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Abstract

Object recognition has become a central topic in computer vision applications such as

image search, robotics and vehicle safety systems. However, it is a challenging task

due to the limited discriminative power of low-level visual features in describing the

considerably diverse range of high-level visual semantics of objects. Semantic gap between

low-level visual features and high-level concepts are a bottleneck in most systems. New

content analysis models need to be developed to bridge the semantic gap. In this thesis,

algorithms based on conditional random fields (CRF) from the class of probabilistic

graphical models are developed to tackle the problem of multiclass image labeling for

object recognition. Image labeling assigns a specific semantic category from a predefined

set of object classes to each pixel in the image. By well capturing spatial interactions

of visual concepts, CRF modeling has proved to be a successful tool for image labeling.

This thesis proposes novel approaches to empowering the CRF modeling for robust image
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labeling.

Our primary contributions are twofold. To better represent feature distributions of

CRF potentials, new feature functions based on generalized Gaussian mixture models

(GGMM) are designed and their efficacy is investigated. Due to its shape parameter,

GGMM can provide a proper fit to multi-modal and skewed distribution of data in nature

images. The new model proves more successful than Gaussian and Laplacian mixture

models. It also outperforms a deep neural network model on Corel imageset by 1%

accuracy. Further in this thesis, we apply scene level contextual information to integrate

global visual semantics of the image with pixel-wise dense inference of fully-connected

CRF to preserve small objects of foreground classes and to make dense inference robust

to initial misclassifications of the unary classifier. Proposed inference algorithm factorizes

the joint probability of labeling configuration and image scene type to obtain prediction

update equations for labeling individual image pixels and also the overall scene type of the

image. The proposed context-based dense CRF model outperforms conventional dense

CRF model by about 2% in terms of labeling accuracy on MSRC imageset and by 4% on

SIFT Flow imageset. Also, the proposed model obtains the highest scene classification

rate of 86% on MSRC dataset.
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Chapter 1

Introduction

1.1 Objective

Scene understanding is one of the primary goals in the field of computer vision since it

is a chief task in many applications of artificial intelligence. For example, in the field of

robotic systems and autonomous vehicles, the high target is to autonomously plan and

accomplish intended tasks by deliberately navigating through a typical environment. For

successful navigation towards completion of any task, a detailed understanding of the tar-

get environment is necessary. Scene understanding covers a wide range of problems such

as object detection, scene identification, image labeling and depth estimation, to name a

few. Image labeling or semantic segmentation defined as simultaneous segmentation and

recognition of objects in the image is an active research area [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

and the topic of concern in this thesis.

In image labeling the target is to categorize every pixel in the image to one of several

predefined classes (figure 1.1). Given an image, the system should automatically partition

it into semantically meaningful areas each labeled with a specific object class. In fact,
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Figure 1.1: Goal of image labeling is to categorize each image pixel to one of several
predefined classes.

primarily, identification of isolated objects and also object categories is a critical compo-

nent of visual perception in human visual system [12]. Although, human visual system

identifies and perceives the complex visual world comprehensively, visual perception or

scene understanding in humanoid systems is a challenging problem.

1.2 Motivation

Image labeling is an intriguing research problem firstly because regarding low-level, mid-

level and high-level computer vision, many problems could be formulated as an image

labeling task. At each level, the semantic meaning of different label sets and label values

differ based on the fact that which of the scene properties are captured by labels.
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- Edge detection: In low-level vision where objects of interest are low-level image

attributes such as edges, image labeling could be applied to label image pixels into

edge or non-edge labels.

- Noise removal and image restoration: Image restoration compensates for or undoes

defects which degrade an image. As a labeling problem, the label set contains the

restored intensities.

- Image segmentation: In mid-level vision, the predefined labels do not carry any

semantic meaning and arrangement of detected labels could vary based on different

labeling criterion. Image segmentation, for example, partitions an image into non-

overlapping segments that have a coherent appearance and the labels might take

any order and might come in any number based on the segmentation criterion. As

a labeling problem, region IDs constitute the label set.

- Depth estimation: Labeling might be applied to capture some continuous low-level

attributes of the image. For example, a set of depth labels constitute the finite set

of labels in depth estimation.

- Stereo matching: For every pixel in image 1, the target of stereo matching is to

locate the corresponding pixel in image 2. As a labeling problem, the label set is

the differences (disparities) between corresponding pixels.

In high level vision, objects are the attributes of interest in the image and the problem

is to either separate a foreground object from the background in a binary labeling set-

ting or partition the image into semantically meaningful regions such that each of them

represents an object. Image labeling in this form is a chief task in many application of

computer vision; such as:
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- Content-based image retrieval: image labeling could be useful for image querying;

For example, one might be interested to retrieve all images with animals in water

from an image database as large as the World Wide Web. Image labeling could

be applied to convert images to keywords using some statistical modeling approach

that describe image components [13]; or develop a system that would also localize

objects such as sky, trees, grass, and faces in images [14] and retrieve according

images from the database. Labeling-based image retrieval methods are particularly

necessary when the database carries no text annotations or incomplete annotations.

- Inspection systems: In industry, detection and recognition of machine appliances

to assess safety conditions of different components is very important for insuring

timely and safe operation of the system [15].

- Humanoid robots and autonomous vehicles: In order for robotic systems to be able

to successfully navigate through a typical environment and accomplish tasks, it

is necessary that they have a visual understanding of the environment that they

explore in real-time [16, 17]. For example, if a robot knows what kind of object it

is going to grasp, then it is easier for it to decide how to pick it up and hold [18].

Image labeling facilitates the process of identification of objects for the machine.

- Medical image processing: In the medical field, artificial intelligence has been fre-

quently applied to highlight region of interest (ROI) in medical images [19]. Auto-

matic ROI labeling has proved to help with surgical planning and improvement of

diagnostic accuracy in automated diagnostic systems [20]. Automated ROI labeling

also has the extra advantage of generating anatomical and functional atlases and

also improving repeatability of the diagnostic studies and experiments [21] by sub-

stituting the rigorous practice of collecting training data through tedious manual
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delineation of contours of organs, tumors and lesions or localization of ROIs.

- Surveillance and security: Automatic license plate recognition, automatic recog-

nition of particular individuals and detection of suspicious behavior in sequential

images are among other applications of image labeling which are useful in traffic

surveillance and security systems [22, 23].

Image labeling could also be applied coupled with other computer vision systems.

For example, knowing that a particular image belongs to the category of ‘indoor’ images,

then the task of depth estimation for that image could be done more accurately [18].

1.3 Challenges

Due to the fact that computer vision systems lack the high power of human visual system

for extracting high-level semantic information and also due to the loss of information in

image formation, image labeling is not an easy task for computer-based systems. The

extreme challenge stems from several factors. One source of difficulty is the great variation

in types of objects. Some objects are structured with solid or deformable shape such as

a ‘horse’ or a ‘car’. On the other hand, other objects are formless and do not have a

definite shape or structure, like ‘sky’ or ‘tree’. Apart from variability of object types,

different objects are characterized by different kinds of features in computer vision field.

For example, bikes are best distinguishable with their shape or outline; however, ‘grass’

is identified with its color and texture; and ‘sky’ with its location extent in the image.

Another source of challenge is great within-class variability and also overlapping

between-class characteristics. Regarding within-class variability, for example, although

horses have distinctive shape but they show great variability in color. Also, although cars
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Figure 1.2: Examples of sources of great within-class variability in objects.

are well-known with their rigid shape but they come with a different outline in different

models. Besides, cars from same model might come in contrasting colors. Also, changes

in object viewing angle, pose, image scale, lighting, partial occlusions, and environmental

factors make computer-based image labeling difficult. As an example, a ‘car’ looks dif-

ferently viewed from different angles; or a ‘cow’ might stand, sit or lie in different poses.

Figure 1.2 shows several examples of the above mentioned challenges in computer-based

image understanding. As an example of overlapping between-class characteristics, al-

though ‘sky’ could be well distinguished by its geometric attribute but its color often is
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Figure 1.3: Sky is often mistaken for water due to their reflection of each other.

Figure 1.4: Optical illusion and surreal art make image understanding challenging even
for human eye.

mistaken for ‘water’ (figure 1.3). Also, local image patches might be ambiguous in terms

of category labels. For example, a ‘window’ might be part of a ‘car’, a ‘building’ or an

‘airplane’.

It is also notable that although understanding a complex image is an easy task for

the human visual system, there are some image scenarios in which understanding the

image might not be as straightforward and effortless not only for the computer but for

the human eye too. Images of optical illusions and surrealist art are of the examples of

these images (figure 1.4) [24].

In summary, segmentation and recognition of objects is a complicated task due to large

variability in object types and great changes in imaging conditions and also presence of

noise. The low-level local appearance information crudely available to computer vision

systems such as color and texture are not enough to correctly identify objects. There is a

lot of uncertainty not only in the information extracted from image but also in decision
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making about class label of a patch of image.

1.4 Background

To harness the uncertainty inherent to the image labeling problem and to be able to

develop robust automated recognition systems that scale well to large datasets, re-

searchers have built successful vision systems based on probabilistic graphical models

(PGM) [25, 1, 26, 2, 3, 27, 28, 29, 30, 31, 4, 32, 32, 33, 34, 11]. In the following, the logic

behind success of graph-based image labeling is described.

1.4.1 Probabilistic Graphical modeling

Probabilistic graphical models bring probability theory and graph theory together [35].

Probability models capture the concealed orderly relations between image data and class

labels; they exploit the informative prior knowledge about structures hidden in the data

obtained from labeled images. Besides, since labels are dependent across pixels, graph

theory is applied to take into account the long range spatial interactions within pixels,

regions and objects. That is, probabilistic graphical models use a graph-based represen-

tation as the foundation for encoding a complete distribution over a multi-dimensional

space and a graph that is a compact or factorized representation of a set of independences

that hold in the specific distribution. Nodes in the graph represent the semantic label

related to an image pixel or segment; and edges represent data/label dependencies (figure

1.5) [36].

Application of PGMs is promising because using contextual adjacancy information is

necessary for successful image labeling. An image may provide information that could

be utilized at several levels. Sometimes local information such as color and texture
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Figure 1.5: PGMs use a graph-based representation as the foundation for encoding a
complete distribution over labels given observation data. Nodes in the graph represent
the semantic label related to an image pixel or segment; and edges represent data/label
dependencies. In this figure, magnet dash edges show dependency of current node to
its local observation data. Yellow dash edges (shown only for two nodes for brevity)
represent dependency of current label to contextual neighborhood observation data. Solid
edges represent label compatibilities. The yellow edges are the surplus attribute of CRF
graphical models in comparison with MRF models.

is enough to make a decision about the label of a patch of image. For instance, it

is reasonable to label the green patches in the image as ‘grass’. However, overlapping

characteristics between classes might be confusing, such as the example in figure 1.3 where

‘sky’ and ‘water’ are two candidate labels for a blue or gray patch of image. Therefore,

it is useful to take into account the spatial interaction of object classes in the image

plane. In figure 1.3, the fact that ‘sky’ is usually located upper in the image whereas

‘water’ could be found at the bottom of the image, or in a similar scenario, the fact

that airplanes fly in ‘sky’ not in ‘water’, help to disambiguate the decision-making for

object identification [2]. Thus, information deployed from surrounding patches in the

image could be helpful for successful image labeling. Employing probabilistic graphical

models, internal configuration of objects and structural characteristics of their external
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environment is extracted from labeled images and applied for accurate object recognition.

Markov random fields (MRF) [37, 38, 39, 40, 41] and Conditional random fields (CRF)

[42, 29, 43] from the class of probabilistic graphical models have been frequently used

to tackle the image labeling problem by capturing contextual information and spatial

interaction of object classes at different granularity levels. Markov random fields are not

the topic of discussion in this thesis because regarding image labeling task, they are not

as successful as conditional random fields. The reason is that, in addition to interaction

of labels, MRFs consider only local observation data for labeling the current pixel or

segment of the image. However, labeling results of CRFs are furtherly a function of not

only local, but also neighborhood or global observation data. Therefore, CRFs are more

powerful in incorporating contextual information. Referring to graph in figure 1.5, the

yellow edges which make the local label dependent on neighborhood observation are a

characteristic of CRFs. The MRF graph will be a similar graph in which the yellow edges

are excluded.

Moreover, MRF is a generative model in which the labeling problem is formulated

as a joint distribution of the image observation data and corresponding labels. That

is, for infering the label probabilities, two modeling steps are required. Generative

models first require us to estimate the distribution for image features given the labels

(p(observation|label)) and the object priors (p(label)); since they describe how image

data has been generated regarding the labels and parameters of the model. Secondly,

they use Bayes theorem to determine the posterior probability of labels given observa-

tions. Practically, generative models need a rich training set with many labeled images

for estimating the parameters of the joint distribution of image data and labels. In con-

trast, CRFs [2, 3, 44, 28, 29, 31, 4, 33, 43] are a discriminative model which directly

infer posterior probability of labels given observation data. Even when this posterior is
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simple, the corresponding generative model might be complex and hard to train [45].

1.4.2 Conditional random fields

Basic CRF models are composed of unary (associative) and pairwise (interactive) po-

tential terms (functions). Unary potentials are defined upon individual image pixels or

segments (graph nodes) and capture the association between class labels and low-level

image features such as color and texture; that is, they incorporate the image evidence to

labeling task to obtain the probability of labels given the image low-level information.

The pairwise potentials, however, are a function of all neighboring image pixels or seg-

ments and are meant to maximize local label agreement between neighboring pixels and

to incorporate the compatibility between different object classes across the image. They

are generally formulated as the probability of adjacency of class labels or occurrence

of different object classes in certain spatial distances given the image data. Pairwise

potentials assure data-dependent label smoothing and consistency.

Due to flexibility in the form of pairwise functions, contextual information has been

investigated in CRF-based image labeling literature in different ways. Mostly, contex-

tual information exploits relationship between objects in a scene in terms of semantic

consistency, relative location and scale [46, 44, 2]. For example, the relative location

potentials give higher probability to sky class than road class for pixels in the upper

half of the image [44]. Also, inter-class relationship of objects may be considered so that

identification of an object within the image would have an effect on the probability of

finding others [1, 24, 46]. For example, polar bear and hippopotamus may never be seen

together in one scene since one lives in the arctics and the other lives in tropical areas; or

discovering a tree in the image suggests the label sky for the pixels above it and the label
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grass for those lying underneath. CRF-based image labeling methodologies have proved

to outperform other classification methods due to their capability to take into account

different aspects of image context [47, 44, 30, 1, 31, 4, 48, 3, 43].

1.5 State of the art and proposed approches

As discussed above, developing an object recognition model which is not only accurate,

but also efficient in terms of computational complexity and processing time is a chal-

lenging problem. The latter is particularly important when dealing with large image

databases and for pixel-level identification of objects in high-resolution images. Regard-

ing CRF-based image labeling, design and formulation of the potential terms and finding

ways of applying contextual information are of major concern. Potential terms have

to well represent the visual information; and contextual information have to be applied

such that it ensures the self-consistency of the interpretation [49, 3, 4, 50, 33, 46, 6, 34,

7, 51, 52, 11, 9, 43]. Perspectives regarding implementation of both of these factors are

disscussed in the following.

1.5.1 CRF potential functions

In image labeling and object recognition, conventional unary and pairwise potentials

were primarily defined as summation of weighted feature functions. However, potentials

of this form usually need an enormous number of features to render satisfactory results

which makes their training and inference to be a difficult task. Besides, weighted feature

functions are very sensitive to training initialization conditions and their training might
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get stuck in local optima [42, 53]. To boost CRF performance, reserachers have tried to

empower CRF potentials by high level prior modeling. Different studies use potential

functions such as logistic [32], boosting [1, 5, 3], Neural Networks [2, 54], SVM classi-

fiers [27], local support tensor machines [11], label transfer [7], mixture models [55] and

combinations of them [49].

Recently, computer vision community has been dazzled with the advance of deep

neural networks (DNN) due to its outstanding performance [56, 10, 49, 57]. In essence,

deep networks transform the observation data into high-level abstract concepts in deeper

layers [9]. They are able to learn compact, discriminative and high-level features [58, 59].

In fact, they render strikingly better results than systems with crafted hand-engineered

features partially due to inherent invariance of deep DNN to local image transformations.

Spatial shared weights derives deep networks to learn spatially shift-invariant features.

