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COLLABORATIVE FILTERING BASED SERVICE RANKING  

WITH INVOCATION HISTORIES 

 
Qiong Zhang 
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Ryerson University 

 

ABSTRACT 
 

Collaborative filtering based recommender systems have been very successful on dealing 

with the information overload problem and providing personalized recommendations to users. 

When more and more web services are published online, this technique can also help recommend 

and select services which satisfy users’ particular Quality of Service (QoS) requirements and 

preferences. In this thesis, we propose a novel collaborative filtering based service ranking 

mechanism, in which the invocation and query histories are used to infer the users’ preferences, 

and user similarity is calculated based on invocations and queries. To overcome some of the 

inherent problems with the collaborative filtering systems such as the cold start and data sparsity 

problem, the final ranking score is a combination of the QoS-based matching score and the 

collaborative filtering based score. The experiment using the simulated data proves the 

effectiveness of the proposed algorithm. 

 

  



v 

 

 

ACKNOWLEDGEMENTS 
        

         I would like to express my sincere gratitude to my supervisor Dr. Cherie Ding for her 

valuable support and guidance in helping me to go through all the difficulties in my work. Her 

precious suggestions and guidance have greatly enhanced my knowledge and skills in research 

and have significantly contributed to the completion of this thesis.  

In addition, I would like to thank Dr. Alireza Sadeghian, Dr. Marcus Santos, and Dr. Isaac 

Woungang who have reviewed my thesis and have given me valuable comments which enabled 

me to improve my thesis.  

        Also, I would like to acknowledge the support of the Computer Science Department of 

Ryerson University and my fellow students.  Specially, I would like to give my sincere thanks to 

Delnavaz who has helped me in preparing the dataset.   

       Finally, I would like to express my deep appreciations to my family, relatives, and friends 

who have motivated and supported me during these years of study.   

 

  



vi 

 

 

TABLE OF CONTENTS 

AUTHOR’S DECLARATION ....................................................................................................... ii 

BORROWER’S PAGE .................................................................................................................. iii 

ABSTRACT ................................................................................................................................... iv 

ACKNOWLEDGEMENTS ............................................................................................................ v 

CHAPTER 1 ................................................................................................................................... 1 

INTRODUCTION .......................................................................................................................... 1 

1.1. Background and the Problem Statement .............................................................................. 1 

      1.1.1. Background ............................................................................................................... 1 

      1.1.2. Problem Statement .................................................................................................... 1 

1.2. The Proposed Methodology  ................................................................................................ 3 

1.3. Objectives  ............................................................................................................................ 5 

1.4. Thesis Outline  ..................................................................................................................... 6 

CHAPTER 2 ................................................................................................................................... 7 

RELATED WORKS ....................................................................................................................... 7 

2.1. QoS Based Selection Models ............................................................................................... 7 

2.2. Log Data Used in Web Search Personalization ................................................................. 10 

2.3. Recommendation Systems and Web Service Selection ..................................................... 11 

2.4. Summary ............................................................................................................................ 14 

CHAPTER 3 ................................................................................................................................. 16 

COLLABORATIVE FILTERING BASED SERVICE RANKING USING LOG DATA.......... 16 

3.1. System Architecture ........................................................................................................... 16 

3.2. Finding Similar Users ........................................................................................................ 20 

3.2.1. Generating User-Service Matrix .................................................................................. 21 

3.2.2. Generating User-User Matrix ...................................................................................... 22 

3.3. Selection & Ranking Algorithm ......................................................................................... 26 

3.3.1. Collaborative Filtering Based on Invocation History .................................................. 26 

3.3.2. Overall Selection and Ranking Algorithm .................................................................. 29 

3.4. Efficiency of Our Algorithms ............................................................................................ 31 

  3.4.1. Ranking Algorithm .................................................................................................... 31 

  3.4.2. Similarity Algorithm .................................................................................................. 33 

3.5. Case Studies Illustrating the Ranking Algorithm ............................................................... 38 

3.6. Summary ............................................................................................................................ 44 



vii 

 

 

CHAPTER 4 ................................................................................................................................. 46 

EXPERIMENTS ........................................................................................................................... 46 

4.1. Dataset   .............................................................................................................................. 46 

4.2. Implementation and Design   ............................................................................................. 47 

4.3. Experiment Results and Analyses ...................................................................................... 49 

4.3.1. Changing c3, N, K, and NQ .......................................................................................... 49 

4.3.1.1. Changing c3 and NQ ................................................................................................. 50 

4.3.1.2. Changing K   ............................................................................................................. 51 

4.3.1.3. Changing N   ............................................................................................................. 51 

4.3.2. Changing NSI and NII  ................................................................................................. 54 

4.3.3. Changing NU  .............................................................................................................. 57 

4.4. Summary ............................................................................................................................ 59 

CHAPTER 5 ................................................................................................................................. 60 

CONCLUSIONS AND FUTURE WORKS ................................................................................. 60 

5.1. Conclusions   ...................................................................................................................... 60 

5.2. Future Works  ..................................................................................................................... 61 

REFERENCES ............................................................................................................................. 63 

APPENDIX A - Computing similarity matrix .............................................................................. 67 

APPENDIX B - Computing weight similarity ............................................................................. 70 

APPENDIX C - Computing value similarity ................................................................................ 72 

APPENDIX D - Ranking .............................................................................................................. 73 

 

 

 

  



viii 

 

 

LIST OF FIGURES 

Figure 1- Architcture of our service selection system .................................................................. 17 

Figure 2- Roles of three components in service selection ............................................................ 20 

Figure 3- Calculation of collaborative based score....................................................................... 28 

Figure 4- Overall selection and ranking process........................................................................... 30 

Figure 5- Precisions when changing c3 and NQ values  ............................................................... 50 

Figure 6- Precisions when changing K values .............................................................................. 51 

Figure 7- Precisions when changing N values  ............................................................................. 51 

Figure 8- Precisions when changing NSI values  .......................................................................... 54 

Figure 9- Precisions when changing NII values (NSI = 1~50)     ................................................. 55 

