
THE EFFECTS OF A FAULT MANAGEMENT ARCHITECTURE ON THE

PERFORMANCE OF A CLOUD BASED APPLICATION

by

Ghazal Zamani

B.A.Sc., Concordia University, 2014

A thesis presented to Ryerson University

in partial fulfillment of

the requirements for the degree of

Master of Applied Science

in the program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2017

© Copyright by Ghazal Zamani

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or

individuals for the purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or

by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

THE EFFECTS OF A FAULT MANAGEMENT

ARCHITECTURE ON THE PERFORMANCE OF A CLOUD

BASED APPLICATION

Ghazal Zamani

Master of Applied Science (M.A.Sc.)

Electrical and Computer Engineering

Ryerson University, 2017

Abstract

Increasingly, the application providers are using a separate fault management system

that offers out-of-the-box monitoring and alarms support for application instances. A fault

management system usually consists of a set of management components that does both fault

detection and can trigger actions, for example, automatic restart of monitored components.

Such a distributed structure supports scalability and helps to ensure that an application meets

its quality requirements. However, successful recovery of an application now depends on the

fault management architecture and the status of the management components. This thesis

presents a model that accounts for the effect of management-architecture based coverage on

the mean throughput of an application. Such a model would benefit the application providers

for choosing the right fault management architecture for their applications. Comparing five

different sample fault management architectures, shows that for higher workload, the case

with highest number of detection paths has the maximum throughput.

iv

Acknowledgements

I would like to thank Prof. Olivia Das for her endless academic and financial

support during my research and study, and provisions above the academic contexts. Her

limitless support and effective mentorship has been essential to the successful completion

of this thesis. I would also like to thank my thesis defense committee Prof. Vadim

Geurkov, Prof. Cungang (Truman) Yang, and Prof. Karthi Umapathy for their valuable

time and effective comments. Finally, I reserve special thanks for my family, for their

boundless mental, emotional, and financial support during my hard work.

v

Dedication

To my beloved parents for their passionate encouragements and generous

financial support that made it possible for me to achieve academic success.

To my brother for being a great source of motivation and inspiration.

To my husband, the love of my life, for his meaningful assistance, tireless

guidance and endless patience, without whom none of this would have been possible.

vi

Table of Contents

Author’s Declaration ... ii

Abstract .. iii

Acknowledgements .. iv

Dedication ... v

List of Tables ... viii

List of Figures .. ix

List of Acronyms ... xi

1. Introduction ... 1

1.1. Motivation .. 1

1.2. Cloud Computing ... 3

1.3. Software as a Service (SaaS) .. 5

1.4. Research Objective ... 6

1.5. Research Contributions .. 8

1.6. Thesis Outline .. 9

2. Background .. 10

2.1. Performability Evaluation Techniques ... 10

2.1.1. Measurement-based Evaluation .. 10

2.1.2. Model-based Evaluation ... 11

2.2. Performability Modeling Techniques... 12

2.2.1. Analytical-Model Based Techniques .. 12

2.2.2. Simulation-Model Based Techniques ... 15

3. The Proposed Model .. 18

3.1. Application Model.. 18

3.2. Fault Management Architecture Model ... 20

3.3. Modeling of Performability .. 23

3.3.1. Failure Modeling of Components ... 23

3.3.2. Modeling Failure Information Propagation through the fault management

architecture .. 25

vii

3.3.3. Computing Performability Measures .. 27

4. A Comparison of Five Fault Management Architectures .. 28

4.1. Description of the Fault Management Architectures ... 29

4.2. The Effect of Varying the Mean Inter-Arrival Time.. 34

4.3. The Effect of Varying the Mean Time to Failure... 38

4.4. The Effect of Varying the Failure Detection Time .. 41

5. Conclusion ... 45

References ... 47

viii

List of Tables

Table 4.1 Model Parameters ... 29

Table 4.2 The simulation results for the effect of varying the mean inter-arrival time 36

Table 4.3 The simulation results for the effect of varying the mean time to failure 39

Table 4.4 The simulation results for the effect of varying the failure detection time 42

ix

List of Figures

Figure 2.1 Analytical performability modeling approaches ... 13

Figure 3.1 Application Model (as network of queues) where the load balancer (LB)

believes that m application instances are operational. .. 19

Figure 3.2 Centralized Fault Management Architecture Model for the application model

of Figure 3.1. M1 is the central manager. ... 23

Figure 3.3 Failure Model of each component. .. 24

Figure 4.1 Application Model (as network of queues) ... 28

Figure 4.2 Case-1: Manager M1 monitors A1, M2 monitors A2, and M3 monitors A3.

The manager components cannot fail. .. 30

Figure 4.3 Case-2: Manager M1 monitors A1, M2 monitors A2, M3 monitors A3. The

failure of managers has to be detected by human administrators. 31

Figure 4.4 Case-3: M1 monitors A1 and A2, M2 monitors A3, M1 monitors M1 and M2.

Failure of M3 has to be detected by human administrators. ... 32

Figure 4.5 Case-4: The weight of all the detect arcs that are not labeled is 120. Managers

monitor each other. ... 33

Figure 4.6 Case-5: The weight of all the detect arcs that are not labeled is 120. Each

application instance is monitored by all the three managers. Managers monitor each

other. ... 33

x

Figure 4.7(a) Normalized throughput loss (NTL), (b) Mean response time of jobs that are

not lost, and (c) Mean throughput. This is shown for all five cases, Case-1 to Case-5

(with varying mean inter-arrival time). ... 38

Figure 4.8 (a) Normalized throughput loss (NTL), (b) Mean response time of jobs that are

not lost, and (c) Mean throughput. This is shown for all five cases, Case-1 to Case-5

(with varying mean time to failure of the three managers). .. 41

Figure 4.9 (a) Normalized throughput loss (NTL), (b) Mean response time of jobs that are

not lost, and (c) Mean throughput. This is shown for all five cases, Case-1 to Case-5

(with varying failure detection time by the three managers). ... 44

xi

List of Acronyms

ArvRt Arrival Rate

DES discrete event simulation

FDR Failure-Detected-and-Restarted

FIFO First-in, First-out

FND Failure-Not-Detected

IaaS Infrastructure-as-a-Service

LB Load Balancer

NTL Normalized Throughput Loss

PaaS Platform-as-a-Service

QoS Quality of Service

Resptm Response Time

RT Response Time

SaaS Software-as-a-Service

SEM Standard Error of Mean

SLA Service Level Agreement

SoA Service Oriented Architecture

SPN Stochastic Petri Net

SRN Stochastic Reward Net

Stdev Standard Deviation

THR Throughput

VM Virtual Machine

1

1. Introduction

1.1. Motivation

Application providers are increasingly leveraging cloud computing resources to

enhance the scalability of services, provided by their applications, delivered to their end

users. Cloud computing offers several benefits to its consumers, including dynamic

scaling of VMs as required on a pay-per-use basis, and consistent performance and

availability of the virtual computing resources [1].

In order to improve performance, application providers often employ load-

balancing replication [2]–[5] for their applications. Such replication distributes the

workload across multiple application instances where each instance usually runs on its

own virtual machine (VM). An application can still function in response to application

instance failures, perhaps with a degraded performance. However, the replication is

ineffective if the mechanisms are not in place to detect and recover from failures.

Nowadays, the application providers are using a separate fault management

system [6] that offers out-of-the-box monitoring and alarms support for the application

components (instead of implementing the failure detection mechanisms within the

application itself). Such usage promotes software reuse and additionally eases the

development of the application. A fault management system is usually distributed in

2

nature and consists of a set of management components that does both fault detection and

can trigger actions, for example, automatic restart of the monitored components. This sort

of distributed structure supports scalability and helps to ensure that an application meets

its quality requirements. However, successful recovery of an application now depends on

the fault management architecture and the status of the management components. Here,

recovery implies isolating and removing the failed application instance(s) and re-

distributing the load among the operational instances.

In order to evaluate the mean throughput of these applications, one must consider

the fraction of the jobs that are lost, also known as normalized throughput loss [7]. When

an application instance fails, jobs are lost because the load balancer does not know about

the failure and it continues to send the jobs to the failed instance. This may happen due to

following reasons:

1. The management component(s) responsible for notifying the load balancer about the

failure are in failed status, or;

2. The management component(s) responsible for detecting the failure are in failed

status, or;

3. The failure is currently being detected and the load balancer is yet to know about the

failure.