This gives level to their ability of learning hierarchical abstractions of data. Also, pooling

layers reduce sensitivity of the networks output to input shift and distortions. However,

shift invariance hampers low-level vision tasks where precise localization is desirable; such

as in semantic segmentation. Due to this invariance, deep DNNs are limited in refining

local structures like pixels and patches [60].

Besides, the difficulty of solving non-convex optimization problems together with

complexity of the prediction model can lead to overfitting phenomena or bad local optima

in deep architectures. To moderate these problems, it is customary to initialize the

supervised training with an unsupervised pre-training step. This procedure guides the

optimization to a more reliable region in the weight space [61, 62]. However, it adds

to computational cost of the model. It is also common to finetune one of the famous

pretrained DNN architectures like AlexNet[56], GoogleNet [63] or VGG [64] which have

been trained for an auxiliary task as scene (image) classification and re-purpose it for

13



semantic segmentation using a sizeable image dataset of annotated images. However,

imagesets of at least order 10K number of images are required for finetuning of the

network to achieve satisfactory results; which is not feasible particularly when training

data is scarce such as in medical imagesets or satellite imagery; and also when having

time constraints and when using hardware without GPUs (e.g. consumer laptops and

smartphones).

Also, deep architectures struggle in discriminating visually similar observations since

they have a limited context view and therefore, their results are spatially insensitive and

very rough at object boundaries. To get around this problem, authors in [49] considered

multi-scale context input to DNN and used the deep layer weights as features for training

a contextual CRF model. Also, thanks to the factorized mean field approximation CRF

inference model proposed by [3], in which message passing terms are redefined in terms

of unary potentials, DNNs could be applied as the unary classifier in contextual CRF

modeling. DNN and CRF parameters could be trained either jointly [65] or separately

using a two step procedure [60]. However, this combination results in a computationally

costly complex model in which parameter tuning is burdonsome.

Deep Neural networks and also boosting algorithms need many training data for

obtaining good results; they are biased to vote for frequent classes and therefore produce

poor results when applied to databases with imbalanced amount of training data in

different classes. They are also computationally expensive and an inefficient method for

ever-growing image databases with changing object variety. Label transfer image labeling

methods are most successful when applied to large-scale databases with a rich variety

of samples of different classes in different context [7, 8]. For example, they have proven

high labeling performance in large imagesets such as SUN database [66] and SIFT Flow

dataset [67]. However, they generate poor results when applied to small or noisy image
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sets such as MSRC [1] and Corel [2, 68].

Mixture models are one of the high performance yet efficient approaches to image

labeling [69, 70]. Mixture models capture well within class variability of objects (flowers

come in different colors) [1, 71, 72]; Augmented by CRF modeling which well discrimi-

nate visually similar samples of different classes due to considering contextual informa-

tion, mixture models have proved to achieve high labeling accuracy [73]. In [53], authors

show that distributions of features in natural scene images are better approximated by a

Laplacian distribution than a Gaussian. They show by experimentation that Laplacian

feature functions outperform both conventional weighted feature functions, SVM classi-

fiers and Gaussian mixture models. However, state of the art literature questions the

ability of firmly-shaped distributions such as Gaussian or Laplacian densities to precisely

approximate observation data of different object classes [70, 74]. Despite their efficiency

and efficacy, rigidly-shaped distributions such as Laplacian and Gaussian fail to capture

data characteristics where data fluctuations happen very smoothly; so that they even

give rise to induction of atypical results due to erroneous modeling of data.

In this thesis, a new feature function for accurate segmentation and labeling of nature

images by deploying generalized Gaussian mixture modeling (GGMM) of image features

is studied. Having an additional shape manipulation parameter, GGMM can model

data characteristics more accurately. We propose to bring the flexibility of GGMM

for data modeling into the CRF framework to leverage the discrimination power of the

feature functions while maintaining low complexity. We investigate the effectiveness of

the proposed new feature functions in comparison with their Laplacian and Gaussian

counterparts, conventional weighted feature functions, SVM and deep learning methods.

The proposed GGMM-based CRF outperforms the other methodologies and produces

less erronous and more consistent labeling particularly in even regions of background of
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the image.

1.5.2 Wide extent context information

The success of CRF-based image labeling is very much restricted by the extent to which

information is allowed to flow in the image via the pairwise potentials. However, pairwise

potentials are limited in their ability to model long-range connections within the image

and generally produce excessive smoothing of object boundaries. Higher-order potentials

and hierarchical connectivity between image regions have proved to substantially improve

labeling accuracy [4, 2, 27, 75]. Nonetheless, these approaches are restricted by the

accuracy of unsupervised image segmentation, which is used to compute the regions on

which the model operates.

To produce accurate label assignments around complex object boundaries, recent

research on CRF-based image labeling has been devoted to development of efficient in-

ference algorithms for fully-connected (dense) CRF models which connect each pixel to

every other pixel in the image [3, 28, 33, 34]. They render iterative inference algorithms

which are computationally efficient and refine object boundaries at a pixel level. How-

ever, dense random fields are confined to the success of the initial unary classifier. If the

initial unary potentials fail to identify the objects in the image correctly, the iterative

algorithm cannot revise the object labels and continues to refine boundaries of wrong

labels. Dense random fields are also very prone to over-smoothing small objects from

foreground (thing) classes in the large pool of pixels from background classes.

In this work, we proposed to integrate global semantics of the image with pixel-wise

dense inference to make dense inference robust to initial misclassifications of the unary

classifier and to preserve small foreground classes. We utilize global scene type of the
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image to eliminate ambiguity of local context; certain types of objects are more likely

to happen at specific scenes or object settings. For example, despite cars, boats are

more probable to be seen at a sea shore scene than inside city; or mice are more known

with office desks than kitchen tables. The new context-based inference corrects wrong

predictions by the unary potentials in favor of objects coherent with the scene type.

The proposed model applies scene-object co-occurrence information in favor of object-

object co-occurrence prediction. We factorize the joint probability of labeling configu-

ration and image scene type and use the mean field approximation to obtain prediction

update equations for labeling individual image pixels and the overall scene type of the

image. We apply scene type context as a model selection cue in the mean field approxi-

mation inference to alleviate sensitivity to initialization and severe smoothing problem.

We use whole image descriptors to discriminate distinct environmental categories using

an SVM scene classifier and then define the CRF unary potentials conditioned on the

overall scene type of the image. The CRF pairwise potentials connect each image pixel

with all other pixels in the image to account for long-range interactions of objects. We

derive the inference algorithm for the proposed context-based dense CRF model.

Contextual information in the form of prior knowledge about the whole scene and

world regularities is informative to identification of individual objects. This phenomenon

has been applied to facilitate object recognition in previous studies along with sparsely-

connected random fields [11, 6, 76] and has been shown to be useful. Here, a new context-

based dense CRF model is proposed which applies scene-level semantic information to

improve pixel-level object recognition. A quantitative evaluation on the MSRC [1] and

Sift flow [67] image sets show that the proposed model outperforms conventional dense

CRF labeling. The proposed context-based dense CRF model competes with other state

of the art context-based CRF approaches that apply scene level information and also
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improves scene prediction results to render the highest scene detection results obtained

on these datasets.

1.6 Main Contributions

As mentioned earlier, there are two important problems regarding CRF-based image

labeling. The first one is proper design of the potential functions so that observation

data of different semantic categories are effectively discriminated. The second problem is

how to employ contextual information to boost labeling accuracy so that the CRF output

is smooth and consistent. This thesis assigns two chapters to developing labeling models

that each of them tackles one of the above mentioned problems. By addressing these

problems, the proposed models leverage existing models in terms of labeling accuracy.

Therefore, the main contributions of this thesis are:

1- New potential functions based on mixture of generalized Gaussian distribution are

proposed. The wide variety of data distributions in natural images could be mod-

eled with a generalized Gaussian distribution with proper value of the shape pa-

rameter. This is because in spite of Gaussian and Laplacian distributions which

have fixed order, the adjustable shape parameter in generalized Gaussian distribu-

tion can capture data variations from a large range of sharp to very flat variations.

Therefore, the proposed CRF model based on new feature functions outperforms its

Laplacian and Gaussian counterparts in terms of labeling accuracy. The proposed

model is particularly more accurate in even background of images where there are

little variation in the image regions. EM algorithm and Newton-Raphson method

are combined to estimate parameters of the proposed feature functions.
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2- A new context-based dense CRF model (cbDCRF) is proposed. Model compo-

nents are selected so that the new model yields optimum performance efficacy and

computational efficiency. The proposed cbDCRF model outperforms the conven-

tional dense CRF model in preserving small foreground objects in the large pool of

pixels of image background classes. The new model also is able to correct wrong

initializations of the unary classifier since it applies scene-object coherence to im-

prove object-object consistency. Using the new model, we are able to increase both

object recognition and scene classification rates. For the new model, mean field

approximation from the class of variational inference algorithms is applied to write

the inference equations in a format which makes them computationally efficient to

calculate.

1.7 Outline

In chapter 2, the background work in image labeling and CRF-based object recognition

are reviewed. Various types of design of graphs and structures and formulation of context

in CRF model that has been applied to the image labeling task is discussed. Chapter

3 introduces the mathematics of conventional CRF-based image labeling and explain

popular inference and training algorithms applied for performing image labeling.

Chapter 4 discusses the new GGMM feature functions proposed to improve the CRF-

based labeling accuracy. To develop the GGMM-based feature functions, Expectation-

maximization (EM) algorithm will be used [77, 78] to estimate mixture parameters. Belief

propagation (BP) and stochastic gradient descent (SGD) algorithms will be utilized for

CRF inference and training, respectively. We demonstrate that in comparison with their

Laplacian and Gaussian counterparts, conventional weighted feature functions, SVM and
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deep learning methods, the proposed GGM feature functions provide more accurate la-

beling of nature images.

Chapter 5 introduces the new context-based CRF model for image labeling. We define

context-based unary and pair-wise potentials and also derive the inference algorithm for

the context-based model based on the mean field approximation method. Quantitative

evaluation of the new model on the benchmark database demonstrates that the proposed

framework outperforms conventional dense CRF labeling in terms of object recognition

accuracy. Qualitative comparisons show that where the conventional dense CRF adheres

to the wrong initializations and fails, the new context-based model identifies the objects

correctly. Chapter 6 discusses the main contributions of this thesis and elaborates on

future work based on the current work and also state of the art literature.
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Chapter 2

Literature Review

There are many ways to incorporate contextual information using PGM. Some studies

have manipulated the unary and pairwise potentials to capture specific contextual char-

acteristics; and some approaches have tried to add extra potential terms to traditional

random fields to model different kinds and levels of contextual characteristics. That is,

different methodologies vary in the contextual cues applied and their design of the poten-

tial function to capture them. Contextual reasoning is a critical piece of object recognition

puzzle although benefit of context varies per object class so that for many object classes

incorporation of context improves the detection accuracy whereas for other object classes

it is not as effective. Ultimately, inclusion of context results in more reasonable detec-

tion errors. Most errors happen where classes share similar context; for example, in the

confusion matrix analysis, airplanes are confused for birds or cats are confused with dogs

[79]. This section reviews some of the prominent and current literature on the subject.
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2.1 Unary Potentials

2.1.1 Parametric models

Weighted feature functions [42], logistic classifier [32], boosting [1, 5, 3], Neural Networks

[2, 54], SVM classifiers [27], local support tensor machines [11], mixture models [55, 53,

73], and combinations of them [49] could be utilized as unary potentials of the labeling

graphical model. Low-level image features such as color, texture, class-specific shape

prior and location priors could be used to train these algorithms. Location priors are

important because for example, sky tends to happen at the upper part of the image all

the time whereas water appears in the lower part and windows are at the middle of the

image. Shape priors work well particularly when dealing with rigidly shaped objects as

‘cars’ and ‘faces’ [6, 1].

Researchers in [80] show that for improving object recognition accuracy, extracting

effective contextual features to represent image and object attributes are of more impor-

tance than developing complicated structures of recognition models. Regarding this fact,

[1] proposes approaches for exploiting textural contextual information via definition of

proper context-based features. Researchers in [1] define texture-layout filters that can

capture contextual information in terms of texture appearance and their corresponding

spatial layout within and between object classes. Texture-layout filters survey different

types of textural information within specific regions relative to each pixel in the image.

In [1], contextual information is deployed via computing features within different large

neighborhoods of each pixel.

Also, output of hidden layers of DNN has become a popular source for rich visual

features. Researchers in [9] apply the output of 6th, 7th and 8th hidden layers of DNN
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as hierarchical features for SVM classification. Nodes in hidden layers are aligned to

concepts (classes to be learned). [81] also used convolutional networks to calculate zoom-

out feature representation for each superpixel in the image obtained over a sequence of

nested regions of increasing extent, and then, Caffe [82] was used to train DNNs for

classification of each superpixel. Since training data is scarse, [9] and [10, 59] pre-train

the network in a supervised way for an auxiliary correlated task such as scene (image)

classification and then finetune it for image labeling. Some studies apply the available

pre-trained DNN architectures like AlexNet[56], GoogleNet [63] or VGG [64].

Also, since due to shift-invariance property of DNN the output labeling of deep net-

works are spatially imprecise, [10] carries out a post-processing step which combines

semantic features from a coarse deep layer with visuall features from a fine shallow layer

to yeild visually accurate segmentation. [60, 83] also apply CRF modeling as a post-

processing step to refine segmentation details at the output of the networks. In [65],

DNN is trained jointly with CRF modeling to obtain precise segmentation. A deep feed-

forward neural network is proposed by [84] that utilizes the contextual information from

the entire image, through bottom-up followed by top-down context propagation via ran-

dom binary parse trees. With this approach, feature representation of every super-pixel

in the image is improved for better classification into semantic categories.

2.1.2 Nonparametric approach

As opposed to parametric approaches that are based on learning generative or discrim-

inative algorithms, nonparametric definition of unary potentials rely on image retrieval

and matching. In order to exploit contextual information, recent research looks for con-

textual cues beyond a single image. This approach is based on the fact that there are
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images in the database that are very similar to the query image which share same spatial

and semantic layout and for which annotations are available. The set of similar images

and the query image are assumed to contain instances of the same object classes. They

propose to transfer desired information from set of similar images to the query image

and interpret its semantic configuration [7, 8, 85, 86, 87].

Researchers in [7] propose a labeling system based on recognition-by-matching ap-

proach. Using nearest neighbor approach, they first retrieve a set of images in the

database that are similar to the query image in terms of scene configuration using GIST

feature matching [88]. Then, they establish dense scene alignment between database

images and the query image using SIFT flow matching [89]. Finally, they transfer anno-

tations from most similar images onto the query by generating label probability maps.

Researchers in [8] propose an effective nonparametric approach to image labeling

based on superpixel label transfer. They first retrieve the set of similar images and

then, they perform a superpixel matching step. They perform feature extraction for all

superpixels in the image and score each superpixel for the class labels that are present

in the retrieved image set. They argue that, in comparison with image matching, super

pixel matching allows for more variation between the layout of the test image and the

images in the retrieval set. These studies show that the non-parametric approach to

image labeling competes with training-based labeling methods in terms of performance

with the extra advantage that their approach requires no training and scales well to large

databases. A recent study integrates parametric and non-parametric models [54].

2.1.3 Object detectors

Window-wise object detectors are used as unary potentials within CRF model to combine

object detection in semantic segmentation (image labeling) framework [90, 6, 91, 92].
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2.2 Interaction Potentials

2.2.1 Interaction concepts

CRF is known to be an appropriate tool for image labeling because it can integrate

many interactivity terms for modeling contextual relationships between different image

sites and different object classes.

Label smoothing - Researchers in [29] apply CRF for the first time for using contextual

information in the form of spatial dependencies to consider dependency of pixel intensity

values in even areas or structures such as lines and edges. They define the interaction

potentials as data dependent smoothing terms which are a function of characteristics

of every two nodes that share an edge, similar to the Ising mode. They show that data

interaction term in CRF reduces the false positives in addition to increasing the detection

rate. In [29], both association potential and data-independent interaction potential are

defined in a logistic regression form. Data-dependent term of the pairwise potential is

written in the form of a Gaussian format similarity metric in [1, 3, 28].

