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Abstract

A n  expert system  is a programmable device developed to provide automation fo r  engineering 
problem solving. It is composed o f artificial intelligence modules, subroutine functions, and 
databases. Under this framework, a design process is proposed to assist the conceptual design o f 
aerial vehicles' deployment systems. The problem is firs t defined by a set o f design requirements for  
takeoff, landing, and cruise. The values are then translated to a set o f performance parameters 
needed fo r  the design process via a newly developed parametric search algorithm. Such parameters 
are categorised by a fu z z y  inference module to determine the most suitable deployment-propulsion 
system, fo r  conventional and V /STO L vehicles. Through the use o f linear and neural network 
regression, a number o f aerodynamic terms are estimated to support fligh t mechanics analyses, 
where the optimal takeoff and landing thrust vectors are determined. Engine specifications are 
deduced in  terms o f un it thrust, weight, bypass ratio and dimension. The design process 
demonstrates effectiveness in sizing engines fo r  V/STO L operations.
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Nomenclature

a = acceleration, a rb itra ry  p a ram ete r
b = a rb itra ry  p a ram ete r
Cd = in in im u m  d rag  coefficient
Cl m ax im u m  lift coefficient

Cj = th ru s t  coefficient
D = d rag
d = diam eter, la rg est cross section  of eng ine
f = fric tion  force

g = g rav ita tio n a l acceleration
L = lift
M = M ach n u m b e r
m = m ass
n = n u m b e r of eng ines
P = p o w er
S = w in g  p lan fo rm  area
T = th ru s t, of vehicle if unspecified
T = th ru s t vector
t = tim e
V = speed , frees tream  if unspec ified
W — w eigh t, m ax im u m  takeoff if unspecified
X = in s tan tan eo u s  g ro u n d  ro ll coverage
X = to ta l g ro u n d  ro ll
z = altitu d e , service ceiling

p = b y p ass  ra tio
5 = degree  of fu zzy  m em bersh ip
s = e rro r
A - co n fig u ra tio n  ty p e

P = coefficient of friction

P = air d en s ity
<j = asp ec t ra tio
X = th ru s t  p itch  angle
A I = artificial in telligence
D2 = d ep lo y m en t d esig n  process
E3 = ex p an d ab le  eng in eerin g  ex p ert sy stem
V/STOL = vertica l a n d /o r  sh o rt takeoff a n d  land ing , a  g en era l ex p ressio n

A ll num erical values are expressed in  standard SI units.

V II



1 INTRODUCTION

The design of an aerial vehicle is an enduring process. From initial analysis to the 

integration of components, immense amounts of aeronautical knowledge related to theories 

and design histories are involved. In consideration of data compilation and extensive 

processing of decisions, the use of computation technology may provide an efficient method in  

aerial vehicle design. In this study, an expert system is developed as a software platform for 

the acquisition and application of aeronautical knowledge.

A n expert system is the clustering of field specific knowledge, which provides decision 

m aking via the use of artificial intelligence, or AI. Expert systems are formulated to "simulate 

hum an expertise in a narrow  domain" [1]. Applications of expert systems are found in many 

engineering design developments [2,3]. With the advancement of AI and the progressive 

reliability of individual engineering software, expert systems have evolved to centralise 

knowledge and provide the communication interface across software platforms [4,5]. This 

includes com puter assisted design, simulation, database and optimisation algorithms. At the 

same time, due to their specialised problem solving nature, the transfer and reusability of 

know ledge are often limited. Individual system must then be modified or reconfigured to 

solve new  or variants of the same problem. To construct a reusable expert system, it is 

necessary to establish an efficient framework for the organisation of knowledge, and to 

prom ote unrestricted knowledge acquisition capabilities. Consequently, large scale problems 

that require expert knowledge from different domains may then be solved, i.e., the design of 

aerial vehicles.

The term  aerial vehicle broadly includes devices that are controllable during atmospheric 

flight including unm anned vehicles, utility props, jet transports, etc. Traditional airplane 

design first investigates all mission requirements and prioritises them accordingly. Once the 

design options are evaluated, components are fitted and sized based on such requirements [4]. 

Due to the breadth of airplane design knowledge, this study confines the problem of 

conceptual design by specialising in the selection of deployment propulsion system, i.e., for 

takeoff and landing. This is governed by the selection and thrust output of propulsion 

systems. Since the takeoff phase of a vehicle typically requires the maximum performance of 

engines, the resultant engine specifications are thus good measures of the general thrust 

requirem ents. This study investigates the performance dom ain of jet based deployment



systems. Conventional takeoff vehicles have thrust to weight ratio of about 0.4, and about 1.2 

for vehicles w ith V/STOL capability. This demonstrates that the dem and for thrust varies 

considerably depending on the deployment requirements [6,7]. In addition, the issues of 

thrust assisted lift, propulsive efficiency and vehicle stability need to be addressed in the 

layout and  the sizing of engine units. As such, the design of deployment systems not only 

requires conventional airplane design knowledge [7], but also the development background of 

V/STOL vehicles [8].

Im plem entation of knowledge relating to the above into the expert system permits the use 

of AI tow ards the autom ation of mission requirement analysis systematically. Hence, this 

research aims to accomplish two goals:

1. Develop an expert system framework that is expandable, subject to solving 

various engineering problems. This framework is given the name of Ê .

2. Formulate a process of deployment design known as D ,̂ w ithin the establishment 

of E3.

This report first provides some insights of vehicle design specific to V/STOL. Then, 

tow ards the establishment of Ê , aspects of expert system are presented including the 

components of AI components. Utilising the resources of knowledge and expert system 

construction, the mission requirements of vehicles are fed into for analysis, and the final 

deploym ent system is proposed. Referencing to existing airframes, intermediate and final 

ou tpu t results are validated in  different perspectives for thrust based propulsion systems.



2 DEPLOYMENT DESIGN KNOWLEDGE

2.1 General Vehicle Design

New  designs begin from a set of mission requirement, and are put forth to the conceptual 

phase of design. The phase analyses each of the design requirements and investigates the 

available design options. The available options are often categorised according to their 

structural or flight mechanics properties. For example, the selection of a wing involves 

characteristics like: tapered or elliptical, positive or negative dihedral, swept forward or 

backward, etc. These are determ ined from flight requirements and histories of related designs, 

i.e., numerical analysis and categorical data trend studies [7],

Similar literature relating to aerial vehicle design has classified knowledge is as follows

[3]:

1. Governing knowledge: i.e., scientific laws and air traffic regulations.

2. Configuration knowledge: relating to individual components and the interactions 

among them.

3. Design process: solving the design problem efficiently.

The above descriptions of design knowledge are implemented into the subroutine and 

database modules of and are integrated into the process of D .̂

2.2 V/STOL Design

Since the 1950s, num erous V/STOL concepts, such as 'fan in wing' and 'tilt wing' have been 

tested [9,10,11]. Although many did not succeed to production developments, they have 

identified key areas to be overcome for the design of V/STOL vehicles:

■ Thrust efficiency, as significant losses may incur upon the redirection of engine 

exhaust

■ Integration of airframe and pow er plant, influencing the structural and flight 

dynamics of a vehicle

■ Stability and control, particularly at low speed and during the transition from lift 

to cruise thrust

The progress of V/STOL research was profoundly driven by the need for carrier based 

operations. This is dem onstrated by the production of the Yak-38 and the Yak-41 [10]. Later, 

the AV-8 and the F-35B of Figure 1 provide definite roles in naval operations.



Figure 1: AV-8 [12] and F-35B

In addition, due to the high tem perature and the high velocity of engine exhaust gas, jet 

V/STOL designs m ust properly address the following ground induced phenomena [8]:

■ Recirculation of high temperature exhaust into the induction system, reducing the 

thrust performance of engines

■ Generation of a low pressure region beneath the vehicle from the high velocity 

exhaust, such that the vehicle experiences a suck dow n effect

■ Secondary lift effect from the rebound of exhaust gas from the ground

It w as later realised that the high fuel consumption rate during the phase of vertical 

deploym ent has significantly limited the vehicle's mission effectiveness in aspects such as 

speed and  payload capacity. This gives rise to the concept of short takeoff and landing 

systems. M ost short takeoff designs originated from modifications of production designs. For 

example, the C-1 transport was converted to the Aska research aircraft w ith the takeoff lift 

provided by upper surface blowing of engine exhaust [13]; and mechanical thrust vectoring 

nozzles were equipped on the research models of the F-15 and the F/A-18 [14]. Throughout 

such dynam ic history of V/STOL research, there are several types of deployment systems that 

dem onstrated mission effectiveness and production feasibility. The following is a discussion 

of the six configuration types, in which some posses both conventional and V/STOL 

capabilities.

The helicopter rotor system is fundamentally designed for vertical takeoff. This 

configuration is referred to as A  = H , where A is a variable expressing the configuration type. 

Since the rotor is aligned with to the vertical axis of the vehicle for lift thrust, the forward 

speed is generally limited w ithin the low subsonic regime. Due to the relative size of the 

rotors, thrust is produce by providing momentum to a large mass flow. Consequently, 

helicopters' rotor systems have the highest propulsive efficiency among other propulsion 

types.



The tiltprop configuration, A  — P , describes general propeller driven vehicles w ith 

em phasis on thrust pitch mechanism from 0° to 90° that enable V/STOL operations. Figure 2 is 

a layout of such production design featuring the V-22 Osprey. This configuration portrays 

both  the vertical takeoff capability helicopters and the efficiency of propellers for m id subsonic 

flight [8].

i

Figure 2: Schematic of the V-22 tiltprop [13]
Upper surface blowing, A = f / , is a technique of jet based propulsion system that enables 

high lift at low  speeds. As depicted in Figure 3, this configuration of the engine over the m ain 

w ing causes the high velocity exhaust to generate very low pressure, thereby enhancing lift [8] 

and  shortening the ground roll distance for takeoff. Vehicles w ith upper engine configuration 

are confined w ithin m id to high subsonic speeds due the presence of engine nacelle as flow 

speed increases above the wing [15]. Hence, the cruise speed remains well below the 

supersonic regime. Type U configurations have been deployed on military, m edium  speed jet 

transports such as the An-72 in  Figure 4.

lilt

engine main wing

Figure 3; Upper engine schematic of Aska [13]

Figure 4 : Upper engine configuration of An-72 [14]

Situation of engine units are normally below the wing for transport vehicles, where they 

do not require enhanced takeoff capabilities. Yet this conventional engine configuration, 

A = C , m ay be configured for V/STOL operations by the deflection of engine exhaust 

dow nw ards via the m ain w ing or flaps. Related studies have shown that interactions of engine 

exhaust and the m ain wing increases the effective lift coefficient as a function of the thrust
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[8,16]. Type C configurations are found to be effective on the C-17 and other military 

transports. The drawback of this design is the deflection of flow that inevitably causes a 

reduction in effective thrust. Experimental results reveal that loss of thrust via type C engine 

deflection is relatively higher than type U configurations described previously [17,18].

Thrust m ay be used to enhance lift by the vectoring of nozzles. This is typically found on 

V/STOL capable aircrafts where the entire propulsion system is fully integrated into the main 

body; e.g. performance fighters. In early stages of research, it was strongly believed that the 

redundancy provided by multiple engine units is required for vertical takeoff in the case of an 

engine failure. The progressive increase in engine reliability has enabled V/STOL operation via 

a single lift-cruise engine unit for both lift and cruise thrust, A  = S , reducing the weight of the 

deploym ent system and enhancing the overall mission effectiveness of the vehicle. The type S 

configuration supports V/STOL operations by balancing between the compressor thrust and 

turbine thrust about the vehicle's centre of gravity [19,20]. Careful arrangem ent of engine 

exhaust w ith  respect to the main wing reduces the effects of suck down, and the force of 

rebounding air m ay be maximised. In corollary, cool compressor thrust is circulated to the 

induction system, eliminating the effect of hot air ingestion. In practice, a large bypass 

compressor flow is required to balance the thrust produced by the exhaust during vertical 

deployment. Thus, the frontal area of the AV-8 is apparently large to accommodate the engine 

installation. This has limited the vehicle's flight envelope within the subsonic regime. Shown 

in Figure 5 are the FI 19 engine of the X-32 and the Pegasus engine of the AV-8. The FI 19 core 

th rust nozzle pitches u p  to 20°. The resultant pitching moment is balanced w ith the 

compressor thrust during short takeoff operations.

M l*  Dcfirativ« Engfae

FIISFan
^  hereto

\ '*Uft NonlM
No k I*

Figure 5: STOL X-32 [13], and VTOL AV-8 [21] deployment systems

Recalling the early stages of V/STOL research, developers at Yakovlev had realised that 

type S design m ay not satisfy both vertical takeoff and supersonic cruise requirements [10]. A 

dual lift-cruise deploym ent system, A  = D , bridges two such design requirem ents by 

separating the propulsion departm ent for takeoff and for cruise. This type D  system perm its

6



more design freedom  in terms of airframe integration and the transfer of propulsive power. 

Figure 6 presents two production designs that utilise type D system configurations. Although 

the Yak-38 was successful at performing vertical deployment and supersonic flight, the unused 

weights of the lift engines during cruise have set back its operation range. It was also 

suspected that significant time was required to engage the lift engines [10]. The above 

concerns have been perceived in the development of the short takeoff F-35B. The multirole 

fighter utilises a 90° swivelling nozzle and a lift fan that is driven by the core engine through a 

gearbox, w hich is responsible for disengaging the lift fan during cruise. The lift component is 

therefore light w eight and consume on engine load during other phases of flight.

