analyzed by UAVOpt
must be entered into the “Input” form, shown in figure A.1. As many cases can be set up

as desired. Entries are saved immediately when entered and are immediately available

from the UAVOpt menu for analysis.
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Performance Targets

Name :Gnat 750 Comparison |
Target Speed [m/s) [ 115
Target Weight (N] | 2492
Target Takeoff [m) 50
Max Fuel Weight (N] | 1893

Mission Requirements

l
} Target Cruise Alt [m) 7 3000;
i
{
!
f

Avionics Weight (N) B R 7 0
Paload WeightN) | 628
Payload Yolume (m3] | : S 05
Design Load Factor ' 7 72,5‘

Record: (14 1 @@ of 4

Figure A.1: UAVOpt Input Form

Test cases can be assigned names for reference in the “Name” dialog box. The next
four dialog boxes are performance targets for the UAV to be designed. Target values can
be entered and the genetic algorithm will strive to meet or exceed the targets entered.
If the targets are met or surpassed, the GA will no longer seek to improve those areas.
If it is desired for a parameter to be maximized, entering a very large number into the
dialog box will ensure that the GA will never cease striving to improve that aspect.
Likewise, if it is desired for a parameter to be minimized, such as weight, simply entering
zero will ensure that the GA will never stop attempting to improve that aspect. The
fuel weight dialog box allows the user to cap the maximum allowable fuel load assigned
to an aircraft. This value must be greater than zero. This ensures that the GA will
not try to improve endurance simply by adding more fuel indefinitely, and will instead
improve aircraft efficiency. The remaining dialog boxes define the mission requirements
of the UAV such as payload requirements and structural load factors at which the UAV
is intended to safely operate. With one or more cases defined, UAVOpt can be executed
and cases can be selected and analyzed. Running UAVOpt in Microsoft Windows is done
simply by clicking the UAVOpt.jar file.

The main menu, shown in figure A.2, is displayed immediately upon execution of
UAVOpt. A number of dialog boxes are immediately visible and contain recommended

default values. Input cases defined earlier are selected by entering an index number
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£ UAY Design

INPUT  QUTPUT

Case Number (Max 4) |1 =i |Enter values and press ready
|
i &S
| Population Size {1000
I
Number of Generations {100

Span Lower Limit (m) r20

[ Span Upper Limit (m) L0 0D

i

! Taper Ratio Lower Limit '077 e

| A

| Taper Ratio Upper Limit 0.9 |
[ |
| Aspect Ratio Lower Limit ‘ﬁ 0 ‘
» |
| Aspect Ratio Upper Limit [150 S |
i :‘
| Fuselage Length Lower Limit (m) ‘r1 P

|

j Fuselage Lenath Upper Limit {m) “? 0

<€ >

Ready Close

Figure A.2: UAVOpt Main Menu

into the “Case Number” dialog box. The “Population Size” box sets the size of the
aircraft population carried by the GA. Increasing the population number beyond 1000
will severely increase computational time with little benefit. Reducing the population size
decreases computational time, but usually increases the number of generations required
for convergence. The “Number of Generations™ dialog box sets the generation number
at which the GA will terminate. Higher numbers will increase computational time but
may be required for convergence. Testing has shown that with population sizes of 1000,
convergence is usually observed after 1000 generations, with answers coming within 90%
of that after only 100 generations. The law of diminising returns applies, as good answers
become available in as few generations as 100, while complete convergence cannot be
assumed before at least 1000 generations. The remaining dialogue boxes set up the
limits of the continuous design variables. The discreet design variables (engine and
airfoil index) are set automatically based on the number of database entries. These can
usually remain at their default values, but if there are geometric constraints such as
a wingspan or fuselage length constaint on a design case, entering the limits here will
ensure compliance to such requirements. Setting the aspect ratio limit lower than 5 is not

recommended since UAVOpt’s 3d wing analysis loses accurcy for low aspect ratio wings.



For best results, the limits should be defined realistically and be as wide as practically
possible to ensure algorithm convergence. If, for example, it is desired for the UAV to
reach an altitude of 9000 m carrying a large amount of payload but the wingspan is
constrained to 1 m, the algorithm may not converge because such an aircraft would not
be possible.

When the desired values are entered, pressing the “Ready” button executes the al-
gorithm. The user input values are immediately displayed upon execution. For each
generation, the fitness rating of the best design in the population is displayed as they are
computed - significant delays between generations should be expected, particularly with
large popultion sizes. After the set number of generations have completed, the results

and a convergence history graph are displayed.

A.2 Program Module Listing and Pseudo-code

A.2.1 TUAV-Math Library

The UAVMath library is responsible for carrying out advanced mathematical operations
not available in the standard Java libraries. Some were custom written by the author
and some are based on public domain math libraries. Description of the public domain

libraries used is limited to the classes used in this research.

Matrix

e Source: Part of the JAMA public domain matrix library for Java

Input
— A one or two dimensional array, A.

Procedure

— Builds a matrix data structure..

Output
— getMatrix() - Returns the matrix object, A.

e Usage
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Figure A.3: UAVOpt Library Structure
— Used by the LU Decomposition class for solving systems of linear equations.
LU-Decomposition
e Source: Part of the JAMA public domain matrix library for Java

e [nput
— An n by n matrix, A and an array of length n, B.

e Procedure

— The LU Decomposition method is employed to conduct matrix operations

including solutions of linear equations, and determinants.

e Methods

—
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— solve(A, B) - The LU Decomposition method is employed to solve the system
of equations such that X = A~! x B.

e Output
— Returns the solution vector, X.
e Usage

— Used to solve the system of equations defined by Prandtl Lifting Line analysis.

Shell-Sort

e Source: Developed by the author.

Input
— Array A of size n and the integer n.

Procedure

— The shell sort algorithm is used to sort the contents of input array, A.

Methods

— solve() - Instructs the algorithm to carry out the sort.

Output

— getSortedArray() - Returns an array, B, containing the contents of array A

sorted from smallest to largest.

