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Abstract

Theoretical Study Of Compressible Flow Through Aneurysms

Maria Jumani

Master of Science 2019

Applied Mathematics

Ryerson University

The goal of this research is to analyze the effect of blood flow through expansions by using the Karman-

Pohlhausen method. The Karman-Pohlhausen method has previously been used in several research works

to analyze the flow through constrictions. In this Thesis, the effect of different flow parameters (Reynolds

number, compressibility, and slip) on pressure, pressure gradient, centerline velocity, and on wall shear

stress are analyzed. Our results show that the pressure gradient curves are most affected by increasing

Reynolds number and compressibility, as well as for smaller slip values (ws0). Furthermore, the scaled

centerline velocity was least affected by varying Reynolds and Mach numbers, whereas changes are observed

in centerline velocity curves for different slip values. The wall shear stress was essentially unchanged by the

Reynolds numbers, compressibility range and slip values considered in this Thesis.
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Chapter 1

Introduction

A blood vessel that at some point bulges out like a balloon is said to have an aneurysm. Aneurysms often

occur at a weak spot along an artery. Certain factors are known to contribute to the formation of different

kinds of aneurysms. It has been reported in the literature that smoking, hypertension and male sex are

strong risk factors for the development of abdominal aortic aneurysms (AAAs). At the same time, there is

no significance in increased growth rate of aneurysm with hypertension [29].

Subarachnoid hemorrhage (SAH) is a type of stroke that can be caused by the rupture of an intracranial

aneurysm [28]. Smoking, hypertension, and excessive alcohol consumption are important risk factors known

to increase the risk of subarachnoid hemorrhage (SAH) [13]. In describing the risk for aneurysm rupture, the

location and type of aneurysm are important considerations [11]. “The mortality rate of ruptured abdominal

aortic aneurysms (AAAs) is up to 75%, making it the 13th leading cause of death in the US” [20]. Noninvasive

techniques are presented in the literature for determining the rupture risk of Abdominal aortic aneurysm

(AAA) [14].

In most research studies blood is treated as an incompressible fluid and no-slip boundary conditions

are applied. In several studies wall slip has been applied to blood [1, 2, 10, 17, 23, 24, 27]. Furthermore,

Particle-based methods have often been used to study the blood flow application [1, 2, 7, 35], that have

compressibility effects built-in.

Much research has been done investigating the flow through aneurysms. Theoretical, numerical, and

experimental methods can be used to analyze the impact of blood flow through the local expansions. One

such work has been done by [21] numerically, where the flow was steady and incompressible with variable

viscosity. The effect of nanoparticles on blood flowing through an artery with a combination of stenosis

(narrowing of a blood vessel) and aneurysm was studied theoretically and numerically in [34]. The Lattice

Boltzmann method was used to asses the influence of the asymmetry on the hemodynamics in a stented

fusiform aneurysm [30]. Studies have been done on blood vessels with a severe stenosis and severe aneurysm

to monitor the behavior of blood-flow in the diseased artery [3]. A particle-based method (multiparticle

collision dynamics) was used to study blood flow through a local expansion in [25]. The effect of changing the

severity of the aneurysm with slip (non-zero velocity component at the wall) as well as no-slip (zero velocity

component at the wall) boundary conditions were considered for a range of low Reynolds numbers. Blood flow
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through an aneurysm during the cardiac cycle was studied by [32] numerically using a mixed Euler-Lagrange

formulation. Investigation of blood flow through expansion has been done numerically [12, 16, 19, 31, 33] as

well as experimentally [4, 5, 6, 8]. Several numerical experiments were carried out to understand the effect

of the presence of the aneurysm, influence of the increase and decrease in pressure, and effect of the presence

of multiple aneurysm on the flow features [18].

In this research the Karman-Pohlhausen method is used to study the flow through aneurysms analytically.

This method has been used by many researchers in order to study the flow through stenosis. Forrester and

Young [15] introduced the theoretical assesment for incompressible no-slip flow. The Karmann-Pohlhausen

method was later used in [9, 22, 26] to study the flow of micropolar fluid, of a couple stress fluid, and of

a power law fluid respectively. Flow is considered as incompressible, and no-slip boundary conditions are

applied in all of these studies. The Karman-Pohlhausen was later used in [1] and [27] to develop the axial

velocity distribution for steady, Newtonian, weakly compressible flow through a constricted cylinder.

The goal of this research is to study the changes in pressure, pressure gradient, centerline velocity and

wall shear stress of blood flow through mild expansions for various Reynolds and Mach numbers with slip

boundary conditions. Blood is considered as a Newtonian, weakly compressible fluid. In our analysis the

blood vessel is considered as a cylindrical tube with a local expansion commonly referred to as an aneurysm.

A piecewise polynomial geometry is considered that is helpful in varying the location of maximum expansion

allowing for asymmetric expansions.

This Thesis is organised as follows: In Chapter 2 we provide the Fluid Dynamics background that is

the foundation of our analytical results, as well as the derivation of the integrated momentum equation.

In Chapter 3 the analytical method that is used in our research, the pressure gradient equation, the flow

geometry, and upstream properties are discussed. Chapter 4 contains the analysis of our numerical results.

