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ABSTRACT

This research presents the numerical analysis of the triply coupled flap-wise, 

cord-wise and torsional vibrations of flexible rotating blades. Euler-Bemoulli bending 

and St. Venant torsion beam theories are considered to derive the governing differential 

equations of motion. Based on Finite Element Methodology (FEM), the cubic “Hermite” 

shape functions are implemented where the solution of the equations results in a linear 

eigenproblem. Then, the Dynamic (frequency dependent) Trigonometric Shape Functions 

(DTSF’s) for beam’s uncoupled displacements are derived. The application of the 

Dynamic Finite Element (DFE) approach to the solution of the governing equations is 

then presented. The DFE formulation, based on the weighted residual method and the 

DTSF’s, results in a nonlinear eigenproblem representing eigenvalues and eigenmodes of 

the system. The applicability of the DFE method is then demonstrated by illustrative 

examples, where a Wittrick-Williams root counting technique is used to find the system’s 

natural fi'equencies. The DFE approach, an intermediate method between FEM and 

“Exact” formulation, is characterized by higher convergence rates, and can be 

advantageously used when multiple natural frequencies and/or higher modes of beam-like 

structures are to be evaluated.
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CHAPTER 1: INTRODUCTION

1.1. Introduction

The study of the dynamic behaviour of flexible structures is an intrinsic part of 

design of such systems. The determination of dynamic characteristics of structures is very 

important in many terrestrial engineering applications, such as automotive industries, 

industrial robots design and automations, buildings and bridges, and aerospace structural 

problems such as fixed and rotary aircraft wings and structures, control surfaces, satellite 

antenna and solar and many more simple or complicated systems. In many cases, when 

there is a source of vibration with variable frequency, the vibration behaviour of a system 

is studied to avoid resonance in transient response, where design engineer is to find the 

frequency spectrum of the system and check the interference of working frequencies and 

the system natural frequencies.

Besides, in many structural problems, the system modal analysis is also important, 

especially when the design is subject to geometric considerations. For example, the nodes 

locations in the natural modes could be used to define the supports. Also, the changes in 

the boundary conditions can considerably affect the system’s natural frequencies.

Beams vibration analysis plays a significant role in the investigation of the 

dynamic behaviour of flexible structures, since many systems can be simply represented 

by a beam model. Bridges, slender propellers blades, airplane wings and satellite 

antennas are modeled, at least for the first few natural frequencies, as beam structures. 

Therefore, many research works have been carried out on the new analytical and 

numerical methods for beam vibrations with different mechanical and geometrical 

characteristics [1-13,15-25,27-30].

Beams exhibit different vibrational behaviours depending on their mechanical and 

geometrical properties. A beam can undergo single or multiple bending (lateral) 

vibrations, torsional vibrations, longitudinal vibrations and/or a combination of some or 

all displacements. For the coupled systems, the differential equations governing the 

structural vibrations are coupled. The coupled equations are widely used in modeling and 

analysis of aeronautical systems, namely the aircraft wings and stator and rotary

1



compressor and turbine blades, etc. exhibiting coupled bending-bending, bending-torsion 

or bending-bending-torsion vibrations.

Houbolt and brooks (1956) [1] investigated the beam coupled vibrations by 

formulating a rotating beam model with coupling between flap-wise bending, cord-wise 

bending and torsion, where the beam has variable cross-sectional properties, twist angle 

and is subjected to external aerodynamic lift and drag forces. The Euler-Bemoulli 

bending and St. Venant torsion beam theories were considered where the shear 

deformation and rotary inertia effects are neglected.

Computers opened a new horizon to engineering problems and many researchers 

then focused their efforts to develop numerical methods where the exact analytical 

solutions to the system’s governing equations are not known. Murthy (1976) [2] used the 

Transmission Matrix Method (TMM) to solve the triply coupled differential equations 

governing the vibrations of twisted non-uniform blades. The state vector (satisfying the 

differential equations) and backward transmission matrix were employed to form the 

system’s eigenproblem. The eigenproblem was then solved to obtain natural frequencies 

and mode shapes of the blade. In another attempt, Murthy used the Integrating Matrix 

Method (IMM) to solve the bending-torsion coupled equations of rotating beams [3,4], 

where equations are written in matrix form and are integrated to develop the system 

eigenproblem.

Lang and Nemat-Nasser (1979) [5] proposed a new quotient method to investigate 

the out-of-plane, in-plane and torsional vibrations of pre-twisted non-uniform blades. 

This method is based on a variational statement of equations and can be used to find the 

blade’s natural frequencies and mode shapes.

Magari et al. (1987) [6] introduced a Finite Element Method (FEM) and the 

Hermite bending shape functions were employed to solve the equations of motion for 

triply coupled beam vibrations. The resulting equations were then solved using 

MSC/NASTRAN program. The development of numerical methods was continued by 

Surace et al. [16,17] and they investigated the bending-bending-torsion coupled beam 

vibrations using the integral formulation based on Green functions (structural influence 

functions).



Besides the numerical approaches, there have also been some attempts to find the 

analytical solutions of the differential equations governing the coupled beam dynamics. 

Based on the Dynamic Stiffness Matrix (DSM) method, Baneijee introduced the exact 

solutions for different coupled bending-torsion beam vibrations [7-13] where the 

Wittrick-Williams (W-W) root counting algorithm [14,15] was used to find the system’s 

natural fi-equencies. The exact DSM solution is limited to simple problems and it cannot 

be used to solve the complex beam geometries and configurations.

Furthermore, many researches have also been focused on more advanced beam 

theories to incorporate the effect of warping, shear deformation and rotary inertia, etc. 

Arpaci et al. [18] introduced an exact solution method for thin-walled open cross section 

beams considering warping and rotary inertia effects. Subrahmanyam et al. [19] 

presented an approach for beam vibrations analysis including the shear deformation, 

rotary inertia, warping and thermal effects. This model can be used for turbine blades 

where the beam does not satisfy Euler-Bemoulli assumptions and the thermal effects 

must be taken into account [19]. The effect of warping on the axially loaded coupled 

bending-torsion beam was investigated by Jun et al. [20]. As shown in this research, 

ignoring the warping effect causes decrements in natural frequencies. Also, for higher 

modes, the warping effect is more pronounced.

The Dynamic Finite Element (DFE) method, first introduced by Hashemi (and his 

coauthors) [21-25], represents an intermediate method between analytical exact DSM and 

numerical FEM methods. In this approach, the Dynamic (frequency dependent) 

Trigonometric Shape Functions (DTSF’s), employed as approximation functions, are 

formulated based on the solution of beam uncoupled governing differential equations. 

Similar to the DSM method, the DFE produces a non-linear eigenvalue problem and the 

Wittrick-Williams algorithm [14,15,26] can therefore be used to extract the natural 

frequencies of the system. The DFE has been applied to the uncoupled flexural and 

bending-torsion vibrations of uniform and non-uniform beams where the equations of 

motion are geometrically and/or materially coupled, resulting in excellent convergence 

rates [21-25].

It has been proven that the DFE combines the advantages of the FEM and DSM 

methods and results in an accurate, flexible, and systematic method to determine the



natural frequencies of beams and beam-like structures. The DFE can be advantageously 

used for preliminary design o f mechanical systems made of flexible beam assemblies, 

where designer needs to portrait the general dynamic behaviour of the system with 

acceptable accuracy before starting the detailed analysis and design. Complete modeling 

of complex systems takes relatively long time and is expensive, and employing the DFE 

especially for systems with repeated sub-structures can provides a versatile tool to depict 

the dynamic characteristics of the system.

1.2. Objective

The objective of this thesis is to develop and validate a new DFE formulation for 

triply coupled bending-bending-torsion vibrations of rotating and non-rotating beams. A 

classical FEM approach is also presented and the two methods are compared. Both DFE 

and FEM formulations are developed based on Galerkin-type weighted residual method 

(WRM). Due to the nature of the DFE method, the resulting eigenproblem is nonlinear. A 

dedicated Wittrick-Williams root counting algorithm [14,15,26] which provides a 

powerful tool to evaluate the natural frequencies of nonlinear eigenproblems is 

introduced. The method can then be implemented to investigate the natural frequencies 

and corresponding modes of free vibrations of dually and triply coupled beams. The 

method presented in this research is able to calculate the eigenvalue (natural 

frequency) of the resulting nonlinear eigenproblem.

This research also investigates the coupled vibrations of flexible beams and the 

effect of various geometric and dynamic parameters on the system behaviour. The 

dynamic coupling (caused by rotating speed and/or constant axial load) and geometrical 

coupling (caused by pre-twist angle and/or distance between mass and elastic center) are 

studied by several illustrative examples and the natural frequencies and modes of free 

vibrations of beams and rotating blades are evaluated. These examples provide a general 

understanding and a better insight to the free vibrations of beams and blades.

The DFE and FEM formulations presented in this research can be used to evaluate 

the fundamental natural frequencies and the corresponding modes of a beam structure. In



many engineering design problems, the designer needs to get a general idea about the 

dynamic behaviour of the system even before a detailed and rigorous FEM analysis starts. 

In such cases, having a reliable, simple and accurate simulation tool is helpful.

1.3. Thesis Organization

In order to construct an accurate DFE formulation for the free vibration analysis 

of blades, a progressive procedure is adopted. The modeling starts with the well-known 

classic FEM method for beam's pure bending vibration and finally comes to an end with 

a DFE model for coupled bending-bending-torsion vibrations of rotating blades.

In Chapter 1, the importance of mechanical vibrations and the vibration analysis 

of flexible structures, in general, and the coupled beam vibrations, in particular, are 

briefly discussed. Some of the numerical methods used in analysis of rotating and non­

rotating beams are reviewed, and the DFE as a bridge between exact solution method 

(DSM) and finite element method (FEM) is outlined.

In Chapter 2, the equations of motions for the coupled flap-wise, cord-wise and 

torsional vibrations of rotating beams along with the boundary conditions are presented. 

The Euler-Bemoulli bending and St. Venant torsion beam theories are considered where 

the shear deformation, rotary inertia and warping are neglected. The equations are 

coupled due to the geometrical and mechanical properties and the dynamics of the beam. 

Then equations of motion and the boundary conditions for coupled bending-torsion and 

bending-bending vibrations are extracted from the triply coupled equations.

In Chapter 3, a dedicated Wittrick-Williams root counting algorithm for 

calculation of natural frequencies of a flexible structure is discussed. The solution 

methodology is explained for the non-linear eigenvalue problems resulting from the 

frequency dependent element dynamic stiffness matrices. As it is then briefly discussed, 

the corresponding modes of coupled vibration can be extracted using a perturbation 

technique.

In Chapter 4, the Galerkin based finite element methodology is described and the 

coupled equations of motion along with static Hermite polynomial shape functions are



used to derive the FEM method. The FEM approach then is applied to the triply coupled 

beams as well as coupled bending-torsion and bending-bending beams to verify the 

solution method.

In Chapter 5, the Dynamie Finite Element (DFE) formulation is introduced. The 

Dynamic Trigonometric Shape Functions (DTSF’s) are used to form the frequency 

dependent stiffness matrix. The Wittrick-Williams root counting method is then 

employed to find the natural fi-equencies. Some illustrative examples of dually and triply 

coupled beams are then discussed to prove the validity of the method.

In concluding Chapter 6, the formulations introduced in this research work are 

reviewed. A comparative study between DFE and FEM methods is then provided, where 

the advantages of each method are highlighted. At the end, the direction and future of the 

research is stated.

In appendix A, the solutions of uncoupled bending and torsion vibrations of a 

cantilever beam are derived. The solutions are used to develop Dynamic Trigonometric 

Shape Functions for DFE method.

Appendix B introduces the program logic and the algorithm for FEM and DFE 

methods, and explains the differences between two programs. Also the functions which 

have been developed and used in the FEM and DEF programs are discussed.



CHAPTER 2: EQUATIONS OF MOTION GOVERNING COUPLED 

VIBRATIONS OF ROTATING BEAMS

2.1. Introduction

The governing differential equations of motion for coupled vibrations of rotating 

beams incorporating different levels of complexity bave been introduced in several 

occasions [1,16,22,23,25]. The proposed models bave been developed using different 

methods and consist of one or more geometric/dynamic parameters leading the coupling 

between equations of motion. Regardless of the derivation method, the resulting general 

equations can be easily reduced to special cases such as constant twisting angle, non­

rotating beam with constant tension, rotating beam without eccentricity, coupled bending- 

torsion [2,16], bending-bending [2,16,27] and the simple case of uncoupled bending and 

torsion vibrations of a beam [34].

2.2. Model

A cantilever rotating beam (Figure 2.1) with length L, and an offset ej from 

rotating axis (i.e. bub radius), distance e between mass centroid and elastic (shear) center 

and rigid cross-section is the basis of the model. All rigidities are assumed to be constant, 

or piecewise constant, along x-axis. The rigidities are; flexural rigidities EI^, Ely, Ely, 

and Torsional rigidity GJ. The rigidities can be determined experimentally or 

theoretically. The beam has a pre-twist angle 6.



(a)

C.E. c .a

(b) (c)

Figure 2.1: The beam configuration and geometrical parameters.

The beam undergoes three displacements: rv and v are out-of-plane and in-plane 

displacements, respectively, associated with bending vibrations in two directions and ^  is 

the rotational displacement associated with torsion.

2.3. Assumptions

The Euler-Bemoulli bending and St. Venant shear beam theories are exploited. 

The shear deformation, the rotary inertia effect, warping and thermal effects are 

neglected. The small linear displacements are considered, the axial displacements are 

neglected and the bending slope is set equal to the derivative of bending displacement 

with respect to spatial variable x.

2.4. Governing Differential Equations of Motion

There have been many studies to derive the differential equations governing the 

free vibrations of rotating blades. Houbolt and Brooks [1] followed the stress-strain 

analysis in which the longitudinal strains are expressed in terms of two perpendicular 

bending displacements and torsional displacement. The stress is then integrated over the



beam cross sectional area to evaluate the flap-wise, cord-wise and torsion moments at any 

section of the beam. The resulting internal and external moments and forces are used in 

Newton’s second law to relate the forces with accelerations. The Newton’s second law 

results in the final differential equations of motion. Magari et al. [6] employed the 

Hamilton’s principle in which the action function is minimized in the time interval, and 

the internal potential energy and kinetic energy are calculated in terms of displacements. 

Using any of these two methods, the displacements are functions of time (t) and .v and 

final differential equations of motion consist of time and spatial partial derivatives. Using 

separation of variables technique and based on the simple harmonic motion assumption, 

one can get the final spatial differential equations, governing the free vibrations of 

rotating beams as follow:

(Ely  + E l y  y  -  (Twy -  [çyem(x + e, )<t> cos 0]' 

-  aym(w+e(j) cos 0) = 0

(E ly  + E l y ” -  (Tv')' + [Q^em(x + e, )f)sin 0]' 

+ Çy em(j) sin 0 - y  m(v-e(j)S\n 9 ) - Ç y m v  =  0

2.1

2.2

-  (GJ<j)'y -  Q^em(x + ê  )(v' sin 0 - w '  cos 0)

+ Cyemvsin0 + Q^m(Kl2 -K"2,)^cos2^ 2.3
-û)^7«/£r^^ + <y^effj(vsin^-vvcos^) = 0

where “ '  ” represents the differentiation with respect to x, 0^ is a result of two times 

differentiation with respect to time, ft is the angular (rotating) velocity of the beam about 

z-axis, m is the mass per unit length of the beam and T, the tensile axial force acting on 

the beam, is the centrifugal force and is calculated at any point of beam from:

T(x)= ^  Q^m(x + e, )dx 2.4



One can see that the differential equations (2.1) to (2.3) are coupled due to the geometric 

parameters e and 9, and the dynamic parameters f l .

2.5. Boundary Conditions

For free vibrations of a cantilever beam, all displacements at the clamped end, and 

the internal forces and moments at free end are equal to zero. The boundary conditions 

for a clamped-free beam are:

A tx = 0: v = w = ^  = v' = w' = 0 25

And at jc = Z,: = My = =Vy =V^ =0 2.6

where Mx, My and are internal moments about x, y  and z axes, respectively, and Vy 

and Fj represent internal shear forces inj; and z directions.

