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Abstract

The gravity driven film flow down a heated inclined ramp and how it is affected by
temperature dependent fluid properties is examined. The five temperature dependent
fluid properties examined were: surface tension, mass density, dynamic viscosity,

thermal conductivity and specific heat capacity.

The investigation utilized a theoretical model based on the conservation of mass,
momentum and energy, including the physically appropriate Newton’s Law of Cooling to
incorporate temperature changes on the surface of the film. A two-scale model of this
system was also considered and a Benney equation was derived. A depth-integrated
model was also considered and modified Integral Boundary Layer (IBL) equations were

generated. A linear stability analysis was carried out in all cases.
Numerical simulations were carried out on the nonlinear modified IBL equations and

their agreement to the linear approximations was good. The nonlinear analysis was also

used to determine the evolution of the unstable flow.
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CHAPTER 1 - INTRODUCTION

The purpose of this thesis will be to examine how the flow of a thin fluid film down a
heated inclined plane is affected by temperature dependent fluid properties. When a
gravity-driven fluid film is heated, the variation in its surface tension with temperature
can combine with the inertial effects of the flow to generate interfacial instability. Other
fluid properties, like mass density, dynamic viscosity, thermal conductivity and specific
heat capacity can also be significantly affected by changes in temperature. While the
effect of variable surface tension on interfacial instability has been thoroughly
investigated, very little has been done in studying the effect of temperature dependence
in the other fluid properties. This thesis will examine the combined effect of temperature
variation in all the fluid properties.

The investigation will be carried out by implementing a theoretical model based on the
conservation of mass, momentum and energy. This model will exploit the assumed
shallowness of the fluid layer, and will incorporate the physically appropriate
temperature dependence of the fluid properties. The thesis will report on linear and
nonlinear stability analyses of the model. The linear analysis provides analytic results
and predicts the critical conditions under which the equilibrium flow becomes unstable.
The nonlinear analysis involves numerical approximations of the governing equations,
and will reveal if nonlinear effects will significantly alter the predictions of the linear
theory. The nonlinear analysis will also be used to determine the evolution of the
unstable flow.

A. History

The flows of thin fluid films exist in various aspects of daily life. In engineering
applications we see their usage in distillation units, condensers and heat exchangers. In
geophysical events we see thin fluid films in the forms of gravity currents, mud, granular
and debris flow, snow avalanches and lava flows. In biological systems we find thin fluid
films lining the airways in the lungs and thin tear films covering the eye. These are just a
few of the many examples of daily occurrences of thin fluid films.

Although these occurrences seem very different with little in common with each other,
they can all be modeled using the same mathematical principles. Much of the
mathematics for the flow of thin fluid films is based on the experiments of Tower (1884)
and the theoretical work of Reynolds (1886).

The idea behind the modeling of thin fluid film flows is to track the interfacial position
while simultaneously solving the full governing fluid equations, along with any other
relevant equations (i.e. electrostatic forces, temperature or chemical concentrations)
required to do so. This is often quite difficult or impossible due to the complexity of the
equations involved. However, certain simplifications can be made by assuming the film
flow can be classified as a thin fluid film.



Thin fluid films are modeled using the Navier-Stokes equations (plus any other relevant
equations, as mentioned earlier). But in a thin fluid film we recognize that there is a
large disparity between the vertical and lateral length scales; the lateral length scale is
much larger than the vertical length scale. This gives rise to small aspect ratios that
provide the small parameters necessary for perturbation expansions. In other words, we
can simplify the model by filtering out the explicit dependence on the depth coordinate.

The particular case of an isothermal film falling down a planar substrate was first
observed in the experiments of Kapitza and Kapitza (1949). Yih (1955) carried out a
linear stability analysis of the flow by employing the Orr-Sommerfeld equation. Using a
numerical method he calculated the critical conditions for instability, however his results
were imprecise. Benjamin (1957) performed a similar calculation, but used analytic
results rather than numerical ones. Benjamin’s values were more in accordance with
experiments done by Binnie (1957). Yih (1963) redid his analysis using a perturbation
expansion. This approach was much simpler than his earlier approach and provided
results in agreement with Benjamin’s. Both Benjamin’s (1957) and Yih's (1963)
calculations predicted a critical Reynolds number of (5/6)cotp, where § is the angle of
inclination. This result was verified by the experiments of Liu et al. (1993).

Benney (1966) applied a long wave expansion (the lateral length scale is much larger
than the vertical length scale) leading to a single nonlinear evolution equation for the
interfacial position for the free surface. Although this approach was accurate for
determining critical conditions, it failed to correctly describe nonlinear waves far from
criticality.

Shkadov (1967) attempted an integral boundary layer (IBL) approximation, which
combined the boundary layer approximation of the Navier-Stokes equations assuming a
self-similar parabolic velocity profile and long waves on the interface with the Karman-
Pohlhausen averaging method in boundary layer theory. This procedure resulted in two
equations in two unknowns (the unknowns being the flow thickness and flow rate).
While this procedure was successful in describing nonlinear waves far from criticality,
there were a few problems, one being an erroneous prediction of the critical Reynolds
number as cotf, instead of the correct value of (5/6)cotp.

Ruyer-Quil and Manneville (2000) used a modified IBL approach, where they combined
a gradient expansion with a weighted residual technique using polynomial test
functions. This approach lead to a similar two-equation result like Shkadov’s, but
predicted the correct instability threshold. Trevelyan et al. (2007) extended this
approach for the basic non-isothermal problem (temperature variation in surface tension
only).

In any study of thin fluid film flow with non-uniform surface tension, the Marangoni effect
must be considered. Because of the Marangoni effect, surface segments with high
surface tension will tend to pull more strongly on the surrounding liquid than segments
with lower surface tension. As a result, fluid will flow from areas of lower surface tension
to areas of higher surface tension. Surface tension gradients can be created or



enhanced by changes in temperature, since surface tension is a function of
temperature. So when studying the effects of thin fluid flow down a heated inclined
plane, not only must we consider the typical long-wave instability resulting from
isothermal flows, as was studied by Kapitza and Kapitza (1949); but in a non-isothermal
flow we must also consider instability due to the Marangoni effect. These competing
factors and how they interact with each other will need to be considered when studying
the instability of a thin fluid flow down a heated inclined plane.

There has been some research done in recent years for the problem of a thin fluid flow
down a heated inclined plane. However, this research only considered the surface
tension effects (Marangoni effect) arising from the heated plane. Kalliadasis et al.
(2003) used the IBL approach. They adopted a linear test function for the temperature
combined with a weighted residuals approach for the energy equation and obtained a
three-equations model for flow height, flow rate, and temperature (or energy). However,
this method suffers the same problems as does the Shkadov method. It does not
accurately predict the onset of flow instability and the critical Reynolds number
prediction is erroneous, on the order of 20%.

Later, both Ruyer-Quil et al. (2005) and Scheid et al. (2005), building on the work of
Kalliadasis et al. (2003) for thin fluid flow down a heated inclined plane and the work of
Ruyer-Quil and Manneville (2000) for thin fluid flow down an inclined plane (isothermal
case), used a procedure based on a high-order weighted residuals approach combined
with a Galerkin projection with polynomial test functions for both velocity and
temperature fields. This modified IBL approach suffers none of the shortcomings of the
approach used by Kalliadasis et al. (2003).

In 2007, Trevelyan et al. (2007) employed further refinements to the modified IBL
approach. Some of these refinements included an energy equation based on a high-
order Galerkin projection in terms of polynomial test functions which satisfy all boundary
conditions and a numerical solution to the full energy equation; to name a few.
Trevelyan et al. (2007) also considered the case where the heat flux is prescribed at the
bottom instead of the temperature.

Work has also been done for this problem considering other temperature dependent
fluid properties, aside from surface tension. Goussis and Kelly (1985) examined the role
of temperature variation in the viscosity only. They performed a linear stability analysis
on the Navier-Stokes equations and found that heating a film whose viscosity decreases
with temperature has the effect of destabilizing the flow. Their work assumes a
prescribed constant temperature at the surface of the fluid (no temperature changes
between the surface and the environment). As a result, the Marangoni effect does not
play a role. In order to capture the Marangoni effect with the model, we must apply the
physically appropriate Newton’s Law of Cooling at the liquid-air interface. Hwang and
Weng (1988) considered the same problem as Goussis and Kelly (1985), and made the
same assumptions but set up a Benney equation and performed a linear and weakly-
nonlinear stability analysis on it.



This thesis will extend the basic non-isothermal problem with temperature dependent
surface tension, to also include temperature variation in mass density, dynamic
viscosity, thermal conductivity and specific heat.

In the non-isothermal case mass density, dynamic viscosity, thermal conductivity,
specific heat and surface tension are all affected by temperature. Our equations, based
on the conservation of mass, momentum and energy, will need to capture these effects.
This is unlike the previous cases cited above since we are examining the simultaneous
effects of five different temperature dependent fluid properties. We also implement the
physically realistic Newton’s Law of Cooling at the surface of the fluid film.

With this system, we will take two approximation approaches. One will be based on the
modified IBL approach, used by Ruyer-Quil and Manneville (2000) in the isothermal
problem and later extended by Trevelyan et al. (2007) for the basic non-isothermal
problem. The other will be based on the long wave expansions pioneered by Benney
(1966). We will also solve the full equations analytically, without the use of these
approximation techniques, for special cases. We will then compare these results with
each other and with numerical simulations to test the accuracy of our model.



CHAPTER 2 — Governing Equations

A. Conservation Equations for the General Case with Variable Fluid Properties

We model our fluid flow down a heated inclined plane based on the conservation of
mass, momentum and energy. Consider the diagram below:

Figure 1.1: The Flow Configuration

We assume that the inclined surface along which the fluid is flowing is even and
impermeable. We also assume that the flow is two-dimensional. So the flow is
dependent on x and z but not on y. In other words the flow moves in a downhill direction
and the height may change, but there is no change in breadth (across the flow). T,
refers to the temperature of the ambient medium and T, (>T,) refers to the temperature
of the ramp. The velocity components in the x and z directions are denoted by u and w
respectively.

Applying these assumptions yields the general two dimensional Navier-Stokes

equations (equations of motion), where DRt =0,+Uud, +Wo,:

%tu) =—p, +pgsinB+[uu, | +[uu, ] +uu, +u,w, x-Momentum Equation
%tW) =—p, —pgcosB +[uw, | +[uw,], +pu, +p,w,  z-Momentum Equation
Dp o .
D_t+p(ux +w,)=0 Continuity Equation
%(CppT) =[KT,], +[KT,], Temperature Equation



where p=pressure, p=mass density, y=dynamic viscosity, g=acceleration due to gravity,
cp=specific heat, T=Temperature, K=thermal conductivity. These equations are general
in the sense that they apply to fluid flows with variable fluid properties.

B. The Form of the Temperature Variation of the Fluid Properties

Since we are testing the effects of temperature dependent fluid properties, we allow the
properties of the fluid (mass density, dynamic viscosity, thermal conductivity, specific
heat capacity and o=surface tension) to vary with temperature as follows:

p=p,[1-a(T-T,)]
0=0,-Y(T-T,)
K=K, +A(T-T,)

H=Ho —NT-T,)
C, =C,, +é(T—Ta)

where &,y,/\,f\ and S are positive parameters measuring the rate of change with respect
to the temperature. Also note that the expression for u is a simplification of the

A
. , . —(T-T,)
commonly assumed Arrhenius-type exponential relation p=p,e * , used, for

example, to describe the viscosity of lava flows and ice sheets (Craster and Matar
(2009)). The linear formulation was initially employed and justified by Reisfeld and
Bankoff (1990).