Finally, Chapter 5 provides important conclusions and future work.
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Chapter 2

Introduction to Fluid Dynamics

2.1 Governing Equations

The governing equations of motion for a compressible, isothermal, forced, steady flow with constant viscosity

are

∇ · (ρu) = 0 (cons. mass) (2.1)

ρu · ∇u = −∇P + ρf + µ∇2u +
µ

3
∇(∇ · u) (cons. momentum) (2.2)

where ∇ is the gradient operator, ρ is the density, u is the velocity vector, P is the pressure, f is the external

force, and µ is the viscosity that is constant. The system also requires an equation of state for compressible

flow, which, for an ideal gas, gives the pressure-density relationship

P =
kBT

m
ρ (equation of state) (2.3)

where kB is the Boltzmann constant, T is the system temperature that is constant, and the mass of a fluid

particle is m .

As we are dealing with axisymmetric flow, the governing equations can be written in cylindrical coordi-

nates together with the assumed velocity vector

u = (ur, uθ, uz) = (u(r, z), 0, w(r, z)). (2.4)

Since the velocity vector is a function of r and z only, so are the pressure and density. Here r is the radial

coordinate and z is the axis of symmetry, and there is no flow in the θ direction.

An external force is acting in the z direction only that is responsible for the flow. Thus

f = (0, 0, ρg) (2.5)
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where g is an acceleration constant. This forcing serves to be able to make a connection to particle-based

simulations in future extension of this work. Now one can write the governing equations in cylindrical

coordinates as follows

∂

∂r
(ρu) +

∂

∂z
(ρw) +

ρu

r
= 0 (mass) (2.6)

ρ

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂P

∂r
(r-momentum) (2.7)

+ µ

(
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2
− u

r2

)
+
µ

3

∂

∂r
(∇ · u)

ρ

(
u
∂w

∂r
+ w

∂w

∂z

)
= ρg − ∂P

∂z
(z-momentum) (2.8)

+ µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+
∂2w

∂z2

)
+
µ

3

∂

∂z
(∇ · u)

P (r, z) =
kBT

m
ρ(r, z) (equation of state), (2.9)

where

∇ · u =
u

r
+
∂u

∂r
+
∂w

∂z
. (2.10)

The θ-momentum equation is identically satisfied.

In the next section, the differential equation for the pressure is derived by using these equations, subject

to imposing slip at the wall. Specifically, u · t = ws and u ·n = 0, where t and n are the unit tangent and

normal directions on the expanded cylinder wall; ws is a constant slip value. In the case of an axisymmetric

flow with the wall described by R = R(z), these equations can be solved to produce

u|r=R =
wsR

′
√

1 +R′2
and w|r=R =

ws√
1 +R′2

, (2.11)

where R′ = dR
dz .

2.1.1 Dimensionless quantities

In this research some dimensionless quantities are used namely the Reynolds number and Mach number.

The Reynolds number is defined as the ratio of an inertial term to viscous term. Reynolds numbers are

helpful in predicting the flow pattern, whereas Mach numbers are used to measure the compressibility of the

flow. These quantities are defined as follows,

Re =
ρWR

µ
(Reynolds number) (2.12)

Ma =
W√
kBT
m

(Mach number) (2.13)
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where ρ is the density, W is the average velocity, µ is the constant viscosity, kB is the Boltzmann constant,

T is the constant system temperature and m is mass the of the fluid particle.

2.2 Derivation of integrated z-momentum equation

As we are also dealing with axisymmetric flow, the analysis that was made for mild constrictions in Forrester

and Young [15] is also applicable in our case for a mild expansion. This results in the approximation of the

pressure as

∂P

∂r
= 0. (2.14)

As pressure is assumed independent of r, that means it is a function of z only i.e P = P (z), and through the

equation of state, ρ = ρ(z). After rearranging the equation of conservation of mass with this, it implies that

∂u

∂r
+
u

r
= −1

ρ

∂

∂z
(ρw). (2.15)

Substituting the above equation in the z-momentum equation, together with the assumption that is suggested

in Forrester and Young that u∂w∂r � w ∂w
∂z , we get

ρw
∂w

∂z
= ρg − dP

dz
+ µ

(
∂2w

∂r2
+

1

r

∂w

∂r
+

4

3

∂2w

∂z2

)
− µ

3

∂

∂z

(
1

ρ

∂

∂z
(ρw)

)
. (2.16)

The assumption that was made in Forrester and Young says that the velocity of the flow in the radial direction

r is negligible as compared to the flow in the z direction, as well as change in the flow due to change in r is

negligible as compared to the change in flow due to changes in z. On the basis of that assumption the term

u∂w∂r is neglected. Multiplying equation (2.16) with r
ρ , and integrating with respect to r from 0 to R, we get

∫ R

0

rw
∂w

∂z
dr =

∫ R

0

rgdr −
∫ R

0

r

ρ

dP

dz
dr +

∫ R

0

µ

ρ
r

(
∂2w

∂r2
+

1

r

∂w

∂r
+

4

3

∂2w

∂z2

)
dr

−
∫ R

0

µ

3ρ
r
∂

∂z

(
1

ρ

∂

∂z
(ρw)

)
dr

which can be written as∫ R

0

rw
∂w

∂z
dr =

∫ R

0

rgdr −
∫ R

0

r

ρ

dP

dz
dr +

∫ R

0

µ

ρ
r

(
∂2w

∂r2
+

1

r

∂w

∂r

)
+

∫ R

0

(
4µ

3ρ
r
∂2w

∂z2

)
dr

−
∫ R

0

µ

3ρ
r
∂

∂z

(
1

ρ

∂

∂z
(ρw)

)
dr.

