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Abstract

Energy Saving Schemes for Scalable Mobile Computing Networks

Ali Alnoman, 2019

Doctor of Philosophy

Electrical and Computer Engineering

Ryerson University, Toronto, Canada

With the growing popularity of smart applications that contain computing-intensive tasks,

the provision of radio and computing resources with high quality is becoming more and more

challenging. Moreover, supporting network scalability is crucial to accommodate the massive

numbers of connected devices. In this thesis, we present effective energy saving strategies

that consider the utilization of network elements such as base stations and virtual machines,

and implement on/off mechanisms taking into account the quality of service (QoS) required

by mobile users. Moreover, we investigate the performance of a NOMA-based resource allo-

cation scheme in the context of Internet of Things aiming to improve network scalability and

reduce the energy consumption of mobile users. The system model is mainly built upon the

M/M/k queueing system that has been widely used in most relevant works. First, the energy

saving mechanism is formulated as a 0-1 knapsack problem where the weight and value of

each small base station is determined by the utilization and proportion of computing tasks

at that base station, respectively. The problem is then solved using the dynamic program-

ming approach which showed significant energy saving performance while maintaining the

cloud response time at desired levels. Afterwards, the energy saving mechanism is applied

on edge computing to reduce the amount of under-utilized virtual machines in edge devices.

Herein, the square-root staffing rule and the Halfin-Whitt function are used to determine the

minimum number of virtual machines required to maintain the queueing probability below

a threshold value. On the user level, reducing energy consumption can be achieved by max-

imizing data rate provision to reduce the task completion time, and hence, the transmission
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energy. Herein, a NOMA-based scheme is introduced, particularly, the sparse code multiple

access (SCMA) technique that allows subcarriers to be shared by multiple users. Not only

does SCMA help provide higher data rates but also increase the number of accommodated

users. In this context, a power optimization and codebook allocation problems are formu-

lated and solved using the water-filling and heuristic approaches, respectively. Results show

that SCMA can significantly improve data rate provision and accommodate more mobile

users with improved user satisfaction.
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Chapter 1

Introduction

1.1 Overview

The prosperity of smart devices and their applications in a wide variety of life aspects such as

health care, distant learning, road traffic control, public safety, etc., urged the communication

and networking society to upgrade traditional networks in order to satisfy future needs. One

of the major concerns regarding the mobile communication networks is energy consumption.

The information and communication technology (ICT) accounts for 3% of the entire global

energy consumption producing about 2% of the total CO2 emissions [1]. In particular, mobile

communications consume about 0.5% of the entire global energy [2]. Moreover, about 70%

of the network’s energy is consumed by the radio access networks (RANs), this amount of

energy has effects on two dimensions: the first dimension is the carbon footprint, where

the ICT’s carbon footprint is comparable to the entire world’s aviation industry. The other

dimension is the operational expenditure (OPEX), where energy forms 7 - 20% of the entire

network OPEX [3]. Therefore, large amounts of energy are being, and will continue to be

wasted if no serious actions are made towards resolving the energy issue which acts as a

bottleneck for future networks.

On the computing side, cloud and edge (fog) computing allows mobile devices to benefit

the powerful computing capabilities in cloud and edge servers aiming to accomplish those
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tasks during shorter time and with less energy consumption. However, due to the variations

in user behaviour over time, space, and desires turn the resource and energy management

process into a complicated process that necessitates the adoption of dynamic strategies to

run and control network elements. In this context, studies such as [4] have shown that less

than 30% of the computing resources of some large data centers are consumed while energy is

consumed at a rate close to that of a full load. Therefore, the effective cooperation between

both radio and computing nodes is crucial to maximize energy saving and system agility.

To this end, the emerging cloud radio access network (C-RAN) that is composed of

multi-tier coverage zones such macro cells and small cells, and comprises multiple radio

access technologies (RATs) such 5G and WiFi, helps to merge radio resources from all nodes

in a unified entity, namely the baseband unit (BBU) pool. The heterogenous architecture

of C-RANs helps to improve the total network capacity; however, with the massive number

of mobile devices and base stations, large amounts of information needs to be exchanged

to establish efficient collaboration and to maintain high quality of service (QoS) standards

[5]. Benefiting the advances in software-defined networking (SDN) along with the network

function virtualization technologies, the BBU pool facilitates the monitoring and control

process for the entire network using programable machines, thus reducing human intervention

and operational costs.

One of the efficient energy saving strategies is to monitor the traffic flow associated with

base stations and edge devices, and set lightly loaded elements into the off/sleep mode.

However, with the strict delay requirements of some applications such as in medical and

vehicular systems that can tolerate only few milliseconds of delay [6], energy saving has to

be carefully implemented to avoid the undesired delays. Furthermore, due to scarcity in

frequency resources, accommodating the continuously growing number of connected devices

and improving data rate provision is becoming more challenging. Therefore, allowing users to

share frequency resources in non-orthogonal multiple access (NOMA) systems has emerged

as an attractive solution to back up spectrum shortage in future cellular systems.

2



1.2 Thesis Motivation

The motivation of this thesis stems from the growing trend towards integrating both radio

and computing systems to accommodate the massive numbers of devices that are constantly

joining the network in many areas such as health care, smart homes, autonomous vehicles,

etc. Moreover, the Internet of Things (IoT) which has attracted much attention from both

industry and academia necessitates the cooperation among network operators and service

providers. However, with the large number of devices, base stations, and computing nodes,

the management and control of all network elements can be an exhaustive process. To this

end, recent advances in network virtualization and SDN can make the process much easier.

The C-RAN architecture aggregates all network information on centralized processing units

to facilitate efficient network-wide management and global optimization. Furthermore, the

cooperation among cloud and edge nodes helps to enhance the computing services and to

handle the heterogeneity of computing tasks that have different quality of service (QoS)

demands.

Originating from the urgent needs for energy saving policies in future cellular network

that are featured with the ultra dense deployment of small radio and computing nodes, this

work aims to develop advanced energy policies that consider the joint operation of base

stations with cloud and edge computing nodes taking into account the user QoS demands.

Energy can be saved not only on the cellular side, but also on edge computing side where the

large number of idle edge devices, or virtual machines, can also lead to significant amounts

of energy wastage.

On the user-level, saving energy can be achieved by providing larger data rates to reduce

the transmission time, thus prolonging the on-device battery lifetime. Moreover, with the

continuously increasing number of connected devices, novel radio resource allocation schemes

need to be implemented and tested to satisfy user requirements. To this end, NOMA-based

techniques, in particular, the sparse code multiple access (SCMA) is proposed and tested

in the IoT scenario. In SCMA, the detection complexity of subcarriers intuitively increases
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due to the complex nature of codebook design that is intended to overcome the inter-carrier

interference; as a result, more delay can be experienced by mobile users. Therefore, the

delay experienced by users due to subcarrier detection is also considered when investigating

SCMA performance where meeting the task completion deadline indicates user satisfaction.

1.3 Research Contributions

The contribution of this thesis can be summarized as follows:

1. Maximize energy saving in heterogeneous networks using efficient base station sleeping

strategy considering the cloud’s response time and users deadlines:

• A small base station (SBS) sleeping mechanism is proposed to save energy in

integrated H-CRAN-cloud-edge networks under the constraints of cloud response

time and task completion deadline. In other words, two types of constraints are

considered namely the long-term statistical cloud response time, and the instan-

taneous task completion time. In this part of the work, the cloud and edge servers

are assumed to have disjoint operation; that is, the workload cannot be shared

(disjoint queue model). The problem is formulated as a 0-1 knapsack problem

wherein the SBS utilization represents the weight whereas the amount of incom-

ing computing tasks represents the value of that SBS. Here, SBSs serving less

amount of computing tasks are given higher values than others. The proposed

problem, which is solved using dynamic programming, is a centralized SBS sleep-

ing scheme that aims to select the optimal subset of sleeping SBSs considering

cloud and user constraints.

• A novel shared cloud-edge computing architecture is introduced in coordination

with the cellular infrastructure. Here, edge and cloud servers are integrated in a

unified queue system i.e., one queue and shared servers. Thereby, edge devices

contribute to the improvement of the computing response time by increasing the
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total number of functioning servers.

• The optimal subset of sleeping SBSs is then found in the later system using

exhaustive search approach. Again, the computing response time and task com-

pletion deadline are considered as constraints in this problem.

2. Implement a power saving mechanism on edge device taking into account the QoS

requirements of end-users:

• An SDN-assisted energy saving scheme is proposed for edge computing networks

aiming at reducing energy consumption under the queueing probability constraint

that directly affects the delay experienced by users. In other words, the on/off

mechanism is performed while the queueing probability of users is maintained

below a pre-defined value such that the queueing delay remains at satisfactory

levels.

• The proposed scheme is formulated as an optimization problem with the objective

to minimize energy consumption under the queueing probability constraint. The

problem is then solved using the square-root staffing rule and the Halfin-whitt

delay function.

• A comparison between full- and partial-sleep modes for edge device is conducted

to investigate the system performance regarding energy and task migration. In

the partial sleep mode, some virtual machines (VMs) are turned off locally within

edge devices compared to the entire edge device.

• A load management strategy is proposed to handle the overloaded edge devices

in order to maximize the number of accommodated users under the fronthaul

capacity constraint.

3. Improve network connectivity and maximize the data rates provided to users aiming

to save the on-device battery energy:

5



• A SCMA-based scheme is proposed for edge computing to improve IoT system

connectivity, throughput, and reduce task completion time in HetNets as com-

pared to orthogonal multiple access schemes.

• An optimization problem is formulated to maximize data rate provisioning under

the maximum power constraint of base stations. The problem is subdivided into

a power allocation problem which is solved using the water-filling technique, and

a codebook allocation algorithm which aims to assign users the codebooks with

the highest signal-to-interference-plus-noise-ratio (SINR).

• SCMA parameters are investigated to fulfill the high QoS requirements in IoT

systems. Since each IoT application has different processing requirements, CPU

cycles are allocated considering the total computing capacity of the fog node.

Moreover, each IoT device is assumed to have a particular processor speed to

consider the detection time with total experienced delay.

1.4 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, a comprehensive literature review

on H-CRANs and cloud-fog computing networks regrading architecture, energy efficiency,

radio and computing resource management, SDN-assisted cooperative performance among

radio and computing nodes, and user-level computing and energy consumption, is presented.

A base station sleeping scheme is introduced in Chapter 3, where the objective is to maximize

energy saving by allowing small base stations with light load to enter a sleep mode taking into

account the effect of task offloading from SBSs to the macro base station (MBS). Herein, the

MBS utilization has a key role in deciding the number of potential sleeping SBSs. Moreover,

the cloud response time is considered as a quality constraint that has to be met. To this

end, a 0-1 knapsack problem is formulated to maximize the number of sleeping base stations

with minimum queue delay. Energy saving in edge devices is proposed in Chapter 4, where

edge device, assisted by the SDN-controller, forms a cooperative group of computing nodes

6



that share their available resources to maximize energy saving. Herein, full- versus partial-

sleep modes are proposed and compared from the perspectives of energy saving and task

migration. To this end, the square-root staffing rule and the Halfin-Whitt function are both

employed to achieve the desired performance. In Chapter 5, a NOMA-based technique,

namely, the SCMA is implemented to improve the network scalability and to maximize the

data rate provision. To this goal, a power optimization is formulated and solved using the

water-filling technique, and the detection complexity of SCMA subcarriers is considered to

evaluate the SCMA performance in the sense of satisfying users with strict task completion

deadlines such as delay-sensitive tasks. Finally, Chapter 6 provides concluding remarks and

directions for the future research. Fig. 1.1 depicts the thesis outline.
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Figure 1.1: Thesis Outline.
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Chapter 2

Literature Review on Heterogeneous

Cellular-Computing Networks:

Energy, Infrastructure, and Resource

Management

This chapter introduces insights on future cellular networks, followed by discussing state-of-

the art base station sleeping strategies for energy saving.

2.1 Energy Efficiency in HetNets

In future wireless networks, high data rate provisioning is an essence to cope with the

ever increasing smart phone applications in a wide variety of life aspects such as health,

transportation, remote monitoring, etc. Heterogeneous networks (HetNets) is a promising

architecture that enables future networks achieve high data rates everywhere at all times.

Small cells form the basic building block in HetNets by facilitating spatial frequency reuse

in small geographical areas thus allowing to improve the efficiency of the scarce frequency

resources.
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The dense deployment of small cells in HetNets, despite the large improvement on spectral

efficiency, will incur high amount of energy consumption. The largest proportion of energy

in HetNets is consumed by the RANs (specifically BSs), and more than 80 percent of energy

in wireless networks is lost as heat [7] [8]. The energy loss is mainly incurred by power

amplifiers, which are the most power consuming components in BSs, and hence producing

only 5 to 20 percent of useful output power [9]. Moreover, even with no or light traffic load, a

BS consumes more than 90 percent of its peak energy [10]. With the adoption of appropriate

sleeping strategies, the excessive amounts of power requirements (e.g., for cooling) can be

avoided. Power consumption can be further reduced if the coverage area of a BS is adaptively

reduced according to cell load [11]. Table 2.1 presents recent energy-efficient approaches for

HetNet management.

Table 2.1: Energy Management in HetNets

Ref. Research Direction Problem Type Solution Approach

[1] EE maximization considering the

transmit, backhaul, and circuit

power in CoMP OFDMA-based

HetNets under the constraint of

data rate

Optimization problem

with constraints mod-

eled as cubic inequali-

ties

Lagrange multipliers and

KKT conditions

[2] Minimizing energy consumption

in OFDM-based HetNets through

power and subchannel allocation

while satisfying users QoS re-

quirements and inter-cell interfer-

ence

Mixed-integer nonlin-

ear programming

Iterative algorithm for

searching the solution space

with small granularity

Continued on next page
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Table 2.1 – Continued

Ref. Research Direction Problem Type Solution Approach

[7] Resource allocation for maximiz-

ing network utility and stabiliz-

ing the queues for media appli-

cations in HetNet with multi-

homing transmission

Stochastic optimiza-

tion problem

Lyapunov drift-plus-

penalty method, primal-

dual decomposition tech-

nique, Lagrange multipliers

and KKT conditions

[12] Joint optimization of cell activa-

tion, user association, and spec-

trum allocation

mixed-integer pro-

gram

Reweighted l1 mini-

mization (majorization-

minimization) method

[13] Joint maximization of EE and

SE considering small cell density

and offloading biasing factor sub-

jected to throughput threshold

Quasi-convex multi-

objective function

optimization

Fritz-John conditions to de-

termine the Pareto-efficient

operational regime

[14] Power allocation and beamform-

ing design

Mixed combinatorial

non-convex optimiza-

tion

- EE maximization is

transformed to power min-

imization and an optimal

solution is obtained based

on convex programming

- Near-optimal upper-

bound solution

- Suboptimal zero forc-

ing (ZF)-based solution to

further simplify the solution

Continued on next page
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Table 2.1 – Continued

Ref. Research Direction Problem Type Solution Approach

[15] BS sleep mode using the con-

cept of group sparsity in trans-

mit power vector, BS associa-

tion, downlink power allocation in

TDD-based HetNets

NP-hard non-convex

optimization

Successive convex approxi-

mation (SCA)-based algo-

rithm, KKT conditions

[16] Joint optimization of BS opera-

tion, user association, subcarrier

assignment, and power allocation

Mixed combinatorial

problem

- Lyapunov optimization,

- Heuristic algorithm

[17] Minimizing grid energy consump-

tion through cooperative cell

operation with hybrid energy

sources

NP-hard problem The problem is divided

into to subproblems using

greedy decomposition

[18] Energy-efficient control of BSs

transmit power (cooperative and

non-cooperative)

The non-cooperative

power control is

formulated as a non-

cooperative power

control game, whereas

the cooperative part

is a multi-objective

optimization

- Nash equilibrium,

- Heuristic algorithm

Continued on next page
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Table 2.1 – Continued

Ref. Research Direction Problem Type Solution Approach

[19] Energy-efficient trade-off between

backhaul energy and throughput

subjected to QoS and fairness

constraints

Multi-objective opti-

mization

The multi-objective opti-

mization is transformed to

a single-objective optimiza-

tion using weighted sum

method, then solved using

iterative algorithm and La-

grange multipliers

[20] Maximizing EE per individual

user in multi-RAT HetNets under

QoS constraints

Multi-objective opti-

mization problem

Determining the Pareto

optimal solution using

weighted Tchebycheff

method and iterative

algorithms

[3] Joint cell association and on-off

policy to minimize energy con-

sumption

General non-convex

energy minimization

problem

0-1 Knapsack-like optimiza-

tion

Macro BSs are generally aimed at providing large coverage areas rather than high data

rates; therefore, the existence of small BSs is inevitable in future dense networks [21]. How-

ever, small cells are more prone to traffic variations than macrocell BSs [12]. Selective

activation of femtocell networks in places that are characterized by concentrated traffic load,

can significantly reduce power consumption and outage probabilities [22].

A multi-level decision-making strategy for a macro-femto network was formulated in [23]

as a multi-level optimization problem where decision making in one level (e.g., macro, femto,

or user) depends on decision made in other levels. In this scheme, femto BSs provide access
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control for their users, while central schedulers allocate radio channels to BSs. Afterwards,

macro and femto BSs allocate the available resources to their associated users who in turn

select the desirable transmit power levels.

The authors in [24] proposed a joint subcarrier and power allocation scheme to increase

throughput, mitigate interference, and minimize the power allocated to each user under the

constraints of interference (co- and cross-tier interference), QoS, and fairness of subcarri-

ers allocation in a HetNet consisting of macro and femto cells. The optimization problem

was solved using Lagrangian duality method and Karush-Kuhn-Tucker (KKT) optimality

conditions.

Renewable energy harvesting has been studied by many researchers as an alternative

approach to empower SBSs thereby reducing on-grid power consumption. SBS types that

exploit renewable energy resources include the off-grid SBSs that solely rely on renewable

energy resources, or hybrid SBSs that exploit both renewable energy resources along with

on-grid power using optimal allocation strategies [25]. Furthermore, mixed renewable energy

resources and grid power have been studied in [26] [27] to minimize grid power consumption

by allocating renewable energy resources efficiently along with BSs on-off strategy.