PH# OMlv*thr«

S w iw I 
D uet

UftPan

Main engine for cruise and Iff

Counter rotating lift 
engines

iCoM rot O tm ic

(v*«iSm*«Sîiî!a5src
Figure 6: Deployment systems of the short takeoff F-35B [14] and the vertical

takeoff Yak-38 [10]



3 EXPANDABLE ENGINEERING EXPERT SYSTEM: Ê

3.1 Framework

is constructed under the Matlab 6 [21] high level programming environment, in which 

the available engineering analysis and AI tools that are conveniently adapted. While does 

not have a central governing program, its construction is based on infrastructures found in 

m ost expert systems [22]. The architectural compositions of Ê  are presented as a schematic in 

Figure 7. Following the conventions of expert systems, the knowledge storage unit is 

separated from the knowledge control unit such that information m ay be modified and 

updated  independently [22,23]. Respectively, they are known as the knowledge base and the 

inference engine in Figure 7.

-A
System

!
1 Artificial

Structural j Intelligence

Developer
Inference Engine \i I 

Retrieve L

\

Control

..A
Subroutines

Expert
Knowledge Baae

Figure 7: Expert; system, infrastructure, E

The structural component establishes a systematic method of allocating of memory and 

files to the problem s of interest. AI modules are constructed directly under the Matlab 

environm ent and are independent of the system structure. This enables Ê  to adapt to other AI 

problem  solving tools, and to be broadly applied to various problems. The database unit, in 

theory, constitutes tiie largest memory block of Ê . It is summoned appropriately w hen 

statistical analyses are required. While Matlab supports various data formats such as text or 

spreadsheet files, individual subroutines are standardised in the form of Matlab functions. The 

standard format shown in Figure 8 identifies the files for indexing and documentation to 

communicate to the end user, and to the inference engine. The knowledge base subroutines
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can be executed in solving a particular problem. A complete listing of files w ithin E= is found 

in section A.I.

Index of Input 
functions % ve.stall nt.weight m2.wing r o .sealevel 

Ï cO.maxlift ^------------------------ -

Descnption
and reference

O utput vector

4 Solves max lift coefficient 
i - stall speed equation 128]

function [OUT] = StallLlftMax(IN)

Local variable 
n am es

talise
warning off MATLAB:divideByZero 
stall = IN{1); 
weight = IN{2};
W in g a f e a  = IN{3);

1 . 2 2 ?

% Stall speed equation 
wingload = weight/wingarea; 
if stall == 0 

clmax = 0;
else

clmax = (2*wingload> / (rho*stall''2) ;
end
OUT = [clmax]; -4--------------------
warning on;

Input vector

Index of output | 
functions

V ectorised
output

argum ents

Figure 8 : Example of a subrou-tlne function 

Variables that are used in the solution of a specific problem, or the working variables, 

reside in  the Matlab structured variable called the blackboard. They are hieratically categorised 

further by different scientific quantities. Figure 9 is a sample variable of planform  area S  in 

M atlab coding; and Figure 10 is the schematic of the blackboard structured variable.

b b .  m 2 . P la  n f o r  m

Blackboard, omitted in 
subroutine indexing

Structured 
variable of area

Variable name of 
w ing area

Figure 9: Sample working variable coded in Matlab

Blackboard

C oefficientLength____
Takeo¥~ | 

Landing |

FnctionCeiling

T e m p era tu rePower
Dynamic

I Vehide

Figure 10 : The structiw^ed. variable of blackboard, and sample working variables
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The general fram ework of provides a foundation for the cross referencing of subroutines 

and data, resulting in a netw ork of knowledge.

3.2 Parametric Problem Solving

A  problem  solving alg orithm is developed to automate the execution of subroutines 

corresponding to the problem specified. As a component of AI, this parametric search module 

provides extensive support to the mathematical formulation of engineering problems. The 

search begins by uploading the known parameters and the unknown parameters as null 

entries to the blackboard memory, as indicated on the top of Figure 11. During the operation 

of the search, the validity of each subroutine of the knowledge base is evaluated by comparing 

the know n and unknow n parameters of the blackboard against the input and output of each 

subroutine indexed by the first two lines of Figure 8. The matching subroutine is then 

perform ed, solving for the unknow n values. In cases where there are no exact matches found, 

the algorithm executes any solvable subroutine based only on the available input. The 

corresponding outputs are returned to the blackboard as additional resources for the next 

search recursion. This process is iterated until, or all unknown parameters are found or all 

solvable subroutines have been executed. In effect, a solution is determined through a search 

of the knowledge base.

10



Blackboard

Known Unknown
AI = p l

{ Update A and B62A2 = p2

f u n c t i o n  [b] = Si (a)
An = pn Bn

(a is a subset of A) 
AND

(B is a subse t of b) (ais a subset of A) 
AND

(B is a partial su b se t of b) (a is a subset of A) 
AND

(B is not subset of b)•No
-No-

Yes -No-Yes
Execute Si

YesExecute Si
Execute S i

b is solved 
A= A+ b b is solved 

A = A + b
solved J B Is partially solvedB is

Figure 11: Flowchart: of the parametric search algorithm

3.3 Fuzzy Reasoning

General AI systems are made up of decisive rules such as 'if a then b'. However, it is 

difficult for conventional logic to evaluate such a rule when a orb  are expressed qualitatively. 

Here, fuzzy reasoning provides the means to evaluate qualitative values by first classifying 

numerical values. Figure 12 shows the takeoff distance, fuzzified into three categories

represented by three membership functions. The degree of membership Ô, a scale between 0 

and  1, determ ines the applicability of the categorical definition, or simply how  well a 

m em bership describes a value.

Vertical
CL Short

Horizontal

Takeoff
Figure 12: Three categories of takeoff lengths
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In other w ords, a value of X ,^g . may be represented by a vector as*:

vertical ' s ;
short —

horizontal A .

(1)

Hence, rules that appear to be conflicting in discrete logic may now be simultaneously applied, 

such as:

'If takeoff is vertical...'

'if takeoff is short...'

'if takeoff is horizontal...'

The weight of each rule is fundamentally dependent on the degree of membership 

describing the terms. The influence of each rule may be aggregated through a num ber of 

m ethods, resulting in a fuzzy, or defuzzified output value. The development of utilises the 

Fuzzy Inference System interface provided by Matlab to deduce a qualitative description of the 

deploym ent configuration as part of the expert system's knowledge base.

3.4 Neural Network Regression

Airplane design often requires statistical data for preliminary analysis, wherein 

conventional curve fitting methods are often used. However, it may be difficult for convention 

curve fits to model complex behaviour of data presented. The concept of neural network was 

recognised to be a valuable tool in pattern recognition in the 1980s [23], e.g., in predicting 

unknow n functions. Like a biological neuron, a single unit of an artificial neuron summates 

and evaluates inputs through an activation function. If activated, the neuron sends an output 

signal linking to other neurons or interprets the final output. The associated weight factor of 

each neuron changes to adapt to a specified output. This training process enables the learning 

capability for interconnected neurons, or a neural network.

Among various types, the generalised regression neural network is found to be most 

compliant in function approximations [24]. This is provided that the number of sample data 

for training is sufficient and are reasonably distributed over the dom ain to be modelled.

* The vector is unique provided that the membership functions do not share a single axis of symmetry 
along the measuring value.

-]2 r ; ' n p



Figure 13 contains a set of sample data, which exhibits both parabolic and logarithmic 

behaviours. Although a 4* degree polynomial curve fit can be implemented with relative ease 

w ith Matlab, the model fails to interpret the concavity of the data trend correctly. In contrast, 

the generalised regression networks are not constrained by the definite degrees of freedom of 

analytically derived curve fits and are able to follow the sample data at different levels of 

generalisation®. Furthermore, the use of neural network compromises a value on non unique 

data by  w eighting averages, e.g., the data that is marked jc in Figure 13, whereas mathematical 

curve fits often encounter difficulties in this respect.

  4th degree polynomial
—  neural, adaptive = 0,2
—  neural, adaptive = 0.5 
X  non unique data
A  amitrary se tc fd a ta

I

S
I

arbitrary x values

Figure 13: Comparisons of curve fits to an arbitrary set of data exhibiting both
parabolic and logarithmic behaviours

In the interest of this study, series of sample data are fed into a neural network; and a 

scalar ou tpu t is considered, corresponding to a multiple input single output system. The 

neural netw ork adapts to each sample record of input [a, ] by changing the weighing

param eters to the target output x. A  complete set of sample training data is represented in 

equation 2:

( 2 )

A trained neural network may then approximate an output value x, given an arbitrary 

input vector [â  a j .  Hence, a neural network may be seen as an approximation function

as equation 3, only that it is dynamically referenced to a statistics of sample data.

«1 6, X,

•••

= This is related to the formulation of the radial basis network, a sub network of the generalised neural 
regression model, which generates as many neurons as the number of training samples [21].
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x  = neural{a,b,..) (3)

In a generalised regression neural network, the response of the network to each sample 

data can be adjusted via an adaptive parameter®. This parameter governs the degree of 

influence on x  by nearby sample data. Refer again to Figure 13; the smaller adaptive value 

corresponds closely to the actual data plots. As the parameter is increased, the network tends 

to generalise the system. However, this may not be absolutely desirable; and the network may 

not produce estimations over a wide domain.

Based on the generalised regression neural network algorithm of Matlab, provides an 

algorithm to automatically generate a network given a database of training samples. The 

algorithm  also serves to scale the adaptive parameter, beginning from a small ini tied 

estimation. Then, should the network fail in producing an estimate, the adaptive value is 

increased to simulate a more general approximation. However, since the adjustment of the 

adaptive param eter m ust be proportional to the magnitude of the training values, it is often 

difficult to project how much the parameter m ust be increased. Here, regulates this by 

normalising the training data w ith respect to an average, such that the range of data can be 

condensed. This repetitive task of training and calibration of neural network requires a 

significant am ount of computation resources that is proportional to the size of the training 

database‘s.

3.5 Deployment Design Process

Constructed within the knowledge base, the deployment design subroutine derives a 

deploym ent system most suitable to the design requirements, by networking w ith AI, 

subroutines, and databases under the establishment of Ê . The process of is divided into 

five analysis phases, as described in Figure 14. The process is initiated by a user specified set 

of inputs and is converted to the standard performance parameters, known as the primary 

inputs:

^  '  ^ ta k e o f f  '  -^landing > ^  r Z  ( 4 )

® This Is also known as the measure of spread [21].

" The neural network module of E® also serves to approximate values that are missing In the training 
data by successive generation of neural networks. However, this is not recommended as estimation 
errors may easily propagate such that the accuracy of the network Is reduced.
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The m axim um  takeoff weight W  is a fundam ental design param eter as it appears 

through flight m echanics analyses. and are the takeoff and landing ground roll

distance, respectively. Together they specify the deployment requirements. Secondly, the 

flight M ach num ber M  and the cruise altitude Z , enable the vehicle's operation condition to 

be described. By fuzzifying the input requirements, a deploym ent-propulsion configuration is 

deduced. The analysis proceeds in determ ining the interm ediate param eters by referring to 

the AI m odule and knowledge subroutines. The following param eters are the design outputs, 

w hich  determ ine the configuration of the deploym ent system:

' '̂ engine ' ” ' ̂ engine ’ ^  , P (5)

Since the analysis of focuses on the thrust based propulsion systems, the param eters of unit 

th rust and  the bypass ratio together specify the output requirem ent of either turbofan

or turbojet engines. A is a qualitative term  describing the configuration type, i.e. the general 

layout of the deploym ent system. The num ber of units n ,  the engine unit w eight the

engine bypass ratio® p  and engine cross section diam eter d  are the engine specifications that 

further describe the deploym ent system. In addition, an  optim um  thrust vectoring angle for 

takeoff [6] m ay also be deduced. Each phase of the analysis shown in Figure 14 will be 

further discussed in  section 4.

® Defined as the ratio between the cold air exhaust from the compressor and the hot combustion exhaust.
15



U ser  Input

Parametric Search Sequence

Primary input

Fuzzy Configuration Sequence

Flight Characteristics Sequence

Thrust Calculation Sequence

Engine Sizing Sequence

D esign  Output
Figure 14: E3^>ert system design process: D®
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4 PROCESS OF DEPLOYMENT DESIGN: D^

4.1 Parametric Search Sequence

Perform ance m easures may differ from one vehicle type to another. To suit various forms 

of this design problem, the user specified set of inputs is converted to the prim ary input of 

'equation ' 4. This is facilitated by the execution of the param etric search module, a 'problem  

defining' sequence of D^. The param etric module utilises the available values from the 

blackboard as the know n variables. At the start of the execution of D ,̂ the only values 

available from  the blackboard are the set of user input. The m odule resolves for the objective 

ou tp u t by searching for the appropriate subroutine functions, which becomes the prim ary 

input param eters for the successive process sequence. This standardisation to the prim ary 

inputs ensures that the design is solvable, and the result of is conclusive prior to engaging in 

extensive com putation. Figure 15 dem onstrates the solution path based on a set of arbitrary 

inpu t param eters. The em pty weight® is used to obtain , or simply W . A

com m on practice is the use of linear interpolation [7], as found in appendix A.2, and is 

represented by the subroutine EmptyMaxWeight. The prim ary input of Mach num ber M  is 

deduced  th rough  the subroutines AltitudeCondition and SpeedMach from a user specified speed.

® According to the conventions of the vehicle design [26], is often approximated from the
requirement of payload capacity.
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Param etric S earch  S eq u en ce

empty

takeoff

landing

M

Speed Mach

AHHude
Condition

Empty VS Max 
Wei t̂

P rim ary  in p u t

U se r in p u t

Figure 15 : Sample solutzlon path of the search module

4.2 Fuzzy Propulsion Configuration Sequence

Engineering design problems may be described as the balance between perform ance and 

economy. Following this philosophy, the deploym ent configurations discussed in section 2 are 

classified according to their relative measures of propulsive efficiencies, here on an  arbitrary 

scale. The configuration types are abbreviated as the following types: H , P, U, C ^S ,D  . 