After integrating the above equation and substituting r
(
∂2w
∂r2 + 1

r
∂w
∂r

)
= ∂

∂r

(
r ∂w∂r

)
, we get

5



1

2

∫ R

0

r
∂

∂z
w2dr =

gR2

2
− 1

ρ

dP

dz

R2

2
+
µR

ρ

(
∂w

∂r

)∣∣∣∣
r=R

(2.17)

+

∫ R

0

µ

ρ

[
4

3
r
∂2w

∂z2
− 1

3
r
∂

∂z

(
1

ρ

∂

∂z
(ρw)

)]
dr

We assume that µ is constant, and found that ρ = ρ(z). Thus the last term on the right-hand side of equation

(2.17) can be written as

r
∂

∂z

(
1

ρ

∂

∂z
(ρw)

)
= − 1

ρ2
dρ

dz

∂

∂z
(rρw) +

1

ρ

∂2

∂z2
(rρw)

Thus

1

2

∫ R

0

r
∂

∂z
w2dr =

gR2

2
− 1

ρ

dP

dz

R2

2
+
µR

ρ

(
∂w

∂r

)∣∣∣∣
r=R

(2.18)

+

∫ R

0

µ

ρ

[
4

3
r
∂2w

∂z2
− 1

3

(
− 1

ρ2
dρ

dz

∂

∂z
(rρw) +

1

ρ

∂2

∂z2
(rρw)

)]
dr

Next, we apply the Leibniz rule from Appendix A. The z-derivative can be taken outside of the integrals

with respect to r, by using the Leibniz rule as follows (details are given in Appendix A):

1

2

∫ R

0

r
∂

∂z
w2dr =

1

2

d

dz

∫ R

0

rw2dr − 1

2

RR′w2
s

(1 +R′2)

4

3

µ

ρ

∫ R

0

r
∂2w

∂z2
dr =

4

3

µ

ρ

[
d2

dz2

∫ R

0

rwdr − RR′′ws√
1 +R′2

− R′
2
ws√

1 +R′2
+

2RR′2R′′ws

(1 +R′2)
3
2

]

∫ R

0

∂2

∂z2
(ρrw) dr =

d2

dz2

∫ R

0

rρwdr − ρ(RR′′ +R′2)ws√
1 +R′2

− 2RwsR
′

√
1 +R′2

dρ

dz
+

2RρwsR
′2R′′

(1 +R′2)
3/2

µ

3ρ3
dρ

dz

(∫ R

0

∂

∂z
(rwρ) dr

)
=

µ

3µ3

dρ

dz

[
d

dz

∫ R

0

rρwdr − Rρws√
1 +R′2

R′

]

Now equation (2.18) can be written as,

6



1

2

d

dz

∫ R

0

rw2dr = −1

2

RR′w2
s

(1 +R′2)
− 1

ρ

dP

dz

R2

2
+
gR2

2
+
µR

ρ

(
∂w

∂r

)∣∣∣∣
r=R

+
4

3

µ

ρ

d2

dz2

∫ R

0

rwdr − 4

3

µ

ρ

RwsR
′′

√
1 +R′2

− 4

3

µ

ρ

wsR
′2

√
1 +R′2

+
8

3

µ

ρ

RR′2R′′ws
(1 +R′2)3/2

− µ

3

1

ρ2

[
d2

dz2

∫ R

0

rρwdr − ρ(RR′′ +R′2)√
1 +R′2

ws

− 2RwsR
′

√
1 +R′2

dρ

dz
+

2RρwsR
′2R′′

(1 +R′2)3/2

]
+

µ

3ρ3
dρ

dz

[
d

dz

∫ R

0

rρwdr (2.19)

− RρwsR
′

√
1 +R′2

]
which is the same as derived in [27], with constant viscosity. The above equation can be simplified by using

the fact that the flow rate is constant. Flow rate Q can be defined as follows,

Q = πρR2W = 2πρ

R∫
0

rw(r, z)dr. (2.20)

Recall that W is the average velocity. As the flow rate is constant (see Appendix B), the rate of change in

the flow rate is zero which can be written as,

dQ

dz
= 0. (2.21)

Hence,

dn

dzn

R∫
0

rρwdr = 0 n = 1, 2 (2.22)

and

d

dz

∫ R

0

rwdr = −R
2W

2ρ

dρ

dz
. (2.23)

The detailed explanation is given in Appendix B. By using the above facts, equation (2.19) can be written
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as

1

2

d

dz

∫ R

0

rw2dr = −1

2

RR′w2
s

(1 +R′2)
− kBT

m

1

P

dP

dz

R2

2
+
kBT

m

µR

P

(
∂w

∂r

)∣∣∣∣
r=R

+
4

3

kBT

m

µ

P

d2

dz2

∫ R

0

rwdr − 4

3

kBT

m

µ

P

RwsR
′′

√
1 +R′2

− 4

3

kBT

m

µ

P

wsR
′2

√
1 +R′2

(2.24)