Figure 10- Precisions when changing NSI values (NQ = 20~30 and NII = 20~30)  ....................  55 

Figure 11- Precisions when changing NII values (NQ = 20~30 and NSI = 50~100)    ................. 56 

Figure 12- Precisions when changing NU values (NII = 20~30) .................................................. 57 

Figure 13- Precisions when changing NU values (NII = 50~90) .................................................. 58  

 

 

 

 

 

 

 

 

 

 

  

file:///C:/Users/delnavaz/Desktop/thesis/writing/thesis-V3.docx%23_Toc270000011


ix 

 

 

LIST OF TABLES 

Table 1- QoS parameters of 5 hotel reservation services ............................................................. 39 

Table 2- A sample user-service matrix ......................................................................................... 39 

Table 3- User-User matrix ............................................................................................................ 42 

Table 4- The collection of services used in the experiments ........................................................ 47  

Table 5- Comparison of P-5 and P-10 on different c3 values ...................................................... 52 

Table 6- Comparison of P-5 and P-10 on different K values ....................................................... 52 

Table 7- Comparison of P-5 and P-10 on different N values ....................................................... 52 

Table 8- Comparison of P-5 and P-10 on different NQ values .................................................... 53 

Table 9- Comparison of P-5 and P-10 on different NSI values .................................................... 54 

Table 10- Comparison of P-5 and P-10 on different NII values(NSI=1~50) ............................... 55 

Table 11- Comparison of P-5 and P-10 on different NSI values(NQ=20~30 and NII=20~30) ...  56 

Table 12- Comparison of P-5 and P-10 on different NII values(NQ=20~30 and NSI=50~100) .. 56 

Table 13- Comparison of P-5 and P-10 on different NU values .................................................. 58 

Table 14- Comparison of P-5 and P-10 on different NU values(NII=50~90) .............................. 58 

 

 

  

  

  

  

  

  

  

  

 

 

 

 

 



x 

 

 

LIST OF ALGORITHMS 

 
Algorithm 1- Pseudo code for the ranking algorithm   ................................................................. 31 

Algorithm 2- Pseudo code for computing the invocation frequency  ........................................... 32 

Algorithm 3- Pseudo code for loops of user similarity computing ............................................... 34 

Algorithm 4- Pseudo code for computing similarity between users i and j on each commonly         

invoked service ............................................................................................................................. 35 

Algorithm 5- Pseudo code for computing weight similarity ........................................................ 35 

Algorithm 6- Pseudo code for computing concordant .................................................................. 36 

Algorithm 7- Pseudo code for computing value similarity ........................................................... 37 

 

 

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 

 

 

LIST OF ACRONYMS 

 

AHP: Analytical Hierarchy Process 

CP: Constraint Programming 

DL: Description Logic  

HTTP: Hypertext Transfer Protocol 

IA: Iterative Algorithm 

IR: Information Retrieval   

MCDM: Multi-Criteria Decision Making  

MIP: Mixed Integer Programming 

PCC: Pearson Correlation Coefficient 

QoS: Quality of Service 

SICS: System for Implicit Culture Support 

SOA: Service Oriented Architecture 

SOAP: Simple Object Access Protocol 

UDDI: Universal Description, Discovery and Integration 

URL: Uniform Resource Locator 

WSDL: Web Service Description Language 

XML: Extensible Markup Language 

 



1 

 

 

CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background and the Problem Statement 

1.1.1 Background 

 Web services are self-contained software components that can be described by Web 

Service Definition Language (WSDL), published into a web service registry such as a UDDI 

(Universal Description Discovery Integration) registry and discovered through certain discovery 

functions. They are based on standards such as XML (Extensible Markup Language), SOAP 

(Simple Object Access Protocol), and HTTP (Hypertext Transfer Protocol) to support 

interoperability, platform independency, and reusability for enterprise application integration and 

cross-organizational integration. Web service is an implementation of SOA (Service Oriented 

Architecture) which defines architecture of designing a software system through services. There 

are three primary roles in the SOA: service provider, service requester (client), and service 

registry.   

Service providers describe their services using WSDL files and publish them with a 

service registry (e.g. UDDI). WSDL files describe web services as network endpoints that are 

available for public access. A client can submit a query to the registry with the discovery agent to 

find the services that satisfy their requirements. Then, based on the information returned from the 

registry, the client can select a most suitable web service and invoke it through a provider with a 

binding operation.  

 

1.1.2 Problem Statement  
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Nowadays, web service has become a more and more popular way of implementing 

business solutions. More and more web services satisfying the same or similar functionalities are 

available online. With the proliferation of web services, it could be very hard for users to choose 

among a list of functionally matching services returned from a service registry. Therefore, how 

to effectively rank services to satisfy a user’s personal preferences becomes one of the key 

challenges for the service oriented computing community.  

 Service selection is generally considered as a two-step process: matching based on 

functional requirements, and then filtering and ranking based on non-functional, e.g. Quality of 

Service (QoS) requirements. Researchers are trying to improve the performance of the service 

selection systems using different approaches and algorithms – collaborative filtering is one of 

them.  

Collaborative filtering based recommender systems [1] [2] have been very helpful and 

successful on dealing with the information overload problem and providing personalized 

recommendations to users for their online browsing or shopping activities. The main idea behind 

is that if a user shares similar interests/tastes/opinions with other users on some items (e.g. 

books, movies, web pages), it is very likely that this kind of similarity will hold for items which 

are new to this user. Based on this rationale, the items selected by similar users will be 

recommended to the user.  

 So far there are only a limited number of research works using the collaborative filtering 

techniques in web service selection systems. A few examples include predicting the QoS values 

which might be experienced by service users [3] [4], recommending services based on user 

feedbacks [5] [6] or previous usage history data [7], etc. In this thesis, we propose to use the 

collaborative filtering techniques in the service selection process, with a focus on the second step 



3 

 

 

– QoS-based service ranking and selection. After the functionally matching services are 

identified, we could rank them based on the current QoS requirements, as well as how they were 

selected and invoked previously by other users who have similar QoS requirements.               