Label Consistency - Some studies incorporate context via modeling statistics of object

relations [93, 94]. They learn a joint distribution of different object classes and provide

prior information on different combinations that objects appear in the world. Presence

of certain types of objects in an image is often correlated with one another [46, 95]; for

example, monitor, keyboard and mouse frequently appear close together. In [46] and

[80], a new energy term is added to model object class co-occurrence statistics and it

is shown that the co-occurrence potentials suppress uncommon combinations of classes

such as boats on roads. [96] develops a data-dependent object relationship model using

link propagation techniques. In [95], contextual relevance is applied to maximize label
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agreement. They compare two sources of contextual relevance, one learned from training

data and another queried from Google Sets. In [97], a sliding window method and

unsupervised image region clustering are combined to leverage ‘stuff’ classes such as

‘sea’, ‘sky’ and ‘road’ to improve detection of objects of ‘thing’ classes such as ‘cars’. In

[5], easy objects such as ‘monitor’ are detected first and then contextual information is

passed to detect more difficult objects such as ‘mouse’.

Spatial relationships - Objects in images follow certain relative spatial configurations;

for example, ‘sky’ appears to be above ‘water’ or above ‘vegetation’ [98]. Detection of

one object anywhere in the image has effect on where other objects appear in the image.

Researchers in [44] encode spatial offset preferences between objects by generating the

relative location probability maps. Relative location feature maps are computed per class;

for example, relative location features between chair and road class encourage placement

of chair on top of road pixels. In [99], four prototypical spatial relationships - above,

below, inside and around are quantized. Researchers in [100] estimate the horizon line

in images and incorporate a measure of object positions relative to the horizon line. The

viewpoint, defined by the horizon position in the image and the camera height, directly

affects the position and size of the objects in the image.

Object presence - Some studies define a potential term which carries the information

of presence or absence of each object in the image [101, 6]. Global image level features

can be used to identify presence of objects [100, 102]. These studies are built on the

hypothesis that there is a strong correlation between statistics of low-level features of

the overall scene which describe structural scene properties and presence of objects in

images. They used low-level feature statistics across the whole image to prime object

detection.
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Global context - There is a strong relationship between the environment and the objects

in it [102, 103, 6, 76]. Psychological studies suggest that seeing a picture, humans analyze

the overall scene presented in the image before scrutinizing individual objects and details

[104, 105]. On the other hand, scenes are identified with the kind of objects that exist

in the image. That is, scene classification and object detection are reciprocal tasks.

Researchers in [106, 103, 11, 107, 108] propose to take advantage of scene type prediction

for improving object detection accuracy; because it can reduce the number of classes

to consider in an image. They use a global feature vector extracted from the whole

image to represent and then classify the scene presented by the image [88, 109, 110,

27] and then combine this prediction with local object detectors in a discriminative

classification framework to detect presence of objects in images. They argue that scene

type classification is easier and much less time-consuming than labeling individual objects

and it also improves object detection results. However, their method is not labeling the

image at a pixel level.

2.2.2 Connectivity structure

Interaction order - In preliminary CRF work [29], the interaction potentials are as-

sumed to have a 4-nearest neighbor grid structure. This structure fails to capture long

range dependency priors between image sites and object classes. High-order connections

between nodes that are spaced further apart in the image have been considered in re-

sponse to the need for richer and more expressive prior information from the training

data. Some approaches define hierarchical connectivity and high-order potentials over

image regions [2, 94, 4, 46, 98, 80, 75, 111] whereas others consider fully-connected dense

random fields defined over all image pixels [3, 28, 34, 33]. Comparing the two approaches,
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accuracy of image labeling in the former approach is limited by the accuracy of image

segmentation algorithm that is applied to partition the image into regions. The accuracy

diminishes with the segmentation-based approaches particularly around object bound-

aries since the regions obtained via segmentation might not share exact boundaries with

semantic objects. However, complexity of inference in dense random fields limits their

application where real-time approaches are required for image labeling [95, 27]. Higher

order connectivity in graph modeling results in large computational costs for different in-

ference methods [80]. Recent research proposes the application of approximate inference

models to overcome the limitations imposed by computational cost [3].

Scale - Researchers in [4, 112] combine multiple segmentations with various-scale gran-

ulaties and show that this approach results in more accurate segmentation of objects. In

[4], authors define a criterion for evaluating consistency goodness of image regions ob-

tained from image segmentation step and propose high-order variance-sensitive potentials

that are sensitive to quality of segmented regions. They take account of the fact that one

region might belong to several objects at the edges of object boundaries and therefore

avoid over-smoothing and generate more delicate segmentation at object boundaries.

In [80], a segment-based CRF is proposed to incorporate multi-scale features of pixels

and segments by directly considering the features of pixels that constitute a segment

so that the unary potential associated with a segment is the sum of its pixels unary

potentials. In [51] a fully connected CRF model is defined over overlapping image seg-

ments obtained from multiple segmentations of the image. Researchers in [2] formulate a

multi-scale CRF model which combines information from three local, regional and global

scales in a product of experts framework. Regional-scale feature functions are designed

to capture within label regularities and cross-label boundary regularities in mid-scale;

whereas global-scale feature functions capture coarser patterns in the entire label field.
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Hierarchical and multi-scale models - Researchers in [98] propose a two-layer hier-

archical CRF to develop a unified approach for incorporating local and global context in

images. The first layer models short range interactions to ensure consistent labeling and

the second layer models long-range interaction between objects and image regions. Re-

searchers in [6] define a logistic-regression-based scene type unary potential in the CRF

framework and train a one-vs-all SVM classifier over different scene types. In order to

model the relationship between scene type and the objects that may appear in it, they

define a scene-object compatibility potential to specifically narrow-down possible classes

to those that are probable within a specific scene type. Researchers in [75] propose a hi-

erarchical three-layer CRF (pixels, segments and super-segments) and further generalize

the quality-sensitive potential terms in [4] to encourage consistency between neighboring

segments within and between segments from different layers of hierarchical CRF. This

framework integrates multi-scale features from multiple fine to course segmentations of

the image. Also in [113], a joint-CRF on multiple levels of an image segmentation hi-

erarchy is formulated. [6] also employs a higherarchical approach in a CRF framework

to reason jointly about regions, location, class and spatial extent of objects, presence of

a class in the image, as well as the scene type; the results reported are among highest

accuracies obtained on MSRC dataset. Researchers in [18] argue that apart from scene

type and object interactions there are more aspects to an image such as depth and ob-

jects saliency that could be applied to exploit contextual information. They combine

classifiers of different image modalities such as scene categorization, depth estimation,

saliency detection, event categorization and object detection to obtain an understanding

of the whole image and objects in it. There are structured connections between different

classifiers and outputs of later classifiers are available to earlier classifiers as a feedback

signal to modify errors that could be corrected by the information from another modality.
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Dense random fields - Researchers in [3] propose a highly efficient inference algorithm

for pixel-wise fully-connected dense random fields. They define the interaction potentials

to take the form of a mixture of Gaussian kernels multiplied by a Potts model with

label consistency for similar colors. They apply mean field approximation algorithm and

approximate high dimensional filtering to reduce computational complexity of message

passing step in inference. Their experimentation shows that their fast approach enables

greatly refined pixel-level object boundaries. Researchers in [34, 114] argue that the mean

field inference method used in [3] is sensitive to unary initialization conditions and might

get stuck in local minima. They propose a hierarchical mean-field approach to prepare

a framework for providing good initial conditions. They apply SIFT-flow based label

transfer method [7] to find good initial conditions. Then they transfer the initial labels

from a coarse CRF to a finer grid CRF. They also generalize the zero-mean Gaussian

pairwise potentials so that it could take non-zero mean values. Researchers in [28] relax

the Gaussian assumption of pairwise potentials by [3] to be able to encode more statistics

by arbitrary distributions. They propose an efficient inference algorithm with the help

of convolution based on quadratic programming (QP) relaxation [115]. They show that

gradient of QP relaxation can be efficiently computed using convolution. The interaction

potential in their CRF model is defined as a combination of color contrast and spatial

relationships between two classes. The color contrast term is the smoothing term and

the spatial relation term models the probability that two categories co-occur at a relative

distance. They argue that their potential terms can capture object size information as

well. They show that their model captures detailed pixel-level spatial information and

preserves object contours.

Arbitrary structure - Instead of assuming a fixed structured graph for images, some

studies assume dynamic structure for graph connectivities [26]. Researchers in [5] exploit
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contextual correlations of object classes by introducing boosted random fields. They

apply boosting to learn the long range connectivities in the two dimensional CRF graph

structure of an image. Node connectivities are chosen by a weak learner that has access to

a dictionary of graph fragments. This dictionary of graph fragments implies the typical

spatial arrangements of objects in images and is learnt during training. Connections

from different locations in the image and between different object classes are added to

the dictionary during training. The overall graph structure takes form by assembling

graph fragments in an additive model.
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Chapter 3

Preliminaries

In image labeling, a discrete value from a finite predefined set of label values is assigned

to every pixel in the image so that recognition and segmentation of multiple object

classes are performed concurrently. Mathematically, let X = {x1, x2, ..., xN} denote the

set of observation vectors of image pixels/segments and Y = {y1, y2, ..., yN} the set of N

random variables corresponding to pixel/segment labels, each of which may be a value

from the finite set of labels L = {1, 2, ..., L}. Image labeling can then be formulated as

finding a mapping from X to Y . Mathematical algoritms usually model such a mapping

through an optimization problem as:

Y opt = argmin
Y
E(Y,X; θ) (3.1)

where energy function E(Y,X; θ) is the cost function quantifying some quality measure

of configuration Y in the solution space given observations X and model parameters θ.

Finding this expert mapping involves three modeling, inference and learning tasks [116].

The modeling step includes: (i) the choice of discrminative visual features X; (ii)
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appropriate representation of the solution space of variables Y ; and (iii) designing the

energy function E(Y,X; θ). Observations X could be low-level image features such as

pixel intensity values, color distributions, texture features, shape features, output of

multi-scale bandpass filters, descriptors in the frequency domain, etc. The necessity of

steps (ii) and (iii) comes from the fact that pure object-centered representations such

as local color and texture are not sufficient to find the correct mapping to the label

space particularly in poor quality images due to degraded imaging conditions such as

large distance, noise or occlusion. A good labeling approach takes advantage of all three

levels of object characteristics; low-level representations such as color and texture; mid-

level cues of region continuity and shape; and high-level semantics considering object co-

occurrences and inter-object relationships such as relative location, scale or compatibility.

In other words, finding the true mapping in (3.1) involves performing complex visual

and also contextual reasoning. The image structure and prior knowledge about world

regularities, in other words contextual information, are essential to reliable object recog-

nition when local low-level evidence of objects are not enough to identify them. For

example, a small isolated black blob-like object in a slightly blurred image might not be

easily identifiable. However, in a context of a computer desk, a screen and a keyboard the

same vague blob-like object is most likely a computer mouse. Importance of employing

contextual reasoning has been recognized in early research in this domain [117, 118].

Contextual reasoning calls for a compact structure to model the inter- and intra-

relationship between variables {Y,X}. Most successful approaches formulate labeling

problem in the framework of a probabilistic graphical model (PGM); each image site and

random variables associated with their semantic labels are represented with the nodes in

a graph [103, 5, 4, 3, 60]. Dependencies between neighboring image sites at different scales

and adjacency orders are represented with edges between these nodes. The model is then
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solved as a discrete energy minimization task performed over the entire graph to find

out the data likelihood and the dependency properties of graph variables. PGMs provide

a flexible modular way to combine regularization, data likelihood, and prior terms with

other contextual cues in a single formulation. It also provides a means for visualizing the

model structure and therefore facilitates the design and definition of different terms.

The inference step for finding the optimum mapping in (3.1) has to search the entire

solution space including all configurations of variables Y to find the optimum configura-

tion that minimizes the energy function E(Y,X; θ). The computational demands of in-

ference could grow largely depending on the number of variables and edge orders. Thanks

to the factorization property of PGMs , a graph structure helps to develop efficient in-

ference algorithms. An Example of inference algorithms solved for models proposed in

this thesis (section 5.2) is elaborated in appendix A.

The learning step aims to select the optimal model parameters based on the training

data (section 4.3). The factorization property of PGMs also provide a way for piecewise

training of the structured models [119]. Mathematical demands of using graph modeling

to incorporate context information will be discussed in this chapter.

3.1 Probabilistic graphical modeling

Probabilistic graphical models (PGM) provide a flexible and consistent framework for

employing contextual information to label image regions. Labeling approach based on

PGM treats image components (pixels or patches of regular (windows) or irregular (su-

perpixels) shape) as random variables and applies parametric probability distributions to

model the regulation and interaction among this random variables. A structured graph G

is comprised of a number of nodes which represent random variables, and edges which in
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the form of an inter-node line connection represent the interaction between these random

variables. An edge between two nodes represents dependency between their correspond-

ing random variables. Two random variables with no edge in between are conditionally

independent. The joint probability distribution of all random variables in the graph is

formulated as products of functions defined on connected subsets of nodes [25]:

P (X) ∝
∏

S⊂G

ΨS(xS) (3.2)

where S is a subset of connected nodes in graph G, xS denotes the set of random variables

represented by node S, and ΨS is a function defined over random variables xS which is

not necessarily a probability distribution but models the inner workings of variables xS.

Definition of ΨS depends on the type of variables xS (observation/label) and the type of

graph which may be directed or undirected.

3.1.1 Directed Graphical Models

If edges in the graph show a direction from one node (parent) to another (child) indicated

with an arrow, then we call this graph a directed graph and interpret that there is a causal

relationship between the nodes; although causality is not an inherent attribute of directed

graphs. Directed graphical models (DGM) have a topological ordering such that parent

nodes come before children nodes. A graph has Markov property if we assume that a

node only depends on its immediate parents. Then, equation (3.2) can be written as:

P (X) ∝
∏

S⊂G

p(xS|xπ(S)) (3.3)

where π(S) is the set of parent nodes of node S. One example of a DGM is the Naive

Bayes Classifier in which it is assumed that given the class labels y, the observation
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Figure 3.1: A Naive Bayes classifier represented as a DGM. Each feature type has been
represented with a node in DGM. Shaded nodes are observed and the unshaded node is
hidden (a random variable).

features x are conditionally independent (figure 3.1), so that:

p(y,X) = p(y)
D=4∏

i=1

p(xi|y) (3.4)

whereD is the number of observations. Hidden Markov model (HMM) [120] for analyzing

sequence data such as speech language is a major application of directed graphical models.

3.1.2 Undirected Graphical Models

Undirected graphical models (UGM) do not require us to specify a direction for edges

in the graph. They are more natural for applications such as the spatial lattice of an

image in which the intensity values of neighboring pixels are correlated to each other.

However, the UGM parameters are less interpretable and less modular than DGM and

also their estimation is more computationally expensive [35]. Undirected graphs have no

topological ordering and chain rule can not be used to represent the joint probability in

UGM. In an undirected model, instead of using conditional probability distributions to

associate with each node, potential functions are associated with each maximal clique in

the graph. A clique is defined as a set of nodes which are all connected to each other,
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and a maximal clique is the clique that cannot be made larger without losing the clique

property. A potential function is a non-negative function of its arguments. Therefore, the

joint distribution is proportional to a product of potential functions of maximal cliques.

The following theorem explains this statement formally.

Theorem 1. Hammersley Clifford theorem: If S is the set of maximal cliques of

undirected graph G and P is a positive definite distribution which satisfies the conditional

independence properties of G, then P can be represented as a product of factors over

maximal cliques of G:

P (Y |X, θ) =
1

Z(θ)

∏

s⊂S
Ψs(ys|xs, θs) (3.5)

where θ is the model parameter set; and Z(θ) is the normalizing partition function:

Z(θ) ,
∑

X

∏

s⊂S
Ψs(ys|xs, θs) (3.6)

Based on the Gibbs distribution, if strictly positive function E(.) is the energy associated

with the variables in clique s, then equation (3.5) can be rewritten as:

P (Y |X, θ) =
1

Z(θ)
exp

(
−

∑

s

E(ys|xs, θs)
)

(3.7)

that is, Ψs(ys|xs, θs) = exp
(
− E(ys|xs, θs)

)
; which means that low energy configurations

of variables correspond to high probability states. The potential or energy functions

are not probabilities; they represent the relative compatibility between their arguments.

Potential functions may generally be defined as a linear function of the parameters θs:

log Ψs(ys) , φs(ys, xs)
T θs (3.8)

where φs(ys, xs) is the feature vector derived from observation variables.
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(a) (b)

Figure 3.2: (a) An example of two grid MRF model, (b) an example of a 2D grid CRF
model. In CRF, local labels depend on the local observation as well as neighborhood
observation. Shaded nodes are observation nodes and unshaded nodes are random vari-
ables.