The schemes of discontinuous transmission (DTX) and reception (DRX) have been con-

sidered as successful approaches to save energy in many works in the literature. The DTX,

whereby some BS components are switched off when no transmission is required, has been

considered in the study of [28] to improve the network’s energy efficiency. From the re-

ceiver side, in order to save energy and prolong the battery life in mobile devices, a DRX

mechanism has been utilized in LTE/LTE-A, where UEs enter a sleep state when no data

transmission is required. A lighter sleep state or listen state that lies between the active and

sleep states can be incorporated in the sleeping process, to enable UEs to be activated faster

when detecting an incoming traffic [29].

Other schemes such as bio-inspired systems have been incorporated in the context of

self-organizing networks. For example, the work in [30] defined the analogy between mam-
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malian immune systems and cellular networks, and proposed an artificial immune system

for ultra-dense small cell networks where the BS activation is managed autonomously for

enhanced energy efficiency and reduced delay depending on traffic variations. Cell zooming

is another technique that aims to minimize energy consumption by adaptively shrinking the

cell size according to traffic density within the cell [31] [32].

The authors in [2] emphasized on minimizing energy consumption rather than maximizing

energy efficiency that combines energy consumption with data throughput. This realization

is due to the fact that total network energy efficiency may not satisfy the per-user or per-cell

energy and data requirements in HetNets.

2.2 Energy Efficiency in H-CRANs

Energy efficiency, defined as the ratio of the total data throughput in the network to the

total power consumption under the constraints of users’ QoE requirements, is presented in

this section in the context of H-CRANs. Originating from the necessity of seamless coverage

and high data rate provisioning, future cellular networks are categorized as ultra dense and

consist of large numbers of BSs and mobile devices. Taking into account the heterogeneous

nature of the network along with the fact that the majority of mobile devices are battery-

powered, it is becoming more and more important to minimize energy consumption while

taking into account the QoS provision such as data rate, end-to-end delay, fairness, and

deployment costs [33].

Supporting H-CRANs with a software-defined architecture makes it more convenient to

upgrade the performance and services provided by network operators, and facilitates an elas-

tic deployment of technologies and applications for future demands. Moreover, the central

controllers help perform network-wide updates in system behavior instead of the individual

configuration of network devices [34]. For instance, the authors in [15] proposed a power

model for cloud-assisted HetNets wherein the large-scale fading imposed on the communica-

tion channel is considered to be fixed. The model jointly optimized power consumption of
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signal processing, circuits, downlink transmission, and backhaul for providing more flexible

BS sleeping than the traditional on/off operation. The study that considered three macro

BSs and five pico BSs within each macro BS, showed that the average power consumption

of all BSs for a 20 Mbps user data rate was approximately 2.7 kW with the cloud-assisted

architecture which is less compared to the simple on/off strategy that required 3.2 kW. Fur-

thermore, in [35], a scheme was proposed to minimize energy consumption in dense C-RANs

by activating selected subsets of RRHs according to the dynamic traffic variations. Results

showed that the dynamic activation of RRHs was successful to make significant energy sav-

ings. For instance, within the coverage of two micro and seven pico BSs, the consumed power

using the dynamic activation scheme for 50 users was approximately 60 W which is much less

compared with the 250 W power consumption incurred by activating all RRHs regardless of

the available traffic. When the number of users increased to 250, power consumed using the

former scheme increased to 200 W and remained 250 W for the latter. In addition, the de-

ployment of a large number of co-located antennas in massive multiple-input multiple-output

(MIMO) can improve the spectral efficiency by up to 10 times, and the energy efficiency in

the order of one hundred, as compared to the performance of a single-antenna. Furthermore,

implementing efficient cooling systems in the BBU pool helps improve the energy efficiency

in H-CRANs [36].

From the computational complexity perspective, the high density of RRHs required to

provide high data rates incurs high computational complexity due to the huge amount of

data related to signal processing, resource allocation, and RRHs/BBUs coordination. This

complexity is a big challenge facing the establishment of scalable networks. The authors

in [37] introduced several schemes to provide scalability in C-RANs. These schemes were

sorted into (a) signal processing techniques such as exploiting the near sparsity in channel

matrix to minimize the channel estimation overhead; (b) resource allocation using optimiza-

tion techniques such as game theory, graph theory, and matching theory to minimize the

high computational complexity of solving the combinatorial optimization problems; and (c)

RRH/BBU coordination schemes such as the on/off operation of RRHs and BBUs depending
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on traffic load.

The authors in [38] proposed a joint optimization of resource block (RB) assignment and

power allocation subject to the constraints of user association and interference between RRHs

and high-power nodes (HPNs) in orthogonal frequency division multiple access (OFDMA)-

based H-CRAN systems. The work considered soft fractional frequency reuse (S-FFR) in

which the RBs are divided into two sets: the first is dedicated to UEs associated with the

RRHs (RUEs) that require high-rate QoS requirements, and the second set is shared between

RUEs and UEs that are associated with the HPN (HUEs) that require low-rate QoS. The

RBs in time/frequency domains have been identified in [39] as power zones (PZs) in which the

problem of scheduling each user to specific PZ along with the PZ power level was formulated

and solved using graph theory. The problem solution was viewed as a scheduling graph,

wherein each vertex represents the individual association of UEs, BSs, and PZs. In [40],

a scheme was presented to maximize energy efficiency and maintain the multimedia traffic

queue stability in H-CRANs taking into consideration the instantaneous power, average

power, fronthaul capacity, and inter-tier interference.

The idea of heterogeneous carrier communication, in which cellular networks are de-

ployed over unlicensed frequency bands, has been extended to the standardization process

under the title of licensed-assisted access to break through the obstacle of limited spec-

trum resources. This technique however, incurs interference with licensed communications

thus limiting the power and reliable transmission range of BSs. A proposed solution to the

aforementioned concerns, is to allocate control signals to the licensed bands while reserving

unlicensed bands for data transmission, thereby providing better long-range control while

exploiting the additional bandwidth to improve throughput. Another mechanism referred

to as listen-before-talk can help avoiding interference by obligating all transmitters to sense

the ambient channels and proceed in transmission only when channels are clear [41].

Moreover, to maximize the spectrum and energy efficiencies, and to achieve ultra-low-

latency communications, the authors in [42] introduced the open-loop communications as a

promising technique to fulfill these requirements by avoiding the redundant feedback mes-
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sages of channel state information (CSI) or reception acknowledgments from the massive

number of receivers. Therefore, the transmitter autonomously determines the optimum

modulation and coding schemes, and the required number of repeated transmission in one

shot. In regard to uplink transmission in H-CRANs, a scheme was proposed in [43] to jointly

optimize power allocation, relay selection, and network selection under the QoS constraints

in order to maximize the network’s energy efficiency. Table 2.2 summarizes recent trends

followed to achieve energy-efficiency in H-CRANs.

Table 2.2: Energy Management in H-CRANs

Ref. Research Direction Problem Type Solution Approach

[24] Optimizing subcarrier and power

allocation for femtocell users

based on cognitive radio technol-

ogy under the constraints of QoS

and interference mitigation

Multi-objective opti-

mization

Lagrangian dual decomposi-

tion and KKT conditions

[38] RB assignment and power alloca-

tion in OFDMA-based H-CRANs

under the constraints of inter-tier

interference and RRH/HPN asso-

ciation

Non-convex nonlinear

fractional program-

ming optimization

Lagrange dual decomposi-

tion and KKT conditions

[35] Active RRH subset determina-

tion based on traffic demand and

sleeping strategy

Multiple choice multi-

dimensional knapsack

problem

Lagrange multipliers

Continued on next page
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Table 2.2 – Continued

Ref. Research Direction Problem Type Solution Approach

[40] Maximizing EE while maintain-

ing multimedia traffic queue

stability under the constraints

of instantaneous power, average

power, fronthaul capacity, and

inter-tier interference

Non-convex stochastic

optimization problem

formulated by mini-

mizing the drift-plus-

penalty function

Lyapunov optimization

framework and weighted

minimum mean-square

error

[43] Joint optimization of power al-

location, relay selection, and

network selection in uplink H-

CRANs under the constraints of

QoS requirements

Mixed-integer non-

linear non-convex

problem

Dinkelbach method and La-

grange dual decomposition

[44] Optimizing the transmit power of

RRHs and HPNs along with in-

terference mitigation strategy

Non-convex optimiza-

tion

The problem is transformed

to a convex optimization us-

ing Dinkelbach method and

duality gap theorem, then

solved by Lagrange dual de-

composition method

[45] Maximizing the average through-

put and network stability (queue

stability) subject to the con-

straints of power allocation, re-

source block allocation, and user

association

Stochastic optimiza-

tion containing a

mixed-integer sub-

problem

- Lyapunov optimization,

- Lagrange dual decompo-

sition method (to solve the

subproblem)

Continued on next page
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Table 2.2 – Continued

Ref. Research Direction Problem Type Solution Approach

[46] Designing coverage areas of

macro BSs and RRHs, then al-

locating resources among RRHs

to achieve balanced transmission

bandwidth on fronthaul

Mixed-integer pro-

gram

Lagrange multipliers

[47] Dynamic resource allocation

(subcarrier and power allocation,

RRH clustering, and CoMP) in

TDD-based H-CRANs

Mixed strategy nonco-

operative game

Reinforcement learning al-

gorithm is used to achieve

Logit equilibrium

[48] Joint RRH selection and user as-

sociation to minimize energy con-

sumption

Integer programming

problem

- Multiple-choice multidi-

mensional knapsack model

is used for user association

with each RRH, with the

consideration of fronthaul

capacity and radio re-

sources

- RRH selection is achieved

using low-complexity

heuristic algorithm

[49] Cross-tier cooperation and clus-

ter formation among LPNs and

HPNs towards throughput en-

hancement

0-1 Multiple knapsack Heuristic algorithms

Continued on next page
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Table 2.2 – Continued

Ref. Research Direction Problem Type Solution Approach

[50] Joint BS selection and beamform-

ing design fro power minimization

under the constraints of limited

fronthaul capacity

l0 minimization prob-

lem

Majorization-Minimization

algorithm

[51] Joint admission control and co-

ordinated beamforming under the

constraints of fronthaul capacity,

RRH maximum power, and min-

imum SINR experienced by users

NP hard optimization The problem is reformu-

lated to a single-stage semi-

definite program using a

convex relaxation approach

2.3 Resource Management and Network Resource Op-

timization

To take full advantages of the high computing capabilities provided by the cloud servers, it is

paramount to resolve the performance bottlenecks of cellular networks regarding the infras-

tructure and radio resources. For instance, the performance of task offloading in cell-edge

computing could be severely declined under the condition of inter-cell interference especially

in ultra-dense networks. Moreover, when a large number of mobile devices tend to offload

tasks to the cloud through cellular networks, the transmission delay could increase due to

the limitations in radio resources [52]. For this reason, radio and computational resources

have to be jointly optimized to achieve the foreseen high QoS requirements regarding en-

ergy efficiency, computing performance, end-to-end delay, and throughput for future 5G

networks [53] and smart cities [54]. To this end, the issues of frequency allocation, inter-
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ference coordination, RRH clustering, and fronthaul/backhaul management are reviewed in

this section.

2.3.1 Radio Resource Management

In mobile communication networks, the per-user demand is naturally fluctuating between

day and night, weekdays and weekends, residential and commercial areas, in a phenomenon

referred to as the tidal effect. To cope with the aforementioned challenge, an elastic re-

source utilization has been adopted in many research work such as [55], where the RRHs

activation and BBUs capacity (e.g., processor speed, memory capacity, etc.) can adapt to

the variations in data demands. This work considered two schemes: a) proactive, where

resources are provided in advance based on the knowledge of traffic patterns (e.g., weekdays

and weekends); and b) reactive prediction that is based on the time-series analysis of traffic

records from real-time or historical data.

Based on [56], resource sharing in H-CRANs can be divided into three levels: 1) spectrum

sharing, this includes RBs sharing in Long Term Evolution (LTE), channel sharing in IEEE

802.11, and the unused spectrum portions named white spaces; 2) infrastructure sharing, the

central workload computations of RRHs and HPNs in the BBU pool facilitate the virtual-

ization of available resources of different physical entities (e.g., base stations, backhaul, and

routers) using the techniques of network function virtualization and software-defined net-

working. Therefore, network functionalities can be decoupled from hardware components.

This facilitates infrastructure sharing among network operators and reduces the CAPEX and

OPEX; 3) network sharing to efficiently manage the available spectrum and infrastructure

resources.

The authors in [57] proposed the coordinated scheduling, hybrid backhauling, and multi-

cloud association as promising resource allocation schemes for H-CRANs. Unlike the legacy

fairness-based allocation schemes, coordinated scheduling is performed in the cloud proces-

sors which are responsible for synchronizing the scheduling process in the network. Therefore,
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scheduling of users to BSs and resource blocks can be performed in the cloud servers. Hybrid

backhauling refers to the joint utilization of wireless and wired links, that helps to cope with

the fluctuating demands in H-CRANs. The multi-cloud scheme can benefit the network

by reducing the computation burden on central servers, and the complications faced when

connecting distant BSs.

Dynamic load-aware RRH assignment using bin packing algorithm can reduce the num-

ber of active BBU servers through many-to-one mapping, thus saving energy and computing

resources [58]. Furthermore, a graph-based dynamic frequency reuse has been presented

in [59], whereby each RRH within the H-CRAN is viewed as a single vertex in the graph. In

addition, graph coloring was used to allocate different bandwidths according to traffic de-

mands, thereby alleviating the inter-tier interference. Adaptive machine learning techniques

are also incorporated in the centralized signal processing to achieve intelligent networking

performance that can adapt to data demands (e.g., IoT demands) that fluctuates over time

and place [34].

To further increase the system capacity, radio resources could be borrowed from RRHs

with low traffic loads, and conveyed to the overloaded neighboring RRHs (homogeneous or

heterogeneous) [34]. Moreover, a multi-homing transmission, which is defined as splitting the

media traffic simultaneously onto multiple RAN links between UEs and the media content

server, can improve the QoS of media applications within the network [7].

For a mobile user to access the best candidate BS, a time delay of several hundreds of

milliseconds is required. This situation can be even worse in ultra dense networks where

the coverage radius of SBSs ranges from only several meters to tens of meters. This time

delay is mainly due to the large-scale cooperation among different network elements. By

decoupling the data and control planes, MBSs will be responsible for selecting the best SBSs

and providing mobile users with the necessary information to start the access procedure with

the SBSs. In this way, the small cell ID, resource block, time and frequency synchronization

will be controlled by the MBS. In this paradigm, mobile users will receive data from both

SBSs and MBSs in the areas supported by both tiers; otherwise, MBSs will keep data pro-
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visioning wherever small cell coverage is missing [60]. To deal with the delay-aware radio

resource allocation problems, Markov decision process (MDP) which is a stochastic learning

approach, is considered as a successful method, and has been recognized to outperform other

optimization techniques such as Lyapunov optimization and the equivalent rate constraint

approach [61].

Interference mitigation techniques proposed for H-CRANs will be introduced next sas

one of the main concerns in ultra dense environments. Afterwards, RRHs clustering will be

presented as a promising coordination paradigm for enhanced interference cancellation and

improved network performance.

2.3.2 Interference Coordination

Heterogeneity in cellular networks that consist of base stations with different sizes and RATs,

can significantly improve the total system capacity; however, high interference levels will be

encountered. Moreover, the dense deployment of RRHs produces severe inter-cell interference

due to the relatively short distances between adjacent RRHs leading to higher signal power

received by users served by neighboring cells [47]. H-CRANs support the enhanced inter-cell

interference coordination (eICIC) through the techniques of advanced carrier aggregation

(CA) in the frequency domain, and almost blank subframes (ABS) in the time domain.

Moreover, the required signal processing of the related cells is concurrently performed in the

same BBU [56]. In addition, the inter-tier interference coordination in HetNets in both time

and frequency domains using the ABS technique is achieved by reducing the transmit power

of macro BSs to avoid interfering with smaller BSs. Whereas the dynamic point blanking

(DPB) technique mutes the interfered signals among the coordinated BSs [62]. Interference

coordination techniques for H-CRANs are presented in Table 2.3.
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Table 2.3: Interference Mitigation in H-CRANs

Ref. Research Direction Problem Type Solution Approach

[63] A threshold-based interference

control among RRHs that belong

to different service providers in

order to limit the maximum ag-

gregate interference received by

users

Mixed-integer nonlin-

ear programming

First, the problem is lin-

earized, then, a suboptimal

solution is obtained using

increment-based greedy al-

location algorithm

[64] Interference coordination be-

tween MBSs and RRHs

Contract-based opti-

mization

- Contract-based game the-

ory,

- Lagrange multipliers,

- KKT conditions

[65] Suppression of inter-tier interfer-

ence between RRHs and MBSs

using interference collaboration

and beamforming

Non-convex optimiza-

tion

The problem is transformed

to a convex optimization,

then solved using Lagrange

multipliers and KKT condi-

tions

[66] Inter-tier interference-aware

macrocells paradigm for radio

resource allocation, such that

macrocells can maximize the

interference levels tolerated by

associated users under the QoS

constraints

Mixed-integer nonlin-

ear programming

Successive convex optimiza-

tion

Continued on next page
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Table 2.3 – Continued

Ref. Research Direction Problem Type Solution Approach

[67] Inter-tier interference reduction

based on power hierarchy (e.g.,

macro, femto)

Noncooperative game

(high- and low-power

BSs are the players)

Nash equilibrium and KKT

conditions

[68] Joint optimization of RRH clus-

tering, user grouping, and trans-

mit beamforming

Non-convex combina-

torial optimization

- Dynamic scheduling algo-

rithm to form user grouping

and RRH clustering,

- Iterative algorithm for

transmit beamforming,

- Lagrange multipliers were

also used in the solution

[69] Inter-tier interference mitigation

among HPNs and LPNs in H-

CRANs through optimized power

allocation

Non-convex optimiza-

tion problem

Perron-Frobenius theory

[70] Joint user-access point (AP) asso-

ciation and beamforming design

for interference coordination in

both uplink and downlink trans-

mission

NP hard - Group-sparse optimiza-

tion,

- Relaxed-intger program-

ming

Dividing the coverage area into sub-regions with different frequency sub-bands in the

technique of soft fractional frequency reuse (S-FFR) plays an important role in inter-tier

and inter-cell interference coordination. Unlike the traditional S-FFR where the allocation

of frequency sub-bands are orthogonal, the enhanced S-FFR in H-CRANs enable RUEs to
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share radio resources with HUEs even at cell-edges [34].