For uncoupled beam equations, shear forces and moments expressions are 

reported in any solid mechanics textbook, but for coupled vibrations, shear forces and 

moments are to be calculated considering the coupling terms. The internal forces and 

moments at any point along the beam length are then calculated from following 

equations [1]:

Fj = —{ElyW  + El^yVy + Tw' + {Çî̂ em{x + )ÿ)cos^) 2 7

Vy = + E l y  y +Tv’ -  +e, )ip sin 6) 2.8

= GJ(j)' 2.9

My  =  ElyW" + E l y  2.10

M ^ = E i y  +  E i y  2 .1 1

10



The equations (2.1) to (2.3) and the boundary conditions (2.5) to (2.11) fully 

define the dynamic behaviour of flexible linear rotating beams and are exploited in next 

chapters to find the natural frequencies and mode shapes of the triply coupled beams 

vibrations.

2.6. Equations of Motion for Dually Coupled Vibrations

As already stated, the triply coupled differential equations of beam vibrations 

(2.1) to (2.3) and the boundary conditions (2.5) to (2.11) can be used to derive the 

differential equations of motions for dually coupled vibrations of a beam.

2.6.1. Coupled Bending-Bending Vibrations

The coupled flap-wise and cord-wise bending vibrations of a rotating beam are 

governed by the following differential equations:

{ElyW  + -  (Tw'y -  m^mw = 0 2.12

{Ely  + EI^^w)" -  {Tv'y -  y m v  -  Q}mv = 0 2.13

Obtained by setting ç  to zero in equations (2.1) and (2.2). The boundary conditions at 

free end, in this case, reduce to following form:

= -{E ly  -h E l^v”y  + Tw' = 0 2.14

Vy = -{EI^w" + E i y y  + Tv' = 0 2.15

M y = E i y  + EI^v" = 0 2.16
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M  ̂  = EI^v” + EI^w" = 0 2.17

One can see that the angular velocity of the beam, f t , doesn’t have any contribution in 

coupling terms and only appears in the expression for centrifugal force (see equation 2.9), 

T, and the coupling between two in-plane and out-of-plane of rotation lateral 

displacements is related to asymmetric term El^y. Also, the eccentricity e disappears 

when torsional displacement <j> vanishes. It means that the eccentricity between centroid 

and elastic center doesn’t affect the bending-bending coupled equations.

It is also to be noted that out-of-plane flap vibrations are only affected by 

centrifugal effect (TwY, whereas the in-plane displacement is related to the centripetal 

term, -ft^wv, as well. The centrifugal term increases the beam stiffness in both 

directions, while the centripetal term, due to the negative sign, decreases the stiffness in 

in-plane direction and causes decrement in cord-wise mode frequencies.

2.6.2. Coupled Bending-Torsion Vibrations

The differential equations governing the coupled bending-torsion vibrations can 

be extracted from the triply coupled general case by setting v = 0:

(El y  y  -  (Tw'y -  [n^em(x+ e, )^cos ey
— a>^m(w+e(f> cos 0) = O

-{GJ(f>y +  Ç1 em{x +  e^)Wcos9 -CO emwcosO 

+ Q}m(Kl^ -Kly)<l)cos2e-ûymKl(l> = 0

2.18

2.19

where, in this case, the boundary conditions at free end are:
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=-(-£’/j.w*)' + rw' + (Q^e/;j(x + e,)^cos0) = O 2.20

M  ̂  = GJ(f)' = 0 2.21

My=EIyW" = 0 2.22

The coupling occurs because of non-coincident shear and mass axes {e ?^0) and 

the beam rotating speed 0 .  Even though the pre-twist angle d appears in coupling term, 

but it doesn’t have direct contribution in these terms. In words, if 0 vanishes, the nature 

of equations will not change.

In this chapter the differential equations of motion governing the triply and dually 

coupled vibrations of rotating beams were presented. In Chapter 3, the Wittrick-Williams 

root counting method, used to evaluate the natural frequencies of an eigenproblem, will 

be presented. Then, in Chapter 4 and 5, the governing differential equations of motion 

introduced in this chapter are solved, using the FEM and DFE methods, respectively, to 

evaluate the natural frequencies and modes of rotating and non-rotating beams.
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CHAPTER 3: SOLUTION OF EIGENPROBLEMS

3.1. Introduction

Many engineering problems, such as buckling and vibration analyses of flexible 

structures, lead to one of the following equations;

= 3.1

[A]{x} = X{x} 3.2

[^(A)]{x} = 0 3.3

known as eigenvalue problems or simply eigenproblems. Here [A], [B] and [^(X)] are 

/ix« matrices; {x} is an n dimensional vector; {x} and Xare eigenvector and eigenvalue, 

respectively. When li4] and [B] are constant, the above equation is called a linear 

eigenproblem (see (3.1) and (3 .2)), whereas X-dependent components lead to a nonlinear 

eigenproblem (3.3). In vibration analysis of flexible structures, the eigenvalues and 

eigenvectors are equivalent to natural frequencies and mode shapes, respectively, where 

X= cô .

There exist several well-known iterative numerical algorithms established to find 

the eigenvalues and eigenvectors of the linear eigenproblems. The approach introduced in 

this chapter, developed by Wittrick and Williams [14, 15, 27], provides a powerful and 

robust tool for, but is not limited to, nonlinear eigenproblems of form (3.3), where the 

coefficient matrix [i4(co)j is frequency dependent and other algorithms may skip some 

natural frequencies.

14



3.2. Wittrick-Williams (W-W) Method

As already stated, both the DSM and DFE methods lead to a nonlinear 

eigenproblem due to the fact that the approximation functions and the element stiffiiess 

matrices are frequency dependent. In this case, the coefficient matrix in (3.3) is the 

nonlinear frequency dependent dynamic stiffness matrix, [.4(X)] = [Æ(w)]. The Wittrick- 

Williams (W-W) root counting algorithm [14,15] can then be exploited to find all natural 

frequencies lying below a trial frequency u*. The advantage of W-W approach is that for 

the periodic structures and systems composed of sub-structures, the natural frequencies of 

sub-structures and poles of the system can also be calculated. Besides, the constrained 

nodes and special boundary conditions which produce repeated frequencies can also be 

studied [15].

3.2.1. Theory

For a flexible structure, there are two possible solutions pertaining to the equation

\K„((o)\{un}=0:

a) \\Kn(o})\\ = 0, where {u„} ^Ois  one set of solution,

b) \[K„((o)]\ = 00, where {«„} = 0 corresponds to the case where displacements 

{u„} are ‘constrained nodes’ or nodes in the natural modes of vibrations.

Suppose that (o denotes the natural frequency of the structure. Then, it is known 

that j ,  the number of natural frequencies of the system between zero and o)*, as (o 

increases, is given by:
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where lK(û)*J] is the overall dynamic (frequency dependent) stiffiiess matrix evaluated at 

Û) = Û)*, and s([K(û>*)]) is the number of negative elements on the leading diagonal of 

and [K('co*J]̂  is the upper triangular matrix obtained by applying the standard 

Gauss elimination method to the [li'fû))] with no column interchange. Jo is the number of 

natural frequencies of the structure still lying between co = 0  and co = cd* when 

displacement components to which [K(co)] corresponds are all zero (in such a case, the 

beam can still have natural frequencies when all its nodes are clamped, because the 

formulation allows each individual (beam) element to have an infinite number of degrees 

of freedom between nodes). Thus;

NE

Jo -  ^ J m  3.5
m=l

where ]„ is the number of natural frequencies between co= 0  and o)= co* for an element 

with its ends clamped, while the summation extends over all elements.

It can be shown [14] that ]„ for the case of coupled bending-bending-torsion 

vibrations is calculated as:

where:

Jt = the largest integer < x/n 3.7

y’/.w -  C  - - [ 1  +  Sgn(Z)y 3.8

/h. = the largest integer < a j n  3.9
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j f ,v  -  K ~ ~ [1  +  ( - I ) ' '  sgn(Z)^ J ]  3.10

iy = the largest integer < a^/jt 3.11

Df,y and are the denominators of the element stiffness matrix for in-plane, v, and out-

of-plane, w, flexural displacements, respectively and a  and r  are element frequency 

dependent parameters [21].

Thus, by exploiting the equations (3.4) to (3.11), it is possible to converge on any 

required natural frequencies, given the fact that the expressions for the dynamic stiffness 

matrix and the clamped-clamped natural frequencies are known.

3.2.2. Application to the Beam Vibrations

A beam with uncoupled out-of-plane vibrations is used to demonstrate Wittrick- 

Williams method. The equation of motion for a cantilever beam with out of plane flexural 

vibrations is:

{ElyW"y — oP'mw = 0 3.12

After applying the natural (force) boundary conditions, using the DFE or DSM 

method [21], the final eigenproblem can be written as:

[K(co)]{u} = 0 3.13

For a one-element beam model, the natural frequencies are obtained when the 

determinant of stiffiiess matrix, {K(a))\, vanishes. In other words, when the \K((o)]
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determinant is plotted versus frequency (Figure 3.1), the intersections between the curve 

and o-axis are the natural frequencies. It can be seen from Figure 3.1 that between the 

second and third natural frequencies there exist two poles, where oo.

' 1 1

, '

1 1 1 1 1 1
0 10 20 30 40 50 60 

omega (fad/s) , ‘ . .
- ":.%70 :
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-■S(D -3000
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■Sixjî:rig -4000

-5000j,
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‘ r-7000
# # #  

; ' -8000

Figure 3.1: The determinant of stiffness matrix versus frequency.

Investigation of the parameters s[K(w)\ and shows that these numbers can 

change independently. The variation of sign count of stiffiiess matrix, s\K(i^)\, for a beam 

with one element is shown in Figure 3.2:
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Figure 3.2: The sign count of stiffness matrix versus frequency.

and jf,w varies as shown in Figure 3.3:

10 i 20 ; . : 30 ' : 40
' ■ :v - , ) . .'omega(rad/s)

-Sfli

Figure 3.3: The variation of jf,„ versus frequency.
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Gloser look at Figures (3.1), (3.2) and (3.3) shows that the first and second natural 

frequencies can be obtained by checking the sign count, that means before the first 

natural frequency, the sign count is zero and at w = W; it jumps to 1. This jump is 

repeated after the second natural fi’equency but immediately after sign count 

decreases as one unit, and this decrement is compensated by j/,w (which is equal to jo 

when there is only one bending element) which jumps to 1. The summation of sign count 

and jf,w however remain equal to 2. It means that regardless of individual changes of 

s[Æ(w)] and jo, the total j  changes only at each natural frequency by one unit [15].

The Wittrick-Williams method, demonstrated in this section, can be used for 

cases of linear and/or non-linear eigenproblems. This method provides a powerful tool 

especially for nonlinear problems, for the periodic structures and those exhibiting 

repeated natural frequencies [15].

3.3. Solution of the Eigenproblem

By implementing the Wittrick-Williams approach, a simple bisection algorithm 

can be employed to converge to the natural frequency [14]. The algorithm has been 

introduced in Appendix B and starts with two arbitrary initial upper and lower 

frequencies, w„ and w,. A trial frequency w* then is selected and the j  number, 

corresponding to the natural frequency, is calculated. The co * changes in the way that 

the difference between co„ and co/ decreases and they converge with any desirable 

accuracy to the i'* natural frequency co,-.

Once the natural frequencies are known, the corresponding desired mode shapes 

can then be calculated by perturbation method. By definition, the dynamic stiffiiess 

matrix cannot be inverted due to its zero determinant at any natural fi'equencies. To 

obtain a non-trivial solution, the frequency variable is manipulated so that the fi-equency 

dependent stiffness matrix is altered slightly (in this case 10''° is considered as 

perturbation factor which guarantees the desirable accuracy). This perturbation must be 

small enough to prevent significant deviation in solution:

2 0



û) , =<y,.(l + 10-‘°) 3.14

where w / is the altered natural frequency, and eigenvalue equation can be written:

[ ^ ( 6)‘,)]{w,} = {F} 3.15

where F j { j = \  to /i), the components of zero force function {F}, are slightly altered from 

zero.

F% =10-'° 3.16

The eigenvectors can be evaluated by manipulating equation as:

} 3.17

The order of perturbation of the natural frequency, «*/, and the force vector 

depends on the numerical precision. Using double precision, the lO"’ order perturbation is 

acceptable to accurately describe the modes of deformation.

The Wittrick-Williams algorithm provides an accurate and robust tool to evaluate 

the natural frequencies of a nonlinear eigenproblem as well as linear eigenproblems. 

Using this algorithm, one can approximate any individual natural frequency and the 

solution can converge to the theoretical value by any desirable accuracy. This method 

will be used in Chapter 5, where the DFE formulation produces a nonlinear dynamic 

(frequency dependent) stiffness matrix. In next chapter. Chapter 4, the FEM formulations 

based on Galerkin-type weighted residual method will be developed to solve the 

governing differential equations of motion for dually and triply coupled vibrations of 

beams.
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CHAPTER 4: FINITE ELEMENT METHOD

4.1. Introduction

Finite Element Methodology (FEM) is one of the most powerful numerical 

methods widely used to solve the problems of complicated geometry and/or mechanical 

properties, where the analytical solutions are not always available. In vibration analysis 

of a beam there are many different approaches using the FEM (see for example 

[6,17,28,29,30]). Each of these methods transforms the differential equations of motion 

into an algebraic eigenvalue problem. The approach presented in this work is based on 

the Galerkin method and a one dimensional 2-node beam element.

4.2. Galerkin Method

Galerkin FEM, based on the weighted residual method, is an accurate tool with 

high rate of convergence used in analysis of mechanical and structural systems. 

Substituting the approximation functions into the differential equations results in a 

residual for each equation, due to the fact that the approximation functions are not the 

exact solutions. In Galerkin method, the approximation functions are forced to be 

orthogonal to the residual of equations to minimize the error, and the orthogonality 

conditions result in algebraic equations [31]. In what follows, the FEM formulation with 

application to the free vibrations analysis of triply coupled rotating beams is established.

Equations (2.1) to (2.3) can be written in following general from:

Z,(w,v,(^) = 0

L^(w,v,4i) = Q 4.1

L^{yv,v,^) = 0

2 2



where Li, L 2 and L 3 are linear differential operators. As already explained, the 

approximation solutions, w'', v" and result in a residual for each equation, as:

L, (w,vJ)  = R,  4.2

Z3 (vv, V,

and to satisfy the orthogonality conditions:

8w{L^{w,v,(l))}dx  = 0 

^ ô v{ L 2 {yv,v,(j))}dx = 0 4.3

^  5(f> {L^{w,v,(j))}dx = 0

Closer look at equations (4.3) shows that the LHS of equations represents the 

virtual work done by each displacement [31]:

"  ^Sw{L^{^v,v,(|))}dx

Wj-^ = ^ 8 v { l 2 (w,v ,^)}dx  4.4

Since each integral in (4.3) vanishes, the summation of these integrals also 

vanishes:
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where in the absence of external forces (i.e., free vibrations), the total virtual work is 

equal to internal virtual work;

IF = -  0 4.6

One can see that the implementation of Galerkin weak formulation also satisfies the 

principle of virtual work.

After substituting the equations (2.1), (2 .2) and (2.3) into flexural and torsional 

virtual work of equations (4.4), and to satisfy the natural boundary conditions, the 

appropriate number of integration by parts should be applied to the terms which produce 

the shear forces and moments of (2.7) to (2.11):

= I" {Sw\EIyW'' +El ̂ v'') + ôw'{Tw’) + Sw'[n^em{x + e )̂  ̂cose] 

- Sw[o)^m{w + cos 9)'\}dx

+ [5 w {{E iy  + EI^v")'- (Tw’) -  (n^em(x + e, cos 0)]]̂ "

+ [-^w'(£/,w'' + £/^^v")]J

{Sv"(E/^v'' + EI^w") + 5v\Tv') -  Sv'[Q^em{x + e,)f) sin 9] 

+ 5v[€l^em <l>sm 6 -  œ ^m{v -  e<j) sin 6) -  Çl^mv]]dx 

+ + El^w”)' -  {Tv') + {Çl^em{x + e,)(  ̂sin 0)]]^

+ [ - S v ' { E iy  + EI^w'')\

4.7

4.8

W,  ̂ = ^ {0<l>'{GJ<l>') -  S<j>[D. êm{x + e, )(v'sin 9 -  w'cos 9) -  Cl^emv sin 9

-  Q^w(v 2̂ -  /c^,)^cos 29 + ymKl^cj) -  ûĴ e7M(vsin 9 -  wcos 9))}dx 4.9

The terms produced in [ ] are the boundary terms represented by product of a 

displacement and its corresponding force/moment and vanish at both clamped and free
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ends. After applying the natural boundary conditions, the system equations can be 

discretized into element equations considering the fact that the inter-element continuity 

conditions must be satisfied. The equations (4.7), (4.8) and (4.9) then can be written as:

[0w\EI^)w'' + S w \E I^ )v ’ + Sw\T)w'

+ Sw'{Çï^etn{x + e, ) cos 6)<j> -  5w{o)^m)w 

- Sw(co^em cos 6)(j>]dx

4.10

^/.v = [Sy"{EI, )v" + 5v'\EI  ̂)w" + Sv'(T)v'

-  ôv'(Çl êm (% + e ,) sin 6)^ -  ^v(Q ^m)v 
+ Sv{Q^em sin 0)^ -  Sv{o)^m)v 
+ Sv{a>^em sin 0)<j)'\dx

4.11

W,% = p "  [ 5 ( l > \ G J ) < t , ' e m (x + e ,) sin 0)v'

+ (Q^e/M(x + e, ) cos B)w' + S(!>{Q.̂ em sin 9)v  

+ ô(t>{Çï̂  m{Kl^ - \-^ ,)co s  10)(j) -  S(j>{œ̂  mKl)(p 

+ S<l>{o)̂ em sin 6)v -  8<j){co êm cos 9)w^dx

4.12

Satisfaction of inter-element continuity conditions depends on the approximation 

functions selected for each displacement. The element nodal variables and nodal 

coordinates are shown in Figure 4.1 :

node i <Pi node

Xi
Xm

/* element

Figure 4.1: The element’s nodal variables.
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4.3. Approximation Functions

The approximation functions are used to calculate the element displacements 

inside the element domain, and should satisfy the continuity conditions at the element 

boundary. For flexural displacements h> and v, the approximation functions should satisfy 

continuity, and for torsional displacement (j>, the function should satisfy Cf continuity. 

