PERFORMANCE EVALUATION OF A BIG DATA APPLICATION ON APACHE SPARK

by

Jeanne Alcantara

Bachelor of Engineering in Computer Engineering, Department of Electrical and Computer Engineering.

Ryerson University, Toronto, Canada, 2017

A project

presented to Ryerson University

in partial fulfillment of the requirements for the degree of
Master of Engineering

in the program of Electrical and Computer Engineering.

Toronto, Ontario, Canada, 2019
© Jeanne Alcantara, 2019

AUTHOR’S DECLARATION FOR ELECTRONIC SUBMISSION OF AN MRP

I hereby declare that I am the sole author of this MRP. This is a true copy of the MRP, including

any required final revisions.

I authorize Ryerson University to lend this MRP to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this MRP by photocopying or by other

means, in total or in part, at the request of other institutions or individuals for the purpose of

scholarly research.

I understand that my MRP may be made electronically available to the public.

ABSTRACT

Jeanne Alcantara
Master of Engineering
Electrical and Computer Engineering

Ryerson University, Toronto, Canada, 2019

Apache Spark enables a big data application—one that takes massive data as input and may
produce massive data along its execution—to run in parallel on multiple nodes. Hence, for a big
data application, performance is a vital issue. This project analyzes a WordCount application
using Apache Spark, where the impact on the execution time and average utilization is assessed.
To facilitate this assessment, the number of executor cores and the size of executor memory are
varied across different sizes of data that the application has to process, and the different number
of nodes in the cluster that the application runs on. It is concluded that different pairs (data size,
number of nodes in the cluster) require different number of executor cores and different size of

executor memory to obtain optimum results for execution time and average node utilization.

Acknowledgements

The author would like to greatly thank her supervisor, mentor and professor, Dr. Olivia
Das, for her great enthusiasm, insight, guidance, motivation and most importantly, her inspiring
the author to pursue a career related to the theme of the project all of which were key factors in
bringing this project to the accomplishment stage. The overall experience has been a great one
and the author has gained a lot of unforgettable knowledge. The author will remain grateful and
will remember this experience going forward.

The author would also like to thank her fellow collaborator on the project, Hina Tariq, for
whose help, guidance and great insight was contributive to bringing this project to fruition.

Finally, the author expresses deep thanks and gratitude to her family and friends for all
their unwavering support and unshakeable faith in her throughout the course of the degree. It will

never be forgotten.

Table of Contents

List 0f Tables....couiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiieiatitciatiateesscnnsaneenes viii
9 0 b ¢
List Of APPeNdiCes...c.ciiuiiiniiiiiiiiiniiiiiiiintiiiiiiieeiiieittmeeisestosssssestaressosssssssssnsssssssns xii
I 0 5 N0 1) 114 1 1L xiii
1 INErodUuCtion....ccvieeiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiettaiiietetettsttatenssmiesscsnscnssnsensenasa 1
0 LY (05 15T) o P e 2
|2 5 (010) (5 1 B R 110 01 Rt 3
1.3 O VRt etuettnrernnremsrssnsssnsssessssssssssssssssssssssssssrmasssnssssssssnssssssssnssssasssnssssssss 3
1.4 TechnOlOZIes USE . uurereerernrernrsienrssessssassssssmmessnssssses 4
1.5 Project OTganizZatioN..eeeeesseesesereessessoessssssssesssssssarssssssssssssssssssssssssssssssssnsssnssssss 4
2 Related WOTKS...oouiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiietetetetttteetiiieasistcnassssnenes 6
7200 5 Ted €0 (011331 8
20 B 276 10 T o J 8
2.1.1.1 Advantages of HadOOP..eeeueeeeureieeterarennrisrnresssssssessssscsssssnssnmasosnsssnse 9
2.1.1.2 Disadvantages of HadOOP.eeeteeeereeneerrmssnereenerammersmeecsssssssssssssssssessnses 10
2.1.1.3 Architecture of HadOOP.ueeerereerereiniemmereenrumnecsssisesssasossssssnsonmascsnses 10

] V4 s 12

P2 B WA A2 V1t TdG o) N o 13

2.1.2.2 Disadvantages of Spark...ceeeeeeeeiiieiimiiiiiiieiiieiiiieiiiieiieieenrcnercencen 13

2.1.2.3 Architecture of Spark..ceeeeeeeieiieiiiiiieiniiimeeiieeieeieiriieeteesscimmecsnscsnnes 14

0 G T 12 1 15
2.1.3.1 Advantages of Gangli@...ceeeeeeereiniiiieriinernmmeieinresresnscsessosnscsmsncsnscnns 15

2.1.3.2 Challenges of Ganglid..ceeeeeeriiniiiiieiinrennreiuimnnercisseenrcsnscsoseesnssonnss 16

2.1.3.3 Architecture of Ganglia...ceeeeeeeeeieerimmereenreinersisrsessesssssnsssssonmascsnsen 16

2.1.4 AmMAazon WED SeIVICE..eiiuiiuiitiieiiiiiiniiieiiniiieiieiineiietietinecmensssscenscssssnenne 18
2.1.5 Spark Web Ul ..uiiiuuiiieiiiniiiiiiiieiiiinieineiiietosnsssssssmssssssssssssssssssssssnsssnnss 19

2.2 Chapter SUMIMATY .euueeeeseesessenssesesscsssssssosses 19
3 Experimental setup and Results.........ccoviiuiimiiiiiiiiiiiiiiiiiniiiiiiieiiieieeicinrcsssonns 20
3.1 Default CONfigUIAtIONS..eeeteeerernetscmesrssssnsssssssssssessssssssssssrmssssnssssssssssssssessnsss 20
3.2 Configuration VariatiON...seeeeeseeseessserssssessssssssssssssssssssssssssssssrssssssssssssssnsssssssnes 21
3.3 ClUSLET SEUUP e teuseeesessensossrssssssssssssossssssssssssssrmssssssssssssssssssssssssssssssssnsssnssssses 22
3.4 WordCount algorithm in pythOn..ceeeeeeeeiiniiiiiiiiieiiieiiieiiseieinteseresssssnsssssosnscsnes 23
3.5 RESUIS ttttiiiiiiiiiiiiiiiiiiiiiiiiittittiieiittintttetetieetaecnsctsisscssssssssnsenssnsnsnses 23

3.5.1 Tables and sample graphs of the execution times and average utilization for different

CONTTZUIAtIONS v teeuterneresnessssosnressssssssosssssssssssssssssssnsssssssssssssssssssssssssnssssssssnasssss 24
3.5.2 Summarization of the results for the 3 nodes configuration...ceeeeeeeeeerennerecneeennnes 31
RIRTRN B 25 (10 11 10) o) (N 31

3.5.2.2 EX@CULOT MEINOTY 1t tuueteseesesssssasossnse 45

Vi

3.5.3 Summarization of the results and Spark Web UI results for the 3 nodes

CONTTZUIATION . ¢ etuerenreeinrernetsenresneesstossscsstosssssessossssssssossssssssssnssssssssnsosnssssnsossses 46
3.5.3.1 EXCCULOT COTES.uttuarenreierinreserurnrinccessecenessscsssesssenscsssssccrscsnsenscnnces 47

3.5.3.2 EXECULOT MEIMOTY 1t tuuurerneeenssesnssaresssssossssssssssssssssssssssssessosssssssssssss 62

3.5.4 Summarization of the results for the 7 nodes configuration......ceeeeeeereiusesenecinnnes 65
3.5.4.1 EXCCULOT COTES.utruarenreerinremeecrariaccessscssecssssssesssesscsssenscsssenscsssanees 65

3.5.4.2 EXECULOT MEIMOTY 1 ttuuutennreeessssmerssssssssossssssssossssrmesssrsssssssssnsssssssssse 66

3.5.5 Summary of the Spark Web Ul results for the 7 nodes configuration.....c.ceceveeeeeen67

3.5.5.] E X CULOT COTESaurrrrreereeeennnorteseesssesscsssssssessssssasasssssssosssnsnssssssosssssse 67

3.5.5.2 EXECULOT MEIMOTY 1t tuuurenessesscsnssassssssssssssssnssssssssssssssssssssssnsssssssssss 71

3.6 Chapter SUMIMATY ceuuteeueeeestesssesnssorssssssssssssssssssssssssssssssssssssssasssssssssssssssssssnss 74
4 D S CUS S OMS .ttt eeeuneieeeereeereneeeseesesessssessossssssssssossessnssssssssssssnssssssssesssssssssssossssnnns 76
5 Conclusions aNd FULUFe WOTK.....ceeeeeeeeiirieeeereeeseereesssesssecscssssssssssssssssesssssossnssses 78
5.1 FUIUIE WOTK . eetttuuurrreeeeeaeeseseeeeesessssssessssssssssssosssssssssesssssssssssssssssssesssssssasessne 80
Appendix A Python WordCount Algorithm.........c.ccceeiiiiiiiniiiiiiiiiiiiiiiiiiiiiiiinrnennnes 83
L5 10) T o0 21 o) 117 85

Vii

List of Tables

Table 1 Number of n0des/file-S1Z€ PAITS..eeieeeeerieearernrremresistersresnsssessssnsssscsesssssssonnses 2
Table 2 Default cCOnfiguration...ceeveeeeeeeeiirereieriieeiiinriiemiesnrssesssensssssosssssessosssesnsscnss 20
Table 3 CoOnfigUIatiONS..eeeseeeeeteeeseeesresnessestossssrresssssssssssssssssssssssssrmasssssssssssssssssnssns 21
Table 4 Executor core configuration reSUltS.eueeeeeseesreimereeeeesesresnessessssessossscsssssnsssnsesnns 24
Table 5 Executor memory configuration reSUItS.ceeeeeeeeeeeerereessesrernesseesoenssssssenscrssarnssans 28
Table 6 3/512MB configuration duration details for varying eXecutor COTeS....eeereeneeesseenssns 59
Table 7 3/1GB configuration duration details for varying eXeCutor COT€S...eeereesenreenessnsonnces 60
Table 8 3/2GB configuration duration details for varying eXeCutor COTeS...ceueeseesseensesnasennses 61
Table 9 3/512MB configuration duration details for varying executor memorieS...ceeeeeesseensss 62
Table 10 3/1GB configuration duration details for varying eXecutor memorieS..eueeeeeseessennses 63

viii

Table 11 3/2GB configuration duration details for varying eXecutor memori€S..e.eeeeeeeeessennsss 64

Table 12 7/512MB configuration duration details for varying eXecutor COTeS..ceeerenrernerennsen 68
Table 13 7/1GB configuration duration details for varying eXecutor COr€S.ceuereeareresreenscnenns 69
Table 14 7/2GB configuration duration details for varying eXecutor COreS...ueeeeesraressensennenas 70
Table 15 7/512MB configuration duration details for varying executor memorieS..coeeeeseeenss.. 71
Table 16 7/1GB configuration duration details for varying eXecutor memori€S.ce.eeeesseessceneess 72
Table 17 7/2GB configuration duration details for varying executor memori€S..o.eeeeeseessenesns 73

List of Figures

Figure 1 HadoOp architeCtUIC..eeeeeeieiieiiiieineeieiiiiieiieiineueerietimmmeciecciscsacenecnmienscnssenes 11
Figure 2 Spark architeCture..ceeeeieeieeiiiieeieiieiiieiiniiiieieeierimieccieiieeeieciecenecmenscsacenes 14
Figure 3 Ganglia architeCtUrC..eeeeeeieiieiiiieiieiieiiieiieiiniieeieiieiieeeimieceeciscsscanecscscnns 17

Figure 4 Number of executor cores-Execution times graph for the 3 nodes configuration.........25

Figure 5 Number of executor cores-Average utilization graph for the 3 nodes configuration.....25

Figure 6 Number of executor cores-Execution times graph for the 7 nodes configuration.........26

Figure 7 Number of executor cores-Average utilization graph for the 7 nodes configuration.....26

Figure 8 Executor memory-Execution times graph for the 3 nodes configuration........ceeeeeennes 28
Figure 9 Executor memory-Average utilization graph for the 3 nodes configuration............... 29
Figure 10 Executor memory-Execution times graph for the 7 nodes configuration.......ceeeeeeaes 29

Figure 11 Executor memory-Average utilization graph for the 7 nodes configuration............. 30

Figure 12 Ganglia graphs for 1 executor core configuration for 3/512MB......c.cccvirvueneenes 32-34
Figure 13 Ganglia graphs for 2 executor cores configuration for 3/512MB......ccccevuenenne. 35-37
Figure 14 Ganglia graphs for 4 executor cores configuration for 3/512MB......ccccevuvnenne. 38-40
Figure 15 Ganglia graphs for 8 executor cores configuration for 3/512MB......cccccuiinnnee. 41-43

Figure 16 DAGs, event timelines, aggregated metrics, details of the tasks per stage and executor

details for the 3/512MB configuration at 1 €XeCULOT COTC..uurrrerrernerameeresnsssnrosnsenensssoses 47-50

Figure 17 DAGs, event timelines, aggregated metrics, details of the tasks per stage and executor

details for the 3/512MB configuration at 2 €XeCULOT COTES.uuterrrermessnssossssessssensonsnsnses 50-52

Figure 18 DAGs, event timelines, aggregated metrics, details of the tasks per stage and executor

details for the 3/512MB configuration at 4 €XeCULOT COTES..uverrrrresrerrsessssssnsonrnssosssnss 53-55

Figure 19 DAGs, event timelines, aggregated metrics, details of the tasks per stage and executor

details for the 3/512MB configuration at 8 €XeCULOT COTES..uterurrresrernresrmnrsssssarsssssssnes 55-57

Xi

List of Appendices

Appendix A Python WordCount algorithm

Xii

List of Acronyms

1 AWS — Amazon Web Service

2 DAG — Directed Acyclic Graph

3 UI - User Interface

4 EMR — Elastic MapReduce

5 NF — Number of nodes/File size

6 EC — Executor cores

7 AU — Average utilization

8 ET — Execution Time

9 EM — Executor Memory

Xiii

Chapter 1

Introduction

Apache Spark is an open-source distributed general-purpose cluster-computing framework.
Henceforth we refer this framework interchangeably as either Apache Spark or Spark in this
report. Spark is general-purpose in the sense that it allows running of applications from wide
variety of domains such as machine learning, graph processing, data streaming; It is distributed
in the sense that a Spark based application runs on multiple nodes; It is a cluster-computing
framework in the sense that a cluster of nodes (that are distributed) are dedicated to run the same
Spark application. Spark is increasingly being used to run Big Data applications. Several such
applications exist today in the aforementioned domains [1]. This is because Spark enables a big
data application—one that takes massive data as input and may produce massive data along its
execution—to run in parallel on multiple nodes. Thus, for a big data application, performance is
a critical issue.

Nguyen et al. concluded that performance of a big data application that runs on Spark is
significantly impacted by two factors, one, the maximum amount of heap memory an executor
process is allowed to consume while running on a node; second, the maximum number of cores
of the node an executor process is allowed to utilize while running on a node [1]. This work
complements the work of Nguyen et al. by considering two additional factors, one, the amount of
data the application has to process, and the other, the number of nodes the application runs on.
The choice of these two factors is intuitive since prior performance evaluation of traditional

distributed software architectures conclude that while increase in the amount of workload leads

to increase in the application’s execution time, increase in the number of nodes leads to the

decrease in its execution time [2, 3, 4].

1.1 Motivation

The motivation behind this project was to analyze how the performance of a system—in terms of
the execution time and average utilization, a metric that pertains to the average CPU
consumption of all the nodes in the cluster—is affected by varying certain Spark configuration
parameters such as the executor memory and the number of executor cores for a pair of number

of nodes and input file size as noted in Table 1.

Table 1 Number of nodes/File-size pairs

Pair Number of nodes/File-size
1 3/512MB

2 3/1GB

3 3/2GB

4 7/512MB

5 7/1GB

6 7/2GB

Spark is used to facilitate parallelization and processing of large amounts of data at high speed
through Amazon Web Service (AWS). To this end, a WordCount application is executed, an
application that counts the number of words in a document. To have an illustrative view of the
system effects such as CPU utilization, memory usage, network load and, load at a node,
Ganglia—a web-based performance monitoring system—is used. The change in application

performance results through the alteration of two Spark configuration parameters.

1.2 Problem statement

One of the main problems in processing the big data is the toll on performance of the application
that operates on the data. Evaluating which performance metrics take a greater effect on a system
is hard to determine due to the multitude of configuration parameters involved in case of

Spark[1]. Through this project, an analysis into the performance of an application is investigated.