— getReverseSortedArray() - Returns an array, B, containing the contents of

array A sorted from largest to smallest

— getIndexArray() - Returns an array containing integer index numbers that
indicate the position of the sorted values in B to where they can be found in

A when B is sorted from lowest to highest.

— getReverseIndexArray() - Returns an array containing integer index numbers
that indicate the position of the sorted values in B to where they can be found

in A when B is sorted from highest to lowest.
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e Usage
— getSortedArray() - Used to rank the fitness values of the population of designs
carried by the genetic algorithm for minimization objective functions.

- getReverseSdrtedArray() - Used to rank the fitness values of the population of

designs carried by the genetic algorithm for maximization objective functions.

— getIndexArray() - Used to track the sorted fitness array values to their corre-

sponding design variable set for minimization objectives.

— getReverselndexArray() - Used to track the sorted fitness array values to their

corresponding design variable set for maximization objectives.

A.3 TUAV-Analysis Library

This library contians analysis functions to determine aircraft properties such as drag and

weight as well as supplying atmospheric constants.

Atmosphere

e Source: Developed by the author.

Input

— A real number (double), h, representing the aircraft altitude in meters.

Procedure

— The International Standard Atmosphere (ISA) model is used to calculate at-

mospheric temperature, density, sound speed, and pressure as a function of

altitude.
e Methods

— solve() - Instructs the algorithm to carry out the calculation.

Output

— getDensity() - Returns a real number, d, representing the atmospheric density

at altitude h in kg/m3.
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— getDensityRatio() - Returns a real number, dratio, representing the ratio of

the atmospheric density at altitude h to the density at sea level.

— getPressure() - Returns a real number, p, representing the atmospheric pres-

sure at altitude h in N/m?.

— getPressureRatio() - Returns an array containing integer index numbers that
indicate the position of the sorted values in B to where they can be found in

A when B is sorted from highest to lowest.
e Usage
— getSortedArray() - Used to rank the fitness values of the population of designs

carried by the genetic algorithm for minimization objective functions.

— getReverseSortedArray() - Used to rank the fitness values of the population of

designs carried by the genetic algorithm for maximization objective functions.

— getIndexArray() - Used to track the sorted fitness array values to their corre-

sponding design variable set for minimization objectives.

— getReverselndexArray() - Used to track the sorted fitness array values to their

corresponding design variable set for maximization objectives.

Lift-Line

e Source: Developed by the author.
e Input: Real numbers

— AR, representing the aspect ratio of an aircraft wing.
— Span, representing the wing span.
— TR, representing the wing taper ratio

— LiftSlope, representing ratio of lift coeflicient to angle of attack of the two

dimensional airfoil.

— a0, representing the zero angle of attack lift coefficient of a cambered airfoil.

e Procedure
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— The Pandt! Lifting Line method is used to compute three dimensional airfoil
properties. The method involves dividing the wing into segments, building
a system of linear equations. The solution is computed by building matrix

objects and calling the LU Decomposition class.

e Methods

— solve() - Instructs the algorithm to carry out the calculation.

e Output: Returns real numbers.

— getCl() - Returns Cl, representing the lift coefficient of the three dimensional
wing.
— getCla() - Returns Cla, representing the three dimensional ratio of lift coeffi-

cient to angle of attack.

— getCd() - Returns Cd, representing the induced drag coefficient of the three

dimensional wing.

— getAi() - Returns As, representing the induced angle of attack.

— gete() - Returns e, the Oswald efficiency factor.

e Usage

— getCl() - Used to compute the lift coefficient of the wing when the angle of

attack is known.

— geCla() - Used to compute the lift slope of the wing to be used internally for

lift and drag computation in all of the performance estimation modules.

— getCd() - Used to compute the induced drag of the wing when the angle of

attack is known.

— getAi() - Used to compute the induced angle of attack, required to find the

true maximum lift coefficient of the three dimensional wing.

— gete() - Used to compute the induced drag constant, k, relating induced drag

to lift coefficient, required for all performance estimation modules.
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Parasite Drag

e Source: Developed by the author.
e Input: Part data types.

— Wing, representing the aircraft wing part.
— Fuselage, representing the aircraft fuselage part.

— Empennage, representing the aircraft empennage part.

Procedure

— The component drag buildup method is employed to estimate the parasite
drag of the aircraft. This is a semi-empirical method based on the profile,
thickness, roughness, and wetted area of the aircraft and Reynolds number in

which each part is subjected to.

Methods

— solve() - Instructs the algorithm to carry out the calculation.
e Output: Returns real numbers.

— getCdO() - Returns Cd0, representing the parasite drag coefficient of the air-

craft.
e Usage

— getCdO() - Is a component of the drag model of each aircraft used in all

performance estimation modules.

Weight

e Source: Developed by the author.
e Input: Part data types and the constraint data type.

— Wing, representing the aircraft wing part.
— Fuselage, representing the aircraft fuselage part.

— Empennage, representing the aircraft empennage part.
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— Engine, representing the aircraft engine part.

e Procedure

— A statistical method of weight estimation scaled to fit the UAV database is
used to estimate aircraft weight based on the dimensions of each part. Payload
and fuel weight, taken from the constraint object is added, as well as the engine

weight from the engine part.

e Methods

— solve() - Instructs the algorithm to carry out the calculation.

e Output: Returns real numbers.

— getCargoWeight() - Returns CargoWeight, representing the payload weight

the aircraft is required to carry in V.

— getEmptyWeight() - Returns EmptyWeight, representing the aircraft empty
weight in N.

— getFuelWeight() - Returns FuelW eight, representing the maximum fuel weight

the aircraft carries in N.

— getGrossWeight() - Returns GrossWeight, representing the aircraft maximum

takeoff weight in V.

e Usage

— All weight estimates used for performance estimation

— getEmptyWeight() - Used for fitness comparison between aircraft designs.

A.3.1 UAV-Database

The UAV-Database library is responsible for sending query commands to the database.

Airfoil-Query

e Source: Developed by the author.

e Input: A String and a real number.