3.1.3 Markov Random Fields

Markov Random Fields (MRF) [35, 36, 76, 26] are one of the most popular undirected

graphical models in physics and machine learning. An example of a 2D grid MRF model is

shown in figure 3.2-(a). The local label at each site is dependent on the local observation

and 4 adjacent labels in the 4-neighborhood grid. The posterior probability over this

graph can be written as:

P (Y |X) =
P (X, Y )

P (X)
∝ P (X|Y )P (Y )

=
N∏

i=1

p(xi|yi).
1

Z

∏

s⊂S
Ψs(ys)

=
1

Z

N∏

i=1

p(xi|yi)
4∏

j=1

p(yi, yj)

(3.9)

In equation (3.9), i is the node index. The term P (xi|yi) indicates the prior knowledge,

and the term Ψs(ys) (or p(yi, yj)) accounts for local spatial interactions in the graph.
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3.1.4 Generative models versus discriminative models

Generative models such as Markov random fields model the joint probability of obser-

vations and corresponding labels as P (X, Y ) = P (Y )P (X|Y ) based on the Bayes rule.

Therefore, not only the label patterns but also observation model under each class needs

to be encoded. The observation likelihood model is assumed to have a factorized form

over all nodes (image sites); that is, MRF assume that given the labels, observation nodes

are conditionally independent of each other. However, this independency assumption is

too restrictive due to the fact that data of a class at a local site is dependent on its

neighbors. For example in image labeling, it is assumed that areas bounded to objects

are smooth and structures of objects in terms of shape, texture and configuration follow

some underlying organization rules within image pixels rather than being random [29].

The independency assumption simplifies the model but ignores regularities and struc-

tures within neighboring observations. Visual features in adjacent image sites are very

much correlated such as even backgrounds or lines and curves in images. The assump-

tion that observation features are conditionally independet given the labels, ignores this

correlation structure; this is not favorable because the independency assumption allowes

the P (Y |X) model to count the same feature again and again (figure 3.3). For exam-

ple, if we have five copies of the same feature, that is, five very correlated features that

effectively measure the same thing, they will be counted five times and make the model

too confident because of that one feature type. If we had 100 copies of that feature, it

will be counted and relied on 100 times and will push the model towards a very skewed

probability distribution that are not good reflections of the true probability because of

incorrect independecy assumptions. It is reasonable to add edges to the network to cap-

ture feature dependencies and harness the problem of correlated observation features.
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Figure 3.3: Visual features in adjacent image sites are very much correlated for example in
even backgrounds of images. The assumption that observation features are conditionally
independet given the labels (such as in Naive Bayes classifier), ignores correlation among
features and counts the same feature again and again.

This makes the problem more complex since it is hard to figure out the correlation struc-

ture unless densely connected models are used. A completely different solution lies in

the fact that the purpose of labeling is not to predict the distribution of features and

their structure; but to use the known features to predict the labels or model the image

synthesis [36].

Discriminative models such as CRF model the conditional probability of the labels

given the observations, P (Y |X), which is what interests us in image labeling task (instead

of modeling the joint distribution P (X, Y )). A CRF model looks like a Gibbs distribu-

tion in which, the potential functions over cliques get multiplied and an unnormalized

measure P̃ (X, Y ) is obtained. To have a conditional distribution P (Y |X), CRF has a

normalization constant or partition function that is a function ofX: Z(X) =
∑
Y

P̃ (X, Y ).

This normalizing constant resolves the feature correlation problem since for any given x,

the partition function has a sum of all the y’s that correspond to that x; and the distri-

bution is normalized by it. By conditioning on the observations as opposed to generating

them, we can incorporate arbitrary and overlapping (correlated or from neighborhood
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area) features, without the need to make strong independence assumptions [103].

Where generative models could become very complex, their corresponding class poste-

rior model might be quite simple. That is, generative approaches apply a lot of resources

on modeling the observation space which is not particularly helpful to solve the main

labeling problem, P (Y |X). Also, learning the class density model, P (X|Y ), becomes

difficult when there is not enough training data. Therefore, in comparison with genera-

tive models, discriminative models solve the labeling task by using fewer resources and

less complex models. Also, these models facilitate training discriminative random fields

(DRF) [29] which are a special type of CRF in which potential functions are designed

using local discriminative classifiers such as mixture models, neural networks or boosting.

3.1.5 Conditional Random Fields

Conditional random field (CRF) [42, 29] are the most popular form of a Markov random

field in which the potentials of cliques are conditioned on input features:

P (Y |X, θ) =
1

Z(X, θ)

∏

s

Ψs(ys|x, θ) (3.10)

Note that observations x are not restricted to clique s, and it might refer to all or a

subset of neighboring cliques. CRF model is an extension of the logistic regression and

the potentials are usually in the form of a log-linear function:

Ψs(ys|x, θ) = exp
(
θTs φ(x, ys)

)
(3.11)

where the φ(x, ys) is the feature vector derived from input x under label set ys and θ is

the vector of weight coefficients.
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Figure 3.2-(b) shows an example of a 2D CRF model. Note that there is interaction

between observations at nodes with their neighboring labels (shown with the dashed

lines) and despite MRF, the assumption of independency of observations is relaxed. The

CRF-based posterior probability of the graph in figure 3.2-(b) is defined as:

P (Y |X, θ) =
1

Z(X, θ)

N∏

i=1

Ψu(yi|xi)
N∏

i=1

∏

j⊂Ni

Ψp(yi, yj|xi, xj) (3.12)

where i and j are node indecies; Ni is the set of neighboring nodes of node i. Ψu(yi|xi)

is called unary or associative potential and Ψp(yi, yj|xi, xj) is called the pairwise or in-

teraction potential assuring label consistency and smoothing; both unary and pairwise

potentials can be expressed by (3.11).

To emphasize, in a CRF model, the unary potential at node i could be a function

of label yi and all or a subset of neighboring observations {x1, x2, ..., xN}; that is, it is

possible to incorporate global features obtained from the whole image; whereas in a MRF,

the unary potential is a function of yi and local xi only. Also, the pairwise potentials are

independent of observations and are a function of labels only. However, in CRF model,

the pairwise potentials are a function of both label and observations.

Advantages of CRF model over MRF model are analogous to merits of discriminative

classifiers over generative models. In CRF, we do not waste resources to analyze observa-

tions or seen data. But we focus on modeling what interests us, which is the probability

of labels given observation data. Another advantage of CRF in comparison with MRF is

that the potential terms are data-dependent. For example, in image labeling application,

if there is an intensity discontinuity in between two pixel observations, we may turn off

the interaction potential. However, CRFs are slower to train than MRFs [35, 121].
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Chapter 4

Generalized Gaussian mixture CRF

In this chapter, new feature functions based on mixtures of generalized Gaussian distri-

bution are proposed to improve accuracy of multi-class image labeling using conditional

random fields (CRF). As discussed in previous chapter, CRF modeling has proved to be

a successful approach to image labeling task. In this approach, a probabilistic graphical

model (PGM) is defined over the image grid. Image units, pixels or patches of regular

or irregular shape, constitute the nodes in the graph. In a primary step, color, texture

and shape features are extracted from each unit in the image to represent the appear-

ance attributes across the image. CRF models the relationship between image attributes

and the class labels via unary potentials. Unary or association potentials represent the

log-likelihood of a class label yi, for i-th image site given the observation xi of that site:

ψi(yi|x) = logP (yi|xi) (4.1)

The interaction between two neighboring image sites i and j is modeled with CRF

pairwise or interaction potentials which represent the log-likelihood of neighboring labels

yi and yj given the observation vectors xi and xj:
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ψij(yi, yj|x) = logP (yi, yj|xi, xj) (4.2)

Given the feature vectors, both unary and pairwise potentials can be formulated as

weighted feature functions. For each site i, if f(x) is a function that maps the obser-

vation x on a feature vector such that f : x→ Rl, then both potentials can be written

as
∑

k wkfk(x), where k ranges over arbitrary feature functions and the weights wk are

estimated during CRF training for different feature functions. CRF modeling with po-

tentials of this form requires a large number of features to achieve satisfactory results;

particularly, with the growth of number of classes they generate poor results and a large

number of features makes their training and inference cumbersome and therefore their

application is limited. Potentials of this form are also sensitive to parameter initialization

and parameter estimation might get stuck in local minima. Besides, using potentials in

the form of weighted features makes the choice of right discriminative features critical.

As discussed in section 1.5.1, potential functions can take forms such as logistic [32],

boosting [1, 5, 3], Neural Networks [2, 54], SVM classifiers [27], local support tensor

machines [11], label transfer [7], mixture models [55] and combinations of them [49].

Mixture models are one of the high performance yet efficient approaches to image labeling

[69, 70]. Mixture models capture within-class variability of objects well (flowers come

in different colors) [1, 71, 72]; Augmented by CRF modeling which well discriminate

visually similar samples of different classes due to considering contextual information,

mixture models have proved to achieve high labeling accuracy [73].

The feature functions might also take the form of a mixture distribution of class labels

given the observations [55]. In [1], color-based unary potentials are defined as Gaussian

mixtures. In [53] and [73], both unary and pairwise potentials over color and texture

features are modeled as mixture of Laplacian and Gaussian distributions, respectively.
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Figure 4.1: Feature distribution of 7 classes of Corel image database. The columns corre-
spond to five different features: Lab colors (L: lightness, A,B: color-opponent dimensions)
and positions (horizontal and vertical offset from the image center), from left to right.

Features in nature images follow certain statistical distributions. An example is shown

in figure 4.1. The rows are 7 classes in the Corel image database and the columns are

five different features: 3 Lab colors and 2 positions (horizontal and vertical offset from

the image center). The use of mixture distributions for representing feature distributions

in a natural system may also be motivated by the intuitive notion that the individual

component densities may model some underlying set of hidden classes (cars come in

different shape outlines).

In [53], researchers show that distributions of features in natural scene images are
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better approximated by a Laplacian distribution than a Gaussian. They argue that

selecting feature functions that better reflect the distribution of the dominant features

could reduce the need for more features and increase the convergence speed. Their

experiments show that CRF with Laplacian feature functions outperform CRF models

with Gaussian feature functions. The advantage of applying mixture distributions as

feature function, particularly for labeling nature scene images, is that a lower number of

descriptive features will be needed to accomplish successful labeling. However, state of

the art literature questions the ability of firmly-shaped distributions such as Gaussian or

Laplacian densities to approximate the data precisely [70, 74].

In this chapter, we propose a new feature function based on generalized Gaussian

mixture (GGM) modeling of image features. We investigate the effectiveness of the pro-

posed GGMM feature functions to improve the labeling and segmentation accuracy in

comparison with their Laplacian counterparts as proposed in [53]. It will be argued that

distribution of features can be better approximated with a generalized Gaussian mixture

feature function than a Laplacian mixture distribution. Rigidly-shaped Laplacian poten-

tials fail to capture data characteristics where data fluctuations happen very smoothly

such as in plain even backgrounds of natural images; so that they even give rise to induc-

tion of atypical results due to erroneous modeling of data. Having an additional shape

manipulation parameter, generalized Gaussian mixtures can model data characteristics

more precisely.

To compare the fitting accuracy of Gaussian, Laplacian and generalized Gaussian

mixtures, the goodness-of-fit statistic value χ2 [74] is used, which is defined as:

χ2 =
∑

x

(H(x)− p(x))2

p(x)
(4.3)
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Figure 4.2: Comparison of average χ2 statistic values versus different number of mixture
components for different mixture types GM, LM and GGM.

where H(x) and p(x) are the empirical and expected feature distributions for feature x.

Figure 4.3: An example of a qualitative comparison of different mixture types using

different number of mixture components (1, 2 and 3 components from left to right).
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Figure 4.2 shows a comparison of χ2 value versus number of mixture components for

different mixture types, Gaussian mixture (GM), Laplacian mixture (LM) and generalized

Gaussian mixture (GGM). Figure 4.2 is obtained by averaging χ2 value over distributions

of 53 feature types in all 7 classes in figure 4.1. The GGM model requires lesser number

of components to reach a high level of histogram fitting accuracy. That is, GGM method

uses less complex models to fit the feature distribution. In figure 4.2, the average χ2 value

for the Gaussian mixture model rises after the 5-th component due to poor convergence.

An example of qualitative comparison of different mixture types using different number

of mixture components is given in figure 4.3.

In this chapter, the performance of the proposed GGM-based CRF will be evaluated

on the commonly used 7 class Corel database. We investigate the performance of the

proposed new GGMM feature functions in comparison with their Laplacian and Gaussian

counterparts, conventional weighted feature functions, SVM and deep learning methods.

In the following, we first bring problem formulation, introduce notation and explain the

general mixture CRF framework. In section 4.2, we introduce the new feature functions

based on the generalized Gaussian distribution. In section 4.3, we discuss the training

and inference for the proposed model. The new image labeling model is applied to 7

class Corel database in section 4.4 and the simulation results are shown. We close this

chapter with discussions regarding the proposed approach.

4.1 Problem Formulation

CRF is used to model the conditional distribution of class labels given image observations.

Observations could be a set of image measurements such as pixel intensity values, color

distributions, texture features, shape features, bag-of-words features, output of multi-
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scale band-pass filters or descriptors in the frequency domain, etc. Let X = {x1, ..., xN}

denote the observation data from input image. N is the total number of image sites

including pixels or patches of regular or irregular shape. xi is the feature vector from

site i and Y = {y1, ..., yN} is the set of all image labels. Corresponding to each image

site, there is a label yi ∈ L where L = {1, 2, ..., L} is the set of all possible labels. CRF

equation for image labeling models the conditional distribution over labels Y given the

observations X:

P (Y |X) =
1

Z(X)
exp{

N∑

i=1

ψi(yi|x) +
N∑

i=1

∑

j∈Ni

ψij(yi, yj|x)} (4.4)

where ψi is the association potential between the observation data xi and the label yi of

site i. Pairwise potential ψij models the interaction between current site i and its neigh-

boring site j given the observed features xi and xj. The set Ni refers to all neighboring

sites of site i. Normalizing factor Z(X) ensures that
∑
p(yi|xi) = 1. Potential functions

ψi and ψij are primarily defined as summation of weighted feature functions such that:

ψi(yi|xi) =
∑

k∈Ku

wukfik(yi|xi)

ψij(yi, yj|xi, xj) =
∑

k∈Kp

wpkfijk(yi, yj|xi, xj)
(4.5)

where k is feature index; fik indicates the k-th appearance feature at site i; andKu andKp

are respectively the total number of unary and pairwise features extracted. Parameters

wuk and wpk are weights for k-th feature of unary and pairwise feature functions and will

be computed during training phase. The task of CRF image labeling is to infer labels Y

with the maximum likelihood given data of an input image X and parameters w of the

CRF model.
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4.2 New GGMM CRF model

We define new feature functions based on generalized Gaussian mixture (GGM) modeling

of image features. The new feature functions fik and fijk will be formulated by log-

likelihood functions, such that:

fik(yi|xi) =
∑

l∈L
δ(yi − l) log

∑

m∈M
πyimPi(xik|yi,m)

fijk(yi, yj|xi, xj) =
∑

l∈L

∑

l′∈L
δ(yi − l)δ(yj − l′) log

∑

m∈M
πyiyjmPij(xik, xjk|yi, yj,m)

(4.6)

wherem is the index of the mixture component andM is the total number of components

per mixture. Here πyim and πyiyjm are mixture coefficients. Note that
∑

m∈M
πmyi = 1 and

∑
m∈M

πmyiyj = 1. The function δ(y − l) = [y = l], where [.] is the indicator function and

l ∈ L is the index of image classes. The conditional probabilities Pi and Pij will be

defined as generalized Gaussian distributions defined as:

p(x|µ, σ, β) =

β

√
Γ ( 3

β
)

Γ ( 1
β
)

2σΓ ( 1
β
)
exp


−

(
Γ ( 3

β
)

Γ ( 1
β
)

)(β
2
) ∣∣∣∣
x− µ

σ

∣∣∣∣
β


 (4.7)

where Γ (.) denotes the gamma function, and µ and σ are mean and standard deviation of

the distribution. Shape parameter β > 0 determines the peakedness of the distribution.