A dynamic resource allocation scheme in [63] has been presented to perform global

and local resource allocation strategy to optimally share resources among different service

providers in C-RANs. The work considered the constraints of limited fronthaul capacity and

a threshold-based interference among RRHs in order to achieve optimal resource sharing.

Global resource sharing deals with large time-scale traffic variations whereas the local re-

source sharing performs actions regarding traffic variations in a small time scale.

A joint cooperative interference mitigation and handover management scheme was pro-

posed in [71] to increase the capacity of H-CRANs by coordinating the functionality of

C-RANs and small cells. The work considered the formation of RRH clusters for joint trans-

mission in order to coordinate interference especially for cell-edge users. On the other hand,

the handover scheme sorts users based on their speed, and prevents handover from macro

to small cells for users characterized as high-speed users. Moreover, the implementation of

multiple RATs with different frequency bands can improve radio resource utilization since

different RATs use different frequency bands [20].

Serving a large number of users simultaneously concentrated in certain zones by macro

and small cells incurs a strong inter-tier interference. The technology of massive-MIMO

provides the opportunity for transmitting high directional beams in certain directions and

thus providing spatial blanking in other directions. As a result, small cells lying in the blank

directions can avoid interfering with macro cell signals [72].

The intra-tier interference among low power nodes (LPNs) can be mitigated using cloud-

based large-scale cooperative signal processing. For the inter-tier interference between the

high- and low-power nodes, it can be suppressed through cloud-computing-based cooperative

radio resource management (CC-CRRM) that incorporates the BBUs and the HPNs via the

X2 interface [36]. Furthermore, since downlink and uplink signals are both known by the

C-RAN servers, downlink-to-uplink interference can be cancelled by subtracting interference

from received signals to recover the original signals [73].

A contract-based interference coordination between RRHs and MBSs in H-CRANs was
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presented in [64]. In this scheme, the BBU is considered as the principal that offers a con-

tract to coordinate transmission scheduling among RRHs, MBSs, and UEs. The contract

is then sent to the agents (MBSs) to be accepted or rejected depending on the acquired

benefits regarding spectral efficiency.

A device-to-device communication scheme was proposed in [74] to avoid the excessive

interference in H-CRANs by establishing D2D links at a certain distance away from the

HPNs. Results showed that such strategy can achieve high SINR and low average traffic

delivery latency to cope with the limitations of capacity and time-delay in fronthaul links.

A hierarchical access to frequency resources based on the concept of cognitive radio can

also be applied by femtocells that can act as secondary users who use frequencies only when

no primary users are using that particular frequency. This helps to avoid the overlapping of

signals with other users associated with other cells [75].

A decentralized multiple cloud architecture in C-RAN was proposed in [76] to minimize

the total power consumption with reasonable amount of information exchange among clus-

ters. The problem that considered both intra- and inter-cluster interference, achieved energy

minimization by determining the sets of active BSs per cluster and the sparse beamforming

vectors of users in the network. In [65], a strategy for inter-tier interference suppression

between RRHs and MBSs is proposed for H-CRANs using the techniques of interference

collaboration, beamforming, and cooperative radio resource allocation. Results showed that

the proposed strategy led the H-CRAN to perform better depending on the network con-

figurations such as the number of antennas deployed by the MBSs, number of RRHs, and

SINR threshold.

2.3.3 RRH Clustering

In small networks, modest amounts of CSI acquisition is required, and therefore the inter-

ference alignment can be jointly applied on all BSs. In larger networks however, exchanging

CSI data among all BSs is sometimes impractical, thus BS clustering is essential to maintain
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high QoS [77]. To this end, incorporating large number of cells to form larger clusters will

lead to better spectral efficiency and interference cancellation; however, with other factors

taken into consideration such as delay and channel estimation (e.g., minimum mean square

error) and precoding (e.g., zero-forcing precoders), the performance improvement will not

be as high as expected [78]. Moreover, cells from different tiers can cooperate and form

a cross-tier cluster that better serves a particular user. This formation is known as user-

centric cross-tier clustering wherein the user is geographically located at the center of the

cluster [21].

It has been shown in [79] that in RRH clustering, the coordinated beamforming (CB) per-

forms better than the zero forcing beamforming (ZFBF). This is because ZFBF aggressively

allocates power to RRHs, and thereby incurring higher levels of inter-cluster interference. As

a result, no gain was obtained regarding the cluster’s sum-rate. On the other hand, the CB

improves the sum-rate because it manages the interference more efficiently by controlling the

transmit power of coordinated RRHs. It was also shown that global clustering in which all

RRHs form one large cluster, achieved better performance than local clustering whereby only

few neighboring RRHs form a small cluster. Larger clusters however, require more piloting

overhead (training symbols), in addition to the time, frequency, and phase synchronization

among clustered RRHs.

A comparison of data-sharing and data compression strategies has been studied in [80].

Data-sharing means that BSs apply beamforming locally after receiving messages from the

central server, and then multiple BSs cooperatively transmit to common users. In the com-

pression strategy, the processes of precoding and beamforming are executed in central servers.

It is also worth mentioning that in low data rate requirements, data-sharing is found to re-

quire less power, whereas in high data rates, the compression is preferred because backhaul

will require more power.

Dynamic virtual cluster formation has been proposed in [81] to mitigate inter-cluster

interference in OFDMA-based systems. Unlike the traditional omni-subcarrier CoMP, this

work considered each cluster as a uni-subcarrier such that each cell could be grouped with
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different virtual clusters and thus dealing with different subcarriers. Moreover, a branch

and bound algorithm has been proposed in [82] to find the global optimum BS clustering

considering the inter-cluster interference and CSI overhead. The algorithm was capable of

achieving optimality with low complexity compared to exhaustive search algorithms. Table

2.4 lists some of the technical approaches applied in cell clustering.

Table 2.4: BS Clustering

Ref. Research Direction Problem Type Solution Approach

[77] BS clustering based on long-term

user throughput considering CSI

overhead and spectral efficiency

Coalition game where

BSs are considered the

players

Distributed coalition forma-

tion algorithm and a pre-

coding algorithm based on

weighted minimum mean

squared error

[80] Joint optimization of BS trans-

mit power, BS activation, and

backhaul power are compared un-

der data-sharing and compression

strategies considering the data

rate requirements

Discrete non-convex

optimization

Re-weighted l1-norm min-

imization and successive

convex approximation

[83] User-centric BS clustering and

sparse beamforming, wherein BSs

are equipped with limited storage

cache to reduce burden on back-

haul links

Mixed-integer nonlin-

ear programming

Iterative re-weighted l1-

norm technique

Continued on next page
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Table 2.4 – Continued

Ref. Research Direction Problem Type Solution Approach

[84] Joint RRH clustering and activa-

tion optimization under the con-

straints of coverage and user’s

QoS

NP-hard problem - Linear-programming re-

laxation and,

- Greedy algorithm

[85] Cell clustering and activation

time for energy minimization sub-

jected to data provision within a

specific time and inter-cell inter-

ference

NP-hard problem - Column generation,

- Local-enumaration-based

bounding scheme,

- Near-optimal cluster

scheduling

2.3.4 Backhaul and Fronthaul Management

Radio resources cannot be fully exploited without having sufficient capacity in the fron-

thaul and backhaul links. Fronthaul links are generally defined as the connecting media

(wired/wireless) between the RRHs the BBU pool, whereas backhaul links maintain the

connection between the BBU pool and the core network. Thus, providing high bandwidth

transmission in the fronthaul and backhaul links is considered as one of the major chal-

lenges facing the implementation of H-CRANs especially with the implementation of intra-

and inter-cell CoMP techniques. Besides, the under-utilization of the full backhaul capacity,

which is designed for peak bandwidth provisioning, is another challenge due to the geo-

spatial fluctuations that characterize the traffic trend. Fortunately, the decoupling of data

and control planes along with the support of HPNs, has made significant improvements in

alleviating the load burdens on backhaul and fronthaul links.

In [1], two types of backhaul links have been proposed, namely inter-backhaul between
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MBSs and the central server, and intra-backhaul between the RRHs and the local server that

is located within the boundaries of one large cell. The inter-backhaul links consist of optical

fiber cables whereas the intra-backhaul contains both fiber cables and wireless links. In order

to minimize the transmission bandwidth in backhaul links, data compression techniques are

envisioned as a promising solution. Such techniques could be applied in the time domain,

such as reducing the sampling rate or using non-linear quantization, or in the frequency

domain such as subcarrier compression with FFT/IFFT. Moreover, workload balancing al-

gorithms can assist in reducing the peak data transmission and decrease the requirements

to less than 1/3 of the total bandwidth [86].

With the dense utilization of small cells, wireless backhaul links are considered as a scal-

able and cost-efficient approach compared to fiber optical cables that are more suitable for

cells characterized as large or medium cells. However, wireless backhaul relies on the wireless

medium which is delay prone [57]. Based on the observations of [87] [88], two-tier networks

with wireless backhaul are more energy efficient than single-tier networks, provided that an

optimal bandwidth division is conducted between the wireless backhaul and radio access

links. Furthermore, bandwidth partitioning between wireless backhaul and wireless access

links for both uplink and downlink transmission has been presented in [89] as a sharing

technique that can maximize energy efficiency in small cell HetNets.

The authors in [90] found that the co-located call patterns at the same BS are highly

correlated due to their social interplay. In other words, a mobile user pair tends to make a

face-to-face communication after their call. By extracting and analysing a large-scale mo-

bility traces, user locations can be predicted several hours ahead. This location prediction

process can be implemented in the cloud to improve resource management and QoS provi-

sioning; moreover, it fosters the addition of location-based social services. To make use of

these social patterns, traffic caching is envisioned as a promising solution for reducing traffic

loads on the backhaul. Caching strategies aim to store redundant and frequently accessed

contents in the BBU pool, thereby enabling direct access by UEs and avoiding the need to

access the core network through the backhaul [91].
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Establishing multiple connections between a mobile user and multiple RRHs within the

same tier or with other tiers can improve the spectral efficiency through coordination tech-

niques (e.g., CoMP); however, the costs on fronthaul resources (e.g., energy and bandwidth)

will be high. Therefore, optimizing the size of the associated RRH/HPN clusters is essential

to maintain the tradeoff between benefiting the spectral efficiency or wasting the fronthaul

resources [36]. Each cluster is controlled by a single server via the fronthaul links. In addi-

tion, the connection between the RRHs and the BBUs may have a single-hop or multi-hop

topology by relaying through other RRHs until reaching the desired server [92].

In order to carry the massive amounts of data from the RRHs to the BBU pool, two

forms of data transportation have been introduced in [93], namely radio over fiber (RoF)

whereby data are transferred in an optical form, or digitized IQ samples which can be carried

on wired or wireless links. The authors also presented the concept of the partially central-

ized C-RAN (PC-RAN) in which baseband signal processing is divided between the BBU

and RRHs. Thus, precoding and data modulation are processed in the BBUs, whereas ra-

dio transmission is performed by the RRHs. Furthermore, integrating the functionalities of

the physical, medium access control (MAC), and network layers incurs significant signaling

overhead on fronthaul. Thus, partial centralization which incorporates only physical layer

functionalities in the RRHs, can significantly reduce the burden on fronthaul links since the

physical layer computation requirements are the highest compared to other layer require-

ments. However, the performance of RRH coordination techniques such as CoMP could be

degraded. A promising solution is the clustering of RRHs based on their geographical loca-

tions. This can reduce the scale of cooperative processing in the BBU pool; and as a result,

reduce the load on fronthaul links. RRH clustering can take the form of disjoint clustering

or user-centric. In disjoint clustering, the coverage area is pre-divided into specific zones

to provide common service. This technique, however, subjects mobile users to face inter-

cluster interference especially at cluster borders. On the other hand, user-centric clustering

combines neighboring RRHs to form local clusters wherein users are located in the cluster

center [61].
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A one-to-multiple mapping between a BBU and RRHs can be applied to reduce the load

on fronthaul links and to efficiently utilize the BBU computing resources. This configuration

enables addressing the spatial and temporal traffic load variations; and moreover, supports

saving energy in the BBU pool by switching off the BBUs identified with light loads [94].

In [95], a compress-and-forward scheme for transferring data from BSs to central cloud

processors in uplink C-RANs has been introduced. It has been shown that by maintaining the

quantization noise levels proportional to the background noise gives a near optimal perfor-

mance for backhaul capacity allocation especially when the signal-to-quantization-noise-ratio

(SQNR) level is high. BSs perform the compress-and-forward process to achieve more ef-

ficient transmission through fronthaul links. In this process, received signals are quantized

within BSs using various techniques such as single-user compression and Wyner-Ziv coding.

Unlike the single-user compression, Wyner-Ziv coding utilizes the correlation between signals

received in other BSs and hence improves the total compression performance [96].

To overcome the limited capacity in fronthaul links, time-reversal (TR)-based communi-

cations for air interfacing have been proposed in [97] to exploit the characteristic of location-

specific signature in order to combine multiple signals and send them concurrently through

fronthaul links without additional bandwidth requirements. In TR-based communications,

a pilot signal is received by the transceiver prior to transmission. The normalized time-

reversed conjugate of that signal is then being saved as the waveform used for transmission.

With this strategy, TR-based communication overcomes the multi-path effects of the com-

munication environment by acting as a matched filter that adjusts the temporal and spatial

effects.

2.4 Base Station Sleeping

BSs consume power mainly for operational purposes (e.g., cooling and signal processing) and

radio transmission. The deployment of large number of small cells, despite the fact that they

consume small power, will increase the total power consumption in the network. However,
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small cells require less amount of cooling and most consumed power is exploited to broadcast

radio signals [98].

Macro BSs are generally aimed to provide large coverage areas rather than high data rates;

therefore, the existence of small BSs is inevitable in future dense networks [21]. However,

small cells are more prone to traffic variations than macro cell BSs [12]. Selective activation

of femto cell networks in places that are characterized by concentrated traffic load, can

significantly reduce power consumption and outage probabilities [22].

The ultra dense deployment of small cells in hotspots such as shopping malls and air-

ports leads to under-utilization of these cells at most times and thus large energy losses [99].

Therefore, traffic offloading has been considered as a promising solution to give the opportu-

nity of switching off lightly loaded BSs based on traffic demands [100]. Thus, the intra- and

inter-RAT traffic offloading, can improve both energy and spectral efficiencies in HetNets.

However, the incurred intra- and inter-RAT interference along with the increased burdens

on the capacity-limited backhauls degrades the total energy efficiency and spectral efficiency

gains [13]. In [14] traffic demands have been sorted into real-time services such as video con-

ferencing where fixed and high data rate provisioning is required, and non-real-time services

such as file transfer with minimum data rate. The authors aimed to maximize the energy

efficiency in a 2-tier HetNet considering both power allocation and beamforming design.

The study in [101] showed that under bursty traffic conditions, the total power consump-

tion is less compared to normal load conditions, given the same average traffic load. This

is due to the extra flexibility in deciding the threshold of the number of users concentrated

within a cell to sleep or wake-up. In other words, the BS will have the chance to sleep

more often if the number of users stays below a relatively large threshold value, and hence

reducing the total power consumption. Some of the recent advances that happened in BS

sleeping mechanisms are introduced in Table 2.5.
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Table 2.5: Related Work on BS Sleeping

Ref# Research Direction Problem Type Solution Approach

[8] EE maximization using ran-

dom and strategic sleep-

ing strategies for small cell

BSs under the constraints

of coverage and averaged

wake-up time

Non-convex optimization Near optimal solution by

maximizing the EE lower

bound through iterative al-

gorithms

[100] Joint energy-efficiency

and load-balancing in

multi-RAT HetNets

Semi-Markov decision pro-

cess (SMDP)

Optimal policy using

Markov decision process

[25] BS on-off and traffic offload-

ing scheme based on traffic

load and renewable energy

availability

0-1 knapsack problem Lagrange multipliers

[102] Distributed cooperative

sleeping strategy for energy

saving

Constrained graphical game

where BSs act as players

under the traffic load con-

straint

Iterative algorithm is used

to find the generalized Nash

equilibrium

[103] BS sleeping strategy and

user association in open-

access femtocell networks

Binary integer problem - Heuristic algorithm,

- Lagrange dual method

[104] EE maximization by de-

termining BS density and

sleeping strategy

Non-convex optimization Dynamic gradient iterative

algorithm

Continued on next page
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Table 2.5 – Continued

Ref# Research Direction Problem Type Solution Approach

[105] Energy-efficient optimal BS

activation and cell size sub-

jected to network coverage

NP-hard Polynomial-time algorithm

[106] BS modules (e.g., power

amplifiers, cooling, proces-

sors, etc.) activation and

deactivation based on traf-

fic variation

Discrete time Markov deci-

sion process (DTMDP)

Optimal policy is deter-

mined based on the prob-

abilistic decisions of the

MDP which solved by linear

programming approach

Energy saving can be obtained either by adjusting the transmit power of BSs according

to traffic load or by letting the entire BS go to sleep when light or no traffic exists. The

former method is considered to have more energy saving due to the fact that most of BSs

energy is consumed by circuits rather than transmit power [107]. Furthermore, controlling

the operation of of BS components (e.g., electric circuits, power amplifiers, etc.) yields

different sleeping modes with different activation periods. For instance, activating a BS

from light sleep (standby) mode incurs a time delay of 0.5 seconds, whereas activating BS

from deep sleep mode incurs 10 seconds, and activating a BS that is turned off requires 30

seconds [8].

Furthermore, shutting down BSs with light or no load increases the amount of delay

experienced by users. This delay is generally due to the longer queue of users offloaded to

Macro BSs, and SBS activation delay that can reach up to 30 seconds from off to on state [8].