The performance measures of systems in presence of failures, also known as

performability measures, can be evaluated analytically using an exact monolithic Markov

model [8]. This approach suffers from largeness and stiffness problem. It can also be

3

evaluated using hierarchical Markov Reward models [8]: a higher-level Markov

dependability model and a set of lower level performance related models, one for each

state in the dependability model. The use of Markov Reward models is limited to

scenarios where the failure and restarts occur at much slower time scale than the

processing times. This limits its use for the current work since the restart times and

failure detection times may be similar in time scales as the application processing times.

This thesis presents a discrete-event simulation model that accounts for the

management-architecture-based coverage on the mean throughput of an application. It

considers the job loss occurring due to the above-mentioned reasons. Such a model would

benefit application providers in choosing the right fault management architecture for their

applications. Although the proposed simulation model may be computationally expensive

as compared to an analytical counterpart, it is more general in terms of service time,

inter-arrival time, failure time, detection time, and restart time distributions.

1.2. Cloud Computing

In recent years, cloud computing has emerged as a popular computing service

environment for personal, academic, and industrial applications, including Google,

Amazon, and Baidu. Cloud computing is an internet based computing technique, which

uses a network of remote servers to manage, store, and process the shared information

and resources. This technology provides enhanced computing efficiency by centralizing

data storage and data processing. The most significant advantages of cloud computing

include cost efficiency by reducing the software and hardware costs, time efficiency by

4

reducing the computation times, improved accessibility providing access to data and

resources at any time and any location, and improved data recovery. The primary goal of

cloud computing is to make efficient access available to remote and geographically

distributed resources. In order to distribute the cloud resources efficiently and ensure

providing the users with necessary resources, it is required to implement optimized

resource management and provisioning strategies in cloud systems. Cloud resource

provisioning and management is accomplished by using different strategies, including:

dynamic provisioning and user-self provisioning. The fundamental of all these strategies

is to achieve fair distribution of resources while maintaining maximum utilization of the

resources and maintaining minimum resource idle time.

A key component in the cloud service provisioning is the Service Oriented

Architecture (SOA) [9], which captures computational resources through abstract

interfaces to separate services from their corresponding implementations. Conventional

cloud service models include Infrastructure-as-a-Service (IaaS), Platform-as-a-service

(PaaS), and Software-as-a-Service. IaaS, formerly known as Hardware-as-a-Service,

allows the customers to access the resources, such as storage, processing, and

networking, remotely over the internet. This enables the client to dynamically scale the

configuration and only pay for those services that are actually employed. IaaS is offered

in three different models, namely private, public, and hybrid. PaaS deals with operating

systems and delivers a platform that allows the users to execute existing applications or to

develop and test new application by providing the customer with virtualized servers. This

is especially beneficial for geographically-distributed development teams to work on a

5

software development project together. SaaS is the most popular model of using cloud

computing, which allows several clients to share infrastructure in a private and secure

manner.

1.3. Software as a Service (SaaS)

An application provides certain types of service to its end users. An application is

an example of a SaaS software owned by an application provider who chose to deploy it

in a cloud. SaaS is a method of software delivery and licensing in which a third-party

provider hosts applications and makes them available to clients remotely over the

Internet. SaaS is the application layer of cloud computing along with the platform layer,

platform as a service (PaaS), and the infrastructure layer, infrastructure as a service

(IaaS).

Unlike the conventional on-premise software delivery model, in SaaS software

distribution model a third party hosts and maintains the software application and data.

This eliminates the need for companies to install and run software applications locally.

This in turn significantly shrinks the extensive hardware acquisition expenses as well as

provisioning and maintenance, software licensing, installation, and support costs.

Recently the application of SaaS delivery model is increasing in healthcare and

engineering practices. Examples of SaaS include Google Doc, Gmail, and Zoho.

 The main benefits of the SaaS delivery model include:

a. SaaS facilitates the pay-as-you-go model, where instead of purchasing the software

license and the corresponding supporting software, it offers the customers a

6

subscription (either monthly or annually), which allows them to access the

applications and data, as well as providing the associated support and maintenance.

b. SaaS provide remote access to the software application and data over the internet,

which allows the customers to access them from any physical location.

1.4. Research Objective

This thesis develops a model that accounts for the effect of management-

architecture based coverage on the mean throughput of an application. The value of

including the fault management architecture in the analysis is first to account for the

failures and restarts of managers, second is to include delays to detect the failures, and

third is to evaluate the limitations of the fault management architecture. These three

considerations increase the fraction of jobs that are lost thereby affecting the system

throughput. This thesis demonstrates the use of the model by comparing five different

sample fault management architectures. The application model and its fault management

architecture models are simulated by using a discrete event simulation framework called

SimPy, a Python based framework. This fault management model analyzes cases with

one or more points of failure. There are number of application servers running on their

virtual machines.

The examples given here consider only failures of application instances and

managers. This is because, usually, the virtual machines and physical machines are

highly available and they are usually managed by the cloud providers. However, if the

application provider also wants to monitor the virtual machines and/or physical machines

7

allocated for their applications, then that can be easily included in the analysis as well.

Different types of failure can be considered including, crash and sudden failures, which

occur randomly, in addition to, security or aging failures that happen when the

component gets obsolete and crashes. This work only considers the crash and sudden

failures.

The proposed model will benefit application providers to answer several important

questions related to selection of fault management architecture for their application. For

example, if I buy three managers (with given failure and restart rates) to monitor my

application instances, how should I connect them so that it meets the throughput and

response time SLAs? What detection interval should I set while configuring the

managers?

In this work, five different sample fault management architectures are

investigated. For Case-1, it is assumed that the application server’s VMs can fail,

however, no management component failure occurs at any point of time. For this case,

the architecture is constructed such that each management component monitors one

application server, and a client manager controls all the management components. The

general structure of Case-2 is very similar to Case 1, except that management

components can also fail in this case. Since there is no manager monitoring the managers,

in Case 2, the failure of managers must be detected by human administrators. Case-3

represents a multi-layered management architecture. In this case, some of the mangers

may monitor more than one application server, such that other than the client manager

8

that acts as a central manager, there are other management components additionally

monitoring their status. In Case-4 each manger not only monitors its assigned application

servers, but also monitors the other management components, and reports back to the

client manager. Finally, for Case-5, every application server is monitored by all the

management components. Additionally, similar to Case 4, each manager monitors all the

other management components.

 Subsequently, average response time, job loss probability, arrival rate, and

throughput are determined for each case for multiple runs of the SimPy simulation model.

Different parameters are considered in the simulations, including change in detection

time, failure time, and inter arrival time. Finally, the results of the simulations for the

proposed five architecture cases are compared and discussed.

1.5. Research Contributions

The contributions of this thesis are as follows:

a. Development of a model that accounts for the effect of fault management-

architecture based coverage on the mean throughput of an application.

b. Discrete event simulation of the proposed model using SimPy framework.

c. Comparison of five different fault management architectures on the

performance of a cloud application using the proposed modeling technique.

The results of this analysis are incorporated into a research manuscript and

submitted to the 13th European Dependable Computing Conference (EDCC 2017) in

Geneva, Switzerland [10].

9

1.6. Thesis Outline

This thesis is organized as follows: Chapter 2 represents the background on

performability models. The analytical and simulation approaches are described and the

benefits of the simulation approaches over the analytical counterparts are discussed to

justify the application of simulation approaches in this work. Chapter 3 describes the

proposed modeling technique. Chapter 4 compares the impact of five different fault

management architectures on the performance of a cloud application. Finally, Chapter 5

provides the summary of the results of the thesis.

10

2. Background

This chapter discusses the key principles and definitions that are applied to this

work. Different performability evaluation techniques are described and the advantages

and the shortcomings of each technique is discussed.

2.1. Performability Evaluation Techniques

There are two ways to evaluate performability of a system: measurement-based

evaluation or model-based evaluation.

2.1.1. Measurement-based Evaluation

Several cloud service evaluations are based on measurements performed on a

cloud infrastructure as a testbed. The general procedure includes specifying the purpose

and the scope of the evaluation and identifying the features/aspects of the cloud to be

evaluated, classifying the performance metrics and indicating the proper benchmarks

applications for testing, and finally, setting up the experimental environment. A list of

general performance metrics for evaluating typical cloud services is given in [11].

