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Abstract 

Increasingly, the application providers are using a separate fault management system 

that offers out-of-the-box monitoring and alarms support for application instances. A fault 

management system usually consists of a set of management components that does both fault 

detection and can trigger actions, for example, automatic restart of monitored components. 

Such a distributed structure supports scalability and helps to ensure that an application meets 

its quality requirements.  However, successful recovery of an application now depends on the 

fault management architecture and the status of the management components. This thesis 

presents a model that accounts for the effect of management-architecture based coverage on 

the mean throughput of an application. Such a model would benefit the application providers 

for choosing the right fault management architecture for their applications. Comparing five 

different sample fault management architectures, shows that for higher workload, the case 

with highest number of detection paths has the maximum throughput.   
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1. Introduction 

 

1.1. Motivation 

Application providers are increasingly leveraging cloud computing resources to 

enhance the scalability of services, provided by their applications, delivered to their end 

users. Cloud computing offers several benefits to its consumers, including dynamic 

scaling of VMs as required on a pay-per-use basis, and consistent performance and 

availability of the virtual computing resources [1].  

In order to improve performance, application providers often employ load-

balancing replication [2]–[5] for their applications. Such replication distributes the 

workload across multiple application instances where each instance usually runs on its 

own virtual machine (VM). An application can still function in response to application 

instance failures, perhaps with a degraded performance. However, the replication is 

ineffective if the mechanisms are not in place to detect and recover from failures.   

Nowadays, the application providers are using a separate fault management 

system [6] that offers out-of-the-box monitoring and alarms support for the application 

components (instead of implementing the failure detection mechanisms within the 

application itself).  Such usage promotes software reuse and additionally eases the 

development of the application. A fault management system is usually distributed in 
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nature and consists of a set of management components that does both fault detection and 

can trigger actions, for example, automatic restart of the monitored components. This sort 

of distributed structure supports scalability and helps to ensure that an application meets 

its quality requirements. However, successful recovery of an application now depends on 

the fault management architecture and the status of the management components. Here, 

recovery implies isolating and removing the failed application instance(s) and re-

distributing the load among the operational instances. 

In order to evaluate the mean throughput of these applications, one must consider 

the fraction of the jobs that are lost, also known as normalized throughput loss [7]. When 

an application instance fails, jobs are lost because the load balancer does not know about 

the failure and it continues to send the jobs to the failed instance. This may happen due to 

following reasons: 

1. The management component(s) responsible for notifying the load balancer about the 

failure are in failed status, or; 

2. The management component(s) responsible for detecting the failure are in failed 

status, or; 

3. The failure is currently being detected and the load balancer is yet to know about the 

failure. 

The performance measures of systems in presence of failures, also known as 

performability measures, can be evaluated analytically using an exact monolithic Markov 

model [8]. This approach suffers from largeness and stiffness problem. It can also be 
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evaluated using hierarchical Markov Reward models [8]: a higher-level Markov 

dependability model and a set of lower level performance related models, one for each 

state in the dependability model. The use of Markov Reward models is limited to 

scenarios where the failure and restarts occur at much slower time scale than the 

processing times. This limits its use for the current work since the restart times and 

failure detection times may be similar in time scales as the application processing times. 

This thesis presents a discrete-event simulation model that accounts for the 

management-architecture-based coverage on the mean throughput of an application. It 

considers the job loss occurring due to the above-mentioned reasons. Such a model would 

benefit application providers in choosing the right fault management architecture for their 

applications. Although the proposed simulation model may be computationally expensive 

as compared to an analytical counterpart, it is more general in terms of service time, 

inter-arrival time, failure time, detection time, and restart time distributions. 

1.2. Cloud Computing 

In recent years, cloud computing has emerged as a popular computing service 

environment for personal, academic, and industrial applications, including Google, 

Amazon, and Baidu. Cloud computing is an internet based computing technique, which 

uses a network of remote servers to manage, store, and process the shared information 

and resources. This technology provides enhanced computing efficiency by centralizing 

data storage and data processing. The most significant advantages of cloud computing 

include cost efficiency by reducing the software and hardware costs, time efficiency by 
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reducing the computation times, improved accessibility providing access to data and 

resources at any time and any location, and improved data recovery. The primary goal of 

cloud computing is to make efficient access available to remote and geographically 

distributed resources. In order to distribute the cloud resources efficiently and ensure 

providing the users with necessary resources, it is required to implement optimized 

resource management and provisioning strategies in cloud systems. Cloud resource 

provisioning and management is accomplished by using different strategies, including: 

dynamic provisioning and user-self provisioning. The fundamental of all these strategies 

is to achieve fair distribution of resources while maintaining maximum utilization of the 

resources and maintaining minimum resource idle time.  

A key component in the cloud service provisioning is the Service Oriented 

Architecture (SOA) [9], which captures computational resources through abstract 

interfaces to separate services from their corresponding implementations. Conventional 

cloud service models include Infrastructure-as-a-Service (IaaS), Platform-as-a-service 

(PaaS), and Software-as-a-Service. IaaS, formerly known as Hardware-as-a-Service, 

allows the customers to access the resources, such as storage, processing, and 

networking, remotely over the internet. This enables the client to dynamically scale the 

configuration and only pay for those services that are actually employed. IaaS is offered 

in three different models, namely private, public, and hybrid. PaaS deals with operating 

systems and delivers a platform that allows the users to execute existing applications or to 

develop and test new application by providing the customer with virtualized servers. This 

is especially beneficial for geographically-distributed development teams to work on a 
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software development project together. SaaS is the most popular model of using cloud 

computing, which allows several clients to share infrastructure in a private and secure 

manner. 

1.3. Software as a Service (SaaS) 

An application provides certain types of service to its end users. An application is 

an example of a SaaS software owned by an application provider who chose to deploy it 

in a cloud.  SaaS is a method of software delivery and licensing in which a third-party 

provider hosts applications and makes them available to clients remotely over the 

Internet. SaaS is the application layer of cloud computing along with the platform layer, 

platform as a service (PaaS), and the infrastructure layer, infrastructure as a service 

(IaaS).  