D epending on the m ission requirements, a design m ay shift on the scale of Figure 16. Note this 

em pirical design approach is used only to correlate the configurations types, such that expert 

rules m ay be applied.

/
/ / /

Economy Performance

Figure 16: Evaluation of propulsion configurations in terms of propulsive
efficiency

Based on the fuzzy logics presented in section 3.3, the above scale is adapted to a fuzzy 

m odel of determ ining one of the above types. First, the following inputs are fuzzified by  the 

respective m em bership functions as follow:

■ W  —> Light, Medium, Heavy

■ M  Low subsonic. High subsonic. Transonic, Supersonic

18



" ^ ta k e o f f Vertical, Short, Horizontal

" ^ la n d in g Vertical, Short, Horizontal

The nam es of m em bership functions above are labelled according to the related aeronauticad 

terms, in  w hich they qualitatively describe the conceptual design. For example, the fuzzy 

m odule m ay in terpret the Boeing 747 as a heavy, transonic vehicle that takeoff and land 

conventionally, in other w ords, horizontally. Next, the general design and specialised V/STOL 

know ledge are translated into fuzzy rules. Some are:

if {Takeoff not Vertical) and {Landing not Vertical) ... then (Type is S) 

if {Takeoff is Vertical) and (Mach is LowSubsonic) then (Type is P)

Next, all fuzzy rules are aggregated, resulting in an output value of configuration. Since the 

scale of 'configuration ' is based on an arbitrary scale from Figure 16 and does not represent a 

m eaningful quantity, an additional refuzzification subroutine determ ines the configuration 

type A ŝ î cied that m ost describes the output quantity, along w ith its degree of 

member&hipc^^b^*,, and  the next viable configuration auemattv e based on the next highest 

m em bership. For example, an inpu t of prim ary inputs that resembles a regional aircraft results 

in  an  arbitrary  'configuration value' that is described by the m em bership function P  for 

tiltp rop  at a degree of 0.6, and below 0.6 by the function C. The values are thus A = P  >

ŝdected = 0 .6 ,  and  = C ,  respectively. The complete sequence of fuzzy analysis is

outlined in  Figure 17.
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Figure 17 : Flowchart of fuzzy reasoning

In  this study, the param eters of the input and ou tpu t m em bership functions are em pirically 

determ ined such that the fuzzy system accurately portrays the configurations of existing 

airfram e designs found in  appendix A.3.1. The configured fuzzy system m ay be functionally 

w ritten  as:

selected > ^selected  ’ ^a llerm ale  ]  ^ s  ^ ta k e o f f  ’ ^ la n d in g  3  ̂® 1

4.3 Flight Characteristics Sequence

The estim ations of basic flight characteristics are necessary in the support of perform ance 

analysis. This m odule hypothesises the aerodynamics properties regarding the vehicle of 

interest. Related statistical data are queried from A.3. From this point on, analysis refers only 

to th rust based propulsion systems of type U, C, S, D.

The aspect ratio  cr and  the planform  area 5  of a vehicle's m ain w ing are estim ated via 

the generalised regression neural network. It is found that the input param eters associated 

w ith  equations 7 and  8 portray equations of flight and statistical data m ost accurately. The 

inpu t param eter M  is included in equation 7, to describe the behaviour of cr in tw o flight 

regimes. First, h igh a  is typically found on subsonic vehicles, due to the beneficiary of flight 

efficiency of the w ing [26]. However, at transonic or supersonic speeds, potential shock losses 

restrict cr to be lower. On the other hand, the wing area S  is heavily dependent on the
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vehicle's size, described by W  . The parameter wing loading W /S  determines the 

performance of takeoff and the achievable cruise speed.

<T = neural{w ,M , Z , ) (7)

S = n eu ra li^ ,M ,X ^^^ ff)  (8)

Sample data for the training of the above neural networks suppose that, for vehicles of type H:

a  = S  = 0 ( 9 )

Although the above definition enables neural networks to model non wing designs, it may

negatively affect estimations of fixed wing aircraft with vertical takeoff capabilities to some 

extent.

Estimation of the maximum lift coefficient is accomplished through the following 

relationship derived from an  equilibrium modeling of steady flight [26]:

W
Cl = --------- r -  (10)

Oj/dh/Lw

The stall speed is found from the neural network approximation of equation 11®. The 

inputs of the neural netw ork are selected based on the relationship between the weight, the 

flight speed and the takeoff performance of aircraft.

Vsu,a = neural ( W, M,  ) (11)

is obtained via substitution of equation 11 into equation 10. This value is assum ed as the 

m axim um  lift at an approach configuration. For the calculation of takeoff kinematics, the 

following relation is supposed:

Cl,iakeaff ^  C i approach ( 1 2 )

Proportionality constants are added to the above relationship based on the statistical findings 

of different vehicle types [7], and the verification of takeoff calculations, as in Figure 18.

' A comparison of equation 11 with other neural network models can be found In A.3.
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Maximum Lift Coefficient

supersonic-

^Ldqkeoff ~  ^ *11 ̂ î̂ âpproach

heavy-

^L ja k e o ff ^ L ^ p p r o a c h ^L/akeqff ^ L / i p p r t K i c h

Figure 18: Puzzy classification of maximum takeoff lift coefficient

Significant am ounts of thrust on aerial vehicles are used to overcome drag. However, it is 

difficult to evaluate vehicles' drag at the conceptual design phase precisely, since this requires 

the geom etry of the vehicle to be clearly defined. This study introduces equation 13 as coarse 

estimates of m inim um  drag ® [7,26]:

^D,takeoff ~  ^DJanding = 0 . 1 0 0  

=  0.020

4.4 Thrust Calculation Sequence

The design ou tpu t param eters describing the propulsion system m ust satisfy all of the 

following deploym ent requirements, along with the cruise conditions criteria. This is defined 

by the prim ary input parameters:

■ Liftoff before reached.

■ Cruise at a specified M  .

■ Climb to the service ceiling of Z .

■ Complete landing rollout within a distance of .

Equation 14 represents the gross thrust value.

'^required ~  takeoff ’ '^Cruise > '^Altitude > '^landing )

Figure 19 is a flowchart for determining within D ,̂ in which decisions are based on

discrete and fuzzy input parameters. For example, the subroutine 'M.ach Thrust serves to find 

the thrust required to achieve the specified flight speed based on subsonic drag modeling. 

Therefore, the configuration type m ust be thrust rated and at a subsonic speed indicated by A4 

<0.9.

Drag at zero angle of attack.
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FSÿit Mechanics Sequence

type = U, C, S, D

Takeoff Thrust

mach < 0.1
type = S, D

landing = vertical 
-takeoff = vertical

Celling ThrustMach Thrust
-type = U T =1.05W

Aska Flight 
Model

E^xperimentaT
Model

'  OptlmaT~ 
Takeoff Thrust

Optimal 
landing Thrust

n c jtd v it  n i a X t ^  ^ijtarJt  * ^ c tU fn s ta k ê o ff  » ^  ianJlng

Figure 19: Flowchart: of gross tdirust requirement:

The analysis of takeoff is described in Figure 20, and equations of motions are expressed 

in  acceleration terms as equation 15 [6]. The forces included are lift, drag, weight, ground 

friction and  thrust that is m easured at a pitch angle r .

r A
—  Free stream •—

XtakeoffV lifto ff 0

Figure 20: Forces at takeoff [6]

 ̂ _ t r - £ - r s i n ( r )  „ ^ r c o s ( r ) -g -M m a . )  r ^  ,15,
m m

A tim e series sim ulation model of equation 15 solves for the thrust required, according to the 

specified takeoff run  requirement:

x < X , mkeoff ( 16)
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A n indication of equation 15 is the presence of an optimal thrust vector angle, for which 

takeoff can be achieved at the minimal thrust needed. Equation 17“ is a numerical solution for 

the optim al thrust vector under the takeoff criterion specified by equation 18.

= numerical(w, ,c^,S,z)  (17)

Sm(r) > W  (18)

Equations 17 and  18 are implemented into subroutine function TakeqffThrustVector. Figure 

2V> is a sample calculation of an optim um  thrust angle for the Sea Harrier from the inputs 

provided by A.3.1.

*10̂

9.5

I
7.5

B.5

Figure 21: Takeoff thrust vectors of the Sea Harrier

Equation 19= is used to approximate the required thrust for vertical teikeoff vehicles, w ith an 

excess of 10% thrust to account for losses, engine bleed stability control and upw ard 

acceleration.

T  = l . l O x W  

t  = 90°
(19)

“ Alternatively, equation 15 can be expressed in the form of a nonlinear differential equation, where the 
boundary conditions are given by the initial and final takeoff displacements. An optimal thrust vector can 
be found at each increment of time, thereby producing an optimal takeoff trajectory of thrust pitch. Full 
solution is not presented here due to the extensiveness of the final expression.

Note the local areas of instabilities, i.e., jittering of the curve, due to the step size of numerical 
integration. This must be suppressed in actual simulation. Here, it does not obstruct the purpose of this 
demonstration.

= More appropriately, the takeoff thrust for V/STOL vehicles should include an excess thrust needed for 
reaction control

24



As discussed in section 2, type U and C engine systems achieve V/STOL via the change of 

flow fields above and below the m ain wing, respectively, for an increase of lift. The increase in 

lift can be stated as a function of thrust [16]:

The increase of lift resulting from equation 20 indicates that the takeoff criterion of equation 18 

may be achieved sooner, thereby reducing the thrust required of each takeoff simulation. The 

effects of upper surface blowing and the deflection of engine thrust below the wing are 

strongly dependent on the arrangement between the engines and the main wing. Section A.5

attem pts to model various U and C type designs via experimental and flight test results found

in related researches [16,27].

The required cruise thrust is obtained via a subsonic drag m odel at flight equilibrium [26], 

w here the w ing efficiency param eter is omitted for simplicity:

2 - ^ W ^
T  = D = (21)

cruise

The resultant thrust is rated at an altitude corresponding to the air density. Equation 22 

translates the m easure of thrust to a sea level condition via a density ratio [26].

'^ se a le v e l    P s e a le v e !  ( 22 )

r lz  ■ p |z

^ c r u is e  ~  '^ se a le v e l

The thrust required to attain a specified service may be derived from a rate of climb of:

T 0 .5pv^S^
V , =  V

fF W  0.5pv^S

A t the service ceiling, the reference rate of climb is 0.509»i/ s  [26]. Hence,

0.509 _ 2m- ,

(24)

The analysis of landing follows the dynamics described in Figure 22:
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Figure 22: Forces at landing 
It is found that the optimal angle that yields the minimum use of thrust can be approximated 

by  the ground roll friction:

ta n r ^ = // (26)

The sim ulation of landing is analogous to takeoff, where = 180 + r  and Wia„di„g = 0.6W :

'̂ landing ~ r | nUltieriCCll (Wtiding ’ -̂ landing ’ ̂ stall ’ ^DJanding » ^ 3  ) (27)

A lthough an im portant factor, thrust reversal losses are not included in the analysis of 

equation 27. For vertical landing vehicles determined by fuzzy categorisation, a direct force 

balance is used. To include a 5% loss or engine bleed control, landing is simplified to equation 

28:

^landing ~  1 - 0 5  X W,g„ding

r ,  = -90°
(28)

4.5 Engine Sizing Sequence

The sizing of engines is derived from the overall thrust requirement of the vehicle and  is 

characterised by the following specifications:

N um ber of engine units 

U nit static thrust 

Unit dry  weight 

Largest cross sectional diameter 

Engine bypass ratio 

Optimal thrust pitch angle 

The final design outputs are deduced following the sequence of subroutines described in  

Figure 23.
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Engine Sizing Sequence

type = U, C, S, D

Engine Specs n,T
W eight

CriterionPass—

Thoist
Criterionof engines 

options

Pass+ n
- n

engine ’ '..BigiBe.

Neural Bypass i  Neural D iam eter

Figure 23 : Flowchart of engine sizing sequence 

The gross thrust requirem ent from equation 14 is fed to the engine sizing sequence to 

deduce the thrust output required by each engine units. The inclusion of an engine installation 

loss factor of 10%® results in the static sea level rating of thrust on the vehicle. This is

w ritten  as equation 29.

1T — ' nT = T^  equipped j  j  q  engine required (29)

The unit w eight of an engine is found to be proportional to the engine thrust [7]. This 

linear relationship is evident in Figure 24, where is plotted against Wg„gf„e based on A.3.2.

Equation 30 describes such relationship and is used to deduce engine's dry weight.

' This factor varies, and may be as low as 6-7% [20].
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Figure 24 : Engine weight versus engine thrust

+171.5 (30)
The combined w eight of engines is maintained within a value referenced to a statistical 

trend of general airplane designs. This is done by referencing to the ratio between the weight 

of the propulsion system and the gross vehicle weight. Figure 25 is composed of a set of 

queried data from  section A.3.1 and A.3.2.
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T akeoff W e ig h t kg

Figure 25: Weight ratio

+1144.4 (3i)

The w eight criterion function of equation 31 is a reference limit for n x in which a

design should not exceed, based on equations 29 through 31. In practice, this line may be 

referenced higher or lower depending on the type of machine to design for. For example, 

V/STOL or military vehicles' weight ratios may reside in the region above the reference line to 

allow for larger propulsion systems. Since the addition of n only increases p̂ropuiston" The

flowchart of Figure 23 indicates that the engine sizing module overrides the thrust criterion, 

w hich determ ines the upper limit of thrust output based on the database of appendix A.3.2, to 

satisfy the w eight requirement.
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The bypass ratio ^  and the cross sectional diameter are two influential parameters 

describing a vehicle's flight envelope and the relative airframe size for the integration of 

propulsion system. P  may be used in further design developments for the determination of 

other propulsion properties including the geometry, maximum engine temperature, etc. To 

further describe the deploym ent system, facilitates estimation of both 0  and d  via neural 

networks. In  addition to W  and , the approximation of 0  accounts M , based on the

fact that 0  is generally large for heavier subsonic vehicles. And at supersonic speeds, 0  is 

very small to reflect the performance of turbojet engines. Meanwhile, d is a neural function of 

^engine the am ouut of cold air bypass, i.e. 0  . This is shown in equation 33® .