67



— SortVar, a string representing the airfoil variable by which to sort the query

results.
— Rez, a real number representing the Reynold’s regime for which airfoil perfor-
mance data is to be retrieved.

e Procedure

— A database query is executed to retrieve airfoil specifications from the data-

base. The information is stored in an array for rapid retrieval.
e Output: Returns an integer index number and real numbers.
— getAirfoillD(index) - Returns Airfoill D, an integer index value pointing to
the airfoil location in the database.

— getRefTipArea(index) - Returns Re fTipArea, representing the airfoil tip area
to chord length ratio.

— getRefPerimeter(index) - Returns Re f Perimeter, representing the airfoil perime-

ter to chord length ratio.

— getMaxThicknessRatio(index) - Returns MaxThicknessRatio, representing

the ratio of airfoil thickness to chord.

— getLDmax(index) - Returns LDmaz, representing the maximum lift to drag

ratio of the airfoil.

— getCl0(index) - Returns C10, representing the zero angle of attack lift of the

airfoil.
— getCmO(index) - Returns C10, representing the airfoil moment coefficient.

— getLiftSlope(index) - Returns LiftSlope, representing the ratio of lift coeffi-
cient to angle of attack of the airfoil.

— getClmax() - Returns Clmaxz, representing the airfoil maximum lift coefficient

prior to stall.
e Usage

— getAirfioillD(index) - Used to trace the airfoil data to its location in the data-

base for reference.
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— getRefTipArea(index) - Used by the weight and drag modules to compute the

wetted area of the wing tips.

— getRefPerimeter(index) - Used by the weight and drag modules to calculate

the wing wetted area.

- getMa.xThicknessRatio(index) - Used by the weight analysis module as a vari-

able in the statistical equations.
— getLDmax(index) - Used as a reference to for comparison to other airfoils.

— getCl0(index) - Used by the lifting line module for building the lift and drag
model.

— getCmO(index) - Used by the empennage model as part of the static stability
analysis.

— getLiftSlope(index) - Used by the lifting line modaule for building the lift and
drag model.

Engine-Query
e Source: Developed by the author.
e Input: A String and a real number.

— SortVar, a string representing the airfoil variable by which to sort the query
results.

— Type, a string representing the engine type; jet, piston, turboprop, or electric.

e Procedure

— A database query is executed to retrieve engine specifications from the data-

base. The information is stored in an array for rapid retrieval.
e Output: Returns an integer index number and real numbers.

— getEngineID(index) - Returns Enginel D, an integer index value pointing to

the airfoil location in the database.
— getLength(index) - Returns Length, representing the engine length in mm.

— getWidth(index) - Returns Width, representing the engine width in mm.
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— getHeight(index) - Returns Height, representing the engine height in mm.
— getWeight(index) - Returns Weight, representing the engine weight in N.

— getPowerSL(index) - Returns Psl, representing the maximum power produced

by the engine at sea level.
— getCmO(index) - Returns CI0, representing the airfoil moment coefficient.

— getLiftSlope(index) - Returns LiftSlope, representing the ratio of lift coeffi-

cient to angle of attack of the airfoil.
— getClmax(index) - Returns Clmaz, representing the airfoil maximum lift co-
efficient prior to stall.
e Usage
— getAirfioillD(index) - Used to trace the airfoil data to its location in the data-
base for reference.

— getRefTipArea(index) - Used by the weight and drag modules to compute the

wetted area of the wing tips.

— getRefPerimeter(index) - Used by the weight and drag modules to calculate

the wing wetted area.

— getMaxThicknessRatio(index) - Used by the weight analysis module as a vari-

able in the statistical equations.
— getLDmax(index) - Used as a reference to for comparison to other airfoils.

— getCl0(index) - Used by the lifting line module for building the lift and drag

model.

— getCmO(index) - Used by the empennage model as part of the static stability

analysis.

— getLiftSlope(index) - Used by the lifting line module for building the lift and
drag model.

Input-Query
e Source: Developed by the author.

e Input: None.
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e Procedure

— A database query is executed to retrieve saved constraint and performance

targets set by the user for algorithm input.
e Output: Returns an integer number and real numbers.

- getAvionicsWeight(index) - Returns Wavionics, representing the required
weight of avionics to be carried by the UAV in N.

— getNumEntries() - Returns an integer index n, representing the number of test
cases defined in the input database table.

— getFuelWeight(index) - Returns W fuel, representing the required maximum
allowable fuel weight in N.

— getPayloadVolume(index) - Returns PayloadVol, representing the required
payload volume in m?.

— getPayloadWeight(index) - Returns W payload, representing the payload weight
in N.

— getTargetCruiseAlt(index) - Returns ReqCruiseAlt, representing the operat-
ing altitude the UAV is intended to reach in m.

— getTargetSpeed(index) - Returns V, representing the target maximum velocity
of the UAV in m/s.

- getTargetTakeoffDistance(index) - Returns TOdist, representing the target
maximum allowable takeoff field length of the UAV in m.

— getTargetWeight(index) - Returns Wmaz, representing the maximum allow-

able empty weight of the UAV.

e Usage
— getNumEntries(index) - Used by the user interface.

— getTargetFuelWeight(index) - Sets the limit of fuel.

— getPayload Volume(index) - Used by the fuselage module to ensure that space
is available for the payload.

- getPayloadWeight(index) - Used by the weight analysis module to compute

aircraft gross weight.
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— getTargetCruiseAlt(index) - Used by the penalty module to penalize designs

having maximum altitudes below the target.

— getTargetSpeed(index) - Used by the penalty module to penalize designs hav-

ing maximum speeds below the target.

— getTargetTakeoffDistance(index) - Used by the penalty module to penalize

designs having takeoff distances above the target.

— getTargetWeight(index) - Used by the penalty module to penalize designs
having empty weights above the target.

Decision-Query
e Source: Developed by the author.
e Input: A design variable object and a constraint object.
e Procedure

— A database query is executed to retrieve saved decision tree information. The
design criterion and contraints are used to search for configuration decisions

applicable to aircraft with similar requirements.
e Output: Returns string parameters.
— getTailType() - Returns TailType, representing the empennage type selected.

