
Xstreamulator: A Rich Media Webcasting Application for Lectures and
Events

Jeremy M. Littler

Project submitted to Ryerson University in partial fulfillment of the requirements for the

degree of

Master of Arts

In

Communication and Culture

Dr. Michael Murphy

Dr. Jerry Durlak

February 27,2008

Toronto, Ontario

Canada

Copyright© 2008, Jeremy Mark Littler, All Rights Reserved.

Xstreamulator: A Rich Media Webcasting Application for Lectures and Events

Jeremy Littler

Abstract

I

Xstreamulator is a .NET based web casting application that utilizes the Microsoft

Windows Media Server to broadcast classroom lectures and events. Uniquely, the

application supports the synchronized delivery of captured bitmap content (slides), which

are displayed in an ASPIHTML based cross-browser viewing environment. At present,

Xstreamulator supports bitmap slide capturing from PowerPoint presentations, computer

desktops, images, web pages and external VGA sources. Additional capture capabilities

are currently in development. Although Xstreamulator has been used extensively for live

webcasting, it can also be employed to record webcasts for distribution through on

demand delivery or removable media. In contrast to commercial solutions,

Xstreamulator's live webcasting functionality is not constrained to traditional academic

settings (i.e., classrooms). Indeed, many instructors at Ryerson University have

successfully employed Xstreamulator to web cast lectures from their office or home. In

addition, Xstreamulator has been employed effectively in the delivery of events, lectures,

symposiums and conferences.

Xstreamulator has from the outset been designed to operate reliably In diverse

II

hardware environments. For example, the application can be installed on personal

computers, classroom presentation systems, or portable encoding "stations". Thus, by

leveraging the existing computer infrastructure at Ryerson University, it has been possible

to circumvent the acquisition of costly commercial web casting systems. Xstreamulator's

comprehensive content delivery approach and hardware neutrality has addressed the entire

range of webcast requirements within the University environment in very cost effective

and scalable manner.

Xstreamulator's development process has been driven by the philosophy of

participatory design (PD). Students, faculty and staff at Ryerson University have

generously donated their time to test Xstreamulator prototypes, and have contributed

significantly to the evolution of the application's user interface and functionality.

Therefore, the Xstreamulator project demonstrates the significant advantages of

implementing participatory design goals in the development of rich media webcasting

solutions. Indeed, while the technological achievements of the project are noteworthy,

they could have only been achieved in an environment that fostered collaboration at all

levels.

The development of an in-house web casting solution requires a commitment of

development personnel and technical resources. However, the cost of providing these in

house resources will be offset by reduced webcasting costs over the long-term.

Additionally, applications like Xstreamulator can be rapidly employed to generate

III

webcasting revenue from university events (e.g., conferences). In summary, as the use of

Xstreamulator at Ryerson University has eliminated a dependence on commercial

solutions, it has been possible to re-assign these cost savings to the design of some of the

most powerful event webcasting systems in North America.

IV

Acknowledgments

This project would not have been possible without the support of the faculty, staff and

students at Ryerson University, who have generously donated their time and expertise.

First, I would like to thank my advisors, Dr. Michael Murphy, Dr. Jerry Durlak, and Dr.

Paul Hearty, for their ongoing support and advice. I would also like to extend my

appreciation to Brian Lesser for permitting me to undertake the Xstreamulator project.

I would be remiss in not acknowledging the significant contribution of the members of

Xstreamulator's beta test team. Specifically, I would like to extend my thanks to John

Hajdu, Steve Pelletier, Stephanie Walsh, Janet Lum, Wendy Freeman, Silvia Carfora,

Gerry Amram, Sean Sedlezky, Stephanie Goetz, Andrew Furman, John Sustersic, Carol

Stewart, Kim Snow, Many Ayromlou, Bill Brishna, Jim Loney, Deborah Fels, Dana Lee

and Brad Fortner, for contributing so much to Xstreamulator's development. Your

willingness to push the technological boundaries of webcasting has undoubtedly made

Xstreamulator a far better application. I would also like to thank the staff at Media

Services, and Computing and Communication Services, for their tireless efforts in helping

to make Xstreamulator event webcasts so successful.

Finally, I wish to extend my deepest appreciation to my wife Katherine, and to my

daughters Emma, Charlotte and Madeline, whose support and encouragement has enabled

me to undertake a project of this magnitude.

v

Table of Contents

Table of Contents •.•.......••••••••••••.••........•••.•••••...•......••..•.•••.•••...•....•..••.••.•.••.••••.......•....•....•.•..........••.•...... V

Fi gtI res .. , .. VII

Introduction ... 1

1.1 Overvie'w .. 1

1.2 Project Objectives ... 2

1.3 Project Benefits .. 3

Tbe Participatory Design (PD) Process ... 6

2.1 Theoretical Directions and the Benefits of Participatory Design .. 6

2.2 Implementation and Findings of the Participatory Design Process .. 12

Commercial and Open Source Alternatives to Xstreamulator ... 21

3.1 Critique of Commercial Alternatives to Xstreamulator ... 21

3.2 ePresence: An Open Source Alternative to Xstreamulator. .. 23

3.3 Summary of Commercial and Open Source AIternatives ... 27

Xstreamulator and Xarchiver Webcasting Framework .. 29

4.1 Overview of the XstreamulatorlXarchiver Webcasting Framework ... 29

4.2 The XstreamulatorlXarchlver Webcasting Framework .. 31

,
The Viewing Enl'ironment •••.••..............•....••...........••.••.•..•...........•.•.•••..•..•.........•••.•••••••.••...•.....•••.•••••.• 38

5.1 Viewer User Interface (VI) and Functionality ... 38

System Requirements, Device Support and Audio Level Management .. 42

6.1 Systelll Requirenlents ... 42

6.2 Video and Audio Capture Hardware Requirements .. .42

6.3 E}..1ernal Capture Devire Support .. 43

VI

6.4 Audio Level Managelnent. .. 45

Single-User and Multiple-User OI)Cration ... 47

7.1 Single-User and Multiple-User Operation Modes47

Xstreamulator's User Intcrface (UI) and Application Modules .. 52

8.1 Xstreamulator's User Interface (UI) .. 52

8.2 Xstreamulator COlnponents .. 54

8.2.1 User Settings ... 54

8.2.2 PowerPoint Module ... 55

8.2.3 Images Module .. 55

8.2.4 Screen Capture Module ... 57

8.2.5 Captioner Module .. 57

8.2.6 Web Browser Module .. 59

8.2.7 External Capture Module ... 60

8.2.8 Webcast Preview Module ... 61

8.2.9 Last Slide Preview Window ... 61

8.2.10 Chat Module .. 62

8.3 Proposed Modules .. 62

Conclusions and Future Work ... 66

9.1 Future Work ... 66

9.2 Conclusion ... 68

Appendix I: Software Framework and Uscr Interface (UI) Development .. 72

Appendix II: Core Components and Application Architecture .. 81

Figures

Figure 1: The XstreamulatorlXarchiver Webcasting Framework

Figure 2: Webcast Viewer User Interface (UI)

Figure 3: Xstreamulator's Single-User Mode

Figure 4: Xstreamulator's Multiple-User (i.e., Classroom) Mode

Figure 5: Xstreamulator: Integrated User Interface (UI)

Figure 6: Xstreamulator: Integrated Capture Modules and Functionality

Figure 7: The Non-Integrated User Interface (UI) Version of Xstreamulator

Figure 8: Xstreamulator: Application Architecture

VII

32

39

49

50

53

63

73

82

1

Chapter 1

Introduction

1.1 Overview

The implementation of a commercial webcasting solution in a typical university, with

its large number of classrooms and geographically distributed infrastructure, can result in a

costly dependence on single-solution webcast technology providers. Furthermore,

commercial webcasting solutions may not be flexible enough to address the diverse

requirements of an institution and its departments. Xstreamulator addresses these issues

by providing a more adaptable and cost effective approach to webcast delivery.

Specifically, Xstreamulator does not require proprietary computers, specialized capture

hardware, or complex server applications. Any Windows XPNIST A compatible computer

is capable of running the application, and Xstreamulator webcasts can be viewed on a

variety of popular web browsers. Furthermore, Xstreamulator leverages computer

hardware present in many university classrooms and enables instructors to use their own

computers to deliver media rich web casts at a time and location of their choosing. Thus,

Xstreamulator's hardware neutrality and flexible content delivery approach challenges the

assumption that commercial webcasting solutions are the only viable web cast delivery

option.

2

1.2 Project Objectives

The primary objective of the Xstreamulator project was to design a flexible solution

for the delivery of classroom-based university lectures, which would support the real-time

webcasting of video, audio and synchronized presentation content. While early prototypes

of Xstreamulator were developed specifically for this purpose, it soon became apparent

that the application could be extended to encompass the following goals:

• That the application support web casting from classroom and non
classroom locations.

• That the application support event web casting (e.g., conferences,
symposiums).

• That the application be designed so that non-technical users could
produce professional results.

• That the application be platform neutral and support a wide range of
audio, video and external (VGA) capture devices.

• That the application provides content delivery functionality not
available in commercial webcasting solutions.

• That the application development process actively involve staff and
faculty at Ryerson University.

At the outset it was decided that the Xstreamulator's project would implement a

participatory design process (see Chapter 2). Specifically, instructors and staff at Ryerson

University were encouraged to contribute to Xstreamulator's development at every stage

of the project lifecycle. Xstreamulator's PD approach was not based on a rigid

methodology. Instead, it consisted of a more informal information gathering process,

3

relying on personal interviews, phone conversations, email correspondence and

observations of the application in everyday use. Recommendations gathered during the

ongoing PD process were implemented in subsequent Xstreamulator releases, through a

process of Rapid Application Development (see Chapter 2). Significantly, the PD

approach was capable of being tailored to address the inherent difficulties faced in

developing a software solution in an environment where resources were limited and

faculty availability was constrained. Furthermore, Xstreamulator's development process

revealed that application architects who wish to include PD in their methodological

approach should be prepared for ongoing changes in the membership and commitment of

their PD team. Indeed, it appears that PD teams are inherently unstable over time, and that

the successful development of a rich media application in a university environment

requires an adaptable (Le., tenacious!) development process.

1.3 Project Benefits

As Xstreamulator was developed in-house it was possible to rapidly implement content

delivery functionality not provided by commercial web casting solutions. Specifically, this

functionality consisted of powerful content integration components and support for

flexible web cast delivery scenarios. In addition, during the development process it became

evident that the Xstreamulator platform could be extended to support non-classroom and

event webcasting scenarios. 1 The adaption of the Xstreamulator framework to support a

variety of delivery scenarios was a significant project milestone, as it enabled the

4

application to be put into "production" while other potential uses were being explored.

Although Xstreamulator was primarily developed for live webcasting, it was readily

adopted as a post-delivery solution. Furthermore, Xstreamulator's post-delivery capability

effectively addressed situations where live webcasting was unfeasible. Ultimately, the

Xstreamulator framework was expanded to support five distinct webcast delivery

scenarios:

• The webcasting of on-campus events using a mobile Xstreamulator
system.2

• The webcasting of off-campus events using a portable Xstreamulator
system (Le., a laptop encoding station).

• The webcasting of classroom lectures using in-podium Xstreamulator
encoder systems.

• The webcasting of lectures and presentations from classrooms,
offices and off-site locations.

• The recording oflectures for post-delivery and distribution via
removable media.

Xstreamulator was also developed to support web casting from fixed and wireless Internet

access points, and was successfully employed in this manner from offices and residential

locations. In contrast, commercial systems are too costly to be used outside of monitored

environments (e.g., classrooms), and continually require dedicated production personnel.

Furthermore, commercial webcasting solutions necessitate hardware/software acquisitions

that grow proportionally with the number of systems in use. Xstreamulator's flexible

platform-neutral and user-driven approach uniquely addresses these constraints.

Moreover, Xstreamulator can be distributed to an ever growing user community with

5

minimal cost. The project demonstrates that the webcasting of lectures and events within

academic environments need not be dependent on trained technicians or proprietary

hardware/software solutions. In addition, the project establishes that non-proprietary

implementations can be tailored to specific pedagogic objectives. Ultimately, it is hoped

that the Xstreamulator project will encourage the academic community to extend

classroom-based lectures to Internet audiences. Clearly, Xstreamulator offers new

opportunities for e-Iearning and course delivery.

Though the development of a customized webcasting solution is not easy, the

investment of time and resources becomes increasingly viable when large scale commercial

systems are only alternative. Furthermore, the development of an in-house webcasting

solution enables the rapid implementation of application enhancements, as needs arise.

However, the Xstreamulator project clearly demonstrates that the determination of

application features and functionality should be derived through a process of staff, faculty

and student consultation.

6

Chapter 2

The Participatory Design (PD) Process

This chapter discusses the methodological approach employed in Xstreamulator's

development. The implementation and findings of the participatory design (PD) research

process are revealed.

2.1 Theoretical Directions and the Benefits of Participatory Design

The fundamental theoretical direction of this project encompassed the perspective that

rich media e-Iearning environments are spaces for co-operative learning. Learning is not as

one might perceive an inherently individualistic process. In reality, it is the result of a

complex process of social interaction. In essence, to understand of how meaning is

created, practitioners must approach e-Iearning environments from a sociocultural

standpoint. Therefore, the process of formulating pedagogic criteria for evaluating the

requirements of e-Iearning environments inevitably requires us to consider theories and

methodological approaches derived from the sociocultural tradition. However, there are a

many theoretical and methodological approaches that can be considered as valid evaluative

techniques, though some of these more traditional techniques may entail less socially

constructed and arguably less pedagogically valid forms of inquiry. For example, Teemant

(2005) asserts that it is generally accepted that a more constructivist or group-based

approach to learning has significant cognitive benefits:

Learning occurs through internalization and automatization of social
activities. Individuals construct personal understandings and abilities by
way of cooperative interactions and negotiation of shared meanings in
social contexts. Language and other social tools mediate learning, and
structured experiences can produce expected patterns of development.
(Teem ant et aI., 2005, p. 1176)

7

Sociocultural sensitivity reqUires practitioners to study e-learning environments as

"knowledge-construction systems" (Barab, Kling, Gray, 2004, p. 259), where pedagogic

analysis emphasizes the value of consensus building. This "convergence" approach, which

has been a central component of the sociocultural tradition for some time, is perhaps best

exemplified by Marsha Scott Poole's structurational theory of the group decision making

process (Littlejohn, Foss, 2005). Ultimately, research in this area indicates a need to apply

meta-theoretical frameworks (e.g., Berger and Luckman's social constructionism) and

potentially, secondary methodological approaches (e.g., ethnographic and

~\ ethnomethodological research). Therefore, e-learning tools (e.g., rich media webcasting

applications) and the online environments they foster must be evaluated using

methodological approaches that address the community in all its varied forms (Littlejohn,

Foss, 2005).