− kBT

m

µ

3P 2

[
−P (RR′′ +R′2)√

1 +R′2
ws −

2RwsR
′

√
1 +R′2

dP

dz
+

2RPwsR
′2R′′

(1 +R′2)3/2

]
+

8

3

kBT

m

µ

P

RR′2R′′ws
(1 +R′2)3/2

− µ

3P 2

kBT

m

dP

dz

RwsR
′

√
1 +R′2

+
gR2

2

where the second derivative of the integral on the right-hand side of the equation (2.24) can be found by

differentiating equation (2.23) as follows:

d2

dz2

∫ R

0

rwdr =
d

dz

(
− Q

2πρ2
dρ

dz

)
(2.25)

= Q

[
1

πρ3

(
dρ

dz

)2

− 1

2πρ2
d2ρ

dz2

]

= ρR2W

[
1

ρ3

(
dρ

dz

)2

− 1

2ρ2
d2ρ

dz2

]

=
R2W

ρ2

(
dρ

dz

)2

− R2W

2ρ

d2ρ

dz2
.

The density has been expressed in terms of pressure by using the equation of state (2.3) and we also used

equation (2.24) with n = 1 and 2 resulting in the two integral terms on the right-hand side of the equation

(2.19) becoming zero.

At this stage most terms in equation (2.24) are known flow parameters (ws,
kBT
m , µ, flow rate Q) or the given

flow geometry (R, R′, R′′) or the unknown terms (pressure or density) that need to be solved for, with the

exception of the integral term on the left-hand side, and
(
∂w
∂r

)∣∣
r=R

. For the approximation of these two

terms the Karman-Pohlhausen method is used which is described in the next chapter.
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Chapter 3

Karman-Pohlhausen method

Following [1, 15, 27], the axial velocity w is assumed to be a fourth-order polynomial that can be written in

the form as follows,

w(r, z)

W
= Aη +Bη2 + Cη3 +Dη4 + E, (3.1)

where η is the scaled radial coordinate which is defined as η = R−r
R whose value is one at the center of the

vessel and zero at the wall, and W = W (z) is the centerline velocity that needs to be determined explicitly.

The expressions for A to E are determined by imposing:

(i) w =
ws√

1 +R′2
at r = R (slip boundary condition)

(ii)
∂w

∂r
= 0 at r = 0 (axisymmetric flow)

(iii) w = W at r = 0 (definition of centerline velocity),

(iv)
∂2w

∂r2
= −2(W − ws)

R2
at r = 0 (nearly parabolic flow with slip),

(v)
dP

dz
≈ ρg + µ

(
∂2w

∂r2
+

1

r

∂w

∂r

)
at r = R ( using z-momentum equation).

9



The values for the unknown constants can be found by imposing condition (i)-(v), resulting in

A =
1

7

(
−λ+ 10− 12E + T + 2

ws
W

)
(3.2)

B =
1

7

(
3λ+ 5− 6E − 3T +

ws
W

)
(3.3)

C =
1

7

(
−3λ− 12 + 20E + 3T − 8

ws
W

)
(3.4)

D =
1

7

(
λ+ 4− 9E − T + 5

ws
W

)
(3.5)

E =
ws

W
√

1 +R′2
(3.6)

where λ and T are defined as,

λ =
R2

µW

dP

dz
and T =

ρgR2

µW
. (3.7)

Now, we can evaluate
(
∂w
∂r

)∣∣
r=R

by taking the derivative of the axial velocity. From equation (3.1)

∂w

∂r

∣∣∣∣
r=R

=
d

dr

[
W
(
Aη +Bη2 + Cη3 +Dη4 + E

)]∣∣
r=R

= W

[
A
d

dr

(
1− r

R

)
+B

d

dr

(
1− r

R

)2
+ C

d

dr

(
1− r

R

)3
+D

d

dr

(
1− r

R

)4
+ E

d

dr
(1)

]∣∣∣∣
r=R

= W

[
A

(
− 1

R

)
+ 2B

(
1− r

R

)(
− 1

R

)
+ 3C

(
1− r

R

)2(
− 1

R

)
+ 4D

(
1− r

R

)3(
− 1

R

)]∣∣∣∣
r=R

= −AW
R

= −1

7

(
−R
µ

dP

dz
+ 10

W

R
− 12

ws

R
√

1 +R′2
+

m

kBT

PgR

µ
+ 2

ws
R

)
.

Now, we can develop a relationship between the centerline velocity W and the average velocity W by

substituting equation (3.1) in equation (2.20). This gives

Q = πρR2W = 2πρ

∫ R

0

rW
(
Aη +Bη2 + Cη3 +Dη4 + E

)
dr. (3.8)

After integrating equation (3.8) and solving for W in terms of W , recalling that W = W (z), we get

πρR2W =
−R4πρ

105µ

dP

dz
+

97

210
πρWR2 +

17πρR2

35

ws√
1 +R′2

+
R4

105

ρgπ

µ
+

11πρR2

210
ws (3.9)

which can be rearranged to get

W =
2

97

R2

µ

dP

dz
+

210

97
W − 102

97

ws√
1 +R′2

− 2

97

m

kBT

PgR2

µ
− 11

97
ws. (3.10)