“Hermite” cubic shape functions and linear shape functions have been developed for 

flexural and torsional displacements, respectively, such that they satisfy the inter-element 

continuity. These polynomial shape functions have been introduced in FEM text books 

[32, 33] as follow:

2 -3 ^ + ^ ' 2 + 3 ^ -^ ' > 4.13

AT,=< I z i  > 4.14
2 2

where the relation between physical coordinate, x, and element coordinate can be 

written as (see Figure 4.1):

2 I •̂ y+i

and

so

and

dx = Jd^ 4.17
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J  in equation (4.17) is called Jacobian and is taken into account where there is 

integration and differentiation with respect to and / is the length of element. The 

transformation from the physical coordinate to the reference element coordinate is iso­

parametric for torsional displacement and sub-parametric for bending displacements 

(Figure 4.1).

^=-1 ^ = 0 ^=+1

X■J- ■J

Figure 4.2: The transformation from physical coordinate to reference element coordinate.

Along the length of beam element, the displacements can be calculated by the ( -  

dependent shape functions as (i.e., nodal approximations):

W (^) = <  N g  <

w,
w,

1 ^ 2  J

' = <  >w 4.19

V(^) =<  Ng  > , = <  N g  > ,  {V } 4.20
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where < N b >w /v  and < N t >  are flexural and torsional shape functions respectively, and 

{w}, {v} and are nodal displacements.

4.4. Derivation of System Eigenproblem

Substituting virtual and element displacements by approximation functions (4.19) 

to (4.21) into (4.10), (4.11) and (4.12), leads to:

= £' [(£/,) <&,> < K > .  M + (^ 4 ) <^ >  {NIL <K>.  M

+ (n < & '> { iv ; } , .< K  > . w + ( Q W ^ + e i) c o s 0 < a v > < N ^ > { < j > }  4 .22

- {(o^m) < à v >  {Ng}^ < Ng >„ {w}- (co^emcosû) < à v >  [Ng}„ <Nj . >  {(j>}'\j\d^

;̂.V = £' [(^4 )<SV>{N'g},<N’g>A^) + ( ^ 4  )<SV>{N"g},<N'’g>,  {w}
+ (r) <<5v> {iv;}, < iv; >, M + {flLmsine)<0v>{Ng}^<N,> {$)} 4 23
- (0̂ g7M(%+e,)sin^)< & > „  <Nj >{^}-{co^ni)<ôv>{Ng}^ <Ng {v}
+ (A)^emsin0) < & >  { //g }, <N.j- > { ^ } - { 0 } m )  <ôv> {Ng}^ <Ng  >{v}]|y|d^

w,:* = C  [+(G/) < > {Â ;} < Â ; > w

-  (Q^e/n(x + e, ) sin 9)<ô(f)> { N j } < N 'g > ^  {v'}

+ (fi^e/n(x + e,)cos0)<<5ÿ>{7/;.)< Âg {w'j
- (fi"w(/c 2̂ - kI, ) cos29)<(j» {N^} <Nr> (f)} ^ 24
+ {cô em sin 9)<(j>> {Nj.} < Âg >v {v)
+ {p}em  sin 9)<S<j>> {Â j.} < Â b >v {v}

-  )<<j»{Nr}<N^>{<l)}
-  {co^emcos9 ) < ^ >  { N j } < Â b >„ (w}]|j|d^
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The products of shape functions in equations (4.22) to (4.24) produce different 

size matrices, i.e. {N'b}< N' b > produces a 4x4 matrix, while {A'b}< N t > produces a 

4x2 matrix. Similarly, the nodal displacements and virtual displacements are not of same 

size. In order to write all three equations in a unified format, the following nodal 

displacement vector and shape functions are introduced:

ATg, 0 0 0 N,,  Ng, 0 0 0> 4.26

<A^fi-v>=<0 0 Ng, Ng; 0 0 0 Ng3 Ng, 0> 4.27

<Nr_^>=<0 0 0 0 N„ 0 0 0 0 Nr; > 4.28

where Nbi, Nb2, Nbs and Nb4 are the flexural shape functions and N ti and N t2 are 

torsional shape functions. Using nodal parameters (4.25) to (4.28), the components of 

element virtual work can be written as:

= f,' >+(E/,,){N;_}<N%>

+(T){N;.J<N '.„ >+(n^em(x+e,)cos0){N;.J<Nr.^ > 4.29
-(<a^w){Ng.„}<Ng.„ >-[o)^emcos9 ){N g.J<N .j..^  >]{uY\j\d^

K y  = f,'< ^  [(^4){N%} < N;_, > +{EI^){NIJ< Nl „  >
+ iCl^emsm9){Ng,J<Nj.,^ >-(fl^ew(x + e,)sin0){N;.U <Nr_^ >
-  (ûĴ TTi){ N g .J  < Ng.„ >+(û>^em sin 0 ){ N g .J < N r .^  >

+ iT){N’g_,}<N'g.^>-(n^m){Ng.,}<Ng., >]{»}'
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= £  <âu >' [(GJ){N;_, }  < N'r.  ̂ > - {a>^mKl){Nr. , }  < Nr. ,  >

-  {Ci^em{x + e , ) sin 6 ) { N r . , }  < N'g_  ̂ >

+ ( f î^em(x + e,)  cos (9){ N r . , } < N'b.„ >

+ ( n ^ e m s m 0 ) { N r . , } < N , . , >  4.31

+ (œ^em sin 0 ) { N r . , }  < Ng.^ >

+ -  k I , ) cos 2 0 ) { N r . , }  < N r . ,  >

-  {co'̂ em cos 0 ) { N r . , }  < N >]{uY\j\d^

In order to obtain the unified governing equation of the element, equations (4.29) 

to (4.31) are added together to form the total element virtual work representing the 

discretized form of principle of virtual work (4.5):

4.32

Leading to the following matrix form:

11̂ ; =< Su > ' (-û}^[MY H K Y ) { u Y  4.33

where \M \" and \KY  are the element mass and stiffiiess matrices, respectively, and are 

calculated from following equations:

{MY = £ ' [(/«){^B-».} < > +(e»« cos 0){Ng_J <Nr. ,>

+ i^n){NB-y) < ^B-y > -(^"' slu 0){Ng_^} < Nr.,  >
+ (mK^l){Nr.,) < Nr-, > -{em sin 0){Nr.,} < N > 
+ {em cos 0){Nr.,} < N >]|j|d^

4.34

[KY = [ KJ  +{Ty[K,Y +{x + e,y[K,Y 4.35
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[K,y = £ ' < N i „  > h e i ^){n ; . j  < n ;., >
+ ( E I ^ ) {N IJ  < N l ^  > H E I^ ) { N l^ }  < N l ^  >

+ {GJ){Ny^} < > +(Q^em sin 6){Ng_^) < Nj-_̂  > 4.36

+ {Q^emsm0){Nj._^}<Ns_^ > - ( Q ^ i n ) { N < N b_, >

+ -  'c^,)cos 20){Nr.^} < >]\j\d^

[K^Y = f ' [ { N I J  < N l „  > + { N I J  < 4.37

[^ 3] ' = f ,' m^ern cos e){N ',.J  < N^., > -(Q^em sin < N^., >

+ (Q^em sin d){Nj._^} < N'g,  ̂ > -(Q^em cos 6){Nt.^} < N'g.^ >p\d^
4.38

The system eigenproblem is then obtained by assembling the elements equations 

(using the well-known FEM assembly algorithm and connectivity table [32,33]):

NE

i r ^ = ' Z ' ^ M = o  4.39

or

w.. =<âu> ([Æ] -  Û)̂  [M]) {«} = 0 4.40

where

NE

and

NE

[M] = Y ,W T  4.42

Since the virtual displacement < > is arbitrary, then one can write:

31



{ [ K ] - c û \ M ] ) { u )  =  0  4 .4 3

The equation (4.43) is a linear eigenvalue problem in which the natural frequencies are 

eigenvalues and the vectors of nodal variables, mode shapes, are the eigenvectors. 

Equation (4.43) can be solved using any numerical method, and in this thesis MATLAB® 

and MAPLE® programs have been used to calculate the natural frequencies and mode 

shapes.

4.5. Numerical Results

To verify the formulation introduced in this chapter, the free vibrations of a 

certain number of illustrative beam configurations, exhibiting different couplings, were 

investigated and their natural frequencies and mode shapes were evaluated.

4.5.1. Bending Vibrations of Uncoupled Beam

As the first example, the out-of-plane flexural vibration of a beam was studied. 

The analytical solution for this beam is available (see Appendix A) and the natural 

frequencies and mode shapes can be found in Vibrations text books [34]. The FEM 

results can then be compared with the exact analytical solution, and the convergence of 

the FEM method can therefore be evaluated.

The beam parameters for the following example are considered as:

Ely =1 ; /« = 1 ; I, = 1

and the pre-twist angle of beam is zero. The differential equation of motion (2.1) for 

single uncoupled out-of-plane vibrations of beam reduces to:
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{ E l y V / y  -  fy^wjvv =  0 4 .4 4

By implementing the Galerkin-type weighted residual fomiulation, the element 

discretized form of equation (4.44) can be written as:

{àw"EIyW" -  Swco^mw}Jd^ 4.45

The cubic Hermite shape functions were used and the FEM results along with the 

exact values obtained by analytical solution (see Appendix A) for the first five natural 

frequencies are shown in table 4.1.

Table 4.1: The first five natural frequencies of out-of-plane 

vibration of a cantilever beam

Natural
Frequency

(rad/s)

Exact 
analytical 

m ethod [34]

FEM 
With 5 elem ents

Error
(%) 

for n = 
5

FEM 
With 20 elem ents

Error (%) 
for n ^  20

CO; 3.51602 3.51601 0.000 3.51603 0.000

(02 22.0345 22.0455 0.050 22.0345 0.000

COj 61.6972 61.9188 0.359 61.6982 0.002

(0^ 120.9019 122.3196 1.173 120.9094 0.006

(05 199.8595 203.0202 1.574 199.8933 0.010

The mode shapes corresponding to the first three natural frequencies were 

calculated by the FEM method and are shown in Figure 4.2.
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First Three Modes of Out-Of-Plane Vibrations of a Cantilever Beam 
obtained by FEM

0.5

1
-0.5

Length of the beam

-*̂ Mode 1 
-♦-Mode 2 
-•-M ode 3

Figure 4.3: The first three mode of out-of-plane vibrations 
of a cantilever beam based on FEM method.

4.5.2. Coupled Bending-Torsion Vibrations

For the case of coupled bending-torsion, the governing differential equations of 

motion (2.18) and (2.19) and the shear force and moments, equations (2.20) to (2.22), are 

coupled due to the rotating speed fi and eccentricity e effects. The mass and stiffiiess 

matrices, in this case, both contain coupling terms. Following a procedure similar to the 

pure bending case, the FEM final element equation changes to:

IFJ. = < & > '  { [ K Y - ( o \ M Y ) { u Y 4.46

where:

[MY = £' [ M i N e - J  < > +(e»i cos < Nj._̂  >

+ (f»K-m){ r̂- }̂ < > Hem cos < Ng_  ̂>]\j\d4
4 .4 7
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and

[KY = [ K J +  (Ty[K, Y + {X + e,y  [ K J  4.48

with

+ - < , ) c o s  20){Nr.^}<Nr.^ >]\j\d^
4.49

{K,Y = f '  >]\j\d4 4.50

[^ 3]' = f m^ern  cos 0){N',_J < > -(Q^em cos N',.„ >]\j\d^ 4.51

4.5.2.I. Non-rotating Beam

Aircraft wings and thin-walled open section beams fall in this category, since, in 

these cases, the equations governing bending and torsion displacements are coupled due 

to the eccentricity between the mass and elastic axes.

As the first example, the natural frequencies of a typical cantilever uniform 

aircraft wing were calculated. The beam specifications are:

L  = 6.0 m 

e = 0.18 m 

m = 35.75 kg/m 

E l  =9.15 MN.m^

(77=0.988 MN.m^ 

nt.km^ = 8.65 kg.m
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and the FEM results were compared with the exact solution obtained from the DSM 

method [22] (Table 4.2):

Table 4.2: The first six natural frequencies of coupled bending-torsion 

vibrations of a cantilever beam

Natural Frequency 
(rad/s)

Exact 
Method (DSM)

FEM 
n = 30

Error o f FEM
(%)

CO; 49.62 49.62 0.01

(02 97.04 97.05 0.01

COj 248.87 249.07 0.08

(0^ 355.59 355.78 0.05

(05 451.46 452.58 0.25

(06 610.32 613.59 0.54

As the second example, an aircraft wing, modeled by three uniform beams with 

different cross section parameters, was studied to show the flexibility and applicability of 

the FEM method. The beam is shown in Figure 4.3, and the beam parameters are given in 

Table 4.3.

Table 4.3: The mechanical and geometrical parameters of the three-beam wing

Section I Section II Section III

L = 6.0 tn /; =2m I2  =2m 1} =2m

m = 35.75 kg/m m j = m m2  = (2/3)* m m} = (l/3)*m

fff.Ary = 8.65 kg.m ( m .k j  ), = (m .k j  )i=(2/3)m .kj‘ (m .k j)}=  ( l/3 )m .k j‘

E l  =9.15 MN.m^ E I ,= E I El2 = (2/3)*EI El3 = (l/3)*E I

(77=0.988 MN.m^ GJ1 — GJ GJ2 = (2/3)*GJ GJ3 = (1/3)*GJ

 ̂= 0.18 m  ̂= 0.18 m c = 0.18 m c = 0.18 m
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Figure 4.4: The three-beam airplane wing with coordinate system and geometry.

The coupled natural frequencies obtained from the FEM and the exact DSM 

method results [22] are presented in Table 4.4. The convergence test results are also 

shown in Figure 4.4.

Table 4.4: The first five natural frequencies 

of the three-beam aircraft wing

Natural Frequency 
(rad/s)

Exact Method 
(DSM)

FEM 
n = 15

Error o f FEM
(%)

CO/ 74.43 74.43 0.00

0)2 128.57 128.58 0.00

0)3 253.40 253.56 0.06

0)4 376.59 376.96 0.10

0)5 431.29 431.97 0.16
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Convergence test for ilrsi five natural frequencies 
for 3-beam wing model

3.00

2.70

2.40

2.10

1.80

I 1.50

0.90

0.60

0.30

0.00
27 3021 2412 15 186 93

-omega 1
- omega 2 
-omega 3
- omega 4 
-omega 5

Number of elements

Figure 4.5: The FEM convergence results for three-beam wing.

As it can be seen, the FEM method exhibits satisfactory convergence rates, where 

the error for the first natural frequency obtained by a six-element model is 0.06%, and for 

the first five frequencies a model made of 30 elements ends up with errors less than 0.2%.