As Dickey (2003) reveals, collaborative models run contrary to the more traditional

conceptualizations of the communication process, including those based on Shannon and

Weaver's transmission model (I 949), where the flow of information is essentially a

transfer of information from an active sender (e.g., an instructor) to a passive receiver

(e.g., a student):

Concurrent with the development of new tools for distance learning has
been an epistemological shift in paradigms of learning from an objectivist
perspective to a constructivist perspective. Central to a constructivist
theoretical perspective is the belief that knowledge is constructed, not
transmitted, and that learners play an active role in the learning process.
(Dickey, 2003, p. 105)

8

Of particular significance is Teemant's assertion that e-learning environments should

encourage social interaction. For example, within the pedagogic literature is generally

accepted that in e-Iearning communities, participants "share a social responsibility to learn

from and learn for the community." (Barab, Kling, Gray, 2004, p. 26). There is an almost

overwhelming consensus in the literature that sociocultural research approaches are

central to interpreting these "qualitatively distinct structural environments" (Jaffee, 2003,

p. 233) which are "capable of reshaping the role behaviours and social relations between

instructors and students" (Jaffee, p. 233). However, it is highly unlikely that a single

sociocultural theory or methodological approach could address e-Iearning objectives

within all university environments, or that a single approach would be universally

accepted. Instead, the process of implementing "experimental" e-Iearning technologies

should encourage practitioners to reformulate a variety of theoretical and methodological

approaches.

Sociocultural research on e-Iearning environments has also revealed that "non-verbal

channels carry more information and are believed more than the verbal band." (Wheelan,

2005, p.169) Thus, rich media webcasting applications should enable the transmission of

9

non-verbal activity in all its varied forms. In this regard Xstreamulator is uniquely

positioned, as it supports the recording of gestures, body language, and content from an

almost unlimited array of electronic sources. However, given the complex nature of the

underlying technology, it is extremely difficult to convey verbal and non-verbal content in

a universally accessible manner. Therefore, it is encouraging that Think-Aloud-Protocol

(T AP) approaches are now being extended to evaluate accessibility in software interfaces

(Roberts, Fels, 2005). Furthermore, while Xstreamulator's accessibility goals are as yet

only partially realized, the inclusion of accessibility experts in the application's

development process has contributed significantly to the elevation of these goals in future

Xstreamulator releases. Unfortunately, TAP and many other research approaches were

determined to be too resource intensive to be implemented in the Xstreamulator project.

Indeed, one of the projects initial challenges was the identification of a more manageable

approach to addressing the rich media webcasting requirements of the University.
'\

) Ultimately, participatory design (PD) was selected as the most appropriate and sustainable

research methodology for the Xstreamulator project.

Participatory design (PD) is a research approach that actively seeks the involvement of

end-users in the application development process. Historically, the approach has been

employed in fields relating to the development of human environments (e.g., urban

development, architecture). Today, it is perhaps best known as a method of addressing

user needs in the area of information technology (IT). One of the primary factors in the

growing use of PD research is the observation that many IT based projects fail because

10

they ignore the needs of the end-user or the broader requirements of the organization

(Damordan, 1996). Therefore, it is now an accepted principle that formalized user

participation in information technology projects is a prerequisite for success. (Butler,

Fitzgerald, 1997)

The implementation ofPD research methodologies can be broadly described as serving

two purposes. First, the active involvement of users in the design of software applications

results in products that better address the need of the entire user community (e.g.,

instructors and students). Second, involvement of users in the decision making process

raises the likelihood that an application or process will be readily adopted by the target

group. Underlying these principles is the concept of the value of Workplace Democracy,

as espoused by Muller and Kuhn, particularly as it relates to a user-centered approach to

technology implementation (Damordan, 1996). However, there are many challenges to

implementing PD approaches, not the least of which is the necessity to protect and

maintain PD teams despite institutional and extraneous obstacles. However, as Beirne

(1998) reveals, rationalistic design approaches are also fraught with many challenges:

In an oft-cited paper, Curtis et al. (1988) demonstrate that rationalistic
design methods are inadequate in themselves since the context and target
environment of' live' software projects frequently display a complexity and
subtlety that is beyond conventional computing textbooks and models.
Related research by Guindon and Curtis (1988) has taken this further,
indicating that the software process is less than rational in practice, with
opportunism tending to characterize the behaviour of engineers and
designers. (Beirne, Ramsay, Panteli, 1998, p. 302).

11

The implementation of PD research within universities should raise the likelihood that

applications will become the product of many academic "voices", and thus be far more

flexible than commercial approaches that assume rigid content delivery modalities. Ideally,

the PD process will lead to a more thorough understanding of user requirements and the

recognition that inflexible delivery approaches are of limited value. Therefore, though the

implementation of a PD process introduces many challenges, it enables developers to

focus on advancing software projects in a more inclusive and sustainable fashion.

Moreover, the objective of "focusing on designing work, rather than just technology"

(O'Day, Bobrow, Shirley, 1998, p. 315) necessitates the adoption of a constructive

process of tailoring software interfaces and functionality to "real world" communication

processes and user communities. Thus, PD was selected as the most appropriate research

approach, as it enabled the development of a rich media e-Iearning application that

addressed the requirements for Ryerson's academic community and the institution as a

/ whole.

Though the use of PD in IT projects is commonplace, the use of the approach in the

development of applications for e-Iearning is less established. However, there is a growing

body of work in this field, including the application of PD approaches in the development

of virtual reality (Anderson, 2001) and video applications (O'Conner, Fitzpatrick,

Buchannan-Dick, McKeown, 2006). While further research. is required in this area, the

success of the Xstreamulator project suggests that PD approaches are ideally suited to the

development of a variety of e-learning technologies in academic environments. It is hoped

12

that the success of Xstreamulator' s PD process will encourage others to apply and further

refine the approach.

2.2 Implementation and Findings of the Participatory Design Process

The Xstreamulator beta test team at Ryerson University consisted offaculty members,

staff and students. Members of the beta test team were provided (via CD or direct

download) with prototypes for personal use, or were given access to the application

installed on computers in podium technology (PT) classrooms at Ryerson University. In

general, the beta test team members could be described as early adopters. The team

possessed varying technical expertise and familiarity with rich media delivery technologies.

In total, the beta test team consisted offaculty and staff from the following departments at

Ryerson University: Business Management, Retail Management, Radio and Television

Arts, Applied Geography, Continuing Education, Nursing, Interior Design, Social Work,

Disability Studies, Politics and Governance, The Digital Media Projects Office, Media

Services and Computing and Communication Services.

It was decided that any interested faculty/staffmember at Ryerson University could

participate in the project, as it was hoped that by being inclusive the application would

better reflect a wide range of delivery practices. However, potential beta testers were

warned that the project was experimental. They were also informed that the application's

functionality and user interface (UI) design would undergo frequent updates. The methods

.//'

m 7SP=' En. =

13

used to encourage potential beta testers to participate in the project included faculty

conferences, prototype demonstrations, articles, liv~ webcasts and web cast postings.

However, the most useful recruitment method was determined to be word-of-mouth

recommendations. Specifically, it was revealed that potential beta testers were frequently

directed to the project on the advice of existing members of the beta test team. In addition,

potential beta testers were often informed about the Xstreamulator project through their

interaction with staff at Ryerson's Digital Media Projects Office. Indeed, faculty requests

for webcasting assistance were a significant factor in Xstreamulator's development, as

they helped to highlight the limitations of commercial webcasting solutions. The absence

of a commercial webcasting solution at Ryerson University provided an opportunity for

experimentation in this area. It is also likely similar projects would be more difficult to

implement in institutions where proprietary solutions have become entrenched.

Xstreamulator's PD research was carried out through an informal process of face-to-

face consultation. In general, potential application functionality was discussed with the

beta test team during the application's installation and update stages. In addition,

communication technologies (e.g., email, telephone, web pages) were employed to

augment the feedback collection process and to inform team members of project

milestones. Ideally, a more expansive PD process would have included group

"brainstorming" sessions. However, this was unfeasible, as the beta test team could not

commit to an ongoing schedule of meetings. Consequently, it was decided that a Rapid

Application Design (RAD) process would be implemented to encapsulate user feedback

tt *

)

14

directly in the Xstreamulator application framework. In effect, Xstreamulator is a digital

representation of contributions from participants on the beta test team.

As new application functionality could not be implemented sequentially, team members

were not informed about the prioritization of recommendations. However, attempts were

made to include the core elements of recommended enhancements at the earliest

opportunity. New functionality would then be further improved and extended as time

permitted. In addition, suggestions from the beta test team were freely discussed amongst

the entire team. Often, this approach encouraged team members to contribute to elements

of Xstreamulator that they had not initially considered worthwhile. Furthermore, as the

RAD process enabled functionality to be added at near real-time, the beta test team were

made aware that their input in the project was being rapidly implemented. For example,

one instructor commented that "I make a feature request and Jeremy programs it in half an

hour!" While this statement was overly optimistic, the end result was an extremely fast

implementation of team recommendations. As anticipated, the recommendations of the

beta test team focused primarily on improvements to Xstreamulator's usability and rich

media content capturing functionality. However, application requests covered a wide

range of functionality, including: improved capture device support, the ability to "markup"

presentation content, podcasting support, the implementation of editable webcasting

presets, cross platform support, application stability and so forth.

Major enhancements and modifications to the Xstreamulator's core functionality were

15

regularly vetted with members of the beta test team. For example, the decision to

"centralize" archived webcasts led to the implementation of a user request to enable

instructors to place content in personal FTP folders. Interestingly, one of the primary

findings of Xstreamulator's PD process was discovery that instructors want to maintain

control over the distribution and location of their webcast content. While technical reasons

dictated that a more rigid archiving model was required, the addition of support for user

specified hosting addressed concerns that the content would be permanently locked to a

single server or delivery platform. In comparison, commercial webcasting systems make

transferring content to alternate servers extremely difficult or impossible. Xstreamulator

addresses this issue by generating the entire viewing environment on the user's local hard

drive. Furthermore, the viewing environment can be easily published to any Windows

Media server or Web server.

If possible, beta testers were observed using Xstreamulator prototypes in live and non

live webcast sessions. The observation of the application's use by instructors in their

working environments revealed problems with the application's VI, technical constraints,

and other functionality issues. These sessions were in essence an informal implementation

of Talk-Aloud-Protocol (TAP) procedures. Web casts were also monitored remotely. The

approach consisted of observing . the webcast and student/instructor comments in

Xstreamulator's chat interface. This process helped to reveal issues relating to student

access and impressions of Xstreamulator' s web cast delivery model. As chat sessions were

archived in later Xstreamulator prototypes, it became possible to review these sessions

16

during subsequent prototype development stages. While institutional demands precluded

direct student involvement in the project, it was possible to gather student feedback by

actively participating in online sessions. Furthermore, the response from the student

community was overwhelmingly positive. In general, students appeared very willing to

contribute their ideas to the project. Indeed, many of Xstreamulator's unique features

were the direct result of feedback from these sessions. For example, the student

community requested the addition of podcasting functionality and the attachment of

PowerPoint slideshow summaries to archived webcasts. The most significant challenges

faced by the student audience were browser/player incompatibilities. Overall, these issues

were much more common on the Macintosh OS/X platform. To address these

compatibility issues, an HTML help file was added to the webcast viewer interface. This

guide greatly assisted students in optimally configuring their browser/player environments.

Unexpectedly, a review of chat sessions revealed that a significant amount of chat

(~traffic" occurred between students, though student-to-instructor chats remained the most

common. Generally, student-to-student chats pertained to the clarification of themes being

presented by the instructor. However, a significant portion of the chat traffic was revealed

to be social (e.g., often supportive) in nature. Significantly, many students indicated that

the chat sessions were as important to their learning outcomes as the web cast content

itself The student's adaptability to Xstreamulator's chat environment and the generally

positive chat messages suggest that students were comfortable communicating in

Xstreamulator's e-Iearning environment.

17

Interestingly, the production of webcast content was driven as much by student

demand as instructor interest. For example, an instructor on the beta test team commented

that her students had become "addicted" to Xstreamulator produced content! In addition,

many students stated that Xstreamulator webcasts addressed distance barriers. Ultimately,

the evaluative component of the PD research process combined feedback from instructors

and students with the evaluation of live and on-demand web casting sessions. In addition,

members of the beta test team were encouraged to relay both their experiences and

feedback from students. It is expected that future work on the Xstreamulator project will

augment these approaches with group "brainstorming" sessions and a greater degree of

student participation.

To improve usability, features were only added to the Xstreamulator's framework if

they streamlined the webcasting process or enhanced the quality of media produced.

(Indeed, Xstreamulator's primary development goal was simplifying the webcasting

process for users. Ideally, users wanted to be protected from the complexities of

webcasting process. This concern was raised in the literature and by many members of the

beta test team. Nevertheless, as Lee (2006) asserts, it is unlikely that users could ever be

fully protected from the cognitive demands of a web cast environment, as the nature of

webcasting itself introduces challenges that are not exclusively technical:

The conditions imposed on an online session are not just technological in
nature. The instructor must apply a high degree of implicit communication
during the presentation. This means that the professor should use eye

contact by looking at the webcam lens as ifit were an actual student. Facial
expressions and vocal inflections are also important to help explain and
clarify key points. In effect this is television, and an ability to play to the
camera and be an on air presenter at a professional level is a definite asset.
(Lee, 2006, p. 2)

18

Nevertheless, the success of the Xstreamulator project suggests that users are capable of

overcoming these issues. Furthermore, after a short familiarization process, users can

produce content of a very high standard. In addition, Xstreamulator can be implemented

in classroom environments in a manner that isolates instructors from the complexities of

the webcasting process. Thus, lecturers may perceive webcasting (and by association e-

learning) as simply an extension of the lecture delivery process.

It was assumed that instructors would primarily use Xstreamulator for delivering

live webcasts. However, it became evident that Xstreamulator was increasingly being

utilized for post-delivery scenarios. When questioned about this practice, some instructors

indicated that preparing content in non-live environment was more relaxing and avoided
/

the pressures of real-time delivery. Conversely, others stated that live webcast sessions

were more productive, as they involved direct communication with students (i.e., via

Xstreamulator's chat component). Irrespectively, Xstreamulator's support for live/post

web cast delivery from non-classroom environments (e.g., offices, boardrooms, home

locations) was universally popular with the beta test team. As a result, automated post-

event web cast uploading functionality was added to Xstreamulator's feature set. The

facility for the automated uploading of pre-recorded web cast content overcame the

technical challenges of webcast delivery in non-networked environments.

19

Research on the use of e-Iearning technologies in universities has revealed that many

instructors "have had no training and little experience in the use of communications and

information technology as an educational tool." (Joyes, Scott, 2000, p. 74) Therefore, the

wide scale adoption of web casting technologies within academic environments is not easily

achieved. This challenge was addressed by implementing methods to reduce the

complexity of the entire webcasting process. Ultimately, usability goals influenced every

aspect of Xstreamulator's design process. Thus, the Xstreamulator model should be

perceived as challenge to the widely he1d view that instructional webcasting solutions

necessitate highly skilled technical support teams. However, it is worth noting that the

composition and commitment of the beta test team fluctuated substantially throughout the

project's development lifecycle. While this can be partly explained by the Xstreamulator's

long development process it also appears that commitment to the project reflected user

requirements. For example, the installation of early Xstreamulator prototypes in PT

classrooms at Ryerson University was spearheaded by instructors who wished to use
(

webcasting in an upcoming collaborative Social Work program. Once the project was

completed, the instructors became far less active in the project. However, a subsequent

requirement to broadcast meetings encouraged the same instructors to become more

active. Interestingly, some members of the beta test team repurposed their use of

Xstreamulator to fit new delivery objectives when their initial purpose for using

Xstreamulator were no longer applicable. Indeed, the Xstreamulator projects

demonstrated that there is potentially no limit to the usefulness of an application with

20

flexible webcasting capabilities. For example, an instructor in the School of Retail

Management employed Xstreamulator to live broadcast telephone interviews, while other

instructors employed Xstreamulator to introduce their program to incoming students. It is

highly likely that a more rigid development process would have led to an application that

was far less adapted to these varied delivery scenarios.