Note that in the no-slip, and no force-driven case (ws = 0, g = 0), this relationship agrees with Forrester

and Young.
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3.1 Differential equation for pressure

The differential equation for pressure can be obtained by substituting the expressions for d
dz

∫ R
0
rw2dr and(

∂w
∂r

)∣∣
z=R

into equation (2.24). The calculation for d
dz

∫ R
0
rw2dr is very tedious. Hence, Maple is used to

evaluate the expression and the result is given in Appendix C. The obtained differential equation for the

pressure can be written as

Ω1

(
R3

µW

d2P

dz2

)
+ Ω2

(
R2

µW

dP

dz

)2

+ Ω3

(
R2

µW

dP

dz

)
+ Ω4 = 0, (3.11)

where, the coefficients Ωi are

Ω1 =
61

1580712
Re

R2

µW

dP

dz
+

2

3

Ma2

Re
− 899

395178

wsRe

W

1√
1 +R′2

− 95

790356

wsRe

W
+

631

263452
Re− 61

1580712

gR

W
2Re

2 (3.12)

Ω2 = −4

3

Ma4

Re2
+

61

526904
R′Re− 631

263452
Ma2 − 61

1580712

Rg

W
2Ma2Re (3.13)

Ω3 =
75

194
− 1

3

ws

W

R′Ma2

Re
√

1 +R′2
− 95

197589

wsR
′Re

W
− 1798

197589

wsR
′Re

W
√

1 +R′2

+
899

395178

wsRR
′R′′Re

W (1 +R′2)
3/2

+
631

131726
R′Re− 61

263452

R′Re2gR

W
2 (3.14)

+
5125

790356

ws

W
Ma2 +

61

1580712

g2R2

W
4 Ma2Re2 +

95

790356

wsRgMa2Re

W
3

+
154937

790356

ws

W
√

1 +R′2
Ma2 +

899

395178

wsRgMa2Re

W
3√

1 +R′2
− 6610

9409
Ma2

11



Ω4 = − 75

194

gRRe

W
2 +

R′′Rws√
1 +R′2 W

+
R′2ws√

1 +R′2 W
+

300

97
+

12

97

ws

W

−312

97

ws

W

1√
1 +R′2

+
154937

790356

R′R′′wsRRe

(1 +R′2)
3/2

W
− 2R′′R′

2
wsR

(1 +R′2)
3/2

W

− 611627

1975890

R′w2
sRe

W
2
(1 +R′2)

− 188159

987945

RR′R′′w2
sRe

W
2
(1 +R′2)2

− 899

395178

gRws

W
3

RR′R′′Re2

(1 +R′2)3/2
+

61

526904

R′g2R2Re3

W
4 (3.15)

+
149

329315

R′R′′w2
sRRe(

1 +R′2
)
W

2 −
149

329315

RR′
3
R′′w2

sRe

W
2
(1 +R′2)2

− 23837

3951780

R′R′′w2
sRRe(

1 +R′2
)3/2

W
2
− 631

131726

R′gRRe2

W
2 − 6610

9409
R′Re

+
23837

1975890

R′w2
sRe√

1 +R′2 W
2 +

1798

197589

R′gRwsRe
2

√
1 +R′2 W

3

+
149

329315

R′
3
w2
sRe

(1 +R′2)W
2 +

95

197589

R′gRwsRe
2

W
3

Note that the Mach number and Reynolds number are z-dependent expressions, as a result of the expansion

and only constant in a cylinder of fixed cross section. Equation (3.11) is solved subject to initial conditions

P = P0 and dρ
dz = 0 at z = 0.

3.2 Upstream Properties

The pressure differential equation presented in the previous section depends on z, and on dimensionless

z-dependent numbers. By using the constant flow rate property, a few terms in the pressure differential

equation can be replaced with constant upstream values. Constant flow rate (2.20) means

ρ0R
2
0W 0 = ρR2W (3.16)

where zero subscript denote upstream values. Since

Re0 =
ρ0W0R0

µ
, (3.17)

this then gives

Re =
ρWR

ρ0W0R0

Re0 (3.18)

Now, by using equation (3.16), equation (3.18) can be written as,

Re =
R0

R
Re0 (3.19)

12



Similarly,

Ma =
P0R

2
0

PR2
Ma0 (3.20)

ws

W
=

PR2

P0R2
0

ws

W 0

(3.21)

Rg

W
2 =

(
P

P0

)2(
R

R0

)5
R0g

W
2

0

(3.22)

where Ma0 and Re0 are the constant upstream Mach and Reynolds numbers respectively, P0 is the upstream

pressure and W0 is the average upstream velocity.

