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Abstract

Blind Source Separation in the Analysis of Electrocardiogram
Pre-shock Waveforms During Ventricular Fibrillation

Marzieh Rasooli
Master of Applied Science, 2013

Electrical and Computer Engineering
Ryerson University

Ventricular fibrillation (VF) is a lethal cardiac arrhythmia and
electric shock is the only available treatment option for it. Existing
works focus on predicting shock success to help improve cardiac re-
suscitation outcomes. It is desirable to extract information from the
electrograms that relates to the current theories on VF mechanism
and associate them to the prediction of shock outcomes. To this
effect this study used a unique human VF database to evaluate the
independent sources (ISs) extracted from Blind Source Separation
approach (BSS) and a correlation of 88% was observed between the
dominant ISs extracted using a single lead ECG with the number of
rotors (i.e., sources identified using multi-channel spatio-temporal
phase maps) supporting the hypothesis that the ISs are associated
with the rotors. In predicting the shock outcomes using features ex-
tracted from the ISs for the given database, we achieved a classifica-
tion accuracy of 68%.
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Chapter 1

Introduction

CI rculation of blood in the human body replenishes nutrients
and supplies oxygen to vital organs which are essential for sus-

taining life. The rhythmic contraction and expansion of the cardiac
muscle and sequential opening and closing of valves in the human
heart governs the circulation of blood. The human heart acts as an
versatile electromechical pump that regulates the oxygenated blood
flow depending on the needs of the human body. When this pump
behaves erratically due to pathophysiological conditions, the blood
supply to the organs are compromised leading to serious medical
conditions called cardiac arrhythmias. Of the cardiac arrhythmias,
ventricular arrhythmias are a subclass which originate due to the im-
proper functioning or uncoordinated contractions of the lower cham-
bers of the heart (called ventricles). Ventricular Tachycardia (VT)
and ventricular fibrillation (VF) are two well known types of ven-
tricular arrhythmias. VF is the most lethal of the cardiac arrhyth-
mias and within minutes of onset, if untreated will lead to sudden
cardiac death (SCD). Annually about 300,000 SCDs occur in North
America (45,000 of them are Canadians) most of which are VF re-
lated [2]. Over the last several decades, researchers from various
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fields have attempted to understand VF in order to arrive at optimal
treatment options to increase survival rates, however the mechanism
behind VF is not completely known. Presently the only available
treatment option for VF is defibrillation by applying electric shock,
which is also not always successful. Specific to this thesis, there
have been various engineering methods applied to perform signal
processing of the electrical activity of the human heart during VF in
order to characterize VF for both mechanistic insights and therapy.
The following sections will discuss briefly cardiac electrical activity
in the context of VF which is the focus of this thesis, followed by
related previous works, and lead to the motivation and objectives of
the proposed work.

1.1 Cardiac Electrical Activity

1.1.1 Sinus Rhythm

Human heart consists of four chambers, two upper chambers called
atria and two lower chambers called ventricles as depicted in Figure
1.1a (the ECG record shown in Figure 1.1a is from PhysioNet [1]).
In normal condition, the sinoatrial node (SA node) generates an elec-
tric impulse which propagates to atrioventricualr node (AV node)
before dispersing through the purkenjee fibers. This propagation of
electric impulse causes a sequence of depolarization and repolariza-
tion of cardiac cells resulting in the contraction and expansion of
the cardiac muscles. This rhythmic contraction and expansion of the
cardiac muscle causes the normal pumping action of the heart and
commonly known as sinus rhythm. The depolarization phase of the
heart contracts the ventricles which is when the oxygenated blood

2



(a) Electrical activity in a normal heart [1]

(b) Electrical activity during VF

Figure 1.1: Comparison of normal electrical activity of the heart with electrical acitivity of the
heart during VF

3



is pumped out to the body and at the same time the de-oxygenated
blood received from other parts of the body is sent to the lungs for
oxygenation. The different phases of the heart’s contraction and ex-
pansions correlated with its electrical activity is recorded by placing
electrodes on the surface of the body. These surface recordings of the
cardiac electrical activity are called the Electrocardiograms (ECGs).
A sample ECG recording [1] in sinus rhythm with markings on dif-
ferent phases of the heart is illustrated in Figure 1.2. The P wave
in ECG shows the transmission of electrical pulse from SA node to
AV node, in this phase the atria are contracted. The complex phase
of QRS is caused by the depolarization which happens in ventri-
cles and T wave captures the repolarization of ventricles. In normal
conditions, for a healthy adult, the SA node produces 60-70 stim-
ulus or impulses in a minute causing 60-70 rhythmic heart cycles
of contraction and expansion of the cardiac muscles. Depending on
the physical activities the requirement of blood flow varies and ac-
cordingly the heart beat varies to accommodate the demands of the
human body. The morphological patterns in the ECG indicate the
different phases of the heart and in the event the heart behaves ab-
normally it is reflected in the changes to the morphology of the ECG
waveform.

1.1.2 Ventricular Fibrillation

As stated earlier rhythmic behavior of heart is essential for human
well being. However due to various pathological conditions heart’s
functionality could be compromised leading to many variants of ar-
rhythmic activity. Although there are many variants of these arrhyth-
mic activities localized to atria or ventricles, for the purpose of this

4



Figure 1.2: Different phases in ECG recorded from surface electrograms [1]

thesis we focus only on one type of ventricular arrhythmias i.e., VF
due to its lethal effects. In contrast to normal conduction of the heart
where the electrical activity is coordinated, during VF the heart con-
tracts chaotically in a disorganized fashion at high beat rates of>400
beats per minute [3]. This is illustrated in Figure 1.1b. Instead of
a single source (i.e. SA node), many dynamic sources along the
cardiac muscle attempt to take control of the heart resulting in dis-
organized muscle contractions at high rates. Due to this, the heart
instead of acting as a pump, just quivers at high frequency without
effectively pumping out the blood. Since oxygenated blood is also
needed to keep the heart alive, this process of quivering and not be-
ing able to pump blood degenerates the heart muscle tissue further
leading to increased disorganization as the time progresses and even-
tually SCD occurs within minutes.

A sample ECG during VF is shown in Figure 1.1b. The mor-
phology of the ECG waveform is quite different compared to normal
conduction and it reflects the disorganized electrical activity during
VF. There are no distinct phases as in the case of ECG during sinus
rhythm. ECG during VF can be seen as a combined effect of many
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dynamic sources working asynchronously. In general, literature has
divided VF into 4 phases over time [4] [5]. It is also broadly cat-
egorized into early and late VF based on the time from onset [6].
VF degenerates as time progress reflecting increased disorganized
electrical activity in the ECG over time.

1.2 Current Treatment Options for VF

Although researchers from many disciplines are working together
for the last several decades in arriving at better treatment options
for VF, currently the only available option is defibrillation by ap-
plying electric shocks. This is basically like resetting the electrical
conduction system of the heart and forcing it to return to normal
conduction. This however is not always successful. There are many
variables that influence the shock outcomes in addition to the shock
variables themselves such as strength of the electric shocks, place-
ment of electrodes, type of shock waveforms etc. Application of
electric shocks for defibrillation do have side effects on the neural
system [7], hence it is usually desirable to optimize shock parameters
for a lower shock threshold. There are two broad groups of affected
population who suffer from ventricular arrhythmias: Symptomatic
and Asymptomatic (or out of the hospital VF incidents). Depending
on this categorization there are differences in the strategies involved
in the treatment of VF.

1.2.1 Symptomatic Patients

Symptomatic patients experience symptoms related to heart disease
and seek medical help before they experience arrhythmias. For pa-
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tients who are diagnosed to be prone for future VF episodes or did
experience earlier stage fibrillatory behavior of the heart or the heart
is diagnosed to have significant amount of scar due to past ischemic
events, the clinician suggest ablation in cases of VT and placement
of an Internal Cardioverter Defibrillator (ICD) [8] in the case of VF.
ICDs are small electronic devices implanted with lead wires con-
nected to the heart. These devices are controlled by intelligent algo-
rithms that detect the onset of VT or VF and choose either applying
shock or pacing maneuvers to return the heart to normal rhythm.
ICDs are usually programmed by trained electrophysiologists who
based on the condition of the patient set the defibrillator thresholds
and other parameters that is optimal for individual patients. During
regular visits the clinician also interrogates the ICD for past VT/VF
incidents to monitor the performance of the ICDs and the wellness
of the cardiac function.

1.2.2 Asymptomatic Patients

Asymptomatic patients may or may not have any symptoms and still
could experience VF either due to pathophysiological reason or ex-
ternal factors like receiving a high voltage shock or demanding sport-
ing event etc. It is highly critical that these patients receive medical
attention as soon as possible before the condition deteriorates lead-
ing to SCD. For these patients, emergency medical staff (EMS) ar-
riving at the scene had to make a quick assessment on the state of
the heart in choosing appropriate sequence of therapy (i.e. shock
first, cardiopulmonary resuscitation (CPR), or drug administration).
CPR, which is a combination of chest compression and ventilation
maneuvers is recommended by American Heart Association if the
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patient has been in the state of VF for long time (e.g.>5 min) [9].
CPR manually forces blood circulation by chest compression and
ventilation oxygenates blood. The combination of these keep the vi-
tal organs alive including the heart itself. Special drugs are injected
in cases where the heart has the tendency to refibrillate (i.e., recur-
rence of VF after a successful shock) [9]. In some cases where the
patient has been in the state of VF for a long time (e.g.>5 - 7min)
drugs also help to increase the cardiac function in an attempt to make
the heart respond to the electric shock [10]. In aiding the EMS per-
sonnel to choose the right sequence of therapy which influences the
survival rate of the patient, many works have attempted to quantify
the state of the heart using ECG analysis during VF. These works ex-
tract waveform markers that predict the shock success, CPR efficacy
and provide near real-time feedback to EMS personnel in optimizing
the cardiac resuscitation outcomes [11] [12] [13] [14].

