
A STUDY ON FINANCIAL TIME SERIES FORECASTING AND SYMBOLIC

REGRESSION BY MEANS OF A HYBRID PROBABILISTIC

MODEL-BUILDING CARTESIAN GENETIC PROGRAMMING

METHODOLOGY

by

Mahsa Mostowfi

B.Sc., Shiraz Azad University, 1999

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Science

in the Program of

Computer Science

Toronto, Ontario, Canada, 2013

c⃝ Mahsa Mostowfi 2013

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions or individuals for the purpose

of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopying or by other means, in total

or in part, at the request of other institutions or individuals for the purpose of scholarly research.

I understand that my thesis may be made electronically available to the public.

iii

iv

A STUDY ON FINANCIAL TIME SERIES FORECASTING AND SYMBOLIC

REGRESSION BY MEANS OF A HYBRID PROBABILISTIC

MODEL-BUILDING CARTESIAN GENETIC PROGRAMMING

METHODOLOGY

Mahsa Mostowfi

M. Sc. in Computer Science, 2013

Ryerson University

Abstract

This work proposes a hybrid algorithm called Probabilistic Incremental Cartesian Genetic Pro-

gramming (PI-CGP), which integrates an Estimation of Distribution Algorithm (EDA) with Carte-

sian Genetic Programming (CGP). PI-CGP uses a fixed-length problem representation and the

algorithm constructs a probabilistic model of promising solutions. PI-CGP was evaluated on sym-

bolic regression problems and next trading day stock price forecasting.

On the symbolic regression problems PI-CGP did not outperform other approaches. The reason

could be premature convergence and being trapped at a local minimum. However, PI-CGP was

competitive at stock market forecasting. It was comparable to a fusion model employing a Hidden

Markov Model (HMM). HMMs are extensively used for time-series forecasting. This result is

promising considering the volatile nature of the stock market and that PI-CGP was not customized

toward forecasting.

v

vi

Acknowledgements

I would like to express my sincere gratitude to Dr. Marcus dos Santos, my supervisor, for the

continuous support, for his patience, guidance, and motivation which made this thesis possible.

I would also like to thank my thesis committee, Dr. Sadeghian, Dr. Abhari, and Dr. Woungang,

for reading my thesis and their insightful comments.

I would like to thank the following friends who supported me: Marmar Matin, Maryam Aslanzad,

Amir Farrokh Azmayesh, Leyla Vakilian, Ervis Sofroni, Sweeney Luis, Mohammad Islam, Rong

Liu, and Vimalan Yogaratnam.

vii

viii

Dedication

To my parents, Graham, Mahyar, and Sahar for their love, endless support, and encouragement.

ix

x

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Methodology . 3
1.4 Results and Contributions . 5
1.5 Structure of this thesis . 6

2 Literature Review 7
2.1 Evolutionary Computation . 7

2.1.1 Genetic Programming . 8
2.1.2 Cartesian Genetic Programming . 9
2.1.3 Estimation of Distribution Algorithms . 11

2.2 Data Mining (DM) . 13
2.3 Data Mining with Evolutionary Algorithms . 14

2.3.1 EAs for Data Mining in Financial Data 14

3 Methodology 17
3.1 PI-CGP: The Hybrid Methodology . 17

3.1.1 Program Representation . 17
3.1.2 The Probabilistic Prototype Array (PPA) 18
3.1.3 The Learning Process . 19

3.2 Constructing a Plug-in Algorithm and Integrating it into Analysis Services 22
3.2.1 The plug-in algorithm life time . 25
3.2.2 Connecting to External Data Sources . 25
3.2.3 Data Mining Extensions . 26

3.3 Development Environment . 27
3.4 Experimental Design . 27

3.4.1 Symbolic Regression Experiments . 27
3.4.2 Stock Market Forecasting Experiments 30

4 Results and Discussion 33
4.1 Symbolic Regression Results . 33

4.1.1 Experiment 1: Sextic Polynomial . 33
4.1.2 Experiment 2: Polynomial of Degree 11 34
4.1.3 Experiment 3: Sextic Polynomial over interval [-1,1] 37
4.1.4 Experiment 4: Non-trivial Function . 42

4.2 Stock Market Forecasting . 42
4.2.1 Genetic Programming approach . 44

xi

4.2.2 HMM, ANN, and GA approach . 46

5 Conclusions and Future Work 49
5.1 Contributions . 50
5.2 Future Work . 51

Bibliography 53

Glossary 59

xii

List of Tables

3.1 Program inputs and functions encoding . 18
3.2 Parameter values for experiments 1, 2, 3, and 4 28
3.3 Parameter values for stock market forecasting . 31

4.1 Best fitness measure of runs . 34
4.2 Parameter settings for the polynomial of degree 11 experiment. 34
4.3 Results for different parameter settings for the polynomial of degree 11 experiment. 34
4.4 Configuration used in CGP with variable crossover technique for x6 −2x4 + x2 . . . 38
4.5 Configuration for PI-CGP for R1 to R9 . 40
4.6 Configuration for PI-CGP for R10 to R12 . 40
4.7 Results for each round based on different parameter settings in Table 4.5 and 4.6 . . 41
4.8 Parameter settings for PI-CGP on equation 4.3 . 42
4.9 Results for each round based on different parameter settings in Table 4.8 43
4.10 Results for each round based on different population sizes 45
4.11 Forecast accuracy comparison on cross-validation period. Training range: 1 Novem-

ber 2002 to 19 August 2003 . 45
4.12 Forecast accuracy comparison on training period. Training range: 1 November

2002 to 19 August 2003 . 46
4.13 Forecast Accuracy Comparison between PI-CGP and the fusion model 46
4.14 The fitness and the representation of the best individual by PI-CGP 47

xiii

xiv

List of Figures

3.1 A CGP genotype and corresponding phenotype for the function X 19
3.2 Probabilistic Prototype Array (PPA) . 20
3.3 Analysis Server and plug-in algorithm communication interface 23

4.1 Approximated polynomial by PI-CGP versus the actual polynomial 35
4.2 Fitness improvement for PI-CGP on the polynomial of degree 11 36
4.3 Average convergence for PI-CGP based on the parameters in Table 4.4 on x6 −

2x4 + x2 . 38
4.4 Average convergence for CGP with variable crossover rate [27] 39
4.5 Average convergence for PI-CGP with different parameter settings on x6 −2x4 + x2 41
4.6 Fitness improvement for PI-CGP with different parameter settings on equation 4.3 . 43
4.7 The best approximated equation by PI-CGP in R9, all runs, and the actual equation 43
4.8 IBM close price forecast by PI-CGP . 46
4.9 IBM close price forecast by PI-CGP . 47
4.10 Apple close price forecast by PI-CGP . 48
4.11 Dell close price forecast by PI-CGP . 48

xv

xvi

Chapter 1

Introduction

This work presents a hybrid methodology which integrates an Estimation of Distribution Algorithm

(EDA) with Cartesian Genetic Programming (CGP). The method is applied to the synthesis of

mathematical equations to fit a given data set and to the short-term prediction of a stock’s daily

price.

This work belongs to the field of Evolutionary Computation (EC), a subfield of Machine Learn-

ing (ML). EC is the name given to a collection of optimization methodologies inspired by the bio-

logical evolution of living organisms (i.e. reproduction and selection). In EC, a population consists

of a set of individuals. Each individual is a candidate solution to a given problem. Individuals are

selected based on their fitness, where fitness is a metric defining how well a candidate solution

solves the given problem, and the evolutionary operators are applied to them to generate the popu-

lation of the next generation. This process iterates until a satisfactory solution to the given problem

is found or a termination criterion is met.

EDAs are a set of optimization methods within the EC field which guide the search towards the

optimum solutions by building a probabilistic model of promising solutions and sampling from the

probabilistic model. EDAs eliminate the need for search operators in generating the new population

of individuals. EDAs differentiate themselves from other stochastic optimization techniques by

using probabilistic models to capture the features which makes a candidate solution better than

other solutions in the search space.

Genetic Programming (GP) is the field of EC in which individuals are represented by complex

structures (e.g. trees, graphs, and the like). The internal nodes are selected from a function set and

the leaves are chosen from a terminal set. The terminal set consists of constants or variables. The

1

genetic operators are used to select the fittest individual and then copy it to the next generation or

create new offspring from the selected individuals.

Cartesian Genetic Programming (CGP) is a form of GP in which the program structure is a

fixed-length array of integers. CGP represents a program as a directed graph. Nodes of the graph

are arranged in a number of rows and columns. Each node takes its inputs from the output of the

previous nodes or the program inputs.

Prediction of stock price and price direction is a non-trivial problem and is important for in-

vestors. There is a large amount of historical data being stored and it is expected to continue to

grow. These data contain valuable knowledge which can be extracted and used for prediction pur-

poses. Analyzing such data manually is not practical, so researchers have developed approaches

(e.g. machine learning and statistical data analysis) to automatically discover patterns in the data.

These approaches are the subject of the field known as data mining and knowledge discovery. It is

during the Data Mining (DM) phase of Knowledge Discovery (KD) that knowledge is extracted

from the data and large databases are searched to find interesting patterns in the data.

Symbolic regression is a technique for finding a mathematical equation that fits a given set

of data points. In this work, symbolic regression is used for knowledge discovery to find the

patterns in the stock price data and present them in the form of mathematical expressions. Symbolic

regression searches for both the parameters and the form of the equations simultaneously.

1.1 Motivation

Evolutionary Computation has been used as an effective tool in knowledge discovery and data

mining because it is adaptive, robust, and flexible [1]. The main motivation for using EC techniques

in financial time series data mining is their capability to efficiently explore the search space and

discover relationships between various market factors while handling complex fitness functions

[2]. Previous works have shown that data mining is able to analyze financial time series data and

2

uncover hidden patterns that predict future behaviors in financial markets [2–4].

CGP is a good candidate for solving symbolic regression problems because it uses a directed

graph and it is immune to bloat. CGP represents a program as a directed graph which provides

the advantage of reusing the subgraphs [5] compared to GP tree representations where identical

sub-trees have to be built separately. When GP is applied on symbolic regression problems, a

phenomenon known as bloat is often observed. Bloat is when the program size increases without

any changes in its fitness value. CGP does not suffer from bloat because it employs a fixed-length

structure. Bloat results in increasing the fitness evaluation time and reduces the efficiency of the

search operators.

EDAs can be applied to simple and complex problems using a diverse range of probabilistic

models. Previous works have shown that a hybrid methodology which combines a fixed-length

program representation to an EDA outperforms the EDA only approach in symbolic regression

problems [6]. It is also a promising methodology for Neuroevolution [7].

1.2 Objectives

Our objective is to build a hybrid algorithm that develops a probabilistic model of CGP programs.