4.S.2.2. Axially Loaded Beam

The analysis of an axially loaded beam can be considered as the first step in the 

modeling of rotating systems such as helicopter, propeller and turbine blades, where the 

element centrifugal force is replaced by a constant axial load. The differential equations 

of motion governing coupled bending-torsion vibrations of an axially loaded beam have 

been introduced in [23];

E l y  -  (Tw'y + T e f  -  n>^/n(w-ef)) = 0 4.52

■ (GJ + T K j ) f  + Tew" -  (o^m(Kl(t> -  ew) = 0 4.53
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where the force boundary conditions at free end, in this case, are:

K  = -E ly \v "  + r ( w ' -  e(f>') = 0 4 54

= {GJ + TkJ)(!)' -  Tew' = 0 4.55

My = ElyW" = 0 4.56

In order to investigate the vibrational behaviour of axially loaded beams, a 

cantilever beam with semi-circular cross section (Figure 4.5) and the following properties 

was studied [20,23]:

L  = 0.82 m 

g = 0.0155 m 

m = 0.835 kg/m 

£■/= 6380.14 n W  

C?/= 43.46 N.m^ 

nukm = 0.000501 kg.m
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z
15.5 mm

Figure 4.6: The bending-torsion coupled beam cross-sectional geometry.

The free vibrations of beam in two different situations were studied. First, the 

axial force was considered to be zero, T = 0, and the first five natural frequencies of the 

beam were evaluated (Table 4.5):

Table 4.5: The bending-torsion natural frequencies 

of the cantilever beam (no axial load (r=0))

Natural Frequency 
(Hz)

Reference
Frequency

[20]
FEM with 

20 elements
Error of FEM

(%)

U] 62.60 62.61 0.02

130.18 130.21 0.02

Wi 261.15 261.66 0.20

0)4 421.36 423.59 0.53

0)5 612.09 618.52 1.05
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If the axial force is applied to the beam, then the natural frequencies will change. 

Including a compressive force T  = -1790 (N), the natural frequencies have been sought 

and shown in Table 4.6.

Table 4.6: The bending-torsion natural frequencies of the 

axially loaded cantilever beam (T= -1790 N)

Natural Frequency 
(Hz)

Reference
Frequency

120]
FEM with 

20 elements
Error of FEM

(%)

Ul 60.23 60.24 0.02

'  0)2 128.42 128.45 0.02

Us 257.96 258.46 0.19

U4 415.54 417.74 0.53

Us 604.60 611.12 1.08

One can see that the natural frequencies for a beam with compressive axial force 

are smaller than those of same beam without axial load. This can be explained by the fact 

that the compressive axial force decreases the flexural rigidity of the beam, while tensile 

axial force increases the so-called geometric stiffness of the system [23].

4.S.2.3. Non-rotating Pre-twisted Beam

For pre-twisted beam the coupling between flap-wise bending and torsion 

displacements, equations (2.18) and (2.19), occurs because of eccentricity, e, and pre­

twist angle, 0, appear in coupling terms. As an example, the FEM analysis of a beam with 

following characteristics was studied;

L  = 40.0 in 

e = 0.4 in 

6 = 0  degree



«1 = 0.0015 slug/in 

= 0.18 in  ̂

km2  ̂= 0.71 in^

£ / =  25000 Ih.ir? 

(?J=9000 Ih.in^

The FEM results for the first five natural fi'equencies were calculated and 

compared to the reference values obtained from the Integrating Matrix Method (IMM) [2] 

(see Table 4.7).

Table 4.7: The bending-torsion natural frequencies 

of the pre-twisted clamped-free beam

Natural
Frequency

(rad/s)

IMM 
Method 

(15 stations)

FEM elem ent 
With 

30 elem ents

Error o f FEM 
m ethod  

(%)

CO; 31.05 31.059 0.029

C02 193.74 193.748 0.004

COj 390.87 390.923 0.014

co^ 539.54 539.598 0.011

^ 5 1043.94 1044.306 0.035

All examples presented in this section confirmed the applicability and good 

convergence of the FEM formulation developed for coupled bending-torsion beam 

vibrations.

4.5.3. Coupled Bending-Bending Vibrations

For the coupled flap-lag vibrations, the equations of motion (2.1) and (2.2) reduce 

to (2.12) and (2.13), where the natural (force) boundary conditions at fi-ee end can be 

written as equations (2.14) to (2.17).

42



As already stated, asymmetric geometry leads to the coupling terms in the 

equations. The rotating speed, ft, appears in both centrifugal force, T, and centripetal 

term, -ft^/«v. The centrifugal force increases the system stiffhess and the centripetal 

force, due to its negative sign, decreases the rigidity of the beam for in-plane vibrations 

[16,21]. The resulting element mass and stiffhess matrices produced by FEM approach 

can then be written as:

{MY = > +(/h){A^5-v} < >V\d^ 4.57

and

[^ r = [^ ,r + (T )'[^ ,r  4 .5s

where

[7^,]' = £ ' < Nl.„ > < N l ,  >
+ (E I,){N ;_J < > + (E I^){N l^} < > 4.59

> p\d^

and

[K,Y = £' < a ; . ,  >]|7|d^ 4 .6O

The rotating beam analyzed in this section is a scaled model of propeller blade 

WADC S-5 [2,16,27], which is 24" long with a hub radius (offset) of 6". The mechanical 

and geometrical properties of the blade are given in table 4.8.
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Table 4.8: The properties of the scaled propeller blade model WADC S-5, 

with hub radius e/ = 6 (In) and blade length L = 18 (In)

Sect/on X, m, El[, El„, B,
number In Ib.s /̂in  ̂ Ib.in  ̂ Ib.ln  ̂ deg

1 0.0 1.026x10  ̂ 0.200x10* 63x10* 30.5

2 2.0 0.696 0.110 49 25.2

3 4.0 0.660 0.083 46 20.1

4 6.0 0.608 0.058 44 14.8

5 8.0 0.564 0.042 43 9.6

6  10.0 0.535 0.031 43 4.7

7 12.0 0.520 0.027 44 0.0

8  14.0 0.506 0.026 47 -4.2

9 16.0 0.498 0.025 51 -7.5

10 18.0 0.498 0.024 56 -10.0

The flexural rigidities in global coordinates at each point along the length of the 

beam can be obtained by following equations [16] (see Figure 2.1).

EI^ = EI^ cos^ 6  + EI^ sin^ 6  4.61

Ely =  EÎ  cos^ 6 4- EÎ  sin^ 6 4.62

E l^  = {El^ -  EI^ ) sin 9 cos 9 4.63

where the EI^ and El,, flexural rigidities are evaluated with respect to the element 

principal coordinates whereas Ely and EI^ are those calculated with respect to the global 

coordinates; d is the pre-twist angle assumed to be constant along each element. The 

natural frequencies obtained from FEM method are shown in Table 4.9. The first three 

natural frequencies for different angular velocities were obtained and compared with the 

experimental values [2,5,16,27]. It can be seen that comparing with other numerical 

approaches [2] and [5], the frequencies obtained from the FEM are close enough to the 

experimental results. This verifies the validity of FEM formulations and its good 

convergence for coupled bending-bending vibrations. The mode shapes for three different 

angular speeds of blade were investigated and shown in Figures 4.6 to 4.8.
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Table 4.9: The natural frequencies (Hz) of the first three modes of vibrations

of propeller blade WADC S-5

Blade rotary 
sp e e d  (rpm)

Mode
numbe

r
FEM 
n = 9

Result o f 
Reference 

[2]

Result of 
Reference 

[5]

Experlme
nt

[27]
1 40.32 40.96 39.89 40.08

1567 2 108.49 109.22 107.40

3 279.27 279.79 276.32

1 40.70 41.35 40.26

1589 2 109.01 109.77 107.93 107.53

3 279.92 280.47 276.97

1 58.99 60.07 58.05 58.73

2609 2 137.18 139.52 135.99

3 316.82 309.40 313.98

1 59.08 60.16 58.14

2614 2 137.33 139.68 136.14 137.02

3 317.03 319.62 314.19

1 76.87 78.34 75.30 76.52

3583 2 168.08 166.25 170.60

3 361.38 357.70

1 93.48 91.42 93.07

4486 2 197.91

3 407.24

1 94.42

4537 2 199.61 196.41 202.53

3 409.91

1 119.17 116.07 117.50

5884 2 244.05

3 481.05
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Figure 4.7: The first eight modes of the WADC S-5 propeller blade for 0 = 0 .
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Figure 4.8: The first eight mode shapes of the fVADC S-5 propeller blade
for ft = 1567 rpm.
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One can see that by increasing the angular velocity modes exhibit less 

deformations since the centrifugal force increases the blade stiffness. Comparing flap 

mode shapes for two cases, li = 1567 (rpm) and fl = 5884 (rpm), shows that increasing 

the angular velocity of the blade leads to different mode shapes in higher frequencies (see 

for example the 8'*’ mode shapes).

4.5.4. Coupled Bending-Bending-Torsion Vibrations

In previous sections, the coupling between out-of-plane (flap) bending and torsion 

displacements and also the coupling between flap and in-plane (lag) displacements for 

rotating and non-rotating beam structures were studied. In this section, the free vibration 

analysis of the triply coupled bending-bending-torsion beams is investigated.

4.5.4.I. Vibrations of Non-rotating Uncoupled Beam

If none of the parameters H, e, 6 appears in the equations of motion, for a 

symmetric uniform beam, the equations are uncoupled and reduce to the well-known 

forms of pure bending vibration and pure torsion vibration of a beam (see 

Appendix A).

To find dimensionless natural frequencies, the beam parameters Ely, EI^, GJ, m 

and K„, are considered to be unit. The FEM results for such a beam are presented in table 

4.10.

Table 4.10: The uncoupled bending, bending and torsion 

natural frequencies of the clamped-free beam

Natural Frequency 
(rad/s) CO/ 0)4 0)5 0)6 0)7 0)8 0)p (0/%//

FEM elem ent 
With 20 elem ents 1.571 3.516 4.723 7.905 11.135 14.433 17.820 21.315 22.035
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It can be seen that the natural frequencies evaluated from uncoupled bending- 

bending-torsion equations are equal to the one calculated by separate equations. It means 

that U2,3 and Ui0,n are repeated natural frequencies corresponding to the first and second 

frequencies of the pure lateral vibrations of a cantilever beam, and w / and are the first 

two frequencies corresponding to the torsional vibrations of the beam.

It is also to be mentioned that since a mesh of only 20 elements has been used, 

then the third and higher frequencies of torsion vibrations are not accurate enough. 

Investigation in error shows that for Wj = 7.905 the error is 0.65%, for Wg = 11.135 the 

error is 1.27% and the error increases up to repeated frequencies U]o,ii = 22.035, for 

which the error decreases to 0.005%. This means the first two frequencies of each 

uncoupled vibrations are obtained accurately by only 20 elements.

4.S.4.2. Vibrations of Non-rotating Coupled Beam

A good aircraft wing-beam model exhibits the triply coupled flap-lag-torsion 

Vibrational behaviour. To verify the validity of the presented FEM method for triply 

coupled vibrations, a beam with the following properties was investigated [2,16,28,29]:

L  = 40.0 in 

e=  1.414 in 

6 —45 deg 

m = 0.0015 slug/in 

kmi = k„2 = 1.0 in 

£ / ,  = 25000 Ib.in^

ET( = 75000 Ib.in^

(7 /=  9000 Ib.in^
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The flexural rigidities EI^, Ely and EI^, are evaluated from equations (4.56), 

(4.57) and (4.58). The FEM results for natural frequencies of the coupled beam are 

shown in table 4.11. The convergence rates of the FEM method for the first four 

frequencies were also investigated and are shown in Figure 4.9.

Table 4.11: The coupled bending-bending-torsion natural frequencies 

of the pre-twisted cantilever beam

Natural Frequency 
(rad/s) TMM[2] FEM 

n = 5
Error (%) 
fern  = 5

FEM
n - 1 0

Error (%) 
for 10

CO; 30.8295 30.8320 0.008 30.8300 0.002

CO2 53.8277 53.8285 0.001 53.8278 0.000

COi 184.6175 185.1379 0.282 184.7376 0.065

co^ 337.3333 337.5015 0.050 337.3440 0.003

CO5 484.3373 493.1382 1.817 486.4762 0.442

Convergence test of first four frequencies 
for non-rotating triply coupled beam

1.00

0.80 -

^  0.60 -

ÏUJ 0.40 -

0.20 -

0.00
1098765432

-Iomega 1 

omega 2 

omega 3 

-♦-omega 4

Number of elements

Figure 4.10: The FEM convergence results for non-rotating triply coupled beam.
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One can see the FEM convergence rates are quite satisfactory where for first three 

natural frequencies as a five-element model results in an error less than 0.1%.

4.S.4.3. Vibrations of Rotating Triply Coupled Beam

Triply coupled rotating beam can be used in low frequency calculation of some 

helicopter blades, propeller blades and also compressor/turbine blades. The coupled 

bending-bending-torsion vibrations of a uniform rotating beam with a pre-twist angle are 

governed by equations (2.1), (2.2) and (2.3). In order to investigate the dynamic 

behaviour of such beams, a helicopter blade reported in literature [6] was investigated. 

The blade in this section is considered to be cantilever, while in the real model the blade 

is connected to rotating hub with some load paths [6]. The FEM results are shown in 

Tables 4.12 and 4.13 for non-rotating (fl = 0) and rotating (fl = 360 rpm), where the 

properties of beam are:

L  = 208 in 

e = -0.6 in 

ei = 52 in 

6 = 15.026 deg 

m = 0.0015 Ib.sec^/in^

»i./r„/ = 0.89545x10’̂  Ib.sec^ 

m.km2  ̂= 0 .0 A Ib.sec^

.E/, = 0.2977x10^ Ib.in^

E /(=10^ Ib.in^

( 7 J =  0 .2 x 1 0 *  Ib .in ^
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Table 4.12; The bending-bending-torsion natural frequencies

of the pre-twisted cantilever rotating blade, 0 = 0  (rpm)

Frequency
(rad/s)

Triple load path 
IMM method [6]

FEM 
n = 40

Error (%) 
t o r n - 5

CO/ 11.4 11.4 0.17

0)2 65.8 66.4 0.79

0)3 70.4 71.7 1.94

Table 4.13: The bending-bending-torsion natural frequencies 

of the pre-twisted cantilever rotating blade ft = 360 rpm

Frequency
(rad/s)

Triple load path 
TMM method [6]

FEM 
n = 40

Error (%) 
for n ^  5

CO/ 45.1 46.7 3.52

0)2 72.3 73.7 1.91

0)3 125.0 133.1 6.47

One can see that the difference between triple load path and cantilevered 

configurations for the first few frequencies of non-rotating case is negligible, while 

adding rotating speed to the blade causes slightly different dynamic behaviour. Higher 

frequencies exhibit larger differences between cantilevered blade and triple load path

blade configurations.

In order to study the effect of rotating speed on vibration frequencies and modes, 

the variation of the first 10 frequencies of the helicopter blade [6] (with cantilever 

boundary conditions) versus blade rotating speed is shown in Figure 4.10.

53



Natural Frequencies of rotating blade versus rotating speed
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Figure 4.11: The effect of rotary speed on frequencies and modes 
of triply coupled rotating blade.

Figure 4.10 shows that, as expected, the rotating speed of beam can change the 

blade’s natural frequencies. One can see that due to the centripetal effect, the stiffening 

effect of rotating speed for lag vibrations decreases. The flap frequencies increase as 

rotating speed increases, but the increments in lag frequencies are less pronounced. A 

closer look at “Flap 4” and “Lag 2” modes reveals that by increasing the rotating speed 

flap frequency passes the lag frequency. Besides, the torsion frequencies are almost 

constant. The vibrational behaviour of the cantilever blade shown in Figure 4.10 is very 

similar to real triple load path blade model [16].

All examples of this chapter verified the applicability of FEM method as it has 

already been used in last decades for analysis of many flexible structures including 

beams. The convergence rates of the FEM methodology introduced in this chapter are 

very good, and for preliminary design purposes and to get the few first frequencies and 

modes, a model of only 10 to 30 elements can be exploited.
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In next chapter, the DFE formulation based on Galerkin-type WRM will be 

discussed and the Dynamic Trigonometric Shape Functions (DTSF’s) will be employed 

to solve the governing differential equations of motion of dually and triply coupled 

vibrations of beams and rotating blades.
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CHAPTER 5: DYNAMIC FINITE ELEMENT METHOD

5.1. Introduction

The Dynamic Finite Element (DFE) method is an intermediate formulation 

between exact DSM and classic FEM methods. The main difference between the classical 

FEM method and the DFE is “the definition of approximation functions”. In the 

traditional FEM (Chapter 4) the cubic polynomial shape functions for flexural 

displacements and linear shape function for torsional displacement are used, where theses 

shape functions are the solutions of static deformation of a beam in elastic area. In the 

DFE, the solutions of the differential equations governing the uncoupled vibrations of the 

beam are chosen as the basis functions of approximation space. The dynamic 

interpolation (shape) functions of approximation are then obtained based on the standard 

FEM approach.