0  = (32)
d = neural^^„^„^,0) (33)

In actual design practice, the determination of p  and d are Influenced by the size of the airframe.
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5 RESULTS

5.1 Fuzzy Module

The membership functions and the goveming rules of the fuzzy inference module 

discussed in  section 4.2 are determined to reflect actual airframe designs. This fuzzy system is 

found to be 90% in accordance with the deployment configurations of airframes found in A.3.1. 

Since the fuzzy model accounts for merely four input variables, it cannot achieve full accuracy 

due to exclusion of other design factors that have definite impact on propulsion settings, e.g., 

flight agility. Table 1 presents full comparisons of actual designs against the fuzzy results in 

shaded areas, including the fuzzified input values, the selected configuration type, its degree 

of membership, and the next viable configuration option following the flowchart of fuzzy 

reasoning in Figure 17. It is realised that the fuzzy definitions of and may be

better interpreted on unit mass bases to portray vehicles of different sizes. Results of A 

are congruent to actual designs with relatively high confidence levels of certainty, as indicated 

by S  . Note for the Ka-22, the fuzzy system proposes a helicopter configuration,

w hereas the actual Ka-22 is a tiltprop design. This reflects the incapability of the fuzzy system 

to determ ine the configurations without the input of the service altitude, which differentiates 

the type H  and  type P  designs.

Airframe m M ^  takxoff
y

landing ^  selected ŝelecled ^oUtmau
S ea Harrier 1.2E+04 1.25 305 0 Single — -

H m i i
JH-7 2.8E+04 1.70 920 single — “

i i i S i i i
Q400 2.9E+04 0.58 1014 — —

W Ê M M
A400M 0.72 1402 — —

YC-14 0.60 572 - -
w m m m

Harrier AV-8B 9.3E+03 0.98 0 — —

C-130J 7.0E+04 0.59 930 - -

Falcon 900 2.2E+04 0.87 1590 Conventional — —
É t t Q

VJ-101C 6.6E+03 1.30 0 —

An-72 2.8E+04 0.56 620 Upper —
— I M W H E B * ffllE Z S f lfc ■ ü É i m

Ka-22 9.4E+04 0.29 0 Tiltprop — -

m f f l n p l i î l Ë g B ^

T a b l e  1 : R e s u l t s  o f t h e  f u z z y s e l e c t i o n  m o d u le
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5.2 Neural Module

Results of the neural network regression closely portray actual values of conventional 

designs. However, since the am ount of training data describing unconventional designs is 

relatively small, particularly for V/STOL vehicles, the ability of neural networks to recognise 

such designs is consequently less proficient. This problem may be solved by first filtering the 

training data for only V/STOL vehicles. Yet this sacrifices the accuracy of neural estimation 

due to the lim ited num ber of filtered data. Here, neural networks are trained by a set of thirty 

to fifty sample airplane data queried from the database of airframes A.3.1. The influence of 

neural estimations errors on latter flight mechanics calculation can be seen on Figure 26 and 

Figure 27 in section 5.3. O utputs of are emphasised in grey within each table.

Table 2 shows the neural estimation of aspect ratio. It is evident that estimation of 

V/STOL vehicles, such as the An-72 and the C-17A, is less precise, due to the scarcity of 

relevant data for training. The result for the Su-30 is also significantly underestimated, which 

is suspected to be caused by the lack of training data at high Mach regime. It was also found 

that cr also varies considerably with respect to the agility of supersonic military vehicles. 

Hence, the adaptive parameter of M  is configured higher to somewhat m aintain the 

netw ork's generalisation.

Airframe m M Z ^  ta ke o jf cr
Actual Neural

£

RJ70 4.31 E+04 0.73 10670 983 9.00 10.4%
AH-1W 6.69E+03 0.23 4270 0 0.00 0.0%
737-900 7.90E+04 0.82 12500 2439 9.40 2.1%
767-200ER 1.56E+05 0.80 11550 2071 8.00 3.1%
CRJ200 2.15E+04 0.74 12500 1527 8.90 8.4%
An-72 3.30E+04 0.65 10100 620 10.30 25.3%

C-17A 2.65E+05 0.77 13715 2124 7.20 36.6%

Su-30 3.30E+04 2.35 17500 550 3.50 30.0%

Table 2: Sample results of aspect ratio neural approximation

Table 3 is a list of the neural estimation results of wing area S ,  as defined by equation 8. Note 

that the first three entries are for the helicopter configuration, referenced to the modeling of 

equation 9. The planform  area of the RJ85 is portrayed with no error, based on the similar 

specifications of the RJlOO within the training data. The value of the V/STOL An-74 is 

significantly underestim ated, again based on the limited V/STOL training data.
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Airframe m M S £ 
Actual Neural

R-MAX 8.80E+01 0.02 0.0 0.0 0%
23F 8.80E+00 0.05 0.0 0.0 0%
Ka-50 1.08E+04 0.26 0.0 0.0 0%
RJ85 4.40E+04 0.73 1043.1 77.29 0%
STOL CH801 9.75E+02 0.15 119.0 15.5 1%
GR. Mk 7 8.70E+03 0.98 0.0 21.37 6%
R akle 2.45E+04 1.80 600 45.7 8%
A340-200 2.75E+05 0.86 3017 361.6 15%
MIG AT 7.80E+03 0.80 540 17.67 16%
An-74 3.65E+04 0 65 930 98.53 ■ H R M  27%

Table 3: Sample results of wing area neural approximation

The quotation of stall speed differs among vehicle types and conditions such as flaps and the 

weight that is constant changing throughout flight. Sometimes, v may only be estimated 

via the landing or approach speed. For this reason, assumptions were made in constructing 

the general airframe database in A.3.1. This is believed to be the primary source of error 

inherited by the neural estimation of equation 11 from the training data. Since this directly 

influences the estimation of , the calculation of takeoff thrust is affected consequently.

Numerical thrust analysis from equation 17 shows a 10% variation of the v may affect

takeoff by 8-17%. Result of the neural system is shown in Table 4. The stall speed of the Sea

H arrier is som ew hat underestimated, measured relative to other military vehicles of the same 

size, potentially due to the low indication of Due to the overall margin of error, it is

recom m ended that the v obtained here should first be verified with other similar designs,

as this significantly impacts on the accuracy of calculation.

Airframe m M •^ ta k e o ff ^  stall

Actual Neural
E

RAH-66 7.90E+03 0.26 0 0.0 0.0%
Yak-38 1.03E+04 0.96 0 0.0 0.0%
GR. Mk 7 8.70E+03 0.98 0 0.0 0.0%
RJ100 4.60E+04 0.73 1184 48.9 2.3%
MiG-31 4.62E+04 2.83 1200 72.5 6.6%
767-200ER 1.56E+05 0.80 2071 63.4 0.7%
S ea Harrier 1.19E+04 1.25 305 — —

777-200ER 2.98E+05 0.84 3030 65.1 4.9%
CRJ200 2.15E+04 0.74 1527 69.4 27.6%
737-900 7.90E+04 0.82 2439 72.5 28.4%
IL-214 5.50E+04 0.75 1160 69.4 42.0%

Table 4: Sample results of stall neural approximation

Table 5 shows that the neural regression of f3 via equation 32 accurately estimates the 

propulsion characteristic to distinguish the requirement for low or high (3.
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Airframe m M Ttngine Engine
Actual Neural

s

GR. Mk 7 8.70E+03 0.98 1 06E+05 Pegasus 11-61 1.20 1 0.00%
Eurofighter2000 2.10E+04 2 6.00E+04 EJ200 0.40 0.00%
A340-200 2.75E+05 0.86 1.39E+05 CFM56-5C2 6.60 1 10,61%

Table 5: Sample results of bypass neural approximation 

No errors are attributed to the estimation of GR. Mk 7 and the Eurofighter 2000 based on an 

identical neural netw ork training data entry. It is found that if the network becomes more 

reliant on by the adjustment of the adaptive parameter, better results are produced. It is

expected that the inclusion of other engine performance parameters such as fuel consumption 

m ay enhance the overall accuracy of P  neural approximation.

In the neural interpolation of d , sample results of Table 6 convincingly show that 

equation 33 is a good estimator for geometric sizing with respect to the design airframe. Note 

that the m agnitude of errors of the last two entries implies the coverage of training data is less 

competent in speculating w ith thrust input that are too high or too low.

Engine
Actual Neural

AL-7F 8.82E+04 0.00 1.25
AL222-25KFK 3.01 E+04 1.19 0.81
CF6-50 2.34E+05 4.31 2.67
F404-402 7.87E+04 0.27 0.88
JT9D 1.93E+05 5.00 2.43
RB.145 1.62E+04 0.00 0.53
Trent 970 3.11E+05 8.50 2.95
J85-5H 1.71 E+04 0.00 0.52

5.64%
6.48%
7.62%
10.37%
11.25%
15.23%
16.03%
17.84%

Table 6: Sample results of diameter neural approximation

5.3 Flight Mechanics

The determ ination of takeoff thrust is a critical step towards the selection of a deployment 

system. Hence, the numerical method from section 4.4 is verified with three sample results, 

collectively presented in Table 7, where calculations are shown in gray. Note that is

the m inim um  thrust required w ith thrust vectoring at takeoff; the respective optim um

angle. Result of sample A reveals that the numerical solution of takeoff is within 2.45% margin 

from the reference literature [6]. This magnitude of error is solely contributed by the difference 

in num erical m odeling methods. Meanwhile, the same calculation of the inputs from sample B 

indicates an optim al thrust pitch angle of 15 ° is predicted to save 15.7% of thrust relative to the 

non pitching design. Data of sample C is obtained from appendix A.3.1, which simulates the 

vectored takeoff of the Sea Harrier at a ground roll of 305m. The takeoff profile is found in
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Figure 21. Note that the estimated is significantly less than the , as the

propulsion system is capable of providing vertical takeoff. Although is not available.

This result further ensures that equation 17 is reliable model for optimum takeoff.

A ' B* C

m 2.18E+05 3.31E+04 1.19E+04
Cl 1.60 1.86 —

Cd 0.05 0.03 0.03
s 325.16 88.26 18.68
^  stall — — 58.72
y

takeoff 2557.27 683.36 305.00

^reference 12.00 0.00 —

^optimal

Treference 4.45E+05 1.11E+05 9.08E+04
Toptimal

e 2.43% 15.72% 23.87%
£=(T -T )/t

reference ^ optimal '  '  reference

+ [6], t  [26]
T a b l e  7 : T a k e o f f  t h r u s t  v e c t o r s  

The takeoff performances of type U and C engine configurations are simulated based on 

experimental data of the respective configurations. Results are found in 0A.5.

The sim ulation of landing performance is evaluated in Table 8, referenced to a sample 

solution [6]. This, again, shows a numerical error magnitude of about 5%.

W 1.27E+05

C o ja keo ff 0.10
s 325.16

^touchdown 62.16

^ t a k e o f f 277.37
T optimal 3.11E+05

'^optimal 22.00
T optimal

^optimal

€ 5.57%

Table 8 : Sample result of Ismding simulation

Table 9 shows the thrust requirements of a sample list of vehicles. Note and

■ equipped follow the definitions of equation 16 and 29, respectively. The conventional takeoff

tirrust and the vectored takeoff thrust are known as and T̂ pnmai • It would be expected

that is slightly above , based on the idealisation of flight mechanics analyses.

This is not apparently so, possibly due to the pessimistic approximation of subsonic drag from 

equation 13. In the case of Aska, an excess am ount of engine thrust may be equipped for
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experim entation purposes. Generally, results of equation 14 are shown to accurately estimate 

the thrust required for various types of aerial vehicles.

Airframe Te q u ip p ed Tmach TetiUng T
takeoff Toptimal Tlanding T

req u ired E

A380-800 1.29E+06 1.33E+06 2.41%
Harrier AV-8B 9.62E+04 9.62E+04 0.02%
HondaJet 1.35E+04 1.32E+04 2.00%
Su-30 1.94E+05 2.12E+05 9.40%
Aska 1.53E+05 6.19E+04 59.66%

^  ^ ^ e q u ip p td  '^ re q u ir e d ^ '^ e q u fp p e i j

Tcüale 9: Thrust requirements of selected aerial vehicles

Figure 26 and Figure 27  ̂ attempts to demonstrate the best design region of the D ,̂ shown by 

the resultant error betw een the statistic and the calculated thrusts. Relationships are draw n 

w ith  respect to design weights and to flight Mach numbers. The two charts indicate that is 

relatively more reliable in modeling larger vehicles, and vehicles at high supersonic speed, as 

there are lim ited num bers of vehicle types in those design regimes. At lower values of W and 

M , reveals higher error margins as there exists different vehicle types possessing different 

flight characteristics. Approximation of and may be improved by the classification of 

vehicle types. This is clearly the case for the calculation of T^^ch' h  is predominately 

determ ined by Cg. The rough estimation provided by equation 13 has produced errors of up 

to 50%, detrim ental to the performance of D .̂ In cases where the vehicle is falsely 

portrayed, it is necessary calculate engine specifications based only on . Another source

of error is through the estimation of flight parameters via neural regression network is clearly 

shown on each of the charts, at magnitudes up to 33%. Thirdly, the idealisation of flight 

mechanics analyses have led to a general underestimation of T̂ guimd > most points appear in 

the positive sector of the charts. In respect, the negative values indicate that the propulsion

system is oversized, as defined by f equipped -T. ) 'T ^calcufated /  equipped '

Based on the tabulated results found in A.4.
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Figure 26: Analysis of errors the calculate.on of thrust requirement in
relation to the design weight
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Figure 27: Analysis of errors the calculation of thrust requirement in 
relation to the design Mach number

5.4 Engine Sizing

In determ ining the validity of the engine sizing process introduced in section 4.5 and to 

integrate results of D^, the following are case analyses of three vehicle types. Calculated results

are highlighted as gray.