Can be H, V, T, conventional, or canard.

— getEngineType() - Returns EngType, representing the engine type selected.

Can be piston, turboprop, or jet.

— getLandingGearType() - Returns GearType, representing the landing gear

type selected. Can be fixed, retractible, or none.

— getEngineLocation() - Returns EngLocation, representing the engine location

selected. Can be pusher, tractor, or wing mounted.
e Usage

— getTailType() - Used by the empennage module to determine tail sizing and

by the fuselage to determine whether twin booms are needed or not.
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— getEngineType() - Used by the engine query module to restrict the database

query to the correct type of engine for the application under consideration.

— getLandingGearType() - Used by the drag model to account for reduced drag

for the case of retractible or no gear and increased drag for conventional gear.

- getEngineLocation() - Used by the empennage model for center of gravity

calculations affecting static stability.

A.3.2 TUAV-Fitness

The UAV-Fintness library contians modules responsible for controlling fitness evaluation

and penalty function computation.

Evaluation

e Source: Developed by the author.

e Input: A design variable, constraints, airfoil query, and engine query object.

— DV, representing the design variable set.
— Constraints, representing the constraint set.
— FoilQuery, representing the airfoil query data.

— EngineQuery, representing the engine query data.

e Procedure

_ Assembles the aircraft and controlls the execution of the UAV-Part library,
the UAV-Analysis library, and the UAV-Performance library as well as the

penalty function module to determine the fitness of a UAV towards a given

objective funtion.
e Methods

— solve() - Instructs the algorithm to carry out the calculation.

e Output: An aircraft object, and real numbers.

— getAircraft() - Returns aircra ft, representing a fully assembled aircraft data

type.
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— getMaxVelocity() - Returns Vmaz, representing the maximum velocity the

aircraft can attain in m/s.

— getMaxEndurance() - Returns GearType, representing the endurance capa-

bilities of the aircraft in s.

— getRange() - Returns R, representing the maximum flight distance the aircraft

can achieve before refuelling in m.

— getTakeoffDistance() - Returns T'Odist, representing the takeoff distance achieved

by the aircraft in m.

— getFitness() - Returns Fitness, representing the penalized fitness rating of

aircraft performance towards a given objective function.

e Usage
— getAircraft() - Used by the main program module to report the specifications
of the aircraft.

— getMaxVelocity() - Used by the main program module to report the specifi-

cations of the aircraft.

— getMaxEndurance() - Used by the main program module to report the speci-

fications of the aircraft.

— getRange() - Used by the main program module to report the specifications

of the aircraft.

— getTakeoffDistance() - Used by the main program module to report the spec-

ifications of the aircraft.

— getFitness() - Used by the genetic algorithm module for ranking the design

population.

Penalty

e Source: Developed by the author.
e Input: Real numbers.
— RequiredV alue, representing a required performance target.

— AchievedV alue, representing the performance achieved by the UAV.
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— K, representing the weight to be applied to the penalty.

Procedure

— Assigns a penalty multiplier based on the difference between required and
achieved performance and a weight factor. The penalty function is a bell curve

whose “steepness” can be adjusted by changing the weight of the penalty.

Methods

— Penalty() - Instructs the algorithm to carry out the calculation.

Output: A real number.

— getPenalty() - Returns Penalty, representing a penalty factor.

Usage

— getPenalty() - Used by the evaluation module. The performance of a UAV
towards the objective function is multiplied by the penalty factor to reduce

fitness in the event that all constraints are not met.

A.3.3 UAV-Performance

The UAV-Performance library is responsible for estimating the UAV’s capabilities in

terms of altitude, speed, range, endurance, and field length.

Endurance

e Source: Developed by the author.
e Input: An aircraft and an atmosphere object.

— Aircraft, representing the aircraft object to be analyzed.

— Atmosphere, representing the atmosphere object containing the conditions at

which the UAV endurance is to be computed.

e Procedure
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— The two dimensional equations of aircraft motion are solved over time intervals
at a mean average velocity near the minimum drag speed of the UAV. The

simulation is halted when the fuel is exhausted.
e Methods
— Solve() - Instructs the algorithm to carry out the calculation.
e Output: A real number.

— getEndurance() - Returns Endurance, the aircraft endurance performance in

s.
e Usage

— getEndurance() - Used by the evaluation module to when determining the

aircraft’s fitness rating.

FieldLength

e Source: Developed by the author.
e Input: An aircraft and an atmosphere object.

— Aircraft, representing the aircraft object to be analyzed.

— Atmosphere, representing the atmosphere object containing the conditions at

which the UAV takeoff performance is to be computed.
e Procedure

— The two dimensional aircraft equations of motion are solved over time steps
from a velocity of zero, with maximum throttle until the aircraft achieves
liftoff.

e Methods

— Solve() - Instructs the algorithm to carry out the calculation.

Output: A real number.

— getTakeoffDistance() - Returns TOdist, the aircraft takeoff distance in m.
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e Usage
— getTakeoffDistance() - Used by the evaluation module when determining the
aircraft’s fitness rating.

Flight-Envelope

e Source: Developed by the author.
e Input: An aircraft object.

— Aircraft, representing the aircraft object to be analyzed.
e Procedure

— The two dimensional aircraft equations of motion are solved for the UAV’s stall
speed and maximum speed at altitude intervals by computing the stall speed
directly, then allowing the UAV to accelerate over time until velociy becomes
constant, representing the maximum speed at that particular altitude. The
maximum altitude is found when the stall speed and maximum speed are

equivalent.

e Methods

— Solve() - Instructs the algorithm to carry out the calculation.

e Output: Real numbers.

— getMaxAltitude() - Returns hmaz, the UAV’s absolute ceiling in m.
— getMaxVelocity() - Returns Vmaz, the UAV’s maximum velocity in m/s.
— getMaxVelocityAlt() - Returns AVmaz, the altitude at which maximum ve-
locity is achieved in m.
e Usage
— getMaxAltitude() - Used by the evaluation module when determining the air-
craft’s fitness rating.