5.2. Frequency Dependent Approximation Functions

In general, the DFE and FEM methods follow the same formulation that means 

the DFE approach starts with Galerkin weak formulation and integral form of equations. 

Then the same integration by parts are applied to the equations to satisfy the natural 

(force) boundary conditions which results in equations (4.10) to (4.12). The major 

difference between two methods is the basis functions from which the shape functions are 

calculated. As already mentioned, the basis functions in the DFE method are dynamic 

(frequency dependent) trigonometric shape functions (DTSF’s). The basis functions are 

extracted from differential equations governing uncoupled vibrations of the beam. 

<P(^>f and <P(^>h the basis functions for flexural and torsional displacements, 

respectively, then can be defined as:
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P(^) . cosh(/?|) -  cos(g^) _ sinh(y?|) -  sin(«^) ^

< P(^) >,=< cos(r^) — > 5.2

where or, ^  (separately calculated for v and »v) and t  can be obtained by solving the 

uncoupled equations of beam for bending and torsion vibrations (see Appendix A);

-4AC
a  =  1

2A
; j3=^ ^B+^|B^-4AC

2A
5.3

r = col. mK„
1  GJ

5.4

El T
A = —  ; B = ------ ; C = -ml^a 5.5

The basis functions bave been manipulated to reduce to Hermite and linear basis 

functions for bending and torsion, respectively, as jg, % O- The Hermite basis 

functions bave been widely used in finite elements for many years, for two main reasons, 

they satisfy completeness and continuity. Completeness is satisfied by including the 

lowest order admissible term. Continuity condition is met such that the shape functions 

are continuous across all inter-element boundaries. With these conditions satisfied the 

DFE with its Hermite based trigonometric basis functions is guaranteed to converge 

monotonically to the exact solution. The classic basis functions of approximation space 

for standard “Hermite” beam element (flexural displacements) are 1, and the

linear basis functions (torsional displacements) are 1,

The so-called non-nodal approximation of displacements can then be written in 

terms of basis functions:
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w{^)=<P{4)>f.^ { a j  

v(#)=<P(^)>^_, K )

f , ( a = < f ( a > ,  {«,}

5.6

5.7

5.8

where the constant vectors {an-}, {ov} and {a,} can be calculated using the nodal 

displacements:

=[-7*n]/,v{̂ v}

5.9

5.10

5.11

where {h»„}, {v„} and are the nodal displacements, and {P n ]f-w /v  and [ P „ ] ,  are:

1

0

cos(a„,J

0
0

sin(a„,J cosh%,,J-cosOz^„)wIvJ
+Pw, ^

Pwlv ŵ!v
^wlv Pw IV 

smh09̂ /v)-sm((ẑ /v)
^wtv ^  Pw IVwiv ^ w f v  ^ H w t v

n cinr/y  ̂ \ Æ/>sinh(g,„)+a,,,sin(g„,,) P„„cosh(JJ„i,)-a„i,cos(pc„i,)
- a ^ / y S i i n a ^ / v ;  2 ^ 2

^w/ v  PwIV ^wlv Pw IV

5.12

and

[p j.  =
1

cos(r)r _____
sin(r) sin(r)

0
r 5.13
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By determining the coefficient vectors {ok,}, {a,.} and {a,} in terms of nodal 

displacements, the element displacements can be written in terms of shape functions and 

nodal displacements (i.e., nodal approximations):

=< >/.w bK) =< > { 'vj 5.14

v(^) =<P(^) {v„} =< > {v„} 5.15

m = < P { ^ ) > ,  {PnV\% }-<Nr{^)>{(Pn) 5.16

where the bending and torsion shape functions are:

< (^ ) > 1  = { -  cos(a^) + cos(a(l - 1 )) cosh(/?) + cos(a) cosh(/? ( 1  -  ^))
Pf

-  cosh(/9^) - —sin(a(l -  ^)) sinh(y3) + ̂  sin(a) sinh(/? ( 1  -  ^))} 
a p

< ^ 5  (^) > 3  = —  {- cos(a(l -  ^)) + cos(a^) cosh(/?) -  cosh(/3(l -  ^))
Pf

+ cos(a) cosh(y0^) ——sin(a^) sinh(y3) + —sin(a) sinh(/7^)}

: > ,= — {y9[-cosh(y3(^)sin(a) -  sin(a(l -  ̂ )) + sin(a^)cosh(/?)]
P f

+ a[-cos(a^)sinh(/î) -  sinh(yî(l -  ̂ )) + cos(a)sinh(^^)]}

and

5.17

< (^) > 2  = - ^  {y^[cosh(/?(l -  ^)) sin(a) -  sin(a(l -  ̂ )) cosh(/î) -  sin(a^)]
Dj- 5.18

+ a[cos(a(l -  ^))sinh(/?) -  cos(a)sinh(y3(l -  ^)) -  sinh(y5^)]}

5.19
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< //j. (^) >, = ̂  {sin(r) cos(r^) -  cos(r)sin(r^)} 5.21

The parameters D/and Dt are:

a ^ - p ^  
ap

Dj. = aP{2[cos(a)cosh(P) - 1] +  sin(a)sinh(>9)} 5.23

D, =sin(r) 5.24

where a  and P in equations (5.17) to (5.24) can be replaced by «h- and P„ or % and py to 

obtain the shape functions of out-of-plane or in-plane displacements, respectively.

The shape functions (5.17) to (5.22) are called Dynamic (frequency dependent) 

Trigonometric Shape Functions (DTSF). The bending shape functions have been shown 

in Figure 5.1 for the first four natural frequencies of a non-rotating beam with pure flap 

vibrations.
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Shape functions of single bending vibrations for 
first natural frequency

I
0<xK1

Shape function 1 

Shape functions 
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Shape function 4

Shape functions of single bending vibrations for 
second natural frequency

ê
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0<xl<1

Shape function 1 
Shape function 2 
Shape function 3 
Shape function 4

Shape functions of single bending vibrations for 
third natural frequency
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Ir
5  -20

•60
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Shape functions of single bending vibrations for 
fourth natural frequency

I
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•15
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Figure 5.1: The beam bending shape functions calculated 
at Its first four natural frequencies.
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5.3. Derivation of System Eigenproblem

Implementing the Galerkin-type Weighted Residual Method (WRM) on the 

governing differential equations (2.1) to (2.3) and applying the natural boundary 

conditions, the element virtual works (after discretization and performing appropriate 

integration by parts) is written in following form:

(•)

El
+ + 5w\Ci^em{x + e )̂cos6)<f) 5.25

-  ôw{û)^eml cos 9)^}d^
El El T

+ [5w”(r-^ )w ' -  5 w '\ - ^ ) w  + 0w \j)w ] \

^/.v = f  ' -  S v" {j)v  -  6v{co ^ml )v}df

(**)

E l .
+ {<^v"( 3̂ ^ )w" -  ^v'(Q  êm (x + e, ) sin d)^ 5.26

+ <5 v [(fl"  +(o^)eml  sin 9)]^ -  S v { n h n l  ) v }d^
FT FT T

+ [ S v ''i - ^ ) v ' -  S v " 'i - ^ ) v  + <5v'(y)v]:,

( . . . )

+ ^  {0^{Q^eni(x + e^)cos 9)w' -  S^(D.^em(x + e^)sin 9)v'

+ + (o^)eml sin 9)\v -  ô^{û)^eml cos 9)w
+ 5 ( j ) { Q . ^ m l c o s  29)^}d^

5.27
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where 0 <1. The approximations for >t», bw, v, bv, (j) and b<j> are made such that the

integral terms (*), (**) and (***) in the above equations (5.25) to (5.27) vanish, or:

EL T
[ a / ' ( - ^ )  -  & v\j)  -  &iiû}hn[)]w= 0  5.28

El T
[ J v " " ( ^ )  -  6 v " { j)  -  6 v{o)^ml)]v = 0 5.29

+ 0(/>(cô mlKl )](j> = 0 5.30

The equations (5.28) to (5.30) can be used to determine the parameters 

/3v and t following the approaches introduced in Appendix A. The components of element 

virtual work then reduce to the following forms:

~ r '  + 5w\0}em{x + e, ) cos 0)^

-  8 \v{o)^eml cos 6 )<l>}d̂  5.31
E l  E l  T

+ [ S w \- ^ ) w ' -  0w \ - ^ ) w  + 5w\-j)w][

= Ĵ ' {6v"{^—̂ )w "  -  6v'{0.^em{x + e^)s\n 6)(f>

+ Sv{{Çl  ̂ + (o^)eml sin 6 )\(l) -  5v{Çl^ ml )v)d^  5.32
FT FI T

+ [Sv”{ ^ ) v '  -  8 v”'{-jf-)v  + 8 v \ j ) v ] [

{8^(Q^em{x + e J c o s d ) w ' -8i^{Q^em(x + e f ) sm û )v '

+ 8<!>[{0.̂  + (O^)eml sin 9)]v -  8 (f>{cô eml cos 0)w 
+ 8(^iQ^ml{Kl^ -  Kl^)cos 20)(^}d^
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and the element virtual work can be written as:

Wf,=<Su>‘ [K{co)Y{uY 5.34

where the element nonlinear dynamic (frequency dependent) stiffness matrix, [ff(co)]^ 

can be written as:

[K{(o)Y = [Kmvncoupua + 5.35

The coupled and uncoupled element stiffness matrices are extracted from 

equations (5.31), (5.32) and (5.33) considering the nodal parameters of equations (4.21) 

to (4.24):

\.̂ i.̂ )\vncouplal ~

5.36

+ [{0}ml{Kl,-Kl)cos29){N,_^}<N,_^>+{-Q}ml){N,J<N,_^ >]d^

= r  < N l ,  > +{Nl^} < N l„  >)

-(o)^emlcose)({Ng_J < Nj.,  ̂> +{Nj., }̂ < >)

+(0^e/M(x+e,)cosg)({Ng_,,} < >  +{Â r-p) < ■^b-h. > )  

+[(0' +ûJ^)m/sin0)]({A^3.,} >+{Nr_^}<Ng,^ >)
-(QYem{x+eY)sme){{N'g,^<N^_^ >-{N^.^} <N'g_̂  >)]d#

5.37

where:
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— j r  : = —  ; c? = y  5.38

The system equation then can be obtained by the standard assembly process:

NE

» : .= Z W i. '= 0  5.39

or

=< ài > [K(<y)] {m} = 0 5.40

where:

NE

[X(®)] = 2][A:(®)]* 5.41
1

The virtual displacements vector < ô« > in equation (5.40) is arbitrary, then the 

rest of equation should vanish:

[K(co)]{u} = 0 5.42

The stiffhess matrix is frequency dependent and the equation (5.42) represents a 

nonlinear eigenproblem. The frequencies of this eigenproblem are calculated by Wittrick- 

Williams root counting algorithm [14,15,26] introduced in Chapter 3.

5.4. Refined Dynamic Finite Element (RDFE)

The parameters EIj,, EI^, T, m, GJ and ihkJ  in equations (5.28) to (5.30) are 

assumed to be constant inside each element domain. If the beam specifications vary along 

the length of the beam, this assumption is not valid and the equations (5.28) to (5.30)
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cannot result exactly the assumed basis functions. For small number of elements, where 

the variation of parameters are considerably large, vanishing (*), (**) and (***) in 

equations (5.25), (5.26) and (5.27) results some errors. In order to avoid this error a 

compensating term can be defined for each variable parameter to be added to the 

equations, called deviator term. The variable parameters can be written as:

E m  = EI + EI^,y 

n ^ )  = T + T^,y

m(4) = m + m^Ev 5.43

GJ{^) = GJ + GJ^,y

where El, T, m, GJ and ntK„^ are average values in each element, and the parameters 

with subscript “DEV” are the deviation of average values from exact values [21]. The 

uncoupled stiffness matrix then can be rearranged as:

\.K.(p))Yu„coupled ~
   ,

, !:! .

+ f  ' [(Ü'm/(;v^,-Kl,)cos29){Nr_^} < > +(-Q^ml){Ns.^} < >]d^

+DEV

where:
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-  < N i^  > +{A^;.J < yv;.„ >) ^

- 1(0 [m{Q -  ;;/]({Â g_.} < N > +{/Vg_,} < Ng., >)

+ ^ )  (Â;. ^} < Â ;.̂  > -1(0^[/H/r„' (^) -  hikJ  ] {Â r-„ ) < Â r-„

Adding DEV  matrix drastically increases the aceuracy of the model and provides 

faster convergence. It can be seen from equation (5.45) if any parameter in beam 

specification is constant, the corresponding term will not appear in DEV matrix. For 

uniform rotating beam all geometrical deviator terms vanish and the deviator matrix 

reduces to following form in which the effect of variable axial force, centrifugal force, is 

taken into account:

DEV = f ' J  < >)]d^ 5.46

As it will be discussed later, without considering the deviator matrix, the 

convergence rate of DFE and FEM are nearly the same, but by “refining” the DFE 

element equations, the DFE convergence rates are effectively improved. The 

methodology presented here is called Refined DFE and will be used later in numerical 

examples where variable parameters and rotating speed are to be considered.

5.5. Numerical Results

The DFE method has already been applied to many bending-torsion coupled 

vibration problems including axially loaded or materially coupled composite beams 

[21-25]. In this thesis, some illustrative numerical examples are discussed to verify the 

DFE formulation introduced in this chapter. The natural frequencies, mode shapes and
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the convergence rate of DFE is investigated and compared with the existing results in 

literature and those presented in Chapter 4.

5.5.1. Bending Vibrations of Uncoupled Beam

As the first step, the natural frequencies and mode shapes of lateral vibrations of a 

non-rotating uniform beam is investigated. To implement the DFE, the integration by 

parts is applied to (4.41) and final equation will be in following form:

If/,, =[àv\EI^)w' -  5.47

and the uncoupled stiffness matrix, equation (5.36), reduces to the following form:

________ ijO________  ________ £̂ i_________
c J N l J ]

Using the Wittrick-Williams (W-W) root counting algorithm [14,15,26], the 

natural frequencies can be evaluated from a one-element model. The first five frequencies 

of a uniform cantilever beam are shown in Table 5.1. The beam parameters are 

considered to be unit, Ely = /n = Z = 1. As already stated, the DFE formulation for 

uncoupled bending is equivalent to the exact DSM method, due to the fact that the basis 

functions are the solutions of uncoupled bending vibrations. That is the reason why using 

a one-element mesh results in the exact frequencies.
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Table 5.1: The first five natural frequencies of out-of-plane vibration of

a cantilever beam calculated by DFE

Natural
Frequency

(rad/s)

Exact 
analytical value 

[34]

DFE 
With 1 elements Error (%)

CO/ 3.51602 3.51602 0.000

C02 22.0345 22.0345 0.000

0)3 61.6972 61.6972 0.000

0)4 120.9019 120.9019 0.000

0)5 199.8595 199.8593 0.000

The first three mode of vibration were also calculated by the DFE method and are 

plotted in Figure 5.2.

First Three Modes of Out-Of-Plane Vibrations of a Cantilever Beam 
obtained by DFE

0.5

c

I  Mode 1
—  -  Mode 2 

Mode 3I
-0.5

Length of the beam

Figure 5.2: The first three out-of-plane modes of vibrations 
of a cantilever beam based on DFE method

From Table 5.1 and Figure 5.2, one can see that the natural frequencies and mode 

shapes confirm the validity and complete agreement of the DFE method and exact results 

for pure bending vibrations of a cantilever beam.
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5.5.2. Coupled Bending-Torsion Vibrations

The DFE analysis of coupled bending-torsion vibrations of beams for uniform 

beams as well as non-uniform composite beams, with or without axial forces has been 

well established [21-25]. In this section, some illustrative examples are studied to confirm 

the correctness of the presented DFE formulation.