Stantchev [12] proposed a general approach based on architectural transparent black-box

methodology for evaluating non-functional QoS properties of individual cloud services.

Atas and Gungor [13] proposed a framework for PaaS performance assessment based on

a set of benchmark algorithms that allows the computation of the most proper PaaS

service provider based on different source and application requirements. The main

11

disadvantage of measurement-based cloud evaluation approaches is that it is typically

expensive to develop large scale testbeds that realistically demonstrate cloud service

provisioning scenarios. Furthermore, they typically necessitate costly and widespread

measurements and experimentations and the accuracy results significantly rely on the

design.

2.1.2. Model-based Evaluation

The objective of performability modeling and assessment is to provide insight

into systems that either are not built yet, or are performing under certain conditions where

they are not accessible for measurements or fail quite intermittently. The most common

approaches for solving models are analytical and simulation techniques. In analytical

approaches, certain boundaries are applied to the models to ensure the existence and

possibility of analytical solutions. In general, the analytical approaches are classified into

two categories: closed form, where an explicit expression is derived to describe the

measure of interest in terms of model parameters and structure, and numerical, where a

system of equations is solved by applying numerical techniques, including iterative

procedures, to determine the measure of interest. Alternatively, simulation approaches

emulate the behavior of the system by executing an appropriate simulation program,

which provides statistical estimates of the measurement of interest. In general, analytical

techniques are superior in terms of computational efficiency, however, they are

applicable to a restricted set of models, making simulation approaches generally more

applicable.

12

2.2. Performability Modeling Techniques

Pure performance analysis of systems generally over-estimates the ability of the

system to perform a particular job. In contrast, pure reliability/availability analysis is

typically too conservative, since the performance considerations are disregarded.

Consequently, in order to model a system appropriately, it is required to develop

modeling techniques that combine the system performance and reliability, which is

known as performability [14].

2.2.1. Analytical-Model Based Techniques

Different types of analytical models exist to determine the performability of a

system, including Monolithic models and Hierarchical models. Figure 2.1 demonstrates

the typical analytical performability approaches. The monolithic approach [15] combines

the performance and reliability behavior into a single model by applying Markov chains

[16] and Petri nets [17]. However, the corresponding models are generally large since the

state model of this model approximately represents the cross-product of the state-spaces

of the availability and performance models, which is dealt with by using approximation

techniques, including truncation, state lumping, and model composition [7] or by using

automatic generation methods for Markov chains [18]. Furthermore, this model is

considered stiff, since the performance related rates, including job arrival rates, are

significantly larger than the failure related rates. The stiffness problem is tolerated by

applying either aggregation techniques [19], [20] or stiffness-tolerant models [21].

13

Figure 2.1 Analytical performability modeling approaches

Alternatively, the hierarchical approaches eliminate the largeness and stiffness

problems associated to monolithic approach by composing the overall model of the

system from a set of reduced non-stiff models. In this technique, since the performance

related rates are several orders of magnitude larger than the failure related rates, it is

assumed that the system reaches steady-state with regard to the performance related

events between consecutive occurrence of failure events. The performance measures of

the system are computed at each of these steady-states. Furthermore, the general system

is categorized by weighing steady-state performance by applying structure state

probabilities, which leads to a hierarchy of models: a higher-level structure state

availability model representing the failure behavior of components and a number of lower

level performance reward models, for every structural state in the availability model. The

Analytical

Performability

Models

Monolithic

Models
Hierarchical

Models

Markov chains,

Petri Nets
Markov Reward

Models

Fault-Tolerant

Layered

Queueing Model

State-Space-Based Non-State-Space-Based

14

comparison between the hierarchical models and monolithic models for a M/M/C/C

queuing system in a wireless communication network is represented in [22].

Additionally, hierarchical models are categorized into state-space-based, i.e.

Markov Reward Models [23]–[25] , and non-state-space-based models, i.e. Fault-

Tolerant Layered Queuing Model [26], [27].

Analytical modeling approaches offer cost effective tools for analyzing cloud

service performance, allowing the assessment of the influence of a large parameter space

on service performance. A comparison between analytical modeling approaches for cloud

service performance evaluation is provided in [11]. The queuing theory is a classical

approach for modeling and evaluation of computer systems and has been significantly

implemented for evaluating cloud service performance, including network calculus,

which is an extension of the queuing theory. Alternatively, Stochastic Reward Net

(SRN), an extension of Stochastic Petri Net (SPN), is exploited for modeling cloud

service provisioning and service performance analysis. Xiong and Perros [28] modeled a

cloud service provisioning system by implementing a queuing network incorporating two

tandem servers with finite buffer servers and modeling each server as a classical M/M/1

queue. Goswami et al. [29] developed a model for cloud performance analysis by

employing the virtualization feature. The proposed model is a M/M/m/N queue with m

servers and a finite buffer of size N. Ellens et al. [30] developed an M/M/m/m queueing

model with m servers and no buffers before the server for cloud computing centers with

multiple priority classes. In order to simplify the modeling and assessment, the above

techniques assumed exponentially distributed service time and/or inter-arrival time. This

15

assumption does not accurately demonstrate the realistic service feature of cloud

infrastructures.

2.2.2. Simulation-Model Based Techniques

Computer simulations are an alternative to conventional analytical approaches.

The main advantage of the simulation approaches over the corresponding analytical

counterparts is flexibility in representation of complex systems at desired level of

abstractions as well as low storage requirements. Simulation tools provide the

opportunity of evaluating the hypothesis in a controlled environment, allowing fast and

reliable reproduction of results. In general, simulation approaches provide substantial

benefits including: evaluating services in a repeatable and controllable environment and

adjustment of the system bottlenecks before deploying on real clouds. Several cloud

simulators are developed to facilitate the performance analysis of cloud services and

applications. SimGrid [31] is a general framework for simulation of distributed

applications on Grid platforms. Additionally, GangSim is a Grid simulation toolkit that

offers support for modeling of Grid-based virtual organizations and resources.

Furthermore, GridSim [32] is an event-driven simulation toolkit for application in

heterogeneous Grid resources which supports inclusive modeling of grid entities, users,

machines, and network, including network traffic. The main drawback of Grid based

simulation frameworks is their inability to support modeling of virtualization-enabled

resource and application management environments. Cloudsim [33]–[35] is a novel and

generalized java-based event-driven simulation framework that allows modeling and

simulation of cloud computing infrastructures and services. The main advantages of the

16

application of Cloudsim are time effectiveness and flexibility and applicability. SimPy

[36], [37] is a process-oriented discrete event simulation framework based on Python that

provides fast and reliable tools for modeling and simulating cloud computing services

and applications.

There are several different types of applications that go through a transition

during a given time. Simulating these applications are mostly distinguished by the fact

that the events are modeled either continuously or discretely. Consequently, there are two

major simulation techniques for modeling dynamic events, namely continuous and

discrete event simulations. Discrete event simulation [38] is a superior tool for modeling

sophisticated system dynamics and stochastic processes. In contrary to the continuous

event simulation, where events are simulated based on the changes through the given

time frame with no interruption in between events, in discrete event simulation (DES)

approximations are used to jump through the breaks that exists between the two given

events, to the next step of the discrete sequence of events in time. The most important

aspect of DES is the set of activities that happen in a given fraction of time. DESs are

considered activity based simulation in contrary to the continuous event based

simulations. Although, more resources may be needed for discrete event simulations, they

generally execute quicker relative to continuous simulation, since they do not have to

simulate all the time fractions and they only need the initial and ending point of any

system. Discrete event simulation can also be used to predict or observe the behavior of a

system under given circumstances. Simpy and Cloudsim are discrete event simulation

17

frameworks. This work has used Simpy framework for simulating the performance

behavior of an application in presence of failures.

18

3. The Proposed Model

This chapter describes the proposed modeling technique. First, it described the

model that is considered for a cloud-based application. Second, it describes a model for

representing a fault management architecture of an application. Finally, it describes how

to compute the performability measures. The proposed model accounts for the failure

information propagation through the fault management architecture.