The smaller the value of β, the more peaked the distribution is around its mean and

as β grows larger, the distribution becomes flatter. The shape parameter β makes the

distribution flexible to fit the data properly [74, 122]. Since the GGM formulation for

each feature will be the same, we drop the image site index i and feature index k for

simplicity. However, it should be noted that above equation has to be considered to

represent the distribution of each k-th feature in the data collection.
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To compute the feature functions in equation (4.6), we need to estimate parameters

π, µ, σ and β for each component of the mixture. θ = {πm, µm, σm, βm,m = 1, ...,M} is

the set of model parameters to be estimated for each unary and pairwise feature in each

class. Parameters θ are tied across image sites i and j. With known class labels for each

site of the training images, one can group the features of the same label and use the EM

algorithm to calculate parameters of the model. When class labels are known for one

site and its neighboring site, the parameters can be learned for their label interaction.

Knowing these parameters, feature function of the model can be calculated using (4.6).

Given a data sample x = {x1, x2, ..., xn}, which in our case represents a specific fea-

ture, e.g. red color, from all available samples of a particular class, we intend to estimate

the generalized Gaussian mixture distribution parameters so that it fits the distribution

of the feature in a class. We use the maximum likelihood ML method such that:

θ = argmax
θ

{p(x|θ)} (4.8)

Given a predefined number of mixture components,M , we use EM algorithm [77, 123]

to solve this optimization problem. EM algorithm is an iterative process with two steps in

each iteration: expectation step (E-step) and maximization step (M-step). We formulate

EM algorithm to estimate GGM distribution parameters.

E-step: Find the expected value of the complete data log-likelihood log(p(x; z))

with respect to unobserved data z given the observed data x:

Q(θ, θt−1) = Ez[log(p(x, z|θ))|x, θ
t−1]

=
n∑

i=1

M∑

j=1

Ez[zij|xi, θ
t−1]. log(πt−1

j p(xi|j, θ
t−1))

(4.9)
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where t denotes iteration number, p(xi|j, θ
t−1) is calculated from the generalized

Gaussian distribution formulation in (4.7); and:

Ez[zij|xi, θ
t−1] =

πt−1
j p(xi|j, θ

t−1)
M∑
k=1

πt−1
k p(xi|k, θt−1)

(4.10)

M-step: Obtain the following updating equations at each iteration t:

∂Q(θ, θt−1)

∂πj
= 0 ⇒ πt

j =
1

n

n∑

i=1

Ez[zij|xi, θ
t−1] =

1

n

n∑

i=1

πt−1
j p(xi|j, θ

t−1)
M∑
k=1

πt−1
k p(xi|k, θt−1)

∂Q(θ, θt−1)

∂µj

= 0 ⇒ µt
j =

n∑
i=1

xiEz[zij|xi, θ
t−1]

∣∣∣xi − µt−1
j

∣∣∣
βj−2

n∑
i=1

Ez[zij|xi, θt−1]
∣∣∣xi − µt−1

j

∣∣∣
βj−2

∂Q(θ, θt−1)

∂σj
= 0 ⇒ σt

j =



Γ ( 3

βt−1
j

)

Γ ( 1
βt−1
j

)




β
t−1
j

2

n∑
i=1

Ez[zij|xi, θ
t−1]

∣∣∣xi − µt−1
j

∣∣∣
βt−1
j

1
βt−1
j

n∑
i=1

Ez[zij|xi, θt−1]

(4.11)

Finally, Newton-Raphson method is applied to estimate the value for parameter β in

each iteration:

βt
j = βt−1

j −

∂Q(θ,θt−1)
∂βj

∂2Q(θ,θt−1)

∂β2
j

(4.12)

Formulation of numerator and denominator terms are:

∂Q(θ, θt−1)

∂βj
=

N∑

i=1

Ez[zij|xi, θ
t−1]

(
Γ ( 3

βj
)
(
2βj + 3ψ(0)( 1

βj
)− 3ψ(0)( 3

βj
)
)

8σ2Γ ( 1
βj
)3

−
1

2βj

(Γ ( 3
βj
)

Γ ( 1
βj
)

)βj

2
∣∣∣∣
x− µ

σ

∣∣∣∣
βj
(
2b log

(∣∣∣
x− µ

σ

∣∣∣
)
+ ψ(0)(

1

βj
)

− 3ψ(0)(
3

βj
) + b log

(Γ ( 3
βj
)

Γ ( 1
βj
)

)))

(4.13)
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∂2Q(θ, θt−1)

∂β2
j

=
N∑

i=1

Ez[zij|xi, θ
t−1]Γ ( 3

βj
)

8β2
jσ

2Γ ( 1
βj
)3

(
2β2

j − 6βjψ
(0)(

3

βj
) + 9ψ(0)(

1

βj
)2

+ 9ψ(0)(
3

βj
)2 + 6ψ(0)(

1

βj
)

(
b− 3ψ(0)(

3

βj
)

)
− 3ψ(1)(

1

βj
) + 9ψ(1)(

3

βj
)

)

−

(
∣∣∣x−µ

σ

∣∣∣
b(Γ ( 3

βj
)

Γ ( 1
βj

)

)βj

2

4β2
j

)(
4β2

j log
2
(∣∣∣
x− µ

σ

∣∣∣
)

+ 4β2
j log

(∣∣∣
x− µ

σ

∣∣∣
)
log

(Γ ( 3
βj
)

Γ ( 1
βj
)

)
+ 8β2

j log
(∣∣∣
x− µ

σ

∣∣∣
)

+

(
2βjψ

(0)(
1

βj
)− 6βjψ

(0)(
3

βj
)

)(
2

βj
+ 2 log

(∣∣∣
x− µ

σ

∣∣∣
)
+ log

(Γ ( 3
βj
)

Γ ( 1
βj
)

))

+ β2
j log

2
(Γ ( 3

βj
)

Γ ( 1
βj
)

)
+ ψ(0)(

1

βj
)2 + 9ψ(0)(

3

βj
)2

− 6ψ(0)(
1

βj
)ψ(0)(

3

βj
)−

2

βj
ψ(1)(

1

βj
) +

18

βj
ψ(1)(

3

βj
)

)

(4.14)

where ψ(0) is the first derivative of Gamma function and ψ(1) is the second derivative of

Gamma function. Careful initialization of the parameters is very critical to the success

of the EM algorithm. In our experiments, we employed the overall mean (µpop) and

variance (σ2
pop) of population x to initialize mean and variance parameters for each of the

mixture components. For example, for M = 2, we set: µ0
1 = µpop − σpop, µ

0
2 = µpop − σpop

and σ2
1 = σ2

2 = σ2
pop. In case M = 3, then a good initialization for parameter µ would

be: µ0
1 = µpop − σpop, µ2 = µpop and µ0

1 = µpop + σpop. For parameter π, we set π0
j = 1

M

for all components. Regarding parameter β, we set the initial value as β0
j = m1√

m2
for all

components; where m1 =
1
n

n∑
i=1

|xi| is first statistical moment of the absolute values and

m2 is the second statistical moment.

Once the functions in equation (4.6) are known, stochastic gradient descent (SGD) and

belief propagation (BP) [124] algorithms can be applied to learn the weight parameters
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w using training samples and to infer the test sample labels, respectively.

4.3 Training and Inference

Stochastic gradient descent (SGD) is used for training of the new CRF model. The mix-

ture parameters are known using EM algorithm before SGD training. Weight parameters

are tied across image sites i and j. Given a set of training examples, the goal is to choose

parameter values w that maximize the conditional probability of the training examples.

In other words, the objective function for training is the conditional log-likelihood of the

set of training examples:
∂

∂wk

log
N∏

n=1

P (y(n)|x(n)) (4.15)

The parameters are updated based on a batch of training examples each time. In our

experiment, the number of training images in a batch is set to be 3. There is one weight

for each mixture feature function in the new CRF model. The partial derivative of the

conditional log-likelihood logP (y(n)|x(n);w) with respect to the weight wk (that could be

wik or wijk) is calculated as follows [125]:

∂

∂wk

logP (y(n)|x(n);w)

= fk(x
(n), y(n))−

∂

∂wk

logZ(x(n), w)

= fk(x
(n), y(n))

− 1
Z(x(n),w)

∑
y(n)′

∂
∂wk′

exp
∑

k′ wk′fk′(x
(n), y(n)

′
)

= fk(x
(n), y(n))

−
∑

y(n)′ fk(x
(n), y(n)

′
)

exp
∑

k′ wk′fk′ (x
(n),y(n)′)

∑

y(n)′′ exp
∑

k′′ wk′′fk′′ (x
(n),y(n)′′)

= fk(x
(n), y(n))− 〈fk(x

(n), y(n)
′
)〉P (y(n)′|x(n);w). (4.16)
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Here n is the current training example and both y(n)
′
and y(n)

′′
represents the possible

labels. The fk(·) (fik(·) or fijk(·)) are the feature functions in the equation (4.6) and

P (y(n)
′
|x(n);w) is the conditional probability of label y(n)

′
given the weights w and features

x(n). According to this partial derivative, the weights wk are updated iteratively as:

wt
k = wt−1

k − η(fk(x
(n), y(n))− 〈fk(x

(n), y(n))〉), (4.17)

where t is the iteration number and η is the learning rate. Therefore, the weight change

is proportional to the value of the feature function for the known label y(n) minus the

expected value of the feature function for all possible labels y(n)
′
.

Once the weights w = {wik, wijk} are calculated during training, the beliefs for labels

of each image site could be inferred by using the belief propagation (BP) algorithm.

4.4 Experimentation

We apply the CRF model with the new generalized Gaussian based feature function to

the image labeling task. The task of image labeling is to find an appropriate content

label for every image pixel. Since the CRF is a computationally costly model, we apply

the new model in a superpixel level than pixel level. This approach is feasibly reasonable

since most likely a pixel belongs to the same object category as the neighboring pixel.

Therefore, images are first oversegmented to superpixels.

Superpixels are small homogenous regions composed of a group of adjacent similar

pixels and they are the result of oversegmentation of the image. With a large number of

small regions, the potential error induced by such an oversegmentation at object bound-

aries is relatively small. Superpixels constitute the nodes in the CRF graph. Unary
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potential will be defined as the label of a superpixel given the features extracted from

that superpixel. Also, interaction potentials in the CRF modeling will be defined on

adjacent superpixels. Using superpixels instead of pixels, the number of nodes in the

CRF graphical model used is greatly reduced and so the computational cost of the CRF

training and inference.

The basic steps of image labeling using a mixture model are listed as follows:

Step 1 - Feature extraction of training images: Training images are oversegmented

to superpixels and features of each superpixel are generated.

Step 2 - Learning the mixture parameters: Superpixel features for each class are

grouped. EM algorithm is used to compute the parameters of the mixture distri-

bution of features in each class.

Step 3 - CRF training: Using the parameters calculated in step two, unary and

pairwise feature functions are computed. Then, stochastic gradient decent training

is performed iteratively to estimate the weight parameters for potential feature

functions.

Step 4 - Feature extraction of test images: Test images are oversegmented to su-

perpixels and features of each superpixel are generated.

Step 5 - Feature function computation: The potentials are computed using mixture

parameters learned from Step 2 to perform inference over the test image.

Step 6 - CRF Inference: Inference predicts the testing image superpixel labels using

BP algorithm.
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4.4.1 Image database

To evaluate the performance of this new CRF model with generalized Gaussian mixtures,

image labeling experiments were conducted on the commonly-used Corel image database

[2]. There are seven classes in this dataset, rhino/hippo, polar bear, water, snow, veg-

etation, ground, and sky. The task is to recognize and segment these 7 classes. The

database has 100 images and the size of images is 180x120 pixels. In the experiment, the

database is divided randomly to 50 training images and 50 test images.

4.4.2 Superpixels

Due to the fact that the pixel-based CRF is computationally intensive, the new mixture

CRF is built on superpixels, similar to [2, 53, 73]. Each image is oversegmented using

mean shift segmentation algorithm [126]. Mean shift segmentation method belongs to

the class of unsupervised segmentation algorithms which work by clustering pixels on

the basis of low level image features. Mean shift algorithm is defined as the product

of spatial and range kernels. The spatial domain contains the (i, j) coordinates, while

the range domain contains pixel colour information in LUV color space. The number of

superpixels per image is roughly 60 superpixels. This number might affect the accuracy

of image labeling at image boundaries [38] but it does not affect the comparative results

of our experiments.

4.4.3 Feature extraction

We use the set of low level features including superpixel location, mean Lab color values

and texture features returned by Leung-Malik (LM) filter bank [127] of size 49x49x48

over the image. The LM set is a multi-scale, multi orientation filter bank with 48 filters.
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It consists of first and second derivatives of Gaussians at 6 orientations and 3 scales, 8

Laplacian of Gaussian (LOG) filters, and 4 Gaussians. The exact feature value of a su-

perpixel is the mean over all pixel feature values of this superpixel. Therefore, including

color and location features each superpixel is represented by a 53 dimensional feature

vector. A bias term 1 is always added to the feature vector. The feature vector for pair-

wise potential is calculated as the absolute difference of the features of two neighboring

superpixels.

4.4.4 Performance analysis

We investigate the effectiveness of the proposed GGMM feature functions to improve

CRF-based labeling accuracy in comparison with their Laplacian and Gaussian counter-

parts, conventional weighted feature functions, SVM and deep learning methods. Par-

ticularly in comparison with Laplacian and Gaussian mixture-based CRF modeling, we

use different number of features and different number of components to show that GGM

modeling outperforms Laplacian and Gaussian CRF modeling. We show that general-

ized Gaussian mixture feature functions outperform other methods in terms of recall and

precision defined as:

recall =

∑
all classes

true positive

∑
all classes

condition positive
=

TP

TP + FN

precision =

∑
all classes

true positive

∑
all classes

test outcome positive
=

TP

TP + FP

(4.18)

where true possitives (TP) are examples correctly labeled as positives. False positives

(FP) refer to negative examples incorrectly labeled as positive. True negatives (TN)

58



correspond to negatives correctly labeled as negative. False negatives (FN) refer to

positive examples incorrectly labeled as negative. Based on these definitions, true positive

rate (TPR) and false positive rate (FPR) are also defined as:

True positive rate =
TP

TP + FN

False positive rate =
FP

FP + TN

(4.19)

The FPR measures the fraction of negative examples that are incorrectly labeled as pos-

itive; and TPR is the same as recall and measures the fraction of positive examples that

are labeled correctly. Precision measures the fraction of examples classified as positive

that are truely positive.

We use the 50 training images D = {(x(n), y(n)), n = 1, ..., 50} to estimate the pa-

rameters of GGMM, LM and GM-based CRF models using stochastic gradient descent

algorithm. The learning rate η is fixed to be 0.0001. Starting with random weights, the

stochastic gradient descent algorithm converges after about 10 iterations for all three

models. The same training images are used to train the SVM and DNN models and the

conventional CRF with weighted feature functions.

Figure 4.4 compares results of GGMM, LM and GM-based CRF labeling using dif-

ferent number of mixture components versus different number of features. Considering

different number of mixture components from 1 to 5, the proposed GGMM-based CRF

labeling generates the best performance in terms of recall criteria. Maximum recall

performance of 74.56 is obtained via GGMM-based CRF labeling using 2 number of

mixture components and 42 features; the next best performance is also obtained via

GGMM-based CRF labeling using 1 mixture component and 30 features. Also, figure

4.5 elaborates the comparison of recall performance of the three mixture types for differ-
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ent number of features using different number of components. As illustrated, for most

feature combinations the proposed GGMM-based CRF modeling obtains the maximum

recall performance over different number of components.

Figure 4.6-(a) and figure 4.6-(b) illustrate the average recall versus different number

of features and different number of components, respectively. Graph in figure 4.6-(a)

is obtained by averaging all 5 graphs in figure 4.4 for different number of components;

and figure 4.6-(b) is obtained by averaging all 9 graphs in figure 4.5 for different number

of features. Figure 4.6 shows that best recall performances are resulted from proposed

GGMM-based model over different number of features and different number of compo-

nents. Note that higher recall means higher true positive rate. Figure 4.7 shows the

corresponding average precision graphs obtained over different number of features and

different number of components. As illustrated, best precision performances are resulted

from proposed GGMM-based model. Higher precision means lower false positive rate.