5.5.2.I. Non-rotating Beam:

As the first coupled bending-torsion case, the dynamic behaviour of untwisted 

uniform coupled beams is studied. The equations of motion, in this case, can be extracted 

from (2.18) and (2.19). The element stiffiiess matrix, equations (5.35), is then written as:

[K(co)Y = + [K{<v)Ycour,e, 5.49

where

i ‘0 4=1
5.50

and

Here, and {Â r-ç,} are the bending and torsional shape functions. A uniform

cantilever wing [22] with following mechanical properties is considered:
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L  = 6.0 m 

e = 0.18 m 

m = 35.75 kg/m 

E /= 9 .75  MN.m^

GJ= 0.988 MN.m^ 

m.km^ = 8.65 kg.m

The natural frequencies obtained from the DFE and FEM formulations along with those 

obtained from the exact DSM method [22] are presented in Table 5.2.

Table 5.2: The first six natural frequencies of coupled bending-torsion 

vibrations of a cantilever beam

Natural
Frequency

(rad/s)

Exact
Method
(DSM)

DFE m ethod  
With 

5 element

Error of 
DFE 

m ethod  
(%)

FEM 
element 
With 30 

elem ents

Error o f FEM 
30-element 

(%)

CO; 49.62 49.62 0.00 49.62 0.01

0)2 97.04 97.05 0.01 97.05 0.01

0)3 248.87 249.00 0.05 249.07 0.08

0)4 355.59 357.54 0.55 355.78 0.05

0)5 451.46 452.57 0.24 452.58 0.25

0)6 610.32 610.63 0.05 613.59 0.54

As it can be seen (Table 5.2), the comparison between higher modes obtained 

from the FEM and DFE (for example the fifth and sixth frequencies) shows the DFE’s 

higher convergence rates.

A three-beam piecewise uniform wing, introduced in Table 4.3 and Figure 4.3, 

was also studied. The vibration analysis shows that DFE has better convergence rate than 

FEM, as a 6-element DFE model leads to the same results as a 15-element FEM model 

(Table 5.3).
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Table 5.3: The first five natural frequencies 

of the three-beam aircraft wing obtained by DFE

Frequency
(rad/s)

Exact Method 
(DSM)

DFE 
n = 6

Error o f DFE
(%)

FEM
n - 1 5

Error o f FEM
(%)

CO; 74.43 74.44 0.02 74.43 0.01

CO2 128.57 128.59 0.01 128.58 0.06

COi 253.40 253.44 0.01 253.56 0.32

0 4̂ 376.59 378.36 0.47 376.96 0.37

CO5 431.29 433.42 0.49 431.97 0.67

As another example, the DFE method was also implemented to the beam of 

following properties [2,16]:

Z, = 40.0 in 

g = 0.4 in 

m = 0.0015 slug/in

^m/ = 0.18 in^

km2  ̂= 0.71 in^

E7= 25000 Ib.in^

C /= 9000  Ib.in^

The first five natural frequencies are calculated by DFE method and have been compared 

with Integrating Matrix Method [16] and the FEM (Chapter 4) as the reference values 

(see Table 5.4).
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Table 5.4: The bending-torsion coupled natural frequencies

of the clamped-free beam

Natural IMM DFE method Error of DFE FEM elem ent Error of FEM
Frequency Method With method With m ethod

(rad/s) (15 stations) 5 element (%) 30 elem ents (%)

CO; 31,05 31,06 0,02 31,059 0.03

C02 193,74 193,79 0,02 193,748 0.00

390,87 391,15 0,07 390,923 0.01

0)4 539,54 540,34 0,15 539,598 0.01

0)5 1043,94 1048,97 0,48 1044,306 0.04

The DFE convergence rates for the first five natural frequencies are shown in Figure 5.3. 

Figure 5.4 presents the comparison between the convergence rates of DFE and FEM for 

the third and fifth frequencies to highlight the difference between DFE and FEM in 

higher modes.

Convergence test of DFE for bending-torsion vibrations

0.20

0.18 -

0.16 -

0.14 -

3  -

k  0.10 -

HI 0.08 -

0.06 -

0.04 -

0.02 -

0.00
30252015105

■ omega 1 
-omega 2 
-omega 3 
-omega 4 
- omega 5

Number of elements

Figure 5.3: The DFE method convergence results for 
coupled bending-torsion vibrations.
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Convergence test of FEM a n d  DFE for  third and fifth frequencies 
for coupled bending-torsion vibrations

1.0
DFE-omega 3 
FEM-omega 3 
DFE-omega 5 
FEM-omega 5

0.9 -

0.8 -

0.7 -

0.6 -

5 0.5 
UJ 0.4 -

0.3 -

0.2 -

0.0
10 20 305 15 25

Number of elements

Figure 5.4: The comparison between the DFE and FEM convergence 
for coupled bending-torsion free vibrations.

The mode shapes of flap and torsion vibrations of the beam have been calculated 

and shown in Figures 5.5 and 5.6.

Mode shapes of out-of-plane vibrations of 
bending-torsion coupled beam

a

Length of beam

- ^ o m e g a l
omega2
omegas
omega4

-^omegas

Figure 5.5: The DFE results for the first five modes of coupled bending-torsion 
vibrations for a cantilever beam; flap (bending) displacements.
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First five modes of torsional vibrations 
of bending-torsion coupled beam

1.2

0.8 -

—♦“ Mode 1 
—* — Mode 2 
—A— Mode 3 

•  Mode 4  
Mode 5

0.6 -

a  0 .4 -

0.2

- 0.2

Length of beam

Figure 5.6: The DFE results for the first five modes of coupled bending-torsion 
vibrations for a cantilever beam; torsional displacements.

The examples of this section show that the results obtained by the DFE are in 

complete agreement with the results of the FEM (Chapter 4) and those of literature. Also 

the mode shapes calculated by the DFE exhibit the expected behaviour of the coupled 

bending-torsion vibrations of the non-rotating beams.

5.S.2.2. Axially Loaded Coupled Beam:

Considering the equations of motion introduced in expressions (4.48) and (4.49) 

[23], the element stiffness matrix for an axially loaded coupled bending-torsion beam can 

be written in following form:

5.52

where
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_______________^ _______________  M______________  5.53

and

[^W]L,W = r  [-(y)({A^;-J < K _ , > +{N'r_,} < >) .

+  i o } ^ e m l ) i { N g . J  <  Nr_^ >  + { N ^ . ^ }  <  N g_ „  > ) ] d ^

5.54

The same semi-circular beam configuration as presented in Figure 4.6 was then 

selected to investigate the DFE application to free vibration analysis of axially loaded 

beams. The beam properties are [20,23]:

L = 0.82 m 

g = 0.0155 m 

m = 0.835 kg/m 

E /=  6380.14 N.m^

(7J= 43.46 N.m^

m.krn  ̂= 0.000501 kg.m

For two cases of T = 0 and T=  -1790 (N), the natural frequencies of beam were 

calculated, and the comparisons between DFE, FEM (Chapter 4) and reference values 

[20] are presented in Tables 5.5 and 5.6.
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Table 5.5: The bending-torsion natural frequencies

of the cantilever beam (no axial load (7^0))

F r e | y  % % %  g S l  2 3 : 2 s

« / 62.60 62.60 0.00 62.61 0.02

130.18 130.75 0.44 130.21 0.02

« 5 261.15 261.56 0.16 261.66 0.20

0)4 421.36 423.25 0.45 423.59 0.53

0)5 612.09 616.03 0.64 618.52 1.05

Table 5.6: The bending-torsion natural frequencies of 

the axially loaded cantilever beam (J= -1790 N)

Natural
Frequency

(rad/s)

Reference
Frequency

[20]
DFE with 

6 elements
Error of DFE 

(%)
FEM with 

20 elements
Error of FEM

(%)

0)1 60.23 60.25 0.04 60.24 0.02

0)2 128.42 128.74 0.25 128.45 0.02

0)3 257.96 258.48 0.20 258.46 0.19

0)4 415.54 416.79 0.30 417.74 0.53

0)5 604.60 607.87 0.54 611.12 1.08

The DFE convergence results for the beam subjected to a compressive axial load 

of 1790 (N) are shown in Figure 5.7. One can see that for the first four frequencies the 

error for a 4-element model is less than 0.8% (the error for the first frequency obtained by 

this model is less than 0.1%). Therefore, using 4 to 6 elements, one could accurately 

evaluate the beam’s first few frequencies.
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Convergence test of DFE for Bending-Torsion coupled 
vibrations of an axially loaded beam, P = -1790
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0.20 -

0.00
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-omega 1 
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Figure 5.7: The DFE convergence results for axially loaded 

cantilever coupled beam (T = -1790 N).

5.5.3. Coupled Bending-Bending Vibrations

The DFE formulation was then applied to the free vibration analysis of coupled 

bending-bending rotating beams. The element stiffness matrix, equation (5.35), reduces 

to:

[K(co)Y 5.55

where

Uncoupled

f=0
K . -  Cr J ; - c  J ;  -  C, {iv;.,};

 ------------------------------------------------------------------------------f:!------------------------------------------------------------------------------,

Cr { }  -  c... { }  ; C„. } ; c,  { { N t .̂} ; c„ ]
5.56
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and

where the vectors of nodal variables {w} and shape functions < N b-w > and < Nb.v > arc 

written as follow:

{ w } = < U ', w\ V, V,' \\>2 w'2 V2 v'2>  ̂ 5.58

^B2 0 0 ÂB4 0 0> 5.59

<Ng_ ,̂>=<0 0 Ngf Ng2 0 0 Ng  ̂ > 5.60

In next sections coupled bending-bending beams with constant axial load and 

centrifugal forces will be investigated to validate the DFE for this category of structures.

5.5.3.I. Axially Loaded Beam:

The uncoupled bending-bending vibrations of a cantilever beam with symmetric 

cross section under constant axial load was first studied. The beam geometric and 

mechanical properties are as follow:

L  = 7.0 m 

m = 4.5 kg/m 

T=  1000

= 3000 N.m^

Elr, = 3000 n W
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Since the flexural rigidities in both directions are the same, it is expected to obtain 

repeated frequencies for in-plane and out-of-plane free vibrations. Table 5.7 shows the 

first six natural frequencies of the Beam. As already mentioned, the DFE for imcoupled 

beam is an exact method and the error for DFE with one element is zero. One can see that 

the FEM errors for the first few natural frequencies are also within the acceptable range 

and the FEM follows the general pattern such that the error increases for higher 

frequencies.

Table 5.7: The uncoupled in- and out-of-plane bending 

natural frequencies of the cantilever beam

Natural
Frequency

(rad/s)

Exact
value

DFE with 
1 elem ent

Error o f DFE
(%)

FEM with 
10 elem ents

Error o f FEM

CO; 4.4821 4.4821 0.000 4.4822 0.001

0)2 4.4821 4.4821 0.000 4.4822 0.001

0)3 16.5835 16.5835 0.000 16.5843 0.005

0)4 16.5835 16.5835 0.000 16.5843 0.005

0)5 37.4918 37.4918 0.000 37.5011 0.025

0)6 37.4918 37.4918 0.000 37.5011 0.025

If a pre-twist angle 6 is added to the system (i.e., rotation of principle axes around 

longitudinal axes x) then the beam will experience the coupled bending-bending 

vibrations. The pre-twist angle causes geometric coupling between two bending 

displacements by producing the coupling term The frequencies for the per-twisted 

beam, in this case, are the same as the uncoupled beam due to the fact that rotation of the 

coordinate system doesn’t change the nature of the system. The natural frequencies in 

coupled case also confirm the DFE’s higher convergence rates comparing to FEM, where 

the DFE errors with only one element for the first six frequencies for this example are 

zero.

Even though constant force can be used to estimate the effect of centrifugal force, 

as it was used for coupled bending-torsion beam, but there is a principal difference 

between bending-torsion coupled vibrations and bending-bending coupled vibrations. In
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the latter case, the centripetal term decreases the rigidity of the beam in j ’-direction, 

which cannot be taken into account when the axial force is simulated by constant force. 

In Figure 5.8 the effect of a constant axial force on the first six natural frequencies of the 

beam are shown.

Frequency Force cuvre for 
coupled bendina«bendlng axially loaded beam,

S  25.0 ♦ omega 1
 omega 2

▲ omega 3
 omega 4

■ omega 5 
— ■ omega 6

0 100 200 300 400 500 600 700 800 900 1000

Axial force (N)

Figure 5.8: The effect of axial force on natural frequencies of 
clamped-free beam bending-bending vibrations.

One can see (Figure 5.8) that by constant axial force the flap frequencies and lag 

frequencies inerease with the same rate (for this special case they are exactly the same). It 

will be shown later that when the effect of centripetal force is taken into account, the 

increment rate of flap and lag frequencies are not the same.

5.S.3.2. Coupled Bending-Bending Rotating Beams:

For rotating beams, the equations (5.55) to (5.57) are used to build the system’s 

frequency dependent (nonlinear) stiffness matrix. In this case the centrifugal and 

centripetal terms both contribute in stiffhess matrix, when the former increases and the 

latter decreases the stiffiiess of the system.
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Using the same beam configuration as discussed in the previous section, ^ d  

incorporating a constant pre-twist angle B =30°, the beam natural frequencies for rotating

= 5 (rad/s) were calculated and shown in Table 5.8:

Table 5.8: The coupled bending-bending natural frequencies 

of a rotating cantilever beam, ft = 5 (rad/s)

Natural Frequency Reference DFE with Error of DFE
(rad/s) FEM, n = 500 5 element (%)

(0; 2.619 2.608 0.422

«2 5.645 5.640 0.079

Wj 16.494 16.479 0.094

U4 17.235 17.221 0.085

38.409 38.396 0.035

38.733 38.720 0.035

Table 5.8 shows excellent convergence of DFE in comparison with FEM, where 

the error for 5**’ and 6*'’ frequencies is less than 0.04%. The error percentage versus 

number of elements for DFE method are presented in Figure 5.9:

Convergenc test of DFE for 
coupled bending-bending rotating beam

1.40 -

1.20 -

1.0 0 -

0.80 -

w 0.60 -

0.40 -

0 .2 0 -

0.00
65 7 102 3 4 8 9

-omega 1 
-omega 2 
-omega 3 
-omega 4 
- omega 5 
-omega 6

Number of elemenets
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Figure 5.9: The DFE convergence results for bending-bending
vibrations of a rotating beam.

The first three flap and lag natural frequencies of the rotating beam are shown in 

Figure 5.10.

The effect of rotary speed on natural frequencies for 
coupled bending-bending rotating beam

50

=§ 40 2
&
g 30

s*
LL

202
2

10

0
8 100 2 4 6

-omega 1 (lag) 
-omega 2 (flap) 
-omega 3 (lag) 
-omega 4 (flap) 
-omega 5 (lag) 
-omega 6 (flap)

Rotary Speed (rad/s)

Figure 5.10: The effect of rotating speed on natural frequencies for 
clamped-free beam bending-bending vibrations.

Figure 5.10 shows that the growth of lag frequencies is slower than flap 

frequencies due to the centripetal effect on the in-plane vibrations which plays a 

softening role and decreases the stiffness of beam in lag direction. On the other hand, the 

difference between flap and lag frequencies decreases for higher modes. Also one can see 

that higher frequencies grow faster than lower frequencies.

In order to investigate the natural modes of coupled bending-bending rotating 

beam, a uniform beam with following properties is considered in which the flexural 

rigidities in two directions are different:

83



L = 7.0 m 

m = 4.5 kg/m 

0 =30 degree

Elr, = 3000 N.m^ 

EI^ = 7500 N W

0 = 5  rad/s

The first five natural frequencies were calculated and compared with FEM 

method. Reference frequencies have been obtained from a 600-element FEM model. The 

results are summarized in Table 5.9.

Table 5.9: The coupled bending-bending natural frequencies 

of the rotating beam

Natural Frequency 
(rad/s)

Reference 
frequency 

FEM, n = 600

DFE with 
3 elem ent

Error o f DFE
(%)

03] 3 .307 3.301 0.202

t02 5.795 5.796 0.013

Wj 17.032 17.038 0.032

0)4 21.940 21.952 0.058

U s 38.648 38.748 0.257

Table 5.9 shows the excellent convergence rate for the DFE, where using only 

three elements results in an error less than 0.3%. The mode shapes corresponding to the 

first eight frequencies are shown in Figure 5.11.
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Mode 1 Mode 2

—  Flap 
Lag

—  Flap 
Lag

Mode 3 Mode 4

—  Flap 
Lag

—  Flap 
Lag

Mode 5 Mode 6

—  Flap 
Lag

—  Flap 
Lag

Mode 7 Mode 8

Lag Lag

Figure 5.11: The first eighth mode shapes of bending-bending vibrations of a 
clamped-free rotating beam.