Additionally, the r-dependent axial velocity can be found by solving equation (2.8) upstream where w = w(r),
dP
dz = 0 and ρ = ρ0 are constant, subject to the boundary condition w(r = R0) = ws, and imposing that

w(r = 0) is finite. The result is

w(r) =
ρ0g

4µ
(R2

0 − r2) + ws. (3.23)

It follows that, upstream, the centerline velocity is

W0 = w(r = 0) =
ρ0gR

2
0

4µ
+ ws, (3.24)

and the average upstream velocity is

W 0 =

∫ R0

0
rw dr∫ R0

0
r dr

=
ρ0gR

2
0

8µ
+ ws. (3.25)

Dividing equation (3.25) by W 0, using equation (2.12) upstream, we get

1 =
1

8

ρ0W 0R0

µ

gR0

W
2

0

+
ws

W 0

(3.26)

1 =
1

8
Re0

gR0

W
2

0

+
ws

W 0

(3.27)

Re0 =
8(1− w0

s)

g0
, (3.28)

where w0
s = ws

W 0
and g0 = gR0

W
2
0

are dimensionless wall slip and forcing terms respectively scaled by (constant)

upstream quantities.
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Figure 3.1: Piecewise polynomial flow geometry

3.3 Flow geometry

In the literature several axisymmetric flow geometries are considered for the physiologically meaningful study

of the blood flow through an aneurysm. Here we consider the polynomial geometry that can be used to vary

the location of maximum expansion, creating asymmetric scenarios. The following axisymmetric geometry

is described by R = R(z):

R(z) =


R0 z ≤ z1
az3 + bz2 + cz + d z1 ≤ z ≤ z2
ez3 + fz2 + gz + h z2 ≤ z ≤ z3
R0 z ≥ z3

where z1 is the start of the aneurysm, z2 is the location of maximum expansion, z3 is the end of the aneurysm,

l1 + l2 determines the length of the expansions and δ controls the severity of the expansion (see figure 3.1).

The expressions for a− h are the same as outlined in [1, 27] with opposite sign for δ. They are

14



a = − 2δ

l1
2 b =

3δ(2z1 + l1)

l1
3 c = −6δz1(z1 + l1)

l1
3

d =
2δz1

3 + 3δz1
2l1 +Rol1

3

l1
3 e =

2δ

l2
3 f =

3(2z1 + 2l1 + l2)δ

l2
3

g =
6δ(z1

2 + 2z1l1 + l1
2 + z1l2 + l1L2)

l2
3

h = −3δl1
2l2 + 3δz1

2l2 + 6δz1l1l2 + 2δl1
3 + 2δz1

3 + 6δz1
2l1 −Rol23 − δl23

l2
3

15



Chapter 4

Numerical Results

4.1 Piecewise polynomial geometry

In this chapter, we plot the solution curves for various Reynolds numbers, compressibility and slip values,

keeping the values of other parameters fixed such as z1 = 6m, l1 = 4m, l2 = 1m, R0 = 0.1m, δ = 0.05m,

ρ0 = 1050kg/m3, µ = 0.0035kg/ms, whereas the values for W0, g0 and kBT
m are determined from the rela-

tions described below

W0 =
Re0µ0

ρ0R0
,

kBT

m
=

W 2
0

Ma20
, g0 =

8
(
1− w0

s

)
Re0

. (4.1)

The piecewise polynomial geometry is implemented from Akhter and Rohlf [1] and pressure, pressure gradi-

ent, centerline velocity and wall shear stress curves are analyzed. The Runge-Kutta method (RK4) is used

to generate the numerical solution of the differential equation (3.11)-(3.15) in Matlab. The scaling factor for

centerline velocity is 1
2W0−w0

sW0
, whereas wall shear stress is scaled by −R0

µ0W0

Values used for the simulations are presented in Table 4.1. The upstream Reynolds, Mach and slip values

(Re0, Ma0, ws0) are chosen, from which W0, kBT
m and g0 are computed from (4.1). The results for all

simulations are given in the Table 4.1.

4.1.1 Effect of Reynolds number

In order to study the effect of various Reynolds numbers on the blood flow through mild expansions we keep

the Mach number fixed (Ma0 = 0.1) and plot the solution curves for Re0 = 200, Re0 = 300, Re0 = 400.

Scaled pressure/density curves are presented in Figure 4.1 for weakly compressible flow with slip, P0 is the

upstream pressure obtained from the equation of state (2.3) upstream. These curves indicate that as the

Reynolds number increases, pressure decreases and the largest dip is attained by the curve for the largest

Reynolds number.

Pressure gradient curves are shown in Figure 4.2 for various Reynolds numbers. As we can see by glancing
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Table 4.1: Values of the parameter

Re0 Ma0 w0
s W0

kBT
m g0

200 0.1 0 0.006666666667 0.004444444444 0.04
200 0.1 0.04 0.006666666667 0.004444444444 0.0384
200 0.1 0.1 0.006666666667 0.004444444444 0.036
200 0.1 0.3 0.006666666667 0.004444444444 0.028
200 0.3 0.04 0.006666666667 0.000493827161 0.0384
200 0.5 0.04 0.006666666667 0.00077777778 0.0384
300 0.1 0.04 0.01 0.01 0.0256
400 0.1 0.04 0.013333333333 0.017777777778 0.0192

at the figure, larger minima/maxima are attained for larger Reynolds numbers, and there is no change in the

pressure gradient in the upstream and downstream portion as a result of changes in the Reynolds number.

In Figure 4.3, scaled centerline velocity curves are presented for various Reynolds numbers. No significant

changes are observed in centerline velocity with the change in Reynolds numbers. Likewise the scaled wall

shear curves in Figure 4.4 show little change as Reynolds number changes.