The model will be learned using a method inspired by the Probabilistic Incremental Program Evo-

lution (PIPE) approach [8]. The system will be integrated into SQL Server Analysis Services

(SSAS) as a plug-in algorithm to perform data mining.

The algorithm’s performance will be evaluated using a set of experiments in the domain of

symbolic regression and stock market forecasting.

1.3 Methodology

The following briefly describes how we developed the hybrid algorithm and integrated it into SQL

Server Analysis Services (SSAS) as a data mining algorithm.

3

To begin, we require a structural representation. The presented system uses the representation

developed in CGP. In CGP, the encoding of an individual, or genotype, is a fixed-length list of

integers and encodes an indexed graph (the phenotype). Each integer encodes an input or the

function of a node in the graph.The graph can be used for a number of program types including

algebraic formula, logic formula, neural networks, etc.

Next, we define the probabilistic model which estimates the distribution of promising solutions.

Given that in CGP the genotype has a fixed length, the probabilistic model is also a fixed-length

array with the same length as the CGP genotype. Each entry of the array stores a list of probability

values for each possible input or function. The probabilistic model is updated to increase the

probability of sampling the best individual of the current generation. This is done by increasing the

probability values in the model which correspond to the nodes which generated the best individual

of the current generation.

Next, we integrate the hybrid algorithm into SSAS. SSAS provides data mining functionality

in Microsoft SQL Server (i.e. it provides the tools to design data mining solutions, based on which

the data source binding, design and deployment of data mining models for predictive purposes is

easily done).

In order to integrate the hybrid algorithm into SSAS, a plug-in algorithm must implement a

set of Component Object Model (COM) interfaces. COM is a software architecture which allows

the re-usability of objects (software components) regardless of the programming language used

to implement the objects. A COM object is accessible through a set of interfaces (collection of

functions). Through these interfaces the plug-in algorithm exposes the algorithm information,

detects and stores the pattern in the data, then exposes the discovered patterns. A plug-in algorithm

is a class library which implements the following classes: Metadata class, Algorithm class, and

Navigator class. They are partially implemented in a plug-in wrapper provided in the API for SQL

Server package by Microsoft, but the plug-in developer must implement the mentioned classes

using the base classes and interfaces provided.

4

To test the performance of our system, we ran experiments against a selection of symbolic

regression and stock market forecasting benchmarks. For the symbolic regression class of experi-

ment, we compared the performance of our hybrid algorithm with the following methods: GP, CGP

with variable crossover, and PIPE. For the stock market forecasting experiments, we compared the

performance of our data mining algorithm with GP and a fusion model which combines Hidden

Markov Model (HMM), Artificial Neural Networks (ANNs) and Genetic Algorithm (GA).

1.4 Results and Contributions

Our results show that the hybrid algorithm on the set of symbolic regression problems outper-

formed the GP approach when the target expression was a polynomial of degree 6, but fails to find

the target expression of degree 11. We suspect that our algorithm was trapped at a local minimum.

Increasing parameters such as number of generations and learning rate resulted in improving the

average fitness value. The average convergence rate of our approach against CGP with variable

crossover was slower. One possible reason could be the premature convergence of our approach.

Increasing the population size resulted in improving the convergence but did not succeed at out-

performing CGP with variable crossover. In the non-trivial function regression problem, the target

expression was not found using PI-CGP. A possible reason could be that the run required more

program evaluations.

The accuracy of our hybrid algorithm on the next day stock price forecasting compared to a GP

system with the window period of 300 on the training and cross-validation range was significant.

The window period specifies the number of data points collected from the past history of the stock

price time series. On the cross-validation period, GP with window period of 450 performed slightly

better than our approach but not statistically significant. On the training period, our approach

performed better than the GP with window period of 450 but not statistically significant. We found

that training our algorithm on wider range of historical price data would result in better Mean

5

Absolute Error (MAE) on the cross-validation period. Comparing the accuracy of our algorithm

to a fusion model of ANN, GA, and HMM we observed that our approach was better for IBM and

Apple, but not statistically significant. For Dell, the fusion model performed slightly better but not

statistically significant.

Our contribution is a novel EDA-CGP approach for mining financial time series data and the

demonstration that our approach performs reasonably well considering the volatile nature of stock

market. Considering that our approach was not customized toward forecasting, it is comparable to

the fusion model which incorporated tools such as HMM, a tool which is extensively used for time

series forecasting because of its proven suitability for modeling dynamic systems.

1.5 Structure of this thesis

In chapter 2, we provide an overview of the concepts and related work. We begin by a brief

introduction to the field of Evolutionary Computation (EC). Then, we review the following EC

algorithms: Genetic Programming and Cartesian Genetic Programming. Next, we review the Es-

timation of Distribution Algorithms. Finally, we review data mining and the application of Evolu-

tionary Algorithms to mining financial data.

Chapter 3 details our approach including: PI-CGP program representation, the probabilistic

model, the learning process which guides the search towards optimal solution, database integration,

and performance evaluation. Next, we describe how our PI-CGP is integrated algorithm with SQL

Server Analysis Services (SSAS) in order to perform data mining. To end this chapter, we describe

the benchmark experiments chosen to evaluate the performance of our system.

Chapter 4 presents the results of the experiments done on symbolic regression and stock market

forecasting, specifically the next trading day price prediction.

Chapter 5 discusses our results, contributions, and possible extension of this work.

6

Chapter 2

Literature Review

This chapter presents the background concepts in the areas of Evolutionary Computation and Data

Mining and reviews the research related to this work.

2.1 Evolutionary Computation

Evolutionary Computation is the field of Computer Science that uses techniques inspired by the

principles of the natural evolution such as reproduction and selection. The techniques are used

to perform optimization given a metric to determine a well-performing solution. Evolution in a

population of program solutions is driven by the following four factors [9]:

1. Reproduction of individuals: Mutation and crossover produce the new candidate solutions

from one or more parents.

2. Variation: Mutation and crossover are the variation operators which create the new individ-

uals from the old ones. They increase the diversity of individuals.

3. Heredity: Behavioral traits are inherited from generation to generation.

4. Finite Resources: Limited number of resources leads to competition of individuals in a

population for survival. The selection operators pick the individuals with better fitness.

The execution of an EC algorithm consists of the following steps:

1. A random population of candidate solutions to the problem is generated.

2. The selection operator is applied to the population and the candidates are selected based on

their fitness, which determines how qualified the candidates are to solve the problem.

7

3. The search operators are applied to the selected candidates and generate the next generation

individuals.

4. While the termination criterion has not been met the steps 2-4 are repeated.

Generally the termination criteria are defined as either the process runs for a number of genera-

tions less than the maximum number of generations or when an acceptable solution to the problem

is found.

Some of the best-known algorithms in the class of EC methodologies are: Genetic Algorithms

(GA), Genetic Programming (GP), and Cartesian Genetic Programming (CGP). They differ in the

way individuals are represented and their genetic operator implementations. In GA, the structure of

an individual is a fixed-length string representing the parameters to be tuned. In GP, the individuals

are represented as a program tree. In CGP, the individuals are encoded as fixed-length strings that

are decoded into directed graphs.

2.1.1 Genetic Programming

In Genetic Programming, the problem solutions known as individuals are initially generated ran-

domly and are evolved by applying genetic operators in each generation to generate better pro-

grams.

The individuals in GP are in the format of LISP parse trees. The internal nodes are selected

from a problem-specific function set and leaves are selected from a problem-specific terminal set.

The number of arguments a function takes is known as the arity (e.g. +,− take two arguments and

have arity 2.) There is no distinction between the individual’s genotype and phenotype (i.e. the

LISP tree is both the program being evaluated and the genome being mutated.) Genotype is the

genetic structure of an individual and phenotype is the individual’s observable characteristics.

The operations used in canonical GP (as defined by Koza [10]) to evolve the program solutions

are: selection, reproduction, crossover, and mutation.

8

The selection operator chooses individuals from the current generation based on fitness. A com-

mon selection operator is roulette wheel selection, where the individuals are selected randomly in

proportion to their fitness. In reproduction the selected individual is copied into the next genera-

tion without any changes. Crossover starts with two individuals and produces two offspring. The

offspring are created by selecting a random node in each tree and swapping them. During mutation

a random part of the selected individual is chosen and altered based on the mutation technique.

The mutation implementation should ensure that the operation results in a valid program tree (e.g.

Functions with different arity require trimming or adding a random terminal or tree. If a function

becomes a terminal the branches are discarded).

The process of program generation, evaluation, selection, and application of the genetic opera-

tors is iterated until a solution is found or the maximum number of generations is reached.

2.1.2 Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) is a form of GP developed by Miller and Thomson from

their work on evolutionary design of digital circuits [11].

In CGP each individual is represented as a directed graph and each node in the graph is mapped

to a string of integers referred to as genes in the genotype. Unlike in GP, in CGP there is a

distinction between the genotype and phenotype. In CGP, the genotype encodes the phenotype

(directed-graph) as a fixed-length array of integers. The genotype represents the program inputs,

outputs, and the graph’s structure whereas the phenotype is a graph (grid of nodes).

There exists a many-to-one genotype-phenotype mapping in CGP which means that a number

of unique genotypes may produce functionally equivalent phenotypes. This is because of different

types of redundancy including: node redundancy, functional redundancy, and input redundancy.

Node redundancy is the result of unconnected nodes in the graph whose output is not connected

to a node leading to the program output. Functional redundancy occurs when a function can be

9

implemented with less nodes. Input redundancy occurs when one or more of the program inputs

are not connected to any nodes.

CGP only uses mutation to create offspring for the next generation. The mutation operator is

a point mutation in which a gene is randomly chosen and its value is changed to a valid random

value (e.g. If a function gene is chosen then its value is changed to any function in the function set,

whereas if an input gene is chosen its value is changed to the output of any previous node in the

phenotype or any program input).

CGP has a number of advantages over other forms of GP. CGP does not suffer from bloat since

CGP genotype is a fixed-length array. Bloat is the rapid growth in size of the individuals causing

the fitness evaluation to take a longer time.

Since CGP represents a program as a directed graph, the sub-graphs can be re-used, whereas

in GP the identical sub-trees have to be constructed separately.

2.1.2.1 Cartesian Genetic Programming with Crossover

In CGP with Crossover (CGPwC) method the CGP genotype has been replaced with a fixed-length

array of real-value numbers in the range [0,1]. The decoding process from real value to integer

value is achieved by two equations. Equation 2.1 applies when genei encodes the function of a

node and Equation 2.2 when genei encodes the input of a node.

f loor(genei ∗ f unctotal) (2.1)

f loor(genei ∗node j) (2.2)

where f unctotal is the number of functions, node j is the node number, and 0 ≤ j ≤ nodetotal ,

nodetotal being the number of nodes and terminals.

10

Crossover is performed using Equation 2.3 to produce two offspring, o1 and o2 .

oi = (1− ri)∗ p1 + ri ∗ p2 (2.3)

where p1 and p2 are the parents, and ri is a uniformly generated random number in the range

(0,1) chosen for each offspring oi, i being in the range [0,2).