1.3 Related Previous Works

In general existing works can be grouped into two categories, (1)
those that attempt to understand the VF mechanism with a focus
of long term treatment options [15] and (2) those that attempt to
optimize cardiac resuscitation outcomes to increase the survival rates
of patients suffering VF especially in a out-of-the hospital setting
[9]. Both these areas of research are vital considering the amount of
SCDs annually related to VF.
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1.3.1 VF Mechanism

Identifying and understanding mechanisms that are relevant for VF
initiation and maintenance is vital towards developing specific long
term treatment options that will provide better solution to terminate
and/or prevent VF occurrences. While there may be insights of the
mechanisms from the surface ECG, it is often too convoluted be-
cause the ECG is an integration of all the electrical activations within
the heart. Hence mechanistic studies often rely on more detailed lo-
cal and regional electrical activity of the heart using spatio-temporal
analysis of endocardial (inner surface of the ventricles) or epicardial
(outer surface of the heart) surfaces of the heart. In order to study the
spatio-temporal electrical distribution during VF, analysis has been
performed on animal and human studies employing multi-electrode
recordings of intra cardiac electrograms on the epi and endocardium
of the heart during VF. There are also studies using optical mapping
with a voltage sensitive dye to study the surface electrical activity
during VF [16]. Although these multi-electrode acquisitions (or op-
tical mapping) on epi and endocardium are practically not feasible in
a real world setup for obtaining mechanistic insights on VF on live
human beings, special experimental setup is used to allow the human
hearts to be studied in an isolated state while keeping it alive [17].

Early intra-cardiac (consisting of either epicardium, endocardium
or both) analysis had initially began with the spatial mapping of
the electrical activations in the heart [18] [19], commonly referred
to as activation maps. The activation maps were used to track the
wavefronts of the electrical activation as it progressed through the
myocardium. The tracking of the wavefronts allowed for analysis
on the degree of electrical organization during an arrhythmia onset.
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Further analysis of the intra-cardiac activation had led to the con-
struction of dominant frequency (DF) maps [20] [21]. DF maps had
identified the frequency of electrical activation over a set of time
and spatial coordinates. The relative simplicity in constructing DF
maps enabled researchers to study the frequency homogeneity of un-
derlying electrical activations in characterizing VF. Phase analysis
was later introduced in order to dynamically track activation patterns
around phase singularity points leading to the development of phase
maps [20] [17] [22] [23].

Based on the intra-cardiac analysis, there are two existing theories
that attempt to explain the mechanism behind VF: (1) Mother rotor
theory and (2) Multiple wavelet theory. In the mother rotor theory,
VF is believed to be maintained by high frequency periodic sources,
which are called rotors [24]. In the multiple wavelet theory, it is
believed that the activation wavefronts are constantly generated and
based on their interactions with each other, they appear and disap-
pear over the entire myocardial surface maintaining VF [21]. There
are also studies that have reported the presence of both these mech-
anisms [25]. Recently studies by Nathakumar et al. and others have
shown using DF and Phase maps that there are organizational ac-
tivity during human VF in contrary to the common belief that VF
is completely chaotic [19]. There is also evidence that the early VF
tend to be more organized than late VF indicating the transition from
rotor theory to multiple-wavelet theory as the duration VF progres-
sively increases [26]. This transition in organization could also be
related to the number of underlying sources trying to take control of
the heart during VF. It is also well known that a heart in early VF
is easier to resuscitate [27], which may be linked to the transition in
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organization and the number of underlying sources.

1.3.2 Cardiac Resuscitation

While the works that are attempting to decode the VF mechanisms
are still active, in parallel there are works that have arrived at wave-
form markers (or features) that could optimize the shock outcomes.
Since the only current available treatment is defibrillation by shock
and the reaction time from the onset of VF is very critical, extensive
research has been directed towards helping EMS personnel to choose
the right sequence of therapy in optimizing resuscitation outcomes.
Pre-shock waveforms are the portion of ECG signal just before the
application of shocks and this period of data is used by existing tech-
niques to predict shock outcomes. It is immediately after this pre-
shock period, a decision was made to shock so if we could infer from
this portion of the waveform if the shock would be successful or un-
successful, it will greatly help the EMS in optimizing the choice of
therapy and the optimal time for defibrillation. Hence in this pro-
posed work and all the existing works, these pre-shock waveforms
are used to predict the shock outcomes. In a chronological order
median frequency (centroid freqeuency or in short CF) of the ECG
signal and the amplitude were among the first features that were ob-
served to correlate with the duration of VF and therefore success of
defibrillation.

The median frequency (centroid frequecy or in short CF) [28],
amplitude, and energy [29] [30] of the ECG signal were among
the early features that were used in this field. Along with median
frequency, Spectral Flatness Measure (SFM), Amplitude Spectrum
Area (AMSA) were few of the other well known spectral features
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used in this area [30] [31] [32] [14]. The effect of CPR was also
analyzed using these spectral features (CF, AMSA and SFM) along
with the energy of the signal [30] [33] . In the class of chaotic fea-
tures, Logrithm of Absolute Correlation (LAC) and Scaling Expo-
nent (SCE) features were introduced by treating VF as a choatic
signal [34] [35]. Wavelet-based features were introduced recently
due to their suitability of the time-scale analysis for time-varying
VF signals. Wavelet entropy and Scale Distribution Width (SDW)
are among the wavelet features that have been suggested for predic-
tion of shock outcomes [12] [36] .

All these works have attempted to extract signal features with a
main focus of classifying two or more categories with different shock
outcome. However, in this thesis we attempt to make a connection
between the VF mechanisms and their relevance in optimizing car-
diac resuscitation.

1.4 Motivation

Based on the existing works on VF mechanisms, during VF there
are spatio temporal organizational centers that degenerate as time
progresses from the time of VF onset. The identified organizational
centers are related to underlying sources that control the heart in
maintaining VF. On the other hand from an application view point,
existing works on optimizing resuscitation outcomes have identified
ECG waveform markers that relate to the shock success using ret-
rospective ECG data. Some of the waveform markers does quantify
the organizational aspects of the VF directly or indirectly in asso-
ciating the shock success [37]. However there are no works to the
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knowledge of the author that attempts to relate the mechanistic in-
sights on underlying sources that maintain VF and their relation in
characterizing VF for predicting shock success. This strongly mo-
tivates us to believe that elucidating this relation will enable us to
extract meaningful waveform markers that could be related to shock
success which are desirable than the existing markers that are pri-
marily driven by available retrospective data. A major difficulty in
establishing this relation is that we need both multi-electrode data
for computing the spatio-temporal organization maps to identify the
underlying sources and at the same time have access to the global
ECG (i.e., recorded simultaneously along with the multichannel epi
or endocardial recordings) and resolve them into a combination of
multiple sources. Since in an out-of-the-hospital VF incidents the
EMS personnel only have access to surface ECGs, it is essential to
resolve (or decompose) this single lead ECG to identify the under-
lying sources otherwise this approach may not have practical ben-
efits in cardiac resuscitation. These limiting factors are mitigated
due to the unique collaborative efforts between our research group at
Ryerson with Toronto General Hospital and St. Michael’s hospital.
The proposed work was able to have access to de-identifiable data
both from experimental and clinical studies at the hospital. With the
availability of these unique datasets and clinical expertise, this thesis
attempts to arrive at meaningful features associated with existing VF
mechanisms in predicting shock success using single lead ECGs.
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1.5 Objective

This thesis uses advanced signal analysis methods and attempts to
arrive at features extracted from ECGs that relate to VF mechanism
and provide feedback to EMS personnel in optimizing cardiac resus-
citation. To achieve the above the thesis will focus on the following
objectives:

• To resolve the single lead ECG into a combination of statistically
independent sources and correlate with the number of sources
identified using corresponding multi-electrode spatio-temporal
organizational maps.

• To extract meaningful features from independent sources and
associate them with prediction of shock success for optimizing
cardiac resuscitation.

The proposed method is illustrated in the block diagram shown
in Figure 1.3. Different line styles are used to highlight the source
correlation and prediction of shock outcome objectives of the thesis.
This block diagram will be referred throughout the thesis in parts
over the following chapters.

1.6 Thesis Organization

The thesis content is organized as follows:

• Chapter 2: This chapter is a review on the algorithms used to
complete the proposed work. In order or resolve the single lead
ECGs into independent sources various signal processing steps
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Figure 1.3: Block diagram of the proposed study

are necessary. The technical details of these steps, pattern clas-
sification and phase mapping tools are provided in this chapter.

• Chapter 3: In this chapter we provide details on the databases
used in the proposed study along with the various steps involved
in extracting and analyzing features for their suitability in achiev-
ing the objectives.

• Chapter 4: Results and discussion on the performance of the
proposed features and the influence of study parameters are pre-
sented in this Chapter. A comparative analysis with existing
techniques is also provided.

• Chapter 5: This chapter summarizes the contribution of this the-
sis and briefly discusses the future directions.
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Figure 2.1: Block diagram of the proposed study with highlighted parts covered in this chapter

THIS chapter presents the background on various techniques that
will be used in the proposed work. The proposed method is pri-

marily based on Blind Source Separation (BSS). BSS is the extrac-
tion of underlying signals from their linear mixture with minimum a
priori knowledge. Single mixture source separation is a well- known
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approach to estimate underlying independent signals from one linear
mixture of them. There exist many works in the field of music and
biology [38] [39] [40] [41] [42] which use BSS techniques to extract
independent sources from one single mixture. In order to perform
BSS efficiently converting the single lead ECGs into matrix form is
essential. This is done by choosing appropriate time-frequency (TF)
transformation which converts a signal into a 3D time-frequency en-
ergy map. Depending on the resolution requirements in time and
frequency this matrix dimension could be high. However all the in-
formation on these TF maps may not be of use for the proposed
work (as will be explained at later sections) and hence a dimension-
ality reduction technique is applied. Singular Value Decomposition
(SVD) aids in performing this action by decomposing and ordering
the components according to their variance. Independent Compo-
nent Analysis (ICA) was then applied on the dominant frequency
components in extracting the independent sources. In order to vali-
date these sources extracted from single lead ECGs with the spatio-
temporal organizational maps, these spatio-temporal maps needs to
be constructed using phase mapping of the multi-channel intracardic
electrograms. The following sections will present background on
building blocks of BSS and also discuss relevant tools that are re-
quired for validation and pattern classification purposes.

2.1 Time- Frequency Analysis

For signals that have time-varying frequency content neither tem-
poral nor frequency only techniques are sufficient for studying their
temporal evolution of frequency. These type of signals form a major
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class of real world signals. In order to study them jointly in time
and frequency we need techniques that will map their energy on to
a time-frequency plane. VF is highly non-stationary in nature and
the electrogram or ECG during VF exhibit strong time-varying fre-
quency behavior [43]. Hence we need an appropriate time-frequency
(TF) technique to decompose the VF ECGs for further analysis and
efficient extraction of information.

2.1.1 Short Time Fourier Transform

Short Time Fourier Transform (STFT) is a method to calculate fre-
quency representation of a time-varying signal over short time win-
dows and it was first used by Gabor [44]. This method breaks down
the signal in small stationary segments by windowing the signal.
Afterwards, Fourier Transform (FT) is applied on each time seg-
ment. In other words, STFT is FT of the signal multiplied by a
window. This is a two dimensional transformation and gives infor-
mation about signal in both time and frequency directions. Equation
2.1 shows the discrete implementation of STFT of a signal [45].