— getMaxVelocity() - Used by the evaluation module when determining the air-

craft’s fitness rating.
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— getMaxVelocityAlt() - Used when reporting the completed UAV’s specifica-

tions.

Range
e Source: Developed by the author.
e Input: An aircraft and an atmosphere object.

— Aircraft, representing the aircraft object to be analyzed.

— Atmosphere, representing the atmospheric conditions at which the UAV’s

range is to be evaluated.

Procedure

— The two dimensional equations of aircraft motion are solved at time intervals
at a mean average airspeed close to the maximum lift to drag ratio. The simu-

lation halts and reports the range achieved when the fuel supply is exhausted.
e Methods
— Solve() - Instructs the algorithm to carry out the calculation.

Output: Real numbers.

— getRange() - Returns R, the UAV’s maximum range, m.
o Usage

— getRange() - Used by the evaluation module when determining the aircraft’s

fitness rating.

Velocity

e Source: Developed by the author.
e Input: An aircraft and an atmosphere object and real numbers.

— Aircraft, representing the aircraft object to be analyzed.

— Atmosphere, representing the atmospheric conditions at which the UAV’s

range is to be evaluated.
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— Fuel Percent, representing the fraction of the total fuel load carried by the

aircraft.

— ThrottlePercent, representing the throttle setting at which velocity is to be

computed.

e Procedure

— The two dimensional equations of aircraft motion are solved by allowing the
aircraft to accelerate from stall speed until the velocity becomes constant, in-

dicating the maximum velocity at the specified conditions and throttle setting.

Methods

— Solve() - Instructs the algorithm to carry out the calculation.

Output: Real numbers.

— getVelocity() - Returns V, the velocity achieved in m/s.

Usage

— getVelocity() - Used by the range and endurance simulations.

Thrust
e Source: Developed by the author.

e Input: An aircraft and atmosphere object and real numbers.

— Aircraft, representing the aircraft object to be analyzed.
— Atmosphere, representing the atmospheric conditions at which thrust.
— ThrottlePercent, representing the throttle setting at which velocity is to be

computed.

e Procedure

— For piston and turboprop engines, thrust is computed as a function of velocity,
atmosphere and throttle setting. For electric engines, thrust is computed as a
function of throttle and velocity. Jet engine thrust is computed as a function
of atmosphere. Engine performance is penalized for the effects of reduced air

density at higher altitudes and temperatures as necessary.
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e Methods

— Solve(throttle, speed, atmosphere) - Instructs the algorithm to carry out the
calculation for piston or turboprop engines (a function of speed, atmosphere,
and throttle).

— SolveJet(atmosphere) - Instructs the algorithm to carry out the calculation

for jet engines (a function of throttle).

— SolveElectric(throttle, speed) - Instructs the algorithm to carry out the calcu-

lation for electric engines (a function of speed and throttle).
e Output: Real numbers.
— getThrust() - Returns 7, the thrust in N.
e Usage

— getThrust() - Used by all UAV performance modules.

A.3.4 UAV-GA

The UAV-GA library contains the genetic algorithm module.

GA

e Source: Developed by the author.
e Input: A design variable, display, and constraints object and integer values.

— DV, representing the design variable object.
— Constraints, representing the constraints object.

— GenerationNumber, an integer representing the total number of generations

to be computed.
— PopSize, an integer representing the population size to be carried.
— N, an integer representing the total number of design variables.

— Display, representing the display interface object used for reporting progress.

e Procedure
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— A population of random design variable values are generated by a random
number algorithm on the interval of [0,1]. These are used to set the design
variable object containing the scaling factors to compute the corresponding
design varible values. The fitness module is called with the design variable
object. A fitness value is returned. Breeding probabilities are assigned based
on the fitness ratings and breeding occurs between random pairs, weighted
towards the fitter individuals. A new population is produced and the process

is repeated until the number of generations previously set is reached.
e Methods
— Solve() - Instructs the algorithm to begin.
e Output: A design variable object.

— getOptDesignVars() - Returns OptDV, the set of optimum design variables
found by the GA.

e Usage

— getOptDV() - Used by main module to report algorithm results.

A.3.5 UAV-Main

The UAV-Main library contains the main program module responsible for calling the
user interface, receiving input, calling the algorithm components, and reporting output.

It also contains the design variable and constraints classes.
Main
e Source: Developed by the author.

e Input: User input including the following.

— Case Number - User selected number representing the index for the input case
to be run.
— Popultion Size

— Number of Generations
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— Span Lower Limit

— Span Upper Limit

— Taper Ratio Lower Limit

— Taper Ratio Upper Limit

— Aspect Ratio Lower Limit

— Apsect Ratio Upper Limit

— Fuselage Length Lower Limit
— Fuselage Length Upper Limit

e Procedure

— Calls the user interface module, collects and stores user input and sets up the
design variables and constraints object accordingly, calls the database modules
to retrieve the required database information, calls the genetic algorithm, and

reports the results to the user.
e Methods
— Main() - Executes the program.

e Output: A copy of the user input for reference, final aircraft specifications, and a
convergence history graph is displayed on the user interface.
— Endurance
— Maximum Speed
— Maximum Altitude
— Engine
— Power
— Airfoil
— Span
— Fuselage Length
— Taper Ratio
— Aspect Ratio
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— Root Chord Length
— Tip Chord Length
— Planform Area

— Empty Weight

— Gross Weight

— Drag Profile

— Empennage Type
— Engine Type

— Landing Gear Type

— Engine Location

e Usage

— Is the main controlling module, calling all other functions as needed to carry

out the procedure.

Design-Variables

e Source: Developed by the author.
e Input: None directly.

e Procedure

— Contians the design variable limits and accepts design variable ratios on the

interval [0,1] and calculates for retrieval the true design variable values.

e Methods

— setAspectRange(ARR][]) - Sets an array of length 2 containing the allowable

aspect ratio range.

— setEngineRange(EIR[]) - Sets an array of length 2 containing the allowable

engine index range.

— setFoilRange(FIR) - Sets an array of length 2 containing the allowable airfoil

index range.
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— setFuseRange(FLR) - Sets an array of length 2 containing the allowable fuse-
lage length range.