                                                                     

1.2 The Proposed Methodology 

QoS properties describe non-functional aspects of a web service. In addition to functional 

properties, providers can also advertise QoS properties of their services using a QoS description 

language in an extended UDDI registry for QoS-aware discovery [8]. Requesters can specify 

their desired QoS criteria in their queries. QoS properties are often used to evaluate the degree 

that a web service meets the specified criteria in a service request and they have become some of 

the most important factors in selecting a web service.    

There can be many QoS attributes for a web service, such as response time, latency, 

availability, reliability, and security. Some researchers have studied their characteristics and have 

proposed different ways of categorization [9]. Many of the QoS attributes’ values are changing 

over time, such as response time, latency, availability. Many factors can cause this change, such 

as performance improvement made by providers, network condition, and so on. Moreover, 

providers’ offers may differ with the actual performance, and different users can have different 

QoS experiences because of their different expectations and different conditions. Hence, web 

service selection can involve decision-making based on multiple QoS metrics under changing 

and diversified environments.  

Collaborative filtering systems use user feedback, such as ratings, to reflect users’ 

opinions or experiences on performance or quality, which would be a major factor to be 

considered in a recommender system. The explicit user feedback systems, such as reputation 
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based or community feedback based systems, usually involve human efforts to provide feedback 

or ratings [10][11].  

However, not all users are willing to provide feedback or ratings after each usage [1], and 

furthermore, the user ratings might not be accurate or trustworthy [12]. Since explicit user 

feedbacks are often impractical or unable to completely reflect users’ true opinions or 

experiences, we propose to use implicit user feedback information which can be extracted from 

usage logs. For example, in a collaborative filtering system, based on other similar users’ 

experiences, we can know that a user who searches for the flight information may also be 

interested in the hotel information. Or, if many users bought tickets from a travel agency, it 

indicates that people are satisfied with this agency’s ticket booking service, and as a result, this 

agency should be recommended to new users.   

Different types of usage data have been used in web search recommender systems. The 

click-through data [13] and users’ searching history data [14] have been used to improve the 

search engine performance. Server log analysis is a common technique to discover the user 

interest and recommend web pages [15].  

In this thesis, we are going to use invocation logs and query logs for usage data. From the 

invocation log, we can find user’s invocation time and invocation frequency on different 

services. Query log saves user’s expectation on QoS properties in each request. From these logs 

we can infer the user’s expectation and preferences on QoS properties as well as service 

performance. For example, if a service was invoked by a user with some sort of QoS 

expectations or requirements many times, we can infer that this service can satisfy these QoS 

requirements or it is the most suitable service among other available services for this user, even 
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if the offered QoS values are not exactly matching with the query. Different users can have 

different criteria on suitability and expected performance for the same QoS requirements. 

We consider users who have similar QoS expectations and invocation histories as similar 

users. If a service has been invoked by a group of similar users, we consider this service can 

satisfy this type of users’ similar request. Through the invocation frequency, we can infer the 

level of satisfaction; through the invocation time, we can infer user’s preference change or 

service performance drifting over time. Therefore, we can rank a service based on its level of 

popularity, which is a function of the frequency and time, among a group of similar users.    

To find similar users, we propose to use QoS value requirements as well as preferences to 

build user profiles, and then generate the user-user similarity matrix using an offline computation 

routine. In this routine, we use Kendall tau coefficient [16], which is to measure the agreement 

between two ranked lists, to calculate the similarity between the preferences on various QoS 

attributes from two users, and then we use Jaccard Coefficient [17] to calculate the similarity 

between QoS value requirements from two users.  

 

1.3 Objectives 

 In this thesis, we have three main objectives. Firstly, we use the invocation and query 

history data, especially the QoS query part to build a collaborative filtering system. Secondly, we 

propose a unique selection and ranking algorithm which could take advantages of existing QoS-

based selection models and overcome some of the shortcomings (e.g. cold start problem) of   

traditional collaborative filtering systems. Finally, we introduce a practical architecture model 

for the web service selection system using collaborative filtering techniques. 
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1.4 Thesis Outline 

 The remainder part of the thesis is organized as follows:  

Chapter 2 first reviews different QoS-based service selection models. Then, the research 

efforts that are more closely related to our work such as the researches on log analysis, and a 

number of recommender systems that use collaborative or content based approach are reviewed.  

Chapter 3 explains the system architecture, the history data used for selection and 

ranking, the algorithms used in finding similar users, as well as the ranking algorithm in details. 

Then, we assess the efficiency of our algorithms using the time complexity analysis. We also use 

a few use case scenarios to illustrate the similarity computing and ranking algorithm steps.  

In Chapter 4, we explain the experiment used to evaluate our system, by discussing the 

details about the experiment design, dataset used, as well as the result analyses.  

Finally, in Chapter 5, we conclude our thesis with a summary of results and analysis.  Our 

future research directions are also discussed in this chapter.   
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CHAPTER 2 

RELATED WORKS 

 

 

In this chapter, we will first review various QoS-based service selection models proposed 

in recent researches. Then, we will review some of the literatures that are more closely related to 

our work: server log analysis in IR (Information Retrieval) systems, and recommender systems 

that use collaborative filtering or content-based filtering mechanisms in their service selection 

processes.   

 

 

2.1 QoS-based Service Selection Models 

 QoS-based web service selection is usually considered as an optimization problem. 

Researches in this area have proposed a number of different approaches. These approaches 

include Description Logic (DL), Constraint Programming (CP), Mixed Integer Programming 

(MIP), Multi-Criteria Decision Making (MCDM), skyline computation, etc. These approaches 

have provided optimized matching and selection based on users’ requirements and providers’ 

offers on QoS parameters. However, one of the major drawbacks of these approaches is that they 

did not consider the actual service performance in a dynamic execution environment in their 

selection processes, i.e. different users’ experiences on QoS performance is different based on 

their individual conditions.  