The mode shapes (Figure 5.11) exhibit the expected behaviour, where for higher 

modes the number of nodes (zero displacement point on beam) increases.
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5.5.3.3. Rotating Blade with Variable Cross Section:

In order to demonstrate the applicability of the DFE approach to complex 

problems, the rotating coupled bending-bending blade with variable cross section, 

introduced in section 4.5.3, was then studied. The first three natural frequencies at 

different rotating speed fl were calculated and are shown in Table 5.10.

Table 5.10: The first three natural frequencies (Hz) of vibrations 

of propeller blade WADC S-5 (DFE method)

Blade rotary 
sp eed  
(rpm)

Mode
number

DFE 
n = 9

FEM 
n = 9

Result of 
Reference 

12]

R esult o f  
Reference 

[5]

Experiment
[27]

1 40.82 40.32 40.96 39.89 40.08

1567 2 109.54 108.49 109.22 107.40

3 280.30 279.27 279.79 276.32

1 41.22 40.70 41.35 40.26

1589 2 110.10 109.01 109.77 107.93 107.53

3 280.98 279.92 280.47 276.97

1 59.74 58.99 60.07 58.05 58.73

2609 2 139.47 137.18 139.52 135.99

3 319.42 316.82 309.40 313.98

1 59.84 59.08 60.16 58.14

2614 2 139.63 137.33 139.68 136.14 137.02

3 319.63 317.03 319.62 314.19

1 77.78 76.87 78.34 75.30 76.52

3583 2 171.49 168.08 166.25 170.60

3 365.76 361.38 357.70

1 94.53 93.48 91.42 93.07

4486 2 202.27 197.91

3 413.43 407.24

1 95.48 94.42

4537 2 204.02 199.61 196.41 202.53

3 416.20 409.91

1 120.41 119.17 116.07 117.50

5884 2 249.67 244.05

3 490.10 481.05
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The DFE results are in good agreement with those of Transfer Matrix Method 

(TTM) [2], where the error for angular speed of 1567 (rpm) and 1589 (rpm) is less than 

0.2%. This example shows the applicability of DFE method for complex geometries 

where the exact method cannot be used.

Reviewing all examples of this section, one can see that the DFE method can be 

advantageously used to calculate the natural frequencies and mode shapes of vibrations of 

bending-bending coupled beam with different levels of complexity.

5.5.4. Coupled Bending-Bending-Torsion Vibrations

Bending-bending-torsion coupled beams can be used in simulation of the turbine 

or propeller blades or aircraft wings. For short beams, the shear deformations and rotary 

inertia must be considered to provide a more accurate model, and in some cases it is 

necessary to consider the thermal effect where the temperature is considerably higher 

than ambient temperature [19]. For propeller blades and aircraft wings the geometry of 

beam allows using Euler-Bemoulli assumptions and the results are accurate enough for 

vibration analysis of the first few modes of vibrations.

The coupling between differential equations governing the flap-wise bending, 

cord-wise bending and torsion occurs because of the beam’s cross-sectional geometry, 

due to the distance between mass and elastic (shear) centers, e, and asymmetry of the 

cross section.

In this section, by a progressive approach, the free vibrations of triply coupled 

bending-bending-torsion beams for non-rotating and rotating cases are discussed.

5 5.4.1. Uncoupled Beam Vibrations

As already stated, for uncoupled equations of motion, the DFE method results in 

the exact solutions. The uncoupled equations of motion for lag (in-plane) bending, flap 

(out-of-plane) bending and torsion vibrations of a beam can be written as:
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{EIyW"y — û) mw = 0 5.61

{ E iy y -û } ^ m v  = 0 5.62

-{G J(/>y-û)^mK:l,(/> = 0 5.63

By implementing the DFE method to the equations (5.61), (5.62) and (5.63), the 

exact uncoupled in- and out-of-plane bending and torsion natural frequencies as 

discussed in Chapter 4, were obtained. These results are also in agreement with FEM (see 

section 4.5.4.1 and Table 4.10).

5.S.4.2. Vibrations of Non-rotating Coupled Beam

For a non-rotating beam, the eccentricity e and the asymmetry produce the 

coupling terms, and the element stiffness matrix expressions (5.35) to (5.37) reduces to 

the following form:

[/̂ (u>)]̂  = [K{CO)Yvncoup,., + 5.64

Where

[ K m 'Uncoupled

4=0

and
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= r  [ ( ^ ) ( W - j  < > +{Ni^} < N i^  >)

-ico^emlcosû)({N^_J<N^_^>+{N^_^}<Ng,„ >)
+ (ty ê/H/sin g)((#g_J < > +{N,.^} < >)]d^

In order to investigate the applicability of DFE to the triply coupled vibrations of 

a non-rotating pre-twisted beam, the beam configuration studied in section 4.5.4.2 re­

investigated [28,29]. The geometric and material properties of the beam are:

L  = 40.0 in 

e=  1.414 in

d =45 deg (constant along the beam length) 

m = 0.0015 slug/in 

kmi= k„2= 1.0 in 

Elr, = 25000 Ib.in^

= 75000 Ib.in^

GJ=9000 Ib.in^

where the pre-twist angle, 6, assumed to be constant along the beam length. The beam 

natural frequencies obtained from the proposed DFE method are shown in Table 5.11. 

The reference values for beam natural frequencies, in this case, are those obtained from 

’Transfer Matrix Method (TMM)” published by Murthy [2]. The comparison between 

DFE and FEM results confirms the superiority of the proposed DFE method (Table 5.11). 

The convergence results for the FEM and DFE methods for the first, third and fifth 

frequencies are also compared in Figure 5.12.
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Table 5.11: The triply coupled bending-bending-torsion natural frequencies

of the pre-twisted clamped-free beam

Natural Error for Error for
Frequency TMM [2] DFE " T n

(rad/s) (%) " ■ (%)

CO; 30.8295 30.8300 0.001 30.8300 0.002

(02 53.8277 53.8278 0.000 53.8278 0.000

^ 3 184.6175 184.7138 0.052 184.7376 0.065

(0 ^ 337.3333 337.3351 0.001 337.3440 0.003

CO5 484.3373 485.7737 0.297 486.4762 0.442
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Figure 5.12: The comparison between the DFE and FEM convergence 
for non-rotating triply coupled beam.
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Investigation in mode shapes reveals that the modes obtained by DFE and FEM 

are identical. The first five modes corresponding to the first five natural frequencies are 

shown in Figure 5.13 (Note: the first, second and fourth torsion modes have been 

magnified hy 10,10" and iO'* respectively to be visible).

Mode 1 Mode 2

Mode 3 Mode 4

Mode 5

Figure 5.13: The first three modes of vibrations of 
non-rotating triply coupled beam.
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S.5.4.3. Vibrations of Rotating Triply Coupled Beam

For a rotating pre-twisted beam, the governing equations of motion are in the 

form of (2.1), (2.2) and (2.3). These equations can be used to model the low frequency 

vibrations of high aspect ratio compressor, turbine, propeller and helicopter blades. The 

element dynamic stiffness matrix, consisting of coupled and uncoupled stiffness matrices, 

can be written as introduced in equations (5.35) to (5.37). By including the deviator 

matrix, the uncoupled stiffness matrix then changes to equation (5.45).

Here, the free vibration of a triply coupled pre-twisted cantilever helicopter blade 

is studied. The following geometric, mechanical and material properties, as reported in 

the literature [4,6,16] (see also section 4.5.4.3) were used:

L  = 208 in 

g = -0.6 in 

ei = 52 in

0 = 15.026 deg (constant along the blade length)

(« = 0.0015 Ib.sec^/in^

« i.^ „ / = 0.89545x10'^ Ib.sec^ 

in^hif,2 = 0.04 lb.sec 

E /, = 0.2977x10^ Ib.in^

JB'/{= 10x10® Ib.in^

(?J= 0.2x10® Ib.in^ 

l i  = 360 rpm

Based on the DFE method, the natural frequencies of the cantilever blade were 

then calculated and compared with those obtained from the FEM (Table 5.11). Since the 

exact results are not available, an FEM model based on 700-element mesh was used to 

evaluate the reference values. As it can be seen from Table 5.11, a coarse mesh of only
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seven DFE elements, leads to an infinitesimal average error of less than 0.02% when the 

first 5 natural frequencies are to be evaluated. The DFE convergence results compared 

with an FEM model (700-element mesh) are shown in Figure 5.14.

Table 5.12: The triply coupled bending-bending-torsion natural frequencies 

of the pre-twisted rotating beam, fl = 360 (rpm)

Natural Frequency 
(rad/s)

Reference 
FEM 

n -  700

DFE with 
7 elem ent

Error o f DFE
(%)

U l 46 .125 46.096 0.013

W2 73.253 73.225 0.001

Wj 130.864 130.757 0.023

0)4 171.963 171.965 0.000

U s 271.435 271.452 0.060

Natural frequemcies of DFE analysis of a triply coupled rotating beam, 
Omega = 360 rpm

Number of elements

0.500

0.400

-♦ -om ega 1 
-" -o m eg a  2 
- I o m e g a  3 
-" -o m eg a  4 
-Iom ega 5

^  0.300 -

0.200 -

0.100

0.000
6 73 4 5 8 9 10

Figure 5.14: The DFE convergence results for rotating triply coupled beam.

The mode shapes of the triply coupled rotating beam were also investigated (see 

Figure 5.15). The results confirm the expected modal behaviour for given configuration
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(the first, second, third and fifth torsion modes have been magnified by 10^, 10^, 10 and 

10^ respectively to be visible).

Mode 1 Mode 2

Mode 3 Mode 4

Mode 5

Figure 5.15: The modes of vibrations for a triply coupled rotating beam.

Furthermore, in order to validate the proposed method and to verify the 

applicability of DFE method to more complicated cases, a uniform linearly twisted blade
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was also studied. A constant rate of twist is considered, where 0 = 0” at root and 

6 = 15.026° at free end (tip). The frequencies of free vibrations of blade are calculated 

and compared to the reference values obtained from a 600-element mesh model based on 

classical FEM (Table 5.13). Based on a six-element DFE analysis, and evaluating the first 

5 natural frequencies, an excellent average error <0.1% was obtained.

Table 5.13: The triply coupled bending-bending-torsion natural frequencies 

of the twisted rotating blade, fl = 360 (rpm)

Natural Frequency 
(rad/s)

FEM 
n = 600

DFE 
n = 6

Error o f  DFE
(%)

CO; 47.56 47.51 0.10

«2 71.67 71.64 0.03

Wj 132.60 132.26 0.26

CO.; 172.25 172.25 0.00

W5 268.72 268.90 0.07

Finally, in order to validate the DFE method for blades and beams of more 

complex geometries, the blade as discussed in the previous example was re-investigated 

when the uniform geometry and pre-twisted geometry were modified to model a non- 

uniform pre-twisted beam. The cross-sectional properties vary along the blade length 

when the blade is divided into five uniform segments with equal lengths. The flexural and 

torsional rigidities, i?/„ EI^ and GJ, and also inertia parameters, /«, nt.kmr and nt.km2 , 

are decreased by 5% in each segment as shown in Figure 5.16. “ c  ” is the element 

geometric coefficient multiplied by the reference rigidities and inertia parameters (at 

root).
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Figure 5.16: The model for piecewise uniform beam.

The results for the natural frequencies of the beam (Figure 5.16) are calculated 

and shown in Table 5.13 (0 = 360 (rpm)).

Table 5.14: The triply coupled bending-bending-torsion natural frequencies 

of the piecewise uniform twisted rotating blade, ft = 360 (rpm)

Frequency
(rad/s)

Reference 
FEM. n = 800

DFE 
n = 10

Error of DFE
(%)

FEM 
n = 200

Error o f FEM 
(%)

W; 48.54 48.51 0.06 48.63 0.20

(02 79.49 79.46 0.03 79.56 0.09

U j 132.46 132.36 0.08 132.81 0.26

U4 181.00 181.00 0.00 181.00 0.00

U s 272.59 272.52 0.03 272.97 0.14

As it can be seen (Table 5.14) the DFE convergence to the reference values, 

obtained from an 800-elements FEM model, with much higher rates compared to FEM. 

As it can be observed (Table 5.14), based on a ten-element DFE model, one can 

confidently evaluate the first five natural frequencies of the given beam configuration 

with an average error of les than 0.04%.
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All examples of this chapter along with numerical results of Chapter 4 

demonstrate the precision and the practical applicability of the finite element method 

(FEM) as a strong tool in investigating the dynamic behaviour of non-rotating and 

rotating coupled beams. Also a comparison between FEM and DFE reveals that the DFE 

method, along with Wittrick-Williams root counting approach as a robust and accurate 

solution tool, provides higher convergence rates and lower computation time and cost, 

especially when multiple and/or higher frequencies are sought.
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CHAPTER 6: CONCLUSION

6.1. Concluding Remarks

For many engineering problems, dealing with flexible structures, the vibration 

analysis of the system is a vital part of design. Neglecting the dynamic behaviour of the 

structure could cause catastrophic results and failure in a system. Finding the first few 

natural frequencies and mode shapes of a flexible structure helps the designer to have 

better understanding about dynamic behaviour of the structure and to be able to predict 

the response of the system to excitation such as periodically variable forces or 

movements.

This research work focused on the free vibration analysis of non-rotating and 

rotating beams. There are many flexible structures in aerospace engineering which can be 

modeled by a beam or a combination of beams, such as aircraft wings, propeller blades, 

satellite antenna and solar panels, compressor, turbine and helicopter blades, etc. All 

these structure have one character in common; due to the special geometry or material of 

the structure, they undergo coupled displacements governing coupled differential 

equations of motion. The analytical solutions for uncoupled equations governing bending 

and torsion displacements can be found in many vibrations text books, while for the case 

of coupled vibrations, the analytical solution is not always available.

In vibration analysis of rotating beams, the most complete models have three 

coupled differential equations for in-plane bending, out-of-plane bending and torsional 

displacements and an uncoupled equation for longitudinal displacements. The equation 

governing the beam’s axial displacements is uncoupled and can be solved analytically 

using various methods [24]. For triply coupled beam equations, there have been different 

numerical approaches proposed by many researchers attempting to find the best solution 

for the free vibrations response of the system [2,4,5,6,16]. Is this research the FEM 

method, a powerful and accurate method, was first used to study the coupled beam 

vibrations. The Galerkin weak (integral) formulation, which also satisfies the principle of 

virtual work, was employed to transform the coupled differential equations of motion into
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algebraic equations and an eigenvalue problem, where the eigenvalues are the natural 

frequencies and the eigenvectors represent the mode shapes of the system.

Besides developing a conventional FEM method, this research focused 

specifically on the development of new Dynamic Finite Element (DFE) for bending- 

bending coupled beams and triply coupled rotating beams, used as a model representing 

rotary blade dynamics.

As explained in Chapter 5, after discretizing the beam into elements and applying 

a certain number of extra integration by parts, the ODE’s governing the uncoupled beam 

vibrations appear. Vanishing of these terms leads to the dynamic basis functions of 

approximation space. A closer look at these terms shows that by application of 

integration by parts, some integral terms transform to boundary terms, and since the 

integration in DFE is done numerically, this change can decrease the computation time 

effectively.

Because of the nonlinear trigonometric nature of the dynamic interpolation 

functions in the DFE formulation, the root counting procedure presented by Wittrick and 

Williams [14,15,26] were exploited in order to evaluate the natural frequencies. The 

approach provides a powerful solution tool for periodic systems with repeated sub­

structures and repeated frequencies [15], in particular. Using thee Wittrick-Williams 

method, one can calculate directly the frequency W/ without calculating the frequencies 

lying below w,-, whereas in the FEM method, the well-known numerical methods 

frequently used in frequency calculations do not have this feature, even though one could 

also adapt the W-W algorithm to the standard FEM analysis [35].

The DFE and FEM were then used to investigate the behaviour of coupled 

vibrations of non-rotating and rotating beam configurations. The examples investigated in 

this thesis exhibit different aspects of beam vibrations. First, the vibrations of uncoupled 

beams were studied, where the results showed that solving two or three uncoupled 

equations together with one nodal displacement vector results in the same results as 

analytical solutions.

In addition, the effect of an axial load on coupled bending-bending and bending- 

torsion beams was studied. As shown in Chapters 4 and 5, the axial load can affect the 

geometric stiffness of the beam and change the natural frequencies and modes, where a
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tensile force increases the so-called geometric stiffness of the beam and consequently 

increases the natural frequencies. A compressive axial force, on the other hand, decreases 

the natural frequencies by softening the beam. Also, when the rotating speed is increased, 

the centripetal acceleration makes the cord-wise natural frequencies to grow slower than 

those of beam flap-wise vibration.