C. The Boussinesq Approximation

Before we move on to the boundary conditions (conditions at the interfaces), we make a
simplification by applying the Boussinesq approximation. This approximation assumes
mass density to be constant (p=po) except where it appears in a gravitational term. Thus
our first four equations become:

[S—l: = P [1-a(T-T,)lgsinB +[vu,] +[vu,] +v,u, +v,w, x-Momentum Equation

Po
Dw -p ,
o Z _[1-a(T-T,)lgcosp+[vw, | +[vw,] +v,u, +v,w, z-Momentum Equation

Po
u +w,=0 Continuity Equation
%(cppoT) =[KT,], +[KT,], Temperature Equation
where v=H - Ho _ L(T —T,), is defined as the kinematic viscosity.
Po Po Po



D. Interface Conditions

At the bottom of the fluid flow, where z=0, there is no slip and no penetration (earlier we
had assumed that the surface along which the fluid is flowing is even and impermeable)
SO

At the free surface, where z=h(x,t), we assume that the ambient atmosphere does not
exert a force on the fluid film. Thus, the force balance vector is given as follows:

(-pl+T)n= —on-Lot
0s

where T is the 2x2 Identity matrix, n= (=h,,1) is the outward pointing unit normal

h2 +1

X

L (1,h,) is the unit tangent vector to the surface,i is the
yh?+1 0s

derivative with respect to arc length, aic = ?co@, with V =(0,,0,), K = curvature =
S

vector to the surface, t=

= h = 2u, U, +Ww,
—Ven=——"-—- and T=y

= TR is the deviatoric stress tensor.
[1+(h,)7]

u,+w, 2w

z

To obtain the normal component we use the dot product of the force balance vector

with n. This gives us the following equation:

=N PN O'hxx
ot

For the tangential component we use the dot product of the force balance vector with

f. This gives us the following equation:

T 2 .A___' .A:_Y(Tx+thz)
{(—pI+T)n} t=-Voet [1+(hx)2]1/2

We assume there are no evaporation effects, so the mass of fluid at the surface is
conserved (no fluid is gained or lost). This yields the following equation:
w =h, +uh, at z = h(x,t)

This is also known as the kinematic condition and can be written as DRt(z—h) =0.



E. Newton’s Law of Cooling

Since our fluid is heated we also need to consider Newton’s Law of Cooling. The heat
flux across the surface will be changing at a rate that is proportional to the difference
between the surface temperature and the ambient temperature. This gives us the
following energy condition at the surface (z=h(x,t)):

KVTen = -0 (T-T,), where a4 = heat transfer coefficient

This set of equations is a model for our system. However, before we begin using this
model, we will scale the variables to create non-dimensional equations.

F. Scaling

Finally, we will make our equations non-dimensional by scaling them. To do this we
consider the uniform and steady isothermal flow for the problem. Under these conditions
the x and t derivatives, as well as w are all zero. Our x-momentum equation then
reduces to:

p—ouzz +gsinB =0, along with the boundary conditions u=0 at z=0 and u,=0 at z=h(x,t),

Po
which arises from the tangential component of force at the surface.

Solving this problem yields the following equation:

u(z) = PS8 o, _ 12
24,

We then “depth average” u(z), and obtain our velocity scale U:

Uzlru@MZZEéETEM
h 3

Mo
Solving for h, we obtain the Nusselt thickness, H:
112
PogsinB
which will serve as our length scale.

We now scale our equations of motion, using the following transformation (where the *s
denote the non-dimensional quantities):

x=Hx*, z=Hz*, h=Hh*, u=Uu*, w=Uw*, t=(H/U)t*, p=p0U2p*, T-To=ATT*, where AT=T,-T,



As a result, the following non-dimensional numbers will be introduced:

S= g scaled specific heat gradient

CPo

A NAT

0

, scaled thermal conductivity gradient

a=aAT, scaled mass density gradient

A

A= LAT , scaled dynamic viscosity gradient

Mo
AT = g Tt , relative temperature difference
p,UH N ,
Re = , the Reynolds number (inertial forces/viscous forces)
Mo
We = (:JOZH , the Weber number (surface tension parameter)
Po
c
pr = 1% , the Prandtl number
0
YAT : , ,
Ma = ok the Marangoni number (scaled surface tension gradient)
Po

aH
Bi =KL, the Biot number (scaled heat transfer coefficient)
0



G. The Full Equations of Motion With Temperature Dependent Properties

The non-dimensional governing equations can be expressed as (dropping the *s for
notational convenience):

u+w, =0 (1)

Re(u, +uu, +wu,)=-Rep, +3(1-aT) +[(1- AT)u, ], +[(1-AT)u,], +(1-AT),u,

+(1-AT),w, @)

Re(w, +uw, + ww,)=-Rep, —3cotB(1-aT)+[(1-AT)w, ], +[(1-AT)w, ],
+(1=AT),u, +(1-AT),w,

D
PrRe- —[(1+S T+ST?]=[1+ATT.]. +[(1+ AT)T 4
10+ Sa7) I=[(+AT)T L +[(1+AT)T,, (4)
Boundary Conditions (at z=0)
u=w=0 (5)
Boundary Conditions (at z=h(x,t))
= Rie (::;i\]:z(r)[hiux +w, —h (u,+w,)]- (ngl:]ﬂia);l;z)mx (normal component of force)  (7)

(1-AT) _—MaRe(T, +h,T,)

—4hu, +(1-h?)(u, +w
[ XX ( x)( z x)] 1+hi (1+hi)1/2

(tangential component of force) (8)

(1+AT)(T, —hXTX):—BiT[1+h§]”2 (9)
w =h, +uh, (10)

These 10 equations provide a mathematical model of our problem based on the
conservation of mass, momentum and energy.

Although these equations are too complex to be solved analytically, in the next chapter
we consider two special cases where an analysis is possible. The first special case is
where we set A=0 and A=0, which corresponds to assuming no variation in the viscosity
and thermal conductivity. The second case is where we set Bi=0. This corresponds to
no heat transfer across the surface (in other words the surface is assumed to be
thermally insulated).

10



CHAPTER 3 — Linear Stability Analysis

We will employ a linear stability analysis of the full equations to investigate the instability
of the steady and uniform flow given by:

Ts=Ts(z), us=us(z), ws=0, ps=ps(z), hs=1,
where the functions T(z), us(z) and ps(z) are the solutions to the following problems:

Temperature From (4), (6), (9):

[(1+AT)T,.], =0 (1)
(1+AT,)T,, =-BIiT, (atz=1) (12)
T, =1 (at z=0) (13)
Velocity From (2), (5), (8):

[(1-AT,)u,,], +3(1-aT,)=0 (14)
ug, =0 (at z=1) (15)
u,=0 (at z=0) (16)
Pressure From (3), (7):

Rep., = —3cotB(1-aT,) (17)
p,=0 (atz=1) (18)

We introduce a small perturbation into our variables (denoted by ~). This will result in a
perturbed flow, as follows:

u=uy(z)+u(x,z,t)
w =W(X,z,t)
p=p,(2)+p(x,21)
T= Ts(z)+'T'(x,z,t)
h(x,t)=1+n(x,t)

We then substitute these equations into our governing equations ((1)-(10)) and linearize
with respect to the perturbations: G,VT/,E,'T',r]. Our linearized system is as follows:

Linearized Perturbation Equations:

U +W,=0 (19)

~

Re(T, +u.l, + Wu_,) = —Rep, —3aT + (1= AT,)U, +[(1-AT,)T,], — Au,,T], -AT_,W,  (20)

X

11



Re(W, +u,W, )=-Rep, + 3acotBT + (1- AT,)W,, +[(1-AT,)W,], —AT.u_, — AT, W, (21)

X7'sz Sz

PrRe - (1+ %T +2ST )T, +uT, + WT,,) = (1+ AT,)T,, +[(1+AT,)TL,, (22)
Conditions at the Interfaces (at z=0)

U=w=0 (23)
T=0 (24)
Conditions at the Interfaces (at z=1)

5=np., +Rie(1 AT, )W, — (We —MaT, )0, (25)
(1=AT,)(nu,,, +0, +W, ) = -MaRe(T, + T_n,) (26)
[(1+ AT,)T1, +n[(1+ AT,)T,, +BiT,], =-BiT (27)
VNV = r]t +usnx (28)

These 10 Equations ((19)-(28)) form our linearized perturbation equations. Just like the
nonlinear governing equations, they are too complex to be solved analytically. However,
as we had noted earlier, there are two special cases where these linearized equations
can be solved analytically. The first special case is where we allow no heat transfer
across the surface (the surface is assumed to be thermally insulated, Bi=0). The second
special case is where we allow temperature variation in only the specific heat, surface
tension and mass density (A=0 and A=0).

A. Full Equations, Special Case with Bi=0

This special case corresponds to no heat transfer across the free surface and amounts
to the free surface being perfectly insulated, resulting in a uniform temperature of the
equilibrium flow. However, small perturbations to this temperature can occur resulting in
perturbations in the temperature dependent fluid properties.

We start by finding explicit solutions for ug,p,, T, the base flow, by solving (11)-(18).

Temperature:

[(1+AT)T,,1, =0

(1+AT,)T,, =0 (at z=1)
T, =1 (at z=0)

Solving this problem gives us T,(z)=1.

12



Velocity (using Tg(z) = 1):

(1=Au,,, +3(1-a)=0
u, =0 (at z=1)
u,=0 (at z=0)

. : : 1-a, Z°
Solving this problem gives us us(z)=3ﬁ(z—7).
Pressure (using Tg(z) = 1):

Rep,, =-3cotB(1-a)

p,=0 (at z=1)

Solving this problem gives us ps(z):?’“_;ﬂm—z).
e

We then proceed to the next step of the linear analysis, which is to introduce normal
modes and substitute them into our linearized governing equations. Our perturbations
are transformed as follows:

Making this substitution, our perturbation equations now take the following form:

W, +ik(=0 (29)
Re[-ik(c —u, )i +uW]=—-ikRep —3aT —k2(+ k20 +(1-A)a,, —A[u,,T], (30)
ikRe(u, —c)W = -Rep, —(1- Nk2W + (1- AW, —ikAu_, T + 3acotBT (31)
—ikPrRe(c —us)(1+%+28)f =—k2(A+NT+(1+N)T,, (32)

r

Conditions at the Bottom (at z=0)
U=w=0 (33)
T=0 (34)

Conditions at the Surface (at z=1)

p=3U0=9COB o 2 1 M, + K (We —Ma)f (35)
Re Re

(1- A)(—31_—§\xﬁ 10, +ikw) = -MaReikT (36)

(1+A\)T, =0 (37)
A 3.1-a).

—ik| —c+(2)- 2 38

=i e+ ()2 (38)
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This system constitutes an eigenvalue problem, with ¢ being the parameter to which
characteristic values must be assigned to obtain a non-trivial solution (i.e. the
eigenvalue). Since we are dealing with long waves, we assume that the variables can
be expanded using the wavenumber k, which is very small (since the waves are very
long). Thus, the problem can be solved asymptotically as k—0. Our long-wave
expansions are as follows:

c =c, +kc, +k’c, +O(k®)

U(z) = u,(z) +ku,(z) + k?u,(z) + O(k®)
W(z) = Wy () +kw,(2) +k*w,(z) + O(k®)
B(z) = Po(2) +kp;(2) +k?p,(2) + O(K?)
T(z) = T,(2) +KT,(z) +k?T,(z) + O(k®)

A =g +kn, +k’n, + O(k?)