3.1. Application Model

An application provides certain kind of service to its end users. An application is

an example of a SaaS software (Software-as-a-Service) owned by an application provider

who elected to deploy it in a cloud. An application deployment in a cloud is composed of

m application instances (A1, A2, …, Am). Each application instance runs on its own VM.

For the modeling purposes in this work, it is assumed that all the VM instances are of the

same type in terms of their processing speed. A similar model for an application has been

assumed earlier by Calheiros et al. [39].

Figure 3.1 represents the application model as a network of queues. Each queue

corresponds to an application instance hosted on its own VM. An application instance can

fail and can be restarted. To restart a failed application instance, the failure needs to be

detected first. The application model incorporates a Load Balancer (LB), which

represents an infinite server and it is assumed to be failure-free. Let λ denote the arrival

rate of jobs, the number of jobs per unit time received by the load balancer (LB).

19

Figure 3.1 Application Model (as network of queues) where the load balancer (LB)

believes that m application instances are operational.

The LB acts as a reverse proxy, which distributes the application traffic across the

corresponding servers. The main benefits of LB includes increasing the capacity and

reliability of applications, improving the overall application performance, and decreasing

the work-load on servers associated with managing and maintaining applications. In this

work, the LB distributes the workload equally among the application instances that it

believes are operational. The phrase “believes are operational” here implies that LB has

an impression that the application instances are operational, however, in reality, some

instances might be in failed state. This belief of LB regarding an application instance

depends on the fault management architecture and the status of the management

components at the time of failure (or at the time of restart completion) of the instance. If

LB believes that m application instances are operational, then the arrival rate at each of

those instances will be λ/m. Let μ be the service rate of each application instance. The

LB







m Application instances

M/M/1



m

m

m

A1

A2

Am

20

application instances are represented by M/M/1 queues, where arrival times are

determined by a Poisson process and job service times are represented by an exponential

distribution. Furthermore, the servers process the client requests on a first-come, first-

served (FIFO) order. Each server is associated with an infinite buffer (i.e. waiting area).

3.2. Fault Management Architecture Model

A separate fault management system [6] can be utilized to monitor the health of the

application instances. The management system can detect and isolate a failure and can

trigger actions such as automatic restart of a failed instance. It can also notify the load

balancer concerning the status of the application instances, which in turn re-distributes

the workload accordingly.

Failures of instances can be detected by mechanisms such as heartbeats and

timeouts on periodic polls. Heartbeat messages from an application instance can be

generated by a special heartbeat interrupt service routine which sends a message to one or

more managers, every time an interrupt occurs, as long as the instance has not crashed. If

an instance cannot initiate heartbeat messages, then it may be able to respond to messages

from the manager(s); these are considered as the status polls. The responses provide the

same information as heartbeat messages. Once the heartbeat information is collected, it

can be propagated to other managers and finally to the load balancer.

The fault management architecture model described here has three types of

components: application instances, managers and the load balancer. There are two types

of arcs: detect (solid-line open-ended arrow) and notify (dashed-line open-ended arrow).

21

These arcs are typed according to the information they convey, in a way which supports

the analysis of belief of the status of the application instances at different points in the

management system. A detect arc from component a to component b convey data that

component b can detect the crash failure of component a and can trigger automatic restart

of component a. The time to detect the failure is assigned as a weight on the arc. A notify

arc from component a to component b implies that component a propagates status data

about application instance(s) that it has collected or received to component b. It is

assumed that the notification happens in no time.

Upon occurrence of a failure of an application instance, the occurrence is first

captured by the manager(s) monitoring that instance through a detect arc. Then the

instance is restarted by the manager(s) and the failure information propagates through

notify arcs, to other manager(s) and finally to the LB which initiate system

reconfiguration by re-distributing the workload among the application instances it

believes are operational. Once the instance has restarted, it can notify its manager(s)

about its status in no time which in turn can propagate the status of the instance to other

managers and the load balancer.

A manager can also monitor other managers. Upon occurrence of a failure of a

manager, the occurrence is first captured by the manager(s) monitoring the failed

manager through a detect arc. Then the instance is restarted by the monitoring

manager(s). In this case, the information does not have to be propagated to the LB.

22

Figure 3.2 shows a centralized fault management architecture for the application

model of Figure 3.1. M1 has been introduced here as the central manager that monitors

all the application instances (A1, A2, …, Am). M1 notifies LB about the status of the

application instances. An application instance Ai where i = 1, 2, …m fails with rate fAi

and can be restarted with mean restart time 1/rAi. The failure and restart rate of the

application instances may be different if the different application instances were created

using N-version programming [40]. The failure and restart rate of M1 is assumed to be

fM1 and rM1. In Figure 3.2, a rectangle represents a component that contains its name, its

failure rate and its restart rate. The LB is assumed to be failure-free. The weight of a

detect arc (i, j), d(i, j), is the time to detect the failure of component i by component j. In

this model, since M1 is not monitored by any other manager, its failure has to be detected

and it has to be restarted by a human administrator. This situation can be modeled by a

detect arc from M1 to LB with weight equal to the time to detect the failure of M1 by a

human being. Usually this weight will be large as compared to the weights on the other

detect arcs (that represent automatic detection without human intervention).

23

Figure 3.2 Centralized Fault Management Architecture Model for the application model

of Figure 3.1. M1 is the central manager.

3.3. Modeling of Performability

The fault management architecture impacts the successful recovery of an

application since the component responsible for reconfiguration (i.e. LB) might believe

that an application instance is operational, however, in reality it may not be true. This

might lead to job loss. This section describes how to compute the mean throughput of an

application in presence of such job loss.

3.3.1. Failure Modeling of Components

Each component (either an application instance or a manager) except LB has three

states: UP, FND (Failure-Not-Detected), FDR (Failure-Detected-and-Restarted).

Let (M1i, M2i,…, Msi) be the operational managers who are monitoring the

health of component i. Since the failure is usually detected using heartbeat messages or

M1

fM1,

rM1

LB

A1

fA1rA1

A2

fA2rA2

Am

fAmrA

m

d(A1,M1)

d(A2,M1)

d(Am,M1)

d(M1,LB)

24

timeouts on periodic polls, the time to detect the failure of component i by manager Mki,

d(i, Mki), is deterministically distributed variable. Let δ be the minimum of the timespans

taken by the managers M1i, M2i,…, Msi to detect the failure of component i, then, δ =

min { d(i, Mki) where k = 1, 2, …s}.

The state transition diagram of a component i is shown in Figure 3.3. Each

component i starts in the UP state. Once it fails with rate fi, it transits to state FND

(Failure-Not-Detected). The failure can be detected with rate 1/δ at which point it is

restarted. This is subject to the condition that at least one of the managers monitoring the

component i is operational when component i fails. Otherwise, the component i will

remain in FND state until one of its managers is operational again. Once the failure of

component i is detected and it is restarted, it transits to state FDR (Failure-Detected-and-

Restarted). The restart rate is ri. Once the restart is complete, the component transits back

to the UP state.

Figure 3.3 Failure Model of each component.

An application instance can process jobs only when it is in UP state. Similarly, a

manager can monitor other components only when it is in UP state.

UP

FND

FDR

fi 

ri

25

3.3.2. Modeling Failure Information Propagation through the fault management

architecture

The load-balancer LB maintains a list containing the states of all the application

instances. Each of these states can be either UP or FDR. These states of the application

instances are the states that the LB believes to be true. LB distributes the workload

equally among the application instances that it believes are in UP state.

Subsequently two situations and their consequences are described next where the

state of Ai that LB believes to be true, becomes inconsistent with the actual state of Ai.

Situation 1- Assuming that LB contains the state of application instance Ai as UP.

When the application instance Ai fails, then the state of Ai that LB has becomes

inconsistent with the actual state of Ai (which is FND). Defining the time τ as follows:

Let P be the set of operational paths (i.e. paths containing all operational

managers) from Ai to LB at the time of failure of Ai. The initial arc of each of these paths

should be a detect arc and the rest should be notify arcs. Subsequently:

 
min

weight of the initial detect arc of path p
p P

 


 (3.1)

Here, jobs will be lost for duration τ since LB will continue sending the jobs to Ai

although Ai has already failed.