1.3 Objective

By expounding on the problem statement and the aforementioned motivation, the objective of
this project was to assess the magnitude of the toll on the performance of the application in terms
of the execution time and average node utilization based on varying workloads. This was done
while altering the number of executor cores and size of executor memory such that it yields

lowest execution time for a certain workload (described as a pair as listed in Table 1).

1.4 Technologies used

Over the course of this project, the following technologies are used:

Spark, an open-source platform used mainly for large dataset processing.

Spark Web Ul an interface that provides directed acyclic graphs (DAGs) of the jobs
performed, event timelines and the duration of each stage among many other metrics.
Amazon Web Service (AWS) Elastic MapReduce (EMR) product, a tool used for big
data processing and through which a Spark cluster was created and used in the
implementation process.

AWS S3 for storage.

Ganglia, a performance monitoring application that provided the required graphs and
performance metrics.

WordCount, an application that counts the number of words in a document. and It is

analyzed and evaluated in terms of performance changes.

1.5 Project organization

The organization of this project is as follows:

Chapter 1 details a brief introduction to the subject matter, performance evaluation of big
data applications using platforms such as Hadoop and Spark, followed by the problem
definition, the motivation behind the project, the objective as a result of the motivation

and a list of the resources used in the implementation process of this project.

Chapter 2 details a brief literature review and a background into the implementation
technologies of the project.

Chapter 3 details the setup of the project, such as the set up of the environment and the
default configurations and the incorporation and interpretation of the results obtained.
Chapter 4 presents the discussion drawn as a result of the findings.

Chapter 5 presents the conclusions and the future directions of the project.

Chapter 2

Related works

This section details a brief overview of existing approaches to performance evaluation of

applications that use big data technologies such as Apache Hadoop and Apache Spark.

The work in [5] evaluates the performance of few log file analysis applications that were run on
Hadoop as well as Spark. The log files analyzed were all cloud-based. The implementation
included the usage of Spark, where the execution times, mean CPU usage, mean memory usage,
mean network usage and mean disk usage for Spark and Hadoop were obtained by changing the
number of nodes in a cluster and the memory of the cluster. The evaluation was also performed
in different modes such as YARN cluster mode, YARN client mode and standalone mode. The
results indicated that the that the increase of slave nodes implies a significant decrease in the
execution time whereas increasing the input file led to an increase in the execution time, along
with unexpected results such as higher network usage and disk usage, whereas Hadoop has
higher processing times and mean utilization values. As a whole, it was noted that Spark had the
best performance between the two frameworks.

In [6], big data workloads were analyzed using Hadoop, Spark and Flink to observe which
framework outperforms the others in terms of performance and scalability. The big data
workloads that were used in the proposal were WordCount, TeraSort, PageRank, Grep,
Connected Components and K-Means. According to the results of the WordCount application,

Spark was observed to have the best performance compared to Hadoop and Flink when the

number of nodes in a cluster was varied in terms of execution time and it was also observed that
entities such as the network and input file size have the least impact on Spark, resulting in its
superiority over Hadoop and Flink on the subject of general performance metrics.

In [7], big data workloads were used as inputs for application performance evaluation using
Spark. An example of big data workload used was one that related to fraud detection. The impact
of read/write latency on the performance of the application was analyzed. It was observed that
the latency was impacted by the input file size and that the performance of the application can be
negatively affected depending on the configuration of the system.

In [8], the performances of Hadoop and Spark for applications such as PageRank, WordCount,
Sort, Naive Bayes, K-Means and TeraSort were compared. The results stated that, for the
WordCount application, Spark had a speedup of 2.76 times but the performance dropped when
the file grew larger, a phenomenon that was also demonstrated in the throughput. It was also
noted that the CPU usage of Spark was better than that of Hadoop’s. It was concluded that Spark
is the optimal choice for applications that are iteration intensive and for machine learning
applications and web searches. Another conclusion included the observation that a system must
have adequate memory to run Spark, especially when the input file size is large.

In [9], the performance of a machine learning algorithm, Alternating Least Squares based Matrix
Factorization, was assessed on a Spark cluster. Different configuration parameters—such as the
number of spark executor cores as well as partition—were varied to analyze the impact on the
performance of the algorithm.

The studies conducted above highlighted the speed, performance and efficiency of Spark in Big
Data applications such as WordCount, TeraSort, Sort and PageRank and in several machine

learning applications as well, including Naive Bayes and K-Means. The aforementioned studies

indicated that Spark has the best execution time and CPU usage statistics over all the other
platforms.

This project deviates from the above works in a manner that relates to the investigation of the
effect on the performance of a WordCount application under the changes of the executor core in
Spark and the changes of the executor memory for different combinations of the number of
nodes in a cluster and the file size as listed in Table 1, where the size of the text file to be used
for the WordCount application is varied from 512MB, to 1GB and to 2GB for 3 nodes versus 7

nodes.

2.1 Background

This section entails a brief background on the technologies used in the project.

2.1.1 Hadoop

Hadoop is a medium consisting of different frameworks that supplies the ability to store
immense amounts of data, remarkable processing power and the realization of parallelization
[10]—an advantageous and highly sought after feature for data analytics, for big data

applications in particular.

Hadoop consists of some modules that are categorized into the following [11]:
e Hadoop Distributed file System (HDFS), fault resilient distributed file system that makes

servers scalable in terms of storage.

e YARN, a tool that allows both the resource management functionality and job

scheduling.
MapReduce, a tool provided by Hadoop that facilitates parallelization through the
separation of a large set of data into chunks that run independently in a cluster or a set of

clusters.

Along with the above, the following are components that can be run with Hadoop [11]:

Spark, a big data processing tool.
Hive, a data warehouse platform that allows the management, as well as the reading and
writing, of large data volumes in distributed storage through the use of SQL [12].

Oozie, a workflow scheduler tool that facilitates the management of Hadoop tasks [13].

2.1.1.1 Advantages of Hadoop

The usage of Hadoop incorporates the following benefits:

Ability to process large amounts of data [14, pp. 437].

The usage of Hadoop incorporates the added feature of parallelization and autonomy [15,
pp- 2135].

Failure resiliency, an advantage that is carried out from Hadoop’s feature of duplicating
the data sent to a specific node to all the other nodes in a cluster, effectively preventing

overall failure [15, pp. 2135].

As a result of the advantages that Hadoop bring, Hadoop is used in IT industries, health care
industries, telecommunications, higher education and computer software industries, to name a

few.

2.1.1.2 Disadvantages of Hadoop

In spite of the advantages that Hadoop brings in—such as the ability to process large amounts of
data at high speed and its resistance to failure due to data replication—Hadoop has the following
disadvantages:
e The strong dependence of both the efficiency and scalability of a cluster on one name
node [16].
e Security issues that arise from the involvement of big data when used in cloud computing
[17].
® Presence of difficulties in the management and maintenance of relevant and crucial

information due to the localization of this responsibility in one server in HDFES [16].

2.1.1.3 Architecture of Hadoop

A sample architecture of Hadoop is as shown below:

10

‘ User
‘ Client application

|

Master node

MapReduce Layer

|
HDFS Layer Name |3 Data
node ‘ node

! _ | l

‘ Slave node ‘ ‘ Slave node ‘ Slave node

Task tracker Task tracker Task tracker

HDFS HDFS HDFS ‘

Data replication

Figure 1 Hadoop architecture

The above figure, Figure 1, illustrates a sample architecture of Hadoop. As observed in the
illustration, the Hadoop architecture comprises of a master node and any number of slave nodes.
Additionally, two of the main components constitute the architecture of Hadoop, HDFS and
MapReduce. A job tracker and task tracker module exist in the MapReduce layer of the master
node, whereas a name node and data node lie in the HDFS layer of the architecture. Lying in the
slave nodes in turn are components such as a task tracker and a data node. The task tracker in the
architecture interacts with the job tracker and vice versa and is responsible for sending periodic
progress reports to the job tracker module as well as doing tasks. The job tracker acts as a

medium that allocates tasks to another active task tracker in the event that a task tracker module

11

fails. The name node in turn is tasked with managing HDFS files and to perform tasks related to
MapReduce, such as splitting the data into chunks and storing the information, whereas the data
node is the backbone of the data replication functionality, existing in all the nodes in the
architecture, constituting the resiliency failure feature of the platform and additionally, the

realization of parallelization due to the task tracker module that is present in all the nodes [18,

pp- 50].

2.1.2 Spark

Like Hadoop, Spark is an open source platform that facilitates the processing and analytics of
large amounts of data [19], where applications such as TeraSort, PageRank and WordCount can
be used to expedite and optimize data processing. Expounding on this, Spark was designed for
highly iterative operations on datasets and real-time analytics and is thus not tailored for
applications that are incompliant with this design due to the possibility of resource wastage, for
example, applications that require updates on a one by one basis such as web service storage are
rendered unsuitable for Spark [20, pp. 8]. The design of Spark also allows batch processing,
machine learning and the ability to run in Hadoop clusters, thus being able to process the data
present in components such as HDFS, HBase, Hive and Cassandra to name several and to run on

Hadoop. Other features of Spark include [19]:
e Spark’s inherent 80 high-level operators facilitate the ability to build parallel applications
and to use them through other platforms such as Java, Scala, SQL and R, rendering Spark

easy to use.

12

e Apart from being able to run on Hadoop, Spark can run on Apache Mesos and

Kubernetes, as well as access and process data in many data sources.

2.1.2.1 Advantages of Spark

The advantages of Spark include the following [21, pp. 172]:

e The data is stored in the memory, allowing for better and immediate access.

o The advantages of Hadoop, such as the fault tolerance feature and ability to process high

data volumes due to the platform’s build up from Hadoop.

e Higher efficiency as a result of the in-memory processing feature.
Due to Spark’s two most notable features—the ability to process high amounts of data at a speed
that is one hundred times faster than Hadoop, and to access data better resulting from Spark’s in-
memory processing feature—Spark is used in notable organizations and industries such as

Amazon, eBay and Nokia for Big Data processing [22].

2.1.2.2 Disadvantages of Spark

The drawbacks of Spark are as listed below:
e Low-quality security in contrast to Hadoop [23, pp. 3].
e The requirement of a high amount of memory to support Spark’s in-memory processing
feature [24, pp. 10].
e Spark’s usage complexity compared to Hadoop’s MapReduce imposes a learning curve

[23. pp. 3].

13

2.1.2.3 Architecture of Spark

A sample architecture of Spark is as shown below:

Spark driver node

Cluster manager

A

I I

Spark executor node Spark executor node Spark executor node

Task Task Task

Figure 2 Spark architecture.

With respect to the architecture provided above, the architecture consists of components such as
the driver node, or master node, a cluster manager module and any number of spark executor
nodes, where data computations and storage occur [25]. The spark driver node consists of a
component called SparkContext, which directly interacts with the cluster manager module and
vice versa and is assigned the capability to establish a connection with other clusters, such as
YARN, Mesos or a spark standalone cluster, through which tasks can be sent to the executor
nodes [26]. The executor nodes, or worker nodes, also retain the ability to store the data in the

cache for better, faster and immediate access, one of the most prominent features of Spark and a

14

contributing factor towards the platform’s well-known processing speed that is superior to that of

Hadoop’s.

2.1.3 Ganglia

To have a graphical and numerical overview of the impacts on the performance of an application
(for example, the impact of change in the number of executor cores), a software could be helpful.
The software that was elected to fulfill such requirement in this project is Ganglia, a performance
monitoring system targeted towards computing systems that operate at high performance in the
form of clusters and grids [27]. Through ganglia, insights into the performance of node cluster
when subjected to certain conditions (such as increased number of nodes within a cluster or an
increased amount of data inputted into the system) can be visualized [28]. Additionally, statistics
and performance metrics such as the number of CPUs, the average current load, the average
utilization in the last hour and the number of hosts that are up and down, can be visualized as
well. The above metrics can also be configured to be viewed for a specific node in a cluster
within a preferred time period set by a user, thus rendering ganglia as a powerful and useful tool

in analyzing the performance of a system.

2.1.3.1 Advantages of Ganglia

The advantages of ganglia are listed below [29]:

e The ability to customize the view, graphs and metrics to obtain certain desired metrics.

15

e The facilitation of studying the impact on a system’s performance when subjected to
increased load, leading to system improvement measures.
e The ability to view how busy a system is as a result of increased load or increased

memory usage.

2.1.3.2 Challenges of Ganglia

Despite notable and helpful benefits that Ganglia brings in, there exist some limitations relating
to ganglia. Some of these limitations are as listed below:

e The complexity of the network layouts that are able to adversely affect the distribution of
information to all the workstations involved within a system (that complies to Ganglia’s
multicasting, one-to-many users, protocol), thus hindering the performance of ganglia as
a whole.

o The heightened need for more memory as the complexity of a network increases to

alleviate the above challenge.

2.1.3.3 Architecture of Ganglia

The architecture of Ganglia is as shown below:

16

connects to
User —— > Ganglia Meta Daemon
(.—
data

o | | »

Ganglia Meta Daemon Ganglia Meta Daemon

poll failover poll failover

Cluster Cluster

Figure 3 Ganglia architecture.

As shown above, a Ganglia architecture comprises of a Ganglia Meta Daemon component that
the user directly interacts with, and vice versa, and an additional n number of Ganglia Meta
Daemons below the aforementioned component for an n number of clusters. Each cluster
comprises of a node and another Ganglia daemon, Ganglia Monitoring Daemon. The function of
the Ganglia Meta Daemon, or gmetad, accumulates the data across all clusters involved and runs
on the main server [29, pp. 14]. The gmetad component polls, an action that involves a
component checking for information from the component it interacts with, the gmetad
components that interact with an n number of clusters, which in turn also poll the nodes in the

cluster. The other daemon, Ganglia Monitoring Daemon, gmond, is responsible for keeping

17

surveillance on a cluster and exists in all the nodes in all the clusters involved [30, pp. 822]. The
architecture also accounts for a scenario where a node could potentially experience failure, thus
prompting the gmetad component to designate a failover [29 pp. 74], or replacement, node in

preparation for this scenario, a feature that resembles Hadoop’s fault resiliency feature.

2.1.4 Amazon Web Service

The Amazon Web Service (AWS) is a service offered by Amazon to provide users the ability to
perform secure cloud computing through features such as the variety of clusters, like Apache
Spark for instance, the storage of databases and methods of delivering content to businesses and
a multitude of users, facilitating the ability to build applications that have a higher flexibility,
scalability and reliability, all of which are made available by paying for these services after
registering for an AWS account. In the case for current students, students are able to make use of
Amazon educate, a service that allocates $75.00 as credit in exchange for the students to be able
to use the various products provided by AWS, such as S3 and FSx for storage and EMR and
Athena for analytics purposes [31]. In addition, AWS offers users developer tools such as AWS
CodeStar that assists in the creation and launching of AWS apps and machine learning tools such
as Amazon Rekognition that analyzes video and images, among many other types of products

offered by Amazon, to meet the many needs of users and businesses.

18

2.1.5 Spark Web Ul

Spark additionally offers users the opportunity of viewing metrics that would be insightful
regarding the evaluation of performance through its web Ul component, an interface that
provides DAGs of the task and additional details of a task such as the duration of a job, the
active, completed and failed jobs, the number of stages, an event timeline of the task, the
computing time of the executor and scheduler delay, along with additional details of the
executors. By using the Spark Web UlI, a more detailed and elaborate conclusion can be derived

with respect to the performance of the application when subjected to certain conditions.

2.2 Chapter Summary

In summary, this chapter provided an insight into the previous works done that were related to
the theme of the project—performance evaluation of applications processing big data—detailing
the findings as well as the methods carried out in order to realize the findings for the purpose of
giving a more detailed antithesis between the project and the works done previously. This
chapter additionally provided a background into the technologies that were used in the
implementation of the project and the architecture of these technologies for a graphical concept

overview of how a specific implementation technology works.

19

Chapter 3

Experimental setup and Results

This section briefly details the experimental setup of the project.

3.1 Default configurations

Several default configurations were prepared in order to achieve certain metrics when some

parameters were changed while one was kept constant. Table 2 detailing the default

configurations is as shown below:

Table 2 Default configuration

Parameter Default Value
Number of nodes 3
Executor memory 1GB

Input file size 512MB
Number of executor cores 1

20

3.2 Configuration variation

Using the table listed as Table 1 as a reference, different configurations were set in order to

better observe the effects each performance parameter has on the overall performance over a

wider scale.