We normalize the eigenvalue problem by taking n, =1,n,=n, =0. We assume that all

parameters are of O(1), except for the Weber number, which is large for most fluids. We
let W =k*We =0(1).

Now we proceed to solve for each of the terms in the long-wave expansions:

The Order 1 Problem:

Temperature:

To,, = 0

T,,=0 (at z=1)
T,=0 (at z=0)

Solving this problem gives us T,(z)=0.

Continuity:
WOZ = 0

w, =0 (at z=0)
Solving this problem gives us w,(z)=0.

Velocity:
(1=A)u,,, =0
1-a
Uy, =3—— at z=1
0z 1_)\ ( )
u, =0 (at z=0)
Solving this problem gives us u,(z) = 31_—;12.
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Pressure:
Rep,, =0

(- 3cotB(1-0) |\ (at z=1)
Re

Solving this problem gives us p,(z) = MJF

Re

W.

The Order k Problem:

Continuity:
W1z = _iUO

w,=0 (at z=0)

Solving this problem gives us w,(z) = —%i1—z )

Kinematic Condition:

. 31-a
w, =i(-Cc, +=———) (at z=1
1=i-eo+ 22— (atz=1)

Solving this equation gives us ¢, = 31_—(;\( (we will need ¢y in a later calculation).

Temperature:

T1zz =0

T,=0 (atz=1)
T,=0 (at z=0)

Solving this problem gives us T,(z)=0.

x-Momentum (Velocity):

(1-A)u,,, =iRep, —iRe(c, —u,)u, + Reu,, w,

u, =0 (at z=1)
u =0 (at z=0)
Solving this problem gives us

Uy(z) = e (3(1_G)COtB+WJ(22—2z)+iRe9(1_a)j(_Zs+i+zj.
20-M\ Re AN 6 2473

The Order k? Problem:

Continuity:
wW,, = —iu,

w, =0 (at z=0)

15



Solving this problem gives us:

W, (2) = Re (3(1_0)001:6+WJ(£—ZZ)+9RG(1_G)2 _Z4+ Z° +£
2 2(1-A) Re 3 (1-A°\ 24 120 6 )

Kinematic Condition:
W, = -ic, (atz=1)

This gives the expression for ¢4 as ¢4 = iwy(1).

Now that we have all the terms needed for the long-wave expansions, we go back to the
normal modes and continue our analysis. Since c is a complex number, we separate it
into its real and imaginary components:

c =R(c)+ 3(c)i

Now, the exponential factor can be written as:
eik(x—ct) _ eikxeﬁ(c)kte—ik‘ﬁ(c)t _ eS(c)kteik(x—*R(c)t)’

where the first factor is the amplitude and the second factor is the shifted sinusoidal.

So we have R(c)=phase speed and J(c)k =temporal growth rate. If 3(c)<0 the
perturbation is dampened and if 3(c)>0 the perturbation grows in time and the flow is
unstable. Setting 3(c)=0 gives us a relationship between the perturbation wavenumber

k and the flow parameters referred to as the neutral stability curve. Since ¢y is real, the
neutral stability curve is given by 3(c,) =0 which yields:

0= -Re (3(1—a)cotB+Wek2j+§Re(1—a)z (39)
3(1-A) Re 5 (1-MN)

The minimum value of Re on this curve is the critical value, Recgt, for the onset of
instability for the flow. More specifically, for smaller values of Re all perturbations are
dampened and the flow is stable. For larger values of Re some perturbations are
amplified and the flow is unstable. An illustration of the neutral stability curve in the Re-k
plane is given in Figure 3.1.
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Plot of Neutral Stability Curve (Bi=0)
cotp=1, We=10, a=A=0.5
07 T T T

06 [ (Re1,kMAX) N

Stable P
0.5 - |

04 ’ b

Unstable

0 0.5 1 1.5 2 25 3
Reynolds Number

Figure 3.1

It is evident from this example, as well as from the formula in general, that Recrit
corresponds to k=0. Furthermore, for a supercritical Re value, Re1, perturbations with
k<kmax grow in time, while those with k>kmax are dampened, where point (Re+,knax) lies
on the neutral stability curve.

Letting k=0 in equation (39) we obtain the expression for Recgrt in terms of the other
flow parameters.

(1-A)°

5
Recrr = 5 cot B(ﬁ}

Thus we have completed our analysis of the special case where Bi=0, i.e. when the
surface is insulated. If we set all the temperature variations to zero the result for Recgrit
reduces to (5/6)cotf, which is the well known result for isothermal flow (Benjamin
(1957), Yih (1963)).

It is also interesting to note that the Marangoni number, S (the scaled gradient of

specific heat capacity), and A (the scaled gradient of thermal conductivity) play no role
in determining criticality. The independence of the Marangoni number is due to the fact
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the surface is perfectly insulated; thus stays at a constant temperature, neutralizing the
Marangoni effect.

We point out that since the density and viscosity are decreasing functions of
temperature, in order to maintain positive values for the prescribed temperature range,
the values of the scaled gradients a and A must be restricted to the interval [0,1). For
these values the formula for Recgt indicates that increasing a stabilizes the flow
(increases Recgit) While increasing A destabilizes the flow (decreases Recrir). This is
consistent with the expectation that a decrease in density stabilizes the flow due to
reduced inertia, while a decrease in viscosity is a stabilizing factor.

It's also interesting to note that if a and A are related such that (1-A)>=1-a or
a=1-(1-A)’>=2A-A? then the effect of temperature variation effects cancel and the
threshold for instability is the same as that for isothermal flow.

We now move on to our other special case where we allow temperature variation in only
the specific heat, surface tension and mass density (A=0 and A=0).

B. Full Equations, Special Case with A=0 and A=0

We now begin our analysis of another special case, which can be solved analytically,
the case where both A=0 and A=0. Going back to our steady state problems ((11)-(18)),
we find explicit solutions for u,,p,, T, .

Temperature:

TSZZ = 0

T, = -BIiT (atz=1)

T, =1 (at z=0)

Solving this problem gives us T (z)=1- 1 8:3. z.
+Bi

Velocity:

ug,, +3(1-aT,)=0

u;, =0 (at z=1)

u,=0 (at z=0)

: : . -12(3z+ 3Biz+ 0z°Bi- 30z - 30zBi- 6 - 6Bi+ 3aBi+ 60)
Solving this problem gives us u,(z) = > Y .
+Bi

Pressure:
Rep,, = -3cotp(1-aT;)
p, =0 (at z=1)
_ —3 cotp(z-1)(azBi+ 2 +2Bi - 2a - aBi)

Solving this problem gives us Z)= .
JHIS P J P.(2)=— Re(1+ Bi)
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As in the previous special case, we introduce the same normal modes and our
perturbation equations now take the following form:

W, +ik( =0 (40)
Re[-ik(c —u,)i+u,W]|=-ikRep—3aT —k2(i+0,, (41)
ikRe(u, —c)W = —Rep, —k*W + W, + 3acotpT (42)
PrRe(-ik(c —u )T + T,W)(1+ % +2ST,)=—k*T+T, (43)
Boundary Conditions (at z=0)

G=w=0 (44)
T=0 (45)

Boundary Conditions (at z=1)
3cotB(1+Bi—a). 2

s +=W. +k%(We =MaT.)n 46

P =" Re(1+B) 1 TRe": Tl ) *

Mmaz +ikw = -MaReik(T + T_A) 47

1+ Bi

N -~ Bi? .

T =BiT+ “
z 1+ Bi i .

W = —ik(c —u (49)

We then introduce the same long wave expansions as in the previous case and proceed
to solve for each of the sub-variables in the long-wave expansions:

The Order 1 Problem:

Temperature:
TOzz = 0
Bi

T, =-BiT, + —— at z=1

0z 0 1+B| ( )
T,=0 (at z=0)
Solving this problem gives us T,(z) —B—izz

0 (1+Bi)?

Continuity:
Wy, =0
w, =0 (at z=0)

Solving this problem gives us w,(z)=0.
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Velocity:

Uy, = 30T,
3(1-a+Bi)

U, =— = =7 at z=1

0 1+Bi ( )
u,=0 (at z=0)

.2 2 . .2 _ _ . _ .2
Solving this problem gives us u,(z) =1Z(O(BI Z +6+128i +6B_' > 6a-6aBi- 3aBi ).
2 (1+Bi)
Pressure:
Rep,, = 3acotBT,
=3COtB(1_a+B')+ (at z=1)

0 Re(1+ Bi)
Solving this problem gives us

3cotBaBi’z? + 6¢otP + 12cotPBi+ 6¢cotpBi® - 6eotfa — 6 cot BaBi+ 2W Re+ 4W ReBi

L 2W ReBi? - 3cotBoBi?

|

Po(2) = 2Re(1+Bi)?

The Order k Problem:

Continuity:
W, = —iU,

w,=0 (at z=0)

Solving this problem gives us w,(z) =

—1i Z%(aBi’z* -12a+12+ 24Bi+12BF - 120Bi- 6aBi’)

(1+Bi)?

Kinematic Condition:
W, =i(—C, +Uy) (atz=1)

—1(9aBi® + 24a - 24 - 48Bi - 24Bi’* + 28aBi)

Solving this equation gives us ¢, = — we will
J g d ° 8 (1+Bi)? (

need cy in a later calculation).

Temperature:

T, =PrRe(-i(c, —u )Ty + T, w, )(1+ % +2ST,)

T, = -BIiT, (atz=1)

T,=0 (at z=0)

Solving this problem gives us T¢(z). However, the expression for T4 was very long and
complicated and there is no point in presenting it.
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x-Momentum (Velocity):

u,, =iRep, —iRe(c, —ug)u, +Reu,,w, +3aT,

u,, =-iMaRe(T, +T,) (atz=1)

u =0 (at z=0)

Solving this problem gives us u4(z). However, the expression for u; was very long and
complicated and there is no point in presenting it.

The Order k? Problem:

Continuity:

W,, =-—iu,

w, =0 (at z=0)

Solving this problem gives us wy(z). However, the expression for w, was very long and
complicated and there is no point in presenting it.

Kinematic Condition:
W, = —ic, (at z=1)

As in the previous case, we separate c into its real and imaginary components and set
the imaginary component to zero, resulting in the neutral stability curve:

0=

725760RAT Bi* —40320AT cot + 967680 RAT Bi® + 725760 RAT Bi* + 40320AT, cotBa
—~13440AT Wek’R +20160MaReBIiAT. — 806400AT cotBBi’ — 604800AT cotpBi’
—241920AT cotBBi® — 40320AT, cotBBi® — 241920AT cotBBi— 604800AT cotBBi?