If P is null, i.e. no operational path exists from Ai to LB at the time of failure of

Ai, then LB continues to believe that Ai is UP although Ai has already failed. The jobs are

lost until at least one such path exists or Ai comes back to UP state again.

26

Thus, job loss entirely depends on the fault management architecture, status of the

managers at the time of failure, and the failure detection times.

Since job loss affects the mean throughput of the application, the state

inconsistency of LB in this case decreases the mean throughput of the application.

Situation 2 - Assuming that LB contains the state of application instance Ai as

FDR. When the application instance Ai restarts and comes back to UP state, then the state

of Ai that LB has becomes inconsistent with the actual state of Ai (which is UP).

Let P be the set of operational paths (i.e. paths containing all operational

managers) from Ai to LB at the time when Ai became operational. All the arcs of each of

these paths should be notify arcs.

If P contains at least one operational path, then the state of Ai that LB has

becomes consistent with the actual state of Ai.

If P is null, then LB believes that Ai is failed although Ai is in UP state. As a

result, LB does not send any job to Ai. This will result in higher response time for jobs

(that are not lost) compared to the case where the jobs were also sent to Ai.

The state inconsistency of LB in this case results in higher mean response time of

the jobs that are not lost.

27

3.3.3. Computing Performability Measures

The application model and its fault management architecture model are simulated

using a discrete event simulation framework called SimPy [36], [37]—a Python based

framework.

Assuming that the application instances do not fail, then the mean throughput of

the application will be same as the arrival rate, λ. However, if the failures of application

instances and the managers are considered, some jobs will be lost. Let, NTL denote the

normalized throughput loss. As per [7], NTL is the fraction of jobs that are lost. Let N

denote the total number of job arrivals in one simulation run. At the end of each

simulation run, the number of jobs that are lost, n, are computed. Subsequently, the

normalized throughput loss is defined as:

n
NTL

N
 (3.2)

Additionally, the mean throughput of the application, MeanTHR, can be

computed as follows:

 1MeanTHR NTL  (3.3)

During each simulation run, the response time, RTj, of each job j that is not lost, is

recorded. Then, the mean response time, MeanRT, can be estimated as:

1

N n j

j

RT
MeanRT

N n







 (3.4)

28

4. A Comparison of Five Fault

Management Architectures

This chapter studies the effect of five different fault management architectures on

the performance of an application in presence of failures. The effect of the fault

management architectures on the mean throughput of the application and mean response

time of a job that is not lost is evaluated.

The application model is represented in Figure 4.1 with three application

instances (A1, A2 and A3), i.e. m = 3. It is assumed that the application provider requests

to utilize three managers, M1, M2 and M3, for monitoring its application. Table 4.1

represents the model parameters and their values.

Figure 4.1 Application Model (as network of queues)

LB







3 Application instances

M/M/1



3

3

3

A

1

A2

A3

29

Table 4.1 Model Parameters

Parameter Parameter Value

Mean inter-arrival time, 1/λ 1 second

Mean Service time, τ 2 seconds

Mean Time to failure, 1/fi , where i = A1, A2, A3, M1, M2, M3 600 seconds

Mean time to restart, 1/ri, where i = A1, A2, A3, M1, M2, M3 60 seconds

Time to detect a failure automatically by a manager 120 seconds

Time to detect a failure by a human administrator 900 seconds

In this section, the focus is to attempt to answer the question “Which architecture

to choose from the given five fault management architectures (each containing the same

three managers) that will meet throughput and response time objectives”?

In the simulations, the mean inter-arrival time of jobs, 1/λ, is assumed to be 1

second. The mean service time, τ, is assumed to be 2 seconds. The mean time to failure

for each of the three application instances and for each of the three managers is assumed

to be 10 minutes (=600 seconds), i.e. the failure rate is 0.00167 failures/sec. Similarly, the

time to restart is assumed to be 60 seconds, i.e. the restart rate is 0.0167 restarts/sec. The

load-balancer LB is assumed to be failure-free. The inter-arrival time, service time, time

to failure, and time to restart are assumed to be exponentially distributed. The failure

detection time is assumed to be deterministically distributed.

4.1. Description of the Fault Management Architectures

In this analysis, the following five fault management architectures are considered

as given below:

30

Case-1: For this case it is assumed that, the application instance A1 is monitored

by M1, A2 by M2, and A3 by M3. It is also assumed that only application instances can

fail, and there is no management components failure for this case. Therefore, if an

application instance fails, its manager will be able to detect that failure automatically in

120 seconds (2 minutes). The manager components cannot fail and the managers are not

monitored by the other managers. Since the manager failures will not occur and all the

three managers status is assumed to be always up in this case, there is no weight on the

detect arc from each manager to LB, i.e. d(M1, LB), d(M2, LB), and d(M3, LB). The

fault management architecture is shown in Figure 4.2.

Figure 4.2 Case-1: Manager M1 monitors A1, M2 monitors A2, and M3 monitors A3.

The manager components cannot fail.

Case-2: The application instance A1 is monitored by M1, A2 by M2, and A3 by

M3. If an application instance fails, its manager will be able to detect that failure

automatically in 2 minutes. The managers are not monitored by other managers. It is

M2
Does not

fail

LB

Does

not

fail

A1
0.00167,

0.0167

A2
0.00167,

0.0167

A3
0.00167,

0.0167

M1
Does not

fail

M3
Does not

fail

120

120

120

31

assumed that the failure of managers has to be detected by human administrators. Since

the manager failures are not automatically detected, the weight on the detect arc from

each manager to LB is assumed to be 15 minutes, i.e. d(M1, LB), d(M2, LB), and d(M3,

LB) = 900 seconds. The fault management architecture is shown in Figure 4.3.

Figure 4.3 Case-2: Manager M1 monitors A1, M2 monitors A2, M3 monitors A3. The

failure of managers has to be detected by human administrators.

Case-3: This case resembles a hierarchical management architecture. Application

instances, A1 and A2, are monitored by manager M1 whereas A3 is monitored by

manager M2. Managers, M1 and M2, are monitored by another manager M3. Here, it is

assumed that the failure of M3 is not automatically detected. So, the weight on the detect

arc from M3 to LB is assumed to be 15 minutes, i.e. d(M3, LB) = 900 seconds. The fault

management architecture is shown in Figure 4.4.

M2
0.00167,

0.0167

LB

Does

not

fail

A1
0.00167,

0.0167

A2
0.00167,

0.0167

A3
0.00167,

0.0167

M1
0.00167,

0.0167

M3
0.00167,

0.0167

120

120

120

900

900

900

32

Figure 4.4 Case-3: M1 monitors A1 and A2, M2 monitors A3, M1 monitors M1 and M2.

Failure of M3 has to be detected by human administrators.

Case-4: The application instance A1 is monitored by M1, A2 by M2, and A3 by

M3 respectively. The managers also monitor each other. In this case, if the other two

managers have already failed when the third one fails, that failure has to be detected by

human administrators. The fault management architecture is shown in Figure 4.5. The

weight of all the detect arcs that are not labeled in Figure 4.5 is assumed to be 120.

Case-5: Each application instance is monitored by all the three managers. The

managers also monitor each other. In case, if the other two managers have already failed

when the third one fails, that failure has to be detected by human administrators. The

fault management architecture is shown in Figure 4.6. The weight of all the detect arcs

that are not labeled in Figure 4.6 is assumed to be 120. This architecture has the highest

number of detection paths from an application instance to the load balancer LB.

M2
0.00167,

0.0167

LB

Does

not

fail

A1
0.00167,

0.0167

A2
0.00167,

0.0167

A3
0.00167,

0.0167

M1
0.00167,

0.0167

M3
0.00167,

0.0167

120

120

120

120

120

900

33

Figure 4.5 Case-4: The weight of all the detect arcs that are not labeled is 120. Managers

monitor each other.

Figure 4.6 Case-5: The weight of all the detect arcs that are not labeled is 120. Each

application instance is monitored by all the three managers. Managers monitor each

other.