Table 3 Configurations

Parameter Configurations
Number of nodes 7
Executor memory 2GB, 4GB, 8GB

Input file size 1GB, 2GB
Number of executor cores 2,4,8

With respect to the pairs listed in Table 1, a parameter from Table 3 was varied to a certain
value whereas the other parameters assumed a default value. For example, for the 3/512MB pair,
the executor memory was kept at IGB whereas the number of executors was changed from 1 to 2

or any of the other values listed in Table 3.

21

3.3 Cluster setup

The cluster that was used in the project was set up using AWS. The configurations of the cluster

are as shown below:

Launch mode: Cluster

Software release: emr-5.23.0

Software applications configuration: Spark: Spark 2.4.0 on Hadoop 2.8.5 YARN with Ganglia
3.7.2 and Zeppelin 0.8.1

Hardware configuration instance type: m3.xlarge

Number of instances: 3

After the successful configuration of the cluster and once it starts running, a user can remotely
access the cluster using an SSH client and a key pair for security and authentication purposes, at
which point a myriad of commands related to submitting a spark job and uploading the output or
data to the bucket in a user’s AWS account are possible. In this fashion, the execution times were
recorded for further observation and analysis. The other metric— the average utilization per
configuration—on the other hand, was viewed on Ganglia, whose web Ul was accessed through

SSH.

22

3.4 WordCount algorithm in python

This project analyzed the changes in the performance of a WordCount application (running on
Spark) when the Spark configuration parameters related to performance (number of executor
cores and executor memory) were altered over various combinations of the number of nodes in a
cluster, and the input file size. The algorithm for the WordCount application is shown in
Appendix A, which was obtained from Github and was developed by the user, Aliga8or, using
the Python programming language. The WordCount algorithm functioned by importing the add
operator to facilitate summing and a library that allowed the configuration of several Spark
parameters such as the executor memory for example. Following the necessary imports, the path
of the text file in the cloud was specified denoted by the variable inputFile, in the case of this
project, the S3 storage product provided by AWS, and was read. The lines in the text file were
then read and split at the whitespace between each word, therefore commencing the counting
process and the provision of the total number of words in the file. For instance, for the sentence
“The quick brown fox jumped over the lazy dog”, the sentence would be segmented at the
whitespace, leading to “the”, “quick”, “brown” and so on until the end of the document or
sentence is reached, leading to the generation of the total number of words, 8. Through this

algorithm, the number of words in documents of different file sizes was generated.

3.5 Results

The results obtained from the different configurations are listed in this section.

23

3.5.1 Tables and sample graphs of the execution times and average utilization for different

configurations

This section entails the results obtained from the variation of the above parameters listed in the

default configurations table in Tables 1 and 2.

Table 4 shows the average utilization of the nodes (AU) and execution times of the application

(ET) obtained for the pair NF=(# of nodes / file size) versus the number of executor cores

(EO)[32], when the executor memory was kept at the default value of 1GB.

Table 4 Executor core (EC) configuration results when the executor memory is kept at the

default value of 1GB. NF implies the pair (# of nodes / file size), AU implies average utilization,

ET implies execution time.

NF 3/512MB 3/1GB 3/2GB 7/512MB 7/1GB 7/2GB
AU AU AU AU AU AU
EC ET (s) ET (s) ET (s) ET (s) ET (s) ET (s)
(%) (%) (%) (%) (%) (%)
1 10 190.894153 6 | 382.404513 8 773.103187 7 195.030082 3 374.135082 3 781.723696
2 9 189.201580 | 6 | 373.956062 8 744.711293 5 199.555822 3 388.913508 3 746.666616
4 8 193.448359 7 | 377.666209 8 751.089509 4 203.148644 3 384.977494 4 766.701263
8 7 187.431934 7 | 382.858586 7 750.406515 4 190.286180 3 386.646908 4 764.302005

24

Listed below is a graph of the execution times respective to the number of executor cores for

each 3 nodes configuration.

Graph of execution times for 3 nodes

H3/51204B Execution time

¥ 3/1G8 Execution time

I l I I B 3/ 358 Execution time
1 2 4 a

Mumber of executor cores

Execution times (s)

~EEEEE8EES

Figure 4 Number of executor cores-Execution times graph for the 3 nodes configuration.

Below is a graph of the utilization times corresponding to the number of executor cores for each

3 nodes configuration.

Graph of average utilization for 3

nodes
- 1%
‘E‘ 1% 1
2 o — e — S 3/512MB Average
3 % — R — i | : utillzation
g -
4% - - | - 3/1G8 Average utilization
E 2% - —
% | | 1 3268 Average utilization
1 2 4 a
Number of executor cores

Figure 5 Number of executor cores-Average utilization graph for the 3 nodes configuration

25

[lustrated below is a graph of the execution times corresponding to the number of executor cores

for each 7 nodes configuration.

Graph of execution times for 7 nodes

900
00
= 700 B
E 600 B
E ﬁ ¥ 7/512MB Execution time
'E' 00— | — B ¥/1GB Execution time
& 200 -] m B 7/26B Execution time
100 - |
0
1 8

Number of executor cores

Figure 6 Number of executor cores-Execution times graph for the 7 nodes configuration

Below is a graph of the utilization times corresponding to the number of executor cores for each

7 nodes configuration.

Graph of average utilization for 7
nodes

11 H7/512ME Average
ﬁ 3% utilization

- — BTGB Avarage utilization

% 4 B
5”" i AR
1% - . 7/2GB Average utilization
L]

]
Number of executor cores

Figure 7 Number of executor cores-Average utilization graph for the 7 nodes configuration

26

With respect to the graphs obtained above, it was observed that the execution times of both the 3
and 7 nodes configurations are within the same range when the number of executor cores were
changed incrementally (the executor memory being at the default configuration of 1GB). In spite
of the slight increase in the execution time between 3/512MB and 7/512MB pairs when the
number of executor cores is 1 (similarly for the rest of the pairs), there was a significant decrease
in the average utilization as a result of the node increase, the lowest recorded average utilization
being 4%. The result is depicted in Table 4 as well as in Figures 4 to 7. Overall, while the

execution time did not decrease, the average utilization had.

Table 5 shows the average utilization of the nodes (AU) and execution times of the application

(ET) obtained for the pair NF=(# of nodes / file size) versus the executor memory (EM) [28],

when the number of executor cores was kept at the default value of 1.

27

Table S Executor memory (EM) configuration results when the number of executor cores is kept
at the default value of 1. NF implies the pair (# of nodes / file size), AU implies average

utilization, ET implies execution time.

NF 3/512MB 3/1GB 3/2GB 7/512MB 7/1GB 7/2GB
EM | AU ET (s) AU | ET(s) AU ET (s) AU ET (s) AU ET (s) AU ET (s)
(%) (%) (%) (%) (%) (%)

1GB 12 197.759940 8 | 396.108658 7 756.927927 3 201.633905 3 387.120666 | 3 752.214988

2GB 8 193.504326 7 | 391.070779 8 752.478046 3 201.312989 3 391.149764 | 3 747.853411

4GB 7 192.727274 8 | 385.200333 8 763.991094 3 189.851224 3 383.684466 | 3 751.057607

8GB 7 189.624714 8 | 374.192056 8 752.089426 2 189.074740 3 382.410938 | 3 748.539087

Listed below is a graph of the execution times respective to the executor memory for each 3

nodes configuration.

Graph of execution times for 3
nodes

1000

% 800

g i 3/512MB Execution

T 600 B time

=]

S 400 — ®3/1GB Execution time

S 200 - =

& 0 __‘ . ‘ . ‘ . L 3/2GB Execution time
1 2 4 8
Executor memory (GB)

Figure 8 Executor memory-Execution times graph for the 3 nodes configuration.

28

Below is a graph of the average utilization respective to the executor memory for each 3 nodes

configuration.

Graph of average utilization for 3

nodes
14%
12%
10% 1— & 3/512MB Average
8% - utilization
6% - B

S B B u 3/1GB Average

4% - — —— — utilization

2% - :. — 3/2GB Average

0% - T T . utilization
1 2 4 8

Executor memory (GB)

Average utilization (%)

Figure 9 Executor memory-Average utilization graph for the 3 nodes configuration

Listed below is a graph of the execution times respective to the executor memory for each 7

nodes configuration.

Graph of execution times for 7

nodes
800
600 — &7/512MB Execution
400 | time

& 7/1GB Execution time

“
T T T 7/2GB Execution time
2 4 8

1
Executor memory (GB)

Execution time (s)

(e}
|

Figure 10 Executor memory-Execution times graph for the 7 nodes configuration

29

Below is a graph of the average utilization respective to the executor memory for each 7 nodes

configuration.

Graph of average utilization for 7
nodes

L5
X

S
i

& 7/512MB Average
utilization

| B "~ W7/1GB Average
— — utilization
— 7/2GB Average
. . , utilization
1 2 4 8

Executor memory (GB)

S
i

X X
1 1

Average utilization (%)
S = = No N W

X
1

Figure 11 Executor memory-Average utilization graph for the 7 nodes configuration

As shown in Figures 8 to 11, it was observed that, in contrast with the results obtained from
Table 4, the average utilization for the 7 nodes configuration dropped to 2%. Expounding on that
phenomenon, the average utilization between Table 4 and Table 5 demonstrates a drop when the
executor memory was varied (keeping the executor core at a value of 1). Additionally, the
execution times for each of the 3 nodes pairs are within the same range as tabulated in Table 5
(similarly for 7 nodes pairs), with fluctuations present. For example, for the 7/2GB configuration
in Table S, the execution time increased when the executor memory was 2GB compared to when
the number of executor cores was 2 in Table 4, whereas for the rest, the execution time and

average utilization decreased or remained constant respectively.

30

Overall, the above exhibited the observation that, while increasing the executor memory per
configuration does certainly decrease the average utilization, the execution time can increase,
further implying a tradeoff between the two measures of performance and further research into
achieving goals of twofold— to decrease both the execution time and average utilization per

configuration.

3.5.2 Summarization of the results for the 3 nodes configuration

Section 3.5.2.1 details the sample graphs obtained from Ganglia for the 3/512MB pair in Table 4
and a summarization of the results obtained from Table 4 for the rest of the configurations.

Section 3.5.2.2 similarly deals with an encapsulation of the findings achieved in Table 5.

3.5.2.1 Executor cores

The sample graphs listed in this section correspond to the results of the pair, 3/512MB, in Table
4. The graphs in this section consist of graphs from two views - cluster view and master node
view. For the cluster view, the average utilization along with the number of hosts that are up and
down are listed as well as several graphs such as the load per node in the last hour, the one load
statistic per node, the CPU usage in the last hour, the memory usage, the cluster load usage and
the network load. On the other hand, the master node graphs list the CPU usage details and the

load details.

31

3/512MB

For 1 executor core

Cluster view

CPUS Total; 12 : J-1ZHRS3HOFCGVG Cluster Memory Tast custom
Hosts up: 3 j-1ZMAS3MOFCGVG Cluster CPU last custom e
Hosts down: 0 180
56
Currant Load Avq (15, 5, Lm): w0
5%, 8%, 10% i
Avg Utilization {last custem): 1]
10% G
0
306
& w
£ £ ug
P 3
& W06
10
156
30
106
0
56
10
(]
Server Load Distribution [@:55
82:55 mle Mo 706 N 5E A T8 Mac 1.6
mleer Mo 1124 Mine % Avg: 10 Mac & WShare Mo 00 Wi B0 Mg BB Mau 00
Oflice Mo 008 Min: 6.6 Av: 0.0 Ma: B8 Bleche bow: 506 Rin 5.6 kg 58 Mac S0
ESpstenton 044 Min B.0% A 04 Ha: 8.3 OBuffer bow: 2000 Rin: 220 Avg: 220 Max: 220,20
mWeit Mo 0.0 Min: B.0 A 0.0 Ma: D8 OFree Now: LB Min 3176 Ag: 3% Nen 1%
WStesl o 0.0 Wi 006 Avg DB Mac 0.0 BSap Mo 00 Kin 6.0 Mgt 06 Mac 0.0
Oldle Moo BRAY Mint 5598 Avg: 8948 Man: 9.8 Biotel v 4406 Win LB Avg 46 Mau 406
- 1ZMR53MBFCGVG Cluster Load last custom
b} =
1]-1ZMRS3MOFCEVG Cluster Netyork last custom
1
" 4N
m 128
5 100
i} 200
bt} 160
g 2 248
3 E [
- & 20N
5 i E LEN
7 £ Len
4 = 14K
5 128
4 108
2 (AL
s | 06N
04
b i
5 02N
Olain Now: 1.3 Rin: 70.0n 85. 70 Kax: 1.3 0.0 v
Bhodes Now: 3.0 Ming 3.0 0 g 30 a5
HPUs Now: 12.0 Rin: 12,0 2.8 Max: 12.0 BIn New: 3.2M Min: 4.7k Avg: 2.6M Max: 3.3
WProcs Now: 1.0 tam 1.0 L1 Maw: 2.0 W ut Mow: 146k Min: 5.8k Avgr 214k Mo 7.1k

=172 310 00= 119, 02 internal

ip-172-31-19-119

1.0

A

55 g

Ee172:31 2063 acd. intomal

ip-172-31-20-63

-
=
el

i
&
in

Ee172:31: 31 18 e D iitemal
ip-172-31-31-16
20mt

p-172-30-E0-119. sc T intmmal

19-119.ec2.internal Load ALl Report 1

Lnad

p-UT2-10-20-23 w2 brite

(2@-63.ec2. internal Load ALl Report L3

e

e
Ll
48w
Me

aI:E:SS

Lnad

Ip-172-30-11-18 &2 intamal

+31-16.ecZ.internal Load All Report La

183 ©
E T 1 ———— —
Lol
Z sm

e — -

lﬁ02:55

32

Master node view

ip-172-31-19-119.ec2.internal CPU last custom

Percent
=

B2 Avg 25
BB A 008

BA Mg 0% Wa 28
mieit Mo 0.0 Avg 0.0 Max:
WStesl Mo B, 0.06 Avg: B M 01t
OTdle Now .66 Hin: S6.7% Avgi 73,9 Max 9960

ip-172-31-19-119.ec2 . internal Load last custom

Bytes

ip-172-31-19-119. ec2.internal Memory last custom
06
196
186
e
156
156

146
B
g
ug
106
LR
G
16
66
56
LR
16
26
16

]

£2:55
mle Mo 30 N 3
WShare Noe 00 M D
Blehe oo 256 Hin 2,
O Buffer Noe: 8650 Nin: 0E
OFree Now: 8.6 Min:
WSap N 0.0 M 0.0 A B
WTolel Moo W6 Hin W76 A 4,

=
2
Rros
Eiling =
25°5

3
e

HeBugop
&
g

e

ip-172-31-19-119. ec2.internal Network last custom

4.0
31 14K
16 1IN
14 10N
32 LAR
3.0 760 |
28 140
w ;f 12N
B33 & o208
E 20 EIEN
T 1 £ Len
LA = 148
14 1R
i; 108
B e 08N
0.6 oEn
0.4 04n
0.2 02N
R 00
O 1-min Now: 1.0 Man: 60,00 Avg:755.3w Hax: 1.3 B In How: 93.2k Min: 2.4k Avg: 2.3M Max: 3.3M
W CPUs Now: 4.8 Mini 4.0 Avg: 4.0 HMaxi 4.0 W dut How: 18,1k Min: 1.9k Avg: 13,7k Mox: 19.2k
B Procs Mow: L8 Mini 1.0 Avg: L1 Max: 2.0

33

cou_mdie < CPU alde

&0 D Hide/Show Events Timeshift
CPU aidle
gat
- |
aall.llllll
f2:55 :
e _nece = CPU Nice —
&0 0 & Hide/Show Events | | Timeshift
CPU Nice
1at
* @5
o |
gz: 55
cpu_syitem « CPU Syt
=D & Hide/Show Events Timashift
CPU System
j.af
2.0
- |
1.0
B2:55
cpu_mio < CPFU win _
0 [@0 @0 | Hide/Show Events | | Timeshift
CPU wio
1.0t
g5
0.0
B2: 55

loged_fiftiin = Fiflien Misile Losd Aeerag

Hide/Show Events

8 E E S
Fifteen Minute Load Average
GG mt
Sm|
4 m |

JE0 m
B35

e _kle - CPRJ Tdie

B E Hide/Show Events Timeshift
CPU Ldle
164 &
s B0
E0
B2:55
epu_sbeal « CFU steal
D0 [0 &= Hide/Show Events | | Timeshift
CPU steal