Researchers in [101] [10] studied the energy-delay tradeoff in BS sleeping strategies. The

authors in [108] introduced the N -policy for optimal energy-delay tradeoff. In this policy,

the BS will remain in the sleep mode until N users are accumulated under that BS coverage.
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The larger the value of N, the lower is the energy consumption and the higher is the delay

experienced by users. Thus an optimal value of N has to be determined to achieve the

best energy-delay trade-off in cellular networks. A waiting period referred to as hysteresis

sleep has been presented in [10] to maintain system stability while implementing sleeping

strategies. Hysteresis sleep is a certain amount of time or tasks that must be fulfilled before

a sleeping decision is taken by a BS.

2.5 Chapter Summary

In this chapter, an extensive literature review on energy efficiency in both C-RAN and

cloud-edge networks was presented. First, the architecture of C-RANs has been introduced

in details with a highlight on the SDN and NFV technologies implemented in the BBU

pool. Several energy-efficient techniques have been introduced and tabulated to showcase

the importance of energy efficiency in mobile networks. The cooperative performance of

the heterogeneous network elements have shown to be crucial for improved network-wide

performance. The system model in this chapter forms the starting point for the next chap-

ters where the C-RANs along with the layered cloud-edge architecture is considered in the

proposed energy saving schemes in this thesis.

In the next chapter, an energy saving mechanism is implemented in C-RANs by allow-

ing SBSs to enter a sleep mode taking into account the cloud response time and the task

completion deadline of mobile users. The C-RAN structure will consider an MBS, multiple

SBSs, BBU pool, cloud, and edge devices. Both computing and non-computing tasks are

considered in this energy saving mechanism such that both types of tasks are accommodated

by the MBS when SBSs enter the sleep mode.
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Chapter 3

Computing-Aware Base Station

Sleeping Mechanism in

H-CRAN-Cloud-Edge Networks

3.1 Introduction

Future cellular networks are characterized by their capability to satisfy the stringent needs

of mobile users in regard with latency and data rate [109]. Providing network coverage using

small base stations along with macro base stations has emerged as an attractive solution

to improve network scalability and to cope with the growing number of mobile devices.

However, with the large number of base stations and RATs employed in heterogeneous

networks, the management of mobile networks is becoming more and more complicated. To

this end, performing data aggregation from all network nodes in the centralized BBU pool

for processing, in the well-known architecture of heterogeneous cloud radio access networks

(H-CRANs), can achieve huge success in this direction [110]. The RRHs and SBSs in H-

CRANs are basically deployed to provide high data rates by exploiting the spatial reuse of

frequencies. Meanwhile, MBSs are in charge of providing cross-tier management such as user

association, handover management, traffic flow, and network-wide coverage. In other words,
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SBSs belong to the data plane whereas MBSs belong to the control plane.

From the computing perspective, having the complex computing tasks such as computer

vision and data analytics processed in the central cloud is a big step towards improving the

computing performance for users and machines [111]. Nevertheless, the increasing number

of connected devices in the context of Internet of Things, smart homes, autonomous driving,

etc., will eventually overload or even crash cloud servers. Thus, it is essential to filtrate data

to reduce the burden on the cloud and network resources, and to improve the QoE especially

in regard with end-to-end delay [112] [113].

Bringing computing services at the vicinity of mobile users in the paradigm of edge

(fog) computing can significantly reduce the end-to-end delay experienced by users. This

reduced delay helps support the emerging delay-sensitive applications such as E-health, real-

time control, and vehicular communications [114] that can tolerate a delay of only few

milliseconds [6]. Edge devices are equipped with the necessary hardware to enable small-

scale cloud-like functions such as computing and storage. Moreover, edge computing benefits

the close proximity with mobile users to offer geo- and context-aware services such as content

caching. It is thus obvious why edge computing which complements the cloud is described as

”fog” because fog physically resides closer to the ground (users) compared to the ”cloud” seen

in the sky [115]. To take full advantage of edge computing, it is necessary to coordinate edge

devices with the central cloud on one hand, and with the H-CRAN on the other hand [116].

With the help of SDN technology, efficient coordination of computing and communication

nodes can be achieved with less complexity.

One of the main constraints that stands in the way of future networks is the high energy

consumption. Not only because energy raises the operational expenditures, but also because

it causes detrimental impacts on our planet. Adopting smart SBS operation mechanisms

can significantly reduce energy consumption since base stations account for 80% of the

overall energy consumption in cellular networks [107]. Controlling the operation of SBSs

can be achieved in a distributed or centralized manner. In the former, an SBS operates

as a stand alone entity using intelligent self-organized features. Whereas in the centralized
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Figure 3.1: H-CRAN-CE system layout.

control, data from SBSs, MBSs, and other supporting nodes enter the central BBU pool for

an optimal network-aware processing. The overhead of the centralized control is naturally

higher compared to the distributed one; however, the informed and ceratin decisions of the

centralized control boosts the overall system performance. Therefore, prior to initiating

the On/Off and traffic offloading processes, network nodes should be well coordinated to

maintain high QoS [117].

Similar to traffic offloading in cellular networks, computing tasks can also be offloaded

from edge devices to the cloud and vice versa depending on the desired QoS requirements

such as energy and delay [118]. In other words, computing tasks can be processed either

locally by the edge device or remotely by the cloud via the MBS through backhaul links [119].

However, offloading tasks to the central cloud will inherently increase the burden on cloud

servers, communication resources, and backhaul links. Moreover, adopting coordinated task

offloading in the layered cloud-fog architecture can increase the communication overhead and
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thus extra delay [120]. Therefore, it is essential to take into account the consequences of task

offloading on both the communication and computing nodes. From the aforementioned, we

propose a coordinated cellular-computing architecture that considers both communication

and computing resources towards optimal SBS sleeping operation. Fig. 3.1 depicts the

state-of-the-art H-CRAN-cloud-edge system.

Over the last few years, SBS sleeping gained considerable attention in the context of

HetNets. Nevertheless, limited amount of research considered SBS sleeping from both com-

munication and computing perspectives. In [100], a sleeping strategy was proposed by which

all RATs are activated when resource utilization in the MBS reaches a threshold value. The

N-policy scheme in [107] is concerned with the energy-delay tradeoff in SBS sleeping without

considering traffic offloaded from sleeping SBSs to the MBS. Furthermore, the SBS acti-

vation delay was the goal of [8], wherein authors used iterative approaches to maximize

energy efficiency considering wake-up times and coverage probability regardless of the MBS

traffic load. All aforementioned works were considering performance in a communication

environment; that is to say, no computing aspects were involved.

However, the proliferation of computing hungry applications have brought the attention

of both academic and industrial communities recently. For instance, a hierarchical edge-cloud

architecture was proposed in [121] to achieve workload balancing among different computing

tiers. By dynamically distributing the workload on different servers, over 25% improvement

in program execution time was obtained. In a similar context, authors in [115] considered

workload scheduling to find the optimal power-delay tradeoff in cloud-fog computing systems.

Furthermore, a scheduling algorithm was proposed in [122] to minimize the queue delay in

cloud servers in order to guarantee the ultra-low latency in Internet services.

Since communication nodes play a major role in linking computing tasks with comput-

ing infrastructure, it is essential to consider both communication and computing nodes in

contemporary research work. Here, a joint energy harvesting and SBS sleeping was studied

in [123] aiming at minimizing energy consumption and improving the caching performance

in cache-enabled SBS networks. The work considered the effect of SBS sleeping while maxi-
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mizing the hit ratio of cached contents.

Table 3.1: Base Station Sleeping Strategies

Reference Network Model Computing Model Performance Indicator(s) Sleeping Initiator

[107] HetNet None Energy-delay tradeoff Number of tasks

[100] HetNet None Energy and blocking probability Traffic load

[8] HetNet None Energy efficiency and coverage probability Traffic load

[123] HetNet Cache-enabled SBSs Power consumption & cache hit ratio Harvested energy and traffic load

[124] HetNet None Power consumption and throughput Traffic load and user location

[103] HetNet None Power Consumption Traffic load

[105] HetNet None Power consumption and coverage probability Traffic load and network coverage

This work H-CRAN Cloud-edge Power consumption, cloud response time, and user energy Traffic, cloud response time, and task completion time

Unlike most related work in the literature, we aim to maximize power saving consider-

ing the SBS load, MBS load, cloud response time, delay experienced by users, and traffic

offloaded from sleeping SBSs to the MBS. The joint operation of both communication and

computing nodes can improve the network-wide performance and provide sophisticated sleep-

ing mechanism for future networks. Table 3.1 compares this work with related ones in the

literature.

The organization of this Chapter is as follows. Section 3.1 provides an overview, related

work, and main contributions. Section 3.2 describes the power, network, and computing

models. The computing-aware SBS sleeping scheme is introduced in Section 3.3, followed

by SBS sleeping in the proposed shared computing model in Section 3.4. In Section 3.5,

simulation setup and results are demonstrated, and finally, Section 3.6 provides the Chapter

summary.

3.2 System Model

In this section, power, network, and computing models are presented. The general view of

the integrated H-CRAN-cloud-edge system can be well perceived in Fig. 3.1.
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3.2.1 Power Model

The MBS is assumed to remain active all the time in order to provide coverage, cross-tier

control, and to accommodate users offloaded from sleeping SBSs. Accordingly, the MBS

has approximately a constant power and thus does not affect the SBS sleeping performance.

For this reason, the MBS is not taken into account when calculating the total network

power. The SBSs, on the other hand, coexist with the MBS and carry out a flexible On/Off

operation. The power consumption of the j th SBS is given by

Pj =

⎧⎪⎪⎨
⎪⎪⎩
Ps, if SBS is On

0, if SBS is Off,

(3.1)

where Ps denotes the power consumption during the active mode. It is worth to mention

that in the proposed sleeping mechanism the power associated with the sleep/Off mode is

considered always 0. Hence, the power consumed by all active SBSs can be expressed as

Pt =
Ns∑
j=1

xjPj, (3.2)

where xj is the On/Off indicator of the jth SBS, such that xj = 1 and xj = 0 indicate the

On, Off mode, respectively. Now, let x′
j = 1 − xj denotes the complement of xj such that

x′
j = 1 indicates the Off mode, then the total power saving P ′

t can be written as

P ′
t =

Ns∑
j=1

x′
jPj. (3.3)

Thus, two modes of operation are considered, namely “On” (SBS in full operation) with 100

% power consumption, and “Off” with 0 % power consumption [8]. It should also be noted

that the term ”sleeping SBS” indicates an SBS that is operating in the ”Off” mode and has

0 % power consumption.

3.2.2 Network Model

We consider a heterogeneous network consisting of one MBS and a set of Ns SBSs denoted

by S, where users can be associated with either the MBS or a nearby SBS. The management
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of all network elements is performed in the central BBU pool which is capable of taking

network-wide decisions. In the context of H-CRANs, RRHs generally have lighter processing

capabilities compared to SBSs; nevertheless, both SBSs and RRHs are denoted as SBSs in

this work assuming that they have similar functionality. The MBS is modeled as anM/M/km

queueing system in which km servers (radio channels) can serve km users simultaneously

without waiting in the queue. Similarly, each SBS is modeled as an M/M/ks system with

equal service rate but different arrival rates. Now, let λm, km, and μm denote the arrival rate

of tasks (users) within only the MBS coverage (no SBS coverage), number of MBS servers,

and MBS service rate, respectively, then the MBS utilization can be expressed as

ρm =
λm

kmμm

, (3.4)

where ρm must be less than or equal to 1 in order to maintain system stability. To showcase

the effect of SBS sleeping on cloud computing, it is assumed that tasks arriving at the MBS

have no computing demands. In other words, ρm has no direct effect on the the cloud

response time; nevertheless, it affects the number of sleeping SBSs (edge devices), and as a

consequence, the amount of computing tasks offloaded on to the cloud.

3.2.3 Computing Model

Tasks offloaded from sleeping SBSs are accommodated by the central cloud which is modeled

as an M/M/kc queueing system with kc servers or virtual machines (VMs). We generally

classify tasks into two categories, computing tasks that require realtime processing and

feedback from edge or cloud servers, and non-computing tasks that require telephony services

without powerful computing capabilities thus can be handled by the cellular nodes. Let λj

and αj denote respectively the arrival rate of tasks and the ratio of computing tasks to all

incoming tasks (computing plus non-computing) at SBS j, then the total arrival rate of

computing tasks at the cloud is

λc =
Ns∑
j=1

x′
jλjαj, (3.5)
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Accordingly, the cloud utilization ρc is expressed as

ρc =
λc

kcμc

, (3.6)

where μc denotes the service rate of each server. The performance metric of the system

under consideration is the response time offered by the cloud. To this end, we consider the

steady state analysis based on the continuous-time Markov chain (CTMC) of the M/M/kc

cloud system as shown in Fig. 3.2.

.0 1 2 . .
2μc μc 3μc 

λc 

. . . kc

kc  μc 

λc λc λc λc 

kc  μc 

Figure 3.2: Cloud queue model.

The probability that a user will have to queue (all servers are occupied) can be calculated

as

PQ =
∞∑

i=kc

πi

= π0
kkc
c

kc!

ρkcc
1− ρc

, (3.7)

where πi represents the steady state probability that i servers are occupied. π0, which is the

steady state probability that zero tasks exist in the cloud, can be written as

π0 =

[ kc−1∑
i=0

(kcρc)
i

i!
+

kkc
c

kc!

ρkcc
1− ρc

]−1

. (3.8)

Therefore, the cloud response time can be obtained by

E[Tc] =
1

λc

· ρc
1− ρc

· PQ +
1

μc

,

=
kkc
c

λckc!
· ρkc+1

c

(1− ρc)2
·
[ kc−1∑

i=0

(kcρc)
i

i!
+

kkc
c

kc!

ρkcc
1− ρc

]−1

+
1

μc

. (3.9)
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3.2.4 Cost of Task Migration from Edge to Cloud

In the proposed system, a VM is allocated to each computing task arriving to the edge device

or the central cloud with fixed CPU speed. When the serving SBS enters the sleep mode, all

associated tasks will be migrated to the central cloud. Thus, the cost of task migration is

considered as a delay constraint in the sleeping mechanism. Each task has a particular data

size St that includes both application data and VM state [125], and a completion deadline θt

by which the task must be executed and delivered to end-user. However, the migration delay

does not consider the setup delay of VMs at the new host. Therefore, the total experienced

delay for accomplishing task t consists of three components (a) task execution time (b) data

transmission time and (c) response time. Mathematically we can formulate the total delay

as follows

dt =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

St

ve
+ 2St

bs
+ E[Te], if SBS is On

St

vc
+ 2 St

bm
+ 2 St

bfl
+ E[Tc], if SBS is Off,

(3.10)

where ve and vc denote the VM’s CPU clock speed (cycles/sec) in the edge device and the

cloud respectively. bs, bm, and bfl are respectively the bit rate provided by the SBS, MBS,

and the fiber backhaul link. E[Te] and E[Tc] denote the mean response time at the edge

device and the cloud, respectively. The multiplier “2” is used to calculate the time required

for both uplink and downlink transmission. Taking into account the cost of task migration,

the energy consumed by a mobile device thus depends on whether the task t is processed by

the near edge device or the distant cloud:

et =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

psdt, if SBS is On

pmdt, if SBS is Off,

(3.11)

where ps and pm denote the user transmit power to the SBS and MBS, respectively. It

should be noticed that we consider fixed transmit powers ps and pm without considering
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the power variations due to the different data size or application requirements of tasks.

Since this work incorporates different communication and computing aspects, we assume

an appropriate service level agreement (SLA) is committed by cloud providers to ensure all

clients have access to cloud facilities [126]. Moreover, the SLA between cloud operators and

mobile devices ensures that all computing tasks are completed before the deadline and are

compensated for the extra energy consumption due to sleeping SBSs.

3.3 Computing-Aware SBS Sleeping

MBS

Edge 
device

Backhaul

SBS (Off)

Cloud

SBS (On)

Communication link

Figure 3.3: Proposed SBS sleeping in the H-CRAN-CE system layout.

As mentioned earlier, edge devices are assumed to coexist with SBSs and follow the same

On/Off operation. Also, computing tasks associated with a sleeping SBS are offloaded to

the cloud. However, offloading tasks from the edge to the central cloud can increase the
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Figure 3.4: Cloud queue model for the proposed SBS sleeping mechanism.

time delay experienced by users; thus, it is essential to take into account the loading effect

of computing tasks before deciding on whether to put an SBS in “On” or “Off” mode. Figs.

3.3 and 3.4 illustrate the system and queue models for the proposed sleeping mechanism.

The computing-aware SBS sleeping mechanism is formulated as a 0-1 knapsack problem

which in general aims to optimize the total value under the total weight constraint. Here,

the arrival rate of tasks at SBS j (λj), which directly affects the utilization of the SBS

ρs =
λj

ksμj
, is considered as the weight of the SBS. Let α′

j = 1 − αj denote the ratio of

non-computing tasks to all incoming tasks at SBS j, then (α′
jλj) is considered the value of

that SBS. The values of α follows a continuous uniform distribution between 0 and 1. In

other words, the objective of the problem is to maximize the number of sleeping SBSs that

have less computing duties as follows:
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P1: Maximize:
x′
j

Ns∑
j=1

α′
jλjx

′
j

Subject to: C1 :
Ns∑
j

λjx
′
j + λm

kmμm

≤ 1,

C2 : E[Tc] < θc,

C3 : dt < θt, ∀t,

C4 : x′
j ∈ {0, 1}, ∀j ∈ S,

C5 : α′
j ∈ [0, 1], ∀j ∈ S.

(3.12)

It is worth mentioning that x′
j = 1 indicates that the jth SBS is Off and all computing

tasks associated with that SBS are offloaded to the cloud through the MBS. The rationale

behind this optimization problem which is solved using dynamic programming, is that SBSs

with less computing duties (i.e., more non-computing tasks or higher α′
j) are considered

to have higher values compared to other SBSs and thus put into the Off mode by setting

x′
j = 1. In other words, the optimization problem aims to maximize the amount of tasks

offloaded from the SBSs to the MBS with minimum burden on cloud servers. In the general

dynamic programming problem, we have a number of items (SBSs) each with an associated

weight and value (benefit or profit). The objective is to fill the knapsack (MBS) with items

such that we have a maximum profit (less computing tasks to reduce the burdens on the

cloud) without crossing the weight limit of the knapsack. The constraint C1 ensures that the

total incoming tasks at the MBS (offloaded tasks plus MBS tasks) will not exceed the MBS

utilization limit (i.e., ρm = 1) which is considered the total weight limit in the 0-1 knapsack

problem. C2 and C3 set the upper time limit for the cloud response and task completion,

respectively. C4 indicates that x′
j is a binary variable. C5 shows that α′

j can have any real

value from 0 to 1.