Table 10 compares two calculations against the primary inputs based on A380-800. 

Solution 1 shows that the wing area, if wrongly estimated, results in a significant deviation of 

'^required * Meanwhile, other output parameters are portrayed fairly accurately via neural

approxim ations
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\ A380-800 1
m 5.60E+05
M 0.89
Z 13100

^udxaff 2050
y•̂ landing 2900

Actual Solutioni So1utlon2
s 845.00

ŝtaU —

^wUcud Conventional
n 4

^engine —
d 2.95
P 8.50

^engine 3.11E+05
T  Tequipped > required 1.29E+06
£ — 13.3% 1.2%

Italics: Neural estimations
^  ^^e q u ip p ed  ^required  )  ^  '^equipped

Table 10: A380-800 case analysis

Table 11 presents comparisons between the actual and calculated results of the vertical 

takeoff Yak-38 and a similar AV-8 aircraft. Here, proposes a type S design that is similar to 

the H arrier. This is originated from the establishment of fuzzy rules for supersonic vehicle 

designs. O ther quantitative results compare the actual data w ith reasonable am ount of 

precision.

Yak-38, Yak-38M Harrier AV-8B
m 1.03E+04 9.34E+03

M 0.96 0.98

Z 12002 15600

^ i a k e o j f 0 0
y

landing 0 0
Actual Solution Actual

s 18.49 21.37

'^S la tr
0.00 0

^ se lec te d Dual Single

n f 1

^e n g in e — 1.93E+03

d — 1.22

P 0 1.2

Tengfne 4.90E+04 1.06E+05

T  T^  equipped * required 1.06E+05' 9.67E+04

T — -90

S — 0.5% --

T̂ landing
9.62E+04

’ total of 1 thrust engine and 2 lift engines

^  —  ^ t q p i p p r d  ~  '^requlrrd  )  ^  '^equlpprd

Table 11: Yak-38 case analysis
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The calculated thrust of the HondaJet is very close to the actual value. The output of the 

neural approxim ated parameters are congruent with similar vehicles of the same type. 

However, has produced a type S engine unit. In actual design, a two unit design reduces 

engine acoustics to the airframe. However, such design consideration is not included in the 

fuzzy configuration model. Results are presented in Table 12.

m
M
Z

takeoff

landing

^engine

d
P
‘ engjme

Jr.tquJpped > required

HondaJet

4.17E+03
0.73

12497

807

694
Actual Solution

7.43E+03
1.35E+04

3.62E+02

1.17E+04 
1.06E+04

21.4% 1
Italics; Neural estimations

^  J e q u fp p ed  ’̂ r tq u ir td  )  ^  '^tqulpped

Table 12: HondaJet case analysis
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6 CONCLUSION

The developm ent of the expandable engineering expert system and the deployment 

design process have been presented in this study. The development combined elements of 

AI and existing airplane design knowledge. The resultant new design approach has been 

evaluated at different levels. It is found that the use of fuzzy classification of airplane types 

have accurately portrayed actual designs. Despite the inherent numerical uncertainties from 

data sources, the use of neural network regression in predicting flight characteristics is precise 

and efficient, in which it supports further analysis of performance requirement of the 

propulsion system. Numerical simulation results of takeoff and landing were verified with 

referenced sources. Calculations of gross thrust reveal that produces the most accurate 

engine specifications based on the deployment requirements of takeoff, in which this study is 

dedicated to accomplish. Overall, the output parameters clearly describe the deployment 

systems at the expense of five primary input parameters, making an economical design 

process. The design case studies of various vehicle types have further proven D ,̂ in which the 

capabilities of the expert system was effectively utilised. Ê  itself has dem onstrated the 

versatility in  managing knowledge in various forms. This asset is crucial for modifications and 

interdisciplinary problem  solving. This is based on the simple, yet organisational, expert 

system  platform  and AI analysis tools provided by Matlab and developed in this study.

As w ith  most computational analyses, more accurate data would have positive effects on 

the results of D^. This will enable more sophisticated design process knowledge to be 

im plem ented. It is hypothesised that the categorisation of vehicle types prior to data or flight 

mechanics calculations may significantly improve the error margin to less than 20%. This is 

based on the low error margins of results found on the remote areas of the x axes in Figure 26 

and Figure 27. The process of categorisation may involve modification of the existing fuzzy 

m odule w ith  additional inputs and outputs.

Although presented as an open loop design process, the logical sequence of may be 

m odified to incorporate other design factors. For example, FAR® 23 states that single engine 

light vehicles m ust have an upper limit of stall speed. This statement can only be verified after 

the engine sizing sequence. Thus, this can be implemented as in Figure 28.

Federal Aviation Regulation
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Design Output

Prim ary Input

U ser Input

Fuzzy Conflguratton Ssquerss

Figure 28 : Modificatû.on of D*

W ith sufficient support of a reliable data bank, may be extended to the inclusion of other 

aerial vehicle design analyses, incorporating more design variables to address the final design 

more accurately. This study has provided meaningful results for further researches of similar 

disciplines, from the perspective of investigating the integration of different AI elements into 

aerial vehicle design.

While is an expert system process dedicated to the design of airplane deployment 

systems, the general expert system environment is not limited to one or one type of 

engineering problem. Potential capabilities of the parametric search module, the organisation 

of files and variables have not fully exploited in this study. The available AI may be used or 

enhanced in a num ber of ways:

■ Fully autom ate the design process via the parametric search module

■ Present solution options throughout the execution of the parametric search 

module

■ Develop fuzzy systems based on the pattern recognition capability of neural 

networks, i.e. Neurofuzzy systems

To further advance the development of the expert system design process, proper 

interfacing is essential w ith other engineering software, such as finite element analysis, 

simulation, com puter assisted design, etc. This, if applied, will ultimately benefit engineering 

research, developm ent as a practical or training tool.
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A APPENDIX
A. 1 List of Matlab Programs and Excel Data Files

EiQiarfc System Files
MainThing.fig 

bb2p.m 
dSquare5.m 

dSquare234 .m. 
MainThing. m 

NeuralRegress.m 
pList.m 

RagnarokFix.m 
Refuzzify.m 
sBackward.m 
sForward.m 

sList.m 
SplitMatrix.m 

sSquare.m

Graphical user interface of DSquare
Dissociate the blacktxjard variables from Matlab to ECube form 
Engine sizing sequence of DSquare
Fuzzy, regression, and flight mechanics sequences of DSquare 
Controller of MainThing.fig
Generate a  neural regression network from an input of training database 
Generate a  list of all input and output parameters from all subroutines 
Test version of DSquare
Reproduce membership categorisation by refuzzifying the fuzzy output quantities
Proposed algorithm for finding subroutine solution based on unknown parameters, Incomplete
Algorithm for finding subroutine solution based on known parameters
Generate a list of all subroutines and their respective I/O parameters
Matrix operation algorithm for NeuralRegress.m
Executes solution based on sForward.m

Subroutine Files
AltitudeCondition.m 

CeilingThrust .m 
EmptyMaxWeight. iti 

EngineSpecs.m 
FuzzySpecs.m 

LandingLength.m 
LandingThrustVector .m 

LLift.m 
CTakeoffLength.m 
CTakeoffThrust.m 

MachThrust.m 
NeuralArea.m 

NeuralAspect .m 
NeuralBypass,m 

NeuralDlameter.m 
NeuralStall.m 

SpeedMach.ra 
StallLiftmax.m 

TakeoffLength.m 
Takeoff Thrust .la 

TakeoffThrustVector.m 
ThrustCriterion.m 

ULift.m 
OTakeof fLength.m 
DTakeoffThrust.m 

WeightCriterion.m 
EngineConfig.fis

Deduces altitude temperature, pressure and density 
Finds the thrust required to achieve service ceiling [26]
Estimates the maximum takeoff weight via empty weight 
Determines the propulsion system to meet the required thrust 
Engine configuration selection 
Calculates the required landing ground roll [6]
Calculates the minimum landing ground roil required via thrust vectoring [6]
Calculates the lift increase from the thrust exhaust below wing via wind tunnel model [20]
Calculates the takeoff length of type 0  vehicle
Calculates thrust to takeoff via conventional engine deflection model
Finds the sealevel thrust to attain the mach speed specified altitude [26]
Finds wing area via generalised neural training of samples 
Finds aspect ratio based on generalised neural training of samples 
Finds engine bypass ratio via generalised neural training of samples 
Finds engine diameter via generalised neural training of samples 
Finds stall speed via generalised neural training of samples 
Converts speed to mach via altitude temperature 
Finds the maximum lift coefficient based on a specified stall speed 
Finds the required takeoff length [6]
Finds the thrust required to takeoff
Finds minimum takeoff thrust and respective thrust angie [6]
Sets engine thrust limit to the maximum found in a  database of engines
Calculates an increase of lift due to upper surface blowing based on Aska flight data [27]
Solves for the required takeoff length for upper configuration type vehicles
Finds thrust required to takeoff for upper configurations
Suppress weight of all engines to below a  weight ratio or an offset of
Fuzzy inference system of engine configuration selection

Data Files
AIRFRAMES.xls 

ENGINES.xls 
EmptyMaxWeight.xls 

LinearEngine.xls 
LinearLiftMax.xls 

NeuralArea.xls 
NeuralAspect.xls 
NeuralBypass.xls 

NeuralDlameter.xls 
NeuralStall.xls 

XnputFile.xls

Database of thrust and power based vehicles
D atabase of thrust and power based engines
Linear relationship between empty and maximum weight of vehicles
Linear relationships to support EngineSpecs.m
Models upper and conventional engine configurations based on extrapolation of data
Test and training data for NeuralArea.m
Test and training data for NeuralAspect.m
Test and training data for NeuralBypass.m
Test and training data for NeuralDiameter.m
Test and training data for NeuralStall.m
Provides the inputs for RagnarokFix.m
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A.2 Empty VS Maximum Vehicle Weight

The relationship below is used to project the maximum takeoff based on the em pty vehicle 

weight. Data is m ade up  of both power and thrust rated propulsion system found in A.3.1. A 

linear regression line is drawn, intercepting at the origin.

y = 2.0029X
at

O.OOEKJO
0 .0 0 5 0 0  5 .0 0 5 0 4  1.00EH)5 1.50EK)5 2 .00505  2.S0EH)S 3.00EH)S 

Empty W eight, kg

Maximum takeoff weight versus empty weight of vehicles
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A. 3 Data
A.3.1 Airfram es

Airframe m M Z O ' s ^  sutU n Engine ^cmpty
767-200ER 1.56E-I-05 0.80 11550 2071 1372 8.00 283.30 63.43 4.60E+05 2
777-200ER 2.98E+05 0.84 13137 3030 1630 8.70 427.80 65.05 8.30E+05 2 Trent 895 1.40E+05
A300-600R 1.71E+05 0.82 12000 1890 1166 7.70 260.00 62.96 5.48E+05 2 CF6-80C2 7.03E+04
A318 6.60E+04 0.82 11890 1670 1332 9.50 122.60 — 2.14E+05 2 PW6124 3.90E+04
A340-200 2.75E+05 0.86 11887 3017 1890 10.10 361.60 68.42 5.55E-K)5 4 CFM56-5C2 1.30E+O5
A380-800 5.60E+05 0.89 13100 2050 2900 7.50 845.00 — 1.42E+06 4 Trent 970 2.77E+05
AMX I.OSE-KM 0.86 13000 631 464 3.80 21.00 — 4.91E+04 Spey 807 6.73E+03
An-124 4.05E+05 0.81 12000 2520 900 8.60 628.00 64.61 - , __
An-72 2.75E+04 0.56 620 420 10.30 98.53 — 1.27E+05 2 D-S6 1.91E+04
An-72 3.30E+04 0.65 10100 620 420 10.30 98.53 50.00 1.27E+05 2 0-36 1.91 E+04
An-74 3.65E-KI4 0.65 10210 930 465 10.30 98.53 — 1.27E+05 2 D-38 2A
An-74T-300 3.45E+04 0.59 — — — — 98.62 —, 1.27E+05 2 D-36 4A
Aska 3.87E+04 0.57 6096 578 408 7.77 120.00 31.48 1.69E+05 4 FJR 710/6003
AT-63 PAMPA 5.00E-r03 0.80 12900 430 460 6.01 15.63 42.22 1.56E+04 TFE731-2C-2N 2.82E+03
C-17A 2.65E+05 0.77 13715 2124 824 7.20 353.03 59.16 7.20E+05 4 F117-PW-100 _
DO-31* 2.74E+04 0.60 10515 — - , 5.72 57.00 — 1.91 E+05 2 Pegasus 2.25E+04
Eurofighter 2000 2.10E+04 2.00 — 300 — 2.40 50.00 — 1.20E+05 2 EJ200 1.00E+04
F-15E 3.67E-K)4 2.50 — — — 3.00 56.49 — 2.09E+05 2 FI00-220 1.45E+04
F-18E 2.99E+04 1.80 15240 — — 4.00 46.45 57.87 1.96E+05 2 F414-400 1.40E+04
F-2 2.21E-T04 2.00 — — 3.30 34.84 — 1.31E+05 F110-129 9.63E+03
F-22 2.72E-r04 1.70 15240 — — 2.40 78.00 — 3.12E+05 2 F119-100 1.44E+04
F-35 2.08E+04 1.60 — — — 2.68 42.70 0.00 8.90E+04 F135 1.38E+04
F-8IIM 1.89E+04 2.20 18000 630 900 _ — 83.33 1.36E+05 2 — 1.04E+04
Falcon 900 2.22E-K)4 0.87 15500 1590 724 7.60 49.00 54.44 6.34E+04 3 — —
GR. M<7 8.70E+03 0.98 15600 0 0 4.00 21.37 0.00 1.06E+05 Pegasus 11-61 7.05E+03
Harrier AV-8B 9.34E+03 0.98 15600 0 0 4.00 21.37 0.00 1.06E+05 Pegasus 11-61 6.34E+03
Harrier AV-8B 1.41E-KÏ4 0.98 15600 — — 4.00 21.37 0.00 1.C6E+05 Pegasus 11-61 6.34E+03
HondaJet 4.17E+03 0.73 12497 807 694 — — — 1.49E+04 2 HF118 —
J-7E 9.10E-T03 2.35 17500 700 700 2.78 24.88 72.02 6.47E+04 1 WP13F 5.29E+03
J-811 1.53E-rC4 2.20 20200 670 1000 2.07 42.20 80.25 1.32E+05 2 WP13A 9.82E+03
Jaguar 1.57E+04 1.50 13715 1250 680 3.10 24.18 59.16 7.48E+04 2 Adour M kSII 7.00E+03
Jas-39A 1.40E+04 1.00 15239 800 600 — — 51.44 8.05E+04 F404-400 8.00E+03
JH-7 2.85E+04 1.70 15600 920 1050 3.09 52.30 — 1.82E+05 2 Spey 202 —