— setSpanRange(SR) - Sets an array of length 2 containing the allowable wing

Span range.

— setTaperRange(TRR) - Sets an array of length 2 containing the allowable taper

ratio range.

— setDesignVarRatios(DVarray) - Sets an array of the design variable ratio values
on [0,1]

e Output: Integer indexes and real numbers.

— getAR() - Returns AR, representing the aspect ratio design variable value.

— getEngineIndex() - Returns EI, an integer index pointing to the selected en-
gine.
— getFoillndex() - Returns F'I, an integer index pointing to the selected airfoil.

— getFuseLength() - Returns FuseLength, representing the fuselage length de-

sign variable value.

— getTaperRatio() - Returns TR, representing the taper ratio design variable

value.

— getWingSpan() - Returns Span, representing the span design variable value.
o Usage

— Used by the fitness evaluation module to scale the decimal design variable

ratios used by the GA to actual design variable values.

Constraints

e Source: Developed by the author.

e Input: None directly.

e Procedure: Accepts, stores, and distributes the design constraints.
— Contians the constraints set by the user.

e Methods
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— setAvionicsWeight(AvionicsWeight) - Sets the weight of avionics systems to
be carried by the UAV.

— setCargoVolume(CargoVolume) - Sets the cargo volume to be carried by the
UAV.

— setCargoWeight(CargoWeight) - Sets the weight of the cargo to be carried by
the UAV.

— setCruiseAltitude(CruiseAltitude) - Sets the target altitude the UAV must

attain.

— setCruiseSpeed(CruiseSpeed) - Sets the target speed the UAV must attain.
— setDesignLoadFactor(nmax) - Sets the limit load factor required for the UAV.
— setFuelWeight(FuelWeight) - Sets the allowable limit on fuel load.

— setTakeoffDistance(TOdist) - Sets the target maximum takeoff distance allow-
able for the UAV.

— setTargetWeight(TargetWeight) - Sets the target maximum empty weight of
the UAV. ‘

e Output: Returns real numbers representing the variables listed above.

— getAvionicsWeight() - Returns AvionicsWeight.
— getCargoVolume() - Returns CargoV olume.

— getCargoWeight() - Retruns CargoWeight.

— getCruiseAltitude() - Returns CruiseAltitude.
— getCruiseSpeed() - Returns CruiseSpeed.

— getDesignLoadFactor() - Returns nmaz.

— getFuelWeight() - Returns FuelWeight.

— getTakeoffDistance - Returns T'Odist.

— getTargetWeight - Returns TargetWeight.

e Usage

— Used by the fitness evaluation function for computing penalty factors.
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A.4 TUAV-Part

The UAV-Part library handles the setup of each component of the aircraft can contain
all data relevant to the part for distribution to other modules.

Airfoil
e Source: Developed by the author.
e Input: An Airfoil-Query object.

— Fquery, representing the airfoil query object containing airfoil specification
data.

Procedure

— Gets all relevant airfoil data pertaining to the particular airfoil under study

from the airfoil query object and stores the data for distribution.

Methods

— Airfoil()

Output: Real numbers.

— getClO() - Returns Cl0, representing the zero angle of attack lift coefficient.

— getClalpha() - Returns Cla, representing the lift coefficient to angle of attack

ratio.
— getCm0() - Returns C'm0, representing the airfoil moment coefficient,
— getClmax() - Returns Clmaz, representing the airfoil maximum lift coefficient.

— getLDmax() - Returns LDmaz, representing the airfoil maximum lift to drag

ratio.

— getRefPerimeter() - Returns Ref Perimeter, representing the perimeter to
chord length ratio of the airfoil.

— getRefTipAera() - Returns RefTipArea, representing the airfoil area to chord

ratio.

e Usage
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— getCl0() - Used to build the aircraft lift model.

— getClalpha() - Used to build the aircraft lift model.

— getCmO0() - Used in tail plane sizing by the empennage part.
— getClmax() - Used to build the lift model.

— getLDmax() - Used for a comparison reference.

— getRefPerimeter() - Used for computing wing wetted area by the wing part

module.

— getRefTipAera() - Used for computing wing tip wetted area by the wing part

module.
Engine
e Source: Developed by the author.

e Input: An Engine-Query object.

— Engguery, representing the engine query object containing engine specifica-

tion data.

Procedure

— Gets all relevant engine data pertaining to the particular engine under study

from the engine query object and stores the data for distribution.
e Methods
— Airfoil()

Output: Real numbers.

— getFlatRateAltitude() - Returns FlatRateAlt, representing the altitude be-

yond which the engine loses power.
— getLength() - Returns Length, representing the engine length in mm.
— getWidth() - Returns Width, representing the engine width in mm.

— getHeight() - Returns Height, representing the engine height in mm.
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— getPowerSL() - Returns PSL, representing a piston or turboprop power pro-

duced at sea level in W.

— getThrustSL() - Returns ThrustSLk, representing jet thrust produced at sea

level in N. ‘

— getSFC() - Returns SFC, representing the specific fuel consumption for piston
or turboprop engines in lbm/hp/hr.

— getTSFC() - Returns T'SFC, representing the thrust specific fuel consumption
for jet engines in Ibm/lbf /hr.

— getWeight() - Returns Weight, representing the engine weight in V.
e Usage

— getFlatRateAltitude() - Used for performance calculations. Instructs the thrust
module to not penalize power produced by air breathing engines below the flat

rate altitude.

— getLength() - Used by the fuselage part module for sizing and by the empen-

nage module for center of gravity calculations.
— getWidth() - Used by the fuselage part module for sizing.
— getHeight() - Used by the fuselage part module for sizing.
— getPowerSL() - Used by the thrust module.
— getThrustSL() - Used by the thrust module.
— getSFC() - Used by the endurance and range performance modules.
— getTSFC() - Used by the endurance and range performance modules,

— getWeight() - Used by the weight analysis module for aircraft empty weight

estimation and the empennage module for center of gravity calculations.