Unlike the conventional on-premise software delivery model, in SaaS software 

distribution model a third party hosts and maintains the software application and data. 

This eliminates the need for companies to install and run software applications locally. 

This in turn significantly shrinks the extensive hardware acquisition expenses as well as 

provisioning and maintenance, software licensing, installation, and support costs. 

Recently the application of SaaS delivery model is increasing in healthcare and 

engineering practices. Examples of SaaS include Google Doc, Gmail, and Zoho. 

 The main benefits of the SaaS delivery model include: 

a. SaaS facilitates the pay-as-you-go model, where instead of purchasing the software 

license and the corresponding supporting software, it offers the customers a 
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subscription (either monthly or annually), which allows them to access the 

applications and data, as well as providing the associated support and maintenance. 

b. SaaS provide remote access to the software application and data over the internet, 

which allows the customers to access them from any physical location. 

1.4. Research Objective 

This thesis develops a model that accounts for the effect of management-

architecture based coverage on the mean throughput of an application. The value of 

including the fault management architecture in the analysis is first to account for the 

failures and restarts of managers, second is to include delays to detect the failures, and 

third is to evaluate the limitations of the fault management architecture. These three 

considerations increase the fraction of jobs that are lost thereby affecting the system 

throughput.  This thesis demonstrates the use of the model by comparing five different 

sample fault management architectures.  The application model and its fault management 

architecture models are simulated by using a discrete event simulation framework called 

SimPy, a Python based framework. This fault management model analyzes cases with 

one or more points of failure. There are number of application servers running on their 

virtual machines. 

The examples given here consider only failures of application instances and 

managers. This is because, usually, the virtual machines and physical machines are 

highly available and they are usually managed by the cloud providers. However, if the 

application provider also wants to monitor the virtual machines and/or physical machines 
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allocated for their applications, then that can be easily included in the analysis as well. 

Different types of failure can be considered including, crash and sudden failures, which 

occur randomly, in addition to, security or aging failures that happen when the 

component gets obsolete and crashes. This work only considers the crash and sudden 

failures. 

The proposed model will benefit application providers to answer several important 

questions related to selection of fault management architecture for their application. For 

example, if I buy three managers (with given failure and restart rates) to monitor my 

application instances, how should I connect them so that it meets the throughput and 

response time SLAs? What detection interval should I set while configuring the 

managers? 

In this work, five different sample fault management architectures are 

investigated. For Case-1, it is assumed that the application server’s VMs can fail, 

however, no management component failure occurs at any point of time. For this case, 

the architecture is constructed such that each management component monitors one 

application server, and a client manager controls all the management components. The 

general structure of Case-2 is very similar to Case 1, except that management 

components can also fail in this case. Since there is no manager monitoring the managers, 

in Case 2, the failure of managers must be detected by human administrators. Case-3 

represents a multi-layered management architecture. In this case, some of the mangers 

may monitor more than one application server, such that other than the client manager 
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that acts as a central manager, there are other management components additionally 

monitoring their status. In Case-4 each manger not only monitors its assigned application 

servers, but also monitors the other management components, and reports back to the 

client manager. Finally, for Case-5, every application server is monitored by all the 

management components. Additionally, similar to Case 4, each manager monitors all the 

other management components.  

 Subsequently, average response time, job loss probability, arrival rate, and 

throughput are determined for each case for multiple runs of the SimPy simulation model. 

Different parameters are considered in the simulations, including change in detection 

time, failure time, and inter arrival time. Finally, the results of the simulations for the 

proposed five architecture cases are compared and discussed. 

1.5. Research Contributions 

The contributions of this thesis are as follows: 

a. Development of a model that accounts for the effect of fault management-

architecture based coverage on the mean throughput of an application. 

b.  Discrete event simulation of the proposed model using SimPy framework. 

c. Comparison of five different fault management architectures on the 

performance of a cloud application using the proposed modeling technique. 

The results of this analysis are incorporated into a research manuscript and 

submitted to the 13th European Dependable Computing Conference (EDCC 2017) in 

Geneva, Switzerland [10].  
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1.6. Thesis Outline 

This thesis is organized as follows: Chapter 2 represents the background on 

performability models. The analytical and simulation approaches are described and the 

benefits of the simulation approaches over the analytical counterparts are discussed to 

justify the application of simulation approaches in this work. Chapter 3 describes the 

proposed modeling technique. Chapter 4 compares the impact of five different fault 

management architectures on the performance of a cloud application. Finally, Chapter 5 

provides the summary of the results of the thesis.  
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2. Background 

 

This chapter discusses the key principles and definitions that are applied to this 

work. Different performability evaluation techniques are described and the advantages 

and the shortcomings of each technique is discussed.  

2.1. Performability Evaluation Techniques 

There are two ways to evaluate performability of a system: measurement-based 

evaluation or model-based evaluation. 

2.1.1. Measurement-based Evaluation 

Several cloud service evaluations are based on measurements performed on a 

cloud infrastructure as a testbed. The general procedure includes specifying the purpose 

and the scope of the evaluation and identifying the features/aspects of the cloud to be 

evaluated, classifying the performance metrics and indicating the proper benchmarks 

applications for testing, and finally, setting up the experimental environment. A list of 

general performance metrics for evaluating typical cloud services is given in [11]. 

Stantchev [12] proposed a general approach based on architectural transparent black-box 

methodology for evaluating non-functional QoS properties of individual cloud services. 

Atas and Gungor [13] proposed a framework for PaaS performance assessment based on 

a set of benchmark algorithms that allows the computation of the most proper PaaS 

service provider based on different source and application requirements. The main 
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disadvantage of measurement-based cloud evaluation approaches is that it is typically 

expensive to develop large scale testbeds that realistically demonstrate cloud service 

provisioning scenarios. Furthermore, they typically necessitate costly and widespread 

measurements and experimentations and the accuracy results significantly rely on the 

design. 