M2
0.00167,

0.0167

LB

Does

not

fail

A1
0.00167,

0.0167

A2
0.00167,

0.0167

A3
0.00167,

0.0167

M1
0.00167,

0.0167

M3
0.00167,

0.0167

900

900

900

M2
0.00167,

0.0167

LB

Does

not

fail

A1
0.00167,

0.0167

A2
0.00167,

0.0167

A3
0.00167,

0.0167

M1
0.00167,

0.0167

M3
0.00167,

0.0167

900

900

900

34

The application model and the corresponding fault management architecture

model are simulated using SimPy 3.0.8. The simulation time was 9000 seconds with 10

simulation runs for each case. Since the number of simulation runs is < 30, the

confidence interval formula that involves t-distribution is used rather than standard

normal distribution. Since the number of simulation runs is 10, the degrees of freedom for

t-distribution is equal to 9. The t value for 95% confidence with degree of freedom equal

to 9 is t = 2.262. The 95% confidence interval for the mean response time is (MeanRT ±

2.262*SEM) where SEM is the standard error of mean. Similarly, the confidence interval

for the mean throughput and the NTL are computed. The error bars are shown in each of

the figures given below.

4.2. The Effect of Varying the Mean Inter-Arrival Time

Table 4.2. demonstrates the results of the simulations for the effect of the mean

inter-arrival time on the values of the normalized throughput loss, mean throughput, and

mean response time of jobs that are not lost. In the simulations, the mean inter-arrival

time (i.e. 1/λ) varies from 0.7 second to 1.5 seconds while maintaining the other

parameter values same as Table 4.1. Figure 4.7 demonstrates the Table 4.2 simulation

data. According to Figure 4.7(a), for high workload (i.e. for mean inter-arrival time 0.7

second), Case-5 has lower NTL (i.e. higher mean throughput) as compared to the other

four cases. This is because Case-5 is densely connected and it has more number of

detection paths from the application instances to LB through the fault management

architecture. However, based on Figure 4.7(b), Case-5 has higher MeanRT for jobs that

are not lost. This is because in Case-5, more number of jobs is accepted by the

35

application and thus, the number of jobs competing for resources is higher than the other

three cases.

Furthermore, for high workload (i.e. for mean inter-arrival time 0.7 second),

• If the application provider wants a management architecture that will give maximum

throughput, then Case-5 will be the choice (i.e. Figure 4.7(c)). On the other hand, if

the provider wants an architecture that will give minimum mean response time for

jobs that are accepted by the application, then Case-2 will be the choice (i.e. Figure

4.7(b)).

• If the application provider has some performance objectives that has to be met by the

application to its end-users, for example, average throughput greater or equal to

1job/sec and average response time of 45 seconds or less, then Case-4 will be the

architecture of choice.

For low workload (i.e. for mean inter-arrival time 1.5 seconds), all the cases have

almost same MeanRT, however, Case-5 has higher throughput and lower NTL compared

to the other cases. Consequently, for low workload circumstances, Case-5 will be the

choice.

36

Table 4.2 The simulation results for the effect of varying the mean inter-arrival time

1/λ NTL

Mean

NTL

SEM

ArvRt

Mean

ArvRt

SEM

Resptm

Mean

Resptm

SEM

THR

Mean

THR

SEM

Case-1

0.7 0.159 0.007 1.43 0.006 49.835 5.638 1.196 0.01

0.9 0.109 0.006 1.113 0.005 10.965 0.642 0.991 0.007

1.1 0.116 0.006 0.911 0.004 6.176 0.44 0.805 0.005

1.3 0.101 0.007 0.777 0.002 4.576 0.405 0.698 0.005

1.5 0.091 0.005 0.67 0.003 3.51 0.158 0.609 0.005

Case-2

0.7 0.402 0.015 1.43 0.006 34.296 1.94 0.852 0.021

0.9 0.359 0.019 1.115 0.004 9.051 0.615 0.715 0.022

1.1 0.375 0.028 0.913 0.004 5.105 0.42 0.57 0.025

1.3 0.333 0.017 0.775 0.002 4.167 0.32 0.517 0.014

1.5 0.373 0.021 0.673 0.002 3.326 0.216 0.422 0.014

Case-3

0.7 0.364 0.026 1.434 0.006 42.498 4.753 0.909 0.038

0.9 0.338 0.018 1.119 0.004 11.187 0.58 0.74 0.02

1.1 0.318 0.03 0.913 0.005 5.083 0.294 0.623 0.029

1.3 0.337 0.02 0.774 0.002 4.065 0.214 0.513 0.016

1.5 0.329 0.023 0.671 0.002 3.36 0.127 0.45 0.015

Case-4

0.7 0.231 0.009 1.429 0.006 42.437 2.49 1.094 0.016

0.9 0.162 0.011 1.114 0.005 10.828 0.788 0.931 0.012

1.1 0.17 0.008 0.913 0.004 5.202 0.264 0.757 0.009

1.3 0.164 0.007 0.772 0.003 3.928 0.174 0.645 0.005

1.5 0.164 0.018 0.676 0.003 3.383 0.115 0.565 0.012

Case-5

0.7 0.157 0.012 1.434 0.006 47.676 2.794 1.203 0.015

0.9 0.086 0.006 1.115 0.004 12.079 0.855 1.018 0.008

1.1 0.099 0.008 0.911 0.004 5.913 0.267 0.82 0.005

1.3 0.095 0.013 0.774 0.003 4.548 0.274 0.7 0.012

1.5 0.077 0.003 0.673 0.003 3.371 0.101 0.621 0.003

37

Figure 4.7(a)

Figure 4.7(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.7 0.9 1.1 1.3 1.5

N
o

rm
al

iz
e

d
 T

h
ro

u
gh

p
u

t
Lo

ss
,N

TL

Mean Inter-arrival time (1/)

Case-1

Case-2

Case-3

Case-4

Case-5

0

10

20

30

40

50

60

70

0.7 0.9 1.1 1.3 1.5

M
e

an
 R

e
p

o
n

se
 t

im
e

 o
f

jo
b

s
th

at

ar
e

n
o

t
lo

st
, M

e
an

R
T

Mean inter-arrival time (1/)

Case-1

Case-2

Case-3

Case-4

Case-5

38

Figure 4.7(c)

Figure 4.7(a) Normalized throughput loss (NTL), (b) Mean response time of jobs that are

not lost, and (c) Mean throughput. This is shown for all five cases, Case-1 to Case-5

(with varying mean inter-arrival time).

4.3. The Effect of Varying the Mean Time to Failure

Table 4.3 incorporates the results of the simulations for the effect of varying the

mean failure time on the normalized throughput loss (NTL), mean throughput, and mean

response time of jobs that are not lost .Subsequently, Figure 4.8 demonstrates the

simulation results in Table 4.3 for the values of the normalized throughput loss (NTL),

mean throughput, and mean response time of jobs that are not lost with the mean time to

failure of the three managers (i.e. 1/fM1, 1/fM2, 1/fM3) varying from 600 seconds to 1800

seconds, while maintaining the other parameter values same as Table 4.1.

According to Figure 4.8, as the time to failure for the three managers increases,

NTL decreases (Figure 4.8(a)). Consequently, the average throughput increases for all the

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.7 0.9 1.1 1.3 1.5

M
e

an
 T

h
ro

u
gh

p
u

t,
 M

e
an

TH
R

Mean inter-arrival time(1/)

Case-1

Case-2

Case-3

Case-4

Case-5

39

five cases (Figure 4.8(b)). The proportion of increase is higher for Case-2 as compared to

the other cases. Subsequently, it is assumed that the throughput objective is 0.8 jobs/sec

and response time objective to be met is 8 seconds or less. Figure 4.8 suggests that in

order to meet both these objectives, it is required to buy the managers whose failure times

are 20 minutes or more and select either Case-3 or Case-4. Since more reliable managers

may be more expensive than less reliable ones, it will be cost effective to buy the

managers whose failures times are 20 minutes and then select the architecture in Case-4,

since Case-4 has similar MeanTHR and lower MeanRT than Case-3.