+37800” PrReBi*AT. +3780a” PrReBi*S + 1740a” PrReBi*SAT. +3738a” PrReBi°SAT,
+3075a” PrReBi°S + 91950° PrReBi*SAT, +7548aPrReBi’SAT, —18648a” PrReBi’SAT.
—22320a” PrReBiSAT, —18045a” PrReBi’AT, —18045a* PrReBi’S —13440AT Wek *ReBi°
+447552AT cotBaBi® + 268128AT cotBaBi* + 84672AT cotBaBi® — 268800AT Wek *ReBi’
—201600AT Wek ’ReBi* —80640AT Wek °ReBi® + 11088AT cotBaBi® + 414288AT cotBaBi
+201600AT cotBaBi— 80640AT Wek’ReBi—201600AT Wek ’ReBi* —1575aPrReBi° AT,
+111600PrReBiS + 48384Re AT.a” + 48384 Re AT Bi°® + 290304Re AT Bi® — 96768 Re AT a
+290304Re AT Bi+48384Re AT. —485712Re AT.aBi+80640MaReBi*AT,
+80640MaReBi‘AT, +120960MaReBi’AT, +20160MaReBi°’AT, +53313Re AT a’Bi°
—250092Re AT, 0B’ —37863Re AT aBi® + 7285Re AT o’Bi® +195408Re AT o’Bi
+313621Re AT o’Bi® —~ 718506 Re AT aBi* — 1130364 Re AT aBi® + 333783Re AT a’Bi®
+172890Re AT.a’Bi* —1013031Re AT.aBi* + 11160aPrReBIAT. —5715a* PrReBi*AT.
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—57150° PrReBi’S + 465a° PrReBi° AT, —1596aPrReBi°*SAT, —1575aPrReBi°S
+4860° PrReBi’SAT, +465a” PrReBi°S + 22320aPrReBiSAT, + 30750 PrReBi°AT,
+40968aPrReBi’SAT. —10620aPrReBi°SAT, — 20124aPrReBi*SAT. —9000aPrReBi’S
—9000aPrReBi°AT, +29205aPrReBi*AT, +19080aPrReBi’AT, +29205aPrReBi*S
+19080aPrReBi’S —11160a” PrReBIiAT, —11160a” PrReBiS — 6390aPrReBi*AT.
—6390aPrReBi*S

To determine the Critical Reynolds Number at the onset of instability, we once again set
k, the wavenumber to zero (k=0).

ReCRIT =
— (1008cot AT, (1+ Biy* (~40B7? +110BP + 400Bi — 80Bi + 400 — 40))

—96768AT.a +48384AT a” —10620aPrBi°SAT, +3780a° PrBi*AT, +1740a° PrBi*SAT,
—63900PrBi*S — 37863AT,aBi® — 250092AT aBi° +53313AT.a’Bi° + 7285AT, o’Bi°
—485712AT aBi+20160MaBIAT. — 101303 AT aBi® +195408AT, o’Bi+ 31362 1AT,o”Bi°
—718506AT.0Bi* —1130364AT aBi® +172890AT o’Bi* +333783AT,a’Bi” —9000aPrBi°’S
+30750° PrBi°AT. +22320aPrBiSAT, +3780a’® PrBi‘S + 486a” PrBi°SAT. —1575aPrBi°S
+4650° PrBi* AT, —186480° PrBi’SAT, + 967680AT Bi* + 725760AT Bi* +290304AT Bi
+120960MaBP’AT, +80640MaBf{* AT, +80640MaBFAT, +20160MaBP AT, —5715a* PrBi*AT,
~57150% PrBi®S — 63900 PrBi* AT, +19080aPrBi*AT, +292050PrBi*AT, + 409680 PrBi°SAT,
—22320a® PrBiSAT, +111600PrBiS + 48384AT. +725760AT Bi* +7548aPrBi*SAT,
+111600PrBIAT, —9000aPrBi’AT, —1596aPrBi°*SAT, +190800PrBi*S —1575aPrBi*AT,
+30750° PrBi°S + 4650° PrBi°S + 48384AT Bi® + 290304AT Bi® + 3738a” PrBi°SAT,
+91950° PrBi*SAT, +292050PrBi*S — 111600 PrBiAT, —11160a° PrBiS —18045a” PrBi°AT,
—180450° PrBi’S — 20124aPrBi*SAT,

Thus we have completed our analysis of the special case where both A=0 and A=0. If
we set all the temperature variations, with the exception of the surface tension, to zero,

10(1+ Bi)* cot B
5MaBi + 12(1+ Bi)? ’

non-isothermal problem obtained by D’Alessio et al. (2010) and coincides with that
obtained by Trevelyan et al. (2007) if the difference in scaling is taken into account.

the result for Recrit reduces to which is the RecgrT for the basic

It is also interesting to note that S, the scaled gradient of specific heat capacity appears
to be coupled with a, the scaled gradient of mass density. In other words, whenever
there is an S in the critical Reynolds number formula, it is always multiplied by an a.
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However, there are less occurrences of S than there are of a. So it seems that in the
absence of viscosity and conductivity variation, when we are only left with S and a, a
seems to play the dominant role. So the mass density seems to play a larger role than
the specific heat capacity of the fluid when it comes to determining criticality, in the
absence of the other two temperature variations.

C. Another Approach

While it is beneficial that we were able to solve the full equations of our system for the
two special cases we discussed above, we would prefer to have solutions that work for
more general cases. As was discussed earlier, this is not possible due to the
complicated nature of the system of equations. However, we now consider an approach
pioneered by Benney (1966).

This approach again exploits the fact that the inclined flow is subject to long-wave
instability. However, the idea is to apply long-wave expansions directly to the nonlinear
equations of motion. To facilitate this, in scaling the equations we assume the lateral
length scale to be much larger than the vertical one. This gives rise to a small aspect
ratio that provides a small parameter necessary for a perturbation expansion. Benney
applied such an expansion and derived a single nonlinear evolution equation for the
position of the free surface.

We begin our analysis with the equations derived in Chapter 2. However, we employ
one key difference; we will use one scale for length and another for depth (two scales).

C1. Long Wave Expansions

Continuing from Chapter 2, Part F, we will make our equations non-dimensional by
scaling them. We will be using two different scales for the horizontal and vertical
lengths, z and x. We will scale x by L, which is assumed to be much larger than H (the
scale for z). This introduces a new small parameter in the equations, 8, which is the
ratio of the two scales (6 = H/L).

Scaling all the other variables as before and including the new small parameter o, and
discarding terms of O(3%) and higher (and dropping the *s) we end up with the following
equations:

u, +w, =0 (50)

Red(u, +uu, +wu, )= —Redp_ +3(1—aT)+[(1-AT)u,1, (51)

0=—Rep, ~3cotB(1—aT)+3[(1- AT)W, ], +5(1—AT), u, +5(1-AT),w, (52)
D 2

OPrRe- D_t[(1 + %Tr )T +ST ] =[(1+AT)T,], (53)
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Conditions at the Bottom (at z=0)

u=w=0 (54)
T=1 (59)
Conditions at the Surface (at z=h(x,t))

p +§(1 —AT)u, +5°Weh, =0 (56)

e

(1=AT)u, +MaRed(T, +h,T,)=0 (57)
(1+AT)T, =-BiT (58)
w =h, +uh, (59)

It should be noted that although we are discarding &*terms, in equation (56), we kept
the 8* We term. This is because We is so large that despite 52 being so small, the term
still makes an impact in the equations. We will introduce a new parameter W = 32 We, to
aid in the computations of the various sub-order problems.

C2. Benney Equation for the special case (A=0 and A=0)

The Benney approach involves finding an asymptotic solution to the equations (50)-(59)
and substituting these results into the kinematic condition (59). This becomes the
Benney equation.

Ouir first step is to derive the Benney equation. Although this system of equations ((50)-
(59)) is simpler than our full equations from Chapter 2, it is still too complex to be solved
exactly. So we first consider a simpler case, where A=A=0.

We now introduce the long-wave expansions:
u(x,z,t) = uy(x,z,t) + du,(x,z,t) + O(d?)
wW(X,2,t) = W,(X,z,t) + dw,(X,2,1) + O(d?)

P(X,Z,t) = py(X,z,t) + 8p,(X,2,t) + O(d?)
T(x,z,t) = T,(x,2,t)+ 8T,(x,z,t) + O(%)

We then substitute these expansions into the 10 governing equations above ((50)-(59))
and solve the various order problems.

The Order 1 Problem:

Temperature:

TOzz = 0

To, = -BiT, (at z=h(x,t))

T, =1 (at z=0)

Solving this problem gives us T,(x,z,t)=1- BI_ Z.
1+Bih
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Pressure (z-Momentum):

Rep,, = _SCOth_GTO)

Po = -Wh XX
Solving this problem gives us

(at z=h(x,t))

Po(X,Z )=

2Re(1+Bih){ 2W Reh, Bih - 6 cotph — 6 cot Bh’Bi + 3 cotBh*aBi+ 6 cotBha

Velocity (x-Momentum):

Ug,, +3(1-aT;)=0

Uy, =0 (at z=h(x,t))

u, =0 (at z=0)

Solving this problem gives us

-12(3z+3Bihz + az’Bi- 3az - 3azBih - 6h - 6Bih? + 3aBih? + 6ah)

u,(x,zt)=

o(x2.1) 1+Bih
Continuity (w):

WOz = _UOX

w, =0 (at z=0)

Solving this problem gives us
_1 z°h, (12aBih + 6aBi*h? + 12a - 12 — 24Bih - 12Bi*h? - az’Bi®)

W, (X,z,t) =
o(x2,8) (1+Bih)?
The Order & Problem:
Temperature:
T1zz =PrRe([(1+ %T )To + SToz]t +Uo[(1+ %T )Ty + SToz]x + W, [(1+ %T )T + SToz]z)
T,, = -BiT, (at z=h(x,t))
T,=0 (at z=0)

Solving this problem gives us T(x,z,t). However, the expression for T1 was very long
and complicated and there is no point in presenting it.

Velocity (x-Momentum):

u,,, = Re(ug, +Uguy, +WoU,, +Po, )+ 30T,

u,, =-MaRe(T,, +Ty,h,) (at z=h(x,t))

u, =0 (at z=0)

Solving this problem gives us u4(x,z,t). However, the expression for u; was very long
and complicated and there is no point in presenting it.
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Continuity (w):
W, = Uy,
w,=0 (at z=0)

Solving this problem gives us wy(x,z,t). However, the expression for wy was very long
and complicated and there is no point in presenting it.

Now that we have solutions for the required sub-variables, we can acquire the Benney
equation. This is done by introducing the velocity expansions into the kinematic
condition (59). This becomes:

h, +ush, —w, +8(uh, —w,)=0
This equation describes our fluid flow down the heated ramp. But we want to test for
criticality, i.e. under what conditions does the flow become unstable. So we move to a

linear analysis to find the critical Reynolds number.

Linear Analysis:

We now introduce the perturbed solution h(x,t) =1+ §(x,t) into the equation (where
h =1 is the base solution to the Benney equation) and linearize in terms of . We then

introduce normal modes (we allow &(x,t) = é -e?"") This leads to a characteristic

equation, which was solved for o. Setting the real part of o (the growth rate) to zero
gives the neutral stability curve. Both this formula, and consequently that for RecgiT, are
identical to the ones obtained from the analysis of the full equations. This exact
agreement serves to verify the validity of the linear stability analysis of the Benney
equation.

C3. Benney Equations (Expansions with respect to Temperature Variations):

One of the disappointments with the previous approach was that we had to let A=A=0 in
order to make any analytic progress with our scaled equations. Removing 2 of 4 of our
new temperature variations almost defeats the purpose of including temperature
variations into our system. We now explore an alternative approach that would allow us
to retain all the temperature dependent properties and still make analytic progress by
means of making additional approximations.

We start just as we did in the previous section. We employ the same two-scale
equations ((50)-(59)) and employ the same long wave expansions. However, this time
we will solve the resulting hierarchy of problems by implementing additional asymptotic
expansions with respect to the temperature variation parameters a, A, A and S up to and
including quadratic terms. In other words we assume cubic terms to be 0(62) and hence
the temperature variations to be O(3%?).
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The Order 1 Problem as 6—0 :

Temperature:

[(1+ATy)Ty,1, =0

(1+ATy)T,, =-BiT, (at z=h(x,t))
T, =1 (at z=0)

We will solve this problem using a perturbation expansion in A as A—0, and thus let
T, = Ty + ATy, + ATy, + O(N%).