  CP and MIP have been used in semantic matching and selection where multiple 

requirements on QoS parameters are treated as constraints [18] [19]. In [19], a semantic QoS 

aware framework was proposed to deal with multiple constraints on QoS requirements. DL 

reasoning was used to ensure the semantic matching on functional requirements. CP was 
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employed in the selection process where QoS constraints were converted into Constraint 

Satisfaction Problems (CSP). Combining these two technologies, the best service was found 

based on optimization of a global utility function which is a weighted combination of all 

interested QoS attributes. In this paper, a weighed combination of QoS attributes based on 

different user’s interests was used in its selection algorithm. However, it failed to deal with 

different user’s actual performance under different execution conditions. In [18], semantic 

matchmaking based on multiple QoS attributes was explored with CP and MIP approaches. And 

the experiment results showed that MIP outperformed CP.  Similar approach was adopted in [20] 

where a broker used a global utility function and a cost function to select services which can 

optimize the global utility function for a client based on the client’s cost constraint and the 

provider’s cost function. Both [18] and [20] focused on optimized selection without considering 

personalized selection based on their different requirements and conditions.  

Users’ QoS preferences or priorities were further considered in [21] where the MCDM 

techniques were adopted for quality optimization. This paper also used weights to express the 

priorities on QoS parameters such as response time, latency, and availability. However, same as 

what we mentioned before, this approach did not consider different users’ experiences either. In 

[22], an MCDM approach has been used to solve requester’s dynamic preference on service 

configuration in large value spaces. A different approach, AHP (Analytical Hierarchy Process), 

which is also a method used  in solving MCDM problems, was applied in [9] where AHP was 

used as an underlying mechanism in QoS based ranking with the proposed QoS property model. 

Instead of using simple aggregation of different QoS attributes to get an overall evaluation for 

optimization, AHP was used in modeling the multiple QoS criteria into a hierarchical structure 

which consists of multiple phases that fine-tune each level of QoS properties. The ranking was 
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obtained by sorting the final ranking vector which was an aggregation of each level of ranking 

vectors. This work focused on the QoS ontology model where most of the data were assumed to 

be provided by client or determined by the system. User experience was not the major focus of 

this research. Both approaches, [22] and [9], had the similar problems as [21]. 

 The major limitations on above optimization approaches include: (1) they are based on 

the assumption that QoS values do not change over time; (2) different users have the same QoS 

performance.  

Service skyline is another approach in dealing with multi-criteria problem in either 

functional level [23] or QoS level [24] to find an optimal service offer. The method proposed in 

[24] could address the problems mentioned in (1) by computing service skyline and p-dominant 

service skyline respectively. Here, the concept of dominance is defined as: for two objects X and 

Y which are described by a set of parameters or properties, X dominates Y if and only if X is 

better or equal to Y in all parameters and X is better than Y in at least one of the parameters. The 

p-dominant service skyline is defined as a set of providers with the probability of dominance by 

any other providers less than p. In this case, each individual transaction was looked at in detail 

regarding all QoS properties under consideration. And the probability which is a percentage of 

dominance on all transactions was computed for the providers. A transaction log was used to 

capture actual QoS performance for each transaction. However, this mechanism suffered from 

the following drawbacks: 1) It cannot capture a user’s preference or priority on QoS attributes. 

All parameters are considered as equally important in computing skyline and users’ experiences 

are considered as equally important. Hence, it cannot provide personalized recommendation 

regarding a user’s individual preference. 2) There might be no p-dominant providers found based 

on the definition of dominance when there are many parameters and none of the transactions of a 
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service of a provider p1 is equal or better than all transactions of a service of a provider p2 in all 

parameters and is better in at least one parameter and vice visa.    

In this thesis, our collaborative filtering based approach is to provide ranking of a service 

based on user’s preference as well as other similar users’ implicit experiences by employing the 

log data. We also consider differences among different users’ experiences, as well as variance on 

QoS expectation and performance over time.  

 

2.2 Log Data Used in Web Search Personalization 

There are many researches on web usage mining for web personalization [15]. Web usage 

data records users’ interaction with the Web and could usually be stored in a log file which is 

located at either client side or server side. Client side log can collect usage data from an 

individual user who often interacts with multiple web sites, whereas server side log can collect 

usage data from multiple users who access the web site hosted on the server. Hence, client side 

log is often used in content-based recommender systems, and server side log can be used in both 

content-based and collaborative filtering based recommender systems.  

There are different types of usage data, including the browsing history, the click-through 

data, time spent on a page, actions applied on a page (such as printing and saving), the 

transaction history, and so on. Search engines normally rank the level of relevance of a web 

document based on the frequency of the query keywords appeared in the content of the 

document. However, for short and ambiguous queries, search engine performance will be 

deteriorated. The click-through data was used in [13] to improve the performance of the search 

engine under such ambiguous conditions. The click-through data was extracted from a large 

amount of log data collected by search engine servers. The log normally contains search queries, 
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followed by the URL of the web page clicked by the user. The user’s click stream reflects the 

user’s opinion about the page relevance. An Iterative Algorithm (IA) was proposed to compute 

the page similarity as well as the query similarity based on the following concept: web pages 

visited by similar queries are similar; and search queries visiting similar web pages are similar. 

The experiment showed a big improvement on the search performance.  

The effectiveness of using implicit user feedbacks in web search ranking has been studied 

in [14]. This paper modeled the user search behaviour as a combination of “background” 

information and “relevance” information where “background” information represents noise 

information. User actions for each search result were represented as a vector of features. It could 

include any type of user interaction that is collected by search engine logs and these data are 

categorized into click-through features, browsing features, and query-text features.  Then, a 

ranker was trained to discover feature values that are relevant on search results to produce a 

trained user behaviour model which was used to help the ranking process. It used a simple merge 

algorithm which computed the merge score of a document based on its rank from the implicit 

feedback-based ranks and the original ranks. The result showed a significant improvement in the 

final performance. 