55

CPU User

Timeshift

lo@d_ora = O Hifite Lead Averagi

0 0) & @0 | HidefShow Events
One Winute Load Average
14|
10|
£2:55

Timeszhift

Toad_Tiwe = Fiva Hifute Lsad Ssarage

B [0 [CFF @D| Hide/Show Events

Five Winute Load Average

t
qE0 m |

6RO |

469
B35

Timeshift

Figure 12 Ganglia graphs for 1 executor core configuration for 3/512MB

34

For 2 executor cores

Cluster view

SRR Total 12 : {- IZHASSHOFCGVT Cluster Memory lest custom
Hosts up: 3 {- 1ZMRSMOFCGVG Cluster CPU last custom s
Hosts down:] :
1
5L
Current Load Avg (15, 5, Im): 9 +
6%, 8%, 7% e
vy Utllization (fast custom):]
B
]
il
L I
E ¥
B
Pow 5
g il
M
56
k]
186
n
= 56
L]
- il
i ol
Server Load Distribution B BB o 6T
Wlser Now: BEA M 0N A 7% Max 1LS W Shere Neww B0
ce kv B M OO0 Aep OO M 1R B Cache Koaw 5.0
temkod: G018 M 0N LM R 47 0O Butter Nouw 222 41
Fow: BB M OO Aeg O Max DR Ofree bow ILBG
L obow OB M OO0 Mg O Ma ON By boe 0O
Oldie how 87 N BLA deg 90R Ma SR Biotal b 405
1-1ZHRSIMBFCGVG Cluster Load last custom
i §- LZARSINOFCGYG Cluster Metwork Last custom
}; T
& LI |__J_’—'
5 180
u 2K
n Lak
[240
E Ll‘ L
i H 20H
- i G oL
i 1 £ 160
§ 8 1AM
5 Lik
4 I—l 14k
: AT
2
: e {41
e [RY)
Bl gin
Di-win Wow 15 Wind30on Avg: 17 M 18 (1]
Plodes Nowi 3.0 Mini 3.0 Avgr 30 Mes 30 i
BCPUs Now: 12.0 Min: 12,0 Avg: 120 Max; 120 Bin fow: 32k Mun: 32k Avg: 19W Max: 34N
Brrocs Mow: 8.8 Wit B0 Avg 2.3 Mam 5.8 Bour Now: 5.7k Min: 456 Avg: M.TK Man: 30.6k
p-172-30-00-019. sc X intemal p-172-30-20-23 a2 intamal p-172-30-11-14 a2 intamal
ip-172-31-19-119 ip-172-31-20-63 ip-172-31-31-16
14 1.8 1.8
6.0 o.04 . 8.0+ .
B3:85 63-85 63: 85
p-E72-31-10-119 e X imtmmal - 172-30-30-20 w2 inda mal p-172-31-31- 18 ac2 el
19-119.ec2.internal Load ALl Report 1 :28-63.ec2.internal Load All Report 14 :31-16.ec2.internal Load All Aeport 13
468 » -
6w
- I—‘__ e AR - 7
= Le = 2000 = o
i —_— ~ moe i i
o —
a4 - a8 - - a -
8385 B3: 85 B3- 85

35

Master node view

0 0 D Hide/Show Events |

ip-172-31-19-119. ec?.internal CPU last custom

Percent
&

D EEED | Hide/Shaw Events |

ip-172-31-19-119.&c2.internal Load last custom

Leads /Procs

B85
[1.win Mow: 1.4 Min:386.0m Avg: 1.1
W CPUs Now: 4.0 Min: 4.0 Avgr 4.0
Wrrocs Now: BB MR B0 Augr 3.1

Max: 1.6
Man: 4.0
Max: 4.8

36

ip-172-31-19-119.ec2. internal Memory last custom
We
ne
jERT
e
56
5
Wi
B
176
ne
186
an
50
76
&G
36
a0
in
0
16
]

Bytes

Wlse hod
W Chare how
W Cache Kow
O butter Kow
D Free how
Saap Now

el How

-
BEER
R e

aebgr=in

=
B
e

G0 ED @D Hide/Show Events |

ip-172-31-19-119.2c2.internal Metwork last custom

Y
11K I__,—'—‘
38R
10

264
40
1K
PR
LK
LEH
L4k
12K
18K
Bk
BEN
a4k
8k
8.9

Byteos sec

83:85

1.0k Avgr 1.9M Max: 3.4M
1.5 Avg: 12.3% Max: 39,7k

Hin Now: 1.8k Mn:
Wour Now: 1,5k Min:

ke - £ widl il - CPU e

aE = Hide/Show Events Timeshift 1@ 0 E ED @2 | Hide/Show Events Timeshift
CPU aidle CPU Idle

i 188

85

LY
%
a8
&
=

b]
63:85

pu_siew - U Kiew epu_sbaa| - CPU sinal

aE CER @@ | Hide/Show Events Timeshift = @ E ED EDER i Hide/Show Events Timeshift
CPU Nice CPU steal

18w

L

* L]

LY
= o —
= " -
L
&
F

6365

u_wyatem - C7U Systam q_svar - CRU Unar _
5 I [ED CED @D | HidefShow Events Timeshift = & E [ED (ED @D | Hide/Show Events Timeshift
CFU System CFU User

28 "

£

13

Y
a
Y
= 2:
|
Si

6385

u_wia - Pl wia

[Jos fisan F e § Tron ! Hide/Show Events Timeshift

CPU wio
La
L4 a3
00+ *
6305
ol _fifiaan - Fifteon Minuta Loas feanage o _fren - Mren Minuts Laad Assrage

E E D D &3 | Hida/Show Events Timeshift = (& EDED CEB @3 | Hide/Show Events Timeshift

Fifteen Hinute Load Average Five Minute Load Average
00 8 L2
1.8
530 ¢
9.8
500 ¢ i
180 & S

B3:85

omd_ana - One Mirute Lasd Aserage

OEIDEEE | Hide/Show Events Timeshift

One Minute Load Awerage
L8

La

B3:65

Figure 13 Ganglia graphs for 2 executor cores configuration for 3/512MB

For 4 executor cores

Cluster view

ChUs Total: 12 - i~ 1ZMRS3NOFCGUG Cluster Hemory last custom
Husts up: 3 {- 1ZMAS3HOFCOV Cluster CPU last custom it
Hosts down: 1] i
5
Current Load Avg (15, 5, 1m): %
6%, 7%, 9% we
vy Utilization (last custom): L]
B HG
m
"o
L u
¢ H
56
E i r%
HH W6
n
56
A
06
n
56
1
[} " .
o o — {5 w2
Server Load Distribution i B || ghe me 1% .
Wlser hov: T40 Mo 0BG Mg B Pa DLEA W here bow D0 X
Okice b DO N DO A OB Man O& Weche hoe 816 N
Nistolo: DR N OA A 00 M 0% 1 lufter how 22240 N i
Ot how LA Y OO0 A OO P OB B
Witeal bow D08 M OO0 Avg: OO Maw: OO6 .
Oldie o G20 A 6700 dvg G008 Max S0 Wiotal Koe 440 M G606 Meg 4000 Max 406
]-1ZHRSIMBFCVE Cluster Load last custom
i: 1-1ZHREINGFCEVE Cluster Network last custom
I 18K
bl 1
% 36K
% bR
M 1k
bl 3Bk
H LEN
B Q0 L6k
Lop u LK
[&
3] . L1k
e 3 3080
7 £ LI
& 2 L6K
[Lk
] L2
3 Lo
b SR
1 I l— A6H
R S LER)
mis N a2k
O1-wn Mew: 1.1 Mn:S15 30 Avp:B2B0n Max: 1] 0.8 1
Diodes Now: 3.0 Mime 38 hvg: 3.0 Max: 38 515 w2
BrPls Now 1.0 Min 120 g 120 Mew 120 Bin Now 328 Mn 2% dvg LM Mex 3SR
BProcs Bow: 1.8 HWin: 8.0 Avg: 1.3 M 1.8 Bour Now 21,3k Min: 5.7k Avg 18,7k Max: 7R 4K
Ip-272-20-50-019. 0L inimmal ip-072-21-20-21 a2 irdarmal ip-072-20-11- 1k e it
ip-172-31-19-119 1p-172-31-28-63 1p-172-31-31-16
e EL i
b mir
0+ * L]
15 328 0315 328
Ip-172-20-1-119. 5 intmmal ip-172-20-20-0 1 nc2 il ip-72-20-11- 1B a2 ira el

19-119.ec? internal Load AL1 Report 1

Lo ,.r—fJ_LL

1.5 | —

To@d

a'&; 15 T

128-63.ecl . internal Load A1l Report 1

lad m

Toad

;15 B 28

t31-16.ec2. internal Load All Report 1

- Er e
- BEsgsetae

;15 LEE]

Toad

38

Master node view

OEDEDQmD| Hide/Show Events |

1p-172-31-19-119.ec?.1nternal CPU last custom

Percent

LS Awg Z1AA Max: X
0.m TN

HoFERE

0. M
0.8 Rax

=

0.0 Avg: H
Man: G500 Awg 1AV Pax: 58

DED = @mm| Hide/Show Events

ip-172-31-19-119.ec2 internal Load last custom

q
3
3
3
3,
3
2
2
FH
kY
2
1.
1
1
1
1
8,
a,
8.
a,
a.

Leads /Procs

50 =0 & | Hide/Show Events

1p-172-31-19-119.ec?.internal MHemory last custom
WG
e
G
e
bl
5t
WG
B6
126
ne
186
an
i
70
0
H
40
16
26
1k

Bytes

a

@18
Hise Ko
W share Kow
B Cache Kow
0 Butfer how
O Free Ko
W Sazp Ko
W ol how

- AT
Shahti
=
]
E R Mm e

a=Fgig=i

Jo Mg

OEIEn | Hide/Show Events

ip-172-31-19-119.ec2. internal Wetwork last custom

Bytes/sec

(]
i
&
4
2
]
i
]
4
1
]
¥
.6
4
2
]
¥
§
4
7
&

15 i)
@ 1-pin Now:B58.0m HMin:490.0e Avg:004.3m Max: 1.1
MCPUs Mow: 4.0 Min: 4.0 Avg: 4.0 Max: 4.0
M Procs Mow: 8.8 Min: B8 Avg:5333m Max: 1.8

39

B In Now 3033k Mun:
Bout Now: 7.3k Min:

1.5« Avg: 2.0M Max: 3.5M
3.6k Avg: 15,3k Mam: 24,4k

pu_sda - TP sdla

3 =5 [E0 GED @ | Hide/Show Events

CPU aidle

i5
Q%;E a3 28

pu_nkm - TP Nica

3 0 D) S0 @ | Hide/Show Events

CPU Nice
1.8

o 8.5

a'l%! 15 W 10

pu_wyatan - OFU Syxiem

B D (D G0 XD | Hide/Show Events |

CPU System

Lo
1.8
0315 03; 20

pu_wia - PUwia

=0 D GED D | Hide/Show Events

CPU wWlid
1.8

o B35

5'3355 0128

caad_fit:aan - Fifinon Misuta Losd Aearage

0 0 0 CED @D | Hide/Show Events

Fifteen Minute Load Awverage

183 r‘ II

foad_soa - Cna Miroea Lasd Sxwrage

& ED =D CED &ID

Hide/Show Events

One Minute Load Average

{3él&lllllJllIIIIiIIIIIIIIL

pu_ide - CFJ [de

Timeshift B E) ED G2 &3 | Hide/Show Events Timeshift
CPU Idle
laa
an
L Iﬁ
%% 3249
cpu_sbaal - TP missl
Timeshift B ED ED BB EE8 | Hide/Show Events Timeshift
CPU steal
lad r
e
'am;ﬁ 0320
cpu_usar - CPU Usar
Timeshift | @ E ED CED &EID | Hide/Show Events Timeshift
CFU User
o
Timeshift
fad_fren - Fee Miraea Lasd Aseragm
Timeshift | B &l ED CED £33 | Hide/Show Events Timeshift

Timeshift

Five Hinute Load Average

988 B
B r

T8A ¢
ﬁml

% s

Figure 14 Ganglia graphs for 4 executor cores configuration for 3/512MB

40

For 8 executor cores

Cluster view

Hasts down: 0

Current Load Avg (15, 5, Im}:
6%, 7%, 9%

Avy Utllization (last custom):
8%

Server Load Distribution

Percent

i

@
Blser how T4L B DG A BTV
O Kice Koo 0.0 Hem: O.0V :
Boystmboe DR M O Ry M D%
bow: OO Hem: 000 Awg OO0 M DBA
W OO M OO A OO Ma O
Olde how S5 M 010 A 00 e S0

Rar: 118
A o 00

s _
—

e

L1

e

HE

e

Byres

w1
Wlse o
W Shere how
0 Cache i
0 lueter b
Ofree bou
T

1.
]
5
n,
E

e

Bicel how .00 M

£
1]

16
an

1-1THRSINDFCOVG Cluster Load last custom

LoadssProcs

B e

O1-win Now: 11 HinSIS.3e Avg:BI8.0n Ma:
0 Nodes Now: 3.0 Min: 3.0 A 30 Max:
BPus New: 12,0 Min: 22,0 Avg: 2.0 Max: L
Wrrocs Now: 10 Wine B0 Avge 1.3 Mae:

30

L
kN
6
3R
3
£ Y
280
ik
N
a1k
2hK
1tn
16k
SER]
124
10k
Bk
(11
BdK
B2H

Bytesssec

J-1ZHRS3MAFCGVG Cluster Metwork last custom

Mﬂiiﬁ

Bin Now: 228 Minc 2% Avgr 2.0M Max: 35M
Bour Wow: 20,3k Mini 5.2k Avg 1Bk M 78,4

B

ip-172-30- 1R-119.0c L intwmal

ip-172-31-19-

1.4

LA

p-172-10-20-23 a2 irvia et

119 ip-172-31-10-63

8.8+

ip-272-10-11- L6 8z irea el

ip-172-31-31-16

5.8+

p=072-20- 15019k infamul

19-119.ec2. internal Load ALl Report 1

1.2

Toad

8.8

ip=072-10-2 052 82 irrarmal

1.4

128-63.ecd internal Load All Report lg

335

e T2-00-11- 202 bree

:31-16.8c3 internal Load ALL Report L4

1o

1.4

8.3

8.8+

5:35

41

Master node view

1p-172-31-19-119.8c2. internal CPU last custom

1p-172-31-19-119.8c2. internal Memory last custom

18 M
e
] B
e
L] 16k
56
7 ne
B
i 126
E ¢
u 54 £ 186
5 mooag
1 i
70
0 60
in
b 15
EX
10 it
10
] a
a3 m3s
Wise bow 43 M 4.3 Mg 456 Ma 4B
MWShere Few 0.0 M 0.0 A B0 Ma 0O
W Cxhe Kow: 2.5 Min: 2,56 Awp 436 Ma %
Obutter how 86 M i B6.64 Awp E5E Mar BB
Ofree Kow 1.6 Man: 740 Awg TG Max: TG
Wocp bw 00 M 0.0 A 00 MmO
Wizl Kow: W06 Min: o Mg W Ma WM
O ED@D | Hide/Show Events O EIEED I Hide/Show Events
ip-172-31-19-119.ecz . internal Load last custom ip-172-31-19-119.ec2. internal Metwork last custom
1.4 104
£ ER Y
38 36 H
i JAR
32 32k
ia 30k
18 280
26 26H
g g 248
= & w 3
& 3
I &
2 18 £ Lak
B g E 16K
14 11k
12 12N
18 Lak
8 2k
8.5 86k
a4 RN
8.7 8z
a9 8.8 2
35 i35
@ 1-win Mowi 1.5 Min: 28.0 Avg:B83.5m Max: 1.5 Bin Now: 16N uni 2.0k Avg: 2.5H Max: 16N
WCPUs How: 4.0 Mam 4.0 Avg: 40 Max: 4.0 B our How: 17.46 Min: 1.5k Avg: 134k Max: 19,7k
Brrocs Now: 1.8 Hin: B0 Avg:iBSE.Am Max: 1.0

42

cpu_sidie - CPU sidia

5 =0 (D) O @D | Hide/Show Events

CFU aidle

L]
83:35

pu_sics - TP Kica

8 E E R D

Hide/Show Events

CPU Nice
1.4

L a5

8.8+ s
B3:35

cpu_wyaben - CFU Syabam

o E3 D GO @D | Hide/Show Events

CPU System

1.8

83: 35

au_wia - TP wia

& =0 [0 D &0 | Hide/Show Events |

CPU wid
1.4

8.8+ e

oad_fifsaan - Fifisan Misuta Load h!gl

B =0 0 (ED @D | Hide/Show Events

Fifteen Hinute Load Average
PLEN
500 &
500 &

108
. 835

cmd_ana - One Miruse Lasd dxerage

) B3 [ED) CERD @D | Hide/Show Events

One Minute Load Average

1.4
1.9

i3 35

Timeshift

Timeashift

Timeshift

Timeshift

cpu_idis - CFY Ide

2 0 [EE) CE @D | Hide/Show Events

CFU Idle

L ia

ERR
=[

cpu_sbmal - CPU stwal

O E ED ED £20

Hide/Show Events

CPU steal
13w

o S4r

]

:

5

cau_ssar - CPU Lisar

B 0 D G0 @ | Hide/Show Events |

CPU User

cad_fren - Fiea Miraee Lasd Aseragm

Timeshift | & ED ED CEEB £ | Hide/Show Events

Timeshift

Five Hinute Load Average

0 r
£33 §
100 v

E
|...|
(=]

Figure 15 Ganglia graphs for 8 executor cores configuration for 3/512MB

43

Timeshift

Timeshift

Timeshift

Timeshift

Figures 12 to 15 are the corresponding Ganglia graphs for the 3/512MB pair for varying
executor cores as listed in Table 4. The Ganglia graphs provided insightful performance metrics,
namely the CPU utilization, the memory utilization, network usage and internal load for the
cluster and all the individual nodes. Figure 12 listed the aforementioned metrics for the cluster
in addition to the number of hosts that were active and otherwise, along with the average
utilization of the cluster recorded as 10%. It was also observed that the node under the name ip -
172 - 31 - 19 — 119, the master or driver node, was found to have performed a majority of the
computations in terms of load compared to the other nodes. Figures 13 to 15, on the other hand,
provided similar metrics for the driver and executor nodes in the cluster, where metrics such as
CPU idle and CPU steal among others were taken into account to derive the CPU utilization,
similarly with the memory utilization, network usage and internal, where other factors led to the

final result.