Now, because of how our system (50-59) is set up, we recognize that T appears only in
the ug problem as AT and aTy. It is also used in the calculation of pg, but pg is used to
determine u4, which appears in the O(d) term. Thus we only need to expand Ty as
To=Too+ATo1.

So our original problem for Ty above, with the perturbation expansion takes the
following form:

Temperature:

[(1+ ATgo )(Too, +ATgy, )], =0

(1+ AT )Ty, + ATy, ) = Bi(Tyo + ATy,) (at z=h(x,t))
Ty =1 (at z=0)

Ty =0 (at z=0)

Just as we broke up equations of motion into sub-problems for the various powers of 9,
we do the same now for this sub-problem in powers of A.

The Order 1 Temperature Problem as A—0:

Tooz = 0
Too, = BiTy (at z=h(x,1))
Ty =1 (at z=0)
Solving this problem gives us Ty, (x,z,t)=1- _BI z.
Bih +1

The Order A Temperature Problem:
[TOOTOOZ + T01z]z =0
Too Too, + Tor, =—BiTy, (at z=h(x,1))
T,,=0 (at z=0)

: : : ~1 Biz \’ (-2Bi*h — Bi’h?)z 1
Solving this problem gives us T,,(x,zt)=—|1- —.

9 P J mxzt) 2( Bih+1] 2 6Bih+6BPh? + 2BPh° | 2
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Putting these two together, our solution for Ty is:

2

[ i 2 i2 312
To(xzt)=1- D +/\{‘1(1 Biz ) . (=2Bi'h-Bi’h")z 1

p— +_
Bih +1 Bih +1 2+ 6Bih + 6Bi*h* + 2Bi*h® 2

Notice that if we allow A=0, we get the same T, as was previously calculated (and also
notice how much more complicated Ty becomes by adding A; and this is only an
asymptotic solution, not an exact one). Now that we have solved for Ty, we go back to
the original & expansion and solve for uj.

Velocity (x-Momentum):

Uy,, — N[ Tou,, ], +3(1-0aT,)=0

U,, =0 (at z=h(x,t))
u, =0 (at z=0)

We will solve this problem using a perturbation expansion with respect to a, A and A.
2 2 2
We let u, =ugy, +auy, +Aug, +Aug, + aAuy, + aAuy + AMugg + XUy, +a°uy, +Au,, and

use Ty (calculated earlier). This will give us 9 ODE problems to solve; the O(1), a, A, A,
al, a\, M\, a?, A2 and A? problems.

The Order 1 Velocity Problem as a, A, A—0:

Ugg,, = —3
Ugy, =0 (at z=h(x,t))
u, =0 (at z=0)

3
Solving this problem gives us Uy (X,z,t) = 3hz _EZZ

The a problem for velocity:

Ug1,, = 3T
Uy, =0 (at z=h(x,1))
Uy, =0 (at z=0)

. 2 . . 2
Solving this problem gives us ug,(x,z,t)= 31 2(Biz” - 3z - 3zBih + 3Bih” + 6h)

(1+Bih)
The A problem for velocity:
Ugz,, — [Tooloo. I, = 0
Uy, =0 (at z=h(x,t))
Uy, =0 (at z=0)
. 2 . . 2
Solving this problem gives us u,,(x,z,t) = 12(2Biz" -3z~ 6ZB|,h +6Bih” +6h)
2 (1+Bih)
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The A problem for velocity:

Ugs,, =0
Ug, =0 (at z=h(x,t))
Uy =0 (at z=0)

Solving this problem gives us ug(x,zt)=0

The oA problem for velocity:

Ugs,, — [T00u01z]z =0

Ug,, =0 (at z=h(x,t))

Uy, =0 (at z=0)

Solving this problem gives us

ﬁz(-BFz3 +4BiZ* + 4Bi*z°h - 4z - 12zBih- 6zBfh? +12Bil* + 4Bi’h® + 8h)

u,(xzt)=
w(x2) (1+Bihy
The a/\ problem for velocity:
Ugs,, = 3To
Ugs, =0 (at z=h(x,t))
Uy =0 (at z=0)

Solving this problem gives us
-1 Biz(2Bfh* - 2Biz*h? + Bi*z°h + 8Bih® - 4Biz*h +Biz® + 12h* - 4z2°)

u.-(Xx,z,t) =
(X2 1) 1+ 3Bih+ 3Bh? + h°Bi®
The A\ problem for velocity:
Uos,, — [T01u00z]z =0
Ugs, =0 (at z=h(x,t))
Uy =0 (at z=0)

Solving this problem gives us
1 Biz?(6Bi*h® - 8Bi*zh’ + 3Bi*z°*h + 12Bih* - 12Bizh + 3Biz* - 8z + 12h)
Uy (X,Z,t) = — . 52 353

8 1+ 3Bih + 3Bi“h” + h°Bi

The A? problem for velocity:

Uo7,, —[Toolo,l, =0

Ug,, =0 (at z=h(x,t))
Uy, =0 (at z=0)
Solving this problem gives us

1 2(-3Bi2z° + 8Biz? +12Bi?z?h - 67 - 24zBih - 18zBih? +12h + 24Bih? + 12Bi?h®)
Uor (%, 2,1) = (1+Bih)?
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The a? problem for velocity:

Ups,, =0
Ugs, =0 (at z=h(x,1))
Uy =0 (at z=0)

Solving this problem gives us u(x,zt)=0

The A? problem for velocity:

Ugg,, =0
Ugg, =0 (at z=h(x,t))
Uy =0 (at z=0)

Solving this problem gives us uy(x,z,t)=0

Piecing together the solutions from these 9 sets of ODE problems, we arrive at our
solution for ug(x,z,t)

2 2 2
(u0 = Uy, + Uy, + AUy, + AUy + AUy, + aAUGs + AU + AUy, + A Uy + A uog).

Pressure (z-Momentum):
Rep,, = -3cotp(1-aT,)

P =-Wh

(at z=h(x,1))

XX

We will solve this problem using a perturbation expansion with respect to a, A and A.
However, since pg is only involved in the O(d) problem, we only need to consider a
linear expansion for pg.

We let p, =Py, + APy + APy, + APy; @nd use Ty (calculated earlier). This will give us 4
ODE problems to solve; the O(1), a, A and A problems.

The Order 1 Pressure Problem as a, A, A—0:
Rep,y,, = —-3cotp

pOO = _Wh XX (at Z=h(X,t))

3COtB(h—z)—WhXX

Solving this problem gives us py(X,z,t) = Re

The a problem for pressure:
Rep,,, =3cotBT,

Py; =0 (at z=h(x,t))

— 3cotB(Biz 2 - 2z - 2zBih +Bih? + 2h)
2Re(1 + Bih)

Solving this problem gives us p,,(X,z,t) =
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The A problem for pressure:
Re pOZz = O

P, =0 (at z=h(x,t))
Solving this problem gives us py,(x,z,t)=0

The A problem for pressure:
Rep,s, =0

Pos =0 (at z=h(x,t))
Solving this problem gives us pys(x,zt)=0

Piecing together the solutions from these 4 sets of ODE problems, we arrive at our

solution for po.

pO(X’ Z,t) = W — thx +q
Re

— 3cotf(Biz? - 2z - 2zBih+Bih? + 2h)
2Re(1+Bih)

Continuity (w):
WOz = _UOX
w, =0 (at z=0)

Having already obtained ug, we merely take its derivative with respect to x and integrate
with respect to z to calculate wy(x,z,t).

W, = joz—umxdz for i=0..9

Piecing together the expansion for wy(x,z,t)
W, = Wog +OWo, + AWg, + AW + OAW, + AW g + MW, + RWo; + 02Wog + AW, ), We get

3, ., 1z*h (12Bih+6Bi*h* +12-Bi’*z?) -1z%h, (-2Biz+ 6 +12Bih+6Bi’h* - Bi*z*)
wo(x,z,t):—Ehxz +0a — +N —

8 (1+Bih)? 4 (1+Bih)?
ol z°h (-15BPz? -15Bi*z*h - 20Biz+ 90Bi’h? + 30h°Bi® + 60+ 120Bih+6Bi’z*)
40 (1+Bih)®
Bizh 10Bh* +52?Bi’h? - 4Bi*z°h + 40Bh® +102?Bi*h - 4Bi?z® + 60Bih?
1 | +202°Bi+120h
+oN o ; ; 212 13Rpi3
80 (1+Bih)(1+3Bih+3Bi*h? +h°Bi®)
o] Biz3hx(1OBi3zh2 -6Bi®z%h +10Bi?h? +10zBPh - 6Bi*z> +15Biz+ 20)
40 (1+Bih)(1+3Bih+3Bi*h? +h°Bi®)
e[ zzhx(-SBizzz -15Bi*z%h - 20zB#Ph - 20Biz+90Bih+90Bih? +30h°Bi°® +30+68i323)
20 (1+Bih)®
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Thus we have solved all of the variables for the order 1 problem (To, Uo, po, Wo).
However, before we can proceed to the order & problem we recognize that we will need
some time derivatives. To get these time derivatives we will use the kinematic condition
and the chain rule.

The Order 1 Kinematic Condition as 6—0:
h, =w, —ugh (at z=h(x,1))

Since the dependence of ug on t is only through h, we can use the chain rule to
calculate ugt: uy, = hu,, (and h; we get from the kinematic condition above).
We thus obtain uy, =[wy, +awy, +Awg, —h Uy, —h ug,a—h ug,AlL L * (Ugg, + AUy, + Alg,, )

Since ugt only appears in the O(d) problem, we only need linear terms; and since ug3=0,
no A\ terms are present in this expansion. This perturbation expansion will give us 3
terms; the O(1), a and A terms.

The Order 1 Time Derivative as a, A—0:
Ugor = [Woo —h,Ugo ], Ugon

Substituting into this equation gives us u,, = -9zh h?

The a terms in the time derivative:
Ugy =[Woo =N Ugol,onUgsn +[Woq —h U], Ugon

3zh,h?(52Bih + 21Bi*h® + 48 — 4Bi*z?)

Substituting into this equation gives us ug,, = 8(11Bih)’
+Bi

The A terms in the time derivative:
Ugar = [Woo =D, Ugo ], Ugan +[Woy =D, Uy ], Ugon

—3zh, h*(44Bih+ 2'Bi’h* + 24 - 6Biz - 4Bi*z%)

Substituting into this equation gives us u,, = 4(11 Bih)?
+Bi

Piecing together the solutions from these 3 terms, we arrive at our solution for ug
(Ugq = Uggy + AUgy + AUgy, + Algg, ).

2 i 12122  ARi252
Uy, = ~9zh h? +O((3zhxh (52Bih + 21Bi“h° + 48 — 4Bi“z ))4_

8(1+ Bih)?
\[ 32h,h*(44Bih + 21Bi*h’ + 24 — 6Biz - 4Bi’2°)
4(1+Bih)?
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The Order & Problem:

Temperature:
[(1+AT,)T,]1,, =RePr b [(1 + ijTo +8T?]
Dt AT,
T, +\(T,T,), =-BIiT, (at z=h(x,t))
T,=0 (at z=0)

We will solve this problem using a perturbation expansion in A. However, we recognize
that T1 appears only in the u; problem as AT4 and aT¢ and u4 is multiplied by &. In other
words, since we are only keeping terms up to 5% and the temperature variation
parameters are O(5%%) we only need to expand T1 as T1=T1o.