2.1.2. Model-based Evaluation 

The objective of performability modeling and assessment is to provide insight 

into systems that either are not built yet, or are performing under certain conditions where 

they are not accessible for measurements or fail quite intermittently. The most common 

approaches for solving models are analytical and simulation techniques. In analytical 

approaches, certain boundaries are applied to the models to ensure the existence and 

possibility of analytical solutions. In general, the analytical approaches are classified into 

two categories: closed form, where an explicit expression is derived to describe the 

measure of interest in terms of model parameters and structure, and numerical, where a 

system of equations is solved by applying numerical techniques, including iterative 

procedures, to determine the measure of interest. Alternatively, simulation approaches 

emulate the behavior of the system by executing an appropriate simulation program, 

which provides statistical estimates of the measurement of interest. In general, analytical 

techniques are superior in terms of computational efficiency, however, they are 

applicable to a restricted set of models, making simulation approaches generally more 

applicable.  
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2.2. Performability Modeling Techniques 

Pure performance analysis of systems generally over-estimates the ability of the 

system to perform a particular job. In contrast, pure reliability/availability analysis is 

typically too conservative, since the performance considerations are disregarded. 

Consequently, in order to model a system appropriately, it is required to develop 

modeling techniques that combine the system performance and reliability, which is 

known as performability [14].  

2.2.1. Analytical-Model Based Techniques 

Different types of analytical models exist to determine the performability of a 

system, including Monolithic models and Hierarchical models. Figure 2.1 demonstrates 

the typical analytical performability approaches. The monolithic approach [15] combines 

the performance and reliability behavior into a single model by applying Markov chains 

[16] and Petri nets [17]. However, the corresponding models are generally large since the 

state model of this model approximately represents the cross-product of the state-spaces 

of the availability and performance models, which is dealt with by using approximation 

techniques, including truncation, state lumping, and model composition [7] or by using 

automatic generation methods for Markov chains [18]. Furthermore, this model is 

considered stiff, since the performance related rates, including job arrival rates, are 

significantly larger than the failure related rates. The stiffness problem is tolerated by 

applying either aggregation techniques [19], [20] or stiffness-tolerant models [21]. 
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Figure 2.1 Analytical performability modeling approaches 

Alternatively, the hierarchical approaches eliminate the largeness and stiffness 

problems associated to monolithic approach by composing the overall model of the 

system from a set of reduced non-stiff models. In this technique, since the performance 

related rates are several orders of magnitude larger than the failure related rates, it is 

assumed that the system reaches steady-state with regard to the performance related 

events between consecutive occurrence of failure events. The performance measures of 

the system are computed at each of these steady-states. Furthermore, the general system 

is categorized by weighing steady-state performance by applying structure state 

probabilities, which leads to a hierarchy of models: a higher-level structure state 

availability model representing the failure behavior of components and a number of lower 

level performance reward models, for every structural state in the availability model. The 
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comparison between the hierarchical models and monolithic models for a M/M/C/C 

queuing system in a wireless communication network is represented in [22]. 

Additionally, hierarchical models are categorized into state-space-based, i.e. 

Markov Reward Models [23]–[25] , and non-state-space-based models, i.e. Fault-

Tolerant Layered Queuing Model [26], [27]. 

Analytical modeling approaches offer cost effective tools for analyzing cloud 

service performance, allowing the assessment of the influence of a large parameter space 

on service performance. A comparison between analytical modeling approaches for cloud 

service performance evaluation is provided in [11]. The queuing theory is a classical 

approach for modeling and evaluation of computer systems and has been significantly 

implemented for evaluating cloud service performance, including network calculus, 

which is an extension of the queuing theory. Alternatively, Stochastic Reward Net 

(SRN), an extension of Stochastic Petri Net (SPN), is exploited for modeling cloud 

service provisioning and service performance analysis. Xiong and Perros [28] modeled a 

cloud service provisioning system by implementing a queuing network incorporating two 

tandem servers with finite buffer servers and modeling each server as a classical M/M/1 

queue. Goswami et al. [29] developed a model for cloud performance analysis by 

employing the virtualization feature. The proposed model is a M/M/m/N queue with m 

servers and a finite buffer of size N. Ellens et al. [30] developed an M/M/m/m queueing 

model with m servers and no buffers before the server for cloud computing centers with 

multiple priority classes. In order to simplify the modeling and assessment, the above 

techniques assumed exponentially distributed service time and/or inter-arrival time. This 
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assumption does not accurately demonstrate the realistic service feature of cloud 

infrastructures. 

2.2.2. Simulation-Model Based Techniques 

Computer simulations are an alternative to conventional analytical approaches. 

The main advantage of the simulation approaches over the corresponding analytical 

counterparts is flexibility in representation of complex systems at desired level of 

abstractions as well as low storage requirements.  Simulation tools provide the 

opportunity of evaluating the hypothesis in a controlled environment, allowing fast and 

reliable reproduction of results. In general, simulation approaches provide substantial 

benefits including: evaluating services in a repeatable and controllable environment and 

adjustment of the system bottlenecks before deploying on real clouds. Several cloud 

simulators are developed to facilitate the performance analysis of cloud services and 

applications.  SimGrid [31] is a general framework for simulation of distributed 

applications on Grid platforms. Additionally, GangSim is a Grid simulation toolkit that 

offers support for modeling of Grid-based virtual organizations and resources. 

Furthermore, GridSim [32] is an event-driven simulation toolkit for application in 

heterogeneous Grid resources which supports inclusive modeling of grid entities, users, 

machines, and network, including network traffic. The main drawback of Grid based 

simulation frameworks is their inability to support modeling of virtualization-enabled 

resource and application management environments. Cloudsim [33]–[35] is a novel and 

generalized java-based event-driven simulation framework that allows modeling and 

simulation of cloud computing infrastructures and services. The main advantages of the 
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application of Cloudsim are time effectiveness and flexibility and applicability. SimPy 

[36], [37] is a process-oriented discrete event simulation framework based on Python that 

provides fast and reliable tools for modeling and simulating cloud computing services 

and applications.  