Figures 12 to 15 depicted several differences. These differences include a higher average
utilization percentage value in Figure 12, changes in the user utilization among all the
configurations in the master node view, where Figure 12 has the highest user utilization value,
variations in the user memory usage of the master node from the master node graphs,
consistencies in the memory usage of the cluster at approximately 5G and consistencies in the
byte rate stated in the cluster network graphs. It was observed that, by varying the executor cores
for the 3/512MB, the memory usage and the network usage will remain constant whereas the

average utilization of the cluster decreases.

44

3/1GB

Table 4 showed that the average utilization increased from 6% to 7%, where the utilization
degraded after varying the number of executor cores to 2, after which point the utilization
increased to 7% and remained constant for two configurations. This result demonstrated that a
certain number of executor cores provide better utilization statistics than other variations, a
useful insight for future work with regards to determining the benchmark for how much the
utilization can decrease or increase to. It was also observed that the execution time fluctuated

across the number of executor cores varied.

3/2GB

Table 4 showed that the average utilization decreased from 8% to 7% when the file size was
increased to 2GB and that the utilization increased in comparison with the results obtained for
the 3/1GB pair. The decrease in the utilization as the number of executor cores increase was also
noteworthy and is a phenomenon worth exploring in order to determine whether the number of
executor cores and the utilization are related or otherwise with respect the 3/2GB pair and how

much the utilization can decrease to while the number of executor cores increase.

3.5.2.2 Executor memory

This section details an analysis on the results listed in Table S for 3 nodes.

45

3/512MB
The results indicated in Table S showed that the average utilization decreased from 12% to 7%
as the executor memory was increased and gradually increasing user utilization in the node views

of Figures 24 to 26.

3/1GB

With respect to the results of the 3/1GB pair, the average utilization has shown to fluctuate
between 7% and 8%, where a utilization of 7% was experienced when the executor memory was
2GB, demonstrating a limit the utilization can decrease to over an executor memory range of
1GB to 8GB. Once the executor memory was varied to 4GB and 8GB, the utilization became

constant at 8%.

3/2GB
Table 5 demonstrated an increase in the average utilization as the executor memory was

increased from 1GB to 8GB, where the utilization remained constant after 1 GB.

3.5.3 Summarization of the results and Spark Web UI results for the 3 nodes configuration

This section details samples of the DAGs (Directed Acyclic Graphs), which detail the flow of the

tasks per stage as shown below, the event timeline per stage, task duration, read and write

durations, stage details, tasks details and executor details for the 3/512MB pair listed in Table 4.

Section 3.5.3.1 entails screenshots of the results from the Spark Web UI for the 3/512MB pair in

46

Table 4 along with drafted conclusions of the tabulated Spark Web UI results for the rest of the

pairs in the same table, as is the case for section 3.5.3.2.

3.5.3.1 Executor cores

This section comprises of the results obtained for the configurations respective to Table 4.

3/512MB

For 1 executor core

Btage 0 Stage 1
tenctFile partitionBy
/ mapfaritions

47

Details for Stage 0 (Attempt 0)

Total Time Across Al Tasks: 2.2 min
Locality Level Summary: Any: 8

Input Size / Records: 500.0 MB / 10242617
Shuffle Write: 201.6 KB / 436,

+ DAG Visualization

+ Show Additional Metrics.

+ Event Timeling

Summary Metrics for 8 Completed Tasks

Metric Min
Duration 198

GG Time 23ms

Input Size / Records 52.0 MB /1064783
Shuffle Write Size / Records 249K8/54
~ Aggregated Metrics by Executor

Executor 1D & Address

driver ip-172-31-19-119.ec2.internal 45169
~ Tasks (8)

Wdexs |ID |Attempt | Status Locality Level
0 0 0 .SUCGESB ANY

1 1 [0 .SUCGEBB ANY
2 2 o 'success ANY

3 8 [0 SUCCESS ANY

4 4 0 | success ANY

H 5 [0 .SUCGEBB ANY

6 0 SUCCESS ANY

7 70 SUCCESS ANY

25th percentile
24s

31ms

64.0MB /1311176

249KB/54

Task Time Total Tasks

3.2 min

Executor ID
drver
diver
I driver
driver
driver
diver

driver

driver

I Scheduler Deiay [0 Executor Computing Tme 1 Getting Result Time

B Task Deserizlzation Tme 1 Shuffle Wiite Time
18 Shufle Read Time W Result Seriaization Time

[localhost
| localhost
| localhost
| localhost
| localhost
| localhost

localhost
| localhost

Failed Tasks

 Launch Time
2019/04/12 02:55:08

2019/04/12 02:55:35

2019/04/12 02:56:00
| 2019/04/12 02:56:24
2019/04/12 02:56:48

2019/04/12 02:57:12
2019/04/12 02:57:37

| 2019/04/12 02:58:01

Modian 75th percentile

s .241

32 ms 42 ms

64.0MB /1311183 640 MB /1311201

250KB/54 260 KB /56
Killod Tasks Succeeded Tasks Input Size / Records
0 8 500.0 MB £ 10242617

Duratn GCTime | Input Size/ Records

%65 96 ms 640MB/ 1311188

s a2ms 640 MB/ 1311201

24 3ims .EIDMBf13|!17

s 37 ms 640 MB/ 1310658

s 32ms .E‘.DMBfﬂH!ﬂﬂ

% 3tms 640 MB/ 1311208

s 31ims B4OMB /1311192

195 28ms S20MB/ 1084798

- Write Time

4ms

3ms

ms

3ms

Gms

3ms

ms

Max
%
96ms

64.0 MB /1311208
26.0KB /56

Shuffle Write Size / Records

2016 KB /436

Shuftle Write Size / Recards

249KB/54
249KB/54
250KB/54
26.0KB/56
249KB/54
249KB/54
250KB/54
26.0KB/56

Blacklisted
false

=i I — — —

0 % B I) 0 i 0 7l 0) o i 2) @) 0 it
A 0255 1240 0256 Aol 257 12 0250

Summary Metrics for 8 Completed Tasks

Metrc Hn Sihperentle Metian Tith percentle Mat

Dt 10 s s s 268

Sonacer Dely §ms ns oms itms ks

ok Deserlaton T ams 5ms ms oms 2

G0Time Zims dim am ams thims

et Sezton Tie ms s ms ms m

Gatng R Time ims Ims s om ms

Fesk Exeouion Memory 08 008 008 008 108

Iput Sz Recards 0B/ 1067 B0/ a1 BOMB 111 BONB/ 13110 B4ONB/ 1311208

St Wit Saz Recorss HAKB 154 KB/ B0KBI5¢ B0KB/5 80KB/5

48

Details for Stage 1 (Attempt 0)

Total Time Across All Tasks: 0.4 5
Locality Level Summary: Any: §
Shuffle Read: 201.6 KB/ 436

* DAG Visualization

b Show Addtional Metrics

} Event Timeline
Summary Metrics for 8 Completed Tasks
Metric Min 25th percentile Median T5th percentile Max
Dusation S0ms. 51 ms sams 50ms &3ms
GC Time: Oms Oms Oms Omg Oms
Shuffle Reed Size / Recards 24.1KB/50 252KB/% 254KB /56 261 KB /56 283KB/5E
~ Aggregated Metrics by Executor
Executor ID & Address Task Time Total Tasks Failed Tasks Killed Tasks Succeeded Tasks | Shuffe Rea Size / Records
driver ip-172-81-19-118.ec2 intermal45169 055 8 0 [} [} 201.6K8 /438
~ Tasks (8)
Index & D Atempt Status Localty Level Executor ID Host Launch Time Duration GC Time Shuffle Read Size / Records
0 f: | SUCCESS ANY driver localhast 2019/04/12 02:38:20 13ms (241KB/56
1 00 SUCCESS ANY driver lecalhost 201870412 02:38:20 f9ms 263KB/50
2 10 SUCCESS driver locahost 201874012 02:58:20 Sams 254KB /56
3 1o SUCCESS ANY driver localhast 2019/04/12 02:58:20 STms (252KB/Sh
4 1o SUCCESS ANY driver localhast 2019/04/12 02:38:20 S8ms ZB1KB/ 56
5 1m0 SUCCESS ANY driver lecalhost 201870412 02:38:20 f2ms 252KB/56
8 " o0 SUCCESS driver localhost 2018/4/12 02:58:20 f0ms 254KB /56
7 1§00 SUCCESS ANY driver localhost 2019/04/12 02:58:20 S8ms (24.1KB/SD
W Scheduler Delay [Executor Computing Tme [Getting Resut Time

I Task Deserialization Tme | Shufle Wrte Time
11 Shuffe Read Time 1 Restit Seraization Time

150 200 20 kil 350 40 1450 0 550
(25820

‘Summary Metrics for 8 Completed Tasks

Metric Min 25th percentlle Median Téth percentlle Max
Duation ‘EDmn ‘51413& lSZrm ‘Eﬂmn ‘e.m
Schsmls(l)shf ‘!ma 4ms lnims Smg ‘ems
Tasszwilkmlinnﬁms Ims dms dme dma Sms

GC Time: Oms ims :ﬂllll Oims Oms
Result Serializztion Time ‘ﬂms ‘ﬂrm lﬂlm ‘hm ‘Ims
Gmngwﬂm . Oms 0ms El]ms Oms 0ms
Feak Exacution Memory 008 008 008 008 008
Shuffla Read Blocked Time Oms ims :ﬂllll Oims ims
Shuifl Reed Size / Records ‘EUKBJH! ‘MKEM l25.¢KE.'Sﬂ ‘E&IKEM ‘MKEM
Sﬁull'allsmma& “ ﬂ.l]ﬁ ﬂi]B 008 ;] (]

49

Executors

Summary
RDD Blocks Storage Memory Disk Used Cores Active Tasks Failed Tasks Complete Tasks Total Tasks Task Time (GC Time) Input Shuffle Read Shuffle Write Blacklisted
Active{i) 0 00B/4346MB 008 1] 0 16 16 32min 039 5243MB 2065 KB 2065 KB 0
Dead(t) 0 00B/D0B 008 0] 0] i (ms {0 mg} 008)] 008 0
Totallt) 0 (0B/4346MB 008 1] 0 16 16 32min [0.34 5243MB 2065 KB 2065 K8]
Executors
Show 20 4 enfries Search:
ExecutoriD Address Status ~ RDDBlocks Storage Memory DiskUsed ~ Cores Active Tasks Failed Tasks Complete Tasks Total Tasks ~ Task Time (GC Time) Input Shuffle Read Shuffle Write
driver ip-172-31-19-110.c2 infernal 45163 Actie 0 00B/436MB 008 1 0] 16 16 32min(03g S243MB 2085KB 2085 K8

Figure 16 DAGs, event timelines, aggregated metrics, details of the tasks per stage and executor

details for the 3/512MB configuration at 1 executor core.

For 2 executor cores

Stage 0

besciFile

map

arlitions

50

Details for Stage 0 (Attempt 0)
Tatal Time Across Al Tasks: 3.1 min
Locallty Level Summary: Any: &

Input Size / Records: 500.1 W8,/ 10242617
Shufle Wite: 201 6 K8/ 426

- DAG Visualzzton

+ Bhow Additional Matrics

+ Event Timeine

Summary Metrics for & Completad Tasks

Metric Min 25th percentile Median 75th percentile Max

Duration 208 _éB 8 25 s 255

G Time 21ms ams Hms Aims [01s

input Size | Reconds 520MB/ 1064783 (640MB/ 1311176 640 MB /1311183 GL0MB /1311201 |64.0MB/ 1311206

Shute Wrie Size / Reconds Z48KB/ 54 20068154 25.0K8/54 26.0KB/ 56 (60K /56

- Aggregated Metrcs by Executor

Exeeutor 1.4 Address Task Time Total Tasks Falled Tasks Killed Tasks Siiceeeded Tasks Input Size / Records Snute Write Size / Records Blackisted
driver p-172-31-18-116.ec2.ntemal: 35345 31 min 8 0 0 8 500.1 MB/ 10242617 2016KB/ 436 false
~ Tasks f8)

Index 4 D Attempt Status Locality Level Executor 10 Host Launch Time Duration GC Time Input Size / Records Write Time Shuie Write Size / Records Ermors
0 ¢ 0 SUCCESS AN driver localhost 2019/0412 03:04:50 25 0ds 610 MB/ 1311193 9ms 200K8/54

1 1o SUCCESS ANY diver localhost 2018/04/12 03.05:25 s Hms 640 MB/ 1311201 ams 200KB/54

2 2 0 SUCCESS ANY driver localhost 2019/04/12 03:05:40 s sms 610 MB /1311176 ams 250K8 150

1 10 SUCCESS ANy driver locahost 2018/04/12 03:06:18 Bs asms 4. MB/ 1310658 ams 250K/ 56

1 0 SUCCESS ANY drver localnost 2019/04/12 03.06:36 s ams GLOMB/ 1311198 Ims (2A9KBI54

5 50 SUCCESS ANY drver locahost 2019/04/12 03,0701 s ms 4008/ 1311205 ams 209K8 /54

[& 0 SUCCESS ANY driver localhost 2018/04/12 03.07:25 %5 ums 610 MB/ 1311192 3ms [250K8/ 5

i T SUCCESS ANY dver locahost 2019/4/12 03:07:48 205 am S20MB/ 1084793 2ms 260K8/ 5%

W Scheduler Detay 10 Executor Computing Tme [Getting Result Time

W Task Deserialization Tma | Shuffie Write Time

[Shuffle Read Time I Resuit Seraization Time

= I ——— — 1IN

0 0 P » I 0 0 1 0) 1 % 0 [0 0 0 0 0
12 Al 035 12 Apr 0305 12 4grl 007 12 A 30

Summary Metrics for 8 Completed Tasks

Metric Min 25t percentla Medan T5thpercentle Mex

Durion s s 245 s)

Schaduer Dlgy [5ms 5ms I fms ms

Tesk Deserlzaton Time ims ims ams oms 7me

GC Time .Eim 3 me 35me Ams 0is

et Seraezton Tine ms s s ims ms

(Getting et Time oms ims oms s ims

Pk Excuton Memory 008 08 008 008 108

Input iz Records SL0MB/ 1064703 BAOMB/ 111176 GAOMB/ 1311188 BB/ 1311201 §40MB/ 1311205