Finally, the PD research process revealed that web casting technology can overcome

institutional barriers. For example, Xstreamulator directly addressed the challenge of

course delivery in situations where factors of geography and professional commitments

acted as barriers to enrichment (Ostrow, DiMaria-Ghalili, 2005). Indeed, the ability to

produce webcasts outside typical daytime teaching schedules was a major factor in the

willingness of faculty to adopt an arguably experimental web cast delivery system. A

second factor that attracted instructors to the Xstreamulator project was a lack of

classroom availability at Ryerson University (Lee, 2006). Specifically, many instructors

indicated that the shortage of classroom space at Ryerson made Xstreamulator the only
(

viable course delivery alternative. It is also likely that classroom shortages are

commonplace in many universities. Thus, as Xstreamulator enabled instructors to deliver

content from a location of their choosing, the application could be viewed as an extremely

cost effective alternative to traditional course delivery methods.

21

Chapter 3

Commercial and Open Source Alternatives to Xstreamulator

This chapter provides a critique of commercial and open source alternatives to

Xstreamulator. The advantages and disadvantages of these systems are discussed as they

specifically relate to their implementation within university environments.

3.1 Critique of Commercial Alternatives to Xstreamulator

There are number of hardware and software solutions tailored to recording classroom

based presentations. However, only a handful of commercial solutions combine live

webcasting with integrated desktop/presentation capturing functionality. The two

commercial leaders in this field are Sonic Foundry (MediaSite) and Accordent

Technologies (Capture Station). The MediaSite RL4401ML Recorder and the Accordent

Capture Station are single-purpose webcasting systems that provide integrated audio,

video and VGA capturing functionality. Specifically, the Sonic Foundry and Accordent

products utilize third-party hardware for audio/video and desktop capturing, and are based

on a standard PC architecture. The cost of either system is well over $15,000.

As the Sonic Foundry and Accordent systems ar~ incapable of processing more than

one webcasting event simultaneously, enough encoding systems must be purchased to

match the number of concurrent sessions taking place. Due to these capacity constraints,

22

some institutions (e.g., York University in Toronto, Canada) locate their commercial

capture systems in a centralized web casting studio, where a "rack" of capture systems is

pooled to support a larger number of classrooms. While centralization enables institutions

to maximize their use of these systems in the short-term, the approach cannot ultimately

overcome scalability constraints. For example, if the webcasting of classroom lectures

becomes popular within an institution, the number of resident capture systems must grow

to match the peak web casting demand at any given time. Thus, adopters of commercial

web casting solutions can become captive to their own success. In comparison,

Xstreamulator's hardware neutral design permits the deployment of a potentially unlimited

number of capture stations. Furthermore, basic Xstreamulator capture stations can be

assembled for under $3,000. Xstreamulator can also be installed on computers that are

tailored to specific classroom environments, including small-form-factor PC systems,

portable systems, and podium technology (PT) computers. For example, Xstreamulator

prototypes were successfully tested on podium computers within a number of classrooms

at Ryerson University; a delivery approach that becomes more viable with each
i

generational improvement in PC performance. Indeed, Xstreamulator's low

implementation cost enables integrated web casting systems be deployed to any location on

a university campus, including offices, conference rooms and studios. Xstreamulator can

also be distributed to instructors who wish to record classroom or non-classroom lectures

with personal computers (e.g., laptops). In contrast, the Sonic Foundry and Accordent

solutions are specifically designed for web casting content in environments (e.g.,

classrooms) where the presenter is recorded by a permanent capture system. As a result,

23

instructors are required to use dedicated web casting classrooms or licensed presentation

capture applications (e.g., Accordent PresenterPro). Based on experience at Ryerson

University, it appears that the licensing of presentation applications may be overlooked

during an investigation of web casting solutions.

The Sonic Foundry and Accordent solutions require server licensing arrangements that

add greatly to the cost of implementing these platforms. In addition, their delivery

architectures require more staff than Xstreamulator. Specifically, Xstreamulator's webcast

delivery process does not require that events are scheduled in advance, as the delivery

framework is user-driven instead of event-based. For example, to announce a pending

webcast, Xstreamulator users simply distribute their personalized webcast homepage to

students (e.g., via email).Oncecreated.aninstructor.s broadcast URL does not change in

subsequent webcasts. Furthermore, users activate their webcast homepage directly from

Xstreamulator's VI. Thus, the Xstreamulator's approach greatly reduces administrative

staffing requirements. In contrast, the Sonic F oundry/ Accordent broadcast models require
(

that webcast sessions are scheduled in advance. An evaluation of a Sonic Foundry system

at Ryerson University revealed that the webcast scheduling process was time-consuming

and potentially error prone.

3.2 ePresence: An Open Source Alternative to Xstreamulator

Developed by Ron Baecker, Peter Wolf and by Kelly Rankin of the Knowledge Media

24

Design Institute (KMDI) at the University of Toronto, the ePresence system IS a

comprehensive open source alternative to commercial web casting solutions. Like

Xstreamulator, ePresence utilizes "standard off-the-shelf computer hardware and

audio/visual equipment" (Rankin, Baecker and Wolf, 2004, p. 2890). A key feature of the

ePresence system is its ability to simultaneously record presentation content in a variety of

video codecs (Le., Windows Media, QuickTime, RealMedia and Flash). However, the

ePresence system only live web casts Windows Media and Real Media streams. The

ePresence system utilizes a Viewcast Osprey 210 capture card and Viewcast Osprey

SimulStream software to implement multiple-format capturing. Specifically, the Osprey

SimulStream (i.e., virtual) driver enables a single Osprey 210 capture card to emulate a

multiple format capture device. Consequently, while users of an ePresence system are free

to install the ePresence Producer application on any Windows XP compatible computer,

they must purchase a costly Osprey capture card and SimulStream license if they wish to

produce multi-format streaming video. In addition, VGA slide capturing is supported

exclusively through an Epiphan VGA to USB frame grabber. Unlike Xstreamulator, the
!

ePresence system does not support alternative VGA capture sources (e.g., PCI based

frame grabbers) or other capture devices (e.g., cameras). A "light" version of the

ePresence system does support non-Osprey capture devices, but it is not capable of

external VGA capturing.

The ePresence system consists of the ePresence Server, Producer, Presenter and PDA

Remote Control software applications. In situations where VGA capturing is not feasible,

25

PowerPoint slideshows can be dynamically captured with ePresence Presenter. However,

the Windows only ePresence Presenter application must be installed on a presenter's

system to enable this functionality. The ePresence Producer application can also capture

PowerPoint presentations, but it must convert these files to slides prior to the start of a

web cast. Testing revealed that this time consuming pre-conversion process would be

problematic in a live webcasting situation. In comparison, Xstreamulator does not require

software to be installed on a presenter's computer, as Xstreamulator provides integrated

real-time PowerPoint capturing functionality. Furthermore, Xstreamulator is capable of

dynamically loading and capturing PowerPoint presentations at any time during a live

web cast session.

ePresence's support for multiple video formats is commendable. However, its

Windows Media format webcasts can only be viewed on Internet Explorer 6+ in Microsoft

Windows. In contrast, Xstreamulator creates a single Windows Media file that is viewable

on Macintosh and Windows systems? Moreover, as ePresence is restricted to live
(-

web casting platform specific Windows MedialReal Media streams,4 Real Networks Helix

Server is required to maintain cross-platform compatibility. However, the ePresence and

Helix server components can be installed in Windows or Linux. In comparison,

Xstreamulator requires Windows Server 2003 and Windows Media Services. As Windows

Media Services is included with Windows Server 2003, server deployment may be less

costly than with the ePresence solution. The ePresence system implements database

functionality through open source 'Xrv1L protocols, including Service Oriented

26

Architecture Protocol (SOAP) and MySQL. At present, Xstreamulator does not

implement a database system for web cast archiving and searching. This functionality is

planned for future release. Specifically, it is expected that Xarchiver will be employed to

populate searchable SQL databases. In addition, front-end search functionality will likely

be based on an Active Server Page (ASP) implementation.

ePresence provides comprehensive support for web cast searching and tagging. An

embedded Flash applet enables viewers to "search within a particular archive or across a

repository of archives based on key words" (Rankin et al., 2004, p. 2889). The system's

dependence on Adobe's Flash Player could be viewed as a shortcoming, though it is likely

that the vast majority of viewers have this popular web plug-in installed on their computer.

Uniquely, the ePresence Producer application automatically populates the Flash applet UI

with PowerPoint slide titles. Viewers of ePresence presentations can also attach markers

to the web cast playback timeline and forward presentation links to other viewers. During

Cl: webcast, the ePresence system generates a table of contents that can be further edited in
(

a post-production interface. It is expected that the Xstreamulator solution will eventually

implement webcast indexing and searching capabilities that are comparable to those

provided by the ePresence system.

The ePresence application suite is clearly not designed for casual use. Potential users

are faced with an application architecture that is as complex as it is comprehensive.

Overall, the extensive capabilities of the ePresence system are somewhat overshadowed by

27

the complexity of configuring and runmng live web cast sessions. For example, the

ePresence operation guide states that an ePresence operator is required to oversee the

capturing process. The guide also suggests that an audio/video operator and a moderator

may be required for some web cast scenarios.s In contrast, Xstreamulator's non-classroom

webcasting functionality is streamlined to such an extent that the delivery process can be

managed solely by the presenter. Furthermore, all of Xstreamulator's classroom-based

webcasting functionality (e.g., PTZ camera control and audio level management) will

eventually be implemented in a unified application VI.

3.3 Summary of Commercial and Open Source Alternatives

Commercial webcasting solutions require users to conform to less flexible content

delivery modalities. For example, the AccordentlMediaSite solutions are incapable of

delivering full-motion video/desktop webcasts. If commercial solutions fail to address

specific end-user requirements, then less optimal content delivery processes can become
/

entrenched. Moreover, the adoption of commercial solutions can lead to the concentration

of single-purpose hardware installations. In contrast, in-house web casting solutions can be

easily distributed and modified to support a potentially unlimited number of delivery

environments. It is also more likely that emerging e-Iearning applications (e.g., video

conferencing, pod casting) will be added to internally developed systems. In comparison,

commercial hardware solutions are typically treated as sacrosanct environments.

28

The ePresence system is significantly more flexible than the solutions provided by

Sonic Foundry and Accordent Technologies. For example, ePresence's development team

recently added Flash-based streaming and video conferencing capabilities6 to the feature

set Furthermore, the system's sophisticated searching/indexing architecture and support

for multiple media formats/delivery modes are noteworthy. However, the consequence of

ePresence's sophistication is a complex hardware/software environment and significant

media storage/delivery overhead. In contrast, Xstreamulator's development process has

focused on reducing the complexity of web casting process to a point where non-technical

users are able to create "professional" results. In addition, by using a single streaming

format, Xstreamulator significantly reduces media storage and delivery requirements.

From the outset, Xstreamulator has been designed to be operated by non-technical users

(e.g., instructors). This goal has been achieved by integrating the entire production

process into a user-friendly application UI.

(

Er"! FE

29

Chapter 4

Xstreamulator and Xarchiver Webcasting Framework

This chapter discusses Xstreamulator's client/server framework. In addition,

Xstreamulator's webcast delivery process and client-server architecture are described.

4.1 Overview of the XstreamulatorlXarchiver Webcasting Framework

Xstreamulator's webcasting framework consists of two interconnected applications,

the Xstreamulator "encoder" application and the server resident Xarchiver application.

While Xstreamulator can deliver webcasts without being connected to a server running

Xarchiver, it is not possible to synchronously archive live Windows Media streams

without installing Xarchiver on a Windows Enterprise Edition server. Xarchiver directs

the Windows Media Server service to archive Windows Media streams to the user's

webcast directory. However, as Xstreamulator records complete webcasts to the local

computer, it is possible to configure Xstreamulator to live web cast with Xarchiver's

archiving functionality disabled. In this scenario, Xstreamulator post-uploads the

streaming media file via the File Transfer Protocol (FTP). Though this approach precludes

automatic archiving, it does enable users to install Xstreamulator-based live webcasting

functionality on less costly versions of Microsoft's Windows Server; if required,

Xstreamulator can be configured to provide publishing credentials to the Windows Media

Server service. Thus, Xstreamulator can interoperate with any Windows Media server.

30

In addition to synchronous webcast archiving, a permanent server-based recording of

media streams generated during a live event, Xarchiver is responsible for the activation of

live webcasting "mount points", user authentication (currently in development) and a

variety of pre-production and post-production functions. Significantly, situating this

functionality on the server enables Xarchiver to bypass firewalls and interact directly with

the Windows Media service. In comparison, commercial encoding systems typically

communicate with the Windows Media service via Microsoft's Distributed Component

Object Model (DCOM). This approach requires the opening an entire range of firewalled

ports (1-65,535, User Datagram Protocol); a process that makes the Windows server

significantly less secure. As Xstreamulator communicates with Xarchiver through a single

TCPIIP port, it avoids the security implications of the DCOM approach. Moreover, a

major advantage of the TCPIIP based approach is that it enables Xstreamulator user's to

live webcast their presentations from locations outside of the university. The TCP/IP

implementation does not require firewall reconfigurations that worry IT security staff. It is

worth noting that Xarchiver's TCP/IP port can be changed to any value within the TCP

range (1-65,535). Furthermore, Xarchiver can utilize a dedicated network card for load

balancing purposes or for Virtual Private Network (VPN) operations. As the Windows

Media Server and FTP services are components of Microsoft's Windows Server, no

additional third-party components are required to implement Xstreamulator.

Intriguingly, the Xstreamulator to Xarchiver TCPIIP approach could be implemented

l

31

as a reverse process. This would enable Xstreamulator to be remotely controlled from a

web-based scheduling system. In this scenario, a scheduling system would dispatch

webcasting sessions to Xstreamulator clients, and manage the webcasting process with

minimal user intervention. However, to be fully automatic, the process would require the

development of automatic slide capturing support. Furthermore, the approach could not

be fully self-operating without automatic camera control and audio level management

functionality.

4.2 The XstreamulatorlXarchiver Web casting Framework

Xarchiver utilizes application threading to process requests from Xstreamulator

clients. The addition of threading functionality to Xarchiver was a critical development

milestone. It would not have been possible to have multiple Xstreamulator "encoders"

connected to a single Windows Media Server if these connections could have only been

processed in a sequential manner. This challenge was addressed in Xarchiver by

instantiating independent application threads for each Xstreamulator publishing directive

(Le., parallelization). Xarchiver's threading model is undergoing significant development.

However, the results thus far indicate that Xarchiver's multi-threaded approach is

extremely efficient and stable.

To manage live web casts, Xarchiver communicates through a .NET Interop

assembly with the Windows Media service and the Windows Media Server Object

(

32

ModellPlug-in 9.0 Type Library. This library is imported into the Xarchiver's .NET

development environment through a COM reference to the dynamic link library

WMSServerLib.dll. The Windows Media Server Object enables Xarchiver to interoperate

with local or remote Windows Media servers. For example, Xarchiver dynamically creates

and removes web cast publishing points, and instructs the Windows Media service to

archive live media streams to specific user directories. The on-demand creation of webcast

mount points eliminates the time consuming process of configuring webcasting accounts.