Figure 4.8 shows a comparison of average receiver operator characteristic (ROC) and

Precision-Recall (PR) curves of CRF labeling using three mixture types. In the ROC

space, a curve closer to upper-left-corner indicates better performance and in the PR

space a curve close to the upper-right-corner is an indication of better performance. PR

is an alternative to ROC performance measure. The performances of the three algorithms

appear to be comparable in ROC space; however, the new GGMM-based CRF modeling

is outperforming the two other mixture types in PR space. Since our labeling problem is

not a binary classification problem and we are categorizing 7 different classes, the number

of negative examples in each class greatly exceeds the number of positive examples. That

is, a large number of false positives make a small change in the false positive rate in ROC

space. However, precision measure compares false positives to true positives rather than

true negatives and therefore, captures the effects of large number of negative examples
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on performance of the algorithms [128].
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Figure 4.4: Using different number of components, best performances are resulted from

proposed GGMM-based model.
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Figure 4.5: For most feature combinations the proposed GGMM-based CRF modeling

obtains the maximum recall performance over different number of components.
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Figure 4.6: Average recall versus (a) different number of features and (b) different number

of components.
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Figure 4.7: Average precision versus (a) different number of features and (b) different

number of components.
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Figure 4.8: (a) Comparison of ROC curves of CRF labeling using three mixture types,

(b) Comparison of precision vs recall curves of CRF labeling using three mixture types
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Original Image GM CRF LM CRF GGM CRF (ours) Ground Truth

Figure 4.9: Examples of labeling images from Corel dataset using GM, LM and GGM
CRF modeling.

Some examples of mixture-based CRF labeling are illustrated in figure 4.9. The

proposed GGMM-based CRF produces less erronous and more consistent labeling par-

ticularly in even areas of the image background.

For comparison of the proposed mixture-based CRF model with SVM, deep neural

networks (DNN) and baseline CRF using logistic potential feature functions, we fix the

number of mixture components and number of features to values for which all mixture

types render the best performance; that is, M = 2 and 30 features.

We trained a DNN with two hidden layers with different number of input features and
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Table 4.1: Recall performance of the GGMM-based CRF model comparing to other
methods.

Recall Performance
GGMM CRF 73.5

LM CRF 72.1
GM CRF 71.8
CRF 64.57

DNN+MRF 65.32
DNN+CRF 72.32
SVM+MRF 64.08
SVM+CRF 69.48

different hidden layer sizes. The best performance for DNN was obtained by utilizing

all 54 features; the size of the first and second hidden layers were set to 35 and 25,

respectively. The size of the input layer was set to the number of features and the size

of the output layer was set to the number of classes. Furthermore, we trained an SVM

classifier with a radial basis function for 54 features [129]. The SVM parameters were

selected using cross-validation.

For fairness of comparisons, we enforce contextual constraints on labeling results of

DNN and SVM classifiers using MRF modeling and CRF modeling on the probability im-

ages obtained by these classifiers. The probability images were used as unary potentials of

the random fields model. For CRF model, we used the dense random field in [3] with color

variance σr = σg = σb = 7, location variance of σx = σy = 3 pixels, bilateral filter of width

40 pixels, and weight coefficients w = 1 for both location and bilateral kernels. The MRF

model was defined with energy function J(Y ) =
N∑
i=1

Edata(yi, xi) +
N∑
i=1

∑
j∈Ni

Esmooth(yi, yj);

where Edata(yi, xi) is the sigmoid function of class likelihood scores from DNN and SVM

classifiers. The smoothing term Esmooth(yi, yj) was defined based on probabilities of label

cooccurrence as:
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Esmooth(yi, yj) = − log[(p(yi|yj) + p(yj|yi))/2]× δ[yi 6= yj]

where p(c|c′) is the conditional probability of one superpixel having label c given that

its neighbor has label c′, estimated by counts from the training set. The term δ[yi 6= yj]

ensures that this energy term is semi-metric as required by the graph cut algorithm

applied for MRF inference [46].

Table 4.4.4 shows the recall performance of the GGMM-based CRF model comparing

to the baseline CRF, LM- and GM-based CRF and SVM and DNN with CRF smooth-

ing. Note that in the baseline CRF the quadratic expansion of the features is used.

Performance of the proposed model is higher than other methods.

4.5 Discussion

A new image labeling model based on mixture CRFs is introduced in this chapter. We

apply generalized Gaussian mixture distributions as CRF unary and pairwise potentials.

That is, the proposed model takes advantage of both the unstructured generalized Gaus-

sian feature distribution and structural discriminative CRF model. The combination of

the two provides a successful system for nature image labeling. The training of the new

CRF is performed by stochastic gradient descent. To infer the most probable labels, Be-

lief propagation inference is used. Performance analysis was carried out on Corel image

dataset with 7 different categories of natural environment including animals and vegeta-

tion. The results showed the prominence of proposed GGMM-based CRF over baseline

CRF, LM-based CRF, GM-based CRF, SVM and DNN methods. Rigidly-shaped po-

tentials such as Gaussian and Laplacian fail to capture data characteristics where data

fluctuations happen very smoothly such as in plain even backgrounds of natural images;

so that they give rise to induction of atypical results due to erroneous modeling of data
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and therefore, reduce labeling accuracy. The shape parameter of generalized Gaussian

mixture makes the distribution flexible to fit the data properly and therefore leads to

more accurate labeling. The new mixture CRF model is a general framework with the

advantage of high classification rate and low computational training, which can be ap-

plied to other applications related to multimedia content analysis. Future works include

improving the performance by incorporating more relevant features, testing the method

for other more complex databases.
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Chapter 5

Context-based dense CRF

Apart from the design of CRF potential functions, another important aspect of CRF

modeling is how to perform contextual reasoning. As elaborated in section 2, the range of

connectivity of nodes in the graph determines the extent to which contextual information

such as class co-occurrences can be exploited. High-order connectivity among image

regions boost labeling performance. However, accuracy of these methods is depending

on the accuracy of the image segmentation algorithm applied to generate the regions.

Pixel-wise CRF labeling can produce accurate label assignments around complex

object boundaries. However, its computational cost hindered its application until recently

Krähenbühl and Koltun [3] proposed an efficient inference algorithm for pixel-wise dense

conditional random fields (DCRF) model which connects each pixel to every other pixel

in the image. They applied mean field approximation to write inference equations in a

factorized form so that they were able to use high-dimensional filtering to approximate

and speed computations. However, although fully-connected DCRF generates precise

object boundaries at the pixel level (figure 1.2), it is prone to over-smoothing small

objects from thing classes (foreground objects) in the large pool of pixels from background
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Image Ground TruthUnary Classifier DCRF

Figure 5.1: DCRF generates precise object boundaries at the pixel level.

Figure 5.2: DCRF is prone to over-smoothing small objects from thing classes (upper
image); moreover, dense random fields are confined to the success of the initial unary
classifier (lower image).

classes (figure 5.2, upper image). Moreover, success of dense random fields are restricted

to correctness of the initial unary classifier. If the initial unary potentials fails to identify

the objects in the image correctly, DCRF does not revise the object labels and continues

to refine boundaries of wrong labels (figure 5.2, lower image).

In this chapter, a new context-based dense conditional random field (cbDCRF) model

is proposed which integrates global semantics of the image with pixel-wise dense inference

to preserve small thing classes and to make dense inference robust to initial misclassifi-
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Figure 5.3: Knowing that an image is picturing a coastal area based on the global visual
characteristics of the image, the probability of rock and sea labels are increased over
desert and field classes.

cations of the unary classifier. We propose to utilize global scene type of the image to

strengthen probability of objects coherent with the global scene and eliminate ambiguity

due to between-class visual similarity. Distribution of each object varies significantly

through different scene types. Even frequency of occurence of a common object such

as ‘tree’ is greatly changing from 289 samples under ‘forest’ category to 30 samples in

‘coastal’ scenes; or class ‘desert’ occurs only in ‘open country’ scenes. We show that

prior knowledge about the image scene type can improve the performance of dense CRF

labeling. As an example in figure 5.3, knowing that an image is picturing a ‘coastal’ area

based on the global visual characteristics of the image, the probability of ‘rock’ and ‘sea’

labels are increased over ‘desert’ and ‘field’ classes.

The new model forces scene-object co-occurrence restrictions to improve object-object

cooccurrence prediction. Joint probability of labeling configuration and image scene type

is factorized using the mean field approximation method to obtain prediction update
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equations for labeling individual image pixels and predicting overall scene type of the

image. CRF pairwise potentials connect each image pixel with all other pixels in the

image to account for long-range interactions of objects. Scene type context is integrated

as a model selection cue in the new model to alleviate sensitivity to unary initialization

and severe smoothing problem by elevating scene-object and object-object co-occurrence

prediction. Whole image descriptors are used to discriminate distinct environmental cat-

egories using an SVM scene classifier; the CRF unary potentials are then conditioned

on the overall scene type of the image to impose scene-object and object-object con-

sistency. We derive the inference algorithm for the proposed context-based dense CRF

model which enhances both scene and object prediction.

In the following, the new cbDCRF model is elaborated. In section 5.2, the related

inference algorithm is derived. Section 5.1 explains the individual components of the

model for implementation purposes. Experiment results are nailed down in section 5.4.

5.1 Context-based dense CRF model

The new context-based dense CRF model is shown in figure 5.4-(b) in comparison with

conventional dense CRF in 5.4-(a). The following notation is used to describe the model.

N is the total number of pixels in the image I; X = {x1, x2, ..., xN} is the set of feature

vectors of pixels 1 to N , where xi ∈ ℜd is the d-dimensional observation feature vector

obtained at pixel i. Y = {y1, y2, ..., yN} is the set of random variables representing labels

of corresponding pixels where yi can be any label l from the set of all possible labels

L = {1, 2, ..., L}; where L = |L| indicates the size of set L. c is the random variable

representing the image scene type and can take a value from a set C = {1, . . . , C} of C

possible scene types. In the cbDCRF model, every pixel is connected to every other pixel;
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Figure 5.4: In the cbDCRF model, every pixel is connected to every other pixel. The
green edges represent the dependency of scene type C on observations X and the inter-
dependency with the pixel labels Y . Full connectivity of the dense CRF is shown with
blue edges (edges are shown only for two y1 and yN nodes). The gray dash edges illustrate
the dependency of local labels to neighborhood observations.

the full connectivity of the dense CRF is shown in figure 5.4 with blue edges (edges are

shown only for two y1 and yN nodes). The gray dash edges illustrate the dependency of

local labels to neighborhood observations as previously explained as the merit of general

CRF modeling. The green edges represent the dependency of scene type c on global

observation X and inter-dependency with the pixel labels Y .

Let P (Y |X, c) to be probability of labeling configuration Y under context c given

image observations X, and P (c|X) to be the probability of infering context c given

image observations X, then the formulation for proposed context-based dense CRF is:

P (Y, c|X) = P (Y |X, c)P (c|X) =
1

Z
P (c|X) exp (−E(Y |c,X)) (5.1)

where Z is the normalizing partition function that ensures
∑

i P (yi|x) = 1. Moreover,

E(Y |X, c) is the Gibbs energy defined as:
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E(Y |X, c) = α
N∑

i=1

ψu(yi|x) + β
N∑

i=1

ψc(yi|x) +
∑

i<j

ψp(yi, yj|xi, xj) (5.2)

where ψu(yi|x) is the association (unary) potential between label yi of site i and obser-

vation data x of site i and its neighborhood. ψp(yi, yj|xi, xj) is the interaction potential

between current pixel i and pixel j given the observed features xi and xj. ψc(yi|x) rep-

resents the context-based association potential defined as the negative log-likelihood of

label yi given scene type c and observations x. The unary or associative potentials are

defined upon individual image pixels and model the association between class labels and

low-level image features such as color and texture; that is, they incorporate the image

evidence to labeling task in the format of probability of a class label given the image

low-level informarion at each pixel. Both ψu and ψc could be the output of a classifier

for probability of label yi given observations x [42]. We describe the detailed formulation

of the conventional and proposed context-based unary potentials in section 5.3. α and β

parameters control the degree of employment of contextual scene-based unary potentials.

ψp(yi, yj|xi, xj) is the interaction potential between current pixel i and pixel j given the

observed features xi and xj. The pairwise potentials are defined on labels of neighboring

image pixels and are meant to maximize local label agreement between neighboring pixels

given the degree to which their apprearance is similar. It is a data dependent term whose

aim is to have similar labels at a pair of sites for which the observed data is alike. A

data dependent pairwise term can compensate for the errors and noise in modeling the

unary potential. This is one of the advantages of CRF modeling over MRF in which the

pairwise term smoothes labels independent of observation features. The data dependent

pairwise potential ψp is formulated as:

ψp(yi, yj|xi, xj) = µ(yi, yj)g(xi, xj) (5.3)
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where function g(xi, xj) measures the similarity of two pixels i and j in terms of appear-

ance and relative location. Note that the pairwise term is the most costly term in CRF

models with a dense field since in such model every pixel is connected to every other

pixel in the image making message passing to have quadratic complexity in the number

of pixel variables N . Following Krähenbühl and Koltun [3] and Zhang et. al. [28], we

apply a Gaussian function in the form of:

g(xi, xj) = exp

(
−
|xi − xj|

2

2σ2

)
(5.4)

Intuitively, nearby pixels with similar features are very probable to have the same label.

Therefore, if nearby similar pixels take different labels a penalty (µ) is considered which

could be a Potts model in the form of µ(xi, xj) = [xi 6= xj] (where [.] is the zero-one

indicator function).

Moreover, penalty of taking two different labels should be further reduced when the

two pixels are less similar; in (5.4), g(xi, xj) inflicts this notion. σ characterizes the extent

to which we regard the neighborhood of a pixel whithin the image. Images with patchy

and uneven objects such as ‘trees’ need to consider a larger neighborhood of pixels than

those with even solid objects. That is because looking at trees you might see patches

of sky through it. Therefore, if there are blue pixels within green pixels that do not

conform to their surrounding, they might actually belong to some other object such as

sky somewhat farther in the image. Larger values of σ consider a larger neighborhood as

valid to explore for similarities.

Furthermore, from a computational point of view, Gaussian pairwise potentials facil-

itate application of a high dimensional filtering approach for efficient inference. Utilizing

mean field approximation for inference, the permutohedral lattice [130], a highly efficient
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convolution data structure could be applied to compute an approximation of the mes-

sage passing by truncating the Gaussian kernels and making the complexity of message

passing to reduce from quadratic to linear [3].

5.2 Inference

Efficient inference is critical in development of fully-connected CRF labeling. We develop

an inference algorithm which is not only computationally efficient but also robust to the

unary initialization and over-smoothing issue. Applying the mean field approximation

[35], the inference update equations are derived for both pixel labels and scene label as

described in the following. To employ mean field approximation method, the context-

based joint posterior P (Y, c|X) is assumed to have a fully factorized approximation of

the form:
Q(Y, c) = q(c)

N∏

i=1

qi(yi) (5.5)

To derive q(c) and qi(yi), mean field approximation minimizes the KL divergence:

KL(P̃ ||Q) =
∑

c,Y

Q(Y, c) log
Q(Y, c)

P̃ (Y, c)
(5.6)

where P̃ (Y, c) is the unnormalized true distribution so that P̃ (Y, c) = P (Y, c)Z. Expand-

ing the KL divergence expression the closed form inference update equations are derived

as:

q(c) =
1

Zc

exp
(
Eallqi

[
log P̃ (Y, c)

])
(5.7)

qi(yi) =
1

Zi

exp
(
EcE−qi

[
log P̃ (Y, c)

])
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where P̃ (Y, c) is the term in equation (5.1) when not normalized by Z(X, c). Eallqj

means expected value under all distributions qi; Ec refers to expected value under the

distribution q(c) and E−qi means expectation with respect to all distributions qj excluding

the distribution for node i. Zc and Zi are normalizing factors enforcing q(c) and qi(yi)

to be probability values:

Zc =
C∑

c=1

exp
(
Eallqi

[
log P̃ (Y, c)

])

Zi =
L∑

yi=1

exp
(
EcE−qi

[
log P̃ (Y, c)

]) (5.8)

Regarding formula (5.1) and dropping conditionality on yi and yj for simplified nota-

tion, the equations in (5.7) are expanded as (appendix A derives these update equations):

q(c) =
1

Zc

exp
(
log p(c|I) +

N∑

i=1

L∑

yi=1

qi(yi)E−qi [−E(Y |c, I)]
)

qi(yi) =
1

Zi

exp
( C∑

c=1

q(c)E−qi [−E(Y |c, I)]
) (5.9)

where the constant term
∑

c q(c) logP (c|I) is removed from qi(yi) expression and:

E−qi [−E(Y |X, c)] = −αψu(yi)− βψc(yi)−
L∑

yj=1

∑

j 6=i

qj(yj)ψp(yi, yj)

Rewriting this formulation for qi(yi = l) and replacing ψp(yi, yj) from (5.3), then:

E−qi [−E(Y |X, c)] =− αψu(yi = l)− βψc(yi = l)

−
L∑

yj=1

µ(l, yj)
∑

j 6=i

g(xi, xj)qj(yj)
(5.10)
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Algorithm 1 cbDCRF Inference

• Obtain ψc(yi) from (5.14)
• Initialize q(c) with p(c|X) from (5.11)
• Initialize q(yi) with ψu(yi) from (5.12)
• while not converged do

Compute q(c) from (5.9)
while not converged do

Compute q(yi) from (5.9) and (5.10)
end while

end while

• yi = argmax
l∈L

{q(yi)}

where Q(yj) =
∑

j 6=i g(xi, xj)qj(yj) is a message passing term which is the computational

bottleneck of the inference algorithm since for each variable yi corresponding to each

pixel, it requires a sum over all other variables yj. This implies equation (5.10) has

quadratic complexity in the number of pixels in the image. To reduce the computational

complexity of message passing, we follow Krähenbühl and Koltun [3] to express the Q(yj)

term as a convolution with a Gaussian kernel and approximating the Gaussian kernel by

setting all values beyond two standard deviations to zero. Then the convolution at each

pixel is computed approximately by aggregating values from only a limited number of

neighboring variables such that message passing term Q(yj) can be roughly computed at

a linear complexity O(N).