S[N,ω] =
∑

x[n]ω[n−N ]e−jωN (2.1)

where x[n] is the signal in time domain, w[n] is the window func-
tion (usually a Hann window) and S[N,ω] is time-frequency rep-
resentation of signal. Spectrogram which shows energy of signal
for each frequency is constructed as the squared modulus of STFT
(|S[N,ω]|2). Fig. 2.2 shows and example of applying STFT on a
time-varying signal.
One of the drawbacks of STFT is that its time-frequency resolution
depends on the choice of the window and its length. A narrow win-
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dow gives a good resolution in time but in this case the resolution
in frequency direction is poor. However, when the window is wide,
the frequency resolution is good but time resolution becomes poor.
Figure 2.2 shows an example of spectrogram computed with two
different fixed window for a chirp signal whose frequency varies lin-
early down, up and then down. The sampling frequency for this
signal is 250 Hz. The Spectrogram in the middle plot was calculated
for a window size with 60 samples (240 msec) and 30 samples (120
msec) overlap The Spectrogram in the bottom plot was calculated for
a window size chosen to be 20 samples (80 msec) with 10 samples
(40 msec) overlap. This fixed windowing approach limits its use for
highly time-varying signals where we may need adaptive windows
for different portions of the signals depending on the nature of the
signal. Signal adaptive windowing will help choose appropriate res-
olution trade-off for better time-frequency representation. This led to
the development of a class of techniques that use adaptive mathemat-
ical functions that are time and band limited to model time-varying
signals.

2.1.2 Continuous Wavelet Transform

Continuous Wavelet Transform (CWT) is an alternative approach to
the STFT to overcome the adaptive resolution problem [46] and is
more suitable for our proposed study considering that VF electro-
grams and ECGs are highly time-varying signals and is also compu-
tationally less expensive compared to other adaptive TF techniques.
In wavelet analysis a signal is modeled using scale and shifted ver-
sions of a mother wavelet (i.e. small waves or mathematical func-
tions). There exists many mother wavelets with different properties

19



0 50 100 150 200 250 300 350 400 450 500
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time samples,250 Hz sampling rate

Am
plit

ud
e (

arb
itar

y u
nit)

(a)

Time (window)

Fre
qu

en
cy

2 4 6 8 10 12 14

20

40

60

80

100

120

(b)

Time (window)

Fre
qu

en
cy

5 10 15 20 25 30 35 40 45

20

40

60

80

100

120

(c)

Figure 2.2: a) Chirp signal as an example of a time-varying signal. b) Spectrogram of the chirp
signal with a window size of 60 samples and 30 samples overlap. c) Spectrogram of the chirp
signal with a window size of 20 samples and 10 samples overlap.
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that can be chosen based on the application in hand. In CWT a sig-
nal x(t) is modeled using all possible translated and dilated versions
of a mother wavelet, and the discrete version of CWT is given in
Equation 2.2 [47]

S(s, b) =

N∑
n=1

x[n]Ψ∗s,b (2.2)

where x[n] is the discrete time signal, s and b are the scale and trans-
lational parameters. Ψ∗s,b is complex conjugate of scaled and trans-
lated version of mother wavelet given by

Ψs,b =
1√
s

Ψ(
n− b
s

) (2.3)

and are called wavelet daughters.
The parameter b is where the mother wavelet is the located in time

domain and s is the location of mother wavelet in frequency domain
(scale) location b. Scale represents the expansion or compression of
the wavelet that has the best local match for signal structures.
The following are the conditions a function needs to satisfy to qualify
as a mother wavelet [46]:

• It should be time limited or Ψ(t) = 0 for t > T when T in the
time limit.

• It should have a zero average value or
∫∞
−∞Ψ(t)dt = 0.

• It should satisfy the admisibility criterion which means [48]

CΨ =
∑ | Ψ̂(f ) |2

| f |
<∞ (2.4)

where Ψ̂(f ) is the FT of Ψ.
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Figure 2.3: Morlet Wavelet

An example of a mother wavelet is Morlet [49] which is shown in
Figure 2.3.

The choice of mother wavelet is based on the application. First
choice is between real or complex wavelets. Real wavelets are more
useful in capturing rapid transitions in signal. Complex wavelet is
more useful in temporal evolution study of the signal and it also
preserves the phase information of the original signal [46]. Figure
2.4 shows the Scalogram (|S(s, b)|2) for a time varying chirp signal.
Due to the inverse and non-linear relation between frequency and
scale smaller scales represent higher frequency and vice versa.

2.2 Singular Value Decomposition

As explained earlier once we obtain the time-frequency map from
the wavelet analysis, we need to extract dominant and useful infor-
mation from the decomposition coefficients in the subsequent stages.
In order to perform dimensionality reduction, the matrix of wavelet
coefficients were then fed to the Singular Value Decomposition (SVD)
to only retain the dominant components. SVD is a matrix factoriza-
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Figure 2.4: a) Chirp signal as an example of a time-varying signal. b) Scalogram of the chirp
signal using Morlet as the mother wavelet.
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tion method which represents any matrix m × n S as a product of
three matrices [50]

Smn = UmmDmnVnn
T (2.5)

Where U is m×m with orthogonal columns (columns are the eigen
vectors of SST ). D is an m ×m diagonal matrix with singular val-
ues (square root of eigen values) on its diagonal. V T is n × n with
orthogonal rows (rows are the eigen vectors of STS).
D is a diagonal matrix with the same dimension of S. σ1 ≥ σ2 ≥
. . . ≥ σn ≥ 0. Elements of this matrix (σi) are the singular values
(square roots of eigen values) of matrix S. Each column of U or row
in V T corresponds to the relevant singular value. This matrix decom-
position can also be written as a summation of product of columns
in U and VT ’s rows:

S =

n∑
i=1

σiuivi
T (2.6)

The higher σi the more information is preserved in the ui and viT .
The following are the steps to prove the SVD matrix factorization as
described in [51]. For a matrix S if m ≥ n, due to spectral theo-
rem there will be n orthogonal basis for this matrix which are eigen
vectors of STA. Two assumptions are made that

σi =‖ Svi ‖ i = 1, 2, ..., r, (2.7)

where ‖‖ is the Euclidean norm and

ui =
1

σi
S (2.8)
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By multiplying both sides of the second equation we will have

σiui = σi
1

σi
Svi or Svi = σiui (2.9)

(2.10)

considering all the columns of U and V will result in

SV = UD (2.11)

Multiplying Equation 2.11 by V T gives S = UDV T . Singular Value
Decomposition (SVD) is used to project a matrix into time and fre-
quency basis in the context of our analysis. From which, a number
of singular vectors (column of U or row in V T ) which could keep
an specific proportion of information can be chosen. This number
could be selected based on the percentage of the information to re-
tain. If this number is too small, a lot of information is discarded
and remaining information cannot represent the signal accurately.
However, choosing an appropriate number of singular vectors based
on the application could reduce the dimensionality and thereby the
computational expense.

2.3 Independent Component Analysis

In BSS, signals are assumed to be linear mixture of number of in-
dependent source signals. One of the approaches to extract indepen-
dent sources is to use Independent Component Analysis (ICA) [52]
which uses higher order statistics. In other words, PCA decorre-
lates the sources but ICA uses second order decorrelation (indepen-
dency) [53].
ICA is a useful technique and has been used in sound separation and
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biomedical applications. One of the examples of BSS in biomedical
signal analysis is the omission of the blinking artifact from the Elec-
troencephalogram (EEG). Eye movement are also projected in EEG
records and it needs to be removed when studying the brain’s activ-
ity [54]. If each record is a linear combination of brain’s signal and
eye movement artifact, then we will have the following equations for
the brain records:

y1 = a11x1 + a12x2 (2.12)
y2 = a21x1 + a22x2 (2.13)

If only the recorded signal are given, to extract the brains signal
from blinking artifact independence property of two signals is used
to estimate the weights. In the equation, for the EEG example y1

and y2 are the EEG records, x1 is the brain signal and x2 is the eye
blinking artifact. The coefficients a11,a12,a21 and a22 are calculated
as

Y = AX (2.14)

X (matrix of independent sources) and Y (matrix of observations)
are m by n matrices and A (de-mixing matrix) is a m × m matrix
The summary of this algorithm is given below [55]. The goal is to
extract underlying signals from their linear mixture with minimum
a priori knowledge. One of the famous approaches to estimate the
sources in ICA is by maximum likelihood estimation and it is equal
to minimizing the mutual information between the sources. To for-
mulate the problem it is assumed that the distribution of each source
si is ps so the joint distribution of sources will be
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Figure 2.5: An example of applying ICA on two mixtures of a sinusoid and a sawtooth signal and
getting the sources back after applying ICA. a) First mixture. b) Second mixture c) First extracted
source d) Second extracted source
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p(s) =

n∏
i=1

ps(si) (2.15)

Considering x = As

ps(x) = ps(Wx).|W | (2.16)

where W = A−1 and |W | is due to the rule of applying a linear
transformation on a random variable and its probability density func-
tion [56].
Since it is assumed that all the sources are independent so the joint
probability of xis is multiplication of the probability of all the xi.

P (x) =

n∏
i=1

ps(w
T
i xi).|W | (2.17)

W will be obtained by a maximum likelihood method. Taking log
likelihood from Equation 2.17 will result in the following equation

l(W ) =

m∑
i=1

(

n∑
j=1

log(ǵ((wj)
Tx(i)) + log(|W |)) (2.18)

where l(W ) is log likelihood of the joint probability density func-
tion and maximizing the log likelihood will result in having least
error due to log likelihood criteria. To maximize the log likelihood
we should start with a starting value for the demixing matrix (W0).
After the logarithm converges, we the compute si = Wxi to recover
the original sources.
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ICA is an analogous technique to PCA. The difference between
PCA and ICA is that PCA is a technique to find a transformation
that un-correlates the variables. However, ICA algorithm is to find a
transformation that makes variables as independent as possible. In-
dependency implies uncorrelation but uncorrelation does not imply
independency. Another application of ICA in biomedical area is to
separate noise from signal or to extract components which may be
biologically meaningful. Fig.2.5 shows an example of ICA on a si-
nusoid and a sawtooth. First, two signals were mixed using a mixing
matrix which resulted in Figure 2.5a and 2.5b. Then ICA could ex-
tract these two signals from their mixtures as shown in Figure 2.5c
and 2.5d of the figure.