Xarchiver publishes JavaScript and ASPIHTML files that monitor the streaming status of

a user's live web cast account (Figure 1). For redundancy purposes, this functionality is

also duplicated in the Xstreamulator client.

Account Creation and Event Folders

~ rmary
) lJ Acoount

Creation and
Event ,.....-_-1..._--., Xstreamulator

cWindows Media Stream-+-----I Folders
(primary) I L-__ ~~_--I

" Server Images, Viewing Envir

I r-Windows Media Stream (n
1..... ____ ~i" ... Chat and Event St

I File
~ Transfer

User Account \-I --Account-··- Protocol
~~ (Redirects to I Service

Event Folder) Windows

Web Server (ASP
Intemet

Account Creation
I+-+------I,-----and Event Folders

Media <.-,,---- (secondary)
R"edirect i Files

.... Event Request--, I \ J 'f~'--"--·Evm.· I I I: Viewing Environment i

I 1 Event Folder I~I Webcast + Chat--'=+=I =====+1., (including Chat) I
L. ---.!.,======J'lj----c.: Event Content ... " ----

Figure 1: The XstreamulatorlXarchiver \Vebcasting Framework

Furthermore, dynamically generated webcast publishing points can accept Xstreamulator

web casts that are "pushed", "pulled,,7 or (potentially) multicast. To implement server load

/

33

balancing, Xarchiver will eventually support the distribution of mount points across a

"farm" of Windows Media servers.

A JavaScript-based XML parsing process enables webcast viewers to directly connect to

the user's webcast directory at the moment a webcast goes "live". Presently, the XML

loading process identifies the title and dateltime of the event. A planned enhancement will

enable instructors to send messages to the redirect page if events are running behind

schedule. If a user has not commenced a webcast, viewers are informed that the webcast is

pending. For example, a user wishing to view a live webcast from Instructor A will be

permitted to connect to the subdirectory that is currently archiving instructor A's webcast

(i.e., the location where the archived webcast will permanently reside). If instructor A has

not commenced a live webcast, then the viewer will be "locked" to instructor A's redirect

page (which contains the XML/JavaScript based redirection components), until the point

that the webcast begins. A future Xstreamulator release will be automatically return

viewers to the user's redirect page at the completion of a live web cast.

During a live web cast Xstreamulator populates the user's webcast folder with a

viewing environment consisting of HTML, Active Server Pages (ASP), Asynchronous

JavaScript (AJAX), media pointer files and XML. Xarchiver can also generate the viewing

environment, though at present these files are uploaded to the streaming server by

Xstreamulator. The viewing environment is accessed during live webcasts and archived for

post-delivery, An administrative interface that enables' users to modify webcast settings

(

34

and a viewer authentication wrapper is currently in development. Even if Xarchiver

eventually assumes responsibility for this functionality, it is likely that Xstreamulator will

maintain this role in a failsafe capacity, as this increases the likelihood that Xstreamulator

webcasts will work in the event of a server or Xarchiver failure. Although the delegation

of live webcast delivery responsibilities between the Xarchiver and Xstreamulator has yet

to be finalized, it is expected that Xarchiver will assume a greater role in Xstreamulator's

webcast delivery process. For example, the move to a server based delivery approach

makes the deployment of new ASPIHTML viewing templates much easier.

At the end of a webcast, Xarchiver and Xstreamulator simultaneously commence a

post-production process that adds XML based markers to the media stream. Marker

insertion enables viewers to "jump" to segments of a particular webcast. At present,

Xarchiver utilizes the live archiving functionality provided by the Windows Media Server

service on Windows Server Enterprise Edition. However, Xstreamulator can upload

marker-inserted streaming files via FTP if automatic archiving is not supported. It appears

that Xarchiver's implementation of synchronous Windows Media archiving is unique. The

ability to view an entire web cast immediately upon its completion is a significant feature of

the Xstreamulator framework. In contrast, commercial webcasting solutions rely on a

post-production process to upload webcast content. Consequently, webcasts are not

immediately available for on-demand delivery.

Xstreamulator's web cast delivery framework is based on a streamlined user-driven

(

35

model. As all live web casts are situated in the user's home directory (e.g.,

www.ryecast.ryerson.ca/xs/jlittler/) the need to distribute successive live webcast URLs is

avoided. This approach does not require that technical staff manage webcasting schedules.

In addition, the process of notifYing viewers (e.g., students) of live webcasts is greatly

simplified, as viewers need not continually update event URLs. Moreover, as an

instructor's live web cast location is automatically generated by Xstreamulator during (or

prior) to an initial webcast, the process of granting webcasting permissions is significantly

strearnlined~ first-time Xstreamulator user need only activate their account (i.e., create

their initial live webcast directory). The activation of user accounts can be completed

from any system running Xstreamulator, and may eventually be enabled from a secure

webpage. In an emergency, user accounts can be activated by manually copying webcast

statuslredirection components to a new user directory.

During a live webcasting seSSIOn, Xstreamulator broadcasts user information and

streaming settings to Xarchiver. After Xarchiver authenticates the Xstreamulator user, all

further communication employs a secure FTP password/usemame. Xarchiver uses

Xstreamulator broadcasted settings to configure web casts and to populate live webcasting

folders with content specific ASPIHTML viewing components. Again, this functionality is

duplicated in the Xstreamulator client. In addition to creating live webcast folders,

Xarchiver instructs the Windows Media Server service to create web cast mount points. In

summary, the live webcasting process is as follows:

1. Xstreamulator transmits a usemame/password and webcast settings

to Xarchiver.

2. Xarchiver authenticates the user. From this point on, Xstreamulator
employs a secure password/username for subsequent communication
(e.g., the uploading of slides).

3. Xarchiver creates a webcast delivery folder for the user. This
delivery folder is populated with ASPIHTMLIXML components by
Xarchiver or Xstreamulator.

4. Xarchiver creates a live webcast mount point and instructs the
Windows Media Server service to archive live webcasts to the user's
webcast directory.

5. Xarchiver instructs Xstreamulator to commence broadcasting the
media stream.

6. Viewers connect to the user's web cast redirection URL. Then, they
are redirected to the live webcast directory.

7. Upon completion of the webcast, Xstreamulator transfers an xml
based "marker" file to the Windows Media server. Xarchiver uses
this file to prepare the streaming media file for post delivery and
slide playback. Xstreamulator duplicates this functionality on the
local computer.

/ 8. Xarchiver removes the publishing mount point from the Windows
Media server.

9. Xarchiver sends an email to the user's account to inform them of the
location of the web cast content. Users distribute this email to
viewers for on-demand delivery.

36

If required, the above delivery process can include a secure user authentication process

(e.g., a Light Directory Access Protocol based authentication process managed by

Xarchiver). Also, a future release of Xstreamulator will· enable instructors to include an

I

(

E -

37

authentication process for viewers of live and on-demand webcasts. It is foreseeable that

an authentication process could be implemented to enable viewing permissions to specific

users. However, a more generalized authentication process would likely be sufficient in the

majority of cases. The implementation of complex viewer authentication systems in

commercial web casting solutions (e.g., MediaSite) can result in time-consuming requests

for changes to the authentication database.

7' WI 'I 7 ars

38

Chapter 5

The Viewing Environment

This chapter describes Xstreamulator's viewer interface. In addition, Xstreamulator's

"slide" insertion processes and "slide" delivery functionality are discussed. The chapter

concludes with a discussion of Xstreamulator's support for cross-platform browser

delivery.

5.1 Viewer Vser Interface (VI) and Functionality

Webcast viewers receive Xstreamulator broadcasts by connecting to a page hosted on

an HTTPlWindows Media streaming server. When an Xstreamulator user captures slide

content (e.g., images or PowerPoint slides) the resultant bitmap image and an HTML

"wrapper" are uploaded to the webcast server via File Transfer Protocol (FTP). To

synchronize slide delivery, a URL loading command is inserted in the script track of the
/
. Windows Media stream. Xstreamulator uses the intrinsic buffering time of the Windows

Media Servers live streaming delivery process to upload the captured slide content to the

webcast server before it is required for display in the viewer's browser. The difference

between the time a slide URL is inserted in the Windows Media stream and the time as

slide is required for display in the viewer's interface (Le., the buffering delay) is long

enough (i.e., 10-20 seconds) to post the captured file on the webcast server. However,

Xstreamulator's slide capturing/insertion process is so efficient that it could potentially

39

operate III situations where the Windows Media Server buffering delay falls below 5

seconds. Viewers of live Xstreamulator webcasts must have access to an Internet

connection. To compensate for low-bandwidth connections, Xstreamulator can be

configured to generate a multibitrate stream that includes a low-bandwidth profile (e.g.,

56K). Optionally, instructors can distribute self-contained Xstreamulator web casts on

removable media (e.g., CD-ROM or Flash Memory) to viewers lacking Internet access.

During a live web cast, an Xstreamulator inserted URL is detected by the embedded

Windows Media Player control in the viewer's browser, and the appropriate slide is loaded

via Hypertext Transfer Protocol (HTTP) in an inline frame adjacent to the embedded

Windows Media Player window (Figure 2).

(

Slide Viewer Area

Figure 2: \Vebcast Viewer User Interface (UI)

40

Xstreamulator's slide insertion process integrates the video portion of the webcast with

captured slides, so that the two media elements arrive at the viewer's computer in a

synchronized manner. At the completion of a webcast, the Windows Media stream and its

associated slide markers are merged by Xarchiver and Xstreamulator. On-demand viewers

can click on a slide to jump to the section of the webcast where the slide appears.

Xstreamulator minimizes the software requirements for webcast viewers and creates a

viewing environment that is compatible with both Windows and Macintosh OSIX

operating systems. In addition, it was determined through discussions with the beta test

group that viewers did not want to be forced to view webcasts with Microsoft Internet

Explorer. Therefore, a cross-platform HTML interface was developed that embedded the

Windows Media Player plug-in object in a manner compatible with the majority of popular

web browsers.9 At present, users of the OSIX operating system are directed to install

Telestream's Flip4Mac plug-in, which replicates Windows Media Player's functionality on

OSIX. Flip4Mac is actively supported by Microsoft. Unfortunately, at present, the

(Flip4Mac plug-in implementation does not support Xstreamulator's slide marker

"seeking" feature. It is expected that this issue will be resolved in the next Xstreamulator

release. Xstreamulator webcasts can also be viewed on the Linux platform, by installing

MPlayer or VLC. Unfortunately, these players do not currently support the automatic

display of captured slides. To address this issue an AJAX-based slide loading process that

supports Linux is currently in the early stages of development.

41

The process of implementing a cross-platform playback solution was made more

difficult by Media Player's lack of browser scripting support; other than for Internet

Explorer browsers on the Windows platform. Specifically, it was not possible to jump to

slide positions if the Windows Media file was being viewed on non-Internet Explorer

browsers. To resolve this issue, an unconventional approach of dynamically generating the

Windows Media plug-in at the desired marker time was implemented in JavaScript. It is

expected that this functionality will continue to be improved and extended to other web

browsers. Additional enhancements will likely include an increased emphasis on the

server-side generation of the viewing environment and the addition of more advanced

Active Server Pages and AJAX code.

Microsoft's Silverlight plug-in, a rich media plug-in that is similar to Adobe's Flash

Player, is a potential alternative to Windows Media Player. However, the beta version of

this plug-in does not currently support live streaming. Preliminary testing has revealed that

the Silverlight plug-in greatly improves on-demand webcast performance on OS/X and

lWindows. Furthermore, Microsoft has enlisted Novell to port Silverlight to the Linux

platform. Therefore, whether the ASPIHTML approach is maintained or not, it appears

that long-term cross-platform Xstreamulator compatibility is assured.

42

Chapter 6

System Requirements, Device Support and Audio Level Management

This chapter describes Xstreamulator's software and hardware requirements. Both

basic and advanced hardware capabilities are discussed. The application's external content

capturing capabilities are examined in detail. The chapter concludes with a discussion of

audio level management approaches.

6.1 System Requirements

Xstreamulator currently requires a system running Windows 2000, XP or VISTA.

Recent tests have also confirmed that Xstreamulator runs extremely well on Intel-based

Macintosh computers using Apple Bootcamp or Parallels Desktop.1O While there are no

specific CPU requirements, Xstreamulator's audio/video encoding processing realistically

demands a later generation processor, though users can create audio-only web casts on

(more modest (e.g., Pentium III) systems. Users of multicore/multiprocessor based systems

can create high-bandwidth or multibitrate Windows Media files.

6.2 Video and Audio Capture Hardware Requirements

In addition to a sufficiently powerful PC, Xstreamulator requires a video and audio

capture device. Typically, a USB (1.0 or 2.0) or Firewire (IEEE 1394) web camera and a

microphone headset (USB or analog) are acquired by the user. Although these devices are

43

common in Xstreamulator web casting systems, the beta testing process has revealed that

universally adopted capture devices simply do not exist! As Xstreamulator supports any

Windows Driver Model (WDM) or DirectX capture device, many users have not been

forced to purchase additional hardware. Furthermore, Xstreamulator supports systems

with multiple capture devices. On these systems, Xstreamulator permits the independent

assignment of video and external capture devices. In total, Xstreamulator was

successfully tested with: web cameras, integrated array microphones, TV tuner cards,

digital video cameras, and a variety of dedicated capture cards. ll

Uniquely, Xstreamulator provides automatic capture device detection. Specifically,

Xstreamulator enumerates available capture devices and automatically activates the device

most suited to webcasting. A significant amount of programmatic code in Xstreamulator is

focused on this advanced functionality. Moreover, Xstreamulator automatically sets audio

capture sources to their "microphone" input. Thus, users are not required to perform this

often overlooked step. Usually, Xstreamulator's automation device detection subsystem

(selects the appropriate capture hardware. However, these settings can be overwritten (and

saved) if required. In comparison, commercial systems do not provide automatic device

detection or automatic audio capture configuration.

6.3 External Capture Device Support

In addition to video capturing, Xstreamulator enables desktop capturing via USBIPCI

VGA "frame grabber" devices. 12 The use of VGA acquisition hardware conveniently

!

44

circumvents the need to install desktop capturing software on presentation systems.

Xstreamulator's VGA capturing functionality was employed extensively in the recording

of conferences, lectures, and events. Indeed, the Digital Media Projects Office developed

laptop based solutions specifically for the purpose of web casting presentations. 13

Furthermore, as Xstreamulator is hardware independent, it was possible to deploy VGA

capturing functionality to all of Ryerson's mobile encoding systems. Therefore,

Xstreamulator's support for inexpensive VGA to USB capture devices greatly lowered the

cost of integrated webcasting systems. In comparison, commercial web casting systems

exclusively use costly Pel-based capture hardware, which is reflected in the high price of

these systems.

Notably, Xstreamulator supports the recording of VGA content as slides or Windows

Media streams. For example, from personal or presentation computers, Xstreamulator can

be configured to webcast desktop content as full-motion video. Xstreamulator users can

also combine video streams with slides captured from secondary video capture sources

(e.g., video cameras). Interestingly, though these devices are not specifically designed for

VGA capturing, they can be effectively used for this task. Moreover, Xstreamulator's

multi-device and multi-format capture subsystem provides a significant degree of capture

flexibility (see Appendix II). For example, it is ideally suited to situations where

instructors need to demonstrate 3D objects. Indeed, an instructor at Ryerson's School of

Interior Design stated that Xstreamulator's support for secondary capture sources was

ideally suited to presenting physical objects and materials.