There are several different types of applications that go through a transition 

during a given time. Simulating these applications are mostly distinguished by the fact 

that the events are modeled either continuously or discretely. Consequently, there are two 

major simulation techniques for modeling dynamic events, namely continuous and 

discrete event simulations. Discrete event simulation [38] is a superior tool for modeling 

sophisticated system dynamics and stochastic processes. In contrary to the continuous 

event simulation, where events are simulated based on the changes through the given 

time frame with no interruption in between events, in discrete event simulation (DES) 

approximations are used to jump through the breaks that exists between the two given 

events, to the next step of the discrete sequence of events in time.  The most important 

aspect of DES is the set of activities that happen in a given fraction of time. DESs are 

considered activity based simulation in contrary to the continuous event based 

simulations. Although, more resources may be needed for discrete event simulations, they 

generally execute quicker relative to continuous simulation, since they do not have to 

simulate all the time fractions and they only need the initial and ending point of any 

system. Discrete event simulation can also be used to predict or observe the behavior of a 

system under given circumstances. Simpy and Cloudsim are discrete event simulation 
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frameworks. This work has used Simpy framework for simulating the performance 

behavior of an application in presence of failures.    
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3. The Proposed Model 

 

This chapter describes the proposed modeling technique. First, it described the 

model that is considered for a cloud-based application. Second, it describes a model for 

representing a fault management architecture of an application. Finally, it describes how 

to compute the performability measures. The proposed model accounts for the failure 

information propagation through the fault management architecture.  

3.1. Application Model 

An application provides certain kind of service to its end users. An application is 

an example of a SaaS software (Software-as-a-Service) owned by an application provider 

who elected to deploy it in a cloud.  An application deployment in a cloud is composed of 

m application instances (A1, A2, …, Am). Each application instance runs on its own VM. 

For the modeling purposes in this work, it is assumed that all the VM instances are of the 

same type in terms of their processing speed. A similar model for an application has been 

assumed earlier by Calheiros et al. [39]. 

Figure 3.1 represents the application model as a network of queues. Each queue 

corresponds to an application instance hosted on its own VM. An application instance can 

fail and can be restarted. To restart a failed application instance, the failure needs to be 

detected first. The application model incorporates a Load Balancer (LB), which 

represents an infinite server and it is assumed to be failure-free. Let λ denote the arrival 

rate of jobs, the number of jobs per unit time received by the load balancer (LB).   
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Figure 3.1 Application Model (as network of queues) where the load balancer (LB) 

believes that m application instances are operational. 

 

The LB acts as a reverse proxy, which distributes the application traffic across the 

corresponding servers. The main benefits of LB includes increasing the capacity and 

reliability of applications, improving the overall application performance, and decreasing 

the work-load on servers associated with managing and maintaining applications. In this 

work, the LB distributes the workload equally among the application instances that it 

believes are operational. The phrase “believes are operational” here implies that LB has 

an impression that the application instances are operational, however, in reality, some 

instances might be in failed state. This belief of LB regarding an application instance 

depends on the fault management architecture and the status of the management 

components at the time of failure (or at the time of restart completion) of the instance. If 

LB believes that m application instances are operational, then the arrival rate at each of 

those instances will be λ/m. Let μ be the service rate of each application instance.  The 
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application instances are represented by M/M/1 queues, where arrival times are 

determined by a Poisson process and job service times are represented by an exponential 

distribution. Furthermore, the servers process the client requests on a first-come, first-

served (FIFO) order. Each server is associated with an infinite buffer (i.e. waiting area). 

3.2. Fault Management Architecture Model 

A separate fault management system [6] can be utilized to monitor the health of the 

application instances. The management system can detect and isolate a failure and can 

trigger actions such as automatic restart of a failed instance. It can also notify the load 

balancer concerning the status of the application instances, which in turn re-distributes 

the workload accordingly. 

Failures of instances can be detected by mechanisms such as heartbeats and 

timeouts on periodic polls. Heartbeat messages from an application instance can be 

generated by a special heartbeat interrupt service routine which sends a message to one or 

more managers, every time an interrupt occurs, as long as the instance has not crashed. If 

an instance cannot initiate heartbeat messages, then it may be able to respond to messages 

from the manager(s); these are considered as the status polls. The responses provide the 

same information as heartbeat messages. Once the heartbeat information is collected, it 

can be propagated to other managers and finally to the load balancer. 

The fault management architecture model described here has three types of 

components: application instances, managers and the load balancer. There are two types 

of arcs: detect (solid-line open-ended arrow) and notify (dashed-line open-ended arrow). 
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These arcs are typed according to the information they convey, in a way which supports 

the analysis of belief of the status of the application instances at different points in the 

management system. A detect arc from component a to component b convey data that 

component b can detect the crash failure of component a and can trigger automatic restart 

of component a. The time to detect the failure is assigned as a weight on the arc. A notify 

arc from component a to component b implies that component a propagates status data 

about application instance(s) that it has collected or received to component b. It is 

assumed that the notification happens in no time. 

Upon occurrence of a failure of an application instance, the occurrence is first 

captured by the manager(s) monitoring that instance through a detect arc. Then the 

instance is restarted by the manager(s) and the failure information propagates through 

notify arcs, to other manager(s) and finally to the LB which initiate system 

reconfiguration by re-distributing the workload among the application instances it 

believes are operational. Once the instance has restarted, it can notify its manager(s) 

about its status in no time which in turn can propagate the status of the instance to other 

managers and the load balancer. 

A manager can also monitor other managers. Upon occurrence of a failure of a 

manager, the occurrence is first captured by the manager(s) monitoring the failed 

manager through a detect arc. Then the instance is restarted by the monitoring 

manager(s). In this case, the information does not have to be propagated to the LB. 
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Figure 3.2 shows a centralized fault management architecture for the application 

model of Figure 3.1. M1 has been introduced here as the central manager that monitors 

all the application instances (A1, A2, …, Am). M1 notifies LB about the status of the 

application instances. An application instance Ai where i = 1, 2, …m fails with rate fAi 

and can be restarted with mean restart time 1/rAi. The failure and restart rate of the 

application instances may be different if the different application instances were created 

using N-version programming [40]. The failure and restart rate of M1 is assumed to be 

fM1 and rM1. In Figure 3.2, a rectangle represents a component that contains its name, its 

failure rate and its restart rate. The LB is assumed to be failure-free. The weight of a 

detect arc (i, j), d(i, j), is the time to detect the failure of component i by component j. In 

this model, since M1 is not monitored by any other manager, its failure has to be detected 

and it has to be restarted by a human administrator. This situation can be modeled by a 

detect arc from M1 to LB with weight equal to the time to detect the failure of M1 by a 

human being. Usually this weight will be large as compared to the weights on the other 

detect arcs (that represent automatic detection without human intervention). 
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Figure 3.2 Centralized Fault Management Architecture Model for the application model 

of Figure 3.1. M1 is the central manager. 