4.1.2 Effect of compressibility

Working with the same piecewise flow geometry discussed in the previous section, the solution curves are

obtained for various Ma0 for fixed Reynolds number (Re=200). Figure 4.5 shows the effect of change in

pressure due to change in compressibility (Mach numbers). As the Mach numbers increase, the pressure

decreases, with maximum decrease in the pressure attained by the curve with Ma0 = 0.5. Minor changes

are observed in the pressure gradient curves for Ma0 = 0.1 and Ma0 = 0.3 in Figure 4.6, whereas obvious

differences are observed in the minima/maxima of the pressure gradient curve for Ma0 = 0.5. The centerline

velocity and wall shear stress curves show little change while varying Mach numbers, and thus graphs are

not presented here.

4.1.3 Effect of slip

In this section we analyze the solution curves for various slip values (ws0 = 0, ws0 = 0.1, ws0 = 0.3) with

Re0 = 200 and Ma0 = 0.1. The minimum pressure is attained by the curve with no-slip (ws0 = 0), and as

the slip increases the pressure increases (see Figure 4.7).

Pressure gradient curves are shown in Figure 4.8 for various slip values. The largest minimum is attained

by the curve with no-slip, whereas no significant changes are observed in the maxima of the curves due to

varying slip values. Scaled centerline velocity curves are presented in Figure 4.9 for various slip values. It

is observed that the centerline velocity decreases more with increasing slip. Wall shear stress curves are

presented in Figure 4.10 for various slip values. No significant changes are observed in wall shear stress

curves as slip increases.

17



5 10 15 20 25 30 35 40
z

0.99986

0.99988

0.9999

0.99992

0.99994

0.99996

0.99998

1

P
/P

0

Pressure curves for different Reynolds numbers

Re=200
Re=300
Re=400

Figure 4.1: Pressure curves in piecewise polynomial geometry with w0
s = 0.04, l1 = 4, l2 = 1, R0 = 0.1,

δ = 0.05, Ma0 = 0.1 for various Reynolds numbers
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Figure 4.2: Pressure gradient curves in piecewise polynomial geometry with w0
s = 0.04, l1 = 4, l2 = 1,

R0 = 0.1, δ = 0.05, Ma0 = 0.1 for various Reynolds numbers
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Figure 4.3: Centerline velocity curves in piecewise polynomial geometry with w0
s = 0.04, l1 = 4, l2 = 1,

R0 = 0.1, δ = 0.05, Ma0 = 0.1 for various Reynolds numbers
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Figure 4.4: Wall shear stress curves in piecewise polynomial geometry with w0
s = 0.04, l1 = 4, l2 = 1,

R0 = 0.1, δ = 0.05, Ma0 = 0.1 for various Reynolds numbers
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Figure 4.5: Pressure curves in piecewise polynomial geometry with w0
s = 0.04, l1 = 4, l2 = 1, R0 = 0.1,

δ = 0.05, Re0 = 200 for various Mach numbers
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Figure 4.6: Pressure gradient curves in piecewise polynomial geometry with w0
s = 0.04, l1 = 4, l2 = 1,

R0 = 0.1, δ = 0.05, Re0 = 200 for various Mach numbers
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Figure 4.7: Pressure curves in piecewise polynomial geometry with Re0 = 200, l1 = 4, l2 = 1, R0 = 0.1,
δ = 0.05, Ma0 = 0.1 for various slip values
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Figure 4.8: Pressure gradient curves in piecewise polynomial geometry with Re0 = 200, l1 = 4, l2 = 1,
R0 = 0.1, δ = 0.05, Ma0 = 0.1 for various slip values
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Figure 4.9: Scaled centerline velocity curves in piecewise polynomial geometry with Re0 = 200, l1 = 4,
l2 = 1, R0 = 0.1, δ = 0.05, Ma0 = 0.1 for various slip values
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Figure 4.10: Wall shear stress curves in piece-wise polynomial geometry with Re0 = 200, l1 = 4, l2 = 1,
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Chapter 5

Conclusion and Future work

In this Thesis the effect of blood flow through aneurysms was studied analytically. In order to study the

effect, solution curves were obtained for various Reynolds numbers, compressibility (Mach numbers) and

slip values. Increasing flow speeds, or considering larger vessels, would increase the ’Reynolds number’ and

decrease the Mach number for example.

Our analysis showed the influence of the Reynolds numbers, Mach numbers and slip on the blood flow

pressure, centerline velocity, and on the wall shear stress. Scaled centerline velocity and wall shear stresses

were least affected by variation in Reynolds and Mach numbers, while pressure gradient curves showed more

extreme values for larger Reynolds numbers, larger Mach numbers, and smaller slip values. Reynolds number

has more significant effect on the blood flow pressure as compared to the Mach numbers. Significant decrease

in the pressure curve is attained for larger Reynolds numbers. The maximum decrease in the pressure curve is

observed for the most compressible flows, whereas for weakly compressible or incompressible flows, minimal

changes in the pressure curves are obtained.

Further investigations can be made in analyzing the solution curves by varying the degree and length of

the expansion. The theoretical results presented in this Thesis are ideal for future studies to compare

with particle-based flow simulations. Additionally, more complex axisymmetric flow geometries, such as a

combined stenosis and aneurysm or multiple aneurysms can be studied. A full assessment of the asymmetry

of an aneurysm is also a possible extension of this work.
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Appendix A

In this Appendix, we provide the derivatives of integrals using the Leibniz rule. These results are required

in the derivation of the pressure gradient equation in Chapter 2.