.:

45

6.4 Audio Level Management

Xstreamulator's beta test process has revealed that it can be difficult to maintain

consistent audio recording levels during a webcast. For optimal results, digital recording

levels should consistently fall within the range of -12db to -3db. Audio input levels

exceeding Odb are to be avoided, as they cause unpleasant "digital clipping" in the media

file. In addition, extremely low levels decrease the signal-to-noise ratio of recordings. To

limit these issues, the following audio level management approaches have been

implemented in Xstreamulator:

•

•

•

•

•

The addition of audio level metering in Xstreamulator's ill.

The addition ofa Odb (Le., "clipping") indicator in Xstreamulator's
VI.

The addition of an audio mixer control in Xstreamulator's VI.

The automatic recall of audio mixer settings.

The discussion of appropriate recording techniques in
Xstreamulator's Help system.

(• The use of hardware-based broadcast limiters and compressors.

The aforementioned approaches have helped to improve the consistency and quality of the

recording process. Nevertheless, it is anticipated that these approaches will be augmented

by sophisticated Automatic Gain Control (AGC) functionality in future Xstreamulator

releases. Specifically, Xstreamulator will sample and adjust (Le., trim) recording levels to

achieve optimal results. These adjustments are made on the recording device's input

channel. At present, commercial encoding solutions do not provided AGC functionality, as

46

they assume that audio levels are adjusted by webcast technicians. A DirectX software

based limiter/compressor was also successfully tested in an earlier Xstreamulator

prototype. However, while software-based compression/limiting helps in maintaining

consistent audio levels, it cannot resolve digital clipping on the input channel of a

recording device (e.g., the soundcard microphone input).

47

Chapter 7

Single-User and Multiple-User Operation

This chapter describes how Xstreamulator can be deployed for single-user or multiple

user operation. Xstreamulator's single-user mode is intended for instructors operating

Xstreamulator from a personal computer. Alternatively, Xstreamulator's multiple-user

mode is specifically designed for web casting from classrooms.

7.1 Single-User and Multiple-User Operation Modes .

Xstreamulator supports single-user and multiple-user operating modes. The

application's single-user mode provides the maximum amount of capture flexibility and

operational control to users. In addition, single-user mode enables Xstreamulator users to

permanently store streaming profiles and user-specific settings. This is the default

operational mode for non-classroom environments. As Xstreamulator activates the

(appropriate operational mode during its startup process, and dynamical1y enables/disables

mode specific interface elements, it has not been necessary to develop two versions of

Xstreamulator or multiple application user interfaces. A "key" fi1e located in the

application directory determines Xstreamulator's default operating mode.

Typically, webcast viewers watch a lecture while simultaneously viewing integrated

slides. In addition, viewers are encouraged to post questions or comments in

48

Xstreamulator's Chat interface. This approach enables real-time conversations to occur

between students and instructors. To provide a context for the lecture, chat messages are

automatically archived with the webcast. The web-based viewer interface is identical in

Xstreamulator's single-user and multiple-user configurations.

In either mode, Xstreamulator provides web casting presets targeted to specialized

delivery scenarios. For example, some instructors may prefer to web cast screen content

(e.g., application demonstrations) without accompanying video; a delivery mode that

Xstreamulator fully supports. If viewers have access to a high-bandwidth connection,

Xstreamulator can be configured to composite a video window over captured desktop

content. At present, it appears that Xstreamulator is the only application capable of

delivering live webcasts using this approach. Xstreamulator is also unique in that it

supports the broadcasting of video/audio and screen content at high frame rates. A future

version of Xstreamulator will enable administrators to configure (i.e., enable/disable)

Xstreamulator's webcasting presets for specific multiple-user environments.

Xstreamulator provides a variety of synchronized capture components that support the

acquisition of images and presentation media (Figure 3). The most sophisticated of these

components is Xstreamulator's PowerPoint capture module. This module enables

instructors to easily embed PowerPoint slides in their web cast. Uniquely, Xstreamulator

does not require that PowerPoint files be converted prior to the commencement of the

webcast. Indeed, in either mode, Xstreamulator does not require that any content be

/

49

converted prior to a live webcast. Xstreamulator also provides a Web Browser module

that enables instructors to insert website screen captures and URLs' (i.e., web tours).

Finally, Xstreamulator provides basic support for real-time closed captioning.

Xstreamulator's captioning module will eventually be extended to include support for

captioning hardware (e.g., dictatype systems) and voice-to-text recognition systems. The

Images, Screen Capture, Web Browser and PowerPoint capture modules are also available

in multiple-user mode. However, users would typically use the External (Le., VGA)

capture module for capturing content in classroom environments. Indeed, this module can

be set to start automatically in multiple-user mode.

Analog Microphone
(e,g., headset)

Array Microphone

Xstreamulator
Application

~ ~" Internal,! n ' 'Soundcard '---------' L External Firewire/'

USB Microphone USB Audio
(e.g .• headset) . Capture Device

Firewire

USB

I
Bluetooth Microphone ~

'----~====~

Modules:
Images

Screen Capture
Web Browser
PowerPoint

External
Chat

Captioner

Firewire Camera

i USB Web Camera
, (May Include a

standard or array
Microphone)

Analog Capture f.ot----------j Misc. Video Capture
Card L-_-=-De::..:v:.:.;ic:.:.es=--__

Figure 3: Xstreamulator's Single-User ~lode

In single-user mode, instructors typically utilize USB or Firewire cameras to generate

audio/video and synchronized slide presentations. Gerierally, users wear a microphone

(

50

equipped USB/analog headset. However, the use of microphone array equipped web

cameras is becoming more commonplace. Importantly, the selection of appropriate

capturing hardware is left to the instructor's discretion. The variety of devices used by the

beta test team demonstrated that Xstreamulator's flexible hardware support was well

worth implementing.

In the proposed multiple-user scenario (Figure 4), Xstreamulator would be installed on

computers inside of classrooms (e.g., in podiums). Indeed, Xstreamulator's in-podium

approach was successfully tested in a number of classrooms at Ryerson. Furthermore,

feedback from these trials has led to many significant changes in Xstreamulator's multiple-

user functionality. It is even possible to install Xstreamulator on existing presentation

computers. However, the declining cost of computing hardware is making this option less

compelling.

Xstreamulator
Video Monitor

PCI or USB VGNDVI Frame
Grabber

Keyboard/Mouse/PTZ
Joystick

. Analog or Firewire Capture Device
1
1-----

Operator

Document Camera

Podium Computer
System

Instructor Laptop

Pen Tablet/Digital
.~ __ --- Whiteboard

============ Broadcast Limiter/Compressor

RS 232 Control---'------.."I PTZ \ z camer~

Figure 4: Xstreamulator's Multiple-User (i.e., Classroom) Mode

/'

51

Alternatively, Xstreamulator could be installed on computers situated in a broadcasting

cluster; an approach common in environments with commercial encoding systems.

Nevertheless, this implementation requires the installation of costly cables runs (e.g.,

baluns). Typically, instructors would appoint a student to operate/monitor the encoding

process from an LCD monitor in the classroom. The designated operator would control

the positioning of a Pan Tilt Zoom (PTZ) camera, monitor and adjusts audio recording

levels, oversee the encoding process, and (optionally) manages the chat system directly

through Xstreamulator's VI. One option that is currently being considered is the use of a

touch-screen interface for managing Xstreamulator webcasts.

Xstreamulator's multiple-user mode is specifically configured for unsecured web casting

environments. For example, users are not allowed to modify hardware settings or to save

usernames/passwords on Xstreamulator systems installed in unsecured (i.e., classroom)

environments. However, it is anticipated that a future release ofXstreamulator will enable

users to store their settings to an external storage device (e.g., a VSB key) so that settings

could be quickly recalled. Furthermore, Xstreamulator implements webcasting

functionality according to its operational mode. For example, Xstreamulator's multiple

user mode requires that instructors provide an automatic stop-time for webcasts.

However, a stop-time extension feature has been added to Xstreamulator's VI, for

situations where classes exceed their allotted schedule.

52

Chapter 8

Xstreamulator's User Interface (UI) and Application Modules

This chapter presents Xstreamulator's integrated user interface (UI) model.

Xstreamulator's content capturing capabilities are discussed in detail. The major

components ofXstreamulator's UI are described, and planned functionality is revealed.

8.1 Xstreamulator's User Interface (UI)

Xstreamulator encapsulates all of its content capturing functionality into an easily

navigateable user interface (UI). Critical application components, including the video and

audio preview windows, reside in a portion of the UI that cannot be hidden (Le., the

Preview area). Xstreamulator's remaining interface components are located within a

collapsible multi-tabbed UI adjacent to the Preview Area. If a user's screen space is

. limited, the multi-tabbed portion of the UI can be hidden, though Xstreamulator's is
(

" typically run in its fully maximized state. Xstreamulator's multi-tabbed UI is efficient, as it

enables a large number of buttons and other visual components to be displayed within a

small area. Xstreamulator entire UI fits within a 1024X768 resolution screen without

compromising the display of an extensive array of buttons, preview windows, dropdown

lists and so forth (Figure 5). Development of the application's UI has been driven by

feedback from the beta test team and by the direct observation of web casting sessions. For

example, the beta test team requested that Xstreamulator's webcasting functionality be

(

53

streamlined to the extent that it did not unduly interfere with the lecturing process.

Therefore, Xstreamulator has been designed to operate with a minimal amount of user

intervention. The use of a multi-tabbed approach has enabled the application's capturing

functionality to be divided into easily managed VI subcomponents, an approach that

allows users to focus only on the components they need for their specific web casting

scenario.

Figure 5: Xstreamulator: Integrated User Interface (UI)

All of Xstreamulator's U1 components provide rollover help, and the application contains

an embedded HMTL help system. In addition, a reduction in the frequency of user

interventions has been achieved by the implementation of automatic error handling

54

routines and advanced event recovery functionality. The evolution of Xstreamulator's

single form UI is discussed in Appendix I.

8.2 Xstreamulator Components

8.2.1 User Settings

Xstreamulator's User Settings component encapsulates user information and hardware

(i.e., capture device) settings. Application users are encouraged to save their settings so

that they can be automatically recalled in subsequent webcasts. A button on the User

Settings screen enables users to easily switch Xstreamulator to a live or non-live

web casting mode. The primary advantage of the non-live webcasting mode is that it

supports the creation of web cast content in situations where an Internet connection is not

available. Furthermore, Xstreamulator provides an automated FTP uploading component

to streamline the uploading process for locally recorded (i.e., non-live) webcasts.

A critical step in the webcasting process is the user's selection of an appropriate

web casting capture mode and bitrate. Members of the beta test team typically used a

bandwidth-efficient combined (i.e., video and slide) capture mode. However, while

combined capture modes are suited to many instructional scenarios, they are not suited to

capturing high-motion screen content or application demonstrations. Therefore,

Xstreamulator provides capture modes targeted specifically to these scenarios. Uniquely,

Xstreamulator employs editable Windows Media Encoder presets for storing webcast

(

55

encoding settings. Xstreamulator's support for editable encoding presets enables advanced

users to tailor encoding settings to their specific requirements.

8.2.2 PowerPoint Module

The most frequent feature request from the beta test team was that Xstreamulator be

updated to include support for embedded PowerPoint slideshow capturing. While it was

possible to import converted PowerPoint presentations in earlier versions of

Xstreamulator (i.e., as a series of bitmap images), the process was unwieldy and resulted

in sub-optimal slide conversions. The addition of PowerPoint slideshow capture,

conversion and display functionality eliminated the requirement for external slideshow

conversion (see Appendix II). Furthermore, Xstreamulator's PowerPoint component has

since been updated to support complete slideshow playback functionality and slide

annotation capabilities. A significant challenge to implementing PowerPoint slideshow

capturing functionality is the potential for encountering performance draining slide

transitions. Therefore, Xstreamulator's PowerPoint module automatically disables slide

transitions during the document loading process.

8.2.3 Images l\1odule

Xstreamulator's Images module enables users to insert bitmap images in their webcast.

At present, Xstreamulator supports the capturing/conversion of Graphics Interchange

Format (GIF), Windows Bitmap (BMP), Portable Network Graphics (pNG), Windows

/

56

Metafile (WMF) and Joint Picture Experts Group (JPEG) images. As web browsers

typically support a limited number of bitmap file formats, Xstreamulator automatically

converts imported files to the universally supported JPEG file format. In addition,

Xstreamulator resizes images to consistent vertical and horizontal dimensions. The Images

module has been undergoing constant modification as a result of ongoing feedback from

the beta test team. Specifically, beta test team members have requested that the following

module enhancements be implemented:

• That the folder of converted PowerPoint slides be accessible by
clicking a dedicated button on the Images module.

• That the Images module have dedicated access buttons for the user's
"Desktop" and for "My Documents" folders.

• That a folder watch feature be implemented to automatically refresh
the file list if new images are added. 14

• That automatic image capturing functionality be added to the Images
module UI.

In addition, predefined status images will be added to the Images module is the next

release. For example, Xstreamulator users will be able to set the start time of an on-

demand webcast by loading a predefined "starting now" image at the commencement of

the web cast; this functionality will address situations where webcasts have delayed start

times. At present, the starting slide (i.e., start time) of a webcast must be specified in an

XML document. Eventually, predefined status images will be developed for a variety of

scenarios (e.g., session breaks, technical difficulties and so forth).

-- T 7

57

8.2.4 Screen Capture Module

Xstreamulator's Screen Capture module enables users to integrate desktop captures

(i.e., screenshots) in their webcast. Interestingly, Xstreamulator's screen capture

functionality was conceived as a means of enabling users to easily grab

desktop/application windows "on-the-fly", However, the beta test team often used the

Xstreamulator's Screen Capture module in preference to more appropriate capture

modules! Thus, the popularity of screen capturing indicates that a more sophisticated

approach should be investigated. One of the challenges in implementing the Screen

Capture module was the necessity to hide the Xstreamulator VI during the capturing

process. To accomplish this, Xstreamulator briefly sets its VI transparency level to zero

(i.e., invisible).

8.2.5 Captioner l\1odule

Xstreamulator's Captioner module enables users to provide closed-captioned
(

..... web casts. The module employs a simplified text editor interface and supports cut-copy-

paste operations. At present, the module inserts captions directly in the Windows Media

file (Le., in the media file's captioning track), though support for HTML "wrapped"

captions is being investigated. Significantly, the "wrapping" of captions in an HTML

document would extend captioning support to non-Microsoft Internet Explorer browsers.

Furthermore, Xstreamulator will eventually support captioning devices (e.g., stenotype

chorded keyboards) and speech-to-text recognition sy~tems:s It is expected that this

.x

/

58

technology will make live captioning much more efficient and ubiquitous. Presently,

Xstreamulator generates an XML-based Synchronized Multimedia Integration Language

(SMIL) file at the completion of the webcast. SMIL files can be easily synchronized with a

Windows Media stream, particularly in situations where the stream is viewed outside of

Xstreamulator's ASPIHTML viewing interface. Additionally, the generation of SMIL

captioning files enables captioning errors to be easily corrected.