The mutation operator in this method is based on the mutation operator in CGP, but it changes

the value of a gene to a uniformly generated random real value in the range [0,1].

2.1.3 Estimation of Distribution Algorithms

Optimization algorithms such as Evolutionary Algorithms use reproduction and selection opera-

tions on promising individuals to generate better solutions. Depending on the problem domain

these operators may not be effective enough to preserve the important building blocks of the can-

didate solutions. To address this limitation, a new class of algorithms was introduced called Prob-

abilistic Model Building Genetic Algorithms (PMBGA), also known as Estimation of Distribution

Algorithms (EDA).

Estimation of Distribution Algorithms is a class of methodologies that explicitly induces a

probabilistic model of the best candidate solutions. New candidates are generated by sampling the

distribution model.

The simplest form of the EDA is called Population Based Incremental Learning (PBIL) [12]

which is based on a fixed length binary encoded representation of the individuals. In this algo-

rithm, first the probability vector is initialized. Each position in the probability vector specifies

the probability of each bit position in the solution string containing a ’1’. Then individuals are

sampled according to the probability vector and are evaluated. The values in the probability vector

are updated towards representing the highest evaluation solutions. The mentioned cycle is repeated

until the termination criterion is met.

11

One of the early works in the field of PMGBA is the Univariate Marginal Distribution Algo-

rithm (UMDA) [13]. UMDA uses the Univariate probability model in which there is no depen-

dency between the variables of an individual.

Another form of EDA is Compact Genetic Algorithm (cGA) [14] which maintains the prob-

ability vector as in PBIL but unlike PBIL it samples two individuals. The individual with better

fitness is selected and the probability vector is updated. This process continues until the probability

vector converges.

Probabilistic Developmental Program Evolution (PDPE) [6] is a probabilistic model building

method in which the probability distribution of promising solutions are stored in a fixed length

Probabilistic Prototype Chromosome (PPC) and individuals are presented as expression trees.

Probabilistic Developmental Neuroevolution (PDNE), which is an EDA-GP technique, has

been used to evolve the topology and weights of an Artificial Neural Network (ANN) [7].

Probabilistic Incremental Program Evolution (PIPE) [8] is an EDA in which the structure of

the probability distribution model is a program tree. PIPE uses a model of a complete N-ary tree

known as the Probabilistic Prototype Tree (PPT).

PIPE uses two forms of learning: Genetic-Based Learning (GBL) and Elitist Learning. GBL

is the main learning algorithm. In this form of learning the population is generated by sampling

the Probabilistic Prototype Tree (PPT), then the individuals are evaluated and the PPT is updated

to increase the probability of creating the best program from the current generation. During Elitist

Learning the PPT is updated to increase the probability of generating the elitist program. During

the Elitist Learning there is no population generated nor is the PPT is mutated.

At the end of each generation the PPT is pruned. During pruning subtrees that are not required

as function operators are removed and subtrees of nodes with at least one probability value in the

probability vector greater than a threshold are also removed.

In this thesis a hybrid algorithm called Probabilistic Incremental Cartesian Genetic Program-

ming (PI-CGP) is proposed. PI-CGP is a combination of PIPE’s probabilistic model and learning

12

algorithm and CGP’s program representation is proposed.

2.2 Data Mining (DM)

The amount of data collected every day and stored in databases is increasing rapidly. Analyzing

such volumes of data manually would be difficult, if not impossible, so it is important to build tools

that automatically uncover valuable information from the data and transform it into knowledge.

This is the objective of the field of Knowledge Discovery from Data (KDD).

The knowledge discovery process consists of the following steps:

1. Data Preprocessing: The real-world data consists of noisy and incomplete data. The data

preprocessing step improves the quality of data and so it improves the accuracy of subse-

quent steps.

2. Data mining: During this step methods are applied to data to extract interesting patterns.

Different data mining techniques are used for different purposes. Association, Clustering,

Classification, and Regression are the major data mining techniques.

In regression a numerical value is predicted whereas in classification a categorical or nominal

model is built. The regression technique can be used to predict the future values of a financial

time series.1

There are several regression algorithms used in data mining such as Genetic Programming

(GP), Support Vector Machines (SVM), and Neural Networks (NN).

3. Pattern evaluation and knowledge presentation: In this step the discovered patterns are

evaluated. The patterns which are accurate and comprehensible are selected and presented

to the user. The discovered knowledge is usually presented in terms of rules, classification

models, statistical analysis, etc.
1A series of data points such as a stock’s price measured in regular time intervals.

13

Knowledge Discovery is an iterative process. When the knowledge is discovered and presented

to the user based on the user’s feedback the above-mentioned steps may be repeated and some

modifications may be applied to them. For example, new data sources may be integrated into the

system or evaluation measures may be changed.

2.3 Data Mining with Evolutionary Algorithms

The main reason that Evolutionary Algorithms are applied to Knowledge Discovery and Data

Mining is that these algorithms are robust and adaptive and can perform global searches [15].

EAs allow evaluation of multiple criteria simultaneously. These features give the data miner some

flexibility in designing the fitness functions.

2.3.1 EAs for Data Mining in Financial Data

Credit fraud prediction [16], credit rating [17], forecasting stock market [18, 19], and currency

exchange rates [20] are prominent data mining tasks in finance and banking systems.

Mining financial data is a challenging task as it requires an understanding of how the financial

markets work, how to model the financial markets, and how to validate those models [21]. In

response to such a difficult task, data mining techniques have been used. Applying data mining to

financial time series data can help to discover interesting patterns within the data or to discover the

relationship between several time series. Extensive research has been done to solve these problems

as it has valuable potential benefits [22].

The existing financial data forecasting mining methods can be categorized into:

• Classical: The classical methods are based on the statistical models (e.g. Autoregressive

Integrated Moving Average (ARIMA)). The major difficulty encountered when using these

methods is that usually many attempts must be made to find the best model.

14

• Modern: The modern methods are based on the algorithms from the Artificial Intelligence

field. (e.g. Neural networks, evolutionary computation techniques, e.g. Genetic Program-

ming, Genetic Algorithms)

Using EAs overcomes the major difficulty encountered when using statistical methodologies

for financial data forecasting. In [23], a GP-based method was shown to yield a better performance

compared to NN in predicting the stock price data. This was justified by that the NN suffered

from over-fitting and its convergence time was much longer. Over-fitting occurs when the evolved

model performs well on the training data, but does not perform well on unseen data.

Multi-Expression Programming (MEP) [24], Linear Genetic Programming (LGP) [25], and

hybrid MEP-LGP [26] performed better than the trained NN with a neuro-fuzzy model in terms

of several performance measures in predicting the stock indices. The hybrid MEP-LGP algorithm

also performed better than each of the individual GP techniques.

The selected performance measures that were used: Root Mean Squared Error (RMSE), Cor-

relation Coefficient (CC), Maximum Absolute Percentage Error (MAP), and Mean Absolute Per-

centage Error (MAPE).

15

16

Chapter 3

Methodology

This chapter outlines the development of our hybrid algorithm called Probabilistic Incremental

Cartesian Genetic Programming (PI-CGP). In this approach we follow CGP’s program represen-

tation, PIPE’s probability distribution model and learning algorithm which directs the exploration

in the search space towards the promising solutions.

We first describe the progam representation of PI-CGP and the structure of the probabilistic

model used for sampling the program individuals. Then, we explain the technique for updating

the probabilistic model and sampling the individuals. Next, we explain how to plug our algorithm

into SQL Server Analysis Services (SSAS). In this chapter, the motivation for using SQL Server

Analysis Services (SSAS) is also highlighted. Finally, we describe the experiments performed to

evaluate our proposed system.

3.1 PI-CGP: The Hybrid Methodology

3.1.1 Program Representation

PI-CGP genotype representation follows the CGP genotype representation. CGP programs are

directed graphs that are encoded as a fixed length list of integers (the genome). The integers

represent the functions of the nodes and the connections between nodes. Each node is represented

as a subset of the integers in the genome. In each node, the last integer (gene) encodes the function

(e.g. +,−,×,÷) and other integers encode the input connections to the node. Each node takes

its inputs from the program’s inputs or the output of the previous nodes. The last integers in the

genome encode which node’s output becomes the output of the program.

17

Table 3.1: Program inputs and functions encoding

Value Encoding

Program input
0 X
1 Random constant

Function

0 +
1 -
2 ×
3 ÷

Assuming that all the nodes have function arity of two, for the nodes with arity of one any extra

genes are not considered in the genotype decoding process.

The program inputs are labelled from 0 to n-1 where n is the number of program inputs. The

nodes are labelled from n to n + m - 1, where m is the number of nodes. The output nodes are

labelled from n + m to n + m + k - 1, where k is the number of output nodes [27].

An example of CGP genotype and genotype-phenotype mapping is shown in Figure3.1. The

figure shows a CGP program with 5 nodes per row and 2 nodes per column. The program has

two inputs: X and a random constant and one output. Table 3.1 presents the program inputs and

functions encoding. Each node has 2 input connections and the levels back parameter is 5. The

levels back parameter determines from how many previous columns a node can get its input from.

Nodes in the same column or upstream columns are not allowed to be connected to each other.

The dotted nodes are the unconnected nodes that are not taken into account when calculating the

fitness of an individual.

3.1.2 The Probabilistic Prototype Array (PPA)

The Probabilistic Prototype Array (PPA), the probability distribution of PI-CGP genes, was in-

spired by PIPE’s Probabilistic Prototype Tree (PPT) [8]. The PPT is a complete n-ary tree whereas

the PPA is a fixed length array with the same length as the PI-CGP genotype. Each position in the

array is matched to a gene in the genotype and stores a list of probability values (see Figure 3.2).

18

Figure 3.1: A CGP genotype and corresponding phenotype for the function X

The probabilities indicate the likelihood of choosing any of the available functions or inputs. Each

probability list is normalized.

For a gene encoding a function, the probability of each value is initialized as:

P =
1

Number o f f unctions in f unction set F
, where F = {+,−,×,÷,sin,cos,exp,r log} (3.1)

If the gene encodes inputs to the node, then the values are initialized as:

P =
1

Number o f previous nodes + Number o f terminals in terminal set T
, where T = {x,R}

(3.2)

The R element, Generic Random Constant, is a function with zero argument and provides a

random value. Its value remains the same throughout a generation.

3.1.3 The Learning Process

The probabilistic model (PPA) uses the PIPE [8] learning process. The model is said to learn if the

probabilities can be moved to make the better solutions more probable.

19

Figure 3.2: Probabilistic Prototype Array (PPA)

The learning process is shown in Algorithm 1.