Shuffie Wirta 28/ Recorts B49KB/5 249K8/54 250K8/54 280KB/5% A0KB/56

51

Details for Stage 1 (Attempt 0)
Total Time Across AllTasks: 0.4 5

Locality Level Summary: Any: 8
Shutfle Read: 201.6 KB / 438

- DAG Visualization

S

Pttt
St]
farenky al eebethcmrine s
mtuttrs
e
i

]

oot s el 2

+ Shaw Addtional Metrics
+ Evant Tmalin

Summary Metrics fo & Completed Tasks

Metric Min 25th percentile Median 75th percentile Max
Duration Sims S2ms Sms E0ms 62ms.
GG Time oms oms Qms oms amg
Shuifie Read Size / Records 241KB/50 2K/ 5 254KB/56 21KB/5% 263KB/ 5

~ Aggregated Mtrics by Executor

Executor D4 Address Task Time Total Tasks Falled Tasks Killed Tasks ‘Succeeded Tasks ‘Shuffle Read Size Recards Blacklisted
driver 1p-172-31-10-110.ec2 internal- 35305 055 L] 0 0 8 201.6KB/ 436 false
~ Tasks (§)
Index & o Attempt Status Locality Level Executor D Host Launch Time Duration GC Time: Shutfle Read Size / Records Errors
0 8 0 SUCCESS ANY driver localhost 2019104412 03.:08:08 Bams. 201 KB/ 56
1] 0 SUCCESS ANY driver localhost 20190412 03:08:08 me 263KE/50
2 o 0 SUCCESS ANY driver. localhost 2019/04/12 03:08:08 B0ms. 254 KB/ 56
3 noo SUCCESS ANY driver locahost 2019/04/12 03:08:08 80ms 252KB/ 5
il 2 0 SUCCESS ANY drivar Iocalhost 2019/04012 03:08:08 Sims 261 KB/ 56
5 o0 SUCCESS ANY driver localhost 2019104412 03:08:08 8ms 252KB/ 5
L] i 0 SUCCESS ANY driver locathost 20190412 03:08:08 &0 ms BAKB/ 5
1 B0 SUCCESS ANY drver localhost 2019/0412 D3.08:08 s3ms 3ms 201 KB /50
[Scheduler Delay ! Exeoutor Computing Tme [Getting Resut Time
W Tsk Deserialization Time Shuffla Wrta Time
Shuffle Read Time I Result Seriafzztion Time

driver /lncalhost . . l l

500 560 600 650 700 750 B 50 900 050
(3:00:08

Summary Metrics for 8 Completed Tasks

Metric Min 25th percentile Median T5th percentile Max
Duretion 5ims 5ims 5ims il ms 62ms
Scheduler Delay dms Ams Gms Sms Sms
Task Deserialzation Time 2ms 2ms 2ms 3ms dms
GC Time Oms Oms Oms Oms Ims
Result Seriglization Time Oms 0ms Oms Oms 1ms
Getting Result Time Oms Oms ms ims Oms
Peak Execution Memory 008 008 00B 008 008
Shuffie Reed Blocked Time ims Oms (ms Oms Oms
Shuffls Reed Size / Racords 24.1KB/50 252KB/ 56 25AKB/ 56 26.1KB /56 2B3KB/ 5
Shuffie Remote Reads (L 008 008 008 008
Executors
Summary
ROD Blacks Starage Memary Disk Used Cores Active Tasks Falled Tasks Gomplate Tasks Total Tasks Task Time GG Time) Input Shuffle Read Shutfle Write Blacklisted
Activeft) 0 0.08/4346 M8 008 1) 0 18 18 31 min(0.33) S44MB 2065 KB 2065 K8 0
Dead(d] 0 008/008 008 [[} 0 8 0 1ms [me) 008 00B 008 0
Totallt) 0 0.08/4346MB 008 1) 0 16 16 3.1 min{0.35) S244MB 2065 KB 2065 KB 0
Executors
Show| 20 | entries Saarch:
ExecutoriD Address Status RDD Blocks Storage Memory DiskUsed Cores Active Tasks Falled Tasks Complete Tasks Total Tasks Task Time (GG Time) Input Shuffle Read Shufthe Write
diriver [p-172-31-18-118.c2 Intemal:35385 Actve 0 0.0B/4345MB 008 1 1] 0 16 16 31 min {033} SMAMB 2085KB 2065KB

Figure 17 DAGs, event timelines, aggregated metrics, details of the tasks per stage and executor

details for the 3/512MB configuration at 2 executor cores.

52

For 4 executor cores

Stage Stage 1
taxtFile partifionBy
arlitions.
Details for Stage 0 (Attempt 0)
Total Time Across All Taska: 3.2 min
Locality Level Summary: Any: &
Input Size / Records: 500.1MB/ 10242817
Shuffle Write: 201 6 KB /436
- DAG Visualization
Sl
it
il
sbjgehaiea it]
I_ _llwhrmﬂlll
:
MM?‘]M-.M&MMWE
[
L
Farmsab3
a2
+ Show Addtional Metrics
+ Event Timaline
Summary Metrics for 8 Completed Tasks
Metric Nin
Durgtion 2
GC Time 2ms
Input Size f Records 52.0MB /1064783
Shufle Wrte Size / Records 249KB /54
+ Aggregated Metrics by Executor
Executor 1D 4 Address Task Time
diver. Ip-172-31-19-119.ec2 intemal 42081 32mn
- Tasks [B)
Index & D Attempt Status Locality Level Executor ID
00 SUCCESS ANY cifver
1 T 00 SUCCESS ANY difver
H 2 0 SUCCESS ANY difver
3 30 SUCCESS ANY chiver
4 4 0 SUCCESS ANY ditver
5 5 0 SUCCESS ANY difver
[] 6 0 SUCCESS ANY difver
1 [SUCCESS ANY ciiver

25th percentile
s

ms

64.0MB /1311176
24948/ 51

Total Tasks
8

Host

focalhogt
localhost
localhost
localhost
localhoat
localhast
localhost
localhost

Falled Tasks
0

Launch Time

2019/04/12 03:15:55
20190412 031621
2019/04/12 03:16:46
2019/0412 03:17:10
20190412 031734
20190412 03:17:50
2019/04/12 03:18:24
2019/04/12 031848

Succeeded Tasks

Median
2%s
3rms
G0MB/ 1311193
280KB/ 5

Klled Tasks

0 8
Duration GC Time
%5 67 ms.
25 a8 ms
MUs 36 ms.
s Hms
s 2me
258 Hms
s I me
s 21 ms

53

T4t percentile
25

4 ms
64.0MB/ 1311201
H0K8 /5%

Input Size / Records
5001 MB 10242617

Input Size | Reconds
£4.0M8/ 1311183
64.0M8/ 1311201
64.0MB/ 1311176
64.0M8/ 1310658
61.0M8/ 131118
64.0MB/ 1311205
£4.0M8/ 131182
S2.0MB/ 1064783

Write Time
dms
3ms
ims
ims
3ms
ams
2ms
ims

Max

%5

& ms

64.0 MB /1311205
26.0K8 /5%

Shuffle Write Size / Records Blackisted
2168 /436 falee

Shutfle Write Size / Records
0KB/5
249KB/ 54
2B0KB/ 54
260KB/ 56
209K8/ 54
249K8/ 54
250KB/ 54
260KB/ 56

Erors

I Gcheduler Delay [T Exscutor Computing Tme 1 Gettng Resuk Time
W Task Deserlzation Tme [Shufie Write Time

1 Shutfe Riad Time B Resuit Serialzation Time

|

0 1 Eil k| 4 £0] 1 10 L] 0 10 il] 0 0
12 Apri 03,16 12 Apd 0317 12 Apil 1318 12 Apri 031
Summary Metrics for 8 Completed Tasks
Metric Min 25th percentile Median T6th percentile Mex
Dipztion s Ms s s s
Scheuler Delay dms Sms fme 11ms Sams
T eseilato T ims ms s Jbms s
a0Te s 3t s s s
Result Serialzation Time Oms Oms Oms 1me 2ms
Getting ResultTime oms Oms oms |oms Oms
Peak Exacution Memory 008 o8 008 008 :UJJB
Input Size/ Records S20MB /1064783 B40MB/ 1311176 S40MB/ 1311183 BAOMB /1311201 B40MMB/ 1311205
Shuife Write S22 / Reconds 240KB/81 240KB/8 2B0KB/5 260KB /5 20KB/ 56
Details for Stage 1 (Attempt 0)
Total Time Across All Tasks: 0.5
Localty Level Summary: Any: &
Shufle Read: 201.6 KB/ 426
- DAG Visualzatin
+ Show Addtional Metrica
+ Event Timelne
‘Summary Metrics for 6 Completed Tasks
Metric Min 25th percentile Median 75th parcentile Max
Durton s0ms s5ms Ems eems 0ms
G Time “oms oms oms oms oms
Shuflle Read Size / Records 24.1KB/50 252KB156 (254KB/5E 261K/ 56 26.3KB /56
~ Aggregated Metrics by Executor
Executar 1D 4 Address Task Time Total Tasks Falled Tasks Killed Tasks Succeeded Tasks Shufie Rea Size / Recards Blackisted
drivar Ip-172:31-18-110 502 Intsrmal 42881 053 B 3 [[2016 KB 1436 false
~ Tasks {6)
Index 1 0 Attempt Status Locallty Level Executor D Host Launch Time Duration 6 Time Shutfle Read Size / Records Errors
0 8 0 |SUCCESS ANy diiver ocalhost 2018/04/12 03,1908 0ms 201K8 /% |
1 I |SUCCESS ANY diver locahost 20180412 021908 T8ms 83KBED
2 00 SUCCESS ANY diver localhost 2018/04/12 03:19:08 §Tms (84KB/5
3 o |SUCCESS ANy divar focahhost 201970412 031008 eams 52KE/5
i ” o0 f'au:cess (ANY driver localhost 2019/04/12 03:19:08 Eims 261K/ 5
5 a o SUCCESS ANy dier localhost 201010412 031908 Bims 250 KB/ 5
6 o0 |SUCCESS ANY diver focainost 2019/04/12 021908 61 ms BAKBI5
7 B0 SUCCESS Y diver ocalhost 2019/04/12 03:19:08 Toms 201 K850

54

W Scheduler Delay
W Task Deserialization Time
Shuffle Read Time

Shuffie Writa Time
B Resuit Seriaization

Executor Computing Time

(Getting Resut Time

Time

driver { localhost ﬂl | L\J I
= o m
500 550 600 850 700 750 800 B850 00 950 000
03:19:08 03:14:00

Summary Metrics for 8 Completed Tasks

Metric Min 25th parcentile Median 75th percentile Max

Duration 50 ms 55 ms S5 me Bims Toms

Scheduler Delay ims dms fms Bms ims
Task Deseriglization Time 2mg 2ms 3ms 4ms Sms

GC Time Oms Oms Oms Oms Oms

Result Seriglization Time Oms Oms Oms Oms 1ma

Getting Result Time (ms Oms Oms Oms Oms

Peak Execution Memary 008 008 008 008 008

Shuffie Read Blocked Time Oms Oms Oms Oms 1me

Shuffle Read Size / Racords 24.1KB/50 252KB/ 56 25.4 KB/ 56 26.1KB/56 2B3KB/5E

Shuffle Remote Reads () 008 (Li]:] 008 008
Executors
Summry

ADD Blocks Storage Memory Disk Used Coes Active Tasks Falled Taske Gomplets Taska Total Tesks Task Time (GC Time) Input - Shufe Read Shufie Write Blacklsted

Activef) 0 00B/4MEME 008 1] 0 L] 1 32min {033 S20AME 206.5KB 263 KE 1]

Dead(d) 0 008/008 008 0 0 0 0 0 0 ma (0 ms) 008 008 008 0

Totall) 0 00B/4MEME 008 1] 0 L] 1 32min {033 S20AME 206.5KB 263 KE 1]
Executors

Show| 20 4 entries Search:

Ewecutor D Address Stas ADDBlocks Storage Memory DiskUsed Cores ActiveTeshs FaledTasks Gomplets Tasks Total Tasks ek Time (GG Time) Input ShufleResd Shuffle Witte

rver p172-31-18-110.62 nternal 42081 Aetie 0 00B/iMEMB 008 1 0 0 L] 16 32minf0dg) R4AME 2065KB 65 KB

Figure 18 DAGs, event timelines, aggregated metrics, details of the tasks per stage and executor

details for the 3/512MB configuration at 4 executor cores.

For 8 executor cores

Stage 0

texiFile

Stage 1

partiticnBy

mapPartitions.

55

Details for Stage 0 (Attempt 0)

Total Time Across All Tasks: 2.1 min

Shuffle Write: 201.6 KB/ 436
+ DAG Visualization

E—

+ Show Aaditiona! Metrics

+ Event Timeie
Summary Metrics for & Gompleted Tasks
Matric Min 25th percantile Median T5th parcantile Max
Durstion 198 s 25 s 285
GCTime: Bms aims l4tms sims &ims
Input Size / Records 5208/ 1064783 |64.0MB/ 1311176 |640MB/ 1311183 [640MB/ 1311201 1640 MB/ 1311205
Shufie Wrte Size / Records 200K8/ 54 (IS 25.0KB/5 [B0KB/56 (0KB156
~ Aggregated Metrics by Executor
ExecutoriDa Address Task Time Total Tasks Falled Tasks Killed Tasks Succaeded Tasks Input Size / Records Shufle Wrte Size / Records. Biackiisted
driver 1p-172-31-18-118.6c2memali2103 ‘aimn i3 0 0] 15001 MB/ 10242817 201 6K8 /436 false
~ Tasks (8]
Index & D Attempt Stans Locality Leval Executor 1D Host Launch Time Duration GC Time " Input Size / Records Virite Time ‘Shuffle Write Size / Records Ermors
0 0 0 SUCCESS AN drer ocalnost 201810412 03:31:38 25 &7 ms SOMB/ 1311183 &ms HIKBIS
1 1 SUCCESS ANY diver localhost 2019/04/12 03:32:00 s sims 64018/ 1311201 ams 2A0KB /51
2 z 0 SUCCESS ANY driver localhost 2018/04/12 03:3224 e #ms SLOMB/ 1311176 ims 25.0KB/ 51
3 R SUCCESS ANY dver localhost 2018/04412 03:3240 2 ms |6A0MB /1310688 ams 2.0 KB/ 56
4 i SUCCESS ANY drver locainost 2019/04/12 03:3312 248 arms S40MB/ 1311198 ams 20018/ 54
5 5 SUCCESS, Ay driver localhost 2019/04112 033336 s dime BLOMB 1311205 ams 240KB /51
6 € 0 SUCCESS ANY driver localhost H019/0412 03:34:00 e Bme BLOMB/ 1311192 3ms 250 KB /51
7 L] SUGCESS ANY driver localhost 20190412 033428 185 ams 1520 M8/ 1064783 ams 20KB/5%
W Scheduler Delgy [Executor Computing Tme 1 Getting Resut Tima
W Task Deserigization Tme ~ © Shuffle Write Time:
1 Shutfle Read Time W Resut Serialzation Time
e I
a0 50 0 1 2 0 L] 50 0 10 20 a 40 50 0 10 2 k]
12 Apr 0331 12 Api 033 12 April 0333 12 April 03:34
Summary Metrics for & Completed Tasks
Metric Min 25th percentile Median T5th percentile Max
Duration s M |As s b
Scheduler Delay 4ms Gms 1ims 18ms 45ms
Task Deserialization Time 3ms 4ms fms me 2Bme
GC Time ms 3ms Aimg §ims &7 ms
Result Serialization Time Oms Oms ims ms 2ms
Getting Result Time Oms Oms Ims (3 Oms
Pask Execution Memary 008 008 008 108 008
Input Size | Records 52.0MB /1064733 G40MB/ 1311176 (6RO MB /1311193 £4.0MB/ 1311201 640 MB/ 1311205
Shuffia Wrte Sza / Records 200KB/54 200KB/54 (2B0KB /54 260KB/ 5 260KB/ 56