K-8 4.33E-r03 0.75 13600 410 512 5.40 17.02 44.44 — — — —
LegacyB 2.00E-r04 0.78 11887 1759 818 — — — 6.6QE+04 2 AE3007A1P 1.19E+04
Leopard B 1.81E+03 0.80 15545 — 641 8.80 5.85 43.33 6.22E+03 2 FJX-2 8.62E+02
Mako 9.40E+03 1.50 14400 450 750 2.60 26.70 — 9.00E+04 EJ200 6.20E+03
WGAT 7.80E-r03 0.80 15500 540 570 — 17.67 48.35 — ~ — —
MiG-21 PD* — — — 198 250 — — — 1.11E+05 R-13-300 —
MÎG23 1.47E+04 2.35 18500 500 750 1.62 37.35 — 1.28E+05 R-35-300 1.02E+04
MiG23PD 1.85E+04 — — — — 1.49 40.00 — 9.50E+04 R-27-300 —
M G25RB 4.12E+04 2.83 21000 1250 800 — 61.40 77.67 — — — —
M G 29 2.24E+04 1.01 17500 — — 3.40 42.28 — 1.71 E+05 2 RD-33 —
MIG31 4.62E+04 2.83 20600 1200 800 2.90 61.60 72.53 1.86E+05 2 D-30F6 2.18E+04
Mirage 2000 5 1.75E+04 2.20 18290 — — 2.03 41.00 64.44 9.51 E+04 M53-P2 7.50E+03
Mirage iii V* 1.36E+04 2.04 — 0 0 — — 0.00 2.73E+05 TF-30 —
Rafale 2.45E+04 1.80 16765 600 — 2.60 45.70 61.73 1.77E+05 2 M88-3 1.06E+04

RJ100 4.60E+04 0.73 10670 1184 1014 9.00 77.29 48.89 — — — —
RJ70 4.31 E+04 0.73 10670 983 1062 9.00 77.29 47.78 1.24E+05 4 — 2.39E+04

FU85 4.40E+04 0.73 10670 1043 951 9.00 77.29 47.78 — — — —

S ea  Harrier 1.19E+04 1.25 15600 305 0 3.17 18.68 — 9.56E+04 Pegasus 106 6.37E+03

Su-25 1.76E+04 0.80 17000 500 650 6.10 33.70 55.56 6.84E+04 2 R-195 9.70E+03

SU-27IB 4.44E+04 1.80 15000 _ — 3.50 62.00 — 3.50E+05 2 AL-41F —

Su-33 3.30E+04 2.16 17000 195 — 3.20 67.84 — 1.50E+05 2 AL-31F3 —

Su-35 3.68E+04 2.35 17200 960 — 3.50 62.04 — 2.46E+05 2 AL-31FP 1.70E+04

T-4 7.50E+03 0.91 14815 655 704 4.70 21.00 46.30 3.27E+04 2 F3-30 3.84E+03

Tu-234 LR 1.03E-*-05 0.80 12600 2050 2050 9.60 182.40 56.48 3.17E+05 2 — —

Tu-234 8.4SE+04 0.80 12600 1450 2050 9.60 182.40 55.09 3.17E+05 2 —

Typhoon 2.30E+04 2.00 16765 300 700 2.40 50.00 — 1.80E+05 2 EJ200 1.10E+04

VAK191B* 7.50E+03 0.90 0 0 3.04 12.50 0.00 9.48E+04 1 RB.193-12 5.27E+03

VJ-101C 6.60E+03 1.30 12000 0 0 — — 0.00 9.74E+04 6 RB.145 5.40E+03

X-14 1.41 E+03 _ 0 0 — — 0.00 1.56E+04 2 ASV8 Viper —

X-32B 2.27E+04 1.50 _ — — 1.66 50.00 0.00 — JSF119-614S 9.08E+03

X-50 6.ÛOE+02 0.58 3050 0 0 — — 0.00 — F112 —

Yak-130 9.00E+03 0.99 13000 340 550 4.00 23.52 45.83 4.90E+04 2 RD-2500 4.60E+03

Yak-36 9.40E+03 0.94 12002 0 0 4.24 15.98 0.00 9.80E+04 2 R-27-300 5.60E+03

Yak-38* 1.03E+04 0.96 12002 0 0 2.90 18.49 0.00 1.06E+05 R-27-300 7.48E+03

Yak-38M* 1.13Ë+04 0.96 12002 0 0 2.90 18.49 0.00 1.29E+05 R-28V-300 8.39E+03

Yak-38U* 1.00E+04 0.96 12002 0 0 2.90 18.49 0.00 1.06E+05 R-27-300 8.39E+03

Yak-41* 1.95E-K)4 1.70 14935 99 244 3.22 31.70 0.00 2.32E+05 1 R-79V-300 1.17E404

YC-14 7.71E*K)4 0.60 13716 572 610 — 163.70 — 4.54E+05 2 CF6-50D —

YC-1S 7,01 E+04 0.80 9144 610 610 — — — 2.64E+05 4 JT8D-17
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206L-4 2.02E+03 0.17 3050 0 0 0.00 0.00 0.00 9.70E+04 250-C30P 1.05E+03
23F 8.80E+00 0.05 2285 0 0 0.00 0.00 0.00 8.58E+03 Zenoah 5.90E+00
430A 4.22E+03 0.21 5590 0 0 0.00 0.00 0.00 2.34E+06 2 250-C40B 2.42E+03
60F 1.81E+01 0.07 2285 0 0 0.00 0.00 0.00 _ 9.10E+00
665 6.10E+03 0.19 3200 0 0 0.00 0.00 0.00 3.83E+06 2 4.20E+03
706 Seabat 9.07E+01 0.31 1050 0 0 0.00 0.00 0.00 _ AR731 5.22E+01
A160 Hummingbird 1.81E+03 0.24 9145 0 0 0.00 0.00 0.00 2.98E+05 Leading Systems _

A400M 1.17E+05 0.72 11280 1402 625 8.10 221.50 66.87 3.58E+07 4 BR715 6.65E+04
ACRW 1.36E-*02 - ~ 0 0 - - 0.00 2.83E+04 AR741 —

AH-1W 6.69E+03 0.23 4270 0 0 0.00 0.00 0.00 5.14E+05 2 T700-401 4.Q5E+03
AH-64 1.04E+04 0.23 5915 0 0 0.00 0.00 0.00 5.79E+06 2 T700-701C 5.35E+03
An-140 1.92E+04 0.51 7200 1148 1148 - - - 3.68E+06 2 —

An-70 1.23E+05 0.76 11000 1800 1900 - - - 4.18E+07 4 D-27 7.28E+04
APID2 5.50E*01 0.08 300 0 0 0.00 0.00 0.00 9.17E+03 K-100 3.50E+00
ARCH-50 3.00E+02 0.08 100 0 0 0.00 0.00 0.00 4.85E+04 586 2.38E+02
BA609 7.27E+03 0.46 7620 0 0 - - 0.00 2.89E+06 - 4.77E+03
B eech1900D 7.77E+03 0.45 7620 968 705 10.90 28.60 43.33 1.91E+06 2 - -

BK117-82 3.50E+03 0.23 5090 0 0 0.00 0.00 0.00 2.64E+05 2 1E2 1.76E+03
BRT-8 Dervish 2.00E+01 - - 0 0 0.00 0.00 0.00 - - 5.60E+01
C-130J 7.03E+04 0.59 9315 930 427 10.10 162.12 51.39 1.37E+07 4 - -

Camcopter Mk 2 6.80E+01 0.08 3810 0 0 0.00 0.00 0.00 2.83E+04 AR741 4.30E+01
CI+47 2.45E+04 0.24 3385 0 0 0.00 0.00 0.00 1.12E+07 2 T55-L-712 1.16E+04
CL-227 SenBnei 2.27E+02 0.12 3000 0 0 0.00 0.00 0.00 4.47E+04 WTS125 1.11E+02
CL-327 Guardian 3.50E+02 0.14 5485 0 0 0.00 0.00 0.00 9.32E+04 WTS117-5 1.50E+02
CL-427 3.40E+02 0.19 5485 0 0 0.00 0.00 0.00 9.32E+04 WTS117-5 1.35E+02
Copter 1 - - 200 0 0 0.00 0.00 0.00 - - - 6.40E+00
Copter 2 - 0.07 500 0 0 0.00 0.00 0.00 - - - 8.00E+00
Cypher 1.13E+02 0.11 2440 0 0 0.00 0.00 0.00 3.S0E+04 1 AR801 7.50E+01
DA20-C1 7.50E+02 - - 337 377 - 11.60 17.50 - - - -

Dernier 228 6.40E+03 0.34 8535 442 343 9.00 32.00 32.50 4.26E+06 2 TPE331-5-252D 3.69E+03
DP4 6.35E+01 0.13 2135 0 0 0.00 0.00 0.00 1.27E+04 1 QAr200XL 3.18E+01
Domier Seam os 1.13E+03 0.14 3660 0 0 0.00 0.00 0.00 3.36E+05 1 250-C20R 5.95E+02
Eagle Eye 1.02E+O3 0.34 6100 0 0 - - 0.00 3.36E+05 - 250-C20R —

EH101 1.46E+04 0.25 4575 0 0 0.00 0.00 0.00 9.40E+06 3 RTM 322-01/8 1.05E+04
EMB-314 3.19E+03 0.37 10670 350 550 6.40 19.40 43.61 1.94E+06 1 PT6Ar68 2.42E+03
Eurofar 1.37E+04 0.52 3050 0 0 - - 0.00 6.40E+06 2 - -
EV-97 4.50E+02 - - 145 - - 9.84 18.52 5.96E+04 - — —
Heiiot 4.50E+02 0.12 2050 0 0 0.00 0.00 0.00 7.83E+04 1 F30A26AK 2.30E+02

Heiiwing 6.58E+02 0.16 4575 0 0 - - 0.00 1.79E+05 1 WTS124 —
HK36TC 7.70E+02 0.17 - 201 - 17.43 15.30 0.00 1.19E+05 1 912A-3 5.55E+02

HokunvX 4.08E+03 0.21 3350 0 0 0.00 0.00 0.00 9.62E+05 1 T53-L-703 -

iL-114 2.35E+04 _ _ 1360 1260 11.00 81.90 44.44 3.68E+06 - - -

Ka-137 2.80E+02 0.15 3000 0 0 0.00 0.00 0.00 4.51 E+04 1 2706 —

Ka-22 9.37E+04 0.29 18050 0 0 - - 0.00 4.85E+06 1 D-25VK 6.22E+04

Ka-29 1.1SE+04 0.23 4300 0 0 0.00 0.00 0.00 3.27E+06 2 TV3-117VMA 5.52E+03

Ka-37 2.S0E+02 0.09 3000 0 0 0.00 0.00 0.00 4.51 E+04 1 Ka-37 “

Ka-50 1.08E+04 0.26 5500 0 0 0.00 0.00 0.00 3.27E+08 2 TV3-117VMA 7.80E+03

MH2000 4.50E+03 0.24 — 0 0 0,00 0.00 0.00 2.61 E+06 2 MG5-110 2.50E+03

M-26 5.60E+04 0.25 4600 0 0 0.00 0.00 0.00 1.70E+07 2 D-136 2.82E+04

Midget RPG MK i 2.50E+01 - - 0 0 0.00 0.00 0.00 - - - -

Midget RPG MK il 5.00E+01 0.10 50 0 0 0.00 0.00 0.00 - ~ —

Midget RPG MK lii 9.00E+01 - — 0 0 - - 0.00 — — —

MV-22 2.40E+04 0.42 7925 0 - 5.50 35.49 0.00 1.83E+07 2 T406-ACM00 1.50E+04

MV-22 2.40E+04 0.42 7925 0 _ 5.50 35.49 0.00 1.83E+07 2 T406-AD400 1.50E+04

MV-22 2.74E+04 0.42 7925 152 - 5.50 35.49 - 1.83E+07 2 T406-AD-400 1.50E+04
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Q300 1.865*04 0.4fi 7620 859 659 13.40 56.21 39.17 3.55E+06 2
0400 2.935*04 0.58 7620 1014 1094 12.80 63.08 - 7.44E+06 2 - -