Fuselage
e Source: Developed by the author.

e Input: An Engine object and real numbers.

— Engine, representing the engine part object.
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— CargoVol, representing the cargo volume to be stored in the fuselage.

— FuseLength, representing the fuselage length design variable.

e Procedure

— Builds a fuselage geometry such that the engine and cargo are accommodated,
and smoothly tapers toward the tail. Layout is built according to the method
call of Canard, Conventional, or TwinBoom. Computes frontal area and total

wetted area and mass centroid position.

e Methods

— Canard(Engine, CargoVol, FuseLength)
— Conventional(Engine, CargoVol, Fuselength)
— TwinBoom(Engine, CargoVol, Fuselength)

e Output: Real numbers.

— getBayLength() - Returns BayLength, representing the length of the cargo
bay in mm.

— getBayWidth() - Returns BayWidth, representing the cargo bay width in
mm.

— getBayHeight() - Returns BayHeight, representing the cargo bay height in
mm.

— getBoomLength() - Returns BoomLength, representing the length tapered
portion of the fuselage or the length of the twin boom portion for twin boom
layouts in mm.

— getCentroid() - Returns FuseCentroid, representing the geometric centroid
of fuselage.

— getFrontalArea() - Returns F' rontal Area, representing the frontal area of the
fuselage in mm?.

— getWettedArea() - Returns Swet, representing the fuselage total wetted area
; 2
in mm?®.

— getFuseLength() - Returns L fuse, representing the total fuselage length.
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e Usage
— getBayLength() - Used by the empennage module for center of gravity esti-
mation.
— getBayWidth() - Can be displayed in algorithm output for reference.
— getBayHeight() - Can be displayed in algorithm output for reference.
— getBoomLength() - Can be displayed in algorithm output for reference.

— getCentroid() - Used by the empennage module for center of gravity estima-

tion.

— getFrontalArea() - Used by the drag analysis module for parasite drag estima-

tion.

— getWettedArea() - Used by the drag analysis module for parasite drag estima-

tion.

— getFuseLength() - Used by the drag analysis module for parasite drag estima-

tion and by the fuselage module for empennage sizing.

Wing
e Source: Developed by the author.
e Input: An airfoil object and real numbers.

— Air foil, representing the airfoil part.
— WingSpan, representing the wing span design variable.
— TR, representing the taper ratio design variable.

— AR, representing the aspect ratio design variable.
e Procedure

— Calls the Prandtl lifting line module to compute three dimensional wing aero-
dynamic properties, builds the wing gemoetry and computes wetted and frontal

areas, and stores the wing lift model and geometry for distribution as needed.
e Methods

— Wing()
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e Output: Real numbers.

— getAR() - Returns AR, representing the wing aspect ratio.

— getTR() - Returns TR, representing the wing taper ratio.

— getSpan() - Returns Span, representing the wing span length in m.

— getPlanformArea() - Returns Plan formArea, the wing planform area in m2.

— getCl03d() - Returns C103d, the lift at zero angle of attack for the three
dimensional wing.

— getClalpha3d() - Returns Cla3d, representing the lift coefficient to angle of
attack ratio attack for the three dimensional wing.

— getCmO0() - Returns the wing moment coefficient.

— gete() - Returns the oswald efficiecy factor.

— getk() - Returns the induced drag constant.

— getFrontalArea() - Returns FrontalArea, representing the frontal area of the
wing in m?2.

— getWettedArea() - Returns Swet, representing the wing total wetted area in

m2.

e Usage

— getAR() - Stored for output and reference.

— getTR() - Stored for output and reference.

— getSpan() - Stored for output and reference.

— getPlanformArea() - Used by the UAV-performance library for aircraft per-
formance estimation.

— getCl03d() - Used by the UAV-performance library for aircraft performance
estimation.

— getClalpha3d() - Used by the UAV-performance library for aircraft perfor-
mance estimation.

— getCm0() - Used by the empennage part for empennage sizing and static

stability.
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— gete() - Stored for output and reference.

— getk() - Used by the UAV-performance library for aircraft performance esti-

mation.
— getFrontalArea() - Used in the drag estimation module.

— getWettedArea() - Used in the drag estimation module.

Empennage
e Source: Developed by the author.
e Input: A wing, fuselage, and engine object.

— Wing, representing the wing part.
— Fuselage, representing the fuselage part.
— Engine, representing the engine part.

e Procedure

— Assembles the parts in their proper location and uses static stability equations

to size the empennage such that a static stability margin of 0.05 is enforced.

Methods

— Empennage()

Output: Real numbers.
— getSht() - Returns Sht, representing the planform area of the horizontal tail
in m2.
— getSvt() - Returns Svt, representing the planform area of the vertical tail.

— getSv() - Returns Sv, representing the planform area of the empennage for a

v-tail configuration in m2.

— getWettedArea() - Returns Swet, representing the wetted area of the empen-

nage in m?2.
e Usage

— getSht() - Used for output and reference.

92



— getSvt() - Used for output and reference.
— getSv() - Used for output and reference.

— getWettedArea() - Used by the drag module for parasite drag estimation.

Aircraft
e Source: Developed by the author.
e Input: A wing, fuselage, engine, empennage, design variables, and constraints ob-
ject.

— Wing, representing the wing part.
— Fuselage, representing the fuselage part.
— Engine, representing the engine part.
— Empennage, representing the empennage part
— Constraints, representing the constraints object.

— DesignVars, representing the design variable object.

e Procedure

— Contains and stores the aircraft parts for retrieval by the performance modules.

Calls the drag and weight analysis modules and stores the parasite drag and

weight estimates.
e Methods
— Empennage()

e Output: Real numbers.

— getCd0() - Returns Cd0, representing the parasite drag coefficient.

— getEmptyWeight() - Returns Wempty, representing the aircraft empty weight
in N.

— getGrossWeight() - Returns Wgross, representing the aircraft gross weight in
N.

— getFuelWeight() - Returns W fuel, representing the aircraft fuel weight in N.
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— The aircraft parts are declared as public, making any “get” method contained

in the other parts accessible.
e Usage

— getCd0() - Used in the drag model for all performance calculations.