2.4 Pattern Classification

Pattern classification is an important module of machine learning
which is widely used for performing automated decision making
based on measurements. Two major approaches in performing pat-
tern classification is either supervised or unsupervised learning. In
supervised approach the classifier is trained with training set or in-
formation whose ground truth have been decided by experts. The
classifier then arrives at a threshold based on this knowledge and
makes the decision for the new test data that is fed without the cate-
gory information. In unsupervised approach, the classifier attempts
to group the given data into natural clusters based on statistical in-
formation extracted from the data and initialization parameters pro-
vided by the user. For medical expert systems or applications, if the
ground truth is available, then it is desirable to use the supervised

29



approach. In our case we used supervised pattern classification to
evaluate the proposed method in discriminating between two groups
of VF waveforms with different shock outcome. As mentioned in the
introduction, there are a many previous works which have attempted
to recognize a distinction between pre-shock VF waveforms which
have successful or unsuccessful shock outcome. The results of clas-
sification in this area is used to evaluate the robustness and effective-
ness of the proposed markers in providing feedback for medical staff
and help in choosing the right therapy.

2.4.1 Fisher Linear Discriminant Analysis

The following is a brief summary on linear discrimination Analysis
(LDA) [57]. LDA is a supervised classification method which uses
some of the samples in the dataset as a training set. If the goal is
to make the least classification error when using LDA, the objective
will be to make the number of miss-classified points as small as pos-
sible. Separator is a rule which defines that object belongs to which
group based on its feature value. If we define the conditional prob-
ability as a rule for classification using Bayesian theory an object is
grouped in group i if P (i | x) > P (j | x) , for ∀ j 6= i. P (i | x)

is the probability of a feature belonging to group i when x is known
(a set of measurements). When data is grouped in c classes each
two groups will be separated by a line and there will be c − 1 lines
to separate all groups and each group will hold one region in the
space. There might be some regions between the lines which does
not belong to any group. Fisher discriminant analysis project d di-
mensional matrix x into a less dimensional matrix y using a weight
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vector calledW . Each class has a weight vectorwi which is d×c− 1

y = W tx (2.19)

The criteria to find W is given in Equation 2.20

J(W ) =
|W tSBW |
|W tSWW |

(2.20)

where SB is between class variance and SW is within class variance
and is sum of the variance of all the classes which are given by Equa-
tions 2.21 and 2.22

SB =

c∑
i=1

ni(mi −m)(mi −m)t (2.21)

SW =

c∑
i=1

(
∑
xεDi

(x−mi)(x−mi)
t) (2.22)

ni and mi are number of samples and mean for group i and m is the
mean value for the total samples. To get the best value for W and as
a result the best projection of x into y, J(W ) should be maximized.
In order to find the best value for W , the classifier is trained for a
subset of data and the rest of samples are used to test the classifier.
However, the choice of training subset could influence the obtained
test results. Hence to make the results independent of training and
test data, cross validation procedures are used. In cross validation,
many classifications are performed by choosing different sets of data
for training and testing and average these results. Commonly it is
called as ’m-fold cross validation’, where the m specifies how many
times the data is split into different training and testing sets in arriv-
ing at the overall classification accuracy. The extreme case of this
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cross validation is the leave-one-method which will be explained in
the next section.

2.4.2 Leave- One -Out- Method Cross Validation

The influence of choice of training subset and testing test on the clas-
sification accuracies is high especially for small databases where a
few signals could change the decision boundary drastically. This is
especially applicable to biomedical studies where often the database
is small due to various reasons (i.e., practical difficulties in acquir-
ing data, rarity of the data, ethical limitations, expensive in terms of
time and money etc). In order overcome this bias due to the choice
of training and testing subset, cross validation was introduced. In
cross validation the samples in dataset are divided in m groups with
equal number of samples. Each time one of the groups are left out
and training is done by the rest of the groups and the left group is
used to test the classifier. This will be repeated for m times. Each
time the validation error is calculated and the average error is used as
a measurement for classification accuracy. The extreme case of this
cross validation is the Leave-one-out method (LOOM). In LOOM
cross validation, each sample from the database is taken out as a test
sample and the classifier is trained with the all remaining samples.
The algorithm is repeated this for all samples and the accuracy of
classification is calculated. The average of classification accuracies
is later determined as the final classification accuracy. Thus the in-
dependence between the training and testing data is preserved. The
following example shows the LOOM approach for computing a sim-
ple mean of the data and is summarized here from [57]. In a data set
with n samples, when the ith sample is removed, the mean of the
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remaining samples is calculate from Equation 2.23

µi =
1

n− 1

n∑
j 6=i

xj (2.23)

and Jackknife mean µ(.)is the mean of the all the means calculated
from removing each point in the dataset and is given by

µ(.) =
1

n

n∑
i=1

µi (2.24)

2.4.3 Classification Accuracy

Classification accuracy is a measurement of classifier’s performance.
This value is obtained from Equation 2.25

Accuracy =
TP + TN

TP + FP + TN + FN
(2.25)

where

• TP (True Positive) = correctly classified as abnormal (abnormal
cases which are classified as abnormal)

• FP (False Positive) = incorrectly classified as abnormal (normal
cases which are classified as abnormal)

• TN (True Negative) = correctly classified as normal (normal
cases which are classified as normal)

• FN (False Negative) = incorrectly classified as normal (abnor-
mal cases which are classified as normal)
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From these definitions the sensitivity and specificity of the classi-
fication technique are determined as

Sensitivity =
TP

TP + FN
(2.26)

Specificity =
TN

FP + TN
(2.27)

The sensitivity and specificity are calculated to get the overall
classification accuracy of the technique and these analysis are help-
ful in evaluating the performance of the technique in correctly iden-
tifying normal and abnormal cases.

2.4.4 Receiver Operating Characteristic Curve

Receiver Operating Characteristic (ROC) defines how sensitivity and
specificity changes by a small change in between classes bound-
aries (decision boundaries). This curve is a measure of goodness-
of-fit. We calculate sensitivity and specificity pairs for each possible
boundary and plot sensitivity on the y axis by (1-specificity) on the
x axis. The area under the ROC curve ranges from 0.5 and 1.0 with
larger values indicative of better fit [58]. This value defines the ro-
bustness of the classifier specially when each group in the data base
has a different loss function. The higher the value of the area under
the ROC curve the higher is the robustness for the classifier.
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2.5 Phase Analysis of Intra-Cardiac Electrograms

In order to study multichannel electrograms to find the number of
underlying rotors we need to use phase mapping tool. The anal-
ysis of the intracardiac electrical activation of the heart has been of
special interest in recent years. Many recent findings [22] have high-
lighted that the phase analysis of the intracardiac heart signals could
identify special regions of interests known as phase singularities or
rotors. Rotors have been considered as organizational centers and
believed to be the sources that drive and sustain VF. The identifica-
tion of rotors requires the acquisition of the intracardiac electrical
activity using a specialized electrode array system. This electrode
array captures the electrical activation over the endocardium (within
the heart) and epicardium (outside surface of the heart). While this
electrode array captures the spatial electrical activation over time, in-
terpolation over the surface is performed in order to increase the spa-
tial resolution, which improves the ability to identify a rotor. Figure
2.6 highlights a typical phase map that was constructed using inter-
polated spatial electrical activation. The electrode array system used
in this study was an 112 electrode system consisting of 14 columns
with 8 electrodes in each column. The electrode array, which is high-
lighted in Figure 2.6 as black points, is usually sampled at 1000 Hz.
A limitation to capturing the intracardiac electrical activation using
the electrode system is that an incision or opening must be made in
the chest cavity to insert the electrode system, which makes it im-
practical or extremely difficult for live patient diagnosis, but is often
used for research to better understand the mechanism of the heart
during VF.
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Direction

Electrodes

(a) Phase Map Time Instance 1

Phase Map Frame: 750

(b) Phase Map Time Instance 2

Phase Map Frame: 770

(c) Phase Map Time Instance 3

Phase Map Frame: 785

(d) Phase Map Time Instance 4

Figure 2.6: Four time instances of a sample phase map with rotor constructed using 112 electrodes
over the surface of the heart
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Upon interpolating the surface electrogram, the analytical version
of the signal is constructed using the Hilbert transform (H). If we
consider that a single electrode has an electrical activation x[n], then
the complex signal x̂[n] of x[n] can be acquired through Equation
2.28 and 2.29 [59].

x̂[n] = x[n] + jH [x[n]] (2.28)

H [x[n]] =
1

π

∞∑
N−∞

x[N ]

[n−N ]
(2.29)

In Equation 2.28, the complex signal x̂[n] is the sum of the real
component x[n] and imaginary componentH [x[n]]. The termH [x[n]]

is the Hilbert transform of the electrical signal x[n] and is highlighted
in Equation 2.29. The Hilbert transform essentially removes the neg-
ative frequency component in a real signal to transform it into a com-
plex signal [59]. From the complex signal, the instantaneous phase
(IP ) at some sample time n is calculated using Equation 2.30.

IP [n] = tan−1(
H [x([n]]

x[n]
) (2.30)

The instantaneous phase for every electrical activation is calcu-
lated in order to generate the phase maps. The phase of a signal
can vary from −π to +π. The phase map that is observed in Figure
2.6 highlights the phase, where blue represents the −π phase and
red represents the +π phase. By using the interpolated phase maps,
it is possible to identify a rotor in Figure 2.6. A rotor is identified
when the phase pattern rotates at least twice around a phase singular
point [59]
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Two important characteristics of a rotor is the spin or rotation of
the rotor and the migration of the rotor. The rotation or a rotor is con-
sidered as the direction in which the phase cycle changes over time.
The migration of the rotor is the spatial change of the rotor axis over
time. These characteristics is analogous to a tornado, where the tor-
nado rotates around a central point and the central point migrates to
different locations. This can also be observed in the four time in-
stances in Figure 2.6. The first time instance (Figure 2.6a) identifies
the rotor with the rotation direction highlighted by the arrow. In the
second time instance (Figure 2.6b), we observe that the phase around
the rotor has been rotated when compared to the first time instance
(Figure 2.6a). Similarly, we could observe the rotation in the third
(Figure 2.6c) and fourth (Figure 2.6d) time instances. The migration
of the rotor is highlighted by the different spatial location of the ro-
tor over the four time instances. For the organization analysis of the
heart, a rotor was considered to be valid only if it completed at least
two rotations [59].