Quad Tiltrotor 4.545+04 - - 0 0 - - 0.00 - 4 ~ -

R-50 6.705*01 0.02 100 0 0 0.00 0.00 0.00 8.95E+03 L12 4.40E+01
RAH-66 7.905+03 0.26 - 0 0 0.00 0.00 0.00 4.66E+05 2 T800-801 4.22E+03
RF-9 7.505+02 - - 360 - 16.10 18.00 19.55 5.96E+04 - - -
R-MAX 8.805*01 0.02 100 0 0 0.00 0.00 0.00 1.57E+04 L15 5.80E+01
RoboCopter 300 7.945*02 - - 0 0 0.00 0.00 0.00 1.57E+05 TIO-360-C 4.99E+02
RPH-2 and FFOS 3.255*02 0.10 2000 0 0 0.00 0.00 0.00 6.23E+04 Fuji Robin 2.05E+O2
S-70A 7.485+03 0.24 5790 0 0 0.00 0.00 0.00 5.37E+06 2 T700-701C 5.12E+03
Soar Bird - 0.13 3000 0 0 0.00 0.00 0.00 - - 2.80E+02
STF-9A 1.005*02 0.24 6100 0 0 - 2.30 0.00 - AR731 7.70E+01
STF-9B 2.765*02 - - 0 0 - - 0.00 8.95E+04 642 1.54E+02
STOLCH701 4.995+02 - - - 24 - - 13.89 1.19E+05 1 912 UL 2.08E+02
STOLCH801 9.755+02 0.15 4267 119 46 5.80 15.51 24.70 1.34E+05 1 O-380rA 5.22E+02
T67 1.165+03 0.23 - 334 401 8.90 12.63 27.78 1.94E+05 1 - -
Vigilant F 2000 1.005+01 0.08 2000 0 0 0.00 0.00 0.00 - - - 2.75E+01
Vigilante 496 OPV 4.995+02 0.19 3660 0 0 0.00 0.00 0.00 5.28E+04 1 F30 2.74E+02
Vigilante 500 4.995+02 0.19 3960 0 0 - - 0.00 5.28E+04 1 F30 2.66E-H}2

Vigilante 600 _ 0.22 4575 0 0 - - 0.00 1.12E+05 1 Zoche 2.84E+02
VTOL Concept 3.705+04 0.75 12000 0 0 3.30 30.00 0.00 1.07E+07 1 - 3.70E+04

VTOL Concept 3.705+04 0.75 12000 30 0 3.30 30.00 0.00 1.07E+07 1 - 3.70E+04

X-22A 7.715+03 0.43 - 0 0 - - 0.00 3.73E+06 4 YT58-GE-8D —
XF-109 1.085+04 - _ - 2.91 18.02 - - 1 J85-5 1.38E+04

XV-15 5.905+03 0.53 8840 0 0 7.32 15.70 0.00 2.31E+06 2 LTC1K-4K 4.34E+03

Y-12 5.305+03 0.28 - 230 - 8.70 - - - - - -
Zepfiyr 4.505+02 - - 120 - - 10.10 18.52 5.96E+04 - - —
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Model M anufacture /? m ■ ■ ^

TFE731 Aliied Signal 1.02 4.48E+02 1.56E+04
F124 Allied Signal - 0.91 4.99E+02 Z80E+04
F109-GA-00 Allied Signal - 0.79 1.99E+02 5.92E403
C FE738 Allied Signal — 1.22 6.01E+02 2.67E+04
ALF502/507 Allied Signal - 1.27 6.12E+02 Z98E+04
ASV8 Viper AS - - — 7 78E+03
PS-90A12 Aviadvigatel 5.05 1.67 2.30e+03 1.18E+05
D-30KU Aviadvlgatel 2.42 1.56 2.67E+03 1.08E+05
D-20P Aviadvigatel 1.00 0.98 1.47E+03 5.30E+O4
CFM56-5C CFM 6.60 1.84 2.64E+03 1.51 E+05
CFM56-3 CFM 5.00 - - 1.05E+05
CFM56-7B27S CFM 5.10 1.55 2.38E+03 1.21 E+05
EJ200 Eurojet 0.40 0.74 9.90E+02 8.90 E+04
TFE731-5 Garrett 3.34 - _ 2.00E+04
J85.5H GE 0.00 0.52 2.65E+02 1.71E+04
J85-21 GE 0.00 0.51 3.03E+02 2.22 E+04
J 8 5 -7 GE 0.00 0.45 1.79E+02 1.27E+04
6E90-B4 GE 8.40 - - 3.89E+05
GESO-90B GE 8.40 3.40 7.56E+03 4.01 E+05
FI01-02 GE - 1.40 2.02E+03 1.37E+05
ROO-229 GE - 1.19 1.38E+03 1.29E+05
FI 10-100 GE 0.87 1.18 1.77E+03 1.27E+05
F414-400 GE - — _ 9.79E+04
F404-FID GE - 0.88 - 4.45E+04
F4Q4-402 GE 0.27 0.88 1.04E+03 7.87E+04
F404-400 GE 0.34 0.88 9.89E+02 7.12E+04
F118-00 GE - 1.18 1.45E+03 8.45E+04
F110-29 GE 0.76 1.18 1.79E+03 1.29E+05
CF700 GE - 0.94 3.48E+02 2.00E+04
CF6-80C2 GE 5.05 2.69 4.31 E+03 2.70E+05
CFe-50 GE 4.31 2.67 3.96E+03 2.34E+05
CF34-8D3 GE 5.00 1.32 1.12E+03 5.97E+04
CFm=-34 GE - 1.24 7.58E+02 4.09E+04
HFX-01 Honda 3.90 0.71 1.92E+02 8.Ü1E+03
HF118 Honda - - - 7.43E+03
TFE1042-70 Honey 0.40 0.59 6.17E+02 4.11 E+04
ATF3-6A Honey 2.80 0.85 5.10E+02 2.42E+04
V2533-A5 lAE 4.40 1.60 2.50E+03 1.47E+05
V2528-D5 lAE 4.70 - - 1.25E+05
V2522-A5 lAE 4.90 1.60 2.36E+03 9.79E+04
TF-40 IHI - 2.90 7.67E+02 3.25Ê+04
F3-30 IHi 0.90 0.56 3.40E+02 1.64E+04
F-3 Ml - 2.01 2.08E+02 1.65E+04
K -5 IL 0.00 0.73 3.20E+02 1.47E+04
NK-86 KKBM 1.60 1.60 2.45E+03 1.28E+05
RD-35 Klimov 1.46 0.99 4.40E+02 2.16E+04
RD-33 Klimov 0.49 1.04 1.06E+03 8.14E+04
WP13F LMC 0.00 _ - 6.47E+04
WP13AH LMC 0.00 0.91 1.20E+03 6.59E+04
AL-7F Lyulka 0.00 1.25 2.01 E+03 8.82E+04
AL-31F Lyulka 0.60 1.22 1.53E+03 1.07E+05
AL-21F Lyulka 0.00 0.88 1.72E+03 1.10E+05
FW6124
FW500

pvy
PW

4.50
0.69 3.47E+02

1.06E+02
1.33E+04

PW4098 PW 5.80 3.04 7.4SE+03 4.36E+05
PW4084 PW 6.41 - - 3.91 E+05
PW4052 PW 5.00 - - 2.31 E+05
PW305 PW 4.30 0.97 4.72E+02 2.34E+04
PW306 PW 4.50 0.97 4.72E+02 2.54E+04
PW300 PW 4.50 - - 2.11E+04
PW2037 PW 5.80 2.15 3.25E+03 1.70E+05
JT9D-59A PW 4.90 2.46 4.15E+03 2.36E+05
JT9D PW 5.00 2.43 3.91E+03 1.93E+05
JT8D-5A PW 1.04 - - 6.89E+04
JT8D PW 1.10 - _ 6.23E+04
JT3D PW 1.36 1.35 1.95E+03 8.01E+04
JT15D -B PW 3.30 0.69 2.35E+02 9.79E+03
JT15D PW - 0.71 2.86E+02 1.33E+04
FI 35 PW 0.20 - - 1.78E+05
F117-00 PW 6.00 2.15 3.22E+03 1.81 E+05
FI 00-220 PW 0.70 1.18 1.45E+03 1.06E+05
FI 00-00 PW 0.69 - - 1.05E+05
Viper 680 RR 0.00 0.74 3.79E+02 1.94E+04
Trent 970 RR 8.50 2.95 — 3.11 E+05
Trent 895 RR 5.79 2.79 5.98E+03 4.25E+05
Trent 600 RR 8.00 2.47 4.72E+03 3.06E+05
Spey 807 RR 0.93 0.83 - 4.91 E+04
RB211-882 RR 6.01 — — 3.77E+05
RB211-535E RR 4.30 - - 1.78E+05
RB211-524B RR 4.50 - - 2.22E+05

Model Manufacture n m T
RB211-22B RR 5.00 2.15 4.17E+03 1.87E+05
RB.153^1 RR - — _ 5.23E+(M
Pegasus 11- RR 1.20 1.22 1.93E+03 1.06E+05
Pegasus RR - 1.22 _ 9.56E+04
FJX-2 RR - 0.36 4.54E+01 3.11 E+03
FJ44-1^ RR - 0.53 2.02E+02 8.45E+03
F107/F112 RR — 0.30 6.62E+01 3.11 E+03
AE3007A1P RR 4.80 0.98 3.37E+04
Adour Mk RR 0.75 0.56 - 3.74E+04
RB.193-2 RM - 0.87 1.05E+03 4.52E+04
RB.162-81 RM - 0.74 1.88E+02 2.48E+04
Olympus 593 RS 0.00 1.24 3.08E+03 1.69E+05
RD-41 Rybinsk 0.00 0.64 2.90E+02 4.Q2E+04
RD-38 Rybinsk 0.00 - 2.31 E+02 3.19E+04
RD-36- Rybinsk 0.00 - 2.01 E+02 2.99E+04
RD-36-35FV Rybinsk - - 2.84E+04
RD-36-35 Rybinsk - - - 2.3CE+04
NK-93 Samara 17.00 2.90 3.65E+03 1.77E+05
AL-55 Saturn 0.60 0.59 3.15E+02 2.16E+04
D-25VK Soloviev - 1.90
RD9B Soyuz 0.00 0.67 7.G0E+02 3.23E+04
RD3 Soyuz 0.00 1.40 3.11E+03 8.58E+04
R-79V-300 Soyuz - 1.72 2.75E+03 1.52E+05
R-79 Soyuz 1.00 1.10 2.75E+03 1.52E+05
R-28V-300 Soyuz 0.00 1.01 - 6.57E+04
R-27V-300 Soyuz 0.00 1.01 1.35E+03 5.98 E+04
R-27F2M- Soyuz 0.00 1.01 1.50E+03 9.81 E+04
R-95 Soyuz 0.00 0.91 9.90E+02 4.41 E+04
R-3-300 Soyuz 0.00 0.91 1.21E+03 6.47E+04
R-1F-300 Soyuz 0.00 0.91 1.15E+03 5.64E+04
R-27-300 ST - - 4.90E+04
ALF502R-5 TL 5.70 - 5.83E+02 3.10E+04
FJ44 WR 3.28 - ~ 8.45E+03
D-36 ZMKB 5.60 1.37 1.11E+03 6.37E+04
AL222- ZMKB 1.19 0.81 5.20E+02 3.01 E+04
V2500^1 - 5.40 1.71 2.36E+03 1.11 E+05
Trent 600 - 6.50 2.79 6.53E+03 4.09E+05
TFE731-20 - ~ 1.00 4.01 E+02 1.62E+04
TFE731-2 - 2.67 1.00 3.29E+02 1.S6E+04
TFE731-2 - 2.66 1.02 2.84E+02 1.56E+04
TF41-A-B - - 1.02 1.59E+03 6.45E+04
TF39- - - 2.54 3.26E+03 1.82E+05
TF34-00 - - 1.27 6.45E+02 4.03E+04
TF33-P-7 - - 1.37 2.11 E+03 9.34E+04
TF33-P-3 - 1.35 1.77E+03 7.S6E+04
TF30-P-11 - - 1.24 1.81 E+03 1.12E+05
TBE-M2.0 - - - 4.21E+03 3.07E+05
TBE-M1.6 - - - 4.20E+03 3.14E+05
TBE-2.4 - - - 4.35E+03 2.91E+05
la y  620 - 3.04 1.52 1.44E+03 6.16E+04
RCM1 - - 0.64 2.90E+02 4.02E+04
RB211-524H - 4.10 2.19 4.31 E+03 2.70E+O5
RB.162-31 - - - - 2.40E+04
RB.162 - - 0.66 - 2.45E+04
RB.145 - 0.00 0.53 - 1.82E+04
JT90-3A — - 2.43 3.90E+03 1.93E+05
JT8D-7B — - 1.14 - 6.45E+04
JT8D-217 - 1.74 1.43 2.01 E+03 9.27E+04
JT8D-1 - - 1.09 1.50E+03 6.87E+04
JT3-D-7 - — 1.34 1.95E+03 8.45E+04
JT3D-3B — - 1.35 1.95E+03 8.01 E+04
J79-7 — 0.00 0.99 1.75E+03 7.93E+04
J75-P-7 0.00 1.09 2.66E+03 1.09E+05
J69.T-25 - 0.00 0.57 1.65E+02 4.56E+03
J60-P-3 0.00 0.59 2.09E+02 1.33E+04
J58-P 0.00 — — 1.45 E+05
J57-P-43WB — 0.00 0.99 1.76E+03 4.88E+04
J57-P-23 _ 0.00 1.02 2.34E+03 7.12E+04
GE4 _ 2.29 6.01E+03 3.07E+05
GE21J11B14 - 1.88 - 2.89E+05
FJ44-2 _ 3.28 0.60 2.03E+02 1.02E+04
FJ44- _ 0.53 2.02E+02 8.4SE+03
F117-PW- 5.90 2.15 - 1.85E+05
F108-CF-00 — _ 1.63 2.09E+03 9.62E+04
F107-WR-0I _ - 0.30 6.40E+01 2.82E+03
F103-01 - - 2.19 3.96E+03 2.30E+OS
CFM56-5C2 - 6.60 1.84 — 1 39E+05
CF34-3B _ - 1.24 7.58E+02 4.10E+04
ALF502R-6 - — 1.27 6.24E+02 3.34E+04
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Model Manufacture d m Pengine
D-25V Aviadvigatel 1.086 1325 4.05E*06
Smart DalmlerChrysler - 66 4.00E+04
CT7-5A GE 0.737 355 1.29E+06
T700-700 GE 0.635 198 1.21EK»
2706 Hirth - 31 4.85E+04
F 3 0 Hirfh - 36 7.08E+04
NK-12MV ra<BM 1.15 2900 1.10E+07
TV3-117VMA Wlmov 0.65 560 1.86E+06
T8Q0-S01 LHTEC 0.5501 149.7 1.17E+06
L2400EFI
turbo Umbach - 77 7.46E+04
PT6A-27 PW 0.483 149 5.07E+05
PT6A.68 PW 0.483 259.5 1.19E+06
PW150A PW 0.767 690 3.78E+06
PW206A PW 0.5 108 4.77E-KI5
A1-14RA PZL - 200 1.91 E+05
K-9 PZL - 580 8.60E+05
912 UL Rota - 59 5.96E+04
250-C40B RR 0.577 71.5 3.13E+05
Gem 42 RR 0.575 183 7.46E+05
T56-15 RR 0.686 828 3.42E+06
EJ22 Subaru - 119 1.19E+05
TSIOL-550-C TCM - 188.4 Z61E+05
0-360-A Tetron Lycoming - 120 1.34E+05
Arrius 1D Turbomeca - 111 3.13E+05
416 VAZ - 125 1.34E+05
Twinpack Wankel Rotary - 119 1.10E+05
D-127 ZMKB 1.4 1.07E+07
0-138 ZMKB Progress 1.382 1077 7.48E+06
PT6A-42 - 0.4826 177.3576 6.34E+05
PT6A-45R - 0.4826 196.8624 8.93E+05
T400-CP-400 - 1.1049 324.7776 1.34E+06
T406-AD-400 - 0.6223 442.26 4.59E+06
T53-L-13 - 0.5842 249.0264 1.04E+06
T55-L-11 - 0.61722 303.912 2.80E+06
TS6-A-15 - 1.13284 838.2528 3.42E+06
T56-A-7 - 1.03886 831.4488 2.82E+06
T58-100 - 0.5461 151.956 1.12E+06
T64-100 - 0.51308 326.592 3.23E+06
T76-G-10 - 0.68834 157.8528 5.33E+05