So the T4 problem becomes:

Tio2. = RePr(Tyg, +Ugo Tooy +WooToo,)

Ty, =-BiTy (at z=h(x,t))

T,=0 (at z=0)

_ —3Bi’zh,h?

~ (1+BihY

Solving this problem gives us

T(xzt)=T,,(x,zt)=

(8h°Bi? - 202°Bi*h® +152°Bi*h? - 32'Bi*h +10h*Bi- 202°Bih’ + 202°Bih- 3Biz' +52° -20h°)
40(1+ 3Bih+3Bi’h* +Bi’h®)

where, TOOt = Toon - Ny

PrReBizh,

It turns out that under our assumption that the temperature variations of the fluid
properties are O(5%?), S, as well as the parameter AT, do not figure in this problem and
will not play a role in our analysis. Their effect will only appear in the O(3?) terms.

Velocity (x-Momentum):

U,,, —[ATou,, + AT, 1, =Rep,, +3aT, +Re(ug, +Ugug, +WgUg,)

u,, —ATou,, —ATu,, = -MaRe(T,, +h,T,,) (at z=h(x,t))
u, =0 (at z=0)

We will solve this problem using a perturbation expansion with respect to a, A and A.
However, since u4 is only involved in the O(d) term, we only need to consider a linear
expansion for uy.

Letting u, =u,, + au,, + Au,, + Au,; gives us 4 ODE problems to solve; the O(1), a, A and
N problems.
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The Order 1 Velocity Problem as a, A, A—0:
Uio,, = Re Poox T Re(uoot +UgoUgoy T WOOUOOZ)

Uy, = —MaRe(Ty,, +h,Ty,) (at z=h(x,t))

Uy, =0 (at z=0)

Solving this problem gives us u1(x,z,t). However, the expression for uo was very long
and complicated and there is no point in presenting it.

The a problem for velocity:

u11zz = Re p01x + 3T10 + Re(u01t + uOOuO‘Ix + uO‘IuOOx + W00u01z + WO‘luOOz)

u,, =0 (at z=h(x,t))

u, =0 (at z=0)

Solving this problem gives us u11(x,z,t). However, the expression for uy was very long
and complicated and there is no point in presenting it.

The A problem for velocity:

u1222 - [T00u1Oz + T1Ou00z]z = Re(uOZt + uOOuOZx + uOZUOOx + WOOUOZZ + WOZUOOZ)

Usp, = TooUsg, = ThoUge, =0 (at z=h(x,t))
u,=0 (at z=0)
Solving this problem gives us u12(x,z,t). However, the expression for u2 was very long
and complicated and there is no point in presenting it.

The A problem for velocity:

u13zz = 0
U3, =-MaRe(T,,, +h, Ty, ) (at z=h(x,t))
u, =0 (at z=0)

Solving this problem gives us uq3(x,z,t). However, the expression for ui3 was very long
and complicated and there is no point in presenting it.

Piecing together the solutions from these 4 sets of ODEs, we arrive at our solution for
u1(x,z,t), (U, =u,, +au,, +Au,, + Auyy ).

Continuity (w):

w,=0 (at z=0)

Having already solved u4, we merely take its derivative with respect to x and integrate
with respect to z to calculate w(x,z,t):

z

wy = [-uy,dz for i=0..3
0

The expansion is then given by w,(Xx,z,t)=w,, + aw, + Aw,, + Aw,,.
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Now that we have solutions for the required sub-variables, we can acquire the Benney
equation, just as we had done on the previous section. This is done by substituting the
velocity expansions into the kinematic condition (59):

h, +ush, —w, +0(ush, —w,)=0

This equation governs the thickness of the fluid flow down the heated ramp. But we
want to test for criticality, i.e. under what conditions does the flow become unstable. So
we move to a linear analysis to find the critical Reynolds number, just as we had done in

the previous chapter.

Linear Analysis:

As before, we introduce perturbations into the equation by letting h(x,t) =1+ &(x,t) and

linearize in terms of €. We then introduce normal modes (we allow &(x,t) = & - ).

This leads to a characteristic equation which was solved for 0. Setting the real part of o
(the growth rate) to zero gives the neutral stability curve.

K =

—70W Re(4Bi® + 3ABi® + 8Bi + 7ABi + 4 + 4\) x

13440 cot BBi* — 16128 ReBi* — 6720MaReBi® + 43680A cot BBi° — 246570\ Re Bi
+10080A cot BBi* — 6720MaReBi + 97392aRe Bi — 154596ARe Bi® — 403200 cot BBi
—~13440MaReBi* + 58122aReBi® — 37002AReBi* — 3696a cot BBi* — 20832a cot BBi°
+12621aReBi* + 50400A cot BBi — 96768 Re Bi* — 440160 cot BBi* +110637aReBi®
+70560A cot BBi* — 13440a cot B —177360AReBi - 64512ReBi® + 32256aRe

+53760 cot BBi® — 48384ARe+13440A cot B — 16128 Re+ 53760 cot BBi — 6720AMaRe Bi
+954APrReBi* + 6720AMaReBi - 2295aPrReBi* -~ 1140APrReBi® + 525aPr ReBi*
—3720aPrReBi-3360AMaReBi® - 4480AMaReBi* +1950aPrReBi® —11200AMaRe Bi®
~6720AMaReBi* + 1632APrReBi - 462\PrReBi* + 13440 cot B — 64512 ReBi

+ 80640 cot BBi*

N =

280W Re(4Bi” + 3ABi® + 8Bi+ 7ABi + 4 + 4\)(1+ Bi)

To get the critical Reynolds number, we want the minimum Reynolds number where
instability occurs. If we plot this neutral stability relationship in the Re-k plane we realize
this occurs when k, the wavenumber, is zero. So to get the critical Reynolds number we
set k=0.
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ReCRIT =

3360tf| - 40Bi* — 130ABI® — 30ABi* + 1200Bi + 11aBi* + 620Bi® — 150ABi + 131aBi? — 210ABi?
+40a — 160Bi® — 40\ —160Bi — 40 — 240Bi

—-16128 +110637aBi* + 58122aBi® +12621aBi* + 97392aBi — 154596 ABi°® — 37002ABi*
—246570\Bi* —177360ABi — 64512Bi® — 96768Bi* —16128Bi* — 48384\ + 322560 + 954 A Pr Bi?
—6720AMaBi - 22950 Pr Bi* + 6720/AMaBi — 13440MaBi* — 6720MaBi — 6720MaBi®
—-1140APrBi® + 19500 PrBi® — 4480AMaBi’® - 3360AMaBi® — 37200 Pr Bi + 525aPr Bi*
—~11200AMaBi* - 6720AMaBi’* — 462APrBi* + 1632\ Pr Bi — 64512Bi

Thus we have obtained a solution while allowing for variation in all temperature
dependent fluid properties. We point out that this solution reduces to the familiar

10(1+ Bi)* cot B
5MaBi +12(1 +Bi)2 ’
validate our result.

if we let a=A=A=0. This is exactly what should happen, and helps to
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CHAPTER 4 — Depth Integrated Model:

We now consider another approach to solving our system, the depth integrated model.
Ruyer-Quil and Manneville (2000) used a modified IBL approach, where they combined
a gradient expansion with a weighted residual technique using polynomial test
functions. This approach predicts the correct instability threshold. Trevelyan et al.
(2007) extended this approach for the basic non-isothermal problem. This is the
approach we will now take with our system of equations.

We begin with the two-scale equations derived in Chapter 3 ((50)-(59)). The general
idea behind this approach is to simplify the long-wave equations by depth-integrating
(integrating with respect to z), and thus reducing the space dimensionality.

The first two equations, the Continuity Equation (50) and the z-Momentum equation (52)
can be integrated directly. We depth integrate (with respect to z, from zero to h) the
continuity equation (50). This gives us our first equation:

ht+9x=0 (60)

h
Where q= '[udz is defined as the flow rate. Since u is the direction of the flow, by
0

integrating u from z=0 to z=h, we are capturing the whole volume of u at that particular
cross-section; giving us the ‘flow rate’.

From the z-Momentum equation (52) we get p (pressure), which is substituted into the
x-Momentum equation (51). This gives us:

Red(u, +uu, +wu,)=3(1-aT)+[(1-AT)u,], + 35cotBabh, +5°Weh , —35cotph,

z 61
-3 cotsaj T dz (61)
h

where 8 denotes the surface temperature, i.e. 6(x,t) = T(x,h(x,t),t).

We recognize that our new x-Momentum equation (61) and our temperature equation
(53) cannot be converted to our new variables h, g and 8 via direct integration. We will
thus proceed by employing a weighted residual method. The general approach is to
expand u and T in linear combinations of z dependent test functions. The coefficients
are then determined by equating the weighted residuals to zero.

For the basic non-isothermal problem, Trevelyan et al. (2007) extended the method

proposed by Ruyer-Quil and Manneville (2000) for the isothermal flow and assumed the
following profiles for u and T:
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3 dMaReB, (x,t)

u(x,zt) = R (x.) q(x, t)by(x,z 1) + ah(x.1) b,(x,z,t) (62)
. B(xt)-1

T(X’Z’t)_1+—h(x,t) z (63)

where bo(x,z,t) = 2hz-z®, and b4(x,z,t) = 2hz-32>.

Conditions at the Interfaces:

It should be pointed out that the velocity profile (62) satisfies the condition q= J.(: udz,

the bottom conditions (54) (u=w=0) as well as the surface tangential force condition (57)
which for the basic non-isothermal problem is given by u,=-MaRed6, at z=h(x,t).

The temperature profile (63) satisfies the bottom condition (55) (T=1) but not the surface
condition (58) T,=-Bi0 at z=h(x,t). However this condition can be incorporated into the
residual by implementing integration by parts in the integration process, as will be
explained below.

For the isothermal problem Ruyer-Quil and Manneville (2002) formally analyzed the
accuracy of employing the velocity profile (62) (with Ma=0). They show that employing
more elaborate expansions leads to formulations which ultimately converge to the
modified IBL equations. For the basic non-isothermal problem, Trevelyan et al. (2007)
demonstrate the efficacy of the temperature profile (63). Indeed, the linear stability
analysis of the modified IBL equations predicts the correct critical Reynolds number for
the onset of instability as obtained from the full equations for the isothermal problem
and the basic non-isothermal problem.

For the current problem with variation in all fluid properties we again resort to the
profiles (62) and (63). No adjustment is made to the profiles to account for the extra
temperature variations. Various options were considered but none improved the
agreement with the full equations, they only complicated the governing equations.

It turns out that for the current problem the profile for u in (62) does not satisfy the
surface tangential force condition which can be stated as u,=(-MaRed6y)/(1-A8) at
z=h(x,t). However, like with the temperature profile, we can include the correct condition
into the integrated momentum equation.