It should be noted that the average arrival rates of tasks at all SBSs underlying an MBS

are used to drive the base station sleeping mechanism rather than the instantaneous number

of tasks. This is because the sleeping mechanism in this work is centralized compared to other
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distributed sleeping schemes such as the N-policy in [107] that allows SBSs to individually

decide on the sleep decision based on the instantaneous number of tasks.

3.4 SBS Sleeping in Shared Cloud-Edge Computing

System

In the shared cloud-edge computing model, both cloud and edge servers cooperate in a sense

that allows the workload to be shared among all available cloud and edge servers provided

that at SBSs operate in the On mode. In other words, the queueing model of the shared

computing systems has one queue and joint cloud-edge servers as elaborated in Figs. 3.5

and 3.6. In the proposed shared computing system, the arrival rate and server utilization

are respectively written as:

λsh =
Ns∑
j=1

λjαj, (3.13)

ρsh =
λsh

kshμsh

, (3.14)

where ksh is the total number of cloud and active edge servers (ksh = kc +
∑Ns

j xjks).

Lemma 1. The cloud response time in the proposed shared computing model is faster than

central cloud system by a factor of

(
1 +

∑Ns
j xjks

kc

)
.

Proof.

E[Tc]

E[Tsh]
=

1
λc

ρc
(1−ρc)

P c
Q + 1

μc

1
λsh

ρsh
(1−ρsh)

P sh
Q + 1

μsh

, (3.15)

where E[Tsh] and P sh
Q denote the response time and queuing probability for the shared

computing system, respectively. By comparing the two systems at the same load level and

queuing probability (i.e., ρc = ρsh = ρ, and P c
Q = P sh

Q = PQ), we get
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Figure 3.5: Shared computing system layout.

E[Tc]

E[Tsh]
=

1
λc

ρ
(1−ρ)

PQ + 1
μc

1
λsh

ρ
(1−ρ)

PQ + 1
μsh

=

1
λc
ρPQ + (1−ρ)

μc

1
λsh

ρPQ + (1−ρ)
μsh

where the last step is obtained by multiplying both numerator and denominator with (1−ρ).

When the system is heavily loaded (i.e., ρ ≈ 1 and PQ ≈ 1), then the arrival rate equals the

service rate (i.e., λsh = μsh and λc = μc), thus

E[Tc]

E[Tsh]
=

λsh

λc

=
kshμsh

kcμc

=
(kcμsh +

∑Ns

j ksμshxj)

kcμc

.

Assuming that the service rate of both systems are equal (i.e., μsh = μc), then
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Figure 3.6: Shared computing queue model.

E[Tc] =

(
1 +

∑Ns

j xjks

kc

)
E[Tsh].

To find the optimal set of sleeping SBSs taking into account power consumption and cloud

response time, the cost function is formulated as:

C(x) = β

(
Pt(x)

max{Pt}

)
+ (1− β)

(
E[Tsh(x)]

max{E[Tsh]}

)
(3.16)

where x = {x1, x2, ..., xNs} represents the operation status of all SBS in the system. More-

over, x has 2Ns different combinations of binary numbers in a truth table style. Whereas
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C(x), Pt, and E[Tsh] are respectively the cost, total power consumption, and response time

associated with x. β is a weighting factor that determines whether to prioritize the mini-

mization of power consumption or cloud response time. Thus, the problem of SBS sleeping

in the shared computing model can be formulated as:

P2: Minimize:
x

C(x)

Subject to: C1 :
Ns∑
j

λjx
′
j + λm

kmμm

≤ 1,

C2 : E[Tc] < θc,

C3 : dt < θt, ∀t,

C4 : x′
j ∈ {0, 1}, ∀j ∈ S.

(3.17)

The constraint C1 ensures that the total incoming tasks at the MBS do not exceed the

MBS utilization limit. C2 and C3 set the time threshold for the cloud response and task

completion, respectively. C4 indicates the On/Off operation of SBS j. To solve this mixed-

integer optimization problem, exhaustive search which has been successfully used to find the

optimal solution in similar problems [103] will be used. The optimal solution for this problem

is obtained by testing 2Ns different combinations of x. For instance, if the system contains

two SBSs, then four iterations will be conducted to test all possible SBS configurations 00,

01, 10, and 11, where these two digits represent the operation mode for each SBS. Therefore,

when more SBSs exist in the system, the number of iterations to find the optimal solution

will increase. Algorithm 1 illustrates the solution search strategy, where x∗ represents the

optimal operation for the SBSs under consideration.

3.5 Simulation Setup and Results

To evaluate the performance of the proposed computing-aware sleeping mechanism, sim-

ulation setup and results are provided and elaborated in this section. Table 3.2 lists the

description, notation, and value for each parameter used in the simulation. The data size
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Algorithm 1: Searching optimal solution for P2

Initialize xn, n = 1, 2, ..., 2Ns ;

while n < 2Ns do

Calculate ρm according to (3.4);

if
∑Ns

j

λjx
′
j+λm

kmμm
≤ 1− ρm then

Calculate C(xn) according to (3.16);

end

n ← n+ 1;

end

x∗ = argmin
xn

{C}.

and task completion deadline are uniformly distributed between [0.5-2] MB and [2-4] sec,

respectively. Following the work in [124], the total provided cellular throughput is 27 Mbps

by the MBS and 15 Mbps by the SBS. It should be noted that the data rates here are

shared by all users such that when the number of users increases, the per-user data rate will

decrease. Other parameter settings are inspired by [127] and [128].

Figs. 3.7 and 3.8 show the system performance using both minimum load and computing-

aware mechanisms. The minimum load approach is greedy-based and controls SBS sleeping

according to only the SBS load (i.e., arrival rate) without considering the computing de-

mand. On the other hand, the computing-aware mechanism determines the sets of active

and sleeping SBSs considering both the arrival rate and the amount of computing tasks. It

can be seen in Fig. 3.7 how θc affects the SBS power saving since it acts as a constraint on

the cloud response time and thus the number of sleeping SBSs. Moreover, the computing-

aware mechanism is found to achieve better power saving since it considers the computing

load when selecting the sleeping SBSs and that also leads to reduced cloud response time.

It is also clear how the MBS utilization (ρm) significantly impacts the overall performance.

When the MBS is lightly loaded (e.g., ρm = 0.1), both power saving and response time were
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Table 3.2: Simulation Parameters

Description Notation Value

SBS power Ps 50 W

Number of SBSs Ns 10

Number of servers in the MBS km 100

Number of servers in the edge device ks 10

Number of servers in the cloud kc 50

Task arrival rate at MBS λm 1-100 task/sec

Task arrival rate at the jth SBS λj 1-10 task/sec

Computing ratio at the jth SBS αj [0,1]

MBS service rate μm 1 task/sec

SBS service rate μs 1 task/sec

Cloud service rate μc 1 task/sec

CPU clock speed of each VM in the edge device ve 3.2 GHz

CPU clock speed of each VM in the cloud vc 3.2 GHz

Total bit rate provided by the SBS bs 15 Mbps

Total bit rate provided by the MBS bm 27 Mbps

Fiber backhaul link speed bfl 10 Gbps

Data size of tasks St 0.5-2 MB

User transmit power to the SBS ps 0.05 W

User transmit power to the MBS pm 0.5 W

found to achieve higher values since more MBS servers are free and willing to accept more

offloaded tasks from more sleeping SBSs. Nevertheless, having more sleeping SBSs increased

the cloud response time because more computing tasks are directed to the central cloud

instead of being processed locally by edge devices. In contrast, when the MBS is heavily
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Figure 3.7: SBS power saving under different values of θc in disjoint cloud-edge system,

θ̄t = 3s.

loaded (e.g., ρm = 0.9), both power saving and cloud response time are decreased since SBSs

have smaller opportunities to enter the sleep mode; as a result, less computing tasks are

offloaded to the central cloud. The response time in this system does not fall below 1s since

the proposed service rate in the cloud (μc) is set to 1s and thus the service time is 1/μc = 1s.

This service time in addition to the cloud queue delay constitutes the cloud response time

as shown in (3.9). Also, it should be noted that the task completion deadline θt follows a

uniform distribution between 2 and 4 seconds (i.e. mean θ̄t=3s).

Fig. 3.8 shows that having more power saving due to SBS sleeping will oblige users to

spend more energy since tasks will be forwarded to the longer cloud path via the MBS rather

than being processed by the edge device. Moreover, the non-linearity in the user energy con-

sumption comes as a result of the more abundant frequency resources offered by the MBS

when it is lightly loaded which is reflected by the higher SBS power saving. As a result, less

time will be required to complete tasks since higher data rates will be offered by the MBS,

and thus less energy consumption.
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Figure 3.8: User energy consumption under different values of θc in disjoint cloud-edge

system, θ̄t = 3s.

Table 3.3: Solution Search Time

Number of SBSs (Ns) Time to find x∗

5 0.015 s

10 1.25 s

15 75 s

16 165 s

17 360 s

18 800 s

In Figs. 3.9 and 3.10, comparisons between disjoint and shared computing cloud-edge

systems are conducted. As proved in Lemma 1, having more active SBSs in the system
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Figure 3.9: Comparing the SBS power saving between disjoint and shared computing sys-

tems.

reduces the cloud response time. This can be observed especially when ρm is high which

forces more SBSs to remain active thus reducing the overall response time. To maintain fair

evaluation, comparisons in Figs. 3.9 and 3.10 were obtained using only the minimum load

approach without imposing a delay constraint on the cloud response time nor having a task

completion deadline, and that is why they seem to have different shapes compared to other

results in this section.

The optimal sleeping solution in the shared computing system is shown in Fig. 3.11. By

adjusting the value of the weighting factor β, preference can be given to either saving energy

or reducing the response time. Here, when β = 0.8 more emphasis is put on power saving

than reducing cloud response time. Furthermore, adding more stringent requirements such

as θc on the cloud response time and θt on the task completion time will affect the power

saving significantly as seen in Figs. 3.12 and 3.13.

Finding the optimal solution requires searching all possible operation modes for all SBS
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Figure 3.10: Comparing the cloud response time between disjoint and shared computing

systems.
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Figure 3.11: SBS Power saving in the shared cloud-edge system using different values of β.

60



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MBS utilization ( m)

0

50

100

150

200

250

300

350

400

450

S
B

S
 p

ow
er

 s
av

in
g 

(W
at

t)

Minimum load, c=1.01s

Minimum load, c=1.02s

Optimal, c=1.01s

Optimal, c=1.02s

Figure 3.12: SBS Power saving in the shared cloud-edge system under different cloud response

constraints, (θ̄t = 3s, β = 0.8).

within the MBS coverage. Since there are only two operation modes, the total number of

required iterations is 2Ns as illustrated in Algorithm 1. Here, it is helpful to measure the

time required to find the optimal solution for different numbers of SBSs although 10 SBSs

were considered in this work. Table 3.3 lists the time required to reach the optimal solution.

It can be observed that finding the optimal solution requires longer time as the number

of SBSs underlying an MBS increases; in which case, the search space can be reduced by

clustering SBSs into smaller sets or assigning particular SBSs a fixed mode of operation

using network and cloud characteristics to get a sub-optimal solution with reduced complex-

ity [126]. Furthermore, reinforced learning techniques can be implemented to extract the

features of user behaviour to help decide on each particular SBS operation and hence reduce

the search space.
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Figure 3.13: SBS power saving in the shared cloud-edge system under different task comple-

tion deadlines, (θc = 1.02s, β = 0.8).

3.6 Chapter Summary

The problem of SBS sleeping in integrated H-CRAN-cloud-edge networks has been studied

in this chapter. First, a SBS sleeping mechanism was proposed to save energy taking into

account the constraints of task completion deadline and cloud response time. The problem

was formulated as a 0-1 knapsack problem and solved using dynamic programming. Secondly,

a joint cloud-edge computing model was introduced such that edge devices contribute to

the total network computing resources beside the cloud to improve the system computing

capability. Finally, finding the optimal power saving in the later system was found using an

exhaustive search strategy. Abiding by the fact that traffic associated with sleeping SBSs will

be eventually served by the MBS, the MBS utilization was considered as a major practical

constraint that defines the observations and results obtained in this Chapter.

In Chapter 4, we will focus on achieving energy saving on edge devices taking into account

the QoE requirements of mobile users. Two approaches will be investigated and compared,
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namely, full- and partial-sleep modes depending on whether all or some virtual machines

at an edge device are allowed to enter the sleep mode. The system model considers the

existence of an SDN-based controller similar to the BBU pool used in this chapter; however,

in the next chapter the SDN controller is in charge of only a group of cooperative edge

devices rather than the entire network.
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Chapter 4

QoS-aware Energy Saving Scheme for

SDN-assisted Edge Computing

Networks

4.1 Introduction

With the rapid growth of smart applications that help to promote autonomy, safety, and pre-

cision in a variety of life aspects, more and more mobile devices are continuously joining the

existing networks. Large number of these devices came as a result of the increasing popular-

ity of IoT that has attracted both industry and academia recently. Moreover, machine-type

communication that forms a large proportion of IoT applications is expected to occupy 45%

of the entire Internet traffic by 2022 [129], and that necessitates the efficient exploitation

of the limited frequency and computing resources to provide satisfactory QoS for end users.

However, many challenges are still facing the establishment of smart IoT systems especially

in regard to energy, connectivity, and latency. The computing-intensive tasks of many smart

applications require larger amounts of processing (CPU), memory, and battery capabilities

compared to the on-device resources [130]. However, with the emerging edge computing

networks, users will have the opportunity to offload their tasks for processing at the edge de-
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vices benefitting the powerful computing resources. As a result, more devices can be served

with better QoS, and that helps to relieve cloud servers and to enhance network scalability

by running computing tasks on the small-size agile edge devices near mobile users.

Table 4.1: Related Works

Reference Computing Paradigm Objective Approach

[131] Mobile edge computing Energy saving Data compression, and resource allocation

[132] Multilayered fog computing Energy saving and processing delay Partial task offloading among fog nodes

[133] Cooperative computing in wireless sensor networks Energy saving Task partitioning and offloading among nodes

[134] Content caching on edge nodes Energy saving Cooperative content caching

[115] Fog-cloud computing Reduce delay and energy consumption Fog-cloud workload allocation

[135] Virtualized edge computing for wireless sensor networks Energy saving Turning off camera nodes during inactivity

[136] Partial SDN deployment Energy saving Shutting down unnecessary network elements

[137] SND/OP backbone networks Energy saving SDN-assisted IP routing

[4] SDN-based data centers Energy saving Overbooking computing resources

Our work SDN-assisted cooperative edge computing Energy saving QoS-aware on/off operation of edge devices/VMs

It is not hard to realize that energy acts as a major challenge in modern communica-

tion and computing networks due to the massive amounts of computing-intensive applica-

tions that require dense deployment of base stations and cloud services. Herein, the under-

utilization of available resources incurs large amounts of energy wastage in both computing

and communication facilities. For instance, the average utilization of servers in large data

centers ranges between 10 to 30 % [4], and the average link utilization in the backbone net-

work of one large service provider has a utilization that does not exceed 40% whereas the

energy consumption of that link is 95% of the fully loaded link [136]. This necessitates the

adoption of effective energy saving strategies to reduce energy wastage and greenhouse gas

emissions [110]. One of the efficient energy saving strategies is to monitor the traffic flow

associated with base stations and edge devices, and set lightly loaded base stations or edge

devices into the off/sleep mode. However, without careful implementation of such strategies,

more service delay can be experienced by end-users and that can have serious impact on

delay-sensitive applications such as e-health and autonomous vehicles which can tolerate few

milliseconds of delay [6].
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The under-utilization of computing resources leads to large amounts of energy wastage.

Implementing SDN-assisted routing schemes to shut down under-utilized links and hardware

components was proposed in several studies such as [137], [136], [138], and [139]. Authors

in [4] proposed overbooking network resources by allocating more requests on the same

resources to avoid resource and energy wastage. A hierarchical edge-cloud architecture was

proposed in [121] to achieve workload balancing between the cloud and edge devices. In a

similar context, authors in [115] considered workload scheduling between cloud and fog nodes

to find the optimal energy-delay tradeoff. A scheduling algorithm was proposed in [122] to

minimize the queue delay in cloud computing in order to reduce latency for Internet services.

From the communication perspectives, turning off base stations with light load to save

energy has been considered in several studies such as [107] and [8] to save energy in hetero-

geneous networks since power amplifiers consume the largest portion of energy in cellular

networks. The joint communication-computing aspects of SBS sleeping was studied in [140]

and [141] to save energy in H-CRANs along with cloud-edge networks considering the com-

puting delay experienced by users. In this work, we aim to save energy by turning off unused

VMs in an SDN-assisted cooperative edge computing model where VMs of all edge devices

constitute a shared pool of computing resources. Therefore, turning off VMs at any edge

device must be governed by a strict queueing probability threshold since the on/off operation

of VMs at any edge device affects the queueing delay experienced by mobile users. Table 5.1

summarizes the most relevant and recent works.

The rest of the Chapter is organized as follows. In Section 4.2, the system model is

introduced. The problem formulation and solution approach in addition to a comparison

between the full and partial sleeping modes are presented in Section 4.3. A load management

strategy for overloaded edge devices under the fronthaul capacity constraint is proposed in

Section 4.4. Simulation results and discussions are elaborated in Section 4.5. Finally, Section

4.6 provides a short summary for the Chapter.
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4.2 System Model

In this section, the system, computing, and communication models are presented. Fig. 4.1

depicts the proposed joint communication-computing system model.

MBS

BBU pool

Fronthaul
Backhaul

SBS Cloud

Fog node

SBS

SBS

Figure 4.1: System model.