•Vehicles with more than one power plant type. Included as "7 % ^

AS: Armstrong SIddeley
TiJ Textron Lycoming
ST: Soyuz Tumanskiy
RktRR/MTU
RS: RR/SNECMA
WR: Williams Rolls
TCM: Teledyne Continental Motors

N ote  tabulated data found in this section are compiled from various references [7,9,10/8.13,14,28.29].
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A.4 Sample Design Output Results
A.4.1 With Partial Neural Estimation

Airframe m M Z y
takeoff

y
landing Tequipped Tresult Condition £

Rafale 2.45E+04 1.80 16765 600 600 1.61E+05 2.6%
CRJ200 2.15E+04 0.74 12500 1527 1423 7.46E+04 T̂Idaeff 33.2%

737-900 7.90E+D4 0.32 12500 2439 1632 2.21 E+05 ^mack 15.7%

IL-214 5.50E+04 0.75 12000 1000 980 1.90E+05 T 18.7%

MiG-23 1.47E+04 2.35 18500 500 750 1.16E+05 T 11.2%
Mako i , 6 u 14400 450 750 6.16E+04 T̂tekwff 58.3%

An-72 2.75E+04 0.56 10210 620 420 1.16E+05 T̂uüuoff' -11.7%

An-74 3.65E+04 0.65 10210 930 465 1.16E+05 T 1.0%

VJ-101C 6.60E+03 1.30 12000 0 0 8.86E+04 19.6%

Jas 39A 1 'iCF 800 T*laktejf 47.1%
F-8 IIM 1.89E+04 2.20 18000 630 900 1.24E+05 T‘epümai -2.9%

Y ^ 14.0%

Italics: estimated values
Gray entries: error resulted from the calculation of

Airframe n
Actual Result Actual

Tengine

Result Error Actual

Wengine

Result Error Actual Result Error Actual
d

Result Error

E n g in e

Rafale 2 2 — 1.11 E+05 — — 1.98E+03 — — 0.75 -- — 1.19 — M88-3
40 ! 24 CF34-3B

737-900 2 2 1.21 E+05 1.02E+05 15.7% 2.38E+03 1.83E+03 23.1% 5.1 5.60 9.8% 1.55 1.71 10.7% CFM56-7B27S
IL-214 2 2 1.05E+05 8.60E+04 18.7% — 1.55E+03 — 5 5.60 12.0% — 1.39 — CFM56-3
MiG-23 1 1 — 1.56E+05 — ---- 2.71 E+03 — — 0.76 — — 1.10 — R-35-300
Mako 1 1 8.90E+04 3.75E+04 57.8% 9.90E+02 7.82E+02 21.0% 0.4 0.75 87.5% 0.74 0.61 18.2% EJ200
An-72 2 2 6.37E+04 7.12E+04 11.8% 1.11 E+03 1.33E+03 19.8% 5.6 5.60 0.0% 1.37 1.37 0.0% D-36
An-74 2 2 — 6.31E+04 — — 1.20E+03 — — 5.60 — — 1.37 — D-36 2A
VJ.101C 6 1 7.85E-D4 3826% — ! 44E+03 ----- 0.40 — 0 53 0 92 74.0/u RB.145
Jas-39A 1 1 7.12E+04 4.26E+04 40.2% 9.89E+02 8.64E+02 12.7% 0.34 0.93 173.4% 0.88 0.78 11.4% F404-400
:■ 8  4 M  

Le:iacy B -> i 5.671?+04 OOE 03 4 8 100.0% 0 08 0 95 .4E 3007.41 P

Gray entries: Values based on different number of engines
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A.4.2 Without Neuial Estimation

Airframe m M Z ^ u k e o jf ^landing Tequipped Tresult Condition £

J-811 1.53E+04 2.20 20200 670 1000 1.20E+05 14.6%

J-7E 9.10E+03 2.35 17500 700 700 5.88E+04 '^akeoff 2.7%

Jaguar ! .57E"(kl i 50 1250 680 6.B0E+04 T 41.1%

GR. Mk 7 8.70E+03 0.98 15600 0 0 9.62E+04 T 2.5%

T-4 7.50E+03 0.91 14815 655 704 2.98E+04 3.0%

Su-25 1.76E+04 0.80 7000 500 650 8.03E+04 '̂ cpOmd 8.7%

Falcon m 1 5 * -48.5%

767-200ER 1.56E+05 0.80 11550 2071 1372 4.09E+05 4.0%

777-200ER T
•* mach 3 .4 %

A340-200 2.75E+05 0.86 11887 3017 1890 5.05E+05 Tlaluof -17.4%

Gray entries: error resulted from the calculation of T

Airframe

Actual

n
Result Actual

Tengine

Result Error Actual

Wengine

Result Error Actual Result Error Actual
d

Result Error

Engine

J 8 5 
J-7E 1 1 6.47E+04 5.83E+04 10.0%

2 . ' . 'E + Ù 3

1.12E+03 _ 0 0.00 _
' 17 
0.95

WP13A
WP13F

Jaguar 
GR. Mk7 1 1 1.06E+05

4 4 1 F 404

1.03E+05 2.5% 1.93E+03 1.85E+03 4.3% 1.2 1.20
C.0%
0.0%

0.S6
1.22 1.22

24.3%
0.0%

Adour Mk 8i 1 
Pegasus 11-61

T 4 40.2% 0.56 6.6% F3-30
Su 25 5 1 1 62E+05 2.80E+03 1.20 1 17 R-195
Falcon 900 1 0,41E^04 'I.70E+03 0.49 0.8n
767-200ER 2 2 — 2.16E+05 — — 3.68E+03 — — 5.05 — — 2.45 — —

777-200ER 2 2 4.25E+05 4.01 E+05 5.7% 5.98E+03 6.68E+03 11.6% 5.79 5.79 0.0% 2.79 2.79 0.0% Trent 895
A340-200 2 1.30E-v5 134.9% 5.46E+03 . . ... 5.79 12.3% 1.84 2 .S 5 46 6% CFM56-5C2

Gray entries: Values based on different number of engines
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A.5 Type U and Type C Engine Modeling

Short takeoff performances of several airplanes are simulated based on the linear assum ption 

of lift increase as a function of thrust, as in equation 12. For upper engine configurations, flight 

data of the Aska were used and extrapolated through a family of lines as follows.

3.5

1.5

0.2 0.4 0.6 0.8

thrust coefficient

Reproduction of tdie Aska at 10° angle of attack from flight data [15]

Similarly, vehicles w ith type C engine configuration are modelled in the figure below, for the 

performances of short takeoff.

6
5

I
€

4

1

0
1.2 1.40.8 10.60.2 0.40

thrust coefficient

Reproduction of wind tunnel experimentation data from literature [16]

The above models are used to simulate takeoff of a number of vehicles. A thrust recovery factor of 

0.71 compensates for losses through aerodynamic deflection of exhaust [26]. This is applied to 

both  U and C type takeoffs. The table below shows the calculated thrust requirements derived 

from  the above V/STOL models. The idealisation of the above takeoff models via linear 

interpolation has yielded significant underestimations of the actual thrust.
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Airframe m Y
ta k e o ff ^ l a n d i n g Tequ ipped Ttakeoff' Tdeflec t ^2 A

An-72 3.30E+04 620 420 1.15E+05 -18.1% 71.8% Upper
An-74 3.86E+04 930 465 1.15E+05 10.9% 68.8% Upper
YC-15 7.01 E+04 610 610 2.56E+05 -17.2% 73.1% Conventional
YC-14 7.71 E+04 571.5 610 4.09E+05 — — Upper
0-17 A 2.65E+05 2124 823.5 6.48E+05 -45.2% 59.8% Conventional
Aska 3.87E+04 578 408 1.52E+05 48.5% 75.0% Upper
777-200ER 2.98E+05 3030 1630 7.47E+05 3.1% 60.9% Conventional
A380-800 5.60E+05 2050 2900 1.28E+06 -24.4% 57.1% Conventional
A340-200 2.75E+05 3017 1890 5.00E+05 -8.0% 46.0% Conventional

^^e tp iip p ed  '^ ta keo ff )  ^  '^equipped  

^ 2  ^^ta keo jf '^deflect )  ̂^takeojf

There is no reference thrust rating for the YC-14, power rated research vehicle. 

R e s u l t s  o f  u p p e r  a n d  lo w e r  t y p e  t a k e o f f  m o d e l in g

A.6 Results of Various Neural Regression of Stall

The following compares three neural network estimations of stall, composed of different sets 

of prim ary input parameters:

Airfram e Actual neural(W,M,X,^„jp) e neural (W,X,^^jp,S) £ neuralQ V.X^jp) s
RAH-66 0.0 0.0% . 0.0 . 0.0% 0.0%
Yak-38 0.0 0.0% 0.0 0.0% 0.0%
GR. Mk 7 0.0 0.0% 0.0 0.0% 0.0%
RJ100 48.9 0.0% sj . 48,3 1.3% 58.9%
MiG-31 72.5 0.0% 7 7 7  ' 7.1% 7.1%
767-200ER 63.4 0.0% 0.7% 0.7%
Sea Harrier — — 5- 45 8 -- 1 “ “ “

777-200ER 65.1 5.2% 5.2% 1 5.2%
CRJ200 69.4 21.6% " $4 W * 21.6% 1 21.6%
737-900 72.5 22.1% /  " . m i o ' 13.2% 1 24.9%
IL-214 69.4 29.6% 31.2% 1 31.2%
Average 7.1% 7.3% \ 13.6% 1

It is noted that the second neural network is comparatively accuracy with respect to the first 

network. Since the parameter S  is not a primary input value, it may be necessary to first estimate 

S ,  e.g., via equation 8. However, successive estimations of parameters may lead to possible error 

amplification tow ards the prediction of v ,̂^„ . The third neural network is unable to distinguish 

die stall characteristics of regional jets from military vehicles from the results of RJlOO and MiG-31, 

in  w hich this is provided by the parameters M  or S .
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