The Gibbs energy in the argument of exponential for infering qi(yi) in (5.9) can be

viewed as an extension of a mixture of experts model over C different scene types [131].

The q(c) function works as a gating function for influence of labeling under each of the

scene types over final labeling output. Regarding the scene-based labeling, the complexity

of infering class labels of pixels is actually of order O(CN) which is still linear and could

be compensated for by using parallelisam and GPU based computing. Algorithm 1 is
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showing an overview of the inference procedure.

5.3 Model Learning

Since exact maximum-likelihood training is intractable for large undirected graphical

models, our training algorithm is based on piecewise training method [119]. We take

a modular approach to implementation of the proposed model which requires finding

scene category likelihood p(c), learning of general (ψu(yi)) and scene-based (ψc(yi)) unary

potentials, and adjustment of model parameters. Each part is described in the following

subsections. Algorithm 2 lists required implementation steps.

5.3.1 Scene classification

To do the initial scene classification, we train a multiclass SVM classifier [129] with

global feature observations Xg for each image I. For observation features, we used a

standard bag-of-words spatial pyramid with 1, 2 and 4 levels over a 1024 sparse coding

dictionary of SIFT features, colorSIFT, RGB histograms and color moment invariants

Algorithm 2 Implementation Steps

• Select train imageset D with true scene (c ∈ C = {1, . . . , C}) and object (l ∈ L =
{1, . . . , L}) labels

• Compute global feature vectors Xg for each image I ∈ D
• Train SVM classifier for {Xg} ∈ D and c ∈ C using [129]
• Train unary classifier ψpar

u (yi|x) on D using [1]
• Train unary classifier ψnpar

u (yi|x) on D using [8]
• Train scene-based unary classifier ψpar

c (yi|x) using [1]
• Train scene-based unary classifier ψnpar

c (yi|x) using [8]
• Train calibration parameters al and bl, l ∈ L by minimizing (5.15)
• To Label a new query, go to Algorithm 1

80



[6]. All the positive and negative examples in the train set of the databases are used for

training the classifier. We used a validation set of images to tune the SVM parameters,

the penalty parameter and kernel parameters. For image I, probability of being of scene

type c ∈ C = {1, . . . , C} is:

p(c) =
1

1 + exp(wcXg + bc)
(5.11)

where wc is the trained weight vector for scene c and bc is the corresponding bias vector.

5.3.2 Unary potentials

We utilize the combination of a parametric (ψpar
u ) and a non-parametric (ψnpar

u ) object

classifier as unary potential ψu(yi|x) for discriminating different classes based on obser-

vation features. That is:

ψu(yi|x) = ψpar
u (yi|x) + ψnpar

u (yi|x) (5.12)

Due to the fact that different datasets have varying characteristics in terms of object

distributions and structure, we employ the combination of a parametric [1] and a non-

parametric [8] object classifier. Distribution of objects in some imagesets are even so that

there are roughly the same number of samples from each class (although the frequency

of background classes such as ‘sky’ are inevitably slightly dominant). This characteristic

facilitates the employment of parametric classifiers such as boosting [1] and neural net-

works [2] to produce satisfactory recognition results. However, objects in larger imagesets

have a power-law distribution so that objects have imbalanced counts and there are very

few samples for some classes. Due to this class imbalance problem, parametric classifiers
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such as boosting do not produce satisfactory results; whereas non-parametric discrimina-

tive algorithms [7, 8] based on nearest-neighbor (NN) classifiers and content-based image

retrieval (CBIR) provide higher labeling accuracy.

Parametric classifier: TextonBoost

For the parametric ψpar
u (yi|x) classifier, we apply the TextonBoost model in [1] to train

ψpar
u (yi|x) over the entire training dataset. TextonBoost fuses appearance and contextual

features in a grid-structure CRF model. In [1], authors propose new texton-shape features

[132] which are capable of modeling object shape, appearance and context by capturing

the relative texton locations for certain classes. They train texton-shape features using

boosting to produce a multi-class logistic classifier. Pixel color information and a prior

on class locations in the image are added in the form of extra unary potentials to the

overal CRF model for improved performance.

Non-parametric classifier: SuperParsing

For the non-parametric ψnpar
u (yi|x) classifier, we apply the the SuperParsing method in

[8]. For each new test image, non-parametric models retrieve the most similar training

images and transfer their appropriate label information onto the label space of the query

image; this approach moderates the severe effect of biased vote of parametric methods for

frequent classes. Another advantage of non-parametric models over competent classifiers

is that parametric models are most suitable for discrimination of a fixed number of

object categories and as the database or number of object categories grows, they become

inefficient since they need to be trained anew. Tighe et. al. in [8] have proposed a

successful non-parametric appraoch which does not need training and are suitable for

large and heterogeneous datasets.
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5.3.3 Context-based unary potentials

To compute the scene-based unary classifier, ψc(yi|x) in (5.2), we also utilize the com-

bination of the parametric TextonBoost model (ψpar
c ) and non-parametric SuperParsing

model (ψnpar
c ) to discriminate different classes under each scene type given observation

features x:

p(yi|x, c) = ψpar
c (yi|x) + ψnpar

c (yi|x) (5.13)

For each c ∈ C = {1, . . . , C}, ψpar
c is trained using all training images with scene label

c. That is, TextonBoost is separately run |C| times to train each ψpar
c (yi|x) under each

scene type. Moreover, non-parametric scene-based unary potentials ψnpar
c (yi|c) are ob-

tained by performing the image retrieval phase of SuperParsing over images with scene

label c only. The scene-based unary potentials are then determined using the sigmoid

function as:

ψc(yi|x, c) = − log(
1

1 + exp
(
− (al × p(yi|x, c) + bl)

)) (5.14)

The coefficient al and bias parameters bl are defined to moderate the class imbalance

problem. Class frequencies usually follow a power-law distribution particularly in large

databases. Positive samples of classes ‘building’ and ‘tree’ are widely available across

different kinds of images; but samples for ‘boats’, ‘street lights’ and ‘awnings’ are rarely

photographed even in large heterogeneous databases. Apart from class imbalance, faulty

segmentation also intensifies the misclassification problem between frequent classes and

rare objects because many times the rare objects are of smaller size too. This poses a

challenge to the recognition system by biasing the output probabilities with more frequent

classes. In equation (5.14), al and bl work as a calibration parameter to compensate for

this class imbalance. In the following we explain how to learn these parameters.
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Train calibration parameters

To train the calibration parameters al and bl, we apply the method by [133]. Coordinate

descent is applied to minimize the following cost function over the calibration parameters

defined as pixel labeling accuracy averaged over all classes:

Γ (y, t) = 1−
1

L

L∑

l=1

1

nl

∑

i;ti=l

[ti = yi] (5.15)

where the second summation is over all pixels in all training images. yi is the output

pixel label; where i indexes over all pixel in the imageset. nl is the number of pixels with

ground truth label l. L is the number of classes. [.] is 1 if the internal condition in true

and 0 otherwise. The inverse class counting factor 1
nl

is considered to deal with the class

imbalance problem. The reason for using coordinate descent instead of gradient descent

is the fact that the cost function in (5.15) is not differentiable due to maximization in

yi. Coordinate descent iteratively applies line search to optimize the loss over a single

parameter at a time, keeping all others fixed. This process cycles through all parameters

until convergence [133].

5.4 Performance Analysis

In this section, we study the performance of proposed context-based dense CRF and

compare it with some of the state-of-the-art labeling algorithms. Both per-pixel and

per-class classification rates have been reported as quantitative measures for fairness in

evaluation of recognition rates of objects from ‘thing’ and ‘stuff’ classes. Consideration

of both of these measures is particularly critical for large datasets with imbalanced class

distributions. Per-pixel rate is obtained by deviding the number of correctly classified
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pixels by the total number of labeled test pixels; it gives the proportion of the correctly

labeled. Therefore, it is majorly biased with recognition rate of common and large

background objects in ‘stuff’ classes. On the other hand, per-class rate is obtained by

averaging the recall rates ( TP
TP+FN

) of individual classes and it gives a better measure of

performance over ‘thing’ objects.

The proposed model is tested on MSRC imageset and a subset of SIFT Flow dataset.

In this work, we investigated that for MSRC dataset, the best results could be obtained

by ψnpar
u (yi|x) = 0, that is, ψu(yi|x) = ψpar

u (yi|x). This is due to the fact that MSRC has

a roughly even object distribution. However, there are only limited samples (20 to 40

images) from all classes in MSRC imageset which makes application of non-parametric

classifiers such as Nearest Neighbors (NN) incompetent. SIFT Flow objects have imbal-

anced counts such that there are very few samples for classes such as boat, bus, or bird.

Therefore, parametric classifiers perform poorly for these classes. Therefore, for SIFT

Flow imageset, we set ψpar
u (yi|x) = 0, meaning ψu(yi|x) = ψnpar

u (yi|x).

5.4.1 MSRC imageset

We run the first experiment on the frequently-investigated MSRC-21 dataset [1] which has

591 images manually labeled in 21 different classes of objects from both ‘thing’ and ‘stuff’

categories. For scene labels, we used the annotations provided by [6] where each image

is given the label of the salient foreground object as scene type. There are 21 different

scene categories obtained. To train our model, we used the train/validation/test split by

[3].

Table 5.1 reports the quantitative performance of the proposed system in comparison

with other models in the literature. We compare against grid-structure CRF [1] (used
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Table 5.1: Compariative quantitative analysis of performance of proposed context-based
dense CRF on MSRC imageset.

numbers in %
Harmony
potential
[107]

Unary
classifier

[1]

DCRF
µ: Potts

[3]

CB DCRF
µ: Potts
(ours)

Per Pixel Recall 77 84 81.6 83.26
Per Class Recall 75 76.6 70.8 75.41

building 60 71.9 67 69.58
grass 78 98.1 98.3 97.59
tree 77 89.7 84.6 82.51
cow 91 84.3 73.2 74.99
sheep 68 80.5 68.6 82.21
sky 88 93.3 94.6 92.87
plane 87 82.4 60.3 65.18
water 76 67.5 71.9 75.77
face 73 88.1 76 89.13
car 77 84.2 82.5 80.85
bike 93 91.1 81.7 91.35
flower 97 90.7 95.2 97.57
sign 73 70 79.4 69.84
bird 57 47.6 38.4 50.73
book 95 94.1 95.5 96.93
chair 81 59.3 47.7 83.54
road 76 88.8 87.6 83.62
cat 81 75.7 62.4 68.21
dog 46 46 42.1 46.30
body 56 79.9 67.3 75.18
boat 46 25.1 13.7 9.60

as unary classifier), context-based Harmony potential [107] and conventional dense CRF

[3]. Our algorithm as well as [3] use the classifier by [1] for CRF unary potentials. [107]

applys similar scene level information as ours to their CRF model. The proposed model

outperforms the two other methods in terms of per-pixel and per-class accuracy conveying

it can well detect objects from the ‘thing’ classes as well as ‘stuff’ classes.

Our context-based dense CRF model (cbDCRF) is built on the dense CRF (DCRF)

work of [3]. The conventional dense CRF model in [3] with the Potts compatibility

function severely damages recognition rate of small ‘thing’ objects (such as ‘bird’, ‘cat’,
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‘dog’ and ‘chair’) which are usually objects of interest in images. Krähenbühl and Koltun

discuss reasonably in [3] that a Potts model for the compatibility function µ in (5.3) has

the shortcoming to penalize an incompatible label pair like ‘sky’ and ‘cat’ to the same

extent as a certainly compatible label pair ‘sky’ and ‘bird’; and they instead train a

general symmetric compatibility function using L-BFGS to maximize the log-likelihood

of CRF model for a validation set of images. However, learning the compatibility function

requires computation of the gradient of the dense CRF which is very computationally

expensive and becomes intractable with growth of the number of classes. The proposed

context-based model with an undemanding Potts compatibility function alleviates the

severe smoothing effect of DCRF model and outperforms dense CRF.

It is noteable that, although these dense models seem to be behind the unary classifier

on the MSRC dataset, boundaries of objects and things are clearer, finer and more precise

in dense models than grid-structure unary in [1]. Note that there are many objects of

‘thing’ class in this dataset which are vulnerable to drowning in the large pool of pixels

from the background class. Furthermore, dense models deliver highly better segmentation

results as stated above. To illustrate this fact, we use ‘trimap’ measure [4] to compute

segmentation errors of each method. Trimap measure of segmentation error counts the

number of misclassified pixels within a narrow band (trimap) surrounding actual object

boundaries which is obtained from accurate ground truth object boundaries [3]. Figure

5.5-(a) showes the visualization of trimap method and resulting error percent computed

by it using trimaps of width 1 to 20 pixels in Fig. 5.5-(b). As illustrated, proposed

cbDCRF model generates the least segmentation error. To obtain this figure, the test

was run on the accurate ground truth images from Krähenbühl in [3].

α and β adjust the degree to which contextual scene-based potentials are employed.

Gradient-based optimization or grid search on a holdout validation set can be applied to
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Figure 5.5: (a) Visualization of trimaps of different width (b) Percent of misclassified
pixels within trimaps of different width

obtain best values for α and β. In Fig. 5.6 graph, it is shown that by changing the ratio

of α and β, the optimum performance is obtained when α and β are equal. This is due

to the fact that in the proposed method, we are optimizing the label of the scene and

the object labels reciprocally. Therefore, equal contributions of the general and context-

based unary potentials results in the best performance. Note that the proposed model

is able to improve scene classication performance up to 85.95% which to the best of our

knowledge is the highest score reported on MSRC so far.

Figure 5.7 showes the effect of increasing/reducing the number of gating functions. To
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classification rate.

obtain this figure, for each image, all possible scene types are arranged in the descending

order of value of p(c); then, |C| = 1 implies applying only the scene type with maximum

value of p(c). |C| = 2 implies the first and second scene type with maximum ranking

of p(c). As illustrated in Fig. 5.7, gating function of the scene type with maximum

p(c) gives the best results in terms of per-pixel accuracy and per-class accuracy. In

fact, adding more number of gating functions loosens the advantage of applying prior

knowledge about the overal scene type of the image and this reduces the accuracy to a

small extent. Figure 5.7 is obtained by fixing the parameters α and β to one. Figure 5.6 is

obtained by fixing the number of scene-based gating functions (q(c)) of qi(yi) formulation

in (5.9) to only one.

Figure 5.8 shows some examples of results obtained by porposed cbDCRF model.