We consider a distributed computing network in which wireless links are provided by

SBSs, whereas computing tasks are processed by edge devices located at the vicinity of

mobile users. Supported by the SDN-based controller, which can be located in one of the

edge devices (master device) or further in the BBU pool, we assume that traffic is monitored

and can be rescheduled among the edge devices efficiently and easily. Sufficient orthogonal

wireless channels are considered to be available with constant link speed since interference

is neglected in this work.

Let E = {1, 2, ..., Ne}, V = {1, 2, ..., Nv}, and U = {1, 2, ..., Nu} denote the sets of edge

devices, VMs per edge device, and users, respectively. Each edge device n ∈ E is modeled

with the well-known M/M/k queueing system with k servers or VMs. For each edge device
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n, let kn, λn, and μn be the number of VMs, arrival rate, and departure (service) rate,

respectively, then the utilization of the nth edge device ρn is expressed as

ρn =
λn

knμn

. (4.1)

The performance metric of the proposed system is the queue delay; therefore, we consider the

queueing system steady state analysis based on the CTMC of M/M/k systems [142]. Here,

the probability that a user will have to queue at edge device n (all servers are occupied) can

be calculated as:

P n
Q =

∞∑
i=kn

πi

= π0
kkn
n

kn!

ρknn
1− ρn

, (4.2)

where πi represents the steady state probability that i servers are occupied. The steady state

probability that zero task exists in edge device n, can be written as

π0 =

[ kn−1∑
i=0

(knρn)
i

i!
+

kkn
n

kn!

ρknn
1− ρn

]−1

. (4.3)

Therefore, the queue delay of the nth edge device can be obtained by

E[T n
Q] =

1

λn

· ρn
1− ρn

· P n
Q. (4.4)

From the user perspective, the energy consumption of user u associated with edge device n

depends on the end-to-end delay experienced by that user; that is to say, the sum of queue

delay, task transmission over the wireless link, and task completion time as follows

du = E[T n
Q] +

Du

su
+

Du

ce
, (4.5)

where Du, su and ce denote the task data size, wireless link speed, and edge device processing

speed, respectively. Thus, the energy required to complete a task is
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enu = psdu, (4.6)

where ps is the user transmit power.

4.3 Problem Formulation and Solution Approach

The proposed on/off scheme for edge computing aims to save energy while maintaining

satisfactory service levels for end-users. Herein, energy saving schemes are proposed, namely,

the full sleep mode in which the entire edge device with all VM resources enters the sleep

mode, and partial sleep mode where the necessary amount of VMs according to the QoS

requirements remain active while the rest enter the sleep mode locally within edge devices.

4.3.1 Full Sleep Mode

To maximize energy saving in distributed computing networks, we aim to allow more edge

devices to enter the ‘off’ mode taking into account the probability of queueing at each edge

device that must remain below a pre-determined value. In addition, the queue system stabil-

ity must be maintained throughout the entire process. Let pe denote the power consumed by

an individual edge device, then the total power consumption of edge devices can be obtained

by the following

pT =
Ne∑
n=1

xnpe, (4.7)

where xn ∈ {0, 1} is the on/off operator. From the aforementioned, the problem can be

mathematically formulated as follows
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P1: Minimize:
xn

pT

Subject to: C1 : P n
Q < α, ∀n ∈ E ,

C2 : ρn < 1, ∀n ∈ E ,

C3 : xn ∈ {0, 1}, ∀n ∈ E .

(4.8)

The constraint C1 ensures that the queueing probability at edge device n remains always

below a predefined value α. C2 maintains system stability by ensuring that the utilization of

each edge device remains below 1. In C3, the on/off operator xn is presented, where xn = 1

and xn = 0 indicate that edge device n is set into the on and off modes, respectively. Since

C1 and C2 in P1 are non-linear on xn, and C3 indicates that the decision variable xn is a

binary variable, the problem can be described as a binary integer non-linear programming

and thus requires intensive computations to tackle. The challenge in this problem is that

traffic offloaded from sleeping edge devices needs to be accommodated by active edge devices

and that affects the queueing probability at the host edge device. Therefore, in order to solve

the problem, we propose an SDN-assisted cooperative computing paradigm in which all VMs

in all edge devices constitute a shared pool. Herein, all incoming traffic and edge resources

are modeled as a single M/M/k queue. The goal of the proposed model is to achieve elastic

control over the available computing resources among the cooperative edge devices. Fig. 4.2

depicts the SDN-assisted edge computing model.

In the SDN-assisted model, let the new variables kT =
∑E

n=1 kn, λT =
∑E

n=1 λn, and

μT = μn, ∀n ∈ E , denote the total number of VMs, total arrival rate, and the service rate

of the controller queue, respectively. It should be noted that the computing capacity of the

individual VM remains the same in the cooperative scheme and that explains the departure

rate μT = μn.

To solve the power minimization problem, it is first required to find the optimal number

of servers (i.e., VMs) that satisfies the queueing probability constraint. To this end, we

propose the square-root staffing (SRS) rule [142] which requires the resource staffing in
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(b) SDN-assisted queue model.

Figure 4.2: Proposed edge computing layout.

M/M/k queues to be greater than the resource requirement (λT

μT
) in order to satisfy both

stability and delay requirements. Then, the total number of required VMs is subtracted

from the total number of VMs to decide on the number of active and sleeping edge devices.

The SRS rule in the proposed scheme is used to determine the number of edge devices

that can enter the off mode without violating the desired service quality (i.e., low queueing

probability). Let RT = λT

μT
denote the resource requirement at edge device n, then the

optimal number of servers required to ensure a queueing probability less than α is [142]

k∗
T ≈ RT + c

√
RT , (4.9)
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where c is the solution to the equation

cΦ(c)

φ(c)
=

1− α

α
, (4.10)

where Φ(.) and φ(.) denote the cumulative distribution and probability density functions of

the standard normal distribution, respectively. From (4.10), the relation between α and c

can be rewritten as follows:

α =

[
1 +

cΦ(c)

φ(c)

]−1

. (4.11)

The above function represents the Halfin-Whitt function which helps do determine the op-

timal number of servers required to maintain a queueing probability less than α in M/M/k

queues [143]. Fig. 4.3 shows the Halfin-Whitt function according to (4.11). Hence, the

number of edge devices that can be set into the off mode is obtained by:

ns =

⌊
Nekn − k∗

T

kn

⌋
, (4.12)
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Figure 4.3: The Halfin-Whitt function showing the relationship between α and c.

Therefore, the problem P1 is solved by finding c that satisfies α according to (4.10), then

determining the required number of VMs using (4.9). Once ns is obtained, edge devices
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with the lightest traffic load will enter the off mode, while the traffic offloaded from the

sleeping edge devices will be accommodated by active edge devices with the next lightest

load. Algorithm 2 illustrates the proposed scheme.

Lemma 2. Satisfying the queueing probability requirements also limits the queueing delay

experienced by users.

Proof. Since the SRS rule satisfies P n
Q < α, from (4.4) we can write :

E[T n
Q]
λn(1− ρn)

ρn
< α,

E[T n
Q] <

αρn
λn(1−ρn)

,

but ρn =
λn

knμn

, E[T n
Q] <

α
(knμn−λn)

,

where knμn > λn according to the SRS rule (refer to (4.9)).

4.3.2 Partial Sleep Mode

Turning off the entire edge device can be a hard decision since large numbers of VMs are

turned off at once; as a result, maintaining the QoS for users can be more challenging.

Moreover, it increases the amount of migrated tasks that must be accommodated by other

edge devices. Therefore, to improve the system performance in regard with energy saving,

task migration, and flexibility, a partial sleep mode is proposed such that energy saving is

achieved with fine granularity by considering the on/off operation of individual VMs instead

of the entire edge device. In this model, VMs of all edge devices contribute to the SDN-

controlled pool as in the previous model; however, the number of active VMs at each edge

device can be different according to the traffic demands. In other words, each edge device

takes part in energy saving, but all edge devices remain active. With the assistance of SDN,

more agility can be achieved in regard with VM staffing and that helps reduce the delay
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Algorithm 2: Proposed edge device sleeping scheme

Define λoff : rate of tasks offloaded from sleeping edge devices;

Find k∗
T according to (4.9);

Find ns according to (4.12);

Set xn = 1, ∀n ∈ E ;
n ← 1;

λoff ← 0;

while n ≤ ns do

Find min{λn}, ∀n ∈ E ;
xn ← 0;

E = E \ n;
λoff ← λoff + λn;

n ← n+ 1;

end

Accommodating offloaded tasks:

Sort E in ascending order according to λn;

i ← 1;

while λoff > 0 do

Define λq ⊂ λoff such that λi+λq
knμn

< 1 to satisfy C2;

λi ← λi + λq;

λoff ← λoff − λq;

i ← i+ 1;

end

experienced by users and eliminates the need for additional load balancing processes. Let

pv denote the power consumed by an individual VM, then the power consumption per edge

devices can be obtained by the following
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pn =
Nv∑
v=1

xn
vpv, (4.13)

where xn
v ∈ {0, 1} is the on/off operator of VM v at edge device n. Thus, the total power

consumed by edge devices is calculated as

pT =
Ne∑
n=1

pn. (4.14)

From the aforementioned, the power minimization problem can be formulated as follows:

P2: Minimize:
xn
v

pT

Subject to: C1 : P n
Q < α, ∀n ∈ E ,

C2 : ρn < 1, ∀n ∈ E ,

C3 : xn
v ∈ {0, 1}, ∀v ∈ V , ∀n ∈ E .

(4.15)

It can be observed that P2 is similar to P1 except for C3 that provides control over VMs

instead of edge devices. The solution to the problem is also pursued using the SRS and Halfin-

Whitt function. Herein, a comparison between two computing paradigms is conducted,

namely, the disjoint model where satisfying the condition P n
Q < α depends on the VMs of an

individual edge device. In other words, each edge device acts as a stand-alone entity such

that k∗
n ≤ kn. The second is the SDN-assisted model where VM resources of edge devices

form a shared pool and contribute towards the benefit of all edge devices such that k∗
T ≤ kT ..

Lemma 3. Carrying out partial (VM) sleeping can achieve more energy saving compared to

the full edge device sleeping assuming the total edge device power is equally divided among

VMs.

Proof. To compare the obtainable energy saving at edge device n, consider a number u of

users:
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• In the disjoint model, when 0 < u < Nv, energy saving is zero, whereas in the partial

scheme (Nv−u)pv energy saving can be achieved, assuming on VM is required for each

user.

• In the SDN-assisted model, the number of potential sleeping edge devices is ns =⌊
Nekn−k∗T

kn

⌋
, whereas in the partial model, the total number of sleeping VMs isNekn−k∗

T .

This indicates that the partial energy saving scheme is more flexible and leads to better

energy saving.

4.4 Traffic Management in Overloaded Edge Devices

When the number of users exceeds that of VMs, the edge device is considered to be over-

loaded. In which case, some users have to be accommodated by another edge device. How-

ever, due to the different task sizes and deadline requirements of users, offloading tasks

randomly without context awareness can result in a larger number of unsatisfied users.

Moreover, with the dense deployment of small cells and edge devices in H-CRANs, the fron-

thaul traffic can be scaled up to multiple Gbps even under moderate mobile traffic, thus

overwhelming the capacity fronthaul links [144], which is defined as the maximum sum data

rate that can be allowed on the fronthaul link [145]. It should be noticed that fronthaul

links connect the RRHs and SBSs with the SDN-based BBU pool, and can take the form

of wired links such as fiber optic cables that provide large bandwidth but suffer inflexible

and expensive installation, or wireless links that are less expensive but has smaller band-

width [146]. Regardless of the fronthaul type, we consider the frothaul capacity in bits per

second (bps) [147] as a constraint in transferring user tasks from their initial (host) edge

device to other devices through the SDN-based controller. To this end, we aim to satisfy as

many users as possible by optimizing the offloading decisions to meet the deadline require-

ments of users. Let du represent the delay experienced by a user u, which can be expressed

as in (4.5) with the addition of the fronthaul link speed and the user association operator:
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du = E[T n
Q] +

Du

su
+

Du

ce
+ (1− xn

u)
Du

Fu

, (4.16)

where xn
u is the user association operator such that xn

u = 1 and xn
u = 0 indicate respectively

that user u is associated with the host edge device or another edge device (if the initial edge

device is fully occupied). Now, let the variable lu be the satisfaction indicator of a user u

that is dependant on the delay experienced by the user compared to the task completion

deadline as follows:

lu =

⎧⎪⎪⎨
⎪⎪⎩
1, if du ≤ Tu,

0, if du > Tu,

(4.17)

where Tu is the task completion deadline of user u. Therefore, the problem can be formulated

as follows

P3: Maximize:
xn
u

Nu∑
u=1

lu

Subject to: C1 : Nn
u ≤ kn, ∀n ∈ E ,

C2 :

Nn
u∑

u=1

Fu < Fn, ∀n ∈ E ,

C3 : xn
u ∈ {0, 1}, ∀v ∈ V , ∀n ∈ E .

(4.18)

The objective function in P3 aims to maximize the number of satisfied users within the co-

operative edge group by associating users to either the initial (nearest) device or to another

device through the SDN controller. Due to the limited amount of VMs, this problem is con-

sidered a multi-objective optimization problem since associating users without considering

the distinct delay requirement of each mobile user, and the limited fronthaul capacity, can

lead to larger number of unsatisfied users. The constraint C1 indicates that the number of

users associated with an edge device n cannot exceed the number of VMs (kn). In C2, the

fronthaul bandwidth allocated to users associated with edge device n must not exceed the

fronthaul capacity of that edge device. C3 presents the binary user association operator.
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In the aforementioned problem, taking into account the fronthaul capacity and the dif-

ferent data size of tasks, allocating users randomly among edge devices can lead to some

users exceeding their task completion deadline. When an edge device is overloaded, mini-

mizing delay for one user by associating it with the local (overloaded) edge devices rather

than transferring it to other devices can impact the delay experienced by other users due

to C1 and C2. Hence, this multi-objective optimization problem requires optimizing each

objective (user) while considering other users [20]. To solve the problem, a greedy-based

heuristic algorithm is proposed following the Lexicographic method [148] where users are

first sorted according to the Du

Tu
ratio that ranks the importance of tasks according to their

data size and deadline requirements. Accordingly, tasks with shorter deadlines and/or larger

data sizes are ranked higher to avoid the task migration delay and to relieve fronthaul links.

Afterwards, the user allocation process begins where users are allocated according to their

ranking while the capacity constraints are updated after each step. It should also be noted

that the problem only applies when the number of users outnumbers available VMs at the

edge device. Algorithm 3 illustrates the process of handling overloaded edge devices.

4.5 Simulation and Results

To evaluate the performance of the proposed schemes, simulations were conducted to provide

results regarding energy saving, queue delay, and per-user energy consumption. To ease

tracking the simulation parameters, Table 4.2 provides a list of the used parameters.

The first comparison in Fig. 4.4 shows the percentage of power saving obtained using the

full sleep mode. It can be observed that the smaller the value of α, the less energy saving

is obtained since less queueing probability is enforced in the system. It can also be seen

that when the arrival rate of users is increased, the overall energy saving is declined since

more servers (VMs) are required to accommodate the incoming traffic. The queueing delay

is depicted in Fig. 4.5 where the delay shows an increase when either or both the arrival

rate and the value of α are increased.
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Algorithm 3: Heuristic algorithm for P3

Define Nn
u : number of users hosted by edge device n;

Define Fn: fronthaul capacity at edge device n;

Find Du

Tu
∀u ∈ U ;

Sort Du

Tu
∀u ∈ U in ascending oredr;

Allocated top kn users to the nth edge device;

Transfer the next Nn
u − kn to the SDN controller as follows:

i ← kn + 1;

while i < Nn
u do

Allocate fronthaul resources according to user requirements (i.e., Fu = Du

Tu
);

Fn ← Fn − Fu;

i ← i+ 1;

end
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Figure 4.4: Power saving obtained by full edge device SDN-assisted sleeping scheme.
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Table 4.2: Simulation Parameters

Description Value

Number of edge devices (Ne) 10

Number of VMs per edge device (Nv) 10

Number of users associated with edge device (Nu) 1− 10

Power consumption of an edge device (pe) 50W

Power consumption of one VM (pv) 5W

User transmit power (ps) 0.05W

Arrival rate at each edge device (λn) 1-10 user/sec

Departure rate at each edge devices (μn) 1 user/sec

Data size of tasks (Du) 1 MB

Wireless link speed for each user (su) 1 Mbps

Edge device processing speed (ce) 1 Gbps

Fronthaul capacity of edge device n (Fn) 0.5, 1, 2 Gbps

As presented earlier, implementing the proposed partial energy saving scheme in a smaller

granularity using VMs can achieve better energy saving, reduce traffic offloading, and im-

prove system flexibility. Figs. 4.6 and 4.7 show respectively the amount of traffic offloaded

with respect to power saving, and the comparison of power saving using the full and partial

edge sleeping schemes.

The amount of energy saved using the partial sleep mode under different values of α is

presented in Fig. 4.8. In the SDN-assisted model, more VMs can be set into the off mode

since the SDN makes full use of all available VMs in the cooperative edge system. As a result

more energy can be saved, and with higher values of α, more energy saving can be obtained

at the cost of reduced service quality (i.e., higher queueing probability). On the other hand,

the disjoint computing model, where VMs are provided to users from one edge device and
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Figure 4.5: Queue delay experienced by users.
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Figure 4.6: Traffic offloading due to full edge device sleep.

do not extend to other available resources in other devices, reduces the possibility of turning

off VMs due to the limited amounts of VMs necessary to suffice the QoS requirements.

81



1 2 3 4 5 6 7 8 9

n (user/second)

0

10

20

30

40

50

60

70

P
ow

er
 s

av
in

g 
(%

)

Partial (VM) sleep
Full (Edge device) sleep

Figure 4.7: Energy saving comparison between the partial and full energy saving schemes.
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Figure 4.8: Partial energy saving using different schemes.

In regard with the queueing delay, the SDN-assisted model in Fig. 4.9 shows a relatively

constant delay since the square-root staffing approach allocates adequate amount of VMs
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Figure 4.9: Queue delay using partial VM sleeping.
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Figure 4.10: Average energy consumed by users.

with respect to the traffic load. On the other hand, the disjoint computing model which has

a limited and fixed computing resources shows a sharp increase in the queueing delay when
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Figure 4.11: Accommodated users under different fronthaul capacity constraints.

the arrival rate increases towards full utilization of the queueing system [142].