Table 4.3 The simulation results for the effect of varying the mean time to failure

Failure

time
NTL

Mean

NTL

SEM

ArvRt

Mean

ArvRt

SEM

Resptm

Mean

Resptm

SEM

THR

Mean

THR

SEM

Case-1

600 0.103 0.004 1.001 0.004 8.586 0.785 0.898 0.007

1200 0.103 0.004 1.001 0.004 8.586 0.785 0.898 0.007

1800 0.103 0.004 1.001 0.004 8.586 0.785 0.898 0.007

Case-2

600 0.377 0.019 1.005 0.004 6.818 0.317 0.625 0.018

1200 0.255 0.016 1.006 0.003 6.659 0.447 0.749 0.015

1800 0.194 0.018 1.007 0.003 6.271 0.236 0.812 0.019

Case-3

600 0.318 0.029 1.002 0.005 7.711 0.479 0.684 0.031

1200 0.149 0.011 1.006 0.004 7.97 0.662 0.856 0.014

1800 0.152 0.021 1.003 0.003 7.258 0.42 0.85 0.02

Case-4

600 0.148 0.013 1.003 0.003 6.415 0.207 0.854 0.013

1200 0.145 0.01 1.003 0.005 7.449 0.464 0.857 0.01

1800 0.136 0.006 1.004 0.004 7.343 0.404 0.867 0.008

Case-5

600 0.096 0.018 1.005 0.004 7.346 0.389 0.907 0.018

1200 0.087 0.004 1.005 0.004 8.223 0.956 0.917 0.005

1800 0.071 0.003 1.006 0.005 7.756 0.4 0.933 0.005

40

Figure 4.8(a)

Figure 4.8(b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

600 1200 1800

N
o

rm
al

iz
e

d
 T

h
ro

u
gh

p
u

t
Lo

ss
,N

TL

Time to failure for managers (1/fi), for all i = M1, M2, M3

Case-1

Case-2

Case-3

Case-4

Case-5

0

2

4

6

8

10

12

600 1200 1800

M
e

an
 R

e
p

o
n

se
 t

im
e

 o
f

jo
b

s
th

at

ar
e

n
o

t
lo

st
, M

e
an

R
T

Time to failure for managers (1/fi), for all i = M1, M2, M3

Case-1

Case-2

Case-3

Case-4

Case-5

41

Figure 4.8(c)

Figure 4.8 (a) Normalized throughput loss (NTL), (b) Mean response time of jobs that are

not lost, and (c) Mean throughput. This is shown for all five cases, Case-1 to Case-5

(with varying mean time to failure of the three managers).

4.4. The Effect of Varying the Failure Detection Time

This section discusses the values of the normalized throughput loss (NTL), mean

throughput, and mean response time of jobs that are not lost with the failure detection

time by the three managers varying from 60 seconds to 180 seconds while maintaining

the other parameter values same as Table 4.1. The results of the SimPy simulations are

represented in Table 4.4.

Figure 4.9 demonstrates the results of the simulations in Table 4.4. According to

Figure 4.9, for the objective to maximize the system throughput, it will be better to

choose 1-minute detection interval with Case-5 as the fault management architecture. On

the other hand, if the goal is to minimize the response time of jobs that are not lost, then

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

600 1200 1800

M
e

an
 T

h
ro

u
gh

p
u

t,
 M

e
an

TH
R

Time to failure for managers (1/fi), for all i = M1, M2, M3

Case-1

Case-2

Case-3

Case-4

Case-5

42

for 1-minute detection interval, Case-2 will be the choice. For 2-minute detection

interval, Case-3 is worse compared to Case-4 and Case-5, since it demonstrates lower

throughput and higher response times of jobs that are not lost compared to the other two

cases.

Table 4.4 The simulation results for the effect of varying the failure detection time

Detection

Time
NTL

Mean

NTL

SEM

ArvRt

Mean

ArvRt

SEM

Resptm

Mean

Resptm

SEM

THR

Mean

THR

SEM

Case-1

60 0.062 0.006 1.004 0.004 7.386 0.409 0.941 0.006

120 0.103 0.004 1.001 0.004 8.586 0.785 0.898 0.007

180 0.134 0.007 1.005 0.004 8.102 0.485 0.87 0.006

Case-2

60 0.302 0.021 1.002 0.005 6.235 0.337 0.699 0.022

120 0.377 0.019 1.005 0.004 6.818 0.317 0.625 0.018

180 0.489 0.016 1.004 0.004 5.714 0.257 0.513 0.017

Case-3

60 0.181 0.014 1.011 0.003 8.133 0.396 0.827 0.015

120 0.318 0.029 1.002 0.005 7.711 0.479 0.684 0.031

180 0.419 0.052 1.004 0.004 6.247 0.36 0.583 0.052

Case-4

60 0.087 0.005 1.007 0.003 8.324 0.568 0.918 0.004

120 0.148 0.013 1.003 0.003 6.415 0.207 0.854 0.013

180 0.27 0.016 1.004 0.004 6.432 0.239 0.732 0.015

Case-5

60 0.05 0.004 1.001 0.006 7.722 0.622 0.95 0.006

120 0.096 0.018 1.005 0.004 7.346 0.389 0.907 0.018

180 0.131 0.013 1.007 0.003 8.208 0.684 0.874 0.014

43

Figure 4.9(a)

Figure 4.9(b)

0

0.1

0.2

0.3

0.4

0.5

0.6

60 120 180

N
o

rm
al

iz
e

d
 T

h
ro

u
gh

p
u

t
Lo

ss
,N

TL

Time to detect a failure automatically by a manager, M1, M2 or M3

Case-1

Case-2

Case-3

Case-4

Case-5

0

2

4

6

8

10

12

60 120 180

M
e

an
 R

e
p

o
n

se
 t

im
e

 o
f

jo
b

s
th

at

ar
e

n
o

t
lo

st
, M

e
an

R
T

Time to detect a failure automatically by a manager, M1, M2 or M3

Case-1

Case-2

Case-3

Case-4

Case-5

44

Figure 4.9(c)

Figure 4.9 (a) Normalized throughput loss (NTL), (b) Mean response time of jobs that are

not lost, and (c) Mean throughput. This is shown for all five cases, Case-1 to Case-5

(with varying failure detection time by the three managers).

0

0.2

0.4

0.6

0.8

1

1.2

60 120 180

M
e

an
 T

h
ro

u
gh

p
u

t,
 M

e
an

TH
R

Time to detect a failure automatically by a manager, M1, M2 or M3

Case-1

Case-2

Case-3

Case-4

Case-5

45

5. Conclusion

This thesis proposed a discrete event simulation model that accounts for the

impact of the fault management-architecture on the performance of a cloud-based

application. The value of including the fault management architecture in the analysis is

first to account for the failures and restarts of managers, second is to include delays to

detect the failures, and third is to evaluate the limitations of the fault management

architecture. These three considerations increase the fraction of jobs that are lost thereby

affecting the system throughput. In this thesis, first, the application model, then the fault

management architecture model, and finally how to compute the performability measures

were described. The application model incorporated a load balancer that evenly

distributed the workload evenly among the operational application instances. A

centralized fault management architecture model, including application instances,

managers, and the load balancer, was assumed for the application model to monitor the

health of the application instances. Subsequently, the application model and the

corresponding fault management architecture model were simulated by using the SimPy

discrete event simulation framework and the performability measures, including the

normalized throughput loss, mean throughput of the application, and the mean response

time were investigated.

This thesis demonstrated the application of the proposed modeling technique by

comparing five different sample fault management architectures. The effect of varying

46

the mean inter-arrival time, time to failure for managers, and time to detect a failure

automatically by a manager on the performance measures was computed and discussed.

The examples provided in this work considered only failures of application

instances and managers. This is because, generally, the virtual machines and physical

machines are highly available and they are typically managed by the cloud providers.

However, if the application provider also requires monitoring the virtual machines and/or

physical machines allocated for their applications, then that can be effortlessly

incorporated into the analysis as well.

The proposed model will benefit application providers to answer several

important questions related to selection of fault management architecture for their

application, including the appropriate fault management architecture for monitoring the

application instances to satisfy the throughput and response time SLAs as well as the

proper detection interval required for configuring the managers.

The results gathered from the study of the five different sample fault management

architectures, can be used in applications with more than three managers or three

application instances, since the outcomes can be generalized to n managers and n

application instances. Furthermore, other application architectures such as multi-tier

architectures can be investigated in future works.

47

References

[1] D. A. Menascé and P. Ngo, “Understanding Cloud Computing: Experimentation

and Capacity Planning,” in Computer Measurement Group Conference, 2009.

[2] V. Cardellini, M. Colajanni, and P. S. Yu, “Dynamic load balancing on Web-

server systems,” IEEE Internet Comput., vol. 3, no. 3, pp. 28–39, 1999.