2.6 Line Fit

We used the goodness of line fit in order to evaluate the relationship
between the number of rotors and independent sources. If we have n
pairs of data such that dataset={(x1,y1),(x2,y2),...,(xn,yn)} the a line
can be fitted to the data given by Equation(2.31)

f (x) = αx + β (2.31)

To obtain a good fit a criteria should be defined. One common crite-
ria is the least square error is to that minimizes the of square orthog-
onal distance between the points in dataset and the fitted line. and is
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given in the following equation:

error =

n∑
i=1

(yi − (αxi + β))2 (2.32)

To minimize the error in Equation 2.32 two conditions should be
satisfied

• ∂error
∂α = 0 when β is constant

• ∂error
∂β = 0 when α is constant

if we solve this two equation we will find a f (x) with least square
distance with points in the dataset. In simple words if a linear rela-
tion exists between two variables, we should be able to fit a line with
a minimal error.

2.7 Chapter Summary

In this chapter we introduced blind source separation as a method
that will be used to extract statistically independent sources for a
VF waveform in the next chapter. A background on all the nec-
essary tools to implement this algorithm was given. LOOM was
explained as a good method to perform cross validation (especially
for small databases that are common in biomedical studies) to test
the extracted features from independent sources in Chapter 4. Phase
analysis of intra-cardiac eectrograms was explained as a tool to iden-
tify the special regions of interests known as phase singularities or
rotors. This analysis will allow us to test our proposed hypothesis
in Chapter 4 in relating the number of independent sources to the
number of rotors. A brief description on the line fit method was

39



also presented to quantify the goodness of fit in testing the relation
between number of independent sources and thenumber of rotors.
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Chapter 3

Feature Extraction and Analysis
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Time-Frequency 

Transfomation

Figure 3.1: Block diagram of the thesis with highlighted parts covered in this chapter

IN order to achieve the set objectives, we used two databases. One
of them to validate the correlation between the extracted indepen-

dent sources with the rotors and the other for the main objective of
evaluating the proposed approach in predicting shock outcomes. As
presented earlier in Chapter 2, the process of extracting indepen-
dent sources involves various signal processing steps and once these
sources are identified it is essential to extract meaningful and quan-
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tifiable features in characterizing the pre-shock waveforms. This
chapter will provide details on the databases (as highlighted in Fig-
ure 3.1), data acquisition protocols and the various steps involved in
extracting features from the independent sources extracted from the
pre-shock VF ECGs.

3.1 Human VF Database

Existing works on rotor or multiple wavelet mechanism on VF rely
on the observations of spatio-temporal surface activity on the heart.
For generating spatio-temporal maps multi-channel intracardiac elec-
trogram recordings of ECG during VF are required. Hence for our
objective of validating the extracted independent sources from a sin-
gle channel ECG with rotors we need data that has both spatio-
temporal multi-channel electrograms and at the same time also has
a single channel global surface ECG. Spatio-temporal mapping of
electrical activity on the surface of the heart is a complex proce-
dure [59] and hence mostly performed only on isolated hearts us-
ing a Langendorff setup. However, there are few hospitals in the
world that still perform VT (less lethal than VF) ablations in a open
chest procedure and use spatio-temporal mapping of electrical activ-
ity to identify the source of VT. In these procedures while testing
the efficacy of VT ablation, accidentally the stimulations result in
VF. These are rare invivo spatio-temporal VF data from real live
patients. All these data were previously used for VF research by
clinical researchers with informed consent from the patients. Due to
our collaboration with Toronto General Hospitals, we obtained only
the deidentifiable retrospective surface ECG and 112 channel spatio
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temporal intracardiac electrogram data from 3 patients and 2 isolated
human heart for the purpose of validation. These electrograms were
sampled at 1KHz with an average duration of 16 sec. From these
we used 10 VF episodes (3 from patients and 7 from isolated hu-
man hearts). Since VF is non-stationary in nature, each VF episode
can be treated as an independent observation [60]. Figure 3.2 illus-
trates samples of few intracardiac electrograms and surface ECG of
a patient during VF.

3.2 Pig VF Database

For the main objective of predicting shock success we obtained dei-
dentifiable surface ECGs from a cardiac resuscitation study using
pigs at the St. Michael’s hospital. Fifty (n=50) previously healthy
pigs of both genders were used with weight between 27-35 kg. VF
was induced by burst pacing by 10 V of 60 Hz current for 2 seconds
and left untreated for 3 or 4 minutes. At the end of this period, chest
compressions was started using a pneumatic device (Lucas, Jolife
AB, Lund, Sweden) at 100 compressions/min and manual ventila-
tion at 6 breath/min using 5-6 liters/min of 100% O2 with an Artifi-
cial Manual Breathing Unit (AMBU) bag was performed. CPR was
continued at a rate of 30:2 (compressions to respirations) per minute
for 3 minutes with no interruption of chest compressions. At the
end of this period, defibrillation was attempted at 150J. If the animal
failed to respond, CPR was continued for 2 min followed by defibril-
lation at 200J (and a stepwise increase to 300J (+2min CPR)→360J
(+30 sec CPR)→360J (+30 sec CPR)→360J→360J in case of fail-
ure). The protocol was approved by the Animal Care Committee of
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(b) Electrogram number 65
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(c) Electrogram number 105
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(d) Surface ECG (integration of heart’s electrical activity)

Figure 3.2: Sample of multi-channel intracardiac electrograms and surface ECG during human
VF
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St. Michaels Hospital, Toronto, Canada. The criteria for success-
ful defibrillation is defined as sustained ROSC (at least 12 normal
heartbeats) within one minute post shock. Of the 50 deidentifiable
pre-shock waveforms used for analysis in the proposed work, 25 of
them were successful and 25 of them had unsuccessful outcomes.
The pre-shock waveform used in this study were limited to be from
first three shocks. Figure 3.3 illustrates a sample ECGs from suc-
cessful and unsuccessful outcomes with labels indicating pre-shock,
shock, and post-shock portions of the waveform.

3.3 Data Pre-Processing

The raw deidentifiable data obtained from the hospital were prop-
erly formatted and pre-processed as described below to make them
suitable for further analysis.

3.3.1 Human VF Data

The multi-channel electrogram data was originally sampled at 1kHz.
This was downsampled to 250 Hz to reduce the computation com-
plexity and at the same time retaining the frequency components in
the VF range (1.5Hz to 12Hz) [60]. The downsampled intracardiac
electrograms and the surface ECG were then filtered using a band-
pass filter which passes [1.5 to 12] Hz to attenuate high and low
frequency artifacts. The signals were then normalized to remove the
effect of absolute amplitude.
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Figure 3.3: Sample ECG with successful and unsuccessful shock outcomes.
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3.3.2 Pig VF Data

Pre-shock waveforms are the portion of the ECG signals just before
the shock was applied. We extracted 50 pre-shock waveforms from
the pig database and care was taken to only select portions of the
pre-shock waveforms that are not corrupted by the movement arti-
facts due to CPR maneuvers. These waveforms were downsampled
from 1KHz (original acquisition sample rate) to 250Hz to reduce
the computational complexity and also maintain uniformity with the
Human VF database. A bandpass (filter 3 to 15 Hz) was used to
remove high and low frequency artifacts. Please note the frequency
range of Pig VF is higher than humans. The length of the pre-shock
waveforms used in this study was 4sec for all the cases. The signals
were then normalized to remove the effect of absolute amplitude.

3.4 Extraction of Independent Sources

After pre-processing and formatting the electrogram and ECG sig-
nals from the human and pig database, these were fed to a series of
stages in order decompose these signals into independent sources.
The following subsection will briefly present these stages and illus-
trate with a synthetic signal.

3.4.1 Projection of Data into Time-Frequency Domain

In order to be able to use ICA for a single channel signal, the single
channel signal should be decomposed to multiple observations. For
this purpose time- frequency representation of signal is obtained by
applying CWT. CWT was used to map the pre-shock waveform into
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Figure 3.4: a) Chirp signal as an example of a time-varying signal. b) Time-scale representation
of the chirp signal using Morlet as the mother wavelet.

time-frequency domain and it is given by

S =

N∑
n=1

x[n]Ψ∗s,b (3.1)

Where S is the matrix of wavelet coefficients, x is the VF wave-
form and Ψa,b is scaled and delayed version of mother wavelet. The
mother wavelet used in this study is complex Morlet since it has
better correlation with signal structures in ECG during VF. We also
tested other wavelets for suitability for our application. However, the
obtained results justifies that complex Morlet was more suitable for
our study (Appendix B).
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A chirp signal was used as a synthetic signal to show all the further
steps to get the independent sources. The signal was sampled at 250
Hz sampling rate and CWT was performed on it. Signal and absolute
value of its relevant wavelet coefficients are shown in Figure 3.4. As
it is shown, 20 scales (this depends on the signal frequency content)
were needed to transform the signal into wavelet domain.

3.4.2 Projection of the Wavelet Matrix into Frequency and Time Basis

The matrix of wavelet coefficients obtained in the previous section
were fed to the SVD module to identify and retain only the dominant
components. SVD was performed on the transpose of S in which the
columns represent time slices and rows the frequency bins. The SVD
operation on S is given by

ST = UDV T (3.2)

where the columns of U are the right singular vectors of S (here
time components) and columns of V are left singular vectors (fre-
quency components) and D is a diagonal matrix with square root of
eigen-values in descending order.

3.4.3 Dimensionality Reduction

All the columns in U (time basis) and columns in V (frequency ba-
sis) are ordered according to their relevant singular values. Each
singular value shows the amount of information that its correspond-
ing basis contains. In general, based on the signal we could restrict
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Figure 3.5: Projection of the wavelet matrix of synthetic signal into frequency and time basis and
dimensionality reduction

to the first d singular values that contain most of the information of
the signal. In selecting a certain number of vectors in SVD (d), we
are selecting a proportion of information to retain for further analy-
sis. It is worth noting that if the signal is simply reconstructed from
the principal components retained from SVD (i.e. skipping the fur-
ther stages of operation), there will be noticeable degradation. It is
a problem which gets worse as the information ratio decreases as
more details are discarded. So we chose the number of vectors in
U and V to preserve more than 90% of the energy of all the signals
in the database. The remaining 10% or less are usually noise like
structures. Reducing the dimension further does not affects the sig-
nal approximation, while more dimensions increase the complexity
with no improvements in extracted information. With this in mind,
a good approximation of S was obtained by retaining a minimum of
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90% of the signal energy and could be given by

S̄T = UdDdVd
T (3.3)

Here Ud and Vd are first d columns of original matrices U , V , and
Dd is a matrix which contains first d elements of D.
These steps are shown in Figure 3.5 for the synthetic signal. In this
example the d was chosen to be 15 (which contains 90% of the in-
formation of signal and the rest 10% were more noisy like). The
right image shows the first 15 columns of U and each column is a
time basis. U was a 500 × 500 matrix which which was reduced to
a 500× 15 matrix and the rest of columns are discarded due to their
noisy like behavior. The left image shows the first 15 rows of the V
which contains the frequency basis.