Algorithm 1: PIPE
1: repeat
2: if Pel < a random value and it is not the first generation then
3: Update probabilities based on PROGel (the elitist program)
4: else
5: Creation of the program population
6: Calculation of the fitness value for each program
7: Learning from the best program of the population
8: Mutation of the PPA
9: end if

10: until Termination Criterion is met

Creation of the program population: A population of programs is generated by using the

PPA. To create an individual we sample from the PPA. Sampling from the PPA is done through the

roulette wheel selection algorithm.

Learning from the best program of the population: The best program of the current gener-

ation is chosen (PROGb). The probabilities in the PPA are modified to increase the probability of

creating the best program.

20

The probability of creating PROGb is calculated as in [8]:

P(PROGb) = ∏
Nodes used to generate PROGb

P, where P is the probability of a node. (3.3)

P =
|N|

∏
i=0

Pi (3.4)

where Pi denotes the probability of the i-th gene in the PROGb genotype and |N| is the length

of the node.

Then a target probability for the best program is calculated. This is the probability that PROGb

will be generated by the PPA [8]:

PTARGET = P(PROGb)+(1−P(PROGb)) · lr ·
ε+FIT (PROGel)

ε+FIT (PROGb)
(3.5)

where: lr is the learning rate and ε is the fitness constant, FIT (PROGel) is the fitness of the

elitist individual, and FIT (PROGb) is the fitness of the best individual in current generation. The

learning rate and ε influence the step size in adapting the PPA to the elitist or the best program.

PPA learns the structure of PROGb by updating the probability of all nodes according to Equa-

tion 3.6 while P(PROGb)< PTARGET .

P(PROGb) = P(PROGb)+ clr · lr · (1−P(PROGb)) (3.6)

Mutation of the PPA: At the end of each generation the nodes that were accessed to generate

PROGb are mutated with probability PMP .

The probability is calculated as:

PMP =
PM

(T +F) ·
√
|PROGb|

(3.7)

21

where PM, the mutation probability, is a user defined parameter which defines the overall mutation

probability, and T + F defines the number of elements in the Terminal and Function sets, and

|PROGb| is the number of nodes in PROGb.

During mutation, each node used in PROGb is mutated with the given mutation rate.

Pi[e]+ = mr · (1−Pi[e]), where e is the element in the probability list of the selected node at

index i and mr is a user defined mutation rate. Mutation rate increases the effect of mutation on the

next generation which results in a diverse population. All mutated nodes are finally normalized.

Elitist Learning: During elitist learning the PPA is adapted towards PROGel , the best individ-

ual of all the generations found so far. During this process creation and evaluation and mutation

do not happen. The same equations are used to modify the PPA, except that in equations 3.3, 3.4,

3.5, and 3.6 we use PROGel instead of PROGb.

Termination Criterion: The algorithm runs for a fixed number of program evaluations (PE)

or until a solution with fitness better than satisfactory fitness is found.

3.2 Constructing a Plug-in Algorithm and Integrating it into Analysis Ser-

vices

The hybrid algorithm (PI-CGP) is integrated into SQL Server Analysis Services (SSAS) as a data

mining plug-in algorithm. The mining algorithm discovers the patterns in data and stores them in

the form of mathematical expressions which are used when prediction requests are received in the

form of queries on time series data.

Microsoft SQL Server Analysis Services (SSAS) provides the tools to design, create, and man-

age data mining solutions. In this environment, binding to data sources, creating models of the

data, and deploying the models for predictive purposes is easily done.

Using SSAS releases the user from implementing data source access modules for training and

forecasting. It also gives the user the ability to write queries in the DMX (Data Mining Extensions)

22

Figure 3.3: Analysis Server and plug-in algorithm communication interface

language to mine the models.

A mining model is an object that performs machine learning using a mining algorithm. It is

represented as a subset of columns from the mining structure and how those columns are used (e.g.

input, output, or both). The mining model also includes the mining algorithm and its parameters

to perform learning on a mining structure.

A mining structure represents the data columns from the database tables which are available

for a mining algorithm. This includes: column information (i.e. type, for example: Double , Long,

DateTime) and column content (i.e. categorical or continuous).

Figure 3.3 presents a high-level view of how the plug-in algorithm communicates with Analysis

Server.

Analysis Server uses a set of COM interfaces 1 to communicate with the plug-in algorithm [28].

The DMPluginWrapper.dll, the primary interop assembly, translates the COM calls from Analysis

Server to the plug-in algorithm. The DMPluginWrapper has to be built and installed into the Global

Assembly Cache (GAC) in order to be used by the plug-in algorithm.

Some of the COM interfaces are exposed by Analysis Server to be consumed in the plug-in

algorithm and some must be implemented by the plug-in algorithm to be used by the server. For

example, IDMPersistenceWriter is a COM interface exposed by the server and used by the plug-in

algorithm to save the patterns discovered by the plug-in algorithm.

The following interfaces should be implemented by the plug-in algorithm:

1A set of functions that a COM (Component Object Model) class implements

23

• IDMAlgorithmMetadata: This describes the features of the plug-in algorithm.

• IDMAlgorithm: This performs the training, detects the patterns, and performs prediction.

It also instantiates an IDMAlgorithmNavigation implementation.

• IDMAlgorithmNavigation: This allows the server to access the discovered patterns.

• IDMPersist: This stores the detected patterns.

• IDMAlgorithmFactory: This instantiates an IDMAlgorithm implementation.

A managed plug-in algorithm should be able to describe its features, discover the patterns in

data, persist them, and use them for forecasting and finally expose the discovered patterns. These

tasks are associated with the above-mentioned COM interfaces, so a managed plug-in algorithm is

a class library that should implement the following classes:

• Metadata class: This exposes the algorithm information (e.g. name and description, sup-

ported types for input parameters and predicted values) and creates an instance of the Algo-

rithm class.

• Algorithm class: This detects and persists the patterns in the data and uses them to predict.

It also creates an instance of the Navigator class.

• Navigator class: This exposes the patterns found by the Algorithm class.

The above-mentioned classes are partially implemented in the primary interop assembly for

managed plug-ins, DMPluginWrapper.dll, which is part of a managed API package provided by

Microsoft, managed plug-in algorithm API for SQL Server 2005. The managed plug-in API con-

sists of base classes and interfaces that should be derived from the managed plug-in algorithm.

In the implementation of a managed plug-in algorithm the following steps should be followed:

• Add a reference to the DMPluginWrapper.dll.

24

• Derive the Algorithm class from the AlgorithmBase class, the Metadata class from the Algo-

rithmMetadataBase class, and the Navigate class from the AlgorithmNavigationBase class.

• Add the plug-in algorithm to the GAC to be loaded by Analysis Services.

3.2.1 The plug-in algorithm life time

Analysis Services calls the ValidateAttributeSet method of the Metadata instance to check the

validity of the model structure’s attributes (i.e. check if at least one input attribute is provided).

During the training, the Metadata object instantiates a new Algorithm object through the CreateAl-

gorithm method. Then Analysis Services calls the InsertCases method of the Algorithm object with

a caseSet parameter which carries the training data contained in the mining structure. During the

method run, the algorithm caches the caseSet to process the cases at one time and present them

to the learning method. The learning algorithm iterates on the data to learn the pattern. Once

the learning method completes, Analysis Services invokes the SaveContent method to save the

discovered pattern.

The method for prediction is the Predict function implemented in the Algorithm class. Analysis

Services parses DMX statements and provides the test cases in a similar way it did for the training

cases. During prediction, Analysis Services presents each input case row to the Predict method

and the result is returned to the user.

3.2.2 Connecting to External Data Sources

In order to retrieve the data from an external data source (e.g. a relational database), Analysis

Services uses a data source object which contains the information such as the data source name

and connection string. The connection string provides the data source provider name (e.g. SQL

Server Native Client OLE DB provider) and other settings required by the provider for connection

to the data source.

25

3.2.3 Data Mining Extensions

Data Mining Extensions (DMX) [28] is a query language created by Microsoft for creating, train-

ing, and predicting against data mining models.

DMX statements are used to: create new data mining structures and models, drop the existing

ones and to predict against mining models.

To create a mining strucure:

CREATE MINING STRUCTURE I B M M i n i n g S t r u c t u r e (

IndexID LONG KEY,

C l o s e P r i c e DOUBLE CONTINUOUS,

Nex tDayPr ice DOUBLE CONTINUOUS

)

To create a new mining model based on an existing mining structure (The mining structure

must already exist before running the following script):

ALTER MINING STRUCTURE [I B M M i n i n g S t r u c t u r e]

ADD MINING MODEL [IBM Mining Model] (

IndexID ,

C l o s e P r i c e ,

Nex tDayPr ice PREDICT ONLY

) USING [PI−CGP]

To create a mining model and automatically generate its mining structure at the same time:

CREATE MINING MODEL [IBM Mining Model] (

IndexID LONG KEY,

C l o s e P r i c e DOUBLE CONTINUOUS,

Nex tDayPr ice DOUBLE CONTINUOUS PREDICT ONLY

)

USING [PI−CGP]

To drop a mining struture and model:

26

DROP MINING STRUCTURE [I B M M i n i n g S t r u c t u r e]

DROP MINING MODEL [IBM Mining Model]

3.3 Development Environment

The class libraries were written in C# using the Microsoft .Net Framework version 3.5 and devel-

oped using Microsoft Visual Studio 2008. Microsoft Business Intelligence Development Studio

(BIDS) was the development environment for creating the mining structure and model. Data stor-

age and management was done using Microsoft SQL Server 2005.

3.4 Experimental Design

Two sets of problems, of varying types and difficulty, were selected to evaluate the performance

of our hybrid algorithm. We started with a symbolic regression problem, then we applied our

approach to forecast the stock market behaviour, specifically predicting the next trading day close

price of stocks.

In sections 3.4.1 and 3.4.2 the experimental set up for these experiments is detailed.

3.4.1 Symbolic Regression Experiments

In the first two experiments, the performance of the hybrid algorithm was compared to a GP system

with an improved search process approach [29]. The third experiment compared the performance

of our approach to CGP with variable crossover approach [27]. The fourth experiment compared

the performance of the proposed methodology against PIPE on the equation used in [8].