[3] N. Grozev and R. Buyya, “Multi-Cloud Provisioning and Load Distribution for

Three-Tier Applications,” ACM Trans. Auton. Adapt. Syst., vol. 9, no. 3, pp. 1–21,

Oct. 2014.

[4] K. Al Nuaimi, N. Mohamed, M. Al Nuaimi, and J. Al-Jaroodi, “A Survey of Load

Balancing in Cloud Computing: Challenges and Algorithms,” 2012 Second Symp.

Netw. Cloud Comput. Appl., pp. 137–142, Dec. 2012.

[5] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically scaling

applications in the cloud,” ACM SIGCOMM Comput. Commun. Rev., vol. 41, no.

1, p. 45, Jan. 2011.

[6] “ManageEngine,” 2017. [Online]. Available: https://www.manageengine.com/.

[Accessed: 27-Mar-2017].

[7] K. S. Trivedi, J. K. Muppala, S. P. Woolet, and B. R. Haverkort, “Composite

performance and dependability analysis,” Perform. Eval., vol. 14, pp. 197–215,

1992.

[8] G. Bolch, Queueing networks and Markov chains : modeling and performance

evaluation with computer science applications. Wiley-Interscience, 2006.

[9] T. Erl, Service-oriented Architecture: Concepts, Technology, and Desing. Boston:

Prentice Hall, 2005.

[10] G. Zamani and O. Das, “Impact of Fault Management Architecture on

Performance of Cloud-based Applications,” in Submitted to the 13th European

Dependable Computing Conference (EDCC 2017), 2017.

[11] Q. Duan, “Cloud service performance evaluation: status, challenges, and

opportunities – a survey from the system modeling perspective,” Digit. Commun.

Networks, vol. 3, no. 2, pp. 101–111, 2017.

[12] V. Stantchev, “Performance Evaluation of Cloud Computing Offerings,” 2009

Third Int. Conf. Adv. Eng. Comput. Appl. Sci., pp. 187–192, Oct. 2009.

[13] G. Ataş and V. C. Gungor, “Performance evaluation of cloud computing platforms

using statistical methods,” Comput. Electr. Eng., vol. 40, no. 5, pp. 1636–1649,

2014.

48

[14] Meyer, “On Evaluating the Performability of Degradable Computing Systems,”

IEEE Trans. Comput., vol. C-29, no. 8, pp. 720–731, Aug. 1980.

[15] K. S. Trivedi, G. Ciardo, M. Malhotra, and R. A. Sahner, “Dependability and

performability analysis,” Perform. Eval. Comput. Commun. Syst., pp. 587–612,

1993.

[16] N. Privault, Understanding Markov chains : examples and applications. Springer,

2013.

[17] M. Diaz, Petri nets : fundamental models, verification and applications. ISTE,

2009.

[18] B. R. Haverkort and K. S. Trivedi, “Specification techniques for Markov reward

models,” Discret. Event Dyn. Syst. Theory Appl., vol. 3, no. 2–3, pp. 219–247, Jul.

1993.

[19] Bobbio and Trivedi, “An Aggregation Technique for the Transient Analysis of

Stiff Markov Chains,” IEEE Trans. Comput., vol. C-35, no. 9, pp. 803–814, Sep.

1986.

[20] A. Reibman, K. Trivedi, S. Kumar, and G. Ciardo, “Analysis of Stiff Markov

Chains,” ORSA J. Comput., vol. 1, no. 2, pp. 126–133, May 1989.

[21] M. Malhotra, J. K. Muppala, and K. S. Trivedi, “Stiffness-tolerant methods for

transient analysis of stiff Markov chains,” Microelectron. Reliab., vol. 34, no. 11,

pp. 1825–1841, Nov. 1994.

[22] Yue Ma, J. J. Han, and K. S. Trivedi, “Composite performance and availability

analysis of wireless communication networks,” IEEE Trans. Veh. Technol., vol.

50, no. 5, pp. 1216–1223, 2001.

[23] R. Ghosh, K. S. Trivedi, V. K. Naik, and D. S. Kim, “End-to-End Performability

Analysis for Infrastructure-as-a-Service Cloud: An Interacting Stochastic Models

Approach,” 2010 IEEE 16th Pacific Rim Int. Symp. Dependable Comput., pp. 125–

132, Dec. 2010.

[24] F. Longo, R. Ghosh, V. K. Naik, and K. S. Trivedi, “A scalable availability model

for Infrastructure-as-a-Service cloud,” 2011 IEEE/IFIP 41st Int. Conf. Dependable

Syst. Networks, pp. 335–346, Jun. 2011.

[25] J. Dantas, R. Matos, J. Araujo, and P. Maciel, “An availability model for

eucalyptus platform: An analysis of warm-standy replication mechanism,” 2012

IEEE Int. Conf. Syst. Man, Cybern., pp. 1664–1669, Oct. 2012.

[26] O. Das and C. Murray Woodside, “Evaluating layered distributed software systems

with fault-tolerant features,” Perform. Eval., vol. 45, no. 1, pp. 57–76, 2001.

[27] O. Das and C. Murray Woodside, “The fault-tolerant layered queueing network

49

model for performability of distributed systems,” Proceedings. IEEE Int. Comput.

Perform. Dependability Symp. IPDS’98 (Cat. No.98TB100248), pp. 132–141,

1998.

[28] K. Xiong and H. Perros, “Service Performance and Analysis in Cloud

Computing,” 2009 Congr. Serv. - I, pp. 693–700, Jul. 2009.

[29] V. Goswami, S. S. Patra, and G. B. Mund, “Performance analysis of cloud with

queue-dependent virtual machines,” 2012 1st Int. Conf. Recent Adv. Inf. Technol.,

pp. 357–362, Mar. 2012.

[30] W. Ellens, M. Ivkovic, J. Akkerboom, R. Litjens, and H. van den Berg,

“Performance of Cloud Computing Centers with Multiple Priority Classes,” 2012

IEEE Fifth Int. Conf. Cloud Comput., pp. 245–252, Jun. 2012.

[31] A. Legrand, L. Marchal, and H. Casanova, “Scheduling distributed applications:

the SimGrid simulation framework,” CCGrid 2003. 3rd IEEE/ACM Int. Symp.

Clust. Comput. Grid, 2003. Proceedings., pp. 138–145, 2003.

[32] R. Buyya and M. Murshed, “GridSim: a toolkit for the modeling and simulation of

distributed resource management and scheduling for Grid computing,” Concurr.

Comput. Pract. Exp., vol. 14, no. 13–15, pp. 1175–1220, Nov. 2002.

[33] R. N. Calheiros, R. Ranjan, C. A. F. De Rose, and R. Buyya, “CloudSim: A Novel

Framework for Modeling and Simulation of Cloud Computing Infrastructures and

Services,” Mar. 2009.

[34] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,

“CloudSim: a toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms,” Softw. Pract.

Exp., vol. 41, no. 1, pp. 23–50, Jan. 2011.

[35] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and simulation of scalable

Cloud computing environments and the CloudSim toolkit: Challenges and

opportunities,” 2009 Int. Conf. High Perform. Comput. Simul., pp. 1–11, Jun.

2009.

[36] “Simpy,” 2017. [Online]. Available: https://simpy.readthedocs.org/. [Accessed:

27-Mar-2017].

[37] V. Castillo, “Parallel Simulations of Manufacturing Processing using Simpy, a

Python-Based Discrete Event Simulation Tool,” Proc. 2006 Winter Simul. Conf.,

pp. 2294–2294, Dec. 2006.

[38] B. Sharda and S. J. Bury, “Evaluating production improvement opportunities in a

chemical plant: a case study using discrete event simulation,” J. Simul., vol. 6, no.

2, pp. 81–91, May 2012.

[39] R. N. Calheiros, R. Ranjan, and R. Buyya, “Virtual Machine Provisioning Based

50

on Analytical Performance and QoS in Cloud Computing Environments,” 2011

Int. Conf. Parallel Process., pp. 295–304, Sep. 2011.

[40] A. Avizienis, “The N-Version Approach to Fault-Tolerant Software,” IEEE Trans.

Softw. Eng., vol. SE-11, no. 12, pp. 1491–1501, Dec. 1985.