The Modified IBL Equations:

In accordance with the Galerkin method, test functions are used to weight the residuals.
The temperature equation (53) is weighted with z and then depth integrated. Since we
would like to satisfy the boundary condition (58), we apply integration by parts to the
term arising from [(1+AT)T.]; and include the boundary condition as follows:

jz[1+/\T)T]dz [z(1+ AT)T,]= —j1+/\Tsz_-Buhe j1+/\T)sz
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Continuing with the rest of equation (53) and including this result we obtain an equation
in h, gand 6:
3 6 21 2 1
h389+S+21+V )6 =—Sq,-—-SqB, ——Sqev, - =S6°q, +—SO
( ( ATr ) t 10 qx 5 q X 5 q X 5 qx 10 qx

7 27 6(1-0(1+Bih)) 3 A0 -1)
+—[1+S )1—6 ——(1+S j 0, + -
20( /ATr (1=0)a, 10 /ATr 45 PrRedh PrRedh

The x-Momentum equation (61) is weighted with by and then depth integrated. Since the
profile for u in (62) does not satisfy the surface tangential force condition we apply
integration by parts twice to the term arising from [(1-AT)u_], and include the boundary
conditions as follows:

h h

[Bol(1=AT)u, 1,dz =by[(1- AT)u, 2 — b, [(1- AT )T + [ [o,, (1 AT)], udz
0 0

Applying the correct interface conditions yields:

h h
[bo[(1-AT)u,],dz =MaRe 38,b,(z =h) + [ [b,, (1~ AT)],udz
0 0

Continuing with the rest of the x-Momentum equation (61) and including this result we
obtain an equation in h, g and 6:

2
99N, 1744 _Spae — 5 \Ma6,6+ > AMas, - 2 NN,
6CIt_67 h 7 h 4 48 48 2 Re
2
+§ hcotBh, a6 +§hWh 11 h"cotBab, +ﬂ hcotBah, (65)

+
16 Re 6 16 Re 16 Re
oS h 25ha® 15ha 5 Ag6 15 Aq +5 q

2Re 16 Re 16Re 8h?Re 8 h’Re 2h°Re

These three equations (60, 64 and 65) govern the unknowns h, g and 6 and constitute
‘modified” IBL equations. If we allow a=A=A=S=0, these equations reduce to those used
by Trevelyan et al. (2007) for the basic non-isothermal problem.

A. Linear Stability Analysis (for Modified IBL):

As in the case of the long-wave expansions, we carry out a linear stability analysis on
these equations to arrive at a critical Reynolds number that we can compare to the
other methods used earlier.

For the first step of our stability analysis, we compute the steady state, by setting all
time derivatives to zero. From the continuity equation (60) we realize that q is a
constant. Thus, our steady state solution is h=1, g=qs=constant and 6=0s=constant,
where gs and 85 are obtained from: 8 -5008, —3a+ 2A6.q, + 6Aq, —8g, =0 and

~2+20Bi+20,+A82-A=0.
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We then introduce a perturbed steady flow into the modified IBL equations by letting
h=1+ Fi, gq=q,+q and =0, + 5, and then linearize with respect to the perturbations.

Into these linearized equations, we introduce the normal modes: (ﬁ, 'd,é)z (ﬁ, d,é)e"”"‘x.

This results in a 3x3 system of linear (homogeneous) equations for h, q and 6. Solving
the characteristic equation we get a dispersion relation, which we solve for 0. For
neutral stability, the growth rate is zero. Setting R(c)=0 gives us our neutral stability
curve in the Re-k plane. The critical Reynolds number is the intercept of this curve with
the Re axis, so we set k=0 and solve for Re to get the critical Reynolds number. Thus
giving us the critical Reynolds number and the conditions under which interfacial
instability will occur.

All calculations were done analytically using Maple. However, the expressions for the
neutral stability curve and the critical Reynolds number are too long to give. Itis
however apparent from this formula that Recrit reduces to the familiar

10(1+Bi)* cot B
5MaBi +12(1+Bi)? ’
helps to validate our result. Also, if we set Bi=0 we get the same expression as that from

(M)Zj

if we let a=A=A=S=0. This is exactly what should happen, and

the full equations: écot B[
6 1-a

Another interesting observation is that this formula for the critical Reynolds number is

much more complicated than the one we obtained using the Benney approach. It also

contains the S, specific heat variation parameter, in several of the terms, which was

missing in the Benney version.

We now compare our three different techniques for solving this problem.
B. Comparisons and Discussion:

As we cannot analyze the full equations for the general case, we have to resort to an
approximation. We have two approximation methods:

1) “The Approximate Benney Equation” — The Benney Equation we obtained by
applying asymptotic expansions as a, A, A\, S —» 0
2) The Modified IBL equations

We would like to determine the accuracy of these approximation methods. As was
pointed out earlier, for the special case where Bi=0, the formula for Recrit given by the
modified IBL was identical to that from the full equations.

Since we were also able to solve the full equations for the special case when A=A=0, we

will plot the solutions from both approximation methods and compare them to the
solution we obtained from the full equations.
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In Figure 4.1 we find is that the modified IBL equation does a very good job of
approximating the solution. However, our approximate Benney equation only does a
good job of approximating our solution when a is between 0 and 0.2. For larger values
the solution increases rapidly, when it should not. This is expected since the
approximation is based on asymptotic expansions as a—0. The approximate Benney
solution was also missing the S term. So information was clearly lost here. Despite the
erroneous results for higher values of a, our solution seems to be correct for lower
values of a.

We also notice that the modified IBL is very accurate for a much wider range of a and is
reasonable for all relevant values of a.

In order to gauge the accuracy of the modified IBL equations for nonzero values of A
and A, we can only compare it to the approximate Benney equation.
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We have an excellent agreement with the approximate Benney equation for small
values of A and A, where we are confident that the approximate Benney equation is
accurate. For larger values we have no direct means of checking the modified IBL
equations approximation. We will validate the results by physical interpretation.
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CHAPTER 5 — Discussion of Results from the Linear Stability Analysis

Now that we have some solutions to our system of equations (i.e. we can pinpoint
criticality and can tell under what conditions the flow is unstable), we would like to see
how criticality is affected by various fluid properties and how these fluid properties
interact with each other when determining criticality. For our analysis we will be using
the plots of the critical Reynolds number as determined by the modified IBL equations.

It turns out that the expression for the critical Reynolds number is independent of the
Weber number, as is the case for the isothermal and basic nonisothermal problems. We
point out that the Weber number is the scaled surface tension at the reference
temperature Ty, (the prescribed temperature of the bottom surface). The Marangoni
number, on the other hand, is the scaled gradient of the surface tension with
temperature, and measures the effect of thermocapillary forces, which do affect the
onset of instability.

Plot of Neutral Stability Curve for various Weber Numbers
cotp=1, 6=1, Ma=1, Bi=1, Pr=7, a=A=8=0.5, A=1, ATr=1
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In Figure 5.0 we present the neutral stability curve for different values of the Weber
number. It can be seen that the minimum Reynolds number (i.e. critical Reynolds
number) is the same for all the curves, so the critical Reynolds number is independent
of the Weber number. For a supercritical Reynolds number, as the Weber number is
decreased the range of unstable perturbations (region below the neutral stability curve)
is increased as shorter perturbations (i.e. with larger k) become unstable.
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We now consider the effect of the viscosity variation parameter A. It should be pointed
out that since we assume the viscosity to decrease with temperature we must restrict
the range of A to nonnegative values less than 1 in order to maintain a positive value for
the viscosity. In Figures 5.1 and 5.2 we illustrate the dependence of Recrit on A for
various values of other parameters. In all cases Recgrit decreases with A, thus indicating
that increasing A destabilizes the flow. This is to be expected since for a heated fluid,
increasing A lowers the viscosity, and viscosity is a stabilizing factor since it counteracts
the effect of inertia. In Figure 5.1 we present the distribution of Recrit with A for different
values of the thermal conductivity variation parameter, A. It is apparent that for Az0.35,
increasing /\ has a destabilizing effect, while for 0.35zA, increasing A from zero to 0.5
lowers RecgriT and beyond that the opposite happens. Now, the anticipation is that an
increased thermal conductivity stabilizes the flow since it smoothes out temperature
differences and thus weakens the thermal effects. However, it should be pointed out
that, while the conductivity increases with A for a fixed temperature difference, as
conductivity increases the temperature gradient is actually being reduced thus lowering
the increment to the conductivity. Therefore, the exact dependence of thermal
conductivity on A is difficult to ascertain, and there is a complicated non-monotonic
dependence of Recrit on A as is illustrated by the results in Figure 5.1.
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Figure 5.2 contains the distribution of Recrit with A for different values of the relative
difference between the temperature prescribed at the bottom and that of the ambient,
AT,. It can be seen that as AT, is increased there is a greater variation in Recgrit over the
interval 0 < A < 1. This is due to the fact that increased temperature differences amplify
the variation in viscosity as A is increased. The results in Figure 5.2 also indicate that
Recrit quickly approaches a constant value as AT, increases. More specifically, it can
be seen that for a fixed A the change in Recrit is very small as AT, increases beyond
0.75.
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Critical Reynolds number as a function of a for various Ma
Pr=7, Bi=1, §=1, A=1, AT =1 and A=0.25
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In Figures 5.3 and 5.4 we display the effect of the density variation parameter, a, on the
stability of the flow. The considered values of a are less than 1 in order to obtain
positive values for the density. It is evident from the results that, unlike with A,
depending on the value of other parameters, increasing a can result in an increase or
decrease in Recgt. In general, a decrease in mass density reduces inertia and
stabilizes the flow. However, for our problem the vertical temperature gradient in the
fluid results in a top-heavy density stratification. The density differences associated with
depth fluctuations resulting from surface waves can combine with thermocapillary forces
and destabilize the flow. In Figure 5.3 we see that if the specific heat variation
parameter S is sufficiently large, then the density variation acts to destabilize the flow.
This is explained by the fact that an increase in the specific heat of the fluid decreases
thermal diffusivity and thus steepens temperature gradients and consequently
accentuates the density stratification. The results in Figure 5.4 reveal that the same
effect occurs if Ma is sufficiently large. In other words, with substantial thermocapillary
action, increasing the density variation destabilizes the flow.
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In Figure 5.5 we present the variation of Recrir with Ma for different values of A. In all
cases Recgit decreases with Ma in accordance with the expectation that strengthening
the thermocapillary effects acts to destabilize the flow. Another interesting observation
however, is that as A increases there is less variation in Recrir with Ma. Indeed, in the
case with A = 0.75, Recgit is essentially independent of Ma. We can then conclude that
if the viscosity is sufficiently reduced the resulting increase to flow inertia is the
dominant instability mechanism and the contribution from the Marangoni effect is

negligible.

48



Critical Reynolds number as a function of Bi for various A
Pr=7, Ma=1, S=1, a=0.25, ATr=1 and A=0.25
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In Figure 5.6 we illustrate the variation of Recgrit with the Biot number for several values
of A. With Bi = 0 there is no heat transfer across the fluid-air interface and as a result
the surface remains at a constant temperature. In the absence of temperature variation
along the surface the Marangoni effect is neutralized. As the Biot number is increased
from zero, RecriT decreases as the destabilizing thermocapillary effects become more
significant. However, as Bi approaches infinity Newton's Law of Cooling requires that
the temperature of the surface must approach that of the ambient medium and thus the
temperature variations along the interface vanish. Consequently as Bi approaches
infinity Recrit asymptotically approaches the value at Bi = 0. Therefore, the Recrit
distribution with Bi has a minimum at a positive value of Bi. This critical value is a
complicated function of the various temperature variation parameters. The results in
Figure 5.6, for example, suggest that the critical value of Bi increases with A for fixed
values of the other parameters.
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CHAPTER 6 — Nonlinear Simulations:

In this final chapter we obtain numerical simulations of the fully nonlinear modified IBL
solutions. While we could not solve the nonlinear modified IBL equations analytically,
we were able to solve them using numerical analysis techniques; namely the
MacCormack Method and the Crank-Nicolson scheme via the Fractional Step method.
The nonlinear simulations are used to verify the predictions for the onset of instability
made by the linear theory and also determine the evolution of unstable flows.