A.1 Derivatives of integrals

d

dz

∫ R

0

rwdr = R′(rw)|r=R +

∫ R

0

r
dw

dz
dr

=
Rws√
1 +R′2

R′ +

∫ R

0

r
dw

dz
dr (A.1)

d

dz

∫ R

0

rρwdr = R′(rρw)|r=R +

∫ R

0

r
d

dz
(ρw)dr

=
Rρws√
1 +R′2

R′ +

∫ R

0

r
d

dz
(ρw)dr (A.2)

d

dz

∫ R

0

rw2dr =
RR′w2

s

(1 +R′2)
+

∫ R

0

r
d

dz
w2dr (A.3)

Recall that ρ = ρ(z), and w|r=R = ws√
1+R′2 as per equation (2.11).

Differentiating (A.1) using dws

dz = 0 gives

d2

dz2

∫ R

0

rwdr =
d

dz

(
Rws√
1 +R′2

R′
)

+
d

dz

∫ R

0

r
d

dz
(w)dr

=

∫ R

0

r
d2w

dz2
dr +

Rws√
1 +R′2

d2R

dz2
+

R′
2
ws√

1 +R′2

− 2RR′2ws

(1 +R′2)
3
2

d2R

dz2
. (A.4)
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Similarly, differentiating (A.2) gives

d2

dz2

∫ R

0

rρwdr =
ρ(RR′′ +R′2)ws√

1 +R′2
+

2RwsR
′

√
1 +R′2

dρ

dz

−2RρwsR
′2R′′

(1 +R′2)
3/2

+

∫ R

0

r
d2

dz2
(ρw)dr. (A.5)
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Appendix B

B.1 Constant flow rate

In this Appendix, we show that the flow rate is constant (eg. dQ/dz = 0) and develop the integral relation-

ships given in equation (2.22) and (2.23).

Recall equation (2.20) where the flow rate is defined by

Q = πρR2W = 2πρ

R∫
0

rw(r, z)dr. (B.1)

Differentiating this expression with respect to z gives

dQ

dz
= 2π

∫ R

0

r
d

dz
(ρw)dr + 2πR′ (rρw)|r=R

= 2π

∫ R

0

r

(
− ∂

∂r
(ρu)− ρu

r

)
dr + 2πR′ (rρw)|r=R

(using conservation of mass equation (2.6))

= −2π

∫ R

0

∂

∂r
(rρu)dr + 2πR′ (rρw)|r=R

= −2π (rρu)|r=Rr=0 + 2πR′Rρ w|r=R
= −2πRρ u|r=R + 2πR′Rρ w|r=R

= −2πRρ
wsR

′√
1 +R′2

+ 2πR′Rρ
ws√

1 +R′2
(using (2.11))

= 0.

Thus, it follows that

dQ

dz
= 0 ⇒ dn

dzn

(∫ R

0

rρwdr

)
= 0, (B.2)
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and

d

dz

∫ R

0

rwdr =
d

dz

(
Q

2πρ

)
(B.3)

= − Q
2π

1

ρ2
dρ

dz

= −πρR
2W

2π

1

ρ2
dρ

dz

= −R
2W

2ρ

dρ

dz
,
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Appendix C

In this Appendix we provide the result for the derivative of the integral of rw2 which is required on the

left-hand side of equation (2.24), obtained in [27].

d

dz

(∫ R

0

rw2dr

)
=

61

1580712

6R5R′(dP/dz)2 + 2R6(dP/dz)(d2P/dz2)

µ2

+

[
631

65863

R3R′W

µ
− 631

131726

R4W (dρ/dz)

ρµ
− 190

197589

wsR
3R′

µ

− 61

790356

(6R5R′ρ+R6(dρ/dz))g

µ2
− 899

197589

wsR
4

µ

d

dz

(
1√

1 +R′2

)

− 899

197589

4wsR
3R′

µ
√

1 +R′2

]
dP

dz
+

[
631

131726

R4W

µ
− 95

395178

wsR
4

µ

− 61

790356

R6ρg

µ2
− 899

197589

wsR
4

µ
√

1 +R′2

]
d2P

dz2

+
23837

1975890

[
2RR′√
1 +R′2

+R2 d

dz

(
1√

1 +R′2

)]
w2
s

− 154937

395178
ρR2Wws

[
1

ρ

d

dz

(
1√

1 +R′2

)
− 1√

1 +R′2
dρ

dz

1

ρ2

]

+
899

197589

gws
µ

[
4R3R′ρ

1√
1 +R′2

+R4 dρ

dz

1√
1 +R′2

+R4ρ
d

dz

(
1√

1 +R′2

)]
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+
5125

395178

R2Wws
ρ

dρ

dz
+

6610

9409
ρ2R4W

2
[
− 2R′

R3ρ2
− 2(dρ/dz)

R2ρ3

]
+

61

1580712

g2

µ2

[
6R5R′ρ2 + 2R6ρ

dρ

dz

]
+

298

329315
w2
sRR

′

+
95

395178

gws
µ

[
4R3R′ρ+R4 dρ

dz

]
− 631

65863

ρR3WgR′

µ

+
26816

141135
w2
s

[
2RR′

1 +R′2
+

2R2√
1 +R′2

d

dz

(
1√

1 +R′2

)]
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