56

Details for Stage 1 (Attempt 0)
Total Time Across All Tesks: 0.4 3

Locality Level Summary: Any: &
Shutfle Read: 201.6 KB / 436

- DAG Visualization
£
ety
ittt
muchantnre

a0
e

Ptrerba]
lectal Porhidoep b oty oy 28

+ Show Additional Metrics

+ Event Timaline
Summary Metrics for 8 Gompleted Tasks
Metric Min 25th percentile Median 75th percentile Max
Duraton S2ms S8ms Sms S5ms Sms
GC Time Oms Oms Oms Oms 3ms
Shuffie Read Size / Records. 24.1KB/50 252KB /56 254 KB /56 261KB /56 263KB/ 56
~ Aggregated Metrics by Executor
Executor D 4 Address Task Time Total Tasks Falled Tasks. Killed Tasks Succeeded Tasks Shutfle Read Size | Records Blacklisted
driver Ip-172-31-19-118.ec2 internal:42103 058 8 0 0 8 2016 KB/ 436 false
~ Tasks (§)
Index 4 (1] Attempt Status Locality Level Executor ID Host Launch Time Duration GC Time Shutfle Read Size / Records Errors
0 8 0 SUCCESS ANY driver localhiost 2019/04/12 03:34:42 3ms 201KB /56
1 L] 0 SUCCESS ANY driver localhost 2019/04/12 03:34:42 esms 263KB/50
2 w0 SUCCESS ANY driver localhiost 2019/04/12 03:34:42 62ms 254KB /56
3 1" [SUCCESS ANY driver localhost 2019/04/12 03:34:42 sms 252KB/56
q 2 0 SUCCESS ANY driver localhiost 2019/04/12 03:34:42 62ms 261KB /56
5 B 0 SUCCESS ANY drver localhost 2019/04/12 03:34:42 63ms 25218 /56
1] “ 0 SUCCESS ANY driver localhost 2019/04/12 03:34:42 61ms 254 KB /56
7 1% 0 SUCCESS ANY drivar localhost 2019/04/12 03:34:43 B0ms 3ms 24148 /50
W Scheduler Delay Executor Computing Time (Getting Result Time
B Task Deseriglization Time Shuffle Write Time
Shuffle Read Tima B Result Seriaization Time
driver / localhost . - . I .
850 700 750 [850 a0 50 0o 150 100
100:34:42 03:34:43
Summary Metrics for 8 Completed Tasks
Metric Min 25th percentile Median 75th percentile Max
Duration 52ms 53ms 5dms 55ms 58 ms
Schaduler Delay 2ms dms Sms Gms Tms
Task Deseriglization Time 2ms 3ms ims 3ms 5ms
GC Time Oms oms Oms Oms Ims
Result Serialization Time ms Oms Oms Oms 1ms
Getting Result Tme Oms Oms Oms Oms Oms
Paak Execution Memary 0o0s ()] 008 008 0B
Shuffle Read Blocked Time Oms ims Oms Oms Oms
Shuifle Read Size / Records 241KB/50 25.2KB /56 254 KB/ 56 2B1KB/ 56 263KB /56
Shuffle Remate Reads 008 0o 008 008 008
Executors
Summary
RDD Blocks Storage Memory Disk Used Cores Active Tasks Falled Tasks Complete Tasks Total Tasks Task Time (GG Time) Input Shuftle Read Shuffle Write Blacklisted
Active(t) 0 0.0B/4345MB 008 1 o] 16 16 3.1 min{0.45) 5244 MB 2065 KB 2065KB 0
Dead(0) 0 00B/0DB 008 0 0]] 0 0ms (0 ms) 008 (2] 008 0
Totalfl) 0 0.0B/4345MB 008 1]] 16 16 31 min .43} 5244 MB 2065 KB 2065KB]
Executors
Show| 20 #|entries Search
Executor [0 Address Status RDD Blocks Storage Memory Disk Used Cores Active Tasks Falled Tasks Complate Tasks Total Tasks Task Time (GG Time) Input Shufle Read Shuffle Write
driver Ip-172-31-18-119 c2 intemal:42 103 Active 1] 0.0B/4348MB 008 1 0 0 16 16 3.1 min (0.4 5 S244AMB 20B5KB 2065KB

Figure 19 DAGs, event timelines, aggregated metrics, details of the tasks per stage and executor

details for the 3/512MB configuration at 8 executor cores.

57

Figures 16 to 19 are the Spark Web Ul results obtained for the 3/512MB pair relative to the
variation in the number of executor cores as listed in Table 4. Included in the figures are the
DAG, the median durations of stages 0 and 1 along with information related to the tasks such as
the scheduler delay, the event timelines for each stage and the task duration as shown in the
executors summary screenshot in Figure 19. The actions performed in each stage of a job differ
across many applications. In the case of this project however, stage 0 pertains to the reading of
the text file and the reduction of the file, which involves the addition of all the words as per the
algorithm in Appendix A. Stage 1 pertains to the partitioning of the text file, or shuffling,
followed by the mapping as a result of the partitioning prior, where the mapping process is

associated with the splitting of the words in the document at the whitespaces.

58

By tabulating the findings above:

Table 6 3/512MB configuration duration details for varying executor cores.

3/512MB configuration
Executor Stage 0 Stage 1 Task
cores Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 24 10 52 4 3.2
2 24 6 54 5 3.1
4 25 6 55 5 3.2
8 24 10 54 5 3.1

From the table above, it was shown that the duration in stage O ranged between 19 seconds and
20 seconds, whereas the scheduler delay decreased from Sms to 4ms as the cores increased. The
task duration was also observed to vary between 3.1 minutes and 3.2 minutes, all of which are

equivalent to the execution times listed for this configuration in Table 4.

59

The table below summarizes the Spark Web UI results for the 3/1GB configuration listed in

Table 4.

Table 7 3/1GB configuration duration details for varying executor cores.

3/1GB configuration
Executor Stage 0 Stage 1 Task
cores Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 24 5 55 4 6.4
2 24 6 54 4 6.2
4 24 5 56 4 6.3
8 24 4 53 3 6.4

The table above shows a consistency in the median duration of stage 0 and fluctuations of the
median duration in stage 1, concluding with a decrease from 56ms to 53ms. It was also observed
that a low value of task duration was experienced in the case where the number of executor cores

was 2 and in that same scenario, a long scheduler delay occurred.

60

A table consolidating the values from the information detailed in Table 4 for the 3/2GB

configuration is as shown in Table 8.

Table 8 3/2GB configuration duration details for varying executor cores.

3/2GB configuration
Executor Stage 0 Stage 1 Task
cores Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 25 5 53 3 13
2 24 5 53 3 12
4 24 4 53 3 13
8 24 4 53 3 13

The table above showed decreases in the median duration and in the median scheduler delay for
stage 0. The result also demonstrated consistencies in the median duration and median scheduler
delay in stage 1. It as additionally observed that the second configuration, where the number of

executor cores was 2, was the lowest in comparison with the other configurations.

61

3.5.3.2 Executor memory

This section lists the tabulated results obtained for the configuration in Table 5.

The table below comprises of the duration and scheduler delay for each executor memory

configuration.

Table 9 3/512MB configuration duration details for varying executor memories.

3/512MB configuration
Executor Stage 0 Stage 1 Task
memory (GB) Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 25 6 54 5 3.3
2 25 7 54 6 3.2
4 25 10 54 6 3.2
8 24 8 55 5 32

The table above demonstrated observations of threefold. The first observation being the decrease

of the stage 0 with respect to the median duration, the consistency in the overall task duration

62

and the increase of the median duration for stage 1 as a result of the increase in the executor

memory.

The table below depicts the duration of each stage and the overall duration of a task for the

3/1GB configuration in Table 5.

Table 10 3/1GB configuration duration details for varying executor memories.

3/1GB configuration
Executor Stage 0 Stage 1 Task
memory (GB) Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 25 5 54 4 6.6
2 25 6 54 3 6.5
4 24 5 57 4 6.4
8 24 5 55 4 6.2

According to the table above, the duration of stage 0 decreased as the executor memory
increased and the task duration corresponding to each configuration of the executor memory

inversely decreased as a result of the usage of a larger text file.

63

The table below lists the results in a tabulated manner for the configuration listed in Table 5.

Table 11 3/2GB configuration duration details for varying executor memories.

3/2GB configuration
Executor Stage 0 Stage 1 Task
memory (GB) Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 24 4 53 3 13
2 24 4 53 3 13
4 24 4 53 3 13
8 24 4 53 3 13

The table above demonstrated consistencies in both the median duration and the scheduler delay
of stage 0, similarly with stage 1 and in the task duration. For this particular scenario, no

fluctuations in the data were observed.

64

3.5.4 Summarization of the results for the 7 nodes configuration

This section consists of conclusions and summarizations derived from the end result achieved for

the 7 nodes configuration in Tables 4 and 5.

3.5.4.1 Executor cores

This section details the summaries acquired for the results of the configurations listed in Table 4.

7/512MB

Table 4 demonstrated a continuous decrease in the average utilization as the number of executor
cores increased and a newly attained low average utilization value, 4% after 2 executor cores. It
was also observed that the decrease was larger than the average utilization decrease in the 3/2GB

pair. The results additionally indicated a fluctuation in the execution time.

7/1GB
Table 4 indicated a constant average utilization value across all number of executor cores and a
newly attained average utilization value of 3%. The execution time also remained within the

same range as the 3/1GB pair, indicating a miniscule difference between both configurations.

712GB

Table 4 demonstrated an increase in the average utilization for the 7/2GB pair compared to the

values achieved for the 7/512MB and 7/1GB pairs, exhibiting observations of twofold. The first

65

being a limit to how much the average utilization could decrease to relative to the number of
nodes and file size and the second being the desire to conduct further research into how many
more executor cores will cause an increase in the utilization. It was also noted that the execution
time remained within the same range as the 3/2GB pair however, with respect to the utilization,

there was a notable improvement.

3.5.4.2 Executor memory

The graphs below illustrate the Ganglia graphs obtained for Table 5.

7/512MB

Table 5 demonstrated a consistency in the average utilization value from executor memories
1GB to 4GB and a decrease to 2% for 8GB executor memory, indicating a decrease in the
average utilization in comparison with the ones attained for the 3/512MB pair.

7/1GB

Table S showed that the cluster average utilization remained constant at 3%. It was noted that,
by increasing the file size to 1GB and the executor memory from 1GB to 8GB, the average
utilization increased from 2% when the configuration was 7/512MB for 8GB executor memory

to 3% when the configuration was changed to 7/1GB.

7/2GB
Table 5 demonstrated a consistency in the average utilization value across all executor memories

and an increase in the execution times in contrast with the 3/2GB pair. The results also indicated

66

a better average utilization across all executor memories compared to Table 4, where the average

utilization increased for 8 executor cores for the same 7/2GB pair. Furthermore, this led to the

observation that increasing the executor memories compared to increasing the number of

executor cores would cause a decrease in the average utilization.

3.5.5 Summary of the Spark Web UI results for the 7 nodes configuration

This section contains the encapsulated results for the 7 nodes configuration listed in Tables 4

and 5 from the Spark Web UL

3.5.5.1 Executor cores

This section consists of the results for the configurations in Table 4.

The table below lists the durations and delays recorded for each stage when the configuration

was 7/512MB.

67

Table 12 7/512MB configuration duration details for varying executor cores.

7/512MB configuration
Executor Stage 0 Stage 1 Task
cores Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 25 9 54 5 3.2
2 25 9 54 5 3.3
4 26 13 54 5 34
8 24 8 54 6 32

The above illustrated a consistency in the duration of stage 1 and an increase in the scheduler
delay of stage 1. Additionally, it was worth nothing that the highest number of executor cores, 8§,
experienced the lowest task duration among the rest, where the longest task duration was when

the number of executor cores was 4.

68

The table below encapsulates all the durations of the stages, task and scheduler delay.

Table 13 7/1GB configuration duration details for varying executor cores.

7/1GB configuration

Executor Stage 0 Stage 1 Task
cores Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 24 5 56 4 6.2
2 25 6 54 3 6.5
4 24 7 58 3 6.4
8 25 5 54 4 6.4

The table above showed that the third configuration, where the number of executor cores was
varied to 4, the longest scheduler delay was experienced, similarly with the median duration of
the same configuration for stage 1. It was also observed that the task duration of the case when

the number of executor cores was 2 was the longest and the task duration when the number of

executor cores was 1 was the lowest among all the other configurations.

69

Below is a table listing the durations of each stage, as well as the scheduler delay and task

duration.

Table 14 7/2GB configuration duration details for varying executor cores.

7/2GB configuration
Executor Stage 0 Stage 1 Task
cores Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 24 4 55 3 13
2 24 4 54 3 12
4 24 5 55 3 13
8 24 4 53 3 13

The table above illustrated a consistency in the duration of stage 0 and in the scheduler delay as a

result of increasing the file size to 2GB.

70

3.5.5.2 Executor memory

This section details the results respective to Table 5.

The table listed below provides the duration of each stage, the task done and the delay of the

scheduler.

Table 15 7/512MB configuration duration details for varying executor memories.

7/512MB configuration
Executor Stage 0 Stage 1 Task
memory (GB) Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 25 9 57 5 34
2 25 9 54 5 34
4 24 7 51 4 3.2
8 24 7 53 4 3.1

71

The table above showed decreases overall, with the exception of the median duration of stage 1.
By comparing the results of the above with the results obtained in Table 9, the task duration

experienced a minimum value of 3.1 when the number of nodes was increased to 7.

The table below shows the duration of the task, of each stage and the delay experienced by the

scheduler per stage.

Table 16 7/1GB configuration duration details for varying executor memories.

7/1GB configuration
Executor Stage 0 Stage 1 Task
memory (GB) Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 24 5 55 4 6.4
2 25 5 54 4 6.5
4 25 6 55 4 6.4
8 24 5 55 4 6.4

The above demonstrated a constant scheduler delay in stage 1. It was also noted that, when the

executor memory was 2GB, the longest task duration occurred and dropped back to 6.4 minutes

72

for the rest of the configurations. However, by comparing the above results with the ones
obtained in Table 10, Table 10 was shown to have a maximum value of 6.6 minutes with respect
to the task duration when the executor memory was 1GB, whereas for the above, a task duration
of 6.4 minutes was attained. It is also worth noting that the 8GB configuration in Table 10

experienced the minimum value between Tables 10 and 16 in spite of the increase in the nodes.

The table below details the duration of each stage along with the scheduler delays.

Table 17 7/2GB configuration duration details for varying executor memories.

7/2GB configuration
Executor Stage 0 Stage 1 Task
memory (GB) Duration
Median Median Median Median
(minutes)
duration (s) scheduler duration (ms) scheduler
delay (ms) delay (ms)
1 24 4 53 2 13
2 24 4 60 3 12
4 24 4 53 2 13
8 24 4 53 3 12

73

The table above showed a consistency in the scheduler delay and median duration of stage 0. The
above table also indicated an increase in the median duration of stage 1, namely, when the
executor memory was 2GB in comparison to the same entry on Table 14 and a decrease in the

task duration when the executor memory was 8 GB compared to Table 14.

3.6 Chapter summary

This chapter summarized the findings in the form of sample Ganglia graphs and Spark Web UI
metrics for the 3/512MB pair listed in Tables 4 and 5 along with observations derived for each
configuration per table. The results indicated that by increasing the executor memory and
keeping the executor cores constant, an increase in the execution time for the 3 nodes pairs was
observed while on the other hand, a decrease in the average utilization for the 7 nodes pairs was
exhibited. It was also shown for the 7 nodes pairs that as the executor memory was increased, the
execution times increased compared to the pairs stated in Table 4. In addition to the consistency
of the median durations of both stages 0 and 1 for the Spark Web UI results with respect to the
range, the end results listed in Table 4 and S, in a comparative perspective, indicated that
minimal improvements in the execution times per pair were observed for certain execution
memory and core values and a significant improvement in the average utilization. Additionally,
it was shown that increasing the number of executor cores or executor memory for specific
workloads demonstrated less impact on the overall performance and most importantly, an
introduction to a limit to how much further the average utilization or execution time, or both,
could change respective to the number of executor cores and executor memory per workload as

indicated in the trends of Tables 4 and 5. Expounding on this, the results in this chapter brought

74

several interesting insights, as well as prompts for further work, which will be detailed in the

following chapter.

75

Chapter 4

Discussions

The sample Ganglia graphs obtained above demonstrated the usage statistics in terms of CPU,
network, memory and load, where the memory utilization remained fairly consistent across the
configurations, as expected per the features of Spark, where memory utilization is low due to the
in-memory processing feature, further reinforced by the durations recorded in Tables 6 to 17,
where the delays did not exceed 10ms and per the details illustrated in the Spark Web UI results

for both Tables 4 and 5.