 

3.3. Modeling of Performability 

The fault management architecture impacts the successful recovery of an 

application since the component responsible for reconfiguration (i.e. LB) might believe 

that an application instance is operational, however, in reality it may not be true. This 

might lead to job loss. This section describes how to compute the mean throughput of an 

application in presence of such job loss. 

3.3.1. Failure Modeling of Components 

Each component (either an application instance or a manager) except LB has three 

states: UP, FND (Failure-Not-Detected), FDR (Failure-Detected-and-Restarted).  

Let (M1i, M2i,…, Msi) be the operational managers who are monitoring the 

health of component i. Since the failure is usually detected using heartbeat messages or 
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timeouts on periodic polls, the time to detect the failure of component i by manager Mki, 

d(i, Mki), is deterministically distributed variable. Let δ be the minimum of the timespans 

taken by the managers M1i, M2i,…, Msi to detect the failure of component i, then, δ = 

min { d(i, Mki) where k = 1, 2, …s}. 

The state transition diagram of a component i is shown in Figure 3.3. Each 

component i starts in the UP state. Once it fails with rate fi, it transits to state FND 

(Failure-Not-Detected). The failure can be detected with rate 1/δ at which point it is 

restarted. This is subject to the condition that at least one of the managers monitoring the 

component i is operational when component i fails. Otherwise, the component i will 

remain in FND state until one of its managers is operational again. Once the failure of 

component i is detected and it is restarted, it transits to state FDR (Failure-Detected-and-

Restarted). The restart rate is ri. Once the restart is complete, the component transits back 

to the UP state. 

 

Figure 3.3 Failure Model of each component. 

 

An application instance can process jobs only when it is in UP state.  Similarly, a 

manager can monitor other components only when it is in UP state.  

UP 

FND 

FDR 

fi 

ri 



25 

 

3.3.2. Modeling Failure Information Propagation through the fault management 

architecture 

The load-balancer LB maintains a list containing the states of all the application 

instances. Each of these states can be either UP or FDR. These states of the application 

instances are the states that the LB believes to be true. LB distributes the workload 

equally among the application instances that it believes are in UP state. 

Subsequently two situations and their consequences are described next where the 

state of Ai that LB believes to be true, becomes inconsistent with the actual state of Ai. 

Situation 1- Assuming that LB contains the state of application instance Ai as UP. 

When the application instance Ai fails, then the state of Ai that LB has becomes 

inconsistent with the actual state of Ai (which is FND). Defining the time τ as follows:  

Let P be the set of operational paths (i.e. paths containing all operational 

managers) from Ai to LB at the time of failure of Ai. The initial arc of each of these paths 

should be a detect arc and the rest should be notify arcs. Subsequently: 

 
min

weight of the initial detect arc of path p
p P

 


  (3.1) 

Here, jobs will be lost for duration τ since LB will continue sending the jobs to Ai 

although Ai has already failed. 

If P is null, i.e. no operational path exists from Ai to LB at the time of failure of 

Ai, then LB continues to believe that Ai is UP although Ai has already failed. The jobs are 

lost until at least one such path exists or Ai comes back to UP state again.  
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Thus, job loss entirely depends on the fault management architecture, status of the 

managers at the time of failure, and the failure detection times.  

Since job loss affects the mean throughput of the application, the state 

inconsistency of LB in this case decreases the mean throughput of the application.  

Situation 2 - Assuming that LB contains the state of application instance Ai as 

FDR. When the application instance Ai restarts and comes back to UP state, then the state 

of Ai that LB has becomes inconsistent with the actual state of Ai (which is UP).  

Let P be the set of operational paths (i.e. paths containing all operational 

managers) from Ai to LB at the time when Ai became operational. All the arcs of each of 

these paths should be notify arcs.  

If P contains at least one operational path, then the state of Ai that LB has 

becomes consistent with the actual state of Ai. 

If P is null, then LB believes that Ai is failed although Ai is in UP state. As a 

result, LB does not send any job to Ai. This will result in higher response time for jobs 

(that are not lost) compared to the case where the jobs were also sent to Ai.   

The state inconsistency of LB in this case results in higher mean response time of 

the jobs that are not lost. 
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3.3.3. Computing Performability Measures 

The application model and its fault management architecture model are simulated 

using a discrete event simulation framework called SimPy [36], [37]—a Python based 

framework. 

Assuming that the application instances do not fail, then the mean throughput of 

the application will be same as the arrival rate, λ. However, if the failures of application 

instances and the managers are considered, some jobs will be lost. Let, NTL denote the 

normalized throughput loss. As per [7], NTL is the fraction of jobs that are lost. Let N 

denote the total number of job arrivals in one simulation run. At the end of each 

simulation run, the number of jobs that are lost, n, are computed.  Subsequently, the 

normalized throughput loss is defined as: 

n
NTL

N
   (3.2) 

Additionally, the mean throughput of the application, MeanTHR, can be 

computed as follows: 

 1MeanTHR NTL    (3.3) 

During each simulation run, the response time, RTj, of each job j that is not lost, is 

recorded. Then, the mean response time, MeanRT, can be estimated as:  

1

N n j

j

RT
MeanRT

N n







   (3.4) 
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4. A Comparison of Five Fault 

Management Architectures 

 

This chapter studies the effect of five different fault management architectures on 

the performance of an application in presence of failures. The effect of the fault 

management architectures on the mean throughput of the application and mean response 

time of a job that is not lost is evaluated.  