In this figure, first and last column from left are the original image and ground truth

labeling. Second column from left is the output of the original unary classifier without
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Figure 5.7: The strongest gating function q(c) gives the maximum per-pixel accuracy
and per-class accuracy.

the help of CRF. Third column from left is the result of conventional dense CRF model as

proposed by Krähenbühl and Koltun [3]; and forth column is the output by the proposed

context-based (scene-based) dense CRF (cbDCRF) model. First and forth figures from

the top are illustrating a bench which are initially identified partially as a chair and partly

a cow due to brown color surrounded with green grass color and texture. The DCRF

model refines the chair boundaries delicately; however, it does not correct the pixels

misclassified as cow. The proposed cbDCRF model modifies the misclassified pixels and

labels all the area of the benches correctly. This is due to the fact that the integrated

scene classifier identifies the whole structure of the image to belong to ‘chair’ scene type

(context). In the third row, the DCRF has refined the boundaries of the ‘bird’ area as

‘dog’; but our cbDCRF model refines the the boundaries of the ‘bird’ area correctly as

‘bird’. Similarly for other illustrated examples in Fig. 5.8, accessing prior information in

the form of context of the image, the proposed model corrects mis-labeling of the unary
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Figure 5.8: Examples from MSRC imageset: Accessing prior information in the form of
scene type of the image, the proposed cbDCRF model corrects mis-labeling of the unary
classifier; whereas the conventional DCRF keeps refining the wrong labels.

classifier; whereas the conventional DCRF keeps refining the wrong labels.
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5.4.2 SIFT Flow database

We run experiments on a subset of the SIFT Flow database from [7] which contains

1692 fully annotated images with 33 different classes of objects. The imageset is ran-

domly split into 1556 images for training and 136 test images. Images are organized in 5

scene categories including ‘Coast’, ‘Forest’, ‘Mountain’, ‘Open country’ and ‘Tall build-

ing’. Distribution of objects varies significantly under different scene types. We believe

that prior knowledge about scene type can improve the performance of dense CRF over

labeling in a diversive imageset as SIFT Flow.

For SIFT Flow database, we compared different set of global features (Xg) to train the

SVM for scene classification. We split the train set to 1333 images for SVM training and

223 validation images for kernel selection and parameter adjustment. Gist features (512

dimensional) obtained the highest scene classification rate of 90% with a linear kernel.

Table 5.2: Quantitative analysis of performance of two implementations of proposed
context-based dense CRF (cbDCRF with/without rare class calibration) against original
unary classifier, Grid CRF and conventional dense CRF (DCRF) on SIFT Flow imageset.

numbers in %
Unary

Classifier
([8])

DCRF
µ : Potts

[3]

cbDCRF
no calibration

(ours)

cbDCRF
calibration

(ours)

Per Pixel Recall (all data) 73.00 75.45 79.39 74.61
Mean Top 10 Class (>90%) 50.61 52.71 60.84 58.02
Per Class Recall (all data) 25.24 22.92 26.71 27.09

sky 90.55 86.31 92.50 81.28
building 85.50 90.50 87.15 84.92
tree 86.07 82.90 82.34 74.90
mountain 64.76 79.38 82.35 82.37
sea 70.37 69.98 88.68 88.70
field 42.62 69.90 52.35 44.90
sand 12.55 14.39 31.19 31.19
river 10.24 9.87 41.98 42.00
plant 5.35 3.59 7.33 7.39
grass 38.11 20.34 42.55 42.56
rock 6.2721 0.1063 6.0759 42.8395
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The classisication rate was calculated by deviding the number of correctly classified

images by the total number of test images (136 for SIFT Flow database). We use the

p(c|Xg) in (5.11) which the LIBSVM library [129] provides for multi-class SVM.

In table 5.2, we compare performance of two implementations of the proposed context-

based dense CRF (cbDCRF) with the original unary classifier in [8] and fully-connected

dense CRF (DCRF) in [3]. Proposed model without rare class calibration outperforms

the baseline unary classifier and DCRF, both in terms of per-pixel and per-class accuracy.

The full proposed cbDCRF model with rare class calibration outperforms the mean per-

class detection rate of both the baseline unary classifier and DCRF model in terms of

per-class accuracy and in top 10 most frequent classes which constitute more than 90%

of all test data. The listed objects in table 5.2 are sorted in descending order of number

of pixels in the test set. Figure 5.9 shows some examples of quality of results obtained

by porposed cbDCRF model on SIFT Flow imageset.

Since an analysis of the errors of the proposed model helps to identify the shortcomings

of our method and can suggest directions for future research, examples of erronous cases

for MSRC database and SIFT Flow database are presented in Fig. 5.10. The overal scene

type of these images has failed to be identified correctly. The cat has mistakenly been

identified as bird; the dog as human face and body; the boat as bike; and lastly, open

country area and vegetation has wrongly been identified as mountain. That is, SVM

has identified the image as a mountain scene but the image is an open country scenery.

Therefore, both conventional DCRF and the proposed model failed to refine the results

for correct labels. This issue can be moderated by integrating object detectors [92] with

the proposed model.
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Figure 5.9: Examples from SIFT Flow imageset: Accessing prior information in the form

of scene type of the image, the proposed cbDCRF model corrects mis-labeling of the

unary classifier; whereas the conventional DCRF keeps refining the wrong labels.
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Figure 5.10: The cat has mistakenly been identified as bird; the dog as human face and

body; the boat as bike; and lastly, open country area and vegetation has wrongly been

identified as mountain. Therefore, both conventional DCRF and the proposed model

failed to refine the results for correct labels.

5.5 Comparison to GGM-based CRF

In chapter 4, we introduced a CRF model based on the generalized Gaussian mixture

distribution. We compare performance of the context-based dense CRF model proposed

in current chapter with performance of the GGM-based CRF over the Corel imageset.

Table 5.3 summarizes the results of our experimentation. The first two columns of ta-

ble 5.3 compare the performance of the GGM-based CRF with the performance of the

parametric TextonBoost classifier in [1] which was applied in section 5.3.2. That is, we
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Table 5.3: Comparison of performance of the cbDCRF model with GGM-based CRF
over the Corel imageset.

numbers in %
TextonBoost
Classifier

[1]

GGM CRF
(Chapter 4)

cbDCRF
TextonBoost

Unary

cbDCRF
GGM CRF

Unary

Per Pixel Recall 69.16 68.02 74.55 71.24
Per Class Recall 63.79 69.54 66.91 69.82

Ground 76.38 71.87 73.23 80.95
Vegetation 62.86 59.58 73.14 60.09
Water 76.85 73.68 95.94 85.95
Snow 68.10 68.35 90.69 80.21
Hippo 68.23 80.96 62.78 66.27
Bear 56.03 47.06 41.51 34.73
Sky 38.06 85.27 31.06 80.58

first compare the performance of unary classifiers before enforcing scene-based analysis

and context-based constraints. TextonBoost classifier is ahead of proposed GGM-based

CRF model by about 1% in terms of per-pixel accuracy; however, proposed GGM-based

CRF model is ahead of TextonBoost classifier in terms of per-class accuracy by about

5%. That is, proposed GGM-based CRF model has better performance across different

classes. Furthermore, proposed context-based dense CRF model introduced in current

chapter enhances the performance of both TextonBoost classifier and proposed GGM-

based classifier introduced in chapter 4.

5.6 Discussion

This chapter proposes a method for alleviating the severe smoothin effect of pixel-level

dense CRF (DCRF) model by employing the image level scene type contextual infor-

mation. The proposed context-based dense CRF model (cbDCRF) also makes DCRF

robust to misclassifications initially imposed by the integrated unary classifier. Global
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scene type of the image is utilized to eliminate ambiguity due to between-class visual sim-

ilarity by strengthening probability of objects coherent with the global scene. That is,

scene-object co-occurrence restrictions are applied to improve object-object cooccurrence

prediction. Joint probability of labeling configuration and image scene type is factorized

using the mean field approximation method to obtain prediction update equations for

labeling individual image pixels and predicting overall scene type of the image. We

derive the inference algorithm for the proposed context-based dense CRF model which

enhances both scene and object prediction. The proposed model is able to improve scene

classification performance as well as accuracy of semantic segmentation.
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Chapter 6

Conclusion

6.1 Summary

This thesis studies development of robust image labeling systems for the purpose of

semantic segmentation of images. There are two primary problems ragarding successful

image labeling. The first one is reliable representation of visual features and finding their

proper mapping onto the possible label space. The second problem of great importance

in image labeling is proper usage and formulation of contextual information to leverage

labeling accuracy using algorithms which have low computaional cost.

Conditional random fields (CRF) from the class of probabilistic graphical models

provide a good framework for studying both of these problems and have proven to deliver

prominent results on various benchmark imagesets. Ragarding each of the above labeling

problems, this thesis proposes a solution in the CRF framework whose performances

competes with or outperforms state of the art literature.

The first approach proposes novel feature functions based on generalized Gaussian

mixture (GGM) distribution to be utilized as CRF potential functions. The shape pa-
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rameter in GGM distribution proves its efficacy to deliver more accurate data fitting and

therefore, more accurate labeling of data, particularly in smooth even image regions. The

proposed feature functions deliver more consistent semantic segmentation. In compar-

ison with their Laplacian and Gaussian conterparts, the proposed GGM-based feature

functions generated higher performmance in terms of both recall and precision criteria.

That is, the new approach obtains higher accuracy with less type-I and type-II errors.

Performance of the proposed feature functions was also compared with support vector

machines (SVM) and powerful deep neural networks. The results showed the higher

performance of the new model. We deduct that in spite of great capabilities of DNNs, it

is behind mixture modeling in performance where availability of training data is limited

and where precise localization of labels is required.

Secondly, this thesis proposes a new context-based dense CRF model (cbDCRF) which

takes advantage of scene type information of the image to make dense CRF model robust

to initialization condition of the unary potentials. The new model also proves to generate

more accurate labeling of small foreground objects in the large drowning pool of labels

of objects of background classes.

In development of the new cbDCRF model, we propose to apply both parametric and

non-parametric discriminative methods for the unary potentials. Parametric models pro-

duce good results when applied to controlled and structured imagesets with roughly same

number of samples of all classes; however, non-parametric models such as Superparsing

[8] deliver better results when applied to large heterogeneous imagesets.

Since our cbDCRF model has a pixel-wise fully-connected graph structure, an infer-

ence algorithm based on mean field approximation is applied to lower the computational

cost of high order message passing. Moreover, the calibration parameters in the proposed

non-parametric context-based unary potentials compensate for the class imbalance prob-
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lem in large imagesets.

6.2 Future Work

Based on the current study, the following problems are open for investigation and further

progress of robust labeling systems.

- Applying feature functions of objectness [134] and saliency [135] measures as an-

other unary cue for boosting rare class and foreground object recognition.

- Scene-based contextual information reduces the space of possible labels to a few

type of objects under a typical scene. This reduced label set could be used as image

tags for refining the retrieval set to obtain more relevant image matchings. Also,

the available reduced tags facilitate the application of tag-based models such as

[136] to improve semantic segmentation.

- The proposed context-based dense CRF model assumes that the benchmark im-

ageset is not only labeled at the object level, but also at the scene level. It is useful

to investigate the performance of the proposed model if scene level information is

not available. The proposed model may or may not require a clustering step based

on the goodness of the initial unary labeling. In case of clustering, the proposed

model could be built in combination with [112, 69].

- Combining object detectors with region labeling also can improve labeling accuracy

particularly for rare objects and objects of ‘thing’ classes. In this approach, a

likelihood map is obtained for each object class by projecting the object detector

mask at the location that a detection has been fired. Then, class likelihoods from
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the region-based labeling for each pixel/patch is combined (added/concatenated)

with the detector-based labeling maps [92].

Generally, computer vision systems aim to determine the full 3 dimensional structure

of the scene and inter-relations of the objects and their components in it to create artificial

intelligence; to provide the means for machines to understand sceneries. I am excited to

continue to explore these possibilities in my research.
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Appendix A

Variational Inference: Mean Field

Approximation

The basic idea of variational inference is to approximate the true but intractable dis-

tribution P (Y ) with a simple distribution Q(Y ) which is from a family of tractable

distributions such as multivariate Gaussian or factored distribution. The assumption

is that Q(Y ) has some free parameters that could be optimized to make it as close as

possible to P (Y ). To do so, one cost function to minimize is the KL divergence defined

as [35]:

KL(Q||P̃ ) =
∑

Y

Q(Y ) log
Q(Y )

P̃ (Y )
(A.1)

where P̃ (Y ) is the unnormalized true distribution so that P̃ (Y ) = P (Y )Z. Alternatively,

we can try to maximize the following quantity which is a lower bound on the log-likelihood

of the data (D). That is, variational algorithms reduce the inference problem to an

optimization problem. By minimizing the KL(Q||P̃ ), we are actually maximizing a lower

bound on the log-likelihood of the data since KL(Q||P ) > 0.
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J(Q) = −KL(Q||P ) + logZ 6 logZ = logP (D) (A.2)

Mean field approximation is one of the most popular forms of variational inference.

Regarding cbDCRF model (P(Y,c)), in the mean field approach, the approximation

Q(Y, c) is assumed to have a fully factorized form: Q(Y, c) = q(c)
∏N

i=1 q(yi); and the

goal is to minimize KL(Q||P ).

J(qc) =
∑

c

∑

Y

Q(Y, c) log
P̃ (Y, c)

Q(Y, c)

=
∑

c

∑

Y

q(c)
∏

i

q(yi)
[
log P̃ (Y, c)−

∑

k

log qk(yk)− log q(c)
]

=
∑

c

q(c)
∑

Y

∏

i

q(yi)

︸ ︷︷ ︸
Eallqi

log P̃ (Y, c)

−
∑

c

q(c)
∑

Y

∏

i

q(yi)

︸ ︷︷ ︸
1

log q(c)

−
∑

c

q(c)

︸ ︷︷ ︸
1

∑

Y

∏

i

q(yi)
∑

k

log qk(yk)

︸ ︷︷ ︸
const

=
∑

c

q(c)Eallqi

[
log P̃ (Y, c)

]
−

∑

c

q(c) log q(c) + const

= −KL

(
q(c)

∣∣∣
∣∣∣Eallqi

[
log P̃ (Y, c)

])

(A.3)

Assume log hc(c) = Eallqi

[
log P̃ (Y, c)

]
; then, we maximize J(qc) by minimizing this KL,

which we can do by setting qc = hc, as follows:

q(c) =
1

Zc

exp
(
Eallqi

[
log P̃ (Y, c)

])
(A.4)

Similarly:
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J(qj) =
∑

c

∑

Y

Q(Y, c) log
P̃ (Y, c)

Q(Y, c)

=
∑

c

∑

Y

q(c)
∏

i

q(yi)
[
log P̃ (Y, c)−

∑

k

log qk(yk)− log q(c)
]

=
∑

c

q(c)
∑

yj

∑

Y−j

qj(yj)
∏

i 6=j

qi(yi)
[
log P̃ (Y, c)−

∑

k

log qk(yk)− log q(c)
]

=
∑

c

q(c)
∑

yj

qj(yj)
∑

Y−j

∏

i 6=j

qi(yi) log P̃ (Y, c)

−
∑

c

q(c)
∑

yj

qj(yj)
∑

Y−j

∏

i 6=j

qi(yi)
[∏

k 6=j

log qk(yk) + log qj(yj) + log q(c)
]

=
∑

yj

qj(yj)
∑

c

q(c)

︸ ︷︷ ︸
Ec

∑

Y−j

∏

i 6=j

qi(yi)

︸ ︷︷ ︸
E−qj

log P̃ (Y, c)

−
∑

yj

qj(yj)
∑

c

q(c)
∑

Y−j

∏

i 6=j

qi(yi)

︸ ︷︷ ︸
1

log qj(yj)

−
∑

yj

qj(yj)
∑

c

q(c)

︸ ︷︷ ︸
1

∑

X−j

∏

i 6=j

qi(yi)
∑

k 6=j

log qk(yk)

︸ ︷︷ ︸
const

−
∑

yj

qj(yj)
∑

Y−j

∏

i 6=j

qi(yi)

︸ ︷︷ ︸
1

∑

c

q(c) log q(c)

︸ ︷︷ ︸
const

=
∑

yj

qj(yj)EcE−qj

[
log P̃ (Y, c)

]
−

∑

yj

qj(yj) log qj(yj) + const

= −KL

(
qj

∣∣∣
∣∣∣EcE−qj

[
log P̃ (Y, c)

])

(A.5)

Assume log hj(yj) = EcE−qj

[
log P̃ (Y, c)

]
; then, we maximize J(qj) by minimizing this

KL, which we can do by setting qj = hj, as follows:

qj(yj) =
1

Zj

exp
(
EcE−qj

[
log P̃ (Y, c)

])
(A.6)
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