 

2.3   Recommendation Systems and Web Service Selection 

Since mid-1990’s, recommender system has become an active area of research. Various 

systems and algorithms have been proposed. Some well-known recommender systems include 

MovieLens [11], eBay [25], and Amazon.com [26]. Early recommender systems are mostly 

based on user ratings and recommendation problems are usually reduced to predicting ratings for 

unknown items for the user [1] [2].  There are three main categories of recommender systems: 
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content-based, collaborative filtering based, and hybrid system which combines these two 

approaches.   

Content-based system recommends items based on similar features in the items that the 

user has preferred in the past. For example, in a movie recommender system, it tries to find the 

common features (directors, actors, subject matters, etc.) contained in the movies that the user 

preferred and/or rated in the past. Then, these features will be considered as user preference 

which will usually be stored in a user profile [10]. When a user searches for movies, a list of 

movies matching the search criteria such as keywords will be returned. Among these returned 

movies, the movies that have the most similar features as the profile based on certain criteria will 

be recommended. Some of the problems with the content-based system are: (1) it cannot 

distinguish the quality of the items if they possess the same or very similar features; (2) it is 

difficult to recommend an item that is not similar to any item the user has ever selected. 

Collaborative filtering based systems try to overcome these weaknesses of the content-

based systems. Instead of analyzing contents, it predicts whether a new item will be preferred by 

the user or how much the user will like the item based on other similar users’ interests or 

preferences. Rating is often used in collaborative system to reflect the level of satisfaction or 

quality [1]. The similar users are found based on previous feedbacks (e.g. ratings) on commonly 

interested items by applying a similarity algorithm, such as Pearson Correlation Coefficient 

(PCC). The bigger the similarity value, the higher the level of similarity. The collaborative 

recommendation process usually has three steps: finding a list of items that matches the user 

query, finding the similar users, and ranking the items based on similar users’ feedbacks.  

The problems for the collaborative systems are cold start problems for new users, new 

items, and the data sparsity problem. Since the recommender system recommends items based on 
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similar users’ preference, for new users who have no or very limited feedback information 

recorded in the system, it is difficult to find their similar users and hence the system is not able to 

provide recommendations. Similarly, for new items, there is no or very few number of users who 

have selected them before, and hence the feedback information on these items is very limited. 

Again, the recommender system is not able to recommend these new items. The data sparsity 

problem happens when there is a large number of users and items in the system, however each 

user only uses a few items and each item is only used by a few users, so that we will end up with 

a sparse user-item matrix. This is a common problem in many recommender systems [1]. 

 Recommendation algorithms have been used in web service selection in different ways. 

The first usage is the QoS prediction, through which a user could select services based on their 

predicted QoS values. In [3], collaborative filtering was used and both positive and negative 

correlations were taken into consideration when calculating predicted values. A hybrid approach 

which combined collaborative and content-based filtering was proposed in [4] in order to solve 

the data sparsity problem in the user-item matrix. A confidence value was also calculated for 

each prediction. In both papers, individual observed QoS performance data were explicitly 

collected.  

The second usage is service selection and ranking. In [5], the recommendation score for a 

service was calculated based on ratings on this service from similar users and ratings on similar 

queries. In [27], service selection was based on both objective and subjective QoS values. 

Collaborative filtering was used in subjective QoS information process. In both papers, [5] and 

[27], the ratings were assigned explicitly by the users. In [12], service usage data were implicitly 

collected. It was computed as the invocation frequency of a service among all services within the 

same service class. Then the user similarity was calculated based on the average frequency for 
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each service class using Pearson Correlation Coefficient (PCC). The final service ranking was 

determined by both user group finding through collaborative filtering and service dependency 

identification through association rule mining.  

A community was set up in [7] to collect the implicit user information such as the service 

invocations following the user requests. The recommendation process was based on the query to 

find the possible actions (invocations) depending on the “culture” [7]. Content-based filtering 

was used in [6] to predict the user rating on a service for the dynamic selection. 

User feedbacks are fundamental in collaborative recommendation and personalization. 

Either explicit or implicit feedbacks have been used in those systems. User feedbacks were 

explicitly collected in systems such as [3], [4], [5], [6] and [27]. In the experiments of [3], 

volunteers collected QoS invocation performance values and reported the data. In [4], users input 

observed QoS performance into an input handler in the WSRec system. In [5], [6], and [27], user 

ratings were explicitly provided by the users. The drawbacks about explicit data collection have 

been mentioned previously as it is impractical in many cases. Implicit data collection was 

adopted in [7] and [12]. In [12], service invocation data were collected for building the user 

profile, but it did not explain how these data were collected. In [7], QoS and invocation data 

were observed and collected from the client side as the historical data used to identify which 

services were relevant to which requests. These historical data were stored in its System for 

Implicit Culture Support (SICS) core. It used the SICS Remote Module to support information 

exchange with a client where a SICS Remote Client was installed.  

 

 

2.4 Summary 
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From these reviews, we know that server logs have been used in web information 

retrieval for recommendations and have shown significant improvement in web search [13] [14]. 

But, in web service selection, there are not many researches using log data as described above. In 

our approach, query log and invocation log are used in a collaborative filtering based 

recommender system. Both QoS requirements in queries and invocation data are implicitly 

collected through a centralized mechanism.  
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CHAPTER 3 

COLLABORATIVE FILTERING BASED SERVICE RANKING 

USING LOG DATA 

 

  Based on the discussions of previous chapters, we propose a collaborative filtering based 

service selection system using query and invocation history data. We extract related data from 

query and invocation logs and perform similarity computation. The collaborative filtering 

mechanism is then applied in the ranking process. In the following sections, we will explain the 

system architecture, the history data used for selection, the algorithms used in finding similar 

users, as well as the ranking algorithm in details. 

 

3.1 System Architecture 

 The architecture model of our service selection system is shown in Figure 1, which 

consists of two parts: the client, and the extended UDDI registry.  

In the client part, a client-side proxy is installed. It is responsible for forwarding the client 

requests to the registry and recording the usage history information into log files: query and 

invocation logs. It also provides the mechanism to collect the actual QoS data through 

monitoring the invocation processes. The monitored data is stored in the QoS data file.   