A. Numerical Analysis

We begin with our modified IBL equations (60, 64, and 65), as were derived previously

in chapter 4. In order to solve this system numerically, we express these equations in a

form suitable for applying numerical methods. Our first step is to discard terms of O(5S?)

from the temperature equation (64). Dividing through the equation by 2, we get the

following factor for the 6; coefficient:

GE1+S(L+1]+§SG
AT 2] 2

r

Dividing through by © , we obtain © 'on the right-hand side of the equation, which we

AT,
the & terms. Discarding the O(5S?) terms we arrive at a new temperature equation:

approximate by a truncated binomial series as O =1— S( ! %j—gse+0(sz) in

2
50 —5//(1-8)a, 2798, o G _8q, 87°q, 398, 3966,
40h 20h

16h 8h 16h 40h 40h
L 3[1-(1+Bih)o] _ 3A(8” - 1)
PrReh?0  2PrReh20

(66)

With these three equations (60), (65) and (66), we make a further modification. Instead
of working with 8, we introduce ®, related to 6 by the equation ®=(68-1)h. From the
relation (T-1)h=(0-1)z, it follows that the variable @ is related to T through:

[[(T-1)dz= i
0 2
and thus, @ is proportional to the lineal heat content stored in the fluid layer.

We introduce @ into the x-Momentum equation and rearrange:

2
g +2 0 9q 500t8(1_ ah? +2 Ma9+i)\M CD2 _11acotthD _
x|7h 4 Re 4 °h 96 h 16Re (67)
% Srwenh, + 3% g O (- )— (8h+50)+ 9 (4n 1 o)
7h 6 16Re 2Red e6 8Red h
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We introduce @ into the Temperature equation (making use of the fact hi=-qy):

27 <Dq 3 . qd? 7 dq, S Cbqu 3(Bih+Bi®+®/h) 3A(2dh+d?)
th+ —S8 T T T T - 3 (68)
ox| 20 h 80 h 40 h 10 h O0PrReh® 20PrReh’©®
where (9:1+i+28+§S9
ATr 2

Our equations are now in a form suitable for numerical analysis.

We will use the Fractional-Step Method for this problem (LeVeque (2002)). The idea is
to split the equation into two steps (decouple the advective and diffusive components)
that can be solved in an alternating manner, using our numerical methods. For our
purposes we will use MacCormack’s method for the first step and for the second we will
use Crank-Nicolson.

For the first step we discard the diffusive terms and solve:

h,+q,=0
2
Qt+ﬁ 9q 500t[3(1_ a)h? EMag iAMaCLZ_HacotthD _
ox|7h 4 Re 4790 96 °n  16Re
> (h-9) %% (gh.i50)r 9 gni o)
2Red h 16Red 8Red h

L 0[27®q 3 (qd”|__3@Bih+Bi®+®d/h) 3A2Ph+P?)
‘ a 20 h 80 h? 5PrReh® 25PrReh’0

over a time step At. In the second step we focus on the diffusive terms and solve

q, = 9%, Sg2wenn_ 4 79O, o
7h 6 16Re
7 &g, S P%q,
t=__+_—2
40 h 10 h

using the solution obtained from the first step as the initial condition. The second step
then returns the solution for g and ® at the new time t + At, with the solution for h being
that obtained in the first step.

The system considered in the first step consists of nonlinear hyperbolic conservation

equations with source terms, which we re-write in a more compact form using vectors,
as follows:
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2U+—F(U) B(U), where U=| q |,
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o
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While there are several methods available to solve this system, its complicated
eigenstructure makes the use of eigen-based methods impractical. We resort to
MacCormack’s method since it can be applied component-wise and does not require
the eigenstructure of the system. MacCormack’s method is a conservative second-order
accurate finite difference scheme, which correctly captures discontinuities and
converges to the physical weak solution of the problem. LeVeque & Yee (1990)
extended MacCormack’s method to include source terms via the explicit predictor—
corrector scheme

At

AX
—(Un Uj)-

U=Uu-—/

J J

Predictor Step: [ F(U J+1) F(U} ]+ AtB(U7)

Corrector Step: Ui = [F(U )—F(U,. 1)] tB(U;)

where U] =U(x;,t,)and the x-t plane is discretized such that the mesh width is denoted

as Ax and the time step is denoted as At.

In the second step, we have a coupled system of generalized one-dimensional
nonlinear diffusion equations. Discretizing using the Crank—Nicolson scheme and using
the output from the first step as an initial condition, leads to a nonlinear system of
algebraic equations, which was solved iteratively. A robust algorithm, taking advantage
of the structure and sparseness of the resulting linearized systems, was used to speed
up the iterative process. It was found that convergence was reached quickly, typically in
less than five iterations.

This process yields a numerical solution for our system.
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B. Nonlinear Stability Analysis

To perform a stability analysis of the flow we begin by solving our equations on a
periodic spatial domain, from 0 to L. As the initial condition, we use the base flow, with a
small amplitude sinusoidal perturbation of length L added to h:

h :1+0.0001sin(2Tnx]

q=0;
6=6

S

With this small perturbation now in our system, we calculate the evolution and
determine if it is amplified or dampened. If the evolution of the wave is amplified, then
the system is unstable. By iterating over Re we can determine the value for which a
perturbation with wavenumber k=211/L is neutrally stable and thus by considering
different L values we obtain points on the neutral stability curve. For longer L values
(L>3) we use a mesh width of Ax=0.02 which required, for numerical stability, a time
step of At=10". For the shorter L values we used Ax=0.005 and At=7 x 10°. In Table
6.1 we compare these results with those from the linear analysis. The indication is that
there is excellent agreement between the two. So we conclude that the linear analysis is
effective in predicting neutral stability.

L k=2m/L | Re (Linear) Re (Nonlinear; Difference | Percentage
Simulation) Difference (%)
1 6.2832 | 0.35215 0.35550 0.00335 0.9423
3 2.0944 | 0.28346 0.28375 0.00029 0.1020
5 1.2566 | 0.27911 0.27935 0.00024 0.0859
10 |0.6283 | 0.27731 0.27745 0.00014 0.0504
15 10.4189 |0.27699 0.27715 0.00016 0.0577
20 |0.3142 |0.27689 0.27700 0.00011 0.0397
50 |0.1257 |0.27678 0.27690 0.00012 0.0433
100 | 0.0628 | 0.27675 0.27685 0.00010 0.0361

Table 6.1: — Comparison of Linear and Nonlinear Results (with a=A=A=S=0.25, AT =1,
We=10, 6=0.05 and cotp=0.5)

For supercritical conditions the nonlinear simulations on a sufficiently long domain can
be used to determine the evolution of the unstable flow. The advantage of the nonlinear
simulations is that they include the nonlinear interactions of the perturbations and thus
capture the entire instability mechanism of the flow. Furthermore, for unstable flows, the
temporal evolution can be continued until the growth of the disturbances reaches
saturation. An illustration of the evolution of an unstable film flow is given in Figure 6.1.
Notice that at time t=40 our small amplitude sinusoidal perturbation makes very small
waves in our system. As time goes on that small perturbation becomes larger and
larger, until finally we have a permanent wave structure at time t=140. In other words
these solitary waves will not subside or grow in time and will propagate with a constant
speed.
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Figure 6.1: Evolution of an Unstable Film Flow

In Figure 6.2 we compare the permanent surface profiles for unstable flows with
different Reynolds numbers. Notice that for the larger Re values the instability leads to
large solitary-wave structures with the height increasing with Re. However, for smaller

Re values the flow is “less unstable” with the interfacial deflection being almost
sinusoidal with small amplitude.

Permanent surface profiles for: cotp=0.5, We=100, =0.05, Ma=1, Bi=1, Pr=7, a=A=A=s=0.25, AT =1

Figure 6.2: Permanent Surface Profile for an Unstable Flow
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In Figure 6.3 we consider another plot showing the relation between surface

temperature and wave height for a permanent solution. We notice that at the crest of the

waves the surface is cooler; and at the troughs the surface is warmer. This makes

sense as increasing the distance from the surface of the fluid to the heated ramp will

cool the fluid’s surface and vice versa.

Permanent wave for: cot3=0.5, Re=3, We=100, 5=0.05, Ma=1, Bi=1, Pr=7, a=1=A=s=0.25, AT =1
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Figure 6.3: Relation Between Surface Temperature and Wave Height
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CONCLUSION/CLOSING REMARKS

The purpose of this thesis was to examine how the flow of a fluid film down a heated
inclined plane is affected by temperature dependent fluid properties. The effects of five
different temperature dependent fluid properties were examined: surface tension, mass
density, dynamic viscosity, thermal conductivity and specific heat capacity. Each of
these can be significantly affected by changes in temperature and can have either
stabilizing or destabilizing effects on the fluid flow.

The investigation utilized a theoretical model based on the conservation of mass,
momentum and energy and included the physically appropriate Newton’s Law of
Cooling to incorporate temperature changes on the surface of the film. This system was
too complicated to be solved analytically, so a linear stability analysis was carried out on
this system, where the equations were linearized with respect to the perturbations that
were introduced into the system. The linearized perturbation equations were still too
complex to solve, with the exception of two special cases: the case where Bi=0 and the
case where A=A=0. Each of these cases was examined.

In the case where Bi=0 (a perfectly insulated surface), the critical Reynolds number was
(1-A)°
1-a
temperature variations in specific heat capacity and thermal conductivity play no role in

determining criticality for the stability of the flow. The critical Reynolds number was also
found to be independent of the Marangoni number, for this special case.

5
found to be gcot B( J . For a fluid with a perfectly insulated surface, the

In the second case we set A=/\=0. The critical Reynolds number for this case showed
coupling between the specific heat and the mass density variations. The formula
revealed a stronger dependence on the variation in mass density than on that in specific
heat. By allowing all other temperature dependent fluid properties (except surface
tension) to be zero, the critical Reynolds number reduced to the same one obtained by
Trevelyan et al (2007) for the basic non-isothermal problem.

In an attempt to make analytic progress in the general case we exploited the assumed
shallowness of the fluid layer by creating a two-scale model for our problem where
height and length were scaled differently. A ratio of the two scales (& = Height/Length)
was introduced into the system. & is small, so O(5%) terms were discarded from the
system. As per the approach used by Benney (1966) an asymptotic solution (as —0)
to this system was attempted. Although this system was still too complex, we were able
to generate a single nonlinear evolution equation for the position of the free surface for
the special case where A=A=0. The neutral stability curve and critical Reynolds number
were found to be identical to those from the analysis of the full equations when we
allowed A=A=0. This exact agreement verified our use of the Benney equation for our
system with temperature dependent fluid properties.

In an effort to include temperature variation in all the fluid properties (no special cases)
a Benney equation was attempted using perturbation expansions with respect to the
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temperature variations, as (a, A, A\, S)—0. This approximation was found to be accurate
for small values of the variation parameters a, A, A and S.

A depth-integrated model for our problem was also considered. Using the approach
employed Ruyer-Quil and Manneville (2000) and the extension by Trevelyan et al.
(2007) for the basic non-isothermal problem, we established modified IBL equations for
the flow. This approximation was found to be accurate in comparison with the full
equations for the special cases when the full equations could be analyzed.

Using the results from the modified IBL approach, the effects of the various temperature
dependent fluid properties on the criticality of the fluid flow were examined and
discussed.

We also compared our linear analysis of the modified IBL equations to the results from
nonlinear simulations. The fully nonlinear modified IBL equations were solved by
decoupling the advective and diffusive components and using MacCormack’s method
for the advective part and the Crank-Nicolson scheme for the diffusive part. The
agreement between the linear stability analysis and the nonlinear analysis was found to
be excellent. The nonlinear simulations were also used to determine the evolution of the
unstable flow.
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