3.4.4 Independent Component Analysis

ICA was performed on the matrix Vd to acquire independent fre-
quency components. First d columns of V (d most significant fre-
quency components) will be treated as observations and ICA was
applied on them to acquire independent frequency components

Vd
T = M(Vd

ICA)T (3.4)

M is mixing matrix (a d by d matrix) and M(Vd
ICA)T is matrix of

independent frequency components which is obtained by minimiz-
ing the mutual information between the frequency components and
columns of (Vd

ICA)T are independent frequency components (this
matrix has the same dimension as VdT ). So the matrix of approxi-
mated Scalogram can be written as
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Figure 3.6: Transformed time basis and independent frequency basis of the synthetic signal after
applying independent component analysis in frequency domain

S̄T = UdDdM(Vd
ICA)T (3.5)

and the new matrix of time domain components is

Ūd = UdDdM (3.6)

In other words, in this way the independence of frequency basis
in guaranteed. In order to have a constant energy for ST the columns
of Ud were transformed to the new space to have a one by one corre-
spondence with columns of new spectral matrix (Vd) using the equa-
tion 3.6.
Here ICA could also be applied on Ūd to ensure that the time basis
are also independent. But since VF signals are time-varying, inde-
pendence in time cannot be applied on these signals. In other words,
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in our case of processing VF signals the goal is to find whether a
specific event occurs in a signal or not but one pattern might occur in
different time locations in two non-stationary signals. Due to chaotic
behavior of VF signals, localization in time domain may not be prac-
tical hence ICA is only applied on frequency basis. Figure 3.6 is the
outcome of this step for the synthetic signal. In this figure, the left
figure shows the first 15 columns of Ud which are the columns of U
after the transformation of demixing matrix. The right figure shows
15 independent frequency (scale) basis.

3.4.5 Independent Sources

The wavelet coefficients corresponding to the independent sources
were then calculated by multiplying the columns of Ūd and rows of
(Vd

ICA)T as given by

Sc
T = Ūd(Vd

ICA)T c = 1, 2, ..d (3.7)

From these wavelet matrices corresponding to the independent
sources, we could reconstruct an approximation of the separated
source signals in time domain using inverse of wavelet transform
from Equation 3.8

ISc =
1

CΨs2

∑
s

∑
b

< x[n],Ψs,b > Ψs,b c = 1, 2, ..d (3.8)

CΨ was introduced in Section 2.1.2.
The statistically independent sources extracted based on all the above
steps are shown for the synthetic signal in Figure 3.7.
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Figure 3.7: First three independent sources of the chirp signal
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3.5 Feature Extraction

The extracted independent sources were then analyzed in terms of
their energy distribution, frequency content, and entropy. If these in-
dependent sources are related to the sources that maintain VF, then
the energy distribution over these sources should have a correlation
with the number of dominant sources and the way they share en-
ergy between them. Existing literature also shows that frequency
features derived from ECGs during VF changes over time and has
been used as one of the common features in prediction of shock
outcomes. Entropy have been also commonly used in literature to
measure the disorganization in the VF signals. Hence we focused on
these features extracted from the independent sources and evaluated
their discriminating ability between the successful and unsuccessful
shock outcomes. It should be noted that unlike the existing methods
which operate on the global ECG during VF, the proposed method
operates on the independent sources extracted from the global ECGs
and hence these features are more specific for the proposed study.

3.5.1 Energy Based Features

We computed energy for each of the independent sources and ana-
lyzed their average distribution per IS over the first 6 sources. Figure
3.8 shows the average curves of energy distribution per source for all
cases, successful cases, and unsuccessful cases. Based on our analy-
sis, it is evident that the first 2-3 sources on average capture signifi-
cant amount of the signal energy and also there is a subtle difference
between the slope of the successful and unsuccessful groups. Hence
for validating the correlation between the IS and rotors we extracted
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Figure 3.8: a) Median of captured energy of independent sources for all the cases in pig database,
cases with successful shock outcome and cases with unsuccessful shock outcome. b) Median of
captured energy of independent sources for all the cases in human database

energy based features as the goal here is to relate the number of sig-
nificant sources extracted to number of rotors. For the prediction
of shock outcomes we tested energy, frequency, and entropy based
features along with well known existing features in the literature for
comparison.

Cumulative Energy

This feature is extracted as the cumulative energy over N sources
and is given by:
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CEk =

k∑
N=1

EN (3.9)

and

EN =
∑

(ISN)2 (3.10)

where EN is the energy of the N th independent source (IS) and k
represents the first k dominant IS in decreasing order of their energy.

Energy Ratio

This feature is extracted as the energy ratio between two successive
dominant sources and is given by:

ERPQ =
EP

EQ
(3.11)

where EP and EQ are the energies of two successive dominant
sources P and Q.

Slope of Energy Curve

This feature is extracted as the slope of the energy curve between
P th and Qth sources and is given by:

SLPQ =
(EP − EQ)

(Q− P )
(3.12)

EP is the percentage of energy for the P th dominant IS and EQ is the
percentage of energy captured by the Qth independent source.
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3.5.2 Frequency and Entropy Based Features

In wavelet analysis the distribution of energy for each scale is dif-
ferent and different scales capture different amount of energy of sig-
nal. From matrix of energy of each independent source in wavelet
domain (Scalogram) the distribution of energy over all scales was
calculated by summation of the coefficients matrix of energy of sig-
nal in wavelet domain over all the times for each scale. This vector
which is distribution of energy among scales and is defined as E in
the following equation.

ESik =

N∑
b=1

|Sk(i, b)|2 (3.13)

where ESik represents the sum of energy at ith scale for the kth IS,
Sk is the matrix of wavelet coefficient resulting in matrix of Scalo-
gram for the kth independent source ( |Sk(i, b)|2 ) and N is the num-
ber of scales.

Centroid Scale

Scale in wavelet domain is inversely related to frequency. Hence,
the proposed Centroid Scale (CS) is a frequency related feature and
is calculated as weighted mean of scales given in Equation 3.14

CSk =

∑
iESiksi∑
iESik

(3.14)

where CSk is the entropy of kth independent source, i is the undex
of scale and si is the ith scale.

58



Entropy

Entropy is a measurement of disorganisation of a distribution and it
is defined as

Entk = −
N∑
i=1

ESi log10ESik, (3.15)

We used energy distribution among scales in Entropy formula so will
result in a measurement of how uniform energy is distributed among
the scales for each IS.

3.5.3 Existing Features

In order to perform comparative analysis of performance in predict-
ing shock outcomes, we chose Centroid Frequency (CF), Logarithm
of Absolute Correlation (LAC), Amplitude Spectral Area (AMSA),
and Scale Distribution Width (SDW). Centroid Frequency (CF) is
the weighted mean of the frequencies in the bandwidth of the sig-
nal [33]. SDW is a wavelet-based feature and is computed as the
number of scales which have energy value equal to or higher than
half of the maximum scale energy [13]. AMSA is a spectral feature
derived from the spectrum as the product of the frequency and its
amplitude [30]. LAC is one of the choatic features and is computed
as the logarithm of summation of correlation with different lags [34].
These features were chosen to represent diverse methodologies for a
healthy comparison. More details of these techniques are provided
in Appendix A.
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3.6 Feature Analysis

In this section we analyzed the performance of the proposed ex-
tracted features and their suitability for the application in hand.

3.6.1 Rotor Correlation

In order to test the existence of any correlation between the num-
ber of rotors and the number of independent sources, phase maps as
explained in Chapter 2 were constructed for each of the 10 human
VF episodes using the 112 multi-channel intracardiac electrograms
and corresponding surface ECGs were decomposed into indepen-
dent sources. All the above discussed energy features (CE, ER, and
SL) were extracted. From the dynamic movies generated using the
phase maps for every instant of time, number of rotors were identi-
fied. The criteria for identifying rotors were described in [59] which
is that at least there should be two complete rotation of activation
pattern around a phase singularity point. Using this criteria rotors
were identified for each of the 10 human VF episodes which ranged
from 1 to 3 (or more rotors). Figure 3.9 shows two samples cases
of human VF. The first columns shows two VF episodes with 1 and
3 (or more rotors) rotors. On the right column the corresponding
three dominant independent sources extracted from surface ECG are
shown. The energy features extracted for each of the case is shown in
text on the right side column. From the feature values and the num-
ber of rotors there is a correlation indicating that theER12, CE2, and
SL13 are inversely proportional to number of rotors. A more detailed
results on the correlation analysis will follow in the next chapter.
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(a) Phase Map of an organized case (b) First three sources and feature values for an orga-
nized case

(c) Phase Map of a disorganized case (d) First three sources and feature values for a disor-
ganized case

Figure 3.9: Phase map rotors, independent sources and feature values for one organized and one
disorganized human cases. The sampling rate for all the sources is 250 Hz.
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Figure 3.10: Boxplots showing distribution of energy based features between two groups.
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Figure 3.11: Boxplots showing distribution of the entropy and centroid scale of first and second
sources between two groups.
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3.6.2 Prediction of Shock Outcomes

Having observed a correlation between the number of rotors and
the energy features, the proposed features were tested for predict-
ing the shock outcomes. All the 50 pre-shock waveforms from the
pig database were processed and all the above discussed energy, fre-
quency, entropy and existing features were extracted. For the analy-
sis part of this Chapter we only used our proposed features. Boxplots
were generated to examine the discriminating ability of the features.
Figures 3.10 and 3.11 show the feature distribution for the success-
ful and unsuccessful groups for 3 energy features CE2, ER12 and
SL13 and Ent1, CS1, Ent2, CS2. From the boxplots of the energy
features especially CE2 and SL13 it is evident that they do demon-
strate discrimination, while the frequency and entropy features per-
form poorly. Hence we proceeded with the energy based features of
the independent sources.