Accessibility enhancements are currently being added 16 to Xstreamulator's application

UI. Thus, it hoped that users with accessibility issues will be able to operate

Xstreamulator. Ryerson's Centre for Learning Technologies has been involved in the

Xstreamulator project from its early prototype stage, and it is hoped that this department

will continue to participate in the application's future development. At present, the Centre

for Learning Technologies is utilizing Xstreamulator prototypes to test a descriptive

captioning system. In general, commercial encoding systems include limited support for

closed captioning or assume that the content producer will add captions during a post-

production process. Adding captions during post-production is an incredibly time

consuming and expensive process. Furthermore, it does not address the needs of a live

audience. In contrast, Xstreamulator's approach to captioning is focused on enabling the

real-time insertion of captioning text.

--
59

8.2.6 Web Browser Module

Xstreamulator's Web Browser module enables users to insert screenshots of web sites

in their webcast. To provide this functionality, Xstreamulator embeds a Microsoft Internet

Explorer control in the tabbed portion of Xstreamulator's UI. In addition to capturing

images of web pages, Xstreamulator attaches a website hyperlink to each captured slide.

Webcast viewers click captured website slides to open the attached URL in a pop-up

browser window. An experimental version of Xstreamulator was developed to directly

"push" website hyperlinks to a frame in the viewer interface. Unfortunately, live testing of

the hyperlink "push" feature revealed that a small number of web sites are specifically

coded in JavaScript to override any frameset that contains them. This scenario causes

Xstreamulator's viewer interface to be overwritten. As it is impossible to predict whether

a website will exhibit this behaviour, it is has been determined that the current approach is

at present the safest alternative. Nevertheless, the "push" approach is worth pursuing, as

it was extremely well received by the beta test team. Indeed, one beta tester became so

/ . engrossed with the ability to "push" hyperlinks that they forgot that they were also

recording audio and video!

At present, Xstreamulator's Web Browser module captures a predefined region of a

webpage (i.e., the area visible in the Web Browser preview window), though users can

employ scrolling to capture the off-screen portion of a webpage. One of the challenges

faced in the design of the Web Browser module was the requirement to support basic

browsing functionality. Ultimately, the Web Browser module was equipped with basic

60

controls, including: page back, page forward, refresh and homepage buttons. A future

release of Xstreamulator will enable users to access their Microsoft Internet Explorer

bookmark list.

8.2.7 External Capture Module

Xstreamulator supports the capturing of bitmap images from external sources. While

typical capture sources include USBIPCI based VGA "frame grabbers", any capture

device that is supported by Microsoft DirectX or the Windows Driver Model (WDM) can

be used. When users upgrade their existing capture technology, older capture devices can

be repurposed for external capturing duties. At present, the external capturing process

requires users to manually initiate external captures. As this process is under user control,

the capturing process is extremely efficient. However, the process of initiating manual

captures is laborious. Consequently, Xstreamulator will offer automatic capturing

functionality in a future release. Support for automatic capturing will be particularly

beneficial in classroom environments, as it will relieve webcast operators from this

repetitive task. In addition, automated capturing from document cameras and Tablet PC's

will enable instructors to employ presentation technologies that are inherently more

"interactive" than PowerPoint presentations (Anderson, et aI., 2000, p. 3).

The External Capture module provides functionality for connecting and disconnecting

external devices, and for refreshing the capture engine when the resolution of the capture

device changes. For example, when using a USBIPCI frame grabber devices presenters

(

61

may change their display resolution. If required, a "refresh" function in the External

Capture module can be invoked to adjust the capture "engine" to the new resolution. In

addition, users can adjust capture device settings (e.g., brightness, contrast and so forth)

by opening a capture device properties paneL

8.2.8 Webcast Preview Module

Although Xstreamulator automatically notifies users in the event of a webcast failure,

beta testers have requested that the application display a live preview of webcasts in·

progress (Le., a confidence monitor). Prior to the implementation of the Webcast Preview

module, many instructors loaded the ASPIHTNIL viewer interface to assure themselves

that their webcast was being received by the viewing audience. This approach was not

ideal, as the viewer interface consumed a large portion of the user's screen space.

Ultimately, a Windows Media Player control was added to the multi-tabbed control in

Xstreamulator's UI. The Webcast Preview module has since been configured to display

both live webcasts and previews of locally recorded content. Recently, a slide preview

window was added to the Webcast Preview module UI. Thus, the Webcast Preview

module completely replicates the ASPIHTML viewer interface's functionality.

8.2.9 Last Slide Preview Window

Observation of Xstreamulator's use by the beta test group revealed that users often

forget if a slide had been inserted into the webcast. To resolve this issue, a Slide Preview

••

62

window was added to Xstreamulator's VI. Any slide captured via the External, Screen

Capture, Images, Web Browser or PowerPoint capture modules is automatically displayed

in the Last Slide Preview area. Additionally, to make optimal use of the application's VI,

the Last Slide Preview window is employed to display event status messages.

8.2.10 Chat l"lodule

The success of Xstreamulator's Web Browser module established that an embedded

Internet Explorer browser approach could be implemented in other areas. For example,

earlier versions of Xstreamulator's VI did not include a "front-end" interface for the

application's Chat system. Instead, users were required to load the Chat system in a

separate web browser window. This approach was unwieldy. Vltimately, it was

determined that embedding the Chat module directly in Xstreamulator's ill would be the

most efficient solution. Moreover, integrating Xstreamulator's Chat system made the

interface compatible with the application's slide capturing subsystem. For example, users

(can now capture relevant portions of a chat session as bitmap slides. Furthermore, this

" implementation will eventually permit the synchronization of chat sessions with streaming

media files.

8.3 Proposed Modules

As Figure 6 demonstrates, Xstreamulator's implementation of capture modules and

acquisition functionality is extremely comprehensive. However, it is anticipated that two

7 r •

additional modules will be implemented before Xstreamulator's feature set is complete.

r Secondary I
I Camera(s) i C"!UdiO h~ Windows I ~~

Extemall Audio + Video r I c~~~~~e r D I
Capture __ __/ ~

~_M_o_du_le---i I WAY File ~i:-- -------, cscreten . Computer Screen
r ap ure. (A I' t')

i Creation i I Module I pp Ica Ions

lVirtual
I VGA
i Capture .
LErivers I

VGA USB IPCI
Frame Grabber

External VGA
Source(s)

Presenter System User Entry

Xotr .. ~I"" . . 1& ~I
Content Capturing r

Functionality .. •

I.P. '~:;P';"' i Module

r. PowerPoint I
I Slideshows

Capture
I Module

World Wide Web

Bitmap and Vector
Files on Local

Computer

BMP, PNG
TIFF, JPEG
GIF, WMF

Figure 6: Xstreamulator: Integrated Capture Modules and Functionality

63

A whiteboard module is planned for future inclusion in Xstreamulator's ill. This module

will enable instructors to annotate captured slides. In addition, the module will replicate

the functionality of a physical whiteboard. The benefits of handwriting support is well

established, as "many manual systems (including overhead projectors and document

cameras) support high quality handwriting over slides, enabling the instructor to augment

prepared materials with supplemental text or diagramming" (Anderson, et aI., 2000, p. 2).

The decision to include a whiteboard module in Xstreamulator is a direct result of

feedback from the beta test team. Team members have indicated that a whiteboard module

would better replicate the methods they use in typical classroom environments. However,

it has not been decided if the whiteboard module will be implemented as a distinct ill

"'F

64

component or as an integrated component of existing VI modules. In either case, the

visual design of the whiteboard module and its associated functionality will be driven by

feedback from the beta test team.

An integrated PTZ camera control module will also be added to Xstreamulator's VI.

This module will be unique, as existing commercial solutions assume that camera control

is an independent function of the webcasting process. For example, in commercial

solutions the process of adjusting camera-subject positioning (Le., a camera's pan, tilt and

zoom settings) is typically relegated to costly hardware-based (i.e., joystick) control

surfaces or integrated into a third-party systems (e.g., Crestron systems). Thus, the cost of

providing camera control solutions is a barrier to their implementation within academic

settings. The alternative solution, currently being investigated, eliminates the requirement

for physical control surfaces or podium integration. Instead, this functionality is replicated

directly within Xstreamulator's UI. In this scenario, camera settings are adjusted by the

Xstreamulator user via a dedicated VI module. The proposed Pan-Tilt-Zoom (PTZ)

(module would require a physical connection to the target camera. However, as this entails

the installation of an inexpensive serial control cable (e.g., RS232), it is a less costly

solution than current alternatives. Moreover, a software based camera control solution

would be far more flexible than hardware-based implementations.

The software-based approach could potentially be used in developing custom control

interfaces for multiple webcasting environments. For example, Xstreamulator's camera

(

65

control system could be displayed as an overlay of the classroom layout. Webcast

operators would click on the portion of the classroom schematic that matched the physical

location of the instructor. An inexpensive "entertainment" joystick could be added to the

environment if operators find precise camera positioning too tiring. Indeed, an entirely

kiosk based approach to webcasting and PTZ camera control is worthy of further

investigation.

• E

66

Chapter 9

Conclusions and Future \Vork

9.1 Future \Vork

Development of the application framework will focus on improving Xstreamulator's

functionality and usability. Ultimately, it is hoped that Xstreamulator can be developed to

a point where the entire webcasting process is fully automated. To accomplish this goal,

further work is required in the areas of usability, audio management and PTZ camera

operation. It is anticipated that the development of automatic audio leveling and simplified

PTZ camera control will greatly improve the results of web cast sessions. One of the more

exciting enhancements, currently in the prototype development stage, is the addition of

automatic external content capturing functionality. Ideally, Xstreamulator will support the

automatic insertion of VGA content into webcast streams. For efficiency reasons, the full

implementation of automatic external capturing will require the development of a heuristic

/ capture process. Ideally, the proposed system will capture the minimal number of slides

possible, while simultaneously obtaining enough content to accurately replicate

presentation content.

As Xstreamulator can be installed on dedicated computer systems within classroom

settings, there is a potential for remote operation. For example, the functionality employed

in Xstreamulator to Xarchiver communication can be used to remotely control

HP' 7 _nr=

67

Xstreamulator "capture stations". Indeed, webcasting sessions could be initiated from a

web-based scheduling system or from "light-weight" applications on classroom

presentation systems. It is even conceivable that the entire encoding process could be

initiated and monitored directly by the lecturer, with the encoding and content capturing

processes relegated to a computer system located potentially anywhere on campus. While

the full implementation of this method of delivery will require sophisticated camera

tracking technologies and audio management hardware, it will completely eliminate the

need for dedicated webcast operators. Fortunately, the remote operation model is

relatively easy to implement, as the framework's webcasting functionality is contained

entirely within Xstreamulator.

It is expected that Xstreamulator will continue to be developed through a participatory

design process. However, it is also likely that the development methodology will be

expanded to encompass new approaches. In particular, Think-AloudiTalk-Aloud

protocols, focus group and survey methodologies will likely be employed as the

" Xstreamulator user group expands beyond manageable levels. Nevertheless, the PD

process has yielded benefits that could not be easily duplicated by the adoption of other

research approaches. Indeed, the encouragement of the beta test team has been critical to

the success of the project and the process will be maintained, albeit in a modified form,

well into the future.

ppw

/

m
r7T~

68

9.2 Conclusion

The Xstreamulator project demonstrates that an affordable in-house webcasting

solution can be successfully implemented within academic environments. However, the

development process must address the needs of the academic community and the

institution as a whole. The use of participatory design (PD) in the application's

development process has significantly contributed to the project's successful outcome.

Specifically, instructors, students, and staff at Ryerson University have identified

numerous areas of potential improvement. Furthermore, it is unlikely that these would

have been implemented in a less flexible development process. It is expected that this

approach would yield similar results in other academic institutions. However, practitioners

wishing to employ PD research should be prepared to encounter a variety of institutional

obstacles, and be committed to encouraging participation from all members of the

community. Fortunately, these challenges can be significantly offset by the enthusiasm of

beta test participants.

From a technical standpoint it should not be assumed that the development of rich

media applications is beyond the capabilities of casual programmers or high-level

programming environments. Indeed, the use of high-level languages and RAD

development encourages experimentation. Typically, application development is far more

arduous with low-level programming tools. Therefore, development teams should focus

on addressing end-user needs, not on acquiring low-level programming skills. To maintain

interest, development teams should release functional prototypes (using RAD approaches)

69

to the beta test community as rapidly as possible. Application features can always be

refined in subsequent updates. Furthermore, to minimize development and implementation

costs, rich media web casting solutions should adopt open source tools and flexible

hardware requirements. However, developers should be prepared to use commercial

components if necessary. In general, programming efforts should be focused on the

achievement of user-centric goals, not on the implementation of complex delivery

solutions. The project's success lli the result of a user-centered approach to application

development. It is also the result of a determined effort to increase the penetration of

webcasting technologies in traditional lecture delivery environments. Hopefully, academic

institutions will apply this approach to new and exciting rich media applications.

70

References:

Anderson, R., Anderson, R. (Ruth), VanDeGrift, T., Wolfman, S., & Yasuhara, K.
(2004). Experiences with a Tablet PC Based Lecture Presentation System in
Computer Science Courses. Proceedings of SIGCSE'04: the 35th SIGCSE technical
symposium on Computer Science Education, 56-60.

Anderson, J., Nahella, A., Douther, c., & Mervyn, A. (2001) Presence and Usability in
Shared Space Virtual Conferencing: A Participatory Design Study. CyberPsychology,
4(2),287-305.

Barab, S., Kling, R. & Gray, J. (2004). Designing Virtual Communities in the Service of
Learning. Cambridge: Cambridge University Press.

Butler, T., Fitzgerald, B. (1997). A Case Study of User Participation in the Information
Systems Development Process. International Conference on Information Systems,
December 14-17,411-426.

O'Connor, C., Fitzpatrick, G., Buchannan-Dick, M. & McKeown, J. (2006). Exploratory
prototypes for video: interpreting PD for a complexly disabled participant. NordiCHI
2006, 14-18.232-241.

Damordan, L. (1996). User involvement in the systems design process - a practical guide
for users. Behaviour & Information Technology, 15.6,363-377.

Dickey, M. (2003). Teaching in 3D: Pedagogical Affordances and Constraints of 3D
Virtual Worlds for Synchronous Distance Learning. Distance Education, 24.1, 105-
121.

. Jaffee, D. (2003). Virtual Transformation: Web-Based Technology and Pedagogical
Change. Teaching Sociology, 31.2, 227-236.

Joyes, G., & Scott, R. (2000). A reflection on a collaborative process of courseware
development. Information Services & Use, 73-82.

Lee, D. (2006). Streamulator: A New Approach to Online Office Hours. Information
Visualization, 7, 605- 608.

Littlejohn, S., Foss, K. (2005). Theories of Human Communication. Toronto: Thomson.

O'Day. V., Bobrow, D. & Shirley, M. (1998). Network Community Design: A Social
Technical Design Circle. Computer Supported Cooperative Work 7, 315-337.

(

71

Ostrow, L., DiMaria-GhaIili, R., (2005). Distance Education for Graduate Nursing: One
State School's Experience. Journal of Nursing Education, 44(1), 5-10.

Rankin, K., Baecker, R. & Wolf, P. (2004). ePresence: An Open Source Interactive
Web casting and Archiving System for eLearning. Proceedings of World Conference
on E-Learning in Corporate, Government, Healthcare, and Higher Education, 2888-
2893.