The application model is represented in Figure 4.1 with three application 

instances (A1, A2 and A3), i.e. m = 3. It is assumed that the application provider requests 

to utilize three managers, M1, M2 and M3, for monitoring its application. Table 4.1 

represents the model parameters and their values.  

 

 

Figure 4.1 Application Model (as network of queues)  
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Table 4.1 Model Parameters 

Parameter Parameter Value 

Mean inter-arrival time, 1/λ 1 second 

Mean Service time, τ 2 seconds 

Mean Time to failure, 1/fi , where i = A1, A2, A3, M1, M2, M3 600 seconds 

Mean time to restart, 1/ri, where i = A1, A2, A3, M1, M2, M3 60 seconds  

Time to detect a failure automatically by a manager  120 seconds 

Time to detect a failure by a human administrator 900 seconds 

In this section, the focus is to attempt to answer the question “Which architecture 

to choose from the given five fault management architectures (each containing the same 

three managers) that will meet throughput and response time objectives”?  

In the simulations, the mean inter-arrival time of jobs, 1/λ, is assumed to be 1 

second. The mean service time, τ, is assumed to be 2 seconds. The mean time to failure 

for each of the three application instances and for each of the three managers is assumed 

to be 10 minutes (=600 seconds), i.e. the failure rate is 0.00167 failures/sec. Similarly, the 

time to restart is assumed to be 60 seconds, i.e. the restart rate is 0.0167 restarts/sec. The 

load-balancer LB is assumed to be failure-free. The inter-arrival time, service time, time 

to failure, and time to restart are assumed to be exponentially distributed. The failure 

detection time is assumed to be deterministically distributed.  

4.1. Description of the Fault Management Architectures 

In this analysis, the following five fault management architectures are considered 

as given below: 
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Case-1: For this case it is assumed that, the application instance A1 is monitored 

by M1, A2 by M2, and A3 by M3. It is also assumed that only application instances can 

fail, and there is no management components failure for this case. Therefore, if an 

application instance fails, its manager will be able to detect that failure automatically in 

120 seconds (2 minutes). The manager components cannot fail and the managers are not 

monitored by the other managers. Since the manager failures will not occur and all the 

three managers status is assumed to be always up in this case, there is no weight on the 

detect arc from each manager to LB, i.e. d(M1, LB), d(M2, LB),  and d(M3, LB). The 

fault management architecture is shown in Figure 4.2. 

 

Figure 4.2 Case-1: Manager M1 monitors A1, M2 monitors A2, and M3 monitors A3. 

The manager components cannot fail. 

 

Case-2: The application instance A1 is monitored by M1, A2 by M2, and A3 by 

M3. If an application instance fails, its manager will be able to detect that failure 

automatically in 2 minutes. The managers are not monitored by other managers. It is 
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assumed that the failure of managers has to be detected by human administrators. Since 

the manager failures are not automatically detected, the weight on the detect arc from 

each manager to LB is assumed to be 15 minutes, i.e. d(M1, LB), d(M2, LB),   and d(M3, 

LB) = 900 seconds. The fault management architecture is shown in Figure 4.3. 

 

Figure 4.3 Case-2: Manager M1 monitors A1, M2 monitors A2, M3 monitors A3.  The 

failure of managers has to be detected by human administrators. 

 

Case-3: This case resembles a hierarchical management architecture. Application 

instances, A1 and A2, are monitored by manager M1 whereas A3 is monitored by 

manager M2. Managers, M1 and M2, are monitored by another manager M3. Here, it is 

assumed that the failure of M3 is not automatically detected. So, the weight on the detect 

arc from M3 to LB is assumed to be 15 minutes, i.e. d(M3, LB) = 900 seconds. The fault 

management architecture is shown in Figure 4.4. 
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Figure 4.4 Case-3: M1 monitors A1 and A2, M2 monitors A3, M1 monitors M1 and M2. 

Failure of M3 has to be detected by human administrators. 

 

Case-4: The application instance A1 is monitored by M1, A2 by M2, and A3 by 

M3 respectively. The managers also monitor each other. In this case, if the other two 

managers have already failed when the third one fails, that failure has to be detected by 

human administrators. The fault management architecture is shown in Figure 4.5. The 

weight of all the detect arcs that are not labeled in Figure 4.5 is assumed to be 120. 

Case-5: Each application instance is monitored by all the three managers. The 

managers also monitor each other. In case, if the other two managers have already failed 

when the third one fails, that failure has to be detected by human administrators. The 

fault management architecture is shown in Figure 4.6. The weight of all the detect arcs 

that are not labeled in Figure 4.6 is assumed to be 120. This architecture has the highest 

number of detection paths from an application instance to the load balancer LB. 
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Figure 4.5 Case-4: The weight of all the detect arcs that are not labeled is 120. Managers 

monitor each other. 

 

  

Figure 4.6 Case-5: The weight of all the detect arcs that are not labeled is 120. Each 

application instance is monitored by all the three managers. Managers monitor each 

other. 
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The application model and the corresponding fault management architecture 

model are simulated using SimPy 3.0.8. The simulation time was 9000 seconds with 10 

simulation runs for each case. Since the number of simulation runs is < 30, the 

confidence interval formula that involves t-distribution is used rather than standard 

normal distribution. Since the number of simulation runs is 10, the degrees of freedom for 

t-distribution is equal to 9. The t value for 95% confidence with degree of freedom equal 

to 9 is t = 2.262. The 95% confidence interval for the mean response time is (MeanRT ± 

2.262*SEM) where SEM is the standard error of mean. Similarly, the confidence interval 

for the mean throughput and the NTL are computed. The error bars are shown in each of 

the figures given below. 