The amount of energy consumed by users is directly affected by the queueing delay. Fig.

4.10 shows the user energy consumption using different schemes. In the SDN-assisted model,

the queue delay is generally smaller, and with the local computing (i.e., tasks are processed

within the nearest edge device without migrating through fronthaul links) the energy is

lowest. On the other hand, the energy consumption is increased when task migration is

involved when edge device are overloaded. It can also be noticed that serving users in the

disjoint model incurs more queueing delay and as a result more energy consumption.

The last comparison in Fig. 4.11 shows the number of accommodated users under the

SDN-assisted and the disjoint computing models. It can be observed that the maximum

number of accommodated users in the disjoint model is limited to the number of VMs

available at an edge device. Unlike the SDN-assisted model which can accommodate more

users due to the better exploitation of resources, nevertheless, the number of accommodated

users is limited by the fronthaul capacity. In other words, the fronthaul capacity bounds the

number of tasks migrated among edge devices as seen in Fig. 4.11 where larger fronthaul
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capacity helps to accommodate more users.

4.6 Chapter Summary

An SDN-assisted energy saving scheme is presented in this chapter aiming to turn off unnec-

essary computing resources in edge devices while maintaining the desired QoS for edge users.

The proposed SDN architecture helps to reduce the queue delay experienced by edge users

since all computing resources within a group of cooperative edge devices constitute a shared

pool of VMs accessible by the SDN controller. To maintain the queueing probability below

certain levels, the square-root staffing rule and the Halfin-Whitt function were used before

deciding on whether to set edge devices into the on or off modes. Furthermore, a partial

edge device sleep mode, where only portion of the available VMs are turned off locally within

edge devices rather than the entire edge device, was introduced to enhance system flexibility

and reduce the amount of task migration which aims to satisfy more users when some edge

devices become overloaded. Moreover, the fronthaul link capacity was considered as a con-

straint that limits the amount of task migration among edge devices. Results showed that

energy saving can be achieved with amounts that depend on the desired QoS requirements.

Furthermore, with the partial sleep mode, more satisfied users can be obtained due to the

improved system flexibility when dealing with VMs rather than the entire edge devices.

Besides the importance of energy saving on the large network scale, reducing the energy

required by mobile users is crucial for the battery-enabled mobile devices. In Chapter 5,

a NOMA-based resource allocation scheme will be presented to maximize the data rate

provision for mobile users and to reduce the task completion time; as a result, reducing

the energy consumed by mobile users. Moreover, such non-orthogonal frequency allocation

schemes help to connect more mobile users, and that can tremendously help to enable future

IoT systems which are featured with massive connectivity. A heterogeneous network with

edge computing facilities will be considered to investigate the proposed scheme.
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Chapter 5

Sparse Code Multiple Access-based

Edge Computing for IoT Systems

5.1 Introduction

The Internet of Things (IoT) is expected to remarkably change the way we are living into

a smarter, safer, and easier lifestyle. With the current trend towards IoT, it can be real-

ized that IoT is confidently dominating the future of information and communication tech-

nologies. However, many challenges still exist regarding the establishment of efficient IoT

systems, in particular, device connectivity and service latency. To meet the massive con-

nectivity demands of IoT devices, the sparse code multiple access (SCMA) scheme, which is

a NOMA-based scheme is envisioned as a promising solution to cope with the connectivity

challenge and to fulfill the scalability needs of future networks [149], [150]. Unlike orthogonal

frequency division techniques, NOMA-based schemes allow multiple users to share the same

subcarriers to increase the number of users served. In contrast with other NOMA techniques,

SCMA provides improved link-level performance and block error rate as introduced in [151]

and [152]. Furthermore, comparing SCMA with code division multiple access (CDMA),

which is a code-domain multiple access scheme, SCMA allows a multi-dimensional design of

constellation points that in turn enhances system flexibility compared to the one-dimensional
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constellation in CDMA [153].

Despite the aforementioned advantages, SCMA detection requires complicated algorithms

to decode transmitted signals especially when the number of users sharing one subcarrier is

increased. Along with the decoding process, implementing robust interference cancellation

techniques is inevitable to maintain satisfactory signal quality at IoT receivers. In addition,

the computing capability of IoT devices might be inadequate for fast SCMA detection, thus

more delay will be experienced, and that is a serious issue for delay-sensitive applications

such as e-health and vehicular communications that can only tolerate few milliseconds of

delay [6]. Therefore, it is essential to consider the computing capabilities of IoT systems

such as the microprocessor speed [154], when designing SCMA-based systems.

Rather than performing computing tasks using the on-device processors, IoT devices have

the opportunity to offload their tasks to edge devices (fog nodes) in the vicinity, benefiting

from the reduced end-to-end latency. The physical proximity of edge devices with end-

users also supports IoT applications that require location awareness, low latency, and high

QoS [155]. Instead of sending all data to the distant cloud, the operations of data aggregation,

filtration, and analysis can be achieved by edge devices leaving only abstracted data to be

further processed by the cloud. Moreover, edge devices can carry out machine learning

techniques to harness the big IoT data for achieving accurate content caching and provide

timely responses to end-users [156].

In [149], a NOMA-based radio and computing resource allocation scheme was proposed to

reduce energy consumption in mobile edge computing. To enable an interactive communica-

tion among sensors and actuators, a power and channel allocation framework was proposed

in [161] for 5G IoT networks. Furthermore, a hierarchical computing resource allocation

scheme was proposed in [162] to optimally allocate the limited resources of fog nodes in IoT

services. In [163], a comparison study showed that SCMA can provide better throughput in

HetNets in contrast with other NOMA schemes at the cost of extra detection complexity.

In terms of SCMA encoding, several works in the literature considered optimal codebook

design as in [153], where the system capacity and outage probability were derived for min-
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Table 5.1: Related Works

Reference Channel Allocation Computing Model Network Model Objective

[149] Non-orthogonal Edge computing Homogeneous Energy consumption

[157] Orthogonal Edge computing Homogeneous Response time

[158] Orthogonal Edge computing Homogeneous System revenue

[159] SCMA (non-orthogonal) N/A Homogeneous Network utility

[160] SCMA (non-orthogonal) N/A Homogeneous Energy efficiency

[153] SCMA (non-orthogonal) N/A Homogeneous Outage probability and power allocation

[151] SCMA (non-orthogonal) N/A Homogeneous Energy efficiency and detection complexity

Our work SCMA (non-orthogonal) Edge computing Heterogeneous Device connectivity, sum rate, and task completion time

imizing outage probability for SCMA users using power allocation. In the same context,

the work in [152] aimed to reduce the detection complexity in codebook design, namely the

constellation design and codebook assignment. The detection complexity in SCMA has been

investigated in [164], wherein the conventional message passing algorithm was enhanced using

sphere decoding to reduce the number of superimposed constellation points in SCMA code-

books. Furthermore, decomposing high-order SCMA systems into smaller low-order systems

using mapping modules was proposed in [165] to simplify the decoding process. In [150],

a learning-based codebook generation and decoding strategy was proposed to adaptively

construct codebooks with enhanced bit error rate.

From the computing perspective, different edge computing models have been used in the

literature to investigate the computing performance in IoT systems. In [149], the computing

capacity of edge devices are divided into resource blocks with certain CPU cycles. Each of

these resource blocks is then allocated to a cluster of users that share the same frequency

resources in a NOMA-based system. The work in [157] considered associating IoT devices

with different fog nodes depending on application requirements and resource availability.

Afterwards, each associated IoT device is allocated one VM with constant CPU speed. Like-

wise, the study in [158] considered associating IoT devices with suitable fog nodes; however,

the computing resources of each fog node were considered to be shared equally among all IoT
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devices within that node. Table 5.1 summarizes recent related works considering different

computing models, multiple access schemes, and objectives. As seen in the table, some stud-

ies considered edge computing using non-orthogonal multiple access techniques (other than

SCMA) in homogeneous networks, whereas other studies considered SCMA in homogeneous

networks without incorporating edge computing. However, SCMA has not been considered

neither for edge computing in homogeneous or heterogeneous networks in general, nor in the

context of IoT device connectivity and time latency in particular.

In this work, we conduct a comprehensive investigation on the feasibility of SCMA for

distributed IoT computing systems. By selecting different SCMA parameters, the system

performance is significantly affected especially with regard to connectivity and computing

delay. Scalable SCMA codebook configuration is also proposed, carried out through simula-

tions, and is shown to improve system performance compared to the conventional OFDMA

scheme.

The rest of the chapter is organized as follows. In Section II, the system model is

introduced where network, computing, and SCMA models are presented. The problem

formulation and solution approach are given in Section III. Simulation results and discussions

are presented in Section IV. Finally, Section V presents the Chapter summary.

5.2 System Model

In this section, the network and computing models are presented. Fig. 5.1 depicts the

proposed joint communication-computing system layout.

5.2.1 Network Model

We consider a SCMA-based heterogeneous network consisting of one MBS and a set of small

base stations denoted by N = {1, ..., Np}. A set of IoT users U = {1, ..., Nu} are served

using a bandwidth B that is divided into a set of subcarriers S = {1, ..., Nsc} which are later

mapped into a set of codebooks denoted by C = {1, ..., Nc}. The sum rate of user k ∈ U is
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Figure 5.1: Proposed system layout.

given by

Rk =

Np∑
n=1

Nsc∑
s=1

ank,slog2

(
1 +

pnk,s|hn
k,s|2

Ink,s +N0

)
, (5.1)

where ank,s, pnk,s, hn
k,s, and Ink,s denote respectively the user association, power allocation,

channel gain, and inter-channel interference of user k over subcarrier s at base station n.

N0 is the noise power spectral density. It should be noted that the second term in (5.1)

represents the SINR offered to user k from base station n over subcarrier s. In this model,

users can be allocated subcarriers (codebooks) from different base stations in a CoMP fashion

no matter whether those base stations are near or far. Nevertheless, to reduce the complexity

of resource allocation, we first associate users with nearby base stations and then allocate

codebooks according to their SINR values. Since several detection techniques such as multi-

user detection based on MPA [166] and successive interference cancelation (SIC) [167] are

carried out by SCMA users for signal detection, users treat the signals of users with lower
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channel gains as noises [159]. Therefore, the inter-channel interference can be expressed as

Ink,s =
∑

{i:|hn
i,s|2>|hn

k,s|2}
pni,s|hn

k,s|2, ∀n ∈ N . (5.2)

Thus, the sum data rate obtained by all IoT devices can be calculated as

RT =
Nu∑
k=1

Rk. (5.3)

It should be noted that n refers to both the fog node and the SBS since they are considered

functioning on the same site and serving the same users.

5.2.2 Computing Model

The diversity of IoT devices and applications such as e-health, smart transportation, and

smart homes imposes different computing and delay requirements. Therefore, it is essential

to address the specific needs of each particular device to maintain satisfactory QoS in terms

of both computing and radio resource allocation. In the proposed system, each incoming

user (IoT device) k is assumed to have a specific data size Dk bits, and a task completion

deadline Tk seconds. Unlike the centralized cloud computing model where all computing

tasks are processed in the distant cloud servers, fog nodes in the proposed edge computing

model are responsible for handling computing tasks at the vicinity of IoT users within the

small-cell tier. The computing (CPU) resources in cycle/sec allocated by fog node n to user

k can be expressed as

cnk =

Dk

Tk∑
k∈Un

Dk

Tk

× Cn, (5.4)

where Cn and Un denote the total computing capacity in cycles/sec and the set of users

being served by fog node n, respectively. As shown in (5.4), the computing resources of a fog

node n are shared among all associated users (k ∈ Un). Moreover, the amount of resources

allocated to a user k depends on the ratio Dk

Tk
such that a user with larger data size or more

strict deadline will be allocated more CPU resources. Assuming that each bit of data requires
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one cycle for processing (i.e., 1 cycle/sec is equivalent to 1 bit/sec), the task completion time

of user k can be calculated as follows

tk =
Dk

Rk

+
Dk

cnk
, (5.5)

where Dk

Rk
and Dk

cnk
denote the delay incurred by wireless transmission and fog node processing,

respectively. Each task k is considered satisfied if the task completion time tk remains below

the task completion deadline Tk (i.e., tk < Tk).

5.2.3 SCMA Model

Codebook Structure

We consider a SCMA system that allows Nsc subcarriers to be shared by Nc codebooks which

are later allocated to Nu IoT devices. Each individual subcarrier can be used simultaneously

by ds codebooks; whereas each codebook is assigned dc subcarriers. Fig. 5.2 demonstrates the

mapping relationship of subcarriers, codebooks and users for a SCMA system with Nsc = 4,

Nc = 6, Nu = 6, ds = 3 and dc = 2.

Codebook design has been investigated in several studies including [152], [153], [164], and

is considered beyond the scope of this work. Nevertheless, the design process implicates that

log2M binary information bits are first mapped by the SCMA encoder into a dc-dimensional

constellation points, these constellation points are then zero-padded to spread over Nc code-

books. In this work, the conventional user-subcarrier (or codebook-subcarrier) association

matrix is followed, where this sparse association matrix is also referred to as the factor graph

matrix F [167].
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Figure 5.2: Factor graph of SCMA with Nsc = 4, Nc = 6, Nu = 6, ds = 3 and dc = 2.

F =

c1 c2 c3 c4 c5 c6⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1 1 1 0 0 0 s1

1 0 0 1 1 0 s2

0 1 0 1 0 1 s3

0 0 1 0 1 1 s4

Lemma 4. To scale the SCMA system without violating the ds and dc constraints when

using larger number of subcarriers, the factor graph matrix F can be used as a block in a

diagonal matrix. For instance, the conventional factor graph F which is a 4× 6 matrix can
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be expanded to a 4m× 6m matrix as

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F 0 0 . . . 0

0 F 0 . . . 0

0 0 F . . . 0

...
...

...
. . .

...

0 0 0 . . . F

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where 0 is a 4× 6 zero matrix and m ∈ Z indicates the number of diagonal blocks in F.

Proof. Since F4m×6m is a diagonal matrix, this implies that∑
j Fi,j = F, ∀i, and ∑

i Fi,j = F, ∀j. Since ∑
j Fi,j = ds, ∀i, and ∑

i Fi,j = dc, ∀j, then
F maintains the same properties of F regarding ds and dc.

SCMA Capacity

The motivation behind using SCMA for IoT systems originates from the scarcity of frequency

resources to accommodate the massive numbers of IoT devices. Allowing one subcarrier to

be shared by multiple users helps improving device connectivity. The capacity of SCMA

system is determined by three factors, namely, the number of subcarriers Nsc, the number of

users (codebooks) sharing one subcarrier (ds), and the number of subcarriers per codebook

(dc).

Lemma 5. The total number of obtainable codebooks can be expressed by Nc =
⌊
Nsc

ds
dc

⌋
.

Proof. Since Nc

∑
j Fi,j = Nsc

∑
i Fi,j ≡ total number of ones in F, which can also be

expressed as Ncdc = Nscds, it implies that Nc = Nsc
ds
dc
. For non-integer values of Nsc

ds
dc

the

latter formula can be expressed as Nc =
⌊
Nsc

ds
dc

⌋
.

Detection Complexity

The detection complexity in SCMA receivers increases substantially with increasing ds [165].

As a consequence, more delay will be incurred especially when IoT devices have relatively
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low computing capabilities. Since IoT devices such as sensors, actuators, and wearable body

sensors are inherently heterogeneous in their computing capabilities, allowing the same sub-

carrier to be reused by large number of devices could be impractical for IoT systems. Thus,

the detection complexity in IoT receivers using SCMA transmission needs to be investigated.

For instance, the conventional message passing algorithm (MPA), which is a common low-

complexity decoding technique for SCMA devices based on iterative propagation of messages

between resource and user nodes, imposes exponential increase in complexity when the num-

ber of users and the codebook size increase. As introduced in [164], the complexity of the

addition and multiplication operations required to decode SCMA signals can be expressed

as

CAdd = dsNscM
ds + lmaxds(NscM

ds −NscM) (5.6)

CMult = NscM
ds(ds + 4) + lmaxdsNscM

ds(ds − 1)

+lmaxNudcM(dc − 2), (5.7)

where M denotes the cardinality of the multi-dimensional constellation points. lmax is the

maximum number of message passing update iterations. Assuming that each IoT device has

a particular processing capability ζk, then tk in (5.5) can be rewritten by adding an extra

term related to MPA detection time as follows

tk =
Dk

Rk

+
Dk

cnk
+

CAdd + CMult

ζk
. (5.8)

5.3 Problem Formulation

Abiding by the aim of the work, which is improving data rate provision to satisfy the delay

requirements of IoT devices, the problem is formulated as a data rate maximization problem

as follows.
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P1: Maximize:
ank,s,p

n
k,s

RT

Subject to: C1 :
Nu∑
k=1

ank,s = ds, ∀n ∈ N , ∀s ∈ S,

C2 :
Nsc∑
s=1

ank,s = dc, ∀n ∈ N , ∀k ∈ U ,

C3 :
Nu∑
k=1

Nsc∑
s=1

pnk,s ≤ P n
max, ∀n ∈ N ,

C4 : pnk,s > 0, ∀n ∈ N , ∀k ∈ U , ∀s ∈ S,

C5 : ank,s ∈ {0, 1}.

(5.9)

The constraint C1 ensures that each subcarrier is allocated to ds codebooks (users), whereas

C2 ensures that each user is allocated dc subcarriers. C3 sets the upper limit for transmit

power at each base station. C4 indicates that each subcarrier associated with a user is allo-

cated a non-zero power, while C5 is the binary association variable of user k over subcarrier

s. It is worth to mention that the task completion deadline Tk is not considered as a con-

straint but is used to evaluate the system performance by comparing the number of satisfied

users under both SCMA and OFDMA schemes as will be seen in the results section.