Roberts, V., Fels, D. (2004). Methods for inclusion: Employing think aloud protocols in
software usability studies with individuals who are deaf. International Journal of
Human-Computer Studies, 64,489-501.

Teemant, A, Smith. M., Pinnegar, S., & Egan, M. (2005). Modeling Sociocultural
Pedagogy in Distance Education. Teachers College Record 107.8, 1675-1698.

Wheelan, Susan. The Handbook of Group Research and Practice. Thousand Oaks: Sage
Publications, 2005.

/

72

Appendix I: Software Framework and User Interface (UI) Development

This appendix provides a detailed description ofXstreamulator's development process

from early prototypes to the current release. Specifically, the appendix discusses how the

adoption of the Visual Basic.NET (VB.NET) development environment and contributions

from the beta test team led to the Xstreamulator's evolution from a multi-form UI to an

integrated single-form VI. The appendix reveals that low level application development

environments are not required for the successful development of web cast delivery

applications.

The Evolution of Xstreamulator's Software Development Framework

Xstreamulator was initially developed in the Microsoft Visual Basic 6.0 (VB)

programming environment. However, it eventually became evident that a more extensible

programming environment was required to achieve the project's goals. For example, early

Xstreamulator prototypes were dependent on the "predefined" Windows Media Encoder

UI for displaying video and audio mixer previews. This implementation required that the

Windows Media Encoder UI be attached to the bottom of Xstreamulator's application

window (Figure 7). In addition to being aesthetically unappealing, the disjointed UI caused

application performance issues. 17 Moreover, the original Visual Basic 6.0 design made

Xstreamulator appear "bolted together", which did not inspire confidence in the beta test

team! Therefore, it was decided that the "predefined" Windows Media Encoder UI design

II 7, E -

73

would be supplanted by a fully integrated VI that containing embedded video and audio

previewing components (Figure 5). This integration process necessitated the adoption of a

new programming environment.

~----------~----------------------------.--------------------,

Figure 7: The Non-Integrated User Interface (UI) Version ofXstreamulator

Interoperability requirements for Windows Media Encoder and the Windows Media

Encoder Software Development Kit (SDK) precluded consideration of programming

environments lacking this support. As a consequence, the candidate programming

languages were shortlisted to Visual C#, Visual C++ and Visual Basic.NET (VB.NET). It

was confirmed that Visual C# and Visual C++ provided full support for the Windows

Media Encoder libraries. However, it was also determined that Xstreamulator's

conversion to a completely new codebase would have substantially delayed progress on

the project. For example, as Visual Basic 6.0 projects cannot be converted to Visual C# or

74

Visual C++, a complete rewriting of prototype code, modules and application forms

would have been required. Moreover, this time-consuming undertaking would have

inevitably introduced numerous coding/logic errors. Therefore, Visual Basic.NET

(VB.NET) was selected as the most suitable application development platform. At present

Xstreamulator is being developed in the Visual Basic 2008 (VB.NET 2008) programming

environment.

The Development of the Single Form Application User Interface (UI)

The non-integrated prototype's content capturing functionality was distributed to

independent application windows (i.e., forms).18 Therefore, Xstreamulator's UI became

increasingly unwieldy as new capturing components were added; the constant

repositioning and opening/closing of application hampered usability and caused CPU

spikes. Furthermore, users tended to open all of the application's forms to avoid being

distracted during the web casting process. Consequently, it was determined that a new UI

design was required. A reexamination of Xstreamulator' s UI model was undertaken.

A variety of potential UI designs were discussed with the beta test team, including

those based on a multiple document interface (MDI) model. 19 However, while an MDI

based UI would have greatly reduced screen space requirements, it would not have

resolved the issue of constant window repositioning and form opening/closing. Ultimately,

the most appropriate design was determined to be a single form UI with a multi-function

tab control component. Thus, a tab control component was developed to contain all of

7S

Xstreamulator's capture modules (Figure S). As the tab control component encapsulated

all of the application's content capturing interfaces (i.e., modules), it became possible to

preload Xstreamulator's capture interface during the application's loading process.

Though component preloading increased application load times slightly, it significantly

improved Xstreamulator's usability and post-load responsiveness. To further improve

Xstreamulator's usability, VI expand/contract functions were added?O This functionality,

which was well received by the beta test team, enabled users to hide the tab control

interface in situations where the capturing components were not required (e.g., video only

webcasts). At present, Xstreamulator's VI development efforts are focused on reducing

user prompts and warning messages, so that users are isolated from the "mechanics" of the

webcasting process as much as possible. For example, in the current Xstreamulator

release, users can initiate a live webcasting session with a single button click. 21 In

summary, though Xstreamulator's conversion to a fully integrated VI required a time

consuming conversion of "predefined" encoder subroutines and a significant graphical

redesign, the benefits of this conversion were proven to be well worth the substantial

effort.

Implementation of the Single Form Vser Interface (VI) l\lodel

One of the consequences of reducing the Xstreamulator's VI to a single form is that it

became more difficult to prototype new functionality, as even the smallest

optimizations/enhancements required debugging an increasingly complex main application

76

form. This issue was partially addressed by prototyping new functionality in separate

application works paces (i.e., standalone projects). Significantly, it was discovered that this

approach generated applications that could be re-purposed for other projects. However,

while the external prototyping approach helped to streamline the application development

process, it could not address the predicament of managing the application's growing and

fragmented codebase.22 As the project was already successfully employing text-based

code modules for image capturing and global variable deciarations,23 a decision was made

to move the previously form-based code segments (e.g., functions and subroutines) to

freestanding code modules. Ultimately, the concentration of the code base in modules

proved worthwhile, as the project became easier to manage and more extensible?4 The

long-term benefit of this approach is that it will be easier to repurpose Xstreamulator code

in future projects. Eventually, it is expected that Xstreamulator's entire code base will be

contained within portable text-based modules.

Optimization of Media Encoding and Image Capturing

In theory, the use of low level programming environments, including Visual C# and

Visual C++, could have yielded improved application performance. However, the primary

performance constraint in Xstreamulator is the processing demands of the Windows

Media Encoder subsystem. As the Windows Media Encoder "engine" is highly optimized

and multiprocessor aware, it was determined that the benefits of implementing low level

languages (i.e., C# or C++) would be marginal at best. Furthermore, Xstreamulator's

development process necessitated the implementation of a Rapid Application

\

77

Development (RAD) model. While C#/C++ programming environments are considered

RAD toolkits, they are in some cases less suited RAD tasks than Visual Basic, particularly

when they are employed by casual programmers. Ultimately, the use of the RAD capable

Visual Basic.NET environment in combination with low-level components, dynamic link

libraries (DLL's), and hand-optimized functions, achieved the project's performance goals

without introducing an arduous development process.

Testing confirmed that Xstreamulator's performance was influenced more by the

capabilities of a user's Central Processing Unit (CPU2S
) than the granularity of the

application's programming language. For example, greater performance gains were

achieved by running Xstreamulator on systems with multi-core, hyper-threaded or

multiprocessor CPU architectures than could have been achieved through the use of low

level algorithms. However, as there was no guarantee that users would have access to a

multi-core system, Xstreamulator was required to run reliably on single-CPU

~ .. configurations. The situation was exacerbated by the requirement that single-core CPU

systems remain responsive during webcasting sessions. This challenge was met by

meticulously auditing Xstreamulator's codebase to optimize functions likely to introduce

CPU spikes.26 Ultimately, the process of codebase optimization (e.g., load balancing)

represented one of the most time-consuming and complex facets of Xstreamulator's

development.

Potentially, through additional application code, Xstreamulator's could dynamically

78

adjust encoding and image processmg demands to maXlnuze performance on an

assortment of computer platforms. On slower systems, Xstreamulator would trade-off

capture quality for application stability. While the aforementioned approach has not been

implemented, Xstreamulator does provide a significant degree of performance flexibility

through its native support for editable encoder profiles. However, while Xstreamulator's

encoding process is isolated from CPU overloading, it is not possible to guarantee that the

webcasting process will survive system or network failures. 27 Thus, additional "recovery"

functionality has been implemented to deal with these rare but severe scenarios.28

Interestingly, the beta testing process revealed that the efficiency of audio and video

capture hardware and the degree of PC optimization influenced CPU loads significantly.

For example, Firewire video capture devices place lower demands on the Windows Media

Encoder engine than USB devices,29 and "optimized" systems performed better than those

with burdened with background tasks.30

Migrating Xstreamulator's development environment from VB 6.0 to VB.NET

provided an opportunity to implement application threading functionality. With application

threading it is possible to prioritize and distribute (e.g., offload) encoding/image capturing

processes. For example, CPU intensive image capturing activities can be distributed to a

second processor core to isolate the encoding process from CPU spikes. Therefore,

VB.NET's threading support will become increasingly beneficial as multi-core and hyper

threaded processors become commonplace. At present, threading support is being

implemented across Xstreamulator's entire codebase. Finally, it was decided that the VB

79

6.0 to VB.NET codebase conversion would include a comprehensive code optimization

process. This process entailed replacing numerous VB 6.0 code segments with more

efficient routines based on the .NET Framework. The conversion process also included

the addition of error trapping functionality to the converted codebase. These procedures

greatly improved application stability and performance.

One of the barriers to implementing rich media applications in Visual Basic is the

pervasive opinion that the language is not efficient enough for processing images and

video. The Xstreamulator project clearly establishes that this assumption is incorrect.

Unfortunately, written and on-line documentation on media programming typically assume

that developers are using low-level programming environments (e.g., C++/C#). Therefore,

it is hoped that the Xstreamulator project will encourage Visual Basic programmers to

development and document applications with a rich media focus. Hopefully, the myth that

a low-level language programming approach is needed to achieve worthwhile results has

been dispelled.

Application Distribution, Updates and User Persistence

Xstreamulator's application updates were distributed from a centralized (Le., Internet)

location. In addition to providing the most recent Xstreamulator builds, the download

page provided beta testers with links to the prerequisite library (i.e., the NET 2.0

Framework runtime) and the Windows Media Encoder 'installation package. Though the

process of updating existing Xstreamulator installations should have been relatively easy,

80

it ultimately became a major programming challenge. While VB.NET provided a class31 to

persist Xstreamulator's settings, no consistently reliable approach was found to guarantee

that these settings would be saved during the application updating process. The source of

this problem appears to be VB.NET's application installer framework. Specifically,

updates were not being recognized as such, and instead were being installed as completely

new application instances. A customized method for storing user settings was recently

implemented to address this issue. This approach stores Xstreamulator's user and

distribution settings in independent XML documents. It is expected that future iterations

of Xstreamulator will utilize encryption (i.e., based on the System.Security.Cryptography

.NET class) to protect sensitive user settings. Importantly, implementing XML for storing

user/distribution settings enables Xstreamulator's functionality to be de-localized. As a

result, Xstreamulator can be easily configured to work with webcasting systems in other

universiti es.

81

Appendix II: Core Components and Application Architecture

This appendix provides a detailed description of Xstreamulator's core application

libraries. The selection and implementation of these libraries is discussed in relation to the

overarching goal of maximizing flexibility, performance and stability. Ultimately, a mix of

commercial and open source libraries were required to implement the application's

objectives.

Implementation of the Windows Media Encoder Libraries

The primary encoding component in Xstreamulator is WMEncoderLib, a dynamic link

library (DLL). WMEncoderLib is registered as a Component Object Model (COM) object

during the installation of Microsoft's Windows Media Encoder. Xstreamulator also

employs "secondary" Windows Media Encoder libraries, including WMPREVIEWLib for

video previewing and WMEncBasicEditLib for post-webcast marker insertion (Figure 8).

Therefore, Xstreamulator cannot be used on systems without Windows Media Encoder. It

is worth noting that Windows Media Encoder implements functionality not available with

WMEncoderLib and its associated dynamic link libraries.32 Therefore, one must assume

that Windows Media Encoder employs additional code to extend the application's

functionality beyond what is available to .NET programming environments. These routines

are rumored to be DirectX based functions implemented in C++.

AudioMixer.Lib: Mixer I
and Sound Source .

Selection

WaveEX: Audio
Monitoring and WAV's

Embedded Web
Browser

Embedded Windows
~edia Player

I
f:icrOSOft Officl

Interop
(PowerPoint)

I

I
I
I

Xstrea mulator: User Interface
I Post Capturing

II
Marker Insertion

.NET 2.0 Framework and VB Express
Components WMEncBasicEditLib

-----,
Custom Capture Modules i

Local Video Preview

Directshow.NET I Directx.Capture lNMPREVIEV\1.ib

I
.NET 2.0 Framework I Windows Media

Graphics Manipulation Namespaces
I

Encoder Library

II lNMEncoder/ib

Figure 8: Xstreamulator: Application Architecture

82

I

I

Though the programming for COM libraries is generally consistent between Visual Basic,

C# and C++, there are a few significant variations that reflect the inherent capabilities of

the aforementioned languages. The C++ programming language is unquestionably the

most flexible option for Windows Media Encoder based development, as developers are

capable of implementing all of the functions supported by WMEncoderLib, and its

associated libraries. However, the complexity of programming in C++ is a significant

barrier to many developers. Therefore, it is beneficial that Microsoft's Windows Media

Encoder 9.0 COM libraries (Figure 8) support the development of fully functional

encoding applications in VB.NET. Indeed, the Windows Media framework's support for

high level programming languages was determined to be unique.33

Although the Windows Media Encoder Software Development Kit (SDK) IS not

83

strictly required for programmatic interaction with the WMEncoderLib library, it usefully

describes the core components of the Windows Media Encoder architecture, and identifies

the encoding objects (i.e., the "Object Model") that are available for programmatic

control. In addition to exposing the Object Model, which is a hierarchical framework of

objects branching from WMEncoderlib, the SDK provides code samples for interacting

with WMEncoderLib and its dependent components (denoted as "Objects" in Visual

Basic34
). Therefore, the Windows Media Encoder SDK is a nearly essential "road map"

for using WMEncoderlib and for Windows Media development in general. Nevertheless,

one of the project's major challenges was the process of modifYing SDK examples to fit

the specific requirements of the Xstreamulator approach. For example, many of the SDK

code samples assume that the developer is using the predefined Windows Media Encoder

VI, which is referenced/displayed in VB.NET through a COM component called

MSPropshell. While this control was used in early Xstreamulator prototypes, the adoption

of the integrated VI approach rendered this control and its associated SDK documentation

unusable.

Implementation of the Image Processing and Capture Libraries

In addition to capturing Windows Media "streams", Xstreamulator was required to

efficiently capture and process bitmap images sourced from the application's integrated

capture modules (e.g., the PowerPoint, Images, External and Web Browser modules).

Earlier version of Xstreamulator used a third party image processing library to perfonn

\

84

this functionality. However, the use of this library introduced significant performance

issues. Ultimately, the migration to VB.NET enabled a more efficient image processing

approach, based on functionality provided by the .NET 2.0 Framework. Specifically, the

.NET 2.0 Framework provided a number of optimized functions for image exporting (to

the JPEG file format), display and thumbnail generation. However, testing revealed that

the .NET 2.0 libraries were not efficient enough to be viable for capturing raw image data.