The service selection and ranking mechanism along with the service description 

repository (WSDL) constitute the other part of our system - the extended UDDI registry, which 

consists of three major data repositories and five major components.  
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Figure 1. Architecture of our service selection system 

The three major data repositories are: service description data, user-service matrix (U-S), 

and user-user matrix (U-U). Service description data includes both functional and non-functional 

(QoS) descriptions of the services. A typical example of the functional description is the WSDL 

file of a web service. The QoS description data can be collected from all the connecting clients 

and then processed and saved into the central repository. The other two data repositories are 

created by our system. The user-service matrix is extracted from log files. This matrix contains 

users’ query and invocation records such as their functional and non-functional query 

requirements, as well as the invocation information such as the invocation time. Each item in the 
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matrix is represented by a vector and its representation will be explained in details in later 

sections. The user-user matrix is created through computing user similarity based on query and 

invocation history information provided by user-service matrix. Details about these calculation 

algorithms are in later sections. 

The five major components of our system are: log data collection, QoS data collection, 

user similarity calculation, service selection and ranking, and QoS recommendation component.   

There are standard formats for web server logs or search engine logs. However, no 

standard has been defined about how and where to record the service requests and invocation 

information. In our proposed system, the query log contains the information on the complete 

query (both functional and QoS parts), the user who submitted the query, the query submission 

time, and the related invocation (i.e. which service being invoked) if there is any. The invocation 

history records the information of the user, the invoked service, the invocation time, and the 

associated query if there is one. 

The log collection mechanism can be similar to [7]. A proxy component can be placed in 

the client machine. The proxy is responsible for sending queries to the extended UDDI registry 

and redirecting invocation requests to the provider. It also records all the requests and invocation 

information as well as the QoS data for the client. The collected data can be stored in the local 

logs and QoS file. Then the log collector and QoS data collector in our system will pull the data 

from each proxy log periodically and aggregate all of the data into the centralized invocation and 

query logs as well as the QoS data repository. Before storing the QoS data, the QoS data 

collected from all the clients are processed to get the overall value. 

The similarity calculation is done offline and on a regular basis. Some data pre-

processing should be done on the two logs and the service description data, and then the useful 
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information will be extracted and saved into the user-service matrix. Based on the user-service 

matrix, user similarity will be calculated and saved into the user-user matrix to improve the 

efficiency in finding the similar users at run time. These two matrices are computed and updated 

offline periodically.  

 After the two matrices are generated or updated, the system is ready to accept the service 

request from the user. Upon receiving the service query, the service selection and ranking 

component will process the query, discover the matching services and rank them, and finally 

present the results to the user. During the ranking process, it will consult the service 

recommendation component to get the collaborative filtering based ranking, and then it will 

aggregate QoS-based ranking and collaborative-based ranking using an aggregation algorithm 

such as Borda Fuse [28].  To produce a collaborative-based ranking, service recommendation 

component needs the data from the two matrices. Figure 2 briefly illustrates the roles of these 

three components: similarity computation, service recommendation, and service selection and 

ranking, in our service selection process. The offline part is inside the shadowed box in figure 2. 
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Figure 2. Roles of three components in service selection 

 

3.2 Finding Similar Users 

 Finding similar users is the key part in a collaborative recommender system. In our 

system, similar users are computed offline periodically based on User-Service matrix and stored 

in the User-User matrix where each cell in the matrix contains a similarity value of the 

correspondent pair of users.   

 

Service Selection & 

Ranking 

 

Service 

Recommendation 

 

User-Service 

Matrix 

 

User-User 

Matrix 

 

A list of match 
services 

 

Query 

Invocation 

history 
User 

similarity 

A list of ranked 
services 

 

Final lists of 

ranked services 

 

User Similarity 

Calculation 

 

Service description 

data 



21 

 

 

3.2.1 Generating the User-Service Matrix 

 The user-service matrix is to record the invocation history for all users. Its values could 

be extracted from query logs and invocation logs. Suppose there are m users and n services, the 

set of users could be represented as U = {u1, u2… um}, and the set of services could be 

represented as S = {s1, s2… sn}. For each user ui ϵ U, the invocation history on service sj ϵ S is 

represented as      = ((   
 ,   

 ), (   
 ,   

 ), … , ( 
  

   
,  

  

   
)), where lij is the number of invocations on 

sj from ui,    
  and    

  represent the associated query and the invocation time of the     (0≤k≤lij) 

invocation instance on sj from ui. The invocation history could be empty if the user hasn’t 

invoked any services yet. In order to save the space and avoid that one user’s invocation data 

may influence too much on the final result, especially when this user has invoked the service 

many times, we could set up a cut-off value about how many invocations we want to keep so that 

only the latest N invocations will be saved, with N defined as a small number. Each    
  is either 

Ø, which means there is no associated query with the invocation, or represented as (    
 ,    

 ), 

where     
  and     

  refer to the functional and non-functional (QoS) part of the query.  

 The functional part of query could be represented as a term vector. The QoS part of query 

    
 contains requirements on multiple QoS or non-functional attributes such as response time, 

reliability, cost, etc. Each attribute has a value requirement and a weight which is determined by 

the user preference. We define     
  = ((      

   ,      
   ), (      

   ,      
   ), … , 

(     
   ,     

   )), where p is the number of QoS attributes supported by the system,      
    

and      
    represent the weight and value requirement on the     (1≤h≤p) attribute for the k

th
 

invocation instance. The value of      
    would be from 1 to p+1 depending on the order of 

preference, with a lower number inferring a more preferred attribute, and if the user is not 
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interested on this attribute, the value would be p+1. Since the value requirement could have 

different data types depending on the QoS attribute [29], we generalize      
    as a set. For 

instance, if the requirement is “reliability > 95%”, which is an interval data,      
    would be {x 

| xϵR, 0.95<x<1}, or if the requirement is “authentication: yes”, which is a single Boolean value, 

     
    would be {1}.   