3.7 ROC curves

Based on our analysis and illustration, the energy based features
demonstrate higher potential in discriminating successful from un-
successful groups. We computed the ROC curves for the energy
based features and are shown in Figure 3.12. All the energy based
features are above the diagonal line demonstrating certain degree of
discriminatory power. To quantify we analyzed the area under the
curve and found to be 72.2%, 62.4%, and 69.8% for CE2, ER12

and SL13 respectively. For a perfect classification an area under the
curve should be 100% and hence the area under the curve for the
proposed features does show certain overlap.
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(a) ROC curve for CE2 (b) ROC curve for ER12

(c) ROC curve for SL13

Figure 3.12: ROC curve for the energy based features
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3.8 Chapter Summary

In this chapter we presented the details on the databases used in this
study along with the various steps involved in extracting the indepen-
dent sources. It also covers the motivation and approach in arriving
at energy based, frequency, and entropy based features. Analysis of
these features for their ability to correlate with number of rotors and
discriminate the success and unsucessful groups was presented. Us-
ing box plots and ROC curves it was shown that the proposed energy
based features performing better towards achieving the set goals for
this study. This chapter also briefly presents the existing features that
will be used for comparative analysis in the following chapter.
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Chapter 4

Results and Discussions
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Figure 4.1: Block diagram of the thesis with highlighted parts covered in this chapter

IN this chapter we present the results obtained in evaluating the
proposed features in achieving our set goals. The results are or-

ganized as follows; the first section presents the correlation analysis
of the number of rotors to the number of statistically independent
sources obtained from blind sources separation algorithm. In Section
4.2 we present the results of the our main objective in evaluating the
proposed features extracted from independent sources for predicting
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defibrillator shock outcomes.

4.1 Rotor Correlation with Independent Sources

The number of underlying rotors for human database was extracted
using phase mapping of multi-channel electrogram records. Phase
maps were built for each time instant as a movie from the multi-
channel electrogram records. The number of rotors were identified
by observing the phase map of each VF episode and considering the
fact that a phase singularity point qualifies as the center of the rotor
if the phase pattern rotates around this point for two full rotations.
To test whether the number of underlying sources during VF is re-

flected in the surface electrograms, percentage of captured energy
of each statistically independent source were calculated and is plot-
ted in Fig. 4.2. Based on our analysis and identification of rotors
in the 10 VF episodes we observed three groups. First group was
very organized and maintained by a single rotor. The second group
were also organized but not to the level of organization in group
one. This group had two dominant rotors. Last group was very dis-
organized and had more than two excitation points and were more
like multiple wavelets than rotors. The identified number of rotors
were compared to features extracted from the energy curve of the
independent sources of the surface ECG for each case and results
are shown in Table 4.1. In this table the first column is the label for
each human VF episode, the second column shows the number of ro-
tors obtained from phase map analysis and validated by independent
experts. Next four columns are energy of the first source (CE1), cu-
mulative energy of first two sources (CE2), slope of energy between
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Figure 4.2: In the above plot the x-axis shows the number of independent source and y-axis shows
the percentage of captured energy by each independent source. Each of these curves show the per-
centage of energy captured by the independent sources for a surface ECG record that corresponds
to a certain number of rotors in the phase maps. Different line styles (different colors) represent
different number of rotors.
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Table 4.1: Comparison between number of rotors and features extracted from surface electrogram

Label Number of rotors CE1 CE2 SL13 ER12

case 1 1 0.630 0.797 0.271 3.793
case 2 1 0.920 0.990 0.457 13.137
case 3 1 0.790 0.922 0.363 5.960
case 4 1 0.970 0.987 0.482 57.209
case 5 2 0.635 0.787 0.270 4.157
case 6 2 0.496 0.788 0.197 1.697
case 7 2 0.505 0.835 0.213 1.532
case 8 2 0.7627 0.914 0.357 5.0182
case 9 3 (>2 or more) 0.368 0.709 0.0792 1.080

case 10 3 (>2 or more) 0.381 0.705 0.137 1.181

first and the third sources (SL13) and the energy ratio between first
and the second sources (ER12).

The first four rows of Table 4.1 represent VF episodes that are
very organized and maintained by a single rotor. These cases have a
high value for CE1 and CE2. The ratio of energy of first two sources
ER12 is high and the slope of energy between first and third source
SL13 is high which shows a fast decay for energy level between the
first three ISs. Next four cases are less organized compared to the
first group and their phase map contains two rotors. The first inde-
pendent source captures less energy compared to the first source in
the previous group. This group has smaller CE1 and CE2 and en-
ergy decreases gradually from IS1 to IS3 . The last three rows in
Table 4.1 show the third group which are very disorganized and are
maintained by more than two rotors (or inclined towards multiple
wavelets). These group have the smallest value for CE1 and CE2

and the energy drops very slowly and energy is distributed almost
equally between the first few sources.
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Table 4.2: Correlation between number of rotors and energy based features from BSS

Feature correlation coefficient
E1 -0.88
CE2 -0.85
SL13 -0.88
ER12 -0.48

To quantify the correlation between the number of rotors and the
features extracted from the energy curve, a line was fitted to the num-
ber of rotors obtained from the multi-channel data and the proposed
features extracted from the surface ECG. These lines are shown in
the Figure 4.3 and the correlation between this line and data is cal-
culated and shown in Table 4.2. From this table it could be con-
cluded that there is a high correlation between CE1, CE2, and SL13

of the surface ECG and number of rotors. The highest correlation
of −0.88 was observed for both CE1 and SL13 ,followed by −0.85

for CE2. The negative value for correlation coefficient means an in-
crease in number of rotors will result in a reduction in feature value
(they are related in the opposite direction). This high correlation sug-
gests strong association between the rotors and the proposed features
extracted through BSS from surface ECGs.

From these observations, we concluded that the more organized
the electrical activity (or less rotors) during VF, its surface ECG
needs less number of independent sources to model it and vice versa.
Based on the proposed method now we can decompose a surface sig-
nal and approximately infer the characteristics of VF sources that is
otherwise possible only through multi-channel intracardiac electro-
grams. This is a novel and additional information especially to the
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Figure 4.3: Line fit for energy based extracted features and number of rotors

72



EMS staff who only have access to surface ECG and this information
could lead to better understanding of the heart’s dynamic condition
in choosing their therapy.

4.2 Prediction of Shock Outcomes

In the previous section it has been shown that the number of rotors
obtained from study of human database and their organization level
has a relationship with number of statistically independent sources
obtained from surface ECG. In this section we will evaluate the fea-
tures extracted from the independent sources in predicting the shock
outcomes. The results are provided for the proposed features and
compared with the performance with the existing features. Influence
of protocol variabilities on the obtained results are also presented.

In order to quantify the ability of the extracted features in a numer-
ical manner, an LDA based classifier was used to categorize the data
in two groups. Based on our analysis in the Chapter 3, the energy
based feature demonstrated better discriminatory ability than the fre-
quency and entropy based features. Hence only the energy based
features were used in numerically quantifying their discriminatory
ability. The features were evaluated individually and for combina-
tions in classifying the pig database into successful and unsuccessful
categories. Table 4.3 presents the individual classification accuracy
of the each of the three energy based features.

From Table (4.3) it is evident that CE2 and SL13 are performing
with 60% and 64% accuracies for the successful category and 68%
and 72% for the unsuccessful category respectively. ER12 performs
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Table 4.3: Two group classification results for three energy based feature extracted form indepen-
dent sources

Number of extracted ISs=6
Feature Successful% Unsuccessfu%l Total% P-valuel
CE2 60 68 64 0.0040
ER12 28 92 64 0.1103
SL13 64 72 68 0.0106

well for the unsuccessful category with a 92% accuracy but poorly
for the successful cases with an accuracy of 28%. All these pre-
sented values were cross validated using the leave-one-out method.
The P-value for each of these features are also provided in the last
column. SL13 and CE12 are statistically significant for P-value less
than 2%. The highest overall classification accuracy was found to be
68% for SL13 feature. 16 out of the 25 successful cases and 18 out of
the 25 unsuccessful cases were correctly classified based on the ob-
served phenomenon that the unsuccessful cases need more number
of sources to capture comparable signal energy with respect to suc-
cessful group. The SL13 feature also provides approximately equal
sensitivity and specificity. Table 4.4 provides detail classification re-
sults for SL13. As the choice of number of demixing sources could
influence the way the energy is decomposed among the sources, we
repeated the experiments by varying the choice of d (the number of
sources). For 5, 6, 7, 8 and 9 independent sources the classification
accuracy remained unchanged at 68% except for 5 sources which de-
creased to 64%. This also indicates that 6 sources to be an optimal
threshold for the proposed work. We also tested the classification
accuracy for combination of features. This analysis however did not
yield better results.
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Table 4.4: Two group classification results for SL13

Method Group Successful Unsuccessful Total
Cross Validated Successful 16 9 25

with LOOM Unsuccessful 7 18 25
Percentage of Successful 64 36 100

Classification % Unsuccessful 28 72 100

To visualize the classification boundary we computed the 2D fea-
ture space plot with the top two features CE2 and SL13 as axes.
Since in our method we use leave-one-out cross validation, the de-
cision boundary for each of the trial will be changing as only one
sample is used as a test sample in a sequential manner. So for visu-
alization purpose only, we trained the LDA classifier with a different
set of training data to obtain the boundary and drew this boundary
on the whole distribution of the 50 samples. Figure 4.4 shows the
feature space plot with one possible linear boundary and it is evident
that the two groups are separated by the linear boundary with some
overlap. The successful cases seems to be more spread in the space
and have high values in both x direction which is CE2 and y direc-
tion which is SL13. However, the unsuccessful cases seems to be
more concentrated in small values of CE2 and SL13.

The available VF records in the studied data-base have different
CPR length after the untreated VF and before the shock. In order
to test if this variation in CPR length influences the results we sub-
classified the database into two groups with at four minutes of CPR
duration (CPR> 4 min) and less than four minutes CPR duration
(CPR<4 min). The first group with this group CPR> 4 min had
17 successful and 21 unsuccessful cases. In the second group i.e.
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Figure 4.4: Feature space for CE12 and SL13 which shows that proposed features demonstrate
discrimination between successful and unsuccessful cases, although there is some overlap.