Also recorded in the results section were the execution times and average utilization values of
each configuration for each workload, where the data propagation delay was not factored into the
resulting execution time due to the prior upload of the files to the cloud. In accordance with the
results obtained, it was observed that, when the number of executor cores was at the default
value and the executor memory was varied from 1GB to 8GB, an average utilization of 2%,
which was lower than the average utilization value of 3% in Table 4, was achieved. In Table 5,
it was also shown that, when the number of nodes was changed to 7, several increases and
decreases were observed with respect to the execution time, similarly for the 3 nodes
configuration. Another observation relates to the increase in the average utilization time for the 3
nodes configuration when the executor memory was varied while the number of executor cores is
1. A possible reason behind the miniscule improvement in performance, with respect to the

execution time, and simultaneously, degradation in performance, arises from the default

76

configuration of the spark cluster, static allocation, instead of dynamic allocation, where the
resources are returned to the cluster in the event of nonuse [33]. Another reason behind the
decrease in the performance lies in the cluster type. As observed in Table 4, the execution times
across each configuration fluctuated. Notably, there was an increase in the execution time when
the configuration was 2 executor cores for 7/512MB to the next and following that, a decrease
was observed as well. Similarly, when the executor memory was varied across the 1GB to 8GB
range, while the execution time dropped for the 7 nodes configuration, the execution time
increased for the 3 nodes configuration. Although, in spite of the fluctuations in the execution
times for all the configurations, the average utilization dropped significantly in Table S in

contrast with Table 4.

77

Chapter 5

Conclusions and Future Work

In contrast to the results provided in the related ventures conducted on the subject of
performance evaluation of big data applications using Spark, the results of this project presented
several conclusions. One of the conclusions drawn from the observations of the results included
how a specific configuration of executor core and executor memory for a pair differs among
others and provides the best execution time. For example, by referring to Table 4, it was shown
that the highest number of executor cores, 8, provided the best execution time for the 3/512MB
pair, whereas for the 3/1GB and 3/2GB pairs, the execution time worsened for higher number of
executor cores. For the 7 nodes configuration on the other hand, it was observed that the lowest
execution time was obtained for the case where the number of executor cores was 8 for 7/512MB
and conversely, 1 and 2 executor cores provided the lowest execution time for the 7/1GB and
7/2GB pair. This observation illustrated that it was unnecessary to use higher configurations for
certain file sizes and node configurations and that, conclusively, the best results were attained for
lower file sizes that have a higher number of executor cores while maintaining the executor
memory at a default value, 1GB. Contrary to this conclusion, it was shown that for larger file
sizes, a low number of executor cores provided low execution times. Additionally, with respect
to the variation of the executor memory in Table 5, it was observed that higher executor memory
provided better execution time across all configurations, but to a certain extent. Elaborating on
this, by referring to Table 5, for the pairs 3/512MB, 3/1GB, 3/2GB, 7/512MB and 7/1GB, the

highest number of executor memory provided the best results in terms of execution time and in

78

some cases, the best average utilization, as was observed for the 3/512MB and 7/512MB.
However, for 7/2GB, it was shown that a low value of executor memory in comparison provided
the best execution time. Furthermore, by comparing the changes between the execution time
respective to a certain pair for varying executor memory in Table 5, such as 3/IGB as an
example, the change in the execution time when the executor memory was increased from 1GB
to 2GB was approximately 5 seconds, whereas a decrease of about 9 seconds was observed
during the increase of executor cores from 1 to 2. This observation thus presented another
conclusion — the changes made to the executor memory had less of an impact in comparison with
the changes made to the number of executor cores. The aforementioned conclusions led to the
notion that the execution time and average utilization of a pair depends on the value of certain
parameters, where the selection of the number of executor cores or executor memory would
provide the best results in terms of execution time and average utilization for a pair, all of which
can be used as a form of guidance for developers and researchers to optimize the performance of
a WordCount application, since the subjection of another big data application can present
different results, by appropriately selecting the parameters respective to the observations made.
However, the selection of the configuration parameters in this project facilitated the analysis of
the application on a small scale, hence, as part of the future directions in order to further improve
the results obtained and to draft extensive conclusions, the file size range respective to the text
file to be analyzed can be increased so that the analysis will transform to that of a large scale one,
as will be discussed in the Future Work section. As a whole, these conclusions, along with the
analysis of a single big data application as opposed to the analysis of many listed in the literature
works, are what sets this project apart from the related ventures done on performance evaluation

using Apache Spark.

79

Overall, this project demonstrated a form of tradeoff between the execution time and average
utilization, where an increase in the number of nodes and executor memory provided better
average utilization compared to a lower number of nodes and different executor core values and
longer execution times. It was further observed that altering the executor memory had less of an
effect on the overall performance of the application—the execution time for some configurations
decreased by less than 10 seconds approximately and the average utilization per configuration
decreased by about 1% to 2%. The configurations facilitated the indication that the performance
was dependent on the selection of the configurations chosen for the parameters for a pair.
However, it is through these configurations that a minimal average utilization of 2% was
attained. This observation and conclusion prompts future directions in order to achieve better

results by pursuing a variety of routes and options, as shown in the following section.

5.1 Future Work

In order to further improve the results obtained in Tables 4 and 5, several approaches can be
attempted as a means of future directions for this project, as shown below:

e Since the default configuration of a cluster is set to static allocation, dynamic allocation is
an option worth exploring for the purpose of observing any significant changes in the
performance as opposed to minute ones.

e A different hardware configuration of the cluster apart from m3.xlarge can be attempted
to view any improvements on the end result, since various clusters have different
numbers of virtual CPUs and could potentially lead to better performance by changing

the cluster configuration.

80

e Broader range of configuration parameters with respect to the file size, for example, some
file size configurations can be in the form of 4GB, 8GB and 12GB.
e Calibrating a degree of parallelism per configuration may lead to a performance
improvement.

e Incorporating partitions.
Through the use of one, more or all of the approaches above, the performance can improve in
comparison. [34] briefly discussed how the number of partitions per core can imply a speedup
depending on the application, most in particular when the application involves intensive
shuffling. Additionally, the parallelism configuration parameter = of Spark,
spark.default.parallelism, which involves the specific number of tasks to be used in the event that
a partition parameter is unspecified, can be used to further tune Spark in a beneficial manner to
provide improved results [35]. However, determining the parallelism value can prove to be
difficult to determine, as discussed in [35]. Another route that can be taken relates to the change
in the cluster configuration, as different clusters have different amounts of virtual CPUs and
network performance rates. In the case of this project, a cluster of type m3.xlarge was used,
consisting of 4 virtual CPUs [36], which is an outdated cluster. To further improve the
performance, a cluster of type m5.2xlarge for example can be used, which consists of 8 virtual
CPUs|[37]. In spite of a potential performance change by modifying the cluster to be used, a
higher memory utilization rate can be obtained as a result of the m5.2xlarge having a memory of
32GB, which is slightly more than twice the amount than that of the m3.xlarge cluster.
As observed above, several expenses can be acquired depending on the option taken. In this
scenario, the vital question worth delving into is the following - which option will provide better

results despite the tradeoffs present? Is it worth it to trade the memory utilization for better

81

performance? Or is it worth consuming time to determine the optimal parallelism parameter that
would provide heightened statistics in the result? The answers to these questions form the future

directions of this project.

82

Appendix A Python WordCount algorithm [38]

import sys
from operator import add

from pyspark import SparkConf, SparkContext

conf = (SparkConf()
.setMaster("local")
.setAppName("WordCounter")
.set("spark.executor.memory", “2g"))

sc = SparkContext(conf = conf)

print("Launch App..")

if name =="_ main_":

print("Initiating main..")

inputFile = "s3://jaycabucket/data/512.txt"
print("Counting words in ", inputFile)

lines = sc.textFile(inputFile)

lines_nonempty = lines.filter(lambda x: len(x) > 0)

counts = lines_nonempty.flatMap(lambda x: x.split(" ")) \

.map(lambda x: (x, 1)) \

83

reduceByKey(add)
output = counts.collect()
for (word, count) in output:

print("%s: %i" % (word, count))

sc.stop()

84

Bibliography

[1] N. Nguyen, M. M. H. Khan, Y. Albayram, and K. Wang. "Understanding the influence of
configuration settings: An execution model-driven framework for apache spark platform." In
2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pp. 802-807. IEEE,
2017.

[2] D. Chettiar, A. Das, O. Das: Performance Modeling of Cloud-based Web Systems to
Estimate Response Time Distribution. Workshop on Software Architectures for Adaptive
Autonomous Systems (SAAAS 2016) colocated with ISEC 2016, Goa, India, February 2016, pp.
41-46.

[3] O. Das, A. Das: Estimating Response Time Percentiles of Cloud-based Tiered Web
Applications in presence of VM failures. 12th International ACM SIGSOFT Conference on the
Quality of Software Architectures (QoSA 2016), Venice, Italy, April 2016, pp. 1-10.

[4] A. Das and O. Das: Effect Of Human Learning On Performance Of Cloud Applications. 10th
IEEE International Conference on Cloud Computing (CLOUD 2017), Hawaii, USA, June 2017,
pp. 778-781.

[5] I. Mavridis and H. Karatza, “Performance evaluation of cloud-based log file analysis with
Apache Hadoop and Apache Spark,” Journal of Systems and Software, vol. 125, pp. 133-151,
2017.

[6] J. Veiga, R. R. Exposito, X. C. Pardo, G. L. Taboada, and J. Tourifio, “Performance
evaluation of big data frameworks for large-scale data analytics,” 2016 IEEE International

Conference on Big Data (Big Data), pp. 424-431, Dec. 2016.

85

[7] O. Yildiz and S. Ibrahim, “On the Performance of Spark on HPC Systems: Towards a
Complete Picture,” Supercomputing Frontiers Lecture Notes in Computer Science, pp. 70—89,
2018.

[8] L. Liu, “Performance comparison by running benchmarks on Hadoop, Spark, and HAMR,”
UDSpace Home, 2015. [Online]. Available: http://udspace.udel.edu/handle/19716/17628.
[Accessed: 15-Apr-2019].

[9] D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou, “Improving Performance of Heterogeneous
MapReduce Clusters with Adaptive Task Tuning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 3, pp. 774-786, Mar. 2017.

[10] “What is Hadoop?,” SAS. [Online]. Available: https://www.sas.com/en_ca/insights/big-
data/hadoop.html. [Accessed: 15-Apr-2019].

[11] “Apache Hadoop,” Apache Hadoop. [Online]. Available: https://hadoop.apache.org/.
[Accessed: 15-Apr-2019].

[12] Apache Hive TM. [Online]. Available: https://hive.apache.org/. [Accessed: 15-Apr-2019].
[13] “Apache Oozie Workflow Scheduler for Hadoop,” Oozie, 14-Feb-2019. [Online].
Available: https://oozie.apache.org/. [Accessed: 15-Apr-2019].

[14] A. Oussous , F.-Z. Benjelloun , A. A. Lahcen, and S. Belfkih, “Big Data technologies: A
survey,” Journal of King Saud University - Computer and Information Sciences, vol. 30, no. 4,
pp- 431-448, Jun. 2017.

[15] N. C. TOKALA, “ADVANTAGES OF HADOOP,” International Journal of Scientific &
Engineering Research, vol. 6, no. 1, pp. 2134-2135, Jan. 2015.

[16] A. Talwalkar, “HadoopT - breaking the scalability limits of Hadoop,” Thesis, Rochester

Institute of Technology, 2011. [Online]. Available:

86

[https://scholarworks.rit.edu/cgi/viewcontent.cgi?referer=https://www.google.ca/&httpsredir=1&

article=1470&context=theses]. [Accessed: 15-Apr-2019].

[17] V. N. Inukollu, S. Arsi, and S. R. Ravuri, “Security Issues Associated with Big Data in
Cloud Computing,” International Journal of Network Security & Its Applications, vol. 6, no. 3,
pp- 45-56, May 2014.

[18] M. A. Memon, S. Soomro, A. K. Jumani, and M. A. Kartio, “Big Data Analytics and Its
Applications,” ResearchGate, vol. 1, no. 1, pp. 45-54, 2017.

[19] “Apache Spark™ - Unified Analytics Engine for Big Data,” Apache Spark™ - Unified
Analytics Engine for Big Data. [Online]. Available: https://spark.apache.org/. [Accessed: 15-
Apr-2019].

[20] R. Guo, Y. Zhao, Q. Zou, X. Fang, and S. Peng, “Bioinformatics applications on Apache
Spark,” GigaScience, pp. 1-10, Aug. 2018.

[21] Z. Han and Y. Zhang, “Spark: A Big Data Processing Platform Based on Memory
Computing,” 2015 Seventh International Symposium on Parallel Architectures, Algorithms and
Programming (PAAP), pp. 172-176, Dec. 2015.

[22] Powered By Spark | Apache Spark. [Online]. Available: https://spark.apache.org/powered-
by.html. [Accessed: 15-Apr-2019].

[23] S. Tang, B. He, C. Yu, Y. Li, and K. Li, “A Survey on Spark Ecosystem for Big Data
Processing,” pp. 1-21, Nov. 2018.

[24] A. G. Shoro and T. R. Soomro, “Big Data Analysis: Ap Spark Perspective,” Global Journal
of Computer Science and Technology: C Software & Data Engineering, vol. 5, no. 1, pp. 7-14,

2015.

87

[25] “Cluster Mode Overview,” Cluster Mode Overview - Spark 2.4.2 Documentation. [Online].
Available: https://spark.apache.org/docs/latest/cluster-overview.html. [Accessed: 06-May-2019].
[26] “Cluster Mode Overview,” Cluster Mode Overview - Spark 2.4.1 Documentation. [Online].
Available: https://spark.apache.org/docs/latest/cluster-overview.html. [Accessed: 15-Apr-2019].
[27] “Ganglia Monitoring System,” Ganglia Monitoring System RSS. [Online]. Available:
http://ganglia.sourceforge.net/. [Accessed: 15-Apr-2019].

[28] Ganglia:: ClusterUY Grid Report. [Online]. Available:
https://www.cluster.uy/ganglia/?cs=&ce=&m=load_one&tab=m&vn=&hide-hf=false.
[Accessed: 15-Apr-2019].

[29] M. Massie, B. Li, B. Nicholes, and V. Vuksan, Monitoring with Ganglia, 1st ed. Sebastopol,
CA: OReilly, 2012, pp. 181-184.

[30] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed monitoring system:
design, implementation, and experience,” Parallel Computing, vol. 30, no. 7, pp. 817-840, 2004.
[31] “What is AWS? - Amazon Web Services,” Amazon. [Online]. Available:
https://aws.amazon.com/what-is-aws/. [Accessed: 15-Apr-2019].

[32] “Configure Spark,” Amazon. [Online]. Available:
https://docs.aws.amazon.com/emrt/latest/ReleaseGuide/emr-spark-configure.html. [Accessed: 15-
Apr-2019].

[33] “Job Scheduling,” Job Scheduling - Spark 2.4.1 Documentation. [Online]. Available:
https://spark.apache.org/docs/latest/job-scheduling.html. [Accessed: 15-Apr-2019].

[34] R. Tous, A. Gounaris, C. Tripiana, J. Torres, S. Girona, E. Ayguade, J. Labarta, Y. Becerra,

D. Carrera, and M. Valero, “Spark deployment and performance evaluation on the MareNostrum

88

supercomputer,” 2015 IEEE International Conference on Big Data (Big Data), pp. 299-306,
2015.

[35] A. K. Paul, W. Zhuang, L. Xu, M. Li, M. M. Rafique, and A. R. Butt, “CHOPPER:
Optimizing Data Partitioning for In-memory Data Analytics Frameworks,” 2016 IEEE
International Conference on Cluster Computing (CLUSTER), pp.110-119, 2016.

[36] “Previous Generation Instances,” Amazon. [Online]. Available:
https://aws.amazon.com/ec2/previous-generation/. [Accessed: 15-Apr-2019].

[37] “Amazon EC2 M5 Instances - general purpose compute workloads,” Amazon. [Online].
Available: https://aws.amazon.com/ec2/instance-types/m5/. [Accessed: 15-Apr-2019].

[38] Aliga8or, “Aliga8or/csds-spark-emr,” GitHub, 13-Apr-2017. [Online]. Available:

https://github.com/Aliga8or/csds-spark-emr. [Accessed: 21-Apr-2019].

89

90