 

3.2.2 Generating the User-User Matrix 

 After the user-service matrix is generated from the logs, the next step is to calculate the 

user similarity and save it into the User-user matrix. In a classical collaborative filtering 

recommender system such as MovieLens [2], users need to give a rating to each item. However it 

is known that explicit feedback information is hard to elicit from users and sometimes the 

accuracy of the ratings also cannot be guaranteed if there is no proper trust management 

mechanism being enforced. To overcome this, various implicit feedback measurements have 

been proposed, including the click-through data from the search engine, the duration of time a 

user spends on a web page and some follow-up actions such as printing or saving or 

bookmarking, the actual transaction record of purchasing a product, etc. Although the user 

opinion/interest can only be inferred from these observable behaviors and the inference may not 

be precise sometimes, it is generally believed that the uncertainty could be handled when the 

amount of feedback data is adequate.  

 In the web service domain, some recommender systems require users to provide ratings 

after they invoke the services [6], some use invocation rate as the preference indicator [12], and 

some others just use the monitored QoS values to predict the future values [4]. In our system, we 

want to use the recommender system in the QoS-based ranking step. Therefore, the user 
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similarity should be based on their QoS requirements and the subsequent decision-making on 

selecting and invoking services. The main idea is that: if two users select and invoke the same 

service from a list of functionally similar services, it indicates that they may have similar QoS 

requirements or considerations so that they make the same decision of choosing this service; if 

their similarity on QoS requirements can be confirmed from their actual queries, the similarity 

level should be higher. When two users have more commonly invoked services, the similarity 

level should be higher. Also we prefer the more recent invocations than the earlier ones because 

they could reflect users’ current behaviors more accurately. The detailed similarity calculation 

algorithm is explained below. 

 Let     be a set of services that    invoked and     be a set of services that    invoked. 

The set of commonly invoked services by two users is defined as      =    ∩   . For each 

service   ϵ    , the invocation history of    and   would be represented as      and      

respectively. Since we focus on the QoS query part for each service invocation and each QoS 

query includes a weight vector and a value vector for all attributes, the overall query similarity 

will be determined by both weight and value similarities. The weight similarity is to measure 

whether    and    have similar preferences on QoS attributes in an invocation of   , and the 

value similarity is to measure whether these two users have similar requirements on QoS value 

ranges in this invocation. The weight vector of the     invocation from user    on service    

could be represented as             = (     
   ,      

   , … ,      
   ), and the value vector can be 

represented as            = (     
   ,      

   , … ,      
   ). We calculate the query similarity 

between ui and uj on service sk as follows, 

      
          

                        otherwise, 
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                = 
 

   
     

                  
            

     
   

 

    

   
 

                 
             

                (1) 

where lik
’
 is the number of invocations on sk from ui with non-empty QoS queries, ljk

’
 is the 

number of invocations on sk from uj with non-empty QoS queries, SV(.) is a function to calculate 

the similarity between the two value vectors, SW(.) is a function to calculate the similarity 

between the two weight vectors, and    is a small constant value which is set to 0.1 in the current 

implementation.  

 The weight vector saves user’s preferences on p QoS attributes, and it could be 

considered as a ranked list. So instead of the commonly used Pearson Correlation Coefficient 

(PCC) or Cosine Similarity [1], for the similarity calculation, we use the Kendall tau coefficient 

[16] which could measure the agreement between the two ranked lists. Suppose we have two 

ranked lists (x1, x2, …, xn) and (y1, y2, …, yn), given any pair on i
th

 and j
th

 position, if xi<xj and 

yi<yj, or xi>xj and yi>yj, we say they are concordant, otherwise, they are discordant. The Kendall 

tau coefficient is defined as: 

   
     

 
 
        

 (2) 

where nc is the number of pairs which are concordant, nd is the number of discordant pairs, and n 

is the number of attributes which at least one user is interested in. Here,  
 
         is the 

total number of ordered pairs that an ordered set of n objects can compose. Since sometimes a 

user may have the same preference on different QoS attributes, we modify this definition a little 

bit to allow for the non-strict ordering. So for any pair, if xi≤xj and yi≤yj, or xi≥xj and yi≥yj, we say 

that they are concordant, otherwise, they are discordant. The result is in the (-1, 1) range with 1 

referring to the perfect agreement and -1 referring to the perfect disagreement. We want the 

similarity to be a value between 0 and 1, and the value 0 means two preference orders are 
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completely different and the value 1 means they are the same. So we convert the above formula 

to the new one as shown below: 

  
  

  

 
 
        

  (3) 

 Also the more the common attributes, the higher the similarity value. With two weight 

vectors             
 and             

, we first need to find out all the attributes with weight values not 

equal to p+1, which means users are interested on them. Let nac be the number of common 

attributes both users are interested in and nau be the number of attributes at least one user is 

interested in, the final weight similarity is calculated only on the attributes at least one user is 

interested in, and the formula is shown below: 

               
             

  
   

   

   
   (4) 

 To calculate the value similarity, since the value requirement on each attribute is 

represented as a set, we use Jaccard Coefficient [17] to do the calculation, which is more 

appropriate to measure the similarity between two sets,  

                
            

  
 

 
 

      
        

   

   
   
     

   
   

 
                    (5) 

 

 

 Finally, the overall similarity       between    and    can be computed by adding up 

       over all commonly invoked services. Also if among all invoked services by two users, 

there are many common ones, the similarity score will be higher than the case when there are 

only a few common ones. Its value is zero if there is no common service, otherwise, it is 

calculated as, 

              
        

           
 

 

      
               

                  (6) 
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where c2 is a constant number to make sure the common invocation is always counted. In the 

current implementation, c2 is set to 0.2. The similarity calculation will be run regularly. 

Depending on the frequency of invocation and query request, we could set up a proper frequency 

to update the user similarity matrix. Since it is done offline, the efficiency is not a big concern, 

whereas the accuracy is more important.  

 

3.3 Selection and Ranking Algorithm 

 After we get the User-User matrix, we can easily find most similar users and rank the 

matching services for the query.  