CPR<4 min there were 8 successful and 4 unsuccessful cases. In
order to evaluate if this parameter affects the results we performed
a subclassifications on each sub-group. The classification results for
this subgroups with the SL13 feature are shown in Table 4.5. Al-
though the results are inclined to support the CPR<4 min and better
overall accuracy (i.e. 75% vs 65%), P values are insignificant and
the subset of data for the group CPR<4 min is relatively small (8
successful and 4 unsuccessful). Hence it is inconclusive if the ef-
fect of length CPR positively or negatively influences the pre-shock
signal features.
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Table 4.5: Cross validation result for sub-grouped data based on CPR duration

Number of extracted ISs=6
CPR duration Successful% Unsuccessfu%l Total% P-valuel

More than four minutes 64.7 66.2 65.8 0.0377
Less than four minutes 75 75 75 0.0918

4.2.1 Comparative Analysis

As explained in Chapter 3 we included five well known existing
features from different methodologies for comparative performance
analysis. We extracted these features from the 50 pre-shock wave-
forms and fed to the LDA based classifier. The Table 4.6 shows the
classification accuracies for the comparative analysis.
In the Table 4.6 the first column is the extracted existing features in
the literature, second column shows the classification accuracy for
successful category, third column for the unsuccessful category, and
the last column for the overall classification accuracy. We have also
provided our proposed feature that performed well SL13 in the last
row for ready reference. As it could be observed the proposed feature
outperforms most of the existing techniques for the given databases
with good and balanced specificity and sensitivity. The only compa-
rable existing feature was SDW which can classify successful group
with 80% but it performs poorly for unsuccessful cases with 56%.
The boxplot comparison between SDW and SL13 is provided in Fig-
ure 4.5. This figure shows that for SDW the boxplot for successful
is completely inside the distribution of unsuccessful group. In com-
parison, in our feature SL13 the distributions are centralized for both
groups and show separation with certain overlap which is more de-
sirable. This also explains the unbalanced sensitivity and specificity
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Table 4.6: Classification accuracy comparison between existing features with the proposed feature

Classification Accuracy
Feature successful group unsuccessful group Total P-value

SDW 80 56 68 0.0015
CS 60 44 52 0.2407

AMSA 84 40 62 0.1569
AMSA-N 56 60 58 0.3066

LAC 80 40 60 0.1669
SL13 64 72 68 0.0106
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Figure 4.5: Boxplot comparison for SDW and SL13

of SDW in comparison with our SL13 feature.
From the results presented above, it is evident that the proposed

features based on the independent sources extracted through BSS
perform well in achieving our set goals. The proposed features do
demonstrate a strong correlation with existing VF mechanisms and
more importantly are extracted from the single channel surface ECG.
These features add novel information to the existing literature in the
way that now the inference on the source distribution can be approx-
imated from single channel surface ECG. Their prediction ability of
shock outcomes although not very high, performed well in compari-
son with existing techniques in the literature.
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4.3 Chapter Summary

In this chapter we presented the results obtained by performing cor-
relation between number of rotors and the features extracted from
the independent sources obtained from single channel ECG. The re-
sults showed there is a high correlation (88%) between number of
rotors and the proposed IS based features. In the next step we ana-
lyzed the shock outcome prediction ability of the extracted features
from independent sources. A cross validated classification accuracy
of 68% was achieved. A comparative analysis with existing tech-
niques found the proposed features performing better than existing
approaches for the given database. In next chapter we will conclude
the study and discuss future directions.
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Chapter 5

Conclusion

the cardiovascular system maintains blood flow effecting exchange
of essential nutrients and oxygen transport to all parts of the body.
The heart is the central organ in the system that acts as a versatile
pump operating in a rhythmic fashion. When this rhythmic opera-
tion is compromised, blood flow to vital organs ceases resulting in
death within a short span of time. Arrhythmias are a subclass of car-
diac disorders that could seriously compromise the heart’s function.
Of the cardiac arrhythmias, VF needs immediate medical interven-
tion to avoid SCD. This is especially true when VF occurs in an
out-of-the-hospital setting, where the longer the wait time for the
arrival of EMS staff the lesser the chances of survival. There have
been existing works in this area to study the ECG during VF and
provide feedback to EMS in order to optimize treatment options to
resuscitate heart to normal rhythm. There are also works that study
the mechanic insights of VF in an attempt to understand and charac-
terize VF so as to arrive at better long term treatment strategies. In
this thesis, we attempted to associate a relation between the under-
lying sources of VF (as presented by existing theories) to the signal
characteristics of the pre-shock surface ECG waveforms that results
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in either successful or unsuccessful outcomes. A major challenge in
establishing this relation was that we needed both spatio-temporal
mapping of the surface of the heart using multi-channel electrode ar-
rays and simultaneously recorded surface ECGs during VF. Due to
the collaborative efforts with the Toronto General and St. Micheal’s
hospitals, it was possible to have access to both of these uniques elec-
trogram and ECG data. The proposed study used BSS approach in
decomposing the surface ECGs into statistically independent sources
and extracted features for both establishing a relation with the exist-
ing theories and also for predicting the shock outcomes. Based on
the results obtained, the proposed methodology performed well in
achieving the set goals of the thesis.

5.1 Summary of Results

In establishing a relation between the number of rotors obtained us-
ing spatio-temporal maps with the independent sources extracted
from the surface ECGs, the proposed energy features performed well.
A unique human database with 10 VF episodes comprising of three
patients and two isolated human hearts was used in this study. A
line fit for the relation yielded a correlation of 88% indicating a
strong association between the energy distribution over the indepen-
dent sources (or the number of dominant independent sources) and
the number of rotors observed in the spatio-temporal phase maps.

The predication capability of the proposed features were tested us-
ing a pig database consisting of 50 pre-shock waveforms extracted
from 50 different pigs. A maximum classification accuracy of 68%
was achieved with approximately equal sensitivity and specificity.
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The obtained results were tested for statistical significance and found
to be significant for P<2%. The results were cross validated us-
ing LOOM which ensured the independence of training and testing
data. A comparative analysis was performed to benchmark the per-
formance of the proposed features. Features from diverse method-
ologies were included for the analysis. The results suggest that the
proposed method performs relatively well for the given database.

5.2 Summary of Contributions

The proposed study achieved the set objectives of the thesis and fol-
lowing are the summary of the contributions:

• We have established the existence of a relation between the un-
derlying sources (rotors) during VF to the statistically indepen-
dent sources extracted from a single channel surface ECG. This
inference on underlying source distribution is a novel and ad-
ditional information that could be extracted from the surface
ECGs. Considering that the field EMS staff only have access
to surface ECGs, this inference on the approximate number of
sources could provide additional information on the state of the
heart that could lead to better planning of their treatment options.

• From a mechanistic point of VF, the proposed approach pro-
vides a way to decompose the surface ECG during VF and re-
solving them into independent sources and these independent
source signals might reveal hidden signal characteristics that are
not obvious on the surface ECG.
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• The energy features introduced in this work demonstrate high
potential for predicting shock outcomes with a good sensitivity
and specificity and performs well in comparison with existing
techniques.

5.3 Future work

The proposed BSS approach in analyzing VF signals demonstrates
a way to decompose VF signal in a statistical sense. This leads
to many possibilities in characterizing VF into signal components
and may provide more details especially in studies where the effect
of pharmacological or electrophysiolocal interventions are studied.
Using multi-lead surface ECGs the proposed method could improve
upon the source identification and might enable the possibility of
source localization. The energy based features extracted from the
independent sources did perform well in predicting the shock out-
comes and could be improved by understanding the influence of the
shock parameters (e.g. shock thresholds, placement of pads, CPR
efficacy etc).
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and Erkki Oja, “Independent component analysis for identifica-
tion of artifacts in magnetoencephalographic recordings,” Ad-
vances in neural information processing systems, pp. 229–235,
1998.

[55] Aapo Hyvärinen and Erkki Oja, “Independent component anal-
ysis: algorithms and applications,” Neural networks, vol. 13,
no. 4, pp. 411–430, 2000.

93



[56] A Papoulis Probability, “Random variables and stochastic pro-
cesses,” 1991.

[57] Richard O Duda, Peter E Hart, and David G Stork, Pattern
classification, Wiley-interscience, 2012.

[58] Andrew P Bradley, “The use of the area under the ROC curve in
the evaluation of machine learning algorithms,” Pattern recog-
nition, vol. 30, no. 7, pp. 1145–1159, 1997.

[59] Karthikeyan Umapathy, Krishnakumar Nair, Stephane Masse,
Sridhar Krishnan, Jack Rogers, Martyn P Nash, and Ku-
maraswamy Nanthakumar, “Phase mapping of cardiac fibril-
lation,” Circulation: Arrhythmia and Electrophysiology, vol. 3,
no. 1, pp. 105–114, 2010.

[60] K Umapathy, S Masse, E Sevaptsidis, J Asta, H Ross, N Tha-
vandiran, K Nair, T Farid, R Cusimano, J Rogers, et al., “Re-
gional frequency variation during human ventricular fibrilla-
tion,” Medical engineering & physics, vol. 31, no. 8, pp. 964–
970, 2009.

94



Appendix A

Details on Existing Features

In this section we will explain and give mathematical equations for
the existing features used for comparative analysis in this study. In
wavelet analysis the distribution of energy for each scale is different
and different scales capture different amount of energy of signal.
From matrix of energy of signal in wavelet domain (Scalogram) the
distribution of energy over all scales is calculated by summation of
the coefficients matrix of energy of signal in wavelet domain over all
the times for each scale. This vector which is distribution of energy
among scales and is defined as E in the following equation.

Ei =

N∑
b=1

|S(i, b)|2 (A.1)

where Ei represents the sum of energy at ith scale , S is the matrix
of wavelet coefficient resulting in matrix of Scalogram ( |S(i, b)|2 )
and N is the number of scales.

• The Scale Distribution Width (SDW) was calculated as the num-
ber of scales which have energy value equal to half of the energy
of scale which captures maximum of energy compared to all the
existing scales. It defines the range of scales within which the
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signal is operating. It can be represented by

SDW = si − sj (A.2)
Esl ≤ 2× Esm, l > m (A.3)
Esi ≤ 2× Esm, j < m (A.4)

where m is the index for the scale which captures maximum of
energy, l is the largest index which satisfies the conditions and j
is the smallest. [36].

• CS the weighted mean of the scales in the scale width of the
signal

CS =

∑
iEisi∑
iEi

(A.5)

Esi is total energy for ith scale in scale width, i is the undex of
scale, si is the ith scale and N is total number of scales. .

• AMSA is a combination of dominant scale and mean amplitude.
AMSA used in this study is calculated based on the equation
given Nakagawa et al. 2012 in [14] given in Equation A.6

AMSA =
∑
i

|Eisi| (A.6)

Where scale of si is the ith scale. Normalized-AMSA (AMSA-
N) is also calculated from Equation A.6 but normalization is
performed on A.
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• LAC (Logarithm of Absolute Correlation) is a roughness mea-
surement for the signal and is calculated as

LAC = Log(

m∑
k=1

(|
n−m∑
i=1

(x[i]x[i + m])(n− k)|) (A.7)
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Appendix B

Choice of Wavelet

The main features of this study were energy based features which
were extracted from distribution of signal’s energy over all extracted
sources. In choosing the optimal wavelet for the application in hand
we tested the energy distribution over all sources using different
wavelets. The following four wavelets were tested; Paul, Mexican
hat, Dog and Morlet. The energy curve for these wavelets are shown
in Figure B.1 (Please refer to the next page)

Based on these curves for the pig database we observed the me-
dian energy distribution obtained from Morlet wavelet to be more
discriminatory than other wavelets and hence Morlet wavelet was
chosen for the proposed study.
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Figure B.1: Median of energy curve plot for successful and unsuccessful group for different
wavelets
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