3.4.1.1 Experiment 1: Sextic Polynomial

In this experiment, the target expression is a Sextic polynomial (x6 − 2x4 + x2). A sample of 50

equidistant data points taken from the interval [0,1] are used as fitness cases. The fitness of an

27

Table 3.2: Parameter values for experiments 1, 2, 3, and 4
Parameter Experiment

Exp1 Exp2 Exp3 Exp4
Terminal Set T = { x, R} T = { x, R} T = { x, R} T = { x, R}
R range [-1, 1] [-1, 1] [0, 1] [0, 1]
Function Set { +,−,×,÷ } { +,−,×,÷ } { +,−,×,÷ } { +,−,×,÷,

sin,cos,exp
,rlog }

Population Size 500 500 2000 500
Number of Generations 51 200 25 20
Number of Runs 30 30 30 10
PI-CGP:
Number of Rows 1 1 1 1
Number of Columns 10 10 10 200
Levels Back 10 10 10 200
Satisfactory Fitness, FITs 0.0 0.0 0.01 0.01
Elitist Update Probability, Pel 0.2 0.2 0.2 0.2
Learning Rate, lr 0.05 0.05 0.025 0.05
Fitness Constant, ε 0.01 0.01 0.01 1.0
Mutation Probability, PM 0.2 0.2 0.2 0.2
Mutation Rate, mr 0.6 0.6 0.6 0.8
Random Constant Threshold, TR 0.3 0.3 0.3 0.3

individual is calculated as the mean squared error over all the fitness cases. Let the oi be the

population member’s value and ti be the true function value on the i-th example of the fitness cases

set, then the fitness f of the population member is calculated as follows:

f =
1
n

n

∑
i=1

(oi − ti)2 (3.8)

The ideal fitness is zero, meaning we want to minimize the difference between the fitness cases

and the individual’s result. The parameters chosen for this experiment are shown in Table 3.2.

3.4.1.2 Experiment 2: Polynomial of Degree 11

The target expression in our second experiment is a polynomial of degree 11. Similar to Experi-

ment 1, a sample of 50 equidistant data points are taken from the interval [0,1]. The fitness of an

individual is calculated as 3.8 and the ideal fitness is zero.

28

Below is the target polynomial:

(x+0.44)(x+0.54)(x+0.27)(x+0.04)(x+0.41)(x−0.43)(x−0.71)(x+0.82)(x+0.63)

(x−0.75)(x−0.91)

(3.9)

The parameters chosen for this experiment are shown in Table 3.2. We ran this experiment

with several parameter sets (i.e. rounds) to observe how changing parameters would affect the

performance of our system. Parameters under test included: learning rate, ε, population size, and

number of generations.

3.4.1.3 Experiment 3: Sextic Polynomial over interval [-1,1]

The third symbolic regression experiment used the same equation as in experiment 1. The dif-

ference being that a sample of 50 data points are taken from interval [-1,1] as opposed to [0,1]

in experiment 1. The fitness function is the sum of absolute values of the differences between

the population member’s value and the function value at each data point as opposed to the fitness

function in experiment 1, which is the mean squared error over all the fitness cases.

Let the oi be the population member’s value and ti be the true function value on the i-th example

of the fitness cases set, then the fitness f of the population member is calculated as follows:

f =
n

∑
i=1

|oi − ti| (3.10)

The parameters chosen for this experiment are shown in Table 3.2. Several rounds of exper-

imentation were run by varying the parameters such as: population size, number of generations,

learning rate, mutation rate, and mutation probability.

29

3.4.1.4 Experiment 4: Non-trivial Function

The equation chosen for this experiment is a non-trivial function to benchmark the system.

f (x) = x3 · e−x · cos(x) · sin(x) · (sin2(x) · cos(x)−1) (3.11)

A sample of 101 equidistant data points are taken from interval [0,10]. The cost function is

calculated as (3.10).

The parameters chosen for this experiment are shown in Table 3.2. Experimenting with dif-

ferent parameter settings (rounds) was done on parameters such as: population size, number of

columns, and mutation rate.

3.4.2 Stock Market Forecasting Experiments

In the following two experiments the performance of our approach in prediction of the next trading

day stock price was compared to a GP approach and a fusion model combining HMM, ANN, and

GA.

3.4.2.1 Genetic Programming Approach

In this experiment, the performance of our approach was compared to the approach which used GP

to predict the stock price of the next trading period based on the changes of stock prices of the past

N periods [30]. Where N is a user-defined variable which defines the number of past accessible

daily prices of a stock.

The parameters chosen for this experiment are shown in Table 3.3. The training data consists

of stock prices for IBM in the period 01 November 2002 to 19 August 2003. The test data consists

of stock prices for IBM in the period 20 August 2003 to 12 November 2003. Of the total collected

data, 77% is used as the training data and 23% as the test data.

30

Table 3.3: Parameter values for stock market forecasting
Parameter Experiment

Exp1 Exp2
Terminal Set T = {Close price, R} T = {Close price, R}
R range [0, 1) [0, 1)
Function Set F = { +,−,×, protected division,sin,cos,exp

, protected log, power, protected square root } ditto
Population Size 3000 20
Number of Generations 66 100
Number of Runs 10 10
PI-CGP:
Number of Rows 1 1
Number of Columns 10 10
Levels Back 10 10
Satisfactory Fitness, FITs 0.01 0.01
Elitist Update Probability, Pel 0.2 0.2
Learning Rate, lr 0.05 0.05
Fitness Constant, ε 0.01 0.01
Mutation Probability, PM 0.2 0.2
Mutation Rate, mr 0.6 0.6
Random Constant Threshold, TR 0.3 0.3

The fitness function is the sum of absolute values of the differences between the actual daily

close price and the predicted value.

3.4.2.2 HMM, ANN, and GA approach

In this experiment, we compared the performance of our approach to a fusion model which com-

bines the Hidden Markov Model (HMM), Artificial Neural Network (ANN), and Genetic Algo-

rithms (GA) to forecast financial market behaviour [31]. In the fusion model, the ANN transforms

the actual observation sequence (i.e training data in form of open, high, low, and close price) and

GA is used to optimize the initial parameters for HMM. This fusion model tries to find other days in

the historical data which show similar behaviour to the current day and adds the weighted average

of price differences to the current day price.

We have used the daily stock price of Apple Inc., International Business Machines Corp.

(IBM), and Dell Inc. Data has been collected from http://www.google.com/finance.

31

The parameters chosen for this experiment are shown in Table 3.3. The training and test data

consists of stock prices for International Business Machines Corp., Apple Inc., and Dell Inc. in

the period 10 February 2003 to 10 September 2004 and 13 September 2004 to 21 January 2005,

respectively. Of the total collected data for each stock, 81% is used as the training data and 19%

as the test data.

The fitness function is the sum of absolute values of the differences between the actual daily

close price and the predicted value.

32

Chapter 4

Results and Discussion

This chapter presents the results of the experiments described in Chapter 3. We begin with the

symbolic regression set of experiments. First, we compare our system performance to a GP sys-

tem with an improved search process in approximating polynomials of degree 6 and 11, then we

compare our system performance to a CGP with variable crossover approach in approximating a

polynomial of degree 6. Next, the performance of PI-CGP is compared against PIPE. Finally, we

compare our system performance in prediction of the next trading close price of stock prices to a

GP approach and a fusion model.

4.1 Symbolic Regression Results

In this set of experiments, we use fitness to compare the systems under test. The fitness of an

individual is calculated as the mean squared or absolute error over all the fitness cases. The results

represent values averaged over the number of runs.

4.1.1 Experiment 1: Sextic Polynomial

In this experiment the equation being approximated is x6−2x4+x2. Table 4.1 shows the calculated

parameters for each approach.

In order to determine which methodology performed better, the p-value was calculated using

the Student’s T-test.

The mean fitness of PI-CGP (0.048) was less than the mean fitness of GP with improved search

(2.002). The p-value for this experiment was 4.2502, which means that the difference between the

33

Table 4.1: Best fitness measure of runs
Methodology Min. Max. Mean Std Dev.
PI-CGP 0.0 0.138 0.048 0.049
GP with improved search 0.254 2.455 2.002 0.461

Table 4.2: Parameter settings for the polynomial of degree 11 experiment.
Parameters Setting
Round1 R1 R2 R3 R4 R5 R6 R7
Population Size 500 500 500 500 500 1000 1000
Number of Generations 51 100 100 100 200 25 200
Fitness Constant, ε 0.01 0.01 0.01 1E-06 0.01 0.01 0.01
Learning Rate, lr 0.05 0.01 0.05 0.05 0.05 0.05 0.05

means was significant with α = 0.1%.

4.1.2 Experiment 2: Polynomial of Degree 11

In this experiment, the test equation is Equation 3.9.

The result of this experiment was that the PI-CGP algorithm did not find the target expression

in any of the trials. Several parameter sets were tried and the results can be found in Table 4.3.

Parameters under test include: learning rate, ε, population size, and number of generations.

Table 4.2 shows the different parameter settings used and Table 4.3 shows the results based on

the best fitness of runs when different parameter settings were applied.

When the p-value between different rounds was calculated the difference between the means

1As mentioned in Section 3.4.1.2, round represents a given parameter setting used in an experiment.

Table 4.3: Results for different parameter settings for the polynomial of degree 11 experiment.
Rounds Best Worst Mean Std Dev.
R1 0.00008 0.00274 0.00079 0.00062
R2 0.00016 0.00216 0.00118 0.00051
R3 0.00006 0.00299 0.00069 0.00086
R4 0.00006 0.00299 0.00077 0.00082
R5 0.00004 0.00299 0.00073 0.0008
R6 0.00006 0.00305 0.00059 0.00064
R7 0.00005 0.00243 0.00035 0.00048

34

Figure 4.1: Approximated polynomial by PI-CGP versus the actual polynomial

for R5 and R2, R1 and R2, R3 and R2 was significant with α = 2%.

To find the best solution of all rounds we proceeded as follows: Since Mean(R5) < Mean(R2),

Mean(R1) < Mean(R2), and Mean(R3) < Mean(R2), we selected R5, R1, and R3, where Mean(Ri)

denotes the mean of the fitness values of round Ri. The difference between the Mean(R5) and

Mean(R1), Mean(R5) and Mean(R3), Mean(R1) and Mean(R3) was not significant.

Then the fitness of the best individual of R5, R1, and R3 was compared. The best individual of

R5 had the best fitness (the lowest), therefore R5 was picked as the best solution among all rounds.

Below is the simplified version of the best individual in R5:

x14 −1.8x12 +1.05x10 −0.2x8 (4.1)

Figure 4.1 shows the approximated polynomial versus the actual polynomial. Figure 4.2 shows

the fitness improvement for PI-CGP for different parameter settings. The horizontal axis represents

the generation number and the vertical axis is the fitness value of the best individual (averaged over

runs).

Increasing the population size from 500 in R5 to 1000 in R7 with all other factors remaining

35

Figure 4.2: Fitness improvement for PI-CGP on the polynomial of degree 11

the same did not contribute to improving the average fitness. In R7 the average fitness in genera-

tion 0 was 0.0027 compared to 0.00042 in R5 and the average fitness in the last generation (e.g.

generation number 199) in R7 was 0.00035 compared to 0.0001 in R5 but the rate of average fit-

ness improvement in R7 (86.88%) was higher than that in R5 (73.82%). The rate of average fitness

improvement is calculated as:

100∗ AvgFitness0 −AvgFitnessLast

AvgFitness0
(4.2)

In equation 4.2, AvgFitness0 is the average fitness in generation number 0 and AvgFitnessLast

is the average fitness in the last generation.