The aforementioned problem involves both power allocation at each base station, and

subcarrier allocation that is dependent on the availability of codebooks among all base

stations under consideration. It is notable that P1 involves real, integer, and binary variables

which turn the problem into a mixed-integer nonlinear programming (MINLP) problem that

is computationally intractable [149], [158], [2]. However, the problem can be solved with

less difficulty when subdivided into two consecutive subproblems; (i) codebook allocation in

which every user is allocated a codebook that provides the highest data rate (i.e., highest

SINR) considering the combined effect of all subcarriers within that codebook, and (ii) power

allocation whereby each base station undertakes power optimization for associated users. It

should be noted that equal power allocation is carried out in the first subproblem (codebook

allocation) since the subcarrier power is one of the parameters required to calculate the data
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rate according to (5.1).

5.3.1 Codebook Allocation

The codebook allocation process has two phases: First, subcarriers are mapped onto Nc

codebooks taking into account the ds and dc constraints. Second, each codebook is matched

with an IoT device aiming at providing the highest SINR to IoT devices on a first-come-first-

serve basis as shown in Fig. 5.2. The following algorithm illustrates the codebook allocation

mechanism.

Algorithm 4: Codebook allocation

Define:

C: Set of codebooks;
Initialize:

k ← 1;

Set ck and Rk to zero ∀k ∈ U ;
Codebook allocation:

while k ≤ Nu do

Find c∗ satisfying R∗
k (highest SINR), ∀k ∈ U ;

ck ← c∗;

C = C\ck;
Update Rk;

k ← k + 1;

end

Lemma 6. The proposed one-to-one matching mechanism is a set-wise stable matching; that

is, all users are guaranteed to be associated with a codebook.

Proof. A matching function is considered stable if two conditions hold true. First, no individ-

ual element in both sets prefers being single (i.e., with no peer from the other set). Second,
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no pair prefers other elements on their current outcome (i.e., each of the pair elements does

not prefer the matched element). The proposed codebook-user matching algorithm guaran-

tees stability due to the following:

1. All (C,U) elements are considered rational; that is to say, no user prefers being without

a codebook and vice versa.

2. Since codebooks are allocated based on a first-come-first-serve basis, codebooks always

prefer their associated users. On the other hand, users might prefer other subcarriers that are

already allocated to other users. Nevertheless, that would not violate the second condition.

Moreover, codebooks are considered strongly substitutable meaning that a user requesting an

already occupied codebook can be allocated the next best codebook (with the next highest

SINR). Accordingly, the codebook allocation mechanism achieves stability.

5.3.2 Power Allocation

For a given codebook allocation, P1 can be reduced to the power allocation problem that

aims to maximize the system data rate (or minimize its negative) under power constraints

as follows

P2: Minimize:
pnk,s

−
Np∑
n=1

Nu∑
k=1

Nsc∑
s=1

ank,slog2

(
1 +

pnk,s|hn
k,s|2

Ink,s +N0

)

Subject to: C1 :
Nu∑
k=1

Nsc∑
s=1

pnk,s ≤ P n
max, ∀n ∈ N ,

C2 : pnk,s ≥ 0, ∀n ∈ N , k ∈ U , s ∈ S.

(5.10)

Assuming that subcarriers have good channel conditions (i.e., SINR >> 1), then the loga-

rithmic function log2(1+SINR) can provide an accurate approximation of log2(1+SINR) in

P2 [168]. As a result, the objective function in P2 is a negative concave (convex) func-

tion since logarithmic functions are concave on positive real numbers [169]. Therefore, the

optimization problem is convex and can be solved using the Lagrange multipliers method:
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(5.11)L(pnk,s, λn, vn) = −
Np∑
n=1

Nu∑
k=1

Nsc∑
s=1

ank,slog2

(
1+

pnk,s|hn
k,s|2

Ink,s +N0

)
−λnp

n
k,s+ vn

[
Nsc∑
s=1

pns −P n
max

]

where λn and vn are the optimal Lagrange multipliers related to base station n. Note that the

interference is considered as additive white Gaussian noise for simplicity. By finding ∂L
∂pnk,s

= 0

and fulfilling the KKT conditions [169], the optimal power allocation can be calculated by

pnk,s = ank,s

(
1

λn

− N0

|hn
k,s|2

)+

, (5.12)

where (x)+ = max{0, x} and λn satisfies the following power constraint

Nu∑
k=1

Nsc∑
s=1

ank,s

(
1

λn

− N0

|hn
k,s|2

)+

= P n
max, (5.13)

which can be rewritten as

1

λn

=
1∑Nu

k=1

∑Nsc

s=1 a
n
k,s

(
P n
max +

Nu∑
k=1

Nsc∑
s=1

ank,sN0

|hn
k,s|2

)
, (5.14)

where 1
λn

represents the power level at base station n. Therefore, the power allocated to

each subcarrier is determined by 1
λn

and the subcarrier’s channel gain as seen in (5.12) where

higher power is allocated to subcarriers with higher channel gain to maximize the data

rate. It is worth mentioning that implementing water-filling in both OFDMA and SCMA

systems is fundamentally the same; however, since SCMA allows subcarriers to be shared

by multiple users and within different base stations, users that have a common subcarrier in

their codebooks can be allocated different amounts of power over that subcarrier depending

on the channel conditions. In other words, one subcarrier can have different amounts of

power when assigned to different codebooks, unlike OFDMA where each subcarrier can be

allocated to at most one user in a timeslot [159], [2]. Algorithm 5 illustrates the power

allocation process in the SCMA scheme.
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Algorithm 5: Power allocation in SCMA

Calculate 1
λn

using (5.14), ∀n ∈ N ;

For each user k ∈ U within base station n:

s ← 1;

while s ≤ dc do

Calculate pnk,s using (5.12);

s ← s+ 1;

end

5.4 Simulation Setup and Results

In this section, different metrics are used to investigate the SCMA performance for edge

IoT computing in terms of data rate, connectivity, detection complexity, and computing

performance. To ease tracking simulation parameters, Table 5.2 presents the list of variables

and corresponding values used in simulations.

5.4.1 Investigating system performance using different SCMA set-

tings

The advantage of SCMA over OFDMA stems from the capability of SCMA to accommodate

more IoT devices in order to enhance the system capacity. On one hand, allowing more

users to share the same subcarrier (increasing ds) helps to accommodate more users at the

expense of higher incurred interference. On the other hand, allocating more subcarriers to

users (increasing dc) leads to higher data rate provisioning for users but degrades the system

connectivity. Hence, choosing ds and dc in SCMA depends on the particular demands of IoT

systems. Figs. 5.3 and 5.4 demonstrate the effect of ds and dc on the number of obtainable

codebooks and sum data rate, respectively. The number of obtainable codebooks in Fig.

5.3 exhibits an increasing trend with both increasing ds and decreasing dc, and with 16
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Table 5.2: Simulation Parameters

Description Value

Bandwidth (B) 10 MHz

Number of subcarriers (Nsc) 6

Maximum number of users per subcarrier (ds) 3

Maximum number of subcarriers per user (dc) 2

Cardinality of the constellation points (M) 4

Processing speed at each fog node (C) 10 GHz

Processing speed of IoT devices (ζk) Uniform distribution [20− 1000] MHz

Data size of user k (Dk) Uniform distribution [2− 8] Mb

Coverage of macro BS 1 km

Coverage of small BS 0.1 km

Maximum transmit power (macro BS) 40 W

Maximum transmit power (small BS) 1 W

Path loss (macro BS) 131.1 + 42.8 log10(D) dB, D in km

Path loss (small BS) 145.4 + 37.5 log10(D) dB, D in km

Shadowing standard deviation (macro BS) 10 dB

Shadowing standard deviation (small BS) 6 dB

Multipath fading (both macro and small BS) Rayleigh distribution with unit variance

Noise power spectral density (N0) −173 dBm/Hz

subcarriers available in the system, up to 48 codebooks can be obtained. Fig. 5.4 shows

that increasing ds leads to better system throughput; however, the incurred interference

could deteriorate the system performance when dc is not carefully chosen. One downside of

SCMA is the interference encountering IoT devices, which leads to large throughput gaps

among devices due to the variable channel conditions. It is thus motivating to statistically
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investigate the per-user throughput difference in SCMA systems. To this end, the sample

standard deviation of the per-user rate can be calculated as follows

σ =

√√√√ 1

Nu − 1

Nu∑
k=1

|Rk − R̄| (5.15)

where R̄ is the mean data rate of all k ∈ U . As seen in Fig. 5.5, the variations in per-user

throughput show remarkable increase when the values of ds and dc increase.
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Figure 5.3: Obtainable codebooks using different values of ds and dc.

To support the massive connectivity of IoT devices, the ratio Nc

Nsc
(also referred to as the

overloading factor) is desired to be much greater than one [170]. The latter condition can be

satisfied by increasing ds (refer to Fig. 3) which also leads to higher data rate provisioning as

depicted in Fig. 4. However, the interference incurred by increasing ds can also lead to higher

variations among users in regard with the experienced data rate as shown in Fig. 5. On

the other hand, increasing dc has a negative impact on IoT connectivity; that is to say, less

codebooks will be obtained when dc is increased. Nevertheless, increasing dc still shows an

increase in the sum data rate since more subcarriers (higher data rates) are allocated to fewer

number of users. Furthermore, since increasing dc allows users to utilize more subcarriers,

more interference will be encountered especially at high values of ds, and that bounds the
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Figure 5.4: Effect of ds and dc on the sum data rate.
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increase in the sum data rate and incurs more variations in data rate provisioning as seen in

Figs. 4 and 5, respectively.

Since SCMA allows each individual user to transmit/receive over multiple (dc) subcarriers

simultaneously, and allow the same subcarrier to be reused by ds users, the sum throughput

obtained shows an obvious increase compared to OFDMA. Nevertheless, the per-user data

rate provision shows a considerable variation among SCMA users due to interference espe-

cially when the number of users increases. Fig. 5.6 demonstrates that feature of SCMA,

where the central line indicates the median data rate, the box edges indicate the 25th and

75th percentiles, while the bottom- and top-most lines indicate the extreme data rate pro-

vided to IoT devices. From this figure, it can be seen that the per-user data rate of SCMA is

higher than that of OFDMA, but declines with increasing number of users due to the incurred

interference. In contrast, OFDMA users experience lower data rates that are relatively fixed

with respect to number of users due to channel orthogonality. In addition to their effects on
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Figure 5.6: Comparison of the per-user data rate between SCMA and OFDMA systems at

Nu = 8, 10, and 12.
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connectivity and throughput, ds and dc have significant impact on the detection complexity

at the receiver side. From (5.6) and (5.7), the total number of operations required to achieve

signal detection is depicted in Fig. 5.7, whereas Fig. 5.8 shows the time required to execute

these operations by an IoT device with a 20MHz processor assuming that each multiplication

operation requires 3 clock cycles for processing, and each addition requires one cycle, while

the total number of users in the system (Nu) is 12. It is worth mentioning that the effect of

dc on detection complexity is minor according to (5.6) and (5.7) compared to ds which acts

as an exponent and thus has significant impact. For this reason, Figs. 5.7 and 5.8 present

results using different values of ds while dc is considered constant.
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Figure 5.7: Total operations required for SCMA detection with dc =2.

5.4.2 Proposed SCMA system performance

To quantify the performance gain of SCMA over OFDMA, we consider a SCMA system

with ds = 3 and dc = 2 in order to improve connectivity and to satisfy more IoT devices

while maintaining the detection complexity within satisfactory limits. The improved system
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connectivity of SCMA is evident compared to that of OFDMA as manifested by the number

of satisfied users in Fig. 5.9 where users are assumed to have different task completion

deadlines that follow a uniform distribution with mean Tk. It can be noticed that the

number of satisfied users saturates when the connectivity limit (i.e., 24 users in SCMA and

16 users in OFDMA) is reached; however, enforcing more stringent delay requirements by

IoT devices results in less satisfied users since the task completion time will exceed the task

completion deadline more easily.

Adopting optimized power allocation (PA) techniques such as water-filling leads to signif-

icant performance improvement compared to other strategies as shown in Fig. 5.10. It can

also be observed that the sum data rate shows a continuous increase in SCMA until reaching

the maximum connectivity limit which is 24 users at about 3.8×108 bits/sec, and that sur-

passes OFDMA which saturates at 1.4×108 bits/sec when the maximum connectivity limit

is attained at 16 users.

A comparison between SCMA- and OFDMA-based edge computing is presented in Fig.
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Figure 5.11: Average energy consumption of mobile devices.

5.11, where SCMA shows a clear advantage over OFDMA regarding energy consumption.

This is due to the higher data rate offered by SCMA which reduces the transmission delay

of computing tasks. However, when the number of users increases, the advantage of SCMA

declines due to the encountered interference. In addition, the competition among users on

the limited computing resources of fog nodes tends to increase when more users coexist in the

system; as a result, the task completion time of both SCMA and OFDMA schemes increases

with the number of users.

5.5 Chapter Summary

In this chapter, an SCMA-based edge computing scheme for IoT systems was proposed.

Different SCMA parameters have been investigated to showcase the applicability of SCMA

for IoT systems in comparison with traditional OFDMA-based schemes. The effects of

these SCMA parameters, namely, the number of subcarriers allocated to one user, and the

number of users sharing the same subcarrier have been extensively studied and their effects
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on the system performance have been presented in detail. An optimization problem was also

formulated to maximize system throughput under the power constraint and solved using the

water filling approach. Results show the significance of implementing SCMA in improving

network connectivity and maximizing data rate provision for better QoS performance in IoT

systems.
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Chapter 6

Conclusions and Future Work

The growing number of connected devices has urged the implementation of distributed multi-

tiered networks from both cellular and computing perspectives. This concept is evident in

the dense deployment of small base stations and edge devices to push radio and computing

resources closer to mobile users benefiting the reduced delay and improved scalability. Nev-

ertheless, due to the small coverage zones of these distributed nodes, more energy can be

wasted imposing extra costs and greenhouse gas emissions. Moreover, frequency resources in

cellular networks can be more efficient when shared by multiple users simultaneously; how-

ever, the detection complexity on mobile users can be increased. To this end, NOMA-based

resource allocation schemes can help not only to improve network scalability but also to

increase data rate provision, thus reducing the transmission time and energy consumption

for mobile users.

6.1 Conclusions

In this thesis, we focused on implementing energy saving schemes in both C-RANs and edge

computing networks. In addition, we aimed to improve the network connectivity by imple-

menting a NOMA-based radio resource allocation, namely, the SCMA by which multiple

users can use more than subcarrier to increase the data rate, and as a result, reduce the
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delay that affects the per-user energy consumption.

In Chapter 2, a comprehensive literature review about energy efficiency in C-RANs,

cloud-edge, and the cooperation between both C-RANs and cloud-edge networks was pre-

sented. The chapter first introduced the most recent advances in technology such as SDN

and NFV that can significantly help coordinate the heterogenous network structure which

involves multiple tiers, RATs, and operators. Then, we presented the most related works in

the literature providing details about problem objectives, types, and solution methodologies.

The chapter also elaborated the general C-RAN architecture that forms the basis for the

system models in the subsequent chapters.

In Chapter 3, a base station sleeping mechanism was proposed and tested in a joint C-

RAN-Cloud-Edge networks in a sense that allows small base stations to enter a sleep mode

taking into account the cloud response time and the effect of task offloading from sleeping

base stations. The network has been modeled using the M/M/k queueing system where the

cloud queue response time is considered a constraint that restricts the decision on whether to

set base stations into on or off modes. The cloud response time, transmission delay, and task

processing time are all considered when finding the total time delay required by a user to

complete the desired task. Adding such constraints in the energy saving mechanism showed

a decrease the overall amount of energy saving but maintains the desired QoE requirements.

The problem was initially formulated as a 0-1 knapsack optimization where the utilization

and the amount of computing tasks at each small base stations were considered the weight

and the value of that base station, respectively, then the problem was solved using the

dynamic programming approach. Moreover, a shared-computing paradigm was proposed

whereby edge and cloud servers constitute a joint queue. Herein, an exhaustive search

algorithm was applied to find the optimal set of sleeping base stations. Results should that

energy can be saved by turning off base stations while maintaining the desired QoE by

satisfying the desired delay constraints.

The energy saving work was extended to Chapter 4, where the goal was to achieve energy

saving in edge devices while maintaining the queueing probability below a desired threshold.
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To this goal, an SDN-assisted controller similar to the BBU pool in C-RANs was presented

to coordinate the resources of the cooperative group of edge devices. In this problem, the

square-root staffing rule and the Halfin-Whitt function were used to satisfy the queueing

threshold requirement by determining the number of required VMs. In addition, a partial

sleep mode was proposed such that the on/off operation can be applied partially on VMs

unlike the full sleep mode where all VMs in an edge device are turned off. A comparison

regarding task migration due to sleeping edge devices is conducted taking into account the

capacity of fronthaul links among edge devices. Results showed that the proposed schemes

achieved successful energy saving performance without violating the delay (queueing) con-

straints. Also, the fronthaul capacity has been shown to act as a constraint in energy saving

since it limits the amount of potentially migrated tasks among edge devices (users), and as

a result, limits the flexibility of resource utilization and hence the amount of energy saving.

In order to accommodate larger numbers of users, and to maximize data rates for mobile

users, an SCMA-based resource allocation scheme for IoT systems was presented in Chapter

5. In this chapter, the delay experienced by mobile users due to the detection complexity of

SCMA subcarriers was considered as a satisfaction indicator for the SCMA scheme. More-

over, a power optimization and codebook allocation problems were formulated and solved

using the water-filling approach and heuristic algorithm, respectively. Results showed the

effectiveness of SCMA on improving the network scalability by accommodating larger num-

ber of mobile users with higher sum data rate provisioning. However, due to the higher

incurred interference, users experience large variations in the provided data rates compared

to OFDMA. Nevertheless, the per-user data rate provided by SCMA is generally higher than

OFDMA, and that help to reduce the energy consumed by mobile users.

6.2 Future Work

The work in this thesis was focused on various schemes and approaches to achieve energy

saving in both radio and computing networks. However, future work can still be done in
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the direction of energy cost and service level agreement between users and mobile operators

such that the tradeoff between user-level and network-level energy savings is considered in

the energy saving scheme. Also, context-awareness needs to be investigated with the help

of artificial intelligence and information security techniques in order to verify and predict

the QoS requirements of mobile users. Furthermore, the algorithms used in this work can

be further investigated and simplified to reduce the computation complexity and improve

system performance.
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