4.2. The Effect of Varying the Mean Inter-Arrival Time 

Table 4.2. demonstrates the results of the simulations for the effect of the mean 

inter-arrival time on the values of the normalized throughput loss, mean throughput, and 

mean response time of jobs that are not lost. In the simulations, the mean inter-arrival 

time (i.e. 1/λ) varies from 0.7 second to 1.5 seconds while maintaining the other 

parameter values same as Table 4.1. Figure 4.7 demonstrates the Table 4.2 simulation 

data.  According to Figure 4.7(a), for high workload (i.e. for mean inter-arrival time 0.7 

second), Case-5 has lower NTL (i.e. higher mean throughput) as compared to the other 

four cases. This is because Case-5 is densely connected and it has more number of 

detection paths from the application instances to LB through the fault management 

architecture. However, based on Figure 4.7(b), Case-5 has higher MeanRT for jobs that 

are not lost. This is because in Case-5, more number of jobs is accepted by the 
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application and thus, the number of jobs competing for resources is higher than the other 

three cases.  

Furthermore, for high workload (i.e. for mean inter-arrival time 0.7 second),  

• If the application provider wants a management architecture that will give maximum 

throughput, then Case-5 will be the choice (i.e. Figure 4.7(c)). On the other hand, if 

the provider wants an architecture that will give minimum mean response time for 

jobs that are accepted by the application, then Case-2 will be the choice (i.e. Figure 

4.7(b)).  

• If the application provider has some performance objectives that has to be met by the 

application to its end-users, for example, average throughput greater or equal to 

1job/sec and average response time of 45 seconds or less, then Case-4 will be the 

architecture of choice. 

For low workload (i.e. for mean inter-arrival time 1.5 seconds), all the cases have 

almost same MeanRT, however, Case-5 has higher throughput and lower NTL compared 

to the other cases. Consequently, for low workload circumstances, Case-5 will be the 

choice. 
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Table 4.2 The simulation results for the effect of varying the mean inter-arrival time 

1/λ NTL 

Mean 

NTL 

SEM 

ArvRt 

Mean 

ArvRt 

SEM 

Resptm 

Mean 

Resptm 

SEM 

THR 

Mean 

THR 

SEM  

Case-1 

0.7 0.159 0.007 1.43 0.006 49.835 5.638 1.196 0.01 

0.9 0.109 0.006 1.113 0.005 10.965 0.642 0.991 0.007 

1.1 0.116 0.006 0.911 0.004 6.176 0.44 0.805 0.005 

1.3 0.101 0.007 0.777 0.002 4.576 0.405 0.698 0.005 

1.5 0.091 0.005 0.67 0.003 3.51 0.158 0.609 0.005 

Case-2 

0.7 0.402 0.015 1.43 0.006 34.296 1.94 0.852 0.021 

0.9 0.359 0.019 1.115 0.004 9.051 0.615 0.715 0.022 

1.1 0.375 0.028 0.913 0.004 5.105 0.42 0.57 0.025 

1.3 0.333 0.017 0.775 0.002 4.167 0.32 0.517 0.014 

1.5 0.373 0.021 0.673 0.002 3.326 0.216 0.422 0.014 

Case-3 

0.7 0.364 0.026 1.434 0.006 42.498 4.753 0.909 0.038 

0.9 0.338 0.018 1.119 0.004 11.187 0.58 0.74 0.02 

1.1 0.318 0.03 0.913 0.005 5.083 0.294 0.623 0.029 

1.3 0.337 0.02 0.774 0.002 4.065 0.214 0.513 0.016 

1.5 0.329 0.023 0.671 0.002 3.36 0.127 0.45 0.015 

Case-4 

0.7 0.231 0.009 1.429 0.006 42.437 2.49 1.094 0.016 

0.9 0.162 0.011 1.114 0.005 10.828 0.788 0.931 0.012 

1.1 0.17 0.008 0.913 0.004 5.202 0.264 0.757 0.009 

1.3 0.164 0.007 0.772 0.003 3.928 0.174 0.645 0.005 

1.5 0.164 0.018 0.676 0.003 3.383 0.115 0.565 0.012 

Case-5 

0.7 0.157 0.012 1.434 0.006 47.676 2.794 1.203 0.015 

0.9 0.086 0.006 1.115 0.004 12.079 0.855 1.018 0.008 

1.1 0.099 0.008 0.911 0.004 5.913 0.267 0.82 0.005 

1.3 0.095 0.013 0.774 0.003 4.548 0.274 0.7 0.012 

1.5 0.077 0.003 0.673 0.003 3.371 0.101 0.621 0.003 
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Figure 4.7(a) 

 

Figure 4.7(b) 
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Figure 4.7(c) 

Figure 4.7(a) Normalized throughput loss (NTL), (b) Mean response time of jobs that are 

not lost, and (c) Mean throughput. This is shown for all five cases, Case-1 to Case-5 

(with varying mean inter-arrival time). 
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Table 4.3 incorporates the results of the simulations for the effect of varying the 

mean failure time on the normalized throughput loss (NTL), mean throughput, and mean 

response time of jobs that are not lost .Subsequently, Figure 4.8 demonstrates the 

simulation results in Table 4.3 for the values of the normalized throughput loss (NTL), 

mean throughput, and mean response time of jobs that are not lost with the mean time to 

failure of the three managers (i.e. 1/fM1, 1/fM2, 1/fM3) varying from 600 seconds to 1800 
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According to Figure 4.8, as the time to failure for the three managers increases, 
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five cases (Figure 4.8(b)). The proportion of increase is higher for Case-2 as compared to 

the other cases. Subsequently, it is assumed that the throughput objective is 0.8 jobs/sec 

and response time objective to be met is 8 seconds or less. Figure 4.8 suggests that in 

order to meet both these objectives, it is required to buy the managers whose failure times 

are 20 minutes or more and select either Case-3 or Case-4. Since more reliable managers 

may be more expensive than less reliable ones, it will be cost effective to buy the 

managers whose failures times are 20 minutes and then select the architecture in Case-4, 

since Case-4 has similar MeanTHR and lower MeanRT than Case-3. 