Increasing the number of generations from 51 in R1 to 100 in R3 and 200 in R5 with all other

factors remaining the same contributed to improving the fitness (e.g. decreasing the average fitness

value). The average fitness in R5 in generation 0 was 0.0004 compared to 0.0008 in R3 and 0.0016

in R1 and in generation 50 the average fitness in R5 was 0.0001 compared to 0.0002 in R3 and

36

0.0004 in R1. The rate of improvement between the first and last generation in all the R1, R3, and

R5 was the same (70%).

Increasing the learning rate from 0.01 in R2 to 0.05 in R3 with all other factors remaining the

same increased the average fitness improvement from 56.9% to 75.17% and the change in the mean

fitness value was statistically significant with α = 2%.

Decreasing the fitness constant (ε) from R3 to R4 causes the learning algorithm to take smaller

steps toward programs with better fitness by decreasing the target probability of PROGb, but the

difference in mean fitness value was not statistically significant and the average fitness improve-

ment between the first and the last generations in these runs was the same (72%).

4.1.3 Experiment 3: Sextic Polynomial over interval [-1,1]

This experiment uses the same equation as experiment 1 with the parameter settings used in [27]

(shown in Table 4.4). This experiment compares the average number of generations required for

PI-CGP to converge against CGP with variable crossover.

In CGP with variable crossover, the algorithm is said to converge when for all the data points

in the interval [-1,1] the absolute difference between the function and the individual’s value is less

than 0.01. For PI-CGP, the algorithm is considered to converge when the fitness function value

(Equation 3.10) is less than 0.01, which is a tighter convergence criterion compared to that of CGP

with variable crossover. The drawback with this criterion could be the possibility of some of the

absolute values being more than 0.01, but the sum of them is less than 0.01.

During the CGP with variable crossover run, the crossover rate started at 90% in the first

generation and reduced linearly such that by the 180th generation the crossover rate was 0%.

Figure 4.3 shows the average convergence for PI-CGP based on the parameters shown in Table

4.4. Figure 4.4 shows the average convergence for CGP with variable crossover rate.

CGP with variable crossover showed better convergence than PI-CGP. The average number of

37

Table 4.4: Configuration used in CGP with variable crossover technique for x6 −2x4 + x2

Parameters Setting
Terminal Set T = { x, R}
R range [0, 1]
Function Set { +,−,×,÷ }
Population Size 50
Number of Generations 1000
Number of Runs 1000
Number of Rows 1
Number of Columns 10
Levels Back 10

Figure 4.3: Average convergence for PI-CGP based on the parameters in Table 4.4 on x6−2x4+x2

38

Figure 4.4: Average convergence for CGP with variable crossover rate [27]

generations required for PI-CGP to converge is 179 compare to 47 (CGP with variable crossover),

71 (CGP with crossover rate of 75%), 57 (CGP with crossover rate of 50%), 84 (CGP with

crossover rate of 25%), and 168 (CGP without crossover).

The average fitness value for our approach was higher (less fit) than the other approach. It is

noticeable in Figure 4.3 that the convergence rate of PI-CGP after generation number 300 gradually

decreases.

Several rounds of experimentation were run on PI-CGP while varying the following param-

eters: population size, learning rate, mutation rate, and mutation probability. Tables 4.5 and 4.6

show the parameter settings for each round, Table 4.7 shows the results of the runs, and Figure

4.5 shows the average convergence for each run. Where the number of generations varied we kept

the number of program evaluations 2(PE) consistent. In the figure only the average convergence

for the initial 100 generations is shown since the number of generations is different for different

2It is the product of population size and number of generations.

39

Table 4.5: Configuration for PI-CGP for R1 to R9
Parameters Setting
Round R1 R2 R3 R4 R5 R6 R7 R8 R9
Population Size 50 50 500 500 500 500 500 500 1000
Number of Generations 1000 1000 100 100 100 100 100 100 50
Mutation Rate, mr 0.6 0.8 0.2 0.4 0.6 0.8 0.6 0.6 0.6
Learning Rate, lr 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Mutation Probability, PM 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.5 0.2
Number of Runs 1000 30 30 30 30 30 30 30 30

Table 4.6: Configuration for PI-CGP for R10 to R12
Parameters Setting
Round R10 R11 R12
Population Size 1000 1000 2000
Number of Generations 50 50 25
Mutation Rate, mr 0.6 0.6 0.6
Learning Rate, lr 0.01 0.025 0.025
Mutation Probability, PM 0.2 0.2 0.2
Number of Runs 30 30 30

rounds and for the rounds with more than 100 generations the population converges gradually.

Figure 4.5 shows that experimenting with different settings for parameters such as population

size has improved the average convergence of the round compare to that of R1 (the round with the

same setting as in [27]), as the lines corresponding to the rounds show below the R1 line. (e.g.

Increasing the population size from 50 in R1 to 1000 in R9, R10, R11 and 2000 in R12)

When the p-value between different rounds was calculated the difference between the means

for R1 and R9, R1 and R10, R1 and R11 was statistically significant with α = 1%. The difference

between the means for R1 and R12 was significant with α = 0.1%). Among all the rounds with

better convergence rate than R1, R12 was picked as the best round since it had the lowest mean

value and better average convergence than the others. Comparing the average convergence between

R12 and CGP with variable crossover shows that CGP with variable crossover has better average

convergence (higher).

The average convergence of R12 for the initial 100 generations is higher (better) than the CGP

40

Table 4.7: Results for each round based on different parameter settings in Table 4.5 and 4.6
Rounds Best Worst Mean Std Dev. Number Of Average Generations

Successful Runs Over Successful Runs
R1 0.0 3.80385 2.21145 0.40741 12 179
R2 2.2596 3.80385 2.35816 0.27139 0 -
R3 0.0 2.34226 2.02859 0.51583 1 28
R4 0.85254 2.34299 2.02197 0.47199 0 -
R5 0.0 2.35816 1.95434 0.65740 2 23
R6 0.05713 2.34258 2.12956 0.46863 0 -
R7 0.07431 2.34233 2.03174 0.64608 0 -
R8 0.6948 2.34327 2.04346 0.44663 0 -
R9 0.0 2.34233 1.81934 0.67688 2 11
R10 0.0 2.2761 1.83822 0.62591 2 44
R11 0.0 2.34211 1.78262 0.82295 3 29
R12 0.0 2.26197 1.64014 0.73765 3 14

Figure 4.5: Average convergence for PI-CGP with different parameter settings on x6 −2x4 + x2

41

Table 4.8: Parameter settings for PI-CGP on equation 4.3
Parameters Setting
Round R1 R2 R3 R4 R5 R6 R7 R8 R9
Population Size 10 10 10 50 100 100 100 100 500
Number of Generations 100 100 10 20 10 100 200 100 20
Number of Columns 50 100 100 100 100 100 100 200 200
Mutation Rate, mr 0.6 0.6 1.0 0.8 0.8 0.8 0.8 0.8 0.8
Number of Runs 21 21 10 10 10 10 10 10 10

with a crossover rate of 0% (i.e. no crossover) but for the rest of the generations it is lower.

4.1.4 Experiment 4: Non-trivial Function

In this experiment the following equation is approximated:

x3 · e−x · cos(x) · sin(x) · (sin2(x) · cos(x)−1) (4.3)

Experiments were performed on PI-CGP using the parameters outlined in Table 4.8. The fitness

improvement for each round is shown in Figure 4.6. As it is shown in the figure, the R9 line is

below the others and this indicates that the average fitness has been improved more than the other

rounds. Increasing the population size contributed positively to average fitness improvement.

When the p-value between different rounds was calculated the difference between the means

for R9 and the rest of the runs was significant with α = 5% with the exception R6 and R7. The

results are shown in Table 4.9.

Figure 4.7 shows the best approximated equation in R9, the best approximated equation in all

the runs, and the actual equation respectively.

In this experiment the PI-CGP algorithm did not find the target expression in any of the trials.

4.2 Stock Market Forecasting

This set of experiments applies our approach to the problem of stock market forecasting. Specif-

42

Table 4.9: Results for each round based on different parameter settings in Table 4.8
Rounds Best Worst Mean Std Dev.
R1 17.742 43.930 22.378 6.580
R2 15.496 27.311 20.995 2.228
R3 20.459 28.394 21.511 2.350
R4 14.131 20.633 19.576 1.878
R5 19.706 20.504 20.356 0.235
R6 12.419 20.462 18.722 2.491
R7 14.165 20.462 18.506 2.293
R8 11.750 20.464 19.155 2.501
R9 14.172 19.835 16.764 1.877

Figure 4.6: Fitness improvement for PI-CGP with different parameter settings on equation 4.3

Figure 4.7: The best approximated equation by PI-CGP in R9, all runs, and the actual equation

43

ically, using historical prices to predict the next trading day price. In measuring our system’s

performance, we use Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE)

as our performance metrics.

Equations 4.4 and 4.5 show how to calculate MAE and MAPE.

Mean Absolute Error =
1
r

r

∑
i=1

|pi − yi| (4.4)

Mean Absolute Percentage Error =
100%

r

r

∑
i=1

|yi − pi

yi
| (4.5)

Where r is the total number of test data sets, yi is the actual stock price on day i, and pi is the

forecast stock price on day i.

4.2.1 Genetic Programming approach

We ran several trials with different population sizes and consistent number of generations (shown

in Table 4.10). The p-value between R1 and R4, R2 and R4, and R3 and R4 is significant with

α = 5%. The best round was R6 and the best-of-run individual in this round with the fitness value

of 204.805 was:

ClosePrice−0.32expsin(ClosePrice) sin(ClosePrice4) (4.6)

Table 4.10 shows that as the population size increases the fitness improves.

Table 4.11 and Table 4.12 present the results from experiments on IBM stock prices. The

results show the forecast accuracy of our approach compared to the GP approach [30] using the

same cross-validation period data. Our training period data does not include the amount of data

covered by the window period in the GP approach as the training set should contain only 200 days.

On the cross-validation period, the PI-CGP system performs better than the GP approach with

44

Table 4.10: Results for each round based on different population sizes
Rounds Population Size Number of Generations Best Worst Mean Std Dev.
R1 1000 200 212.1872 214.7924 213.8668 0.9322
R2 1500 200 212.3212 214.7936 213.6303 0.9077
R3 2000 200 212.0545 214.7914 213.7477 0.8579
R4 2500 200 208.6726 214.7521 212.2519 1.8434
R5 3000 200 206.9992 214.4921 212.5282 1.9871
R6 3000 66 204.8055 214.7919 212.1148 3.0357

Table 4.11: Forecast accuracy comparison on cross-validation period. Training range: 1 November
2002 to 19 August 2003
Stock name MAE for the cross-validation period data

PI-CGP GP with N = 300 GP with N = 450
IBM 0.82911 1.272369 0.765702

N of 300 (The result was significant with α = 5%). The forecast accuracy of the GP with N of

450 is slightly better than PI-CGP but not statistically significant (t-value = 0.31).