Fortunately, the VB.NET environment provided support for an alternative image

capturing and processing approach. Currently, Xstreamulator's image capturing

functionality is based on the highly optimized libraries provided by Microsoft's Graphics

Device Interface (GDI+) subsystem.3s The GDI+ interface is a compatibility layer that

enables the transfer of pixel-based content from a user's graphics card (i.e. their desktop)

to a programmatically addressable memory array?6 For example, in the case of screen

capturing, a GDI+ "Bit-Blitting" process transfers screen data into a memory array. The

memory array is then exported as a JPEG image file. As GDI+ image capturing functions

are optimized to rapidly move raw pixel data to and from memory, the performance of the

library is unsurpassed, even in situations where these functions are implemented in a high

level programming language. Indeed, the GDI+ based programmatic code used in

VB.NET is very similar to the same subroutines implemented in C# or C-t+. However,

while the GDI+ libraries are extremely efficient, they do require that the source content be

fully visible on a user's screen. If the target content is outside of the user's visible desktop

area (i.e., off-screen) or obscured by another application window, the resulting capture

data will be incomplete. To compensate for this scenario, Xstreamulator's UI was

85

configured to float above all other application windows. This prioritized display approach

was implemented in VB.NET through the modification of Xstreamulator's z-order

property setting. In addition, a feature was added to the UI that enabled users to easily

anchor the Xstreamulator UI to the visible portion of their desktop.

Implementation of the External Capture Libraries

Xstreamulator's external capturing subsystem was initially based on a third-party OLE

control (OCX) component. While the OCX component supported the required external

capturing functionality, it was inefficient and caused installation problems on end-user

systems. Ultimately, the component was replaced by two open source DirectX based

capture libraries, DirectShow.NET and DirectXCapture.37 The discovery of the

DirectShow.NET and DirectXCapture libraries was a critical milestone in the

development of Xstreamulator's external capturing functionality. Specifically, it did not

initially appear that VB.NET could support DirectX based capturing through an approach

other than the inclusion of third-party OCX components. The DirectShow.NET and

DirectXCapture capture libraries were ultimately employed for external VGA capturing,

combined desktop/video capture operations and the display of capture device property

pages. In addition, a DirectX based device enumeration process was added to the existing

Window Driver Model (WDM) enumeration codebase. The addition of DirectX

enumeration significantly improved the detection of esoteric video capture devices.

86

The original OCX capture component was unable to dynamically detect changes in the

resolution of connected VGNVideo capture devices. As this functionality is essential for

correctly capturing images from external (e.g., VGA) sources, a solution had to be found.

Fortunately, the DirectXCapture library supported manual and automatic identification of

external resolution changes. However, the automatic adjustment process (i.e., auto

detection) is currently too CPU intensive to be implemented. Consequently,

Xstreamulator's resolution change functionality is, at present, executed at the start of an

encoding session or at the discretion of the user. Nevertheless, the success in

programming the external capture subsystem to reliably respond to changes in VGA

capture resolutions was a significant project achievement, and it is expected that a more

efficient automatic resolution detection system will be implemented in a future release. It is

worth noting that the use of the DirectShow.NET and DirectXCapture libraries required

a significant programming effort. However, these libraries offer unlimited potential for

future Xstreamulator functionality.

Although the DirectShow.NET and DirectXCapture libraries were successfully

employed in Xstreamulator, an alternative library is. under consideration. The

DirectShowLib-200S.dll library,38 available under the GNU Library or Lesser General

Public License (LGPL), appears to offer even better performance. Furthermore, this

library provides greater scope for low level device control and capture optimization, as it

is less abstracted from its DirectX underpinnings than DirectShow.NET and

DirectX.Capture. However, the viability of implementing this library is in question, as its

87

use within VB.NET is very poorly documented.

Implementation of PowerPoint Slideshow Capturing Functionality

It is worth noting that earlier Xstreamulator prototypes lacked PowerPoint slideshow

capturing functionality. Discussions with the beta test team revealed that inclusion of this

functionality was critical to Xstreamulator's success. However, the process of

programmatically implementing PowerPoint functionality as an embedded VI component

was extremely challenging. The typical approach to implementing PowerPoint

interoperability requires users to install a Visual Basic For Applications (VBA) plug-in

directly in PowerPoint. As this approach is dependent on "weaker" VBA code, it is

inherently less flexible than a fully hosted solution. Ultimately, a unique approach was

implemented; PowerPoint was relegated to plug-in status within Xstreamulator's VI.

However, the implementation of this approach was difficult, as the core PowerPoint

functionality (opening presentations, displaying slideshows, advancing slides and so forth)

had to be developed entirely in VB.NET. Fortunately, Microsoft provides a VB.NET

Interop framework for communicating with its Office suite. Specifically, the process of

embedding PowerPoint required the inclusion of the Microsoft Office.NET core libraries

and the referencing of the Microsoft PowerPoint Object Library in the VB.NET project

workspace. Once these libraries were referenced in VB.NET, it became possible to

display, control and capture PowerPoint presentations using customized VB.NET code

subroutines.

88

While it would have been possible to use PowerPoint's internal image exporting

engine too populate Xstreamulator's slide capture subroutines, it was discovered that this

approach produced poor quality results, as the exported slides were not anti-aliased.

Instead, a higher quality approach was implemented by "Bit-Blitting" the embedded

PowerPoint Slideshow window to Xstreamulator's GDI+ image processing subroutines.

Ironically, this approach resulted in better quality images than are possible through

PowerPoint's built·in exporting engine! In addition, the quality of Xstreamulator's

PowerPoint slide conversion processes exceeds what is possible through alternative

methods, including the capturing of presentations with a VGA frame grabber device.

However, earlier versions of Xstreamulator required that users manually activate the slide

capturing process. Some members of the beta test team found this process too distracting.

Thus, automatic slide capturing functionality was added. When this feature is activated,

Xstreamulator automatically captures PowerPoint slides as users advance through a

presentation. This functionality will be eventually added to every capture component.

As the loading of large PowerPoint presentations causes CPU spikes on older PC

systems, Xstreamulator supports the conversion (exporting) of PowerPoint presentations

to a bitmap image sequences prior to a webcast. This process takes a few seconds with the

majority of PowerPoint files. Xstreamulator's slideshow exporting functionality has

proven particularly useful during live events. Specifically, some presenters are unwilling to

furnish PowerPoint documents. However, presenters are much more willing to have their

//

89

presentations converted to non-editable images "on-the-spot". Indeed, a watermarking

process will be implemented to further allay presenter concerns. The success of the embed

application approach has opened up the possibility of programmatically

controlling/capturing other Microsoft Office applications (e.g., Microsoft Word).

However, thus far the beta test team has not requested that support for the remaining

Office application be included in a future Xstreamulator release.

Audio Levell"tonitoring and Sound Card Management Libraries

The only remaining hurdle to the implementation of Xstreamulator's integrated ill

design was the requirement to monitor and display audio input (i.e., recording) levels.

Unfortunately, the monitoring of audio input levels proved far more difficult to achieve

than was originally expected, as it was discovered that the Windows Media Encoder

framework provided no programmatic method to access incoming audio levels.

Ultimately, to implement audio level monitoring functionality, a third party .NET

component (i.e.,) was required.39 WaveEx.NET provided the necessary programmatic

methods to determine recording levels and has proven to be extremely efficient and stable.

Furthermore, the component supports the (simultaneous) capturing of audio streams to

the Windows Audio Format (WAV) or MPEG-I Audio Layer 3 (MP3) formats. 4o

WaveEx.NET's support for \VAV file recording is extremely useful, as recorded files can

be compressed to a more portable format (e.g., MP3) with minimal quality loss. Thus,

Xstreamulator can now simultaneously produce Windows Media content and an

uncompressed audio source file for distribution to portable media devices (e.g., for the

90

purposes of podcasting). Interestingly, the inclusion of W A V recording support has

proven so popular with the beta test team that it would now be difficult to remove this

feature from Xstreamulator!

The success of the WaveEx.NET implementation and interest from the beta test team

has led to an investigation of the potential of adding more sophisticated podcasting

support in the Xstreamulator framework. One option that is currently being examined is

the implementation of a server based application, that converts Xstreamulator captured

Windows Media files to the H.264IMPEG-4 format (e.g., IPOD video). Preliminary tests

indicate that this approach is feasible, as Windows Media files can be cross-converted to

the MP4 format without significant quality degradation. The likely implementation of this

approach is a dispatching process, whereby Xarchiver automatically initiates a podcast

conversion process on a server dedicated to video transcoding.

91

Notes:

Xstreamulator has been used in numerous live events, including The Kodak Lecture Series: 2007
(http://www.ryecast.ryerson.caldmpstreamsl2007KodakJindex.asp)and the Canadian Research Network for Care in the Connnunity
Symposium: 2007 (http://www.ryecast.ryerson.caldmpstreams/crnccfeb2007/index.asp).

2 The first live Xstreamulator webcast of took place at Ryerson University on October 7, 2006. This event was a presentation by
photographer Finbarr O'Reilly (http://www.ryecasLryerson.caldmpstrearns/2006Finbarr/index.asp).

3 Linux support is currently in development.

4 However, the addition oftive Flash streaming capabilities (planned for a 2008 release) may improve cross platform compatibility.

S Webcast operator requirements are discussed in the Media Production Guide on the ePresence website (http://code.epresence.tv/wiki!
MediaProductionGuide).

6 Through support for the open source RedS Flash Server.

7 Windows Media webcasts can be delivered using Push, Pull or Multicast delivery protocols. At present, Xstreamulator supports Push
and Pull based delivery. Support for Multicast delivery is planned for a future release.

8 There is a delay from the time Windows Media content is captured to the time the content is delivered to the viewer's browser. This
"buffering" time typically varies between 10 and 20 seconds.

9 Xstreamulator supports the following web browsers: Microsoft Internet Explorer, Netscape Navigator, Apple Safari and Morilla
Firefox. Other browsers may be compatible, but are not officially supported.

10 Parallels Desk"1op is an emulated (virtualized) envirorunent for running Windows XPNIST A on the Macintosh (Intel-based) OSiX

platform.

11 Winnov and Osprey manufacture audio/video capture cards that are specitically designed for webcasting applications. These cards are
fully compatible with Xstreamulator.

12 Epiphan Corporation (Ottawa, Canada) develops inexpensive el\1ernal VGA to USB 2.0 "frame grabber" devices.

13 This system was a surprisingly effective revenue generator!

14 At the request of one of the Beta Testers, a folder-watch feature was implemented that monitored a selected folder for the preseoce of
newly acquired image files. This feature made Xstreamulator compatible with USB cameras that capture images at set intervals (timed
capture).

15 In contrast to traditional captioning, live descriptive captioning ("live described") describes physical behaviors, expressio~ clothing,
movement and so forth. An example of a live descriptive captioning can be viewed at:
http;//www.ryecast.ryerson.caldmpstreamslmassexodus2006/index.asp.

16 VB.NET's support for accessibility includes UI object "tagging". A completely accessible version ofXstreamulator would be more
difficult to implement, as the use oftext readers by visually impaired users could interfere with the audio encoding process; however,
the use of sound isolating headphones and multiple sound cards coul d help to address this issue.

17 One of the major constraints of the predefined Windows Media Encoder User Interface (VI) was that it did not support z-order
functionality. Without an intrinsic z-order property there was no way to guarantee that the predefmed Windows Media Encoder ill
would not be obscured by an application with a higllcr z-order. A method to force the Encoder VI to the front of the z-order "stack"
was eventually developed, but this procedure was too CPU intensive to run as a constant process. Eventually, a "brute force" solution
was implemented to bring the ill to the front ofthe z-order when a user's mouse clicked or moved over the Xstreamulator application
ill. However, this solution still required user interaction to bring the predefined UI to the top of the z-order "stack". Furthermore,
CPU "spikes" occurred when the UI was moved by the user. Attempts to hide the Ul during application moves did not resolve this
problem, as the process of hiding and redisplaying the ill placed a high burden on the user's CPU.

18 Initially, each Xstreamulator application module was developed in a separate form, For example, the PowerPoint form was solely
responsible for PowerPoint capture and display functionality.

19 A MUltiple Document Interface (MDI) application is composed of a single "parent" form that contains other "child" forms.

92

20 Expandlcontract functionality was implemented to enable users to reduce the size ofXstreamulator's UI when required.

21 Instructors are required to enter a passwordlusemame when webcasting from a classroom. However, in a future Xstreamulator release,
authentication settings will be automatically recalled from a USB memory key or RFID tag, The use of biometric authentication (e,g.,
the use of fingerprint readers) is also being explored.

22 The main encoder form in Xstreamulator has, on occasion, become corrupted. As a result, application backups are performed on a
very frequent basis!

23 Code modules contain text-only application subroutines. They do not include UI components, which are instead stored in binary
resource files. In essence, code modules pemlit the separation of visual elements from an application's codebase.

24 As modules are "public" code repositories they can be referenced from any part of the application project workspace. Thus, modules
contribute to a more efficient and manageable codebase.

25 lbere are no specific CPU requirements for Xst.reamulator. However, system performance can limit viable capture options.
Realistically, Xstreamulator requires a Pentium III or faster computer.

26 A CPU "spike" occurs when the computer's Central Processing Unit is being fully utilized, usually during a brief period of time.
Periodic CPU spikes are rarely problematic. However, "spikes" that occur over a longer time frame can result in sluggish performance
or application crashes.

27 A network or system failure.

28 During a "failure event" Xstreamulator attempts to recover/upload the existing encoded content. In addition, Xstreamulator
automatically self-resets so that an encoding session can be rapidly restarted.

29 USB web cameras tend to use more CPU cycles than comparable Firewire cameras. Unfortunately, due to USB's market dominance,
Firewire cameras are becoming increasingly scarce.

30 Background tasks include Windows services and applications loaded during the Windows startup process. For example, anti-virus
applications are notorious for degrading the performance of a Windows PC.

31 Theusersettingsyntaxis:My.Settings.Variable Name .. Value.

32 Windows Media Encoder 9.0 has a built-in audio input level indicator. Unfortunately. there is no method to monitor volume levels
using the COM interfaces provided by Windows Media Encoder 9.0. Specifically. the Windows Media Encoder SDK identifies a
record level property. but states that it is "not supported in the current release", Yes, this is very annoying!

33 QuickTime does not support the live-insertion ofllRL "flips" or multi-bitrate encoding. In addition, the QuickTime SDK requires
C++ or JAVA

\ 34 C++. C# and Visual Basic .NET control WMEncoderLib objects using procedures specific to each language.

35 GD! and GD1+ are the primary libraries used to display 2D content in Windows. In Windows Vista, GD!+ is supplanted by a new
low-level graphics/screen management system, the Windows Driver Display Model (WDDM). However. GD!+ functionality is fully
supported in a VlSTA as a "compatibility layer".

36 Interestingly. this communication can occur bi-directionally. although Xstreamulator does not at present make use this feature.

37 The DirectX.Capture library was developed by Brian Low, and is available on the Code Project Website
(http://www.codeproject.comlKB/directxi directxcapture.aspx). The DirectShow.NET library was developed by "Net Master" and is
also available from the Code Project website (http://www.cod.:project,comlcs/medialdirectshownelasp),

38 DirectShowLib-200S.dll is available from Source Forge (http://sourceforge.netlprojectsldirectshowneli).

39 The vendor's website is: http://www.tapiex.comlWaveEx.Net.htm.

40 MP3 support is currently in development. An earlier version of Xst.reamulator supported this feature. However, the conlrol used to
generate MP3 files was replaced with WaveEx.NET. WaveEx.NET's MP3 implementation is not currently activated in
Xstreamulator.