Table 4.3 The simulation results for the effect of varying the mean time to failure 

Failure 

time 
NTL 

Mean 

NTL 

SEM 

ArvRt 

Mean 

ArvRt 

SEM 

Resptm 

Mean 

Resptm 

SEM 

THR 

Mean 

THR 

SEM  

Case-1 

600 0.103 0.004 1.001 0.004 8.586 0.785 0.898 0.007 

1200 0.103 0.004 1.001 0.004 8.586 0.785 0.898 0.007 

1800 0.103 0.004 1.001 0.004 8.586 0.785 0.898 0.007 

Case-2 

600 0.377 0.019 1.005 0.004 6.818 0.317 0.625 0.018 

1200 0.255 0.016 1.006 0.003 6.659 0.447 0.749 0.015 

1800 0.194 0.018 1.007 0.003 6.271 0.236 0.812 0.019 

Case-3 

600 0.318 0.029 1.002 0.005 7.711 0.479 0.684 0.031 

1200 0.149 0.011 1.006 0.004 7.97 0.662 0.856 0.014 

1800 0.152 0.021 1.003 0.003 7.258 0.42 0.85 0.02 

Case-4 

600 0.148 0.013 1.003 0.003 6.415 0.207 0.854 0.013 

1200 0.145 0.01 1.003 0.005 7.449 0.464 0.857 0.01 

1800 0.136 0.006 1.004 0.004 7.343 0.404 0.867 0.008 

Case-5 

600 0.096 0.018 1.005 0.004 7.346 0.389 0.907 0.018 

1200 0.087 0.004 1.005 0.004 8.223 0.956 0.917 0.005 

1800 0.071 0.003 1.006 0.005 7.756 0.4 0.933 0.005 
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Figure 4.8(a) 

 

Figure 4.8(b) 
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Figure 4.8(c) 

Figure 4.8 (a) Normalized throughput loss (NTL), (b) Mean response time of jobs that are 

not lost, and (c) Mean throughput. This is shown for all five cases, Case-1 to Case-5 

(with varying mean time to failure of the three managers). 
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for 1-minute detection interval, Case-2 will be the choice. For 2-minute detection 

interval, Case-3 is worse compared to Case-4 and Case-5, since it demonstrates lower 

throughput and higher response times of jobs that are not lost compared to the other two 

cases. 

Table 4.4 The simulation results for the effect of varying the failure detection time 

Detection 

Time 
NTL 

Mean 

NTL 

SEM 

ArvRt 

Mean 

ArvRt 

SEM 

Resptm 

Mean 

Resptm 

SEM 

THR 

Mean 

THR 

SEM  

Case-1 

60 0.062 0.006 1.004 0.004 7.386 0.409 0.941 0.006 

120 0.103 0.004 1.001 0.004 8.586 0.785 0.898 0.007 

180 0.134 0.007 1.005 0.004 8.102 0.485 0.87 0.006 

Case-2 

60 0.302 0.021 1.002 0.005 6.235 0.337 0.699 0.022 

120 0.377 0.019 1.005 0.004 6.818 0.317 0.625 0.018 

180 0.489 0.016 1.004 0.004 5.714 0.257 0.513 0.017 

Case-3 

60 0.181 0.014 1.011 0.003 8.133 0.396 0.827 0.015 

120 0.318 0.029 1.002 0.005 7.711 0.479 0.684 0.031 

180 0.419 0.052 1.004 0.004 6.247 0.36 0.583 0.052 

Case-4 

60 0.087 0.005 1.007 0.003 8.324 0.568 0.918 0.004 

120 0.148 0.013 1.003 0.003 6.415 0.207 0.854 0.013 

180 0.27 0.016 1.004 0.004 6.432 0.239 0.732 0.015 

Case-5 

60 0.05 0.004 1.001 0.006 7.722 0.622 0.95 0.006 

120 0.096 0.018 1.005 0.004 7.346 0.389 0.907 0.018 

180 0.131 0.013 1.007 0.003 8.208 0.684 0.874 0.014 
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Figure 4.9(a) 

 

Figure 4.9(b) 
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Figure 4.9(c) 

Figure 4.9 (a) Normalized throughput loss (NTL), (b) Mean response time of jobs that are 

not lost, and (c) Mean throughput. This is shown for all five cases, Case-1 to Case-5 

(with varying failure detection time by the three managers). 
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5. Conclusion 

 

This thesis proposed a discrete event simulation model that accounts for the 

impact of the fault management-architecture on the performance of a cloud-based 

application. The value of including the fault management architecture in the analysis is 

first to account for the failures and restarts of managers, second is to include delays to 

detect the failures, and third is to evaluate the limitations of the fault management 

architecture. These three considerations increase the fraction of jobs that are lost thereby 

affecting the system throughput.  In this thesis, first, the application model, then the fault 

management architecture model, and finally how to compute the performability measures 

were described.  The application model incorporated a load balancer that evenly 

distributed the workload evenly among the operational application instances. A 

centralized fault management architecture model, including application instances, 

managers, and the load balancer, was assumed for the application model to monitor the 

health of the application instances. Subsequently, the application model and the 

corresponding fault management architecture model were simulated by using the SimPy 

discrete event simulation framework and the performability measures, including the 

normalized throughput loss, mean throughput of the application, and the mean response 

time were investigated. 

This thesis demonstrated the application of the proposed modeling technique by 

comparing five different sample fault management architectures. The effect of varying 
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the mean inter-arrival time, time to failure for managers, and time to detect a failure 

automatically by a manager on the performance measures was computed and discussed. 

The examples provided in this work considered only failures of application 

instances and managers. This is because, generally, the virtual machines and physical 

machines are highly available and they are typically managed by the cloud providers. 

However, if the application provider also requires monitoring the virtual machines and/or 

physical machines allocated for their applications, then that can be effortlessly 

incorporated into the analysis as well. 

The proposed model will benefit application providers to answer several 

important questions related to selection of fault management architecture for their 

application, including the appropriate fault management architecture for monitoring the 

application instances to satisfy the throughput and response time SLAs as well as the 

proper detection interval required for configuring the managers.   

The results gathered from the study of the five different sample fault management 

architectures, can be used in applications with more than three managers or three 

application instances, since the outcomes can be generalized to n managers and n 

application instances. Furthermore, other application architectures such as multi-tier 

architectures can be investigated in future works.  
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