On the training period, the PI-CGP system performs better than the GP approach with N of 300

(The result was significant with α = 0.1%) The forecast accuracy of PI-CGP is slightly better than

GP approach with N of 450 but not statistically significant (t-value = 0.44).

Increase in the size of N results in more historic price data available to the algorithm and could

have an effect on finding better patterns in the price data. Therefore to make the two experiments

use the same date range, we increased the training period range: 02 January 2001 to 19 August

2003 and calculated the MAE on cross-validation period. The result MAE was: 0.770659, which

is slightly better but not a statistically significant difference from the forecast accuracy when the

training period was from 01 November 2002 to 19 August 2003 (0.82911) and not a statistically

significant difference from the forecast accuracy generated by GP with N of 450 (MAE:0.765702).

The MAE on training range was:1.07924 which is slightly higher but not a statistically significant

difference from 1.0239 when the training period was from 01 November 2002 to 19 August 2003.

Figure 4.8 shows the predicted close prices by PI-CGP and actual close prices for IBM.

45

Table 4.12: Forecast accuracy comparison on training period. Training range: 1 November 2002
to 19 August 2003
Stock name MAE for the training period data

PI-CGP GP with N = 300 GP with N = 450
IBM 1.0239 1.514626 1.083708

Figure 4.8: IBM close price forecast by PI-CGP

4.2.2 HMM, ANN, and GA approach

In this experiment, we tested PI-CGP with the same parameter values set in [31]. Table 4.13

presents the experiment results for each of the three stocks.

Looking at Table 4.13, we find that the accuracy of the PI-CGP approach is slightly better but

not a statistically significant difference from that of the fusion model for IBM and Apple, while for

Dell the accuracy of the fusion model is slightly better but not a statistically significant difference

from that of the PI-CGP model.

Table 4.13: Forecast Accuracy Comparison between PI-CGP and the fusion model
Stock name MAPE in forecast for the 91 test datasets

PI-CGP The fusion model
Apple Computer Inc. 1.79940 1.9247
IBM 0.65403 0.84871
Dell Inc. 0.8136 0.699246

46

Table 4.14: The fitness and the representation of the best individual by PI-CGP
Stock name Min Fitness Individual equation
Apple Computer Inc. 81.94234 ClosePrice+ 0.2

ClosePrice

IBM 316.16017 0.83× 0.87
ClosePrice

0.01×ClosePrice +ClosePrice
Dell Inc. 154.20978 ClosePrice+0.9ClosePrice

Figure 4.9: IBM close price forecast by PI-CGP

The fitness and the representation of the best individual for each stock is shown in Table 4.14.

We tested our system while varying population size and number of generations. The IBM data

set was used for these tests. The population sizes used were: 10, 50, 100, and 500. The number of

generations: 200 and 1000. We kept the number of program evaluations consistent. The calculated

p-value between the rounds was not statistically significant.

The estimated value of the PI-CGP model for three stocks are plotted in Figures 4.9, 4.10, and

4.11.

47

Figure 4.10: Apple close price forecast by PI-CGP

Figure 4.11: Dell close price forecast by PI-CGP

48

Chapter 5

Conclusions and Future Work

This work introduced PI-CGP, a hybrid algorithm using the structure of CGP genotypes and the

probabilistic modeling of PIPE. The performance of the algorithm was evaluated on several bench-

marks from the domains of symbolic regression and stock market forecasting.

Performance tests of PI-CGP uncovered mixed results, but overall the results show promise.

On symbolic regression tests with polynomial of degree six, PI-CGP outperformed a GP im-

plementation with modified search. On a polynomial of degree 11, PI-CGP failed to find a target

expression. We hypothesize that when the system failed it had become stuck in a local minimum

and therefore we attempted to increase the breadth of the search by increasing the population size

which contributed positively to the rate of average fitness improvement. We also increased the

number of generations to give more time to the population to evolve which resulted in improving

the average fitness value. Increasing the learning rate also improved the average fitness and the

change in the mean fitness value was statistically significant.

On another symbolic regression problem, we compared the average convergence rate of our

approach against CGP with variable cross-over. In this case, PI-CGP had a slower convergence

rate. One possible reason for this result is premature convergence. Premature convergence is

when programs in the population become similar, but are not the optimal solution to the problem.

Increasing the probability of mutation and the mutation rate did not improve convergence but

increasing the population size did improve convergence.

In the final symbolic regression problem (the non-trivial function), we compared the perfor-

mance of our approach against PIPE. PI-CGP failed to find the target model. A possible reason

is that the run required more program evaluations. The number of program evaluations used dur-

49

ing the PIPE run was much higher than the PI-CGP run. Unfortunately runs using more program

evaluations failed to finish at the time of writing.

We integrated PI-CGP into SSAS as a plug-in algorithm. Our plug-in algorithm was used to

create a data mining solution. In this work, we used PI-CGP to discover patterns in the price time

series of several stocks and to forecast stock prices by one day.

During the forecasting problems, we compared our approach to a GP system and a fusion

model forecasting tool. In the test against the GP system, the accuracy of our approach on the

cross-validation and training period was significant when the window period of the GP system was

300. On the cross-validation period GP with window period 450 performed slightly better than our

approach but not significantly better. On the training period the forecast accuracy of our approach

was better than GP with window period of 450 but not significantly better.

In the test against the GP system, we found that training our model on a wider range of historical

price data would result in better MAE of forecast on the cross-validation period.

In the test against the fusion model, a combination of ANN, GA, and HMM, we found that the

accuracy of our approach is similar to that of the fusion model. Specifically, the forecast accuracies

of our model were better but not statistically significant for Apple and IBM. The forecast accuracy

of the fusion model was slightly better but not statistically significant than our approach for Dell.

Considering PI-CGP has not been customized toward forecasting, it is significant that it was com-

parable to a system designed with specific tools for stock market forecasting (e.g. Hidden Markov

Model (HMM) is a statistical tool which has been extensively used for time series forecasting).

5.1 Contributions

We have presented PI-CGP, a novel probabilistic model-building CGP which integrates the CGP

program representation with the PIPE learning algorithm. PI-CGP does not require pruning to

control program size as does PIPE and bloat does not happen in PI-CGP.

50

We have also integrated the PI-CGP model into SSAS as a plug-in algorithm. In order to

discover patterns, we applied the plug-in algorithm to daily closing stock price time series of

three stocks. The results show the viability of EDA-GP based systems in the domain of stock

market forecasting since PI-CGP, a generic EDA-GP system, was competitive with a system which

contains forecasting specific tools. It is possible that by training those specific tools with PI-CGP

the results would be an improvement over the fusion model.

5.2 Future Work

Our results on the symbolic regression set of experiments have shown signs of premature conver-

gence to local minimum. Attempts to increase the population diversity by tuning the population

size, mutation rate, and mutation probability did not succeed in finding the target expression and

improving the convergence to be the at the same level or better than the other approach. Future

work could look into techniques to prevent premature convergence such as the approach presented

in [32].

Tuning the predefined set of parameters (i.e. finding appropriate values) of an Evolutionary

Algorithm for a given problem is essential, as it it is beneficial to better performance of the algo-

rithm. It would worth trying an automated parameter tuning approach, Bonesa [33], for symbolic

regression and stock market forecasting experiments.

It would be interesting to use PI-CGP with a trading agent to buy and sell stock. PI-CGP

would be used to generate trading rules by combining the technical indicators [34], which are

used to understand stock market behavior. Such a system could be evaluated based on return on

investment [35]. This problem could also be considered as a classification task in data mining, as

it will generate rules in the form of If < condition1 > and < condition2 > and ... < conditionn >

then < buy signal >.

The tests described in this work used the daily close price of stocks, a worthwhile experiment

51

would test if the predictions could be improved with additional inputs, for example: open price,

high price, low price, and volume. It would also help to get an insight to the relationship between

these parameters.

Testing the model on data sets from different time periods would be well worth trying and ap-

plying the model to more stocks price time series will allow us to obtain more accurate conclusions

about the performance of our model.

Artificial Neural Networks (ANN) have been widely used in time series forecasting, so an

interesting future work would be to compare the PI-CGP approach with ANNs.

Using PI-CGP approach for training the ANN is an interesting avenue to be explored, as the

combination of GA and ANN has outperformed other models which used statistical and technical

models to train the ANN [36].

Our system can be customized toward forecasting by linking it with HMM. PI-CGP may op-

timize the HMM parameters such as: The number of hidden states, the number of unique obser-

vations per state, the state transition probability distribution, the emission probability distibution,

and the initial state distribution. HMM is used to identify the patterns in data.

52

Bibliography

[1] Shelly X. Wu and Wolfgang Banzhaf. The use of evolutionary computation in knowledge

discovery: The example of intrusion detection systems. In Satchidananda Dehuri and Sung-

Bae Cho, editors, Knowledge Mining using Intelligent Agents, pages 27–59. WorldSciBook,

Dec 2010.

[2] D. Srinivasan and V. Sharma. Evolutionary computation and economic time series forecast-

ing. In IEEE Congress on Evolutionary Computation, pages 188 –195, 2007.

[3] Richard J. Povinelli. Using genetic algorithms to find temporal patterns indicative of time

series events. In in GECCO 2000 Workshop: Data Mining with Evolutionary Algorithms,

pages 80–84, 2000.

[4] Dongsong Zhang and Lina Zhou. Discovering golden nuggets: data mining in financial

application. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and

Reviews,, 34(4):513 –522, Nov 2004.

[5] Julian F Miller. Cartesian Genetic Programming. Springer Berlin Heidelberg, 2011.

[6] Elmira Ghoulbeigi and Marcus Vinicius dos Santos. Probabilistic developmental program

evolution. In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC ’10,

pages 1138–1142. ACM, 2010.

[7] Graham Holker and Marcus Vinicius dos Santos. Toward an estimation of distribution algo-

rithm for the evolution of artificial neural networks. In Proceedings of the Third C* Con-

ference on Computer Science and Software Engineering, C3S2E ’10, pages 17–22. ACM,

2010.

53

[8] Rafal Salustowicz and Jürgen Schmidhuber. Probabilistic incremental program evolution.

Evol. Comput., 5:123–141, June 1997.

[9] Wolfgang Banzhaf, Frank D. Francone, Robert E. Keller, and Peter Nordin. Genetic program-

ming: an introduction: on the automatic evolution of computer programs and its applications.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[10] John R. Koza. Genetic Programming: on the programming of computers by means of natural

selection. MIT Press, Cambridge, MA, USA, 1992.

[11] Julian F. Miller and Peter Thomson. Cartesian Genetic Programming. In EuroGP, pages

121–132, 2000.

[12] Shumeet Baluja and Rich Caruana. Removing the genetics from the standard genetic algo-

rithm. pages 38–46, 1995.