— getEmptyWeight() - Used in all performance modules and in the evaluation

module for fitness rating.
— getGrossWeight() - Used in all performance modules.

— getFuelWeight() - Used in all performance modules.

A.4.1 UAV-Interface

The UAV-Interface library handles user input and output forms.

Display

e Source: Developed by Bishop [43]. Note: Only the modules used in UAVOpt are

discussed.
e Input: None directly.

Procedure

— Displays a graphical window containing input forms and algorithm output.

Methods

— printIn(String) - Displays a string to the user.
— prompt(String) - displays a string followed by a prompt to the user.

— ready() - Displays a “ready” button that executes the program when clicked.

Output: Real numbers, integers, or strings.

— getString() - Returns String, containing text user input.
— getlnt() - Returns Int, containing integer user input.

— getDouble() - Returns Double, containing real number use input.
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e Usage
— Used by the main module to interact with the user by gathering input and

displaying output.

Graph
e Source: Developed by Bishop [43].
e Input: String values.

— ¢, a string containing the data set name.
— z, a string containing the x axis label.

— vy, a string containing the y axis label.
e Procedure

— Displays a graphical window containing input forms and algorithm output.
e Methods

— add(x, y) - Adds a new set of co-ordinates.

— nextGraph() - Adds another data set.

setTitle(s) - Sets the graph title.

— showGraph() - Displays the graph to the user.
e Output: On display.
e Usage

— Used by the GA to track convergence and display convergence history.

A.5 Sample Input and Output
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Target Speed (m/s)

=

Target Weight (N) |

Target Cruise Alt(m) |
Target Takeoff (m) | - 50

Max Fuel Weight (N) | ,,,‘f—h 1833

High Altitude Test '

—

Mission Requirements

Avionics Weight (N] |

Payload Weight (N] o

Payload Volume [m3) [

Figure A.4: Sample Input - The input database form. The design goals and performance
requirements are entered here.

UAV Design

INPUT  QUTPUT
Ea’se‘ r;umher Max 4) ’1 S A F‘er values and”p’v;s;r'evardy B T
Population Size {1‘0?
Number of Generations ’17067—"77‘
: Span Lower Limit (m) "2707‘7
Span Upper Limit (m) [2*0557
Taper Ratio Lower Limit for
Taper Ratio Upper Limit ’ﬁ N
Aspect Ratio Lower Limit ’—573‘%-%
Aspect Ratio Upper Limit ﬁrﬁv eEme
Fuselage Length Lower Limit (m) [1 (ETERE ey
Fuselage Length Upper Limit (m) ﬁﬂ“
< > o
oSty 1 Close

Figure A.5: Sample Input - The UAVOpt main menu screer.
design variable limits are entered here.
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INPUT  OUTPUT
( Case Number (Max 4) It "Emevvalues and press ready ~
|
i ; Input Specific.
| Population Size 1'100 |
| Case Name: RQ-7A
| |Target Cruise Speed (kmih)
Number of Generations 1100 |Target Weight (kg)
" |Target Altitude (m)
| |Cargo Weight (ka)
| Span Lower Limit (m) 20 Cargo Volume (m*3)
| |Fuel weight (ka)
| o |Design Load Factor
| Span Upper Limit(m) (200 [
| | Output-
| Taper Ratio Lower Limit 01 Generation Number 1 Answer
|Generation Number 2 Answer
o |Generation Number 3 Answer
Taper Ratio Upper Limit 09 |Generation Number 4 Answer = 451033
|Generation Number 5 Answer = 6037 28
r Generation Number 6 Answer = 6456.53
Aspect Ratio Lower Limit 150 Generation Number 7 Answer
Generation Number 8 Answer = 705552
- Generation Number 9 Answer = 749206
Aspect Ratio Upper Limit [150 Generation Number 10 Answer = 7988 48
Generation Number 11 237 86
| — - Generation Number 12 694 63
| Fuselage Length Lower Limit (m) |10 Generation Number 13 812.77
Generation Number 14 04822
— — Generation Number 15 048 22
Fuselage Length Upper Limit (m) [70 Generation Number 16 15110
Generation Number 17 Answer = 14304 52
< > Generation Number 18 Answer = 1430452 b
Ready | Close

Figure A.6: Sample Output - Immediately, the specifications defined in the input form
are displayed for reference and the fitness level of the best design in the GA population
is displayed as it is calculated for each generation.

INPUT

OUTPUT

Case Number (Max 4)

Population Size

‘ Number of Generations

1 Span Lower Limit (m)
|
|

| Span Upper Limit (m)

[ Taper Ratio Lower Limit
|
|

| Taper Ratio Upper Limit

[ Aspect Ratio Lower Limit

Aspect Ratio Upper Limit

Fuselage Length Lower Limit (m)

Fuselage Length Upper Limit (m)

?

[foo

[100™
[20

[200

>

“"Ready

Answer = 1850544
Answer = 19507 81
Answer = 19507 81
Answer = 19507 81
Answer = 19507 81
Answer = 19507 81
Answel 9507 .81
Answer = 18507 81
Answer = 19507 81
Answer = 19507 81
Answer =19508.18

[Generaimn Number 90
|Generation Number 91
Generation Number 92
Generation Number 93
Generation Number 94
Generation Number 95
Generation Number 96
Generation Number 97
|Generation Number 98
Generation Number 99
Generation Number 100

Optimum Endurance (h)
Speed (km/h)
Cruise Speed (km/h)
Maximum Altitude
Engine Index

Power (hp)

|Airfoil Index

|Airfoil Name

‘Span (m)

[Fuse Length (m)

Taper Ratio

|Aspect Ratio

|Root Chord Length

Tip Chord Length
Planform Area

|Empty Weight (k)
;Gross Weight (kg)
|cdo

‘K

le

Close

Figure A.7: When the algorithm finishes, a table displays the specifications of the optimal
design produced by the algorithm.
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Endurance

542 -['

e Generation Number
—5
10000

Figure A.8: A convergence history graph is also displayed when the algorithm finishes.
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