The DFE method developed in this research was also advantageously used to 

determine the natural frequencies and modes of triply coupled beam vibrations. In many 

engineering design problems, at the preliminary design stage, the designer needs to get a 

general idea about the dynamic behaviour of the system even before a detailed and 

rigorous design process or FEM analysis starts. In such cases, having a reliable and 

accurate simulation tool like DFE helps the designer to better understand the dynamics of 

a system. Besides, applying the first changes in a trial step is easier and takes much less 

time with this numerical tool.

6.2. Comparison Between DFE and FEM

The DFE, as a finite element approach, follows the same methodology of the 

conventional FEM, but with some conceptual differences. In the DFE formulation, the 

Dynamic (frequency dependent) Trigonometric Shape Functions (DTSF’s) are exploited 

to approximate the displacements, while the FEM uses the static (polynomial) shape 

functions. These polynomial shape functions, cubic for flexural vibrations and linear for 

torsional vibration, are the solution of static deformations of the beam produced by 

external forces and moments. The dynamic basis functions used in the DFE formulation 

are the solutions to the uncoupled ODE’s governing the free vibrations of the beam and 

they are altered such that they reduce to static shape functions when w-> 0.

The dynamic character of shape functions in the DFE method causes a higher 

convergence rate, since the nature of approximation functions are closer than Hermite 

shape functions to the real solutions. For uncoupled vibrations, the DTSF’s are the exact 

solutions and one can get an infinite number of natural frequencies by a one-element DFE 

model.
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There is another important difference between two methods: classic FEM leads to 

a linear eigenproblem with constant mass and stiffiiess matrices, whereas the DFE 

formulation results in a nonlinear eigenproblem due to the frequency dependent stiffiiess 

matrix which represents both inertia and stiffness of the system.

In general, for a numerical approach some features are more important than others 

such as reliability, accuracy (or rate of convergence) and computation time. The FEM 

based formulations have already been proven as reliable and robust methods, and are 

widely used in engineering and research areas. The reliability of DFE for single axial or 

bending vibrations and coupled bending-torsion vibrations has also been approved for 

beams with geometric and/or material coupling [21-25]. The reproduced results for 

illustrative examples exhibiting different coupled behaviour reconfirmed the excellent 

reliability of DFE. Besides, the DFE formulation was also extended to the bending- 

bending and triply coupled beam vibrations and several illustrative examples were 

presented. Results showed that, as expected, the DFE provides reliable solution for triply 

coupled vibrations of a beam, and degenerating the dual coupling from triple coupling 

problems does not affect the robustness of the method.

The accuracy of both DFE and FEM methods is excellent and, as stated in 

Chapters 4 and 5, in order to obtain more accurate higher frequencies, the number of 

elements must be increased. Comparing the convergence results for two methods reveals 

that for the first and second frequencies, both methods result in the same accuracy, but if 

higher frequencies are sought, the DFE convergence rates are higher than FEM. The 

difference between the FEM and DFE methods is more significant when refined DFE 

(RDFE) is used to model rotating beams or beams with variable cross sections.

The computation time for both methods depends on the number of elements in the 

model, and since the frequency calculation in the DFE relies on the bisection method, for 

the same number of elements the computation time for DFE is higher than FEM. A 

comparison between a combination of accuracy and computation time shows that DFE 

provides faster solutions. For example, in the case of the coupled bending-bending- 

torsion rotating beam (Table 5.11), the average error for the first five natural frequencies 

obtained from a 7-element DFE model (comparing to a 700-element FEM model) is 0.02
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percent. The DFE computation time, in this case, is less than two minutes whereas tlie 

FEM model takes more than two hours to provide the same accuracy.

As a result, despite the differences between the DFE and FEM formulations, botli 

methods can be successfully exploited to carry out the vibration analysis of rotating and 

non-rotating beams.

6.3. Future Work

The research work presented here was focused on the free vibration analysis of 

homogeneous undamped beams. Euler-Bemoulli bending and St. Venant torsion beam 

theories were considered in the model. This model neglects the shear deformation and 

rotary inertia as well as warping and thermal effects. More accurate models consider one, 

some or all the parameters neglected here; hence, future work can concentrate on 

increasing the accuracy of the model by including the effects of shear deformation and 

rotary inertia for triply coupled beams. Also, the warping and thermal effects can be 

taken into account where needed. To try a realistic model, stmctural damping also must 

be taken into account, since all materials incorporate a certain degree of damping.
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Appendix A

ANALYTICAL SOLUTION FOR BEAMS UNCOUPLED 
VIBRAITONS

A.I. Pure Bending Vibrations of a Clamped-Free Beam

The differential equation of motion for vibrations of the Euler-Bemoulli beam, in 

which the shear deformation and rotary inertia effects are neglected, can be written as:

dx dx dx ÔX dt

For a clamped-free beam the boundary conditions are:

r (0 , / )  = 0

dW{0,t)
dx

=  0

A.2

b £!2:m , o
dx^

OX dx

Using the separation of variables technique, the solution of differential equation is 

assumed as product of a spatial function w(x) and a harmonic function sincor:

= w(%).sinor A.3
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Substituting (A.3) into (A.1):

{EIw")" -  (Tiv')' -  inco^w = 0 A.4

and for a uniform beam:

EIw"" — Tw" -  mû) \v = 0 A.5

Assume:

At A.6

Equation (A.5) becomes:

AX' +BÀ^ +C = 0 A.7

A = EI ; B = -T  ; C = -mco^ A.8

Solving (A.7) for X results in:

X  = ■

B ± ^ B ^ - A A C  
2A

A.9

K i  =
- B - ^ B ^ - A A C

2A
= ±ia A.10

A.11

By evaluating the \  Equation (A.6) can be written as:

w(x) = A sin ccc + B cos ax + C sinh ^ x  + D cosh fix A.12

Applying the boundary conditions (A.2) to find the constants A, B, C and D results in an 

eigenvalue problem:
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0 -1 0 1 A 0
-1  0 1 0 B 0

-  sin aZ- -  cos aL sinh J3L cosh fiL C o '
-  cos aL sinh of, cosh oL sinh pL D 0

A .1 3

The characteristic equation of eigenproblem (A.13) can then be written as: 

cos oL. cosh = 1

For free vibrations of a uniform beam without axial force, a  = /3 and:

A. 14

2 r 2(o = a  L A.15

The solution of for aL, weighted natural frequency, can be found in vibrations text books

[34]. The results have been shown in Table A.1 :

Table A.1: The weighted and normalized natural frequencies, (x„L and co„, 

for a cantilever beam obtained by analytical solution

Weighted Natural Frequency Normalized natural frequency

djL 1.87510407 0)7 3.51601527

012L 4.69409113 0)2 22.03449154

cisL 7.85475744 Wj 61.69721922

cCfL 10.99554073 (̂ 4 120.9019159

oisL 14.1376839 0)5 199.8741061

ct„L, n>5 (2n-1)ir/2 0)„ l(2n-1)ir/2f

The natural frequencies have been obtained from equation (A.15). For = l ,m =  1 and 

L = 1, the natural frequencies have already been shown in Chapter 4 and 5. Mode shapes 

of free vibrations of the clamp-free uniform beam without an axial force can then be 

calculated by substituting coefficients A, B, C  and D  into the equation A.12 [34]:
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f \  , sinhûr-Z,-smû:_Z, , . , . , .w„ W  = cos a „ x -  cosh a ^ x ----------   —  (sinh a . x -  sin a„x) A. 16
cos a„Z, +cosh a„Z,n

A.2. Torsional Vibrations of a Cantilever Beam

The governing differential equation of free vibration of beam with St. Venant 

torsion beam theory can be written as:

^  A.17
6% " a/'

For a clamped-free beam the boundary conditions are:

0 (0,0 = 0

A.18

00(1,0
dx

=  0

Using the separation of variables, the solution of differential equation can be 

written as:

0(x, 0  = Ç(x) sin at A. 19

By substituting (A. 19) into (A.17), one can get:

(GJ<p'y + (m a ^K j)(p  = 0 a.20

For a uniform beam in element coordinates:
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GJ(p" ■\-{mKjco^)(p = 0 A.21

Assuming an exponential function as the solution of (A.21):

ç{x) = Ae^ A.22

and substituting (A.22) into (A.21):

G JA '+ (m /c„V ) = 0 A.23

A.24
V GJ

One can see that the parameter t has already introduced in Chapter 5 (equation 

(5.4)). The term 4  appears in expressions for a, j8 and t  in equations (5.3) and (5.4) but 

not in (A. 10), (A. 11) and (A.24), because in the former equations the solutions are 

evaluated in terms of element coordinate and 4  (the Jacobian) is produced after each 

differentiation. Substituting equation (A.24) into (A.22), one can get the mode shapes of 

torsion vibrations of the beam:

çj(a:) = A sinrr + Bcoszx A.25

For clamped-free boundary conditions (A.18), an eigenproblem of the following form is 

obtained:

0 1 
cos t L  -  sin tL Ib C  0

where the characteristic equation can be written as:
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COS Æ  =  0  A .2 7

The weighted natural frequencies, j„L, and natural frequencies can be simply 

calculated as:

— (2/1 — 1)— A.28

=(2«-1)t J  .2^*  ̂ 2 A.29niK.2 \ L

When GJ = 1, L = 1, m = 1 and Km = I, the analytical solution for torsional 

natural frequencies was compared with numerical values, calculated by FEM and DFE, in 

Chapter 4 and Chapter 5, respectively. The mode shapes of torsional vibrations of a 

cantilever beam then can be written as:

<Pn W  = sin T„x A.30
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Appendix B

COMPUTER PROGRAM, ALGORITHMS AND FUNCTIONS

The formulations presented in this thesis were verified by different illustrative 

examples discussed in Chapters 4 and 5. Because of some conceptual differences 

between two approaches, the FEM and DFE method, the algorithms of these two methods 

are different. The FEM approach, as a well-known and reliable method, has less 

complexity in programming because of polynomial shape functions and constant mass 

and stiffness matrices. On the other hand, because of frequency dependent approximation 

functions, the DFE requires developing more functions and a more complex algorithm.

B.l. The FEM Program and Algorithm

The FEM method has been programmed first by Maple© to develop the shape 

functions vectors and their derivatives. The matrices produced by vector products of 

shape functions vectors and their derivatives are integrated over element lengths to 

develop the elementary matrices which construct the mass and stiffness matrices (these 

matrices are the terms introduced in equations (4.35) to (4.39)). The element mass and 

stiffness matrices are then calculated. An assembly loop produces the total mass and 

stiffness matrices. After applying the boundary conditions, the standard eigenvalue 

command is used to calculate the natural frequencies.

After developing the Maple© program, a similar code was written in the Matlab® 

environment to calculate the natural frequencies and mode shapes. The Matlab® program 

consists of two functions, the main program calculates the total mass and stiffness 

matrices and calculates the natural frequencies, and the second function calculates and 

plots the mode shapes. The Figures B.l and B.2 show the algorithm of FEM program.
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Start

Reading the beam’s properties, 
number of elements and DOF 

per node

End

Output: Natural 
Frequencies

Applying the 
boundary conditions

Calculating the 
natural frequencies

Assembling the system 
mass and stiffness matrix

Constructing the element mass 
and stiffness matrices

Reading tlie elementary matrices, 
which form tlie mass and stiffness 

matrices

Figure B.l: The Algorithm of main program of FEM method for calculation
of natural frequencies.
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Start

Getting the system mass and stiffness 
matrices, the number of elements, the 
number of modes, DOF per node and 

the natural frequencies

DGF = 3
DGF = 5 DGF = 4

End

Calculation of 
eigenvectors

Storing the mode 
shapes in separate 

modal matrices

Storing the mode 
shapes in separate 

modal matrices

Storing the mode 
shapes in separate 

modal matrices

Separating the nodal 
displacements of w 

and V variables

Separating the nodal 
displacements of w, v 

and (j) variables

Separating the nodal 
displacements of w 

and (j) variables

Plotting the mode 
shapes of each 
displacement

Perturbation of zero force 
vector and natural frequencies

Figure B.2: The Algorithm of the program which calculates the mode shapes,
used for the FEM method.
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The DOF in Figure B.2 represents the number of nodal variables, i.e., that means 

for each bending DOF = 2 (displacement and slope) and for torsion DOF = 1. Then 

DOF = 3, DOF = 4 and DOF = 5 are corresponding to the bending-torsion, bending- 

bending and bending-bending-torsion vibrations, respectively.

B.2. DFE Program and Algorithm

As already stated, the mass and stiffness matrices in FEM are constant, but in 

DFE the elementary matrices and consequently the stiffness matrix are frequency 

dependent. This causes that the terms in equation (5.35) should be integrated numerically 

and for each element. On the other hand the nature of bisection method which is an 

iterative algorithm, require that the calculation of j  to be repeated, which causes more 

computation time. All these reasons result a different algorithm from FEM.

In DFE program, several functions were defined. The main function executes the 

bisection algorithm to find natural frequencies. In this function another function Jo(w) is 

called to calculate j  number for each trial frequency.

The main function algorithm has been shown in Figure B.3.
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Start

Reading the main parameters: 
Number of frequencies: ttg 
The accuracy of calculation: 6 
Upper and lower trial frequencies: and W/

for
i = l t o w j

While

While 
(  (j^h- W/) ^  5

End

Store CO in oj/

Output: Natural Frequencies, co,-

Figure B.3: The main DFE function bisection algorithm.
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Following the Wittrick-Williams method, the function Jo(w) (used in bisection 

algorithm) calculates y. All parameters associated with j ,  such as upper triangular stiffness 

matrix, its sign count andy„, are calculated in /«(w).

The function gets the beam properties, number of elements, and DOF of the 

element (as input) and calculates the parameters of equations (5.3) to (5.5) using the trial 

frequency co* (co* is the function’s argument which is called from main function). Then 

the function calculates the uncoupled and coupled element stiffness matrices, equation 

(5.36) and (5.37). The element stiffness matrix is then calculated along with the jm of the 

element. After assembling the total stiffness matrix, the geometrical boundary conditions 

are applied. The result is the matrix, [Æ(co)], which form the nonlinear eigenproblem.

[A((o)] is transformed to an upper triangular matrix by a function called UT which 

gets the matrix and its size as input and returns the upper triangular matrix. Then the sign 

count of transformed matrix in calculated by another function called SCOUNT. Sign 

count of total stiffness matrix and jm are added together to calculate y as Vo(w)’s output.

The algorithm of function /«(to) is shown in Figure B.4. There are two functions 

called in Jo(co) to calculate the element uncoupled and coupled stiffness matrix. These 

functions are shown in Figure B.4 as K COUPLED and K_UNCOUPLED.
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Start

Reading:
The properties of beam 
Angular speed of the beam ft 
Number of elements n 
Z)OFper node____________

Assembly loop
for 

i=l to n

End

Calculating:
^W9 Pwj ^V9 ^Vf ^ tld  T

Calling the function “UT” which 
produces the upper triangular matrix

Applying the boundary condition 
to the total stiffness matrix

Calling the function “SCOUNT” which 
calculates the sign count of a matrix

Output:
Jo which is used in main program

Calculating the element’s jm 
and stiffness matrix

Adding element stiffness matrix 
to the total stiffness and element 

jm to the totaly‘;„

Calling K_UNCOUPLED and 
K_COUPLD: 

Calculating the coupled and 
uncoupled stiffness matrices

Figure B.4: The algorithm of calculation of Jo(w).
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The DFE algorithm can be used to evaluate any single i** natmal frequency of 

beam’s free vibrations. Also it is possible to evaluate n natural frequencies, i to (/+«)> 

which is one of the advantages of this method.

When the natural frequencies are evaluated, a function (similar to the one 

presented in Figure B.2) can be exploited to evaluate the mode shapes corresponding to 

the natural frequencies.

The algorithms and flow charts, presented in this Appendix for the FEM and DFE 

methods, can be used for analysis of pure bending, dually or triply coupled vibrations of 

rotating and non-rotating beams and blades. As already stated, the FEM algorithm is 

simple and easy to implement, because of polynomial shape functions and constant mass 

and stiffness matrices. On the other hand, the DFE, because of the iterative nature of 

Wittrick-Williams and bisection method, is more complicated. This algorithm works with 

more functions, some of them store the symbolic forms of different terms of stiffness 

matrix. These symbolic matrices are called in numeric integration loop in K_COUPLED 

and K UNCOUPLED functions.
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