[13] H. Mhlenbein and G. Paa. From recombination of genes to the estimation of distributions i.

binary parameters. pages 178–187. Springer-Verlag, 1996.

[14] Georges Harik, Fernando G. Lobo, and David E. Goldberg. The compact genetic algorithm.

In IEEE Transactions on Evolutionary Computation, pages 523–528, 1998.

[15] Alex A. Freitas. A review of evolutionary algorithms for data mining. In Soft Computing for

Knowledge Discovery and Data Mining, pages 61–93, 2007.

[16] Shiguo Wang. A comprehensive survey of data mining-based accounting-fraud detection re-

search. In International Conference on Intelligent Computation Technology and Automation

(ICICTA), pages 50–53, 2010.

[17] Yap Bee Wah and I.R. Ibrahim. Using data mining predictive models to classify credit card

applicants. In The 6th International Conference on Advanced Information Management and

Service (IMS), 2010, pages 394–398, 30 Dec. 2010. 2.

54

[18] K Senthamarai Kannan, P Sailapathi Sekar, M Mohamed Sathik, and P Arumugam. Financial

stock market forecast using data mining techniques. Computer, I:555–559, 2010.

[19] Tsung-Sheng Chang. A comparative study of artificial neural networks, and decision trees

for digital game content stocks price prediction. Expert Syst. Appl., 38(12):14846–14851,

November 2011.

[20] Zoran Vojinovic, Vojislav Kecman, and Rainer Seidel. A data mining approach to financial

time series modelling and forecasting. Intelligent Systems in Accounting, Finance & Man-

agement, 10(4):225–239, 2001.

[21] Hillol Kargupta, Jiawei Han, Philip S. Yu, Rajeev Motwani, and Vipin Kumar. Next Genera-

tion of Data Mining. Chapman & Hall/CRC, 2008.

[22] Richard James Povinelli. Time series data mining: identifying temporal patterns for charac-

terization and prediction of time series events. PhD thesis, Marquette University, Milwaukee,

WI, USA, 1999. AAI9953495.

[23] H. Iba and T. Sasaki. Using genetic programming to predict financial data. In Proceedings of

the 1999 Congress on Evolutionary Computation, 1999. CEC 99., pages 244–251 Vol. 1.

[24] Mihai Oltean and C. Grosan. A comparison of several linear genetic programming. TECH-

NIQUES, COMPLEX-SYSTEMS, 14:282–311, 2003.

[25] M.F. Brameier and W. Banzhaf. Linear Genetic Programming. Genetic and Evolutionary

Computation Series. Springer Science+Business Media, LLC, 2007.

[26] Crina Grosan and Ajith Abraham. Stock market modeling using genetic programming en-

sembles. Genetic Systems Programming Theory and Experiences, 13(2):133–148, 2006.

55

[27] Janet Clegg, James Alfred Walker, and Julian Frances Miller. A new crossover technique for

cartesian genetic programming. In Proceedings of the 9th annual conference on Genetic and

evolutionary computation, pages 1580–1587, New York, NY, USA, 2007. ACM.

[28] Jamie MacLennan, ZhaoHui Tang, and Bogdan Crivat. Data Mining with Microsoft SQL

Server 2008. Wiley Publishing, Inc., 2009.

[29] S. Gustafson, E.K. Burke, and N. Krasnogor. On improving genetic programming for sym-

bolic regression. In The 2005 IEEE Congress on Evolutionary Computation, 2005., 2005.

[30] Anthony Hui. Using genetic programming to perform time-series forecasting of stock prices.

In John R. Koza, editor, Genetic Algorithms and Genetic Programming at Stanford 2003,

pages 83–90. Stanford Bookstore, Stanford, California, 94305-3079 USA, 4 December 2003.

[31] Md. Rafiul Hassan, Baikunth Nath, and Michael Kirley. A fusion model of HMM, ANN and

GA for stock market forecasting. Expert Syst. Appl., 33(1):171–180, July 2007.

[32] L. DelaOssa, J.A. Gamez, J.L. Mateo, and J.M. Puerta. Avoiding premature convergence in

estimation of distribution algorithms. In Evolutionary Computation, 2009. CEC ’09. IEEE

Congress on, pages 455–462, May.

[33] S.K. Smit and A.E. Eiben. Multi-problem parameter tuning using bonesa. In Artificial Evo-

lution, pages 222–233, 2011.

[34] Mehnul N. Vora. Genetic algorithm for trading signal generation solution to traders dilemma:

Is it right time to trade? In Economics, Business Innovation, pages 316–320. IACSIT Press,

2010.

[35] R.S. Tsay. Analysis of Financial Time Series. Wiley, 2010.

[36] AndreasS. Karathanasopoulos, KonstantinosA. Theofilatos, PanagiotisM. Leloudas, and

SpiridonD. Likothanassis. Modeling the Ase 20 Greek index using artificial neural ner-

56

works combined with genetic algorithms. In Konstantinos Diamantaras, Wlodek Duch, and

LazarosS. Iliadis, editors, Artificial Neural Networks ICANN 2010, pages 428–435. Springer

Berlin Heidelberg, 2010.

57

58

Glossary

Artificial Neural Network (ANN) is a mathematical model inspired by the biological nervous

systems. They have a number of inputs and outputs.

Autoregressive Integrated Moving Average (ARIMA) is a class of statistical time series analysis

models for forecasting a time series.

bloat is when the program size increases without any changes in its fitness value.

building blocks are simple components for building more complex objects.

Cartesian Genetic Programming (CGP) is a Genetic Programming technique which uses a fixed-

length structure to encode the programs. CGP represents a program as a directed graph. See

Section 2.1.2.

Compact Genetic Algorithm (cGA) is a form of EDA which maintains the probability vector as

in PBIL but unlike PBIL it samples two individuals. See section 2.1.3.

Component Object Model (COM) is a software architecture which allows the re-usability of

objects regardless of the programming languages used to implement the objects. A COM object is

accessible through a set of interfaces.

Correlation Coefficient (CC) is a measure of the linear dependence between two variables.

crossover is a genetic operator which switches a part of an individual encoding with a part of

another individual encoding in the population.

Data Mining Extensions (DMX) is a query language for creating, training, and predicting against

data mining models.

Estimation of Distribution Algorithms (EDAs) is a class of methodologies that explicitly induces

a probabilistic model of the best candidate solutions. See Section 2.1.3.

59

Evolutionary Algorithms (EAs) are search methods (i.e. population-based search methods) in-

spired by natural selection and survival of the fittest in living organisms.

Evolutionary Computation (EC) is a subfield of Machine Learning. EC methodologies are in-

spired by the biological evolution of living organisms. See Section 2.1.

functional redundancy occurs when a function can be implemented with less nodes.

Genetic Algorithm (GA) is a subfield of Evolutionary Algorithms that evolves a population of

individuals by methods inspired by the principles of natural evolution, e.g. mutation, crossover,

and selection.

Genetic Programming (GP) is an extension of Genetic Algorithms in which the individuals are

represented by complex structures. See section 2.1.1.

genotype is the encoding of an individual.

Global Assembly Cache (GAC) is a machine-wide cache which stores the assemblies which have

to be shared by several applications on a computer.

Hidden Markov Model (HMM) is a powerful statistical tool for modeling sequences. It can also

be used to calculate the probability that a particular sequence was generated by HMM.

input redundancy occurs when one or more of the program inputs are not connected to any nodes.

Knowledge Discovery from Data (KDD) is a field focusing on methodologies to extract knowl-

edge from data. See section 2.2.

local minimum is a minimuml within a neighboring set of solutions.

Machine Learning (ML) is a field which studies how computer programs can automatically im-

prove their performance through experience.

Mean Absolute Error (MAE) is a quantity that measures how close forecast values are to the

actual values. See equation 4.4.

60

Mean Absolute Percentage Error (MAPE) is a quantity that measures the accuracy of a method

in constructing fitted time series values.4.5.

mutation is a genetic operator which modifies an individual by changing at least a single gene in

its encoding.

node redundancy is the result of unconnected nodes in the CGP graph whose output is not con-

nected to a node leading to the program output.

over-fitting happens when the evolved model performs well on the training data set, but does not

perform well on unseen data.

phenotype is the individual’s observable characteristics.

Population Based Incremental Learning (PBIL) is the simplest form of EDA and is based on a

fixed length binary encoded representation of the individuals. See section 2.1.3.

premature convergence is when programs in the population become similar, but are not the opti-

mal solution to the problem.

primary interop assembly is a unique assembly that contains the definitions of the types defined

by COM. It must be signed by the publisher of the COM type.

Probabilistic Incremental Program Evolution (PIPE) is an Estimation of Distribution Algo-

rithms approach in which the structure of the probability distribution model is a program tree. See

section 2.1.3.

Probabilistic Prototype Array (PPA) is a fixed length array which stores the probability distri-

bution of promising solutions.

Probabilistic Prototype Tree (PPT) is a complete N-ary tree which stores the probability distri-

bution of promising solutions.

Root Mean Squared Error (RMSE) is a quantity that measures the difference between the fore-

cast values and the actual values. It is defined as the square root of the mean square error.

61

SQL Server Analysis Services (SSAS) provides the tools to design, create, and manage data

mining solutions.

stock market is a public market in which company shares are traded.

Support Vector Machines are supervised learning algorithms that learn by example to classify

objects.

symbolic regression tries to find symbolic expressions which fit a given data set.

time series is a series of data points such as stock prices measured in regular time intervals.

Univariate Marginal Distribution Algorithm (UMDA) is a form of EDA in which there is no

dependency between the variables of an individual. See section 2.1.3.

62

	Introduction
	Motivation
	Objectives
	Methodology
	Results and Contributions
	Structure of this thesis

	Literature Review
	Evolutionary Computation
	Genetic Programming
	Cartesian Genetic Programming
	Estimation of Distribution Algorithms

	Data Mining (DM)
	Data Mining with Evolutionary Algorithms
	EAs for Data Mining in Financial Data

	Methodology
	PI-CGP: The Hybrid Methodology
	Program Representation
	The Probabilistic Prototype Array (PPA)
	The Learning Process

	Constructing a Plug-in Algorithm and Integrating it into Analysis Services
	The plug-in algorithm life time
	Connecting to External Data Sources
	Data Mining Extensions

	Development Environment
	Experimental Design
	Symbolic Regression Experiments
	Stock Market Forecasting Experiments

	Results and Discussion
	Symbolic Regression Results
	Experiment 1: Sextic Polynomial
	Experiment 2: Polynomial of Degree 11
	Experiment 3: Sextic Polynomial over interval [-1,1]
	Experiment 4: Non-trivial Function

	Stock Market Forecasting
	Genetic Programming approach
	HMM, ANN, and GA approach

	Conclusions and Future Work
	Contributions
	Future Work

	Bibliography
	Glossary