 

3.3.1 Collaborative Filtering Ranking Based on Invocation History 

 In a typical collaborative filtering recommender system, we need to first find out the most 

similar K neighbors to the current user, and then predict the user’s opinion (e.g. a rating on a 

movie) based on those K users’ previous records. Here we use collaborative filtering to calculate 

the matching degree of a service to a particular user request. Our ranking algorithm is similar to 

the click-through data based ranking for the search engines [13]. The main idea is that if a 

service has been chosen and invoked many times before, it has a higher chance to be selected in 

the current search session, and if many of the previous invocations come from users who have 

similar opinions or interests as the current user, it has an even higher chance to be selected.    

 Suppose a user ui submits a query including both functional and QoS requirements. Let 

the query be (Qf, Qqos), in which Qf has to be non-empty whereas Qqos might be empty because 

sometimes a user may not have a particular QoS requirement or may not know how to formulate 

a QoS requirement properly. Based on the functional requirement Qf, the discovery agent of the 
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registry finds all the matching services. Let the result set be RSf. Our collaborative filtering 

ranking algorithm mainly works on RSf. For each service skRSf, if the service has been invoked 

by some users, we calculate its collaborative filtering based score as follows: 

  

                        
 

 
  

   
    

     
         

     
   
                 (7) 

 

where S(ui) is a set of users most similar to user ui and the size of this set is K, and N is the 

maximum number of invocations on a service we would save for one user. The value simij could 

be obtained from the user similarity matrix. For each of the invocations on service sk from user 

uj,    
  represents the time of the h

th
 invocation, ts represents the starting time of the log, tc 

represents the current system time, and        
      is to calculate the similarity between the 

current query and the functional query associated with this particular invocation. For the 

similarity function SF(.), we choose the commonly used Cosine Similarity formula [30]. When 

    
  is Ø, the query similarity value would be zero, which means that we are not sure whether 

the invocation is resulted from the same functional query. Despite of this uncertainty, we still 

count this invocation by adding a constant value c3 (i.e. 0.1) to the query similarity value because 

of the concern on the possible sparse user-service matrix. This calculation considers the 

invocations from the top K similar users. Based on the above formula, if the user similarity is 

higher, the score will be higher; if the invocation time is more recent, the score will be higher; if 

the invocation is due to similar queries, the score will be higher; if there are more invocations of 

this service, the score will be higher. Figure 3 shows how the collaborative filtering based score 

is calculated based on those data. In the figure, RSfo includes the services of the functionally 
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matching services returned from the service description data repository, excluding those services 

that have never been invoked by any user.  

 

 

 

 

  

                                                                           

 

                                                          

 

                                                                                                           

                 

 

 

 

 

 

 

 

 

 

 

Figure 3. Calculation of collaborative filtering based score 

 

 To overcome the cold start problem for new users, we propose that in this case we will 

calculate the ranking score based on the invocation history only. If      is empty for all k (k=1, 

… , n), which means user ui is a new user and hasn’t invoked any services yet, or if simij is zero 

for all j (j=1, … , m, and j≠i), which means user ui doesn’t have any similar users, then for each 

service skRSf, we calculate its score using a different formula: 
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To overcome the cold start problem for new services, we propose to present the newly 

published services in a separate list, which is simply ranked on their publication date and 

invocation frequencies, so that the new services will have an equal chance to be viewed and 

selected by users. 

3.3.2 Overall Selection and Ranking Algorithm 

 Having explained our invocation history based ranking algorithm, the complete service 

selection process can be described in the following steps: 

(1) Given a query (Qf, Qqos) from user ui, RSf contains all the functionally matching services. 

For all the services in RSf, we will rank them based on Qqos and the service invocation 

history.  

(2) If Qqos is empty, go to step 3, otherwise, go to step 4. 

(3) When there is no QoS requirement from the user, the ranking of the services is purely 

decided by the invocation history. As explained in the previous section, the score 

        is calculated differently for new users and existing users. The final result 

presented to the user will be two separate ranked list, one is a list of new services, RSn , 

published in the past T (a predefined threshold) days, which is ranked on their publication 

date, and the other is the rest of the services, ranked on their calculated scores SCF. 

(4) When there are QoS requirements, we first filter out services which couldn’t satisfy the 

QoS hard constraints. The remaining services will be in RShq, which is a subset of RSf. 

Then for all services in RShq, we calculate their QoS-based ranking scores using an 

approach such as the one described in [18], [31], [32], etc. Afterwards, we calculate their 

invocation history based ranking scores using formula (7) and (8). The final result will also 
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be two ranked list, one is a list of new services, RSn, ranked on their QoS-based ranking 

scores, and the other is the rest of the services. For latter services, they have both QoS-

based and collaborative filtering based scores. In order to achieve a single ranked list, we 

could use any rank aggregation methods such as Borda Fuse [28] to combine the two. 

Figure 4 shows the overall selection and ranking process. Our selection system is rather 

generic, and we could plug in any algorithms for the QoS score calculation and rank 

aggregation.   

 

      

       

     

                   

 

 

 

                                      

 

                                  

                        

  

                                   

 

Figure 4. Overall selection and ranking process 
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3.4 Efficiency of Our Algorithms 

 In this section, we will evaluate the complexity of our ranking and user similarity 

algorithms. The memory used by our algorithms mainly depends on the number of users or 

services in our system, and it can be a linear dependency. Here we only analyze the time 

complexity. Since different implementation approaches can be adopted and the time complexity 

analysis only considers commands with their numbers of executions vary with the problem size, 

we evaluate the complexity using the pseudo codes based on the major loops that are related to 

the following parameters: number of users and number of services. We use the same notations as 

the previous section: m to be the number of users and n to be the number of services. 

3.4.1. Ranking Algorithm 

We list the ranking algorithm as Algorithm 1 and the algorithm computing the frequency 

as Algorithm 2. For each major step of an algorithm, e.g., step i, we label it as [i], for the 

convenience of the later reference in our discussion. 

 

Algorithm 1. Pseudo code for the ranking algorithm 

 

 

 

 

 

 

 

 

 

 

 

double rank (…) { 

 … 

 find top k similar users;                            [1] 

 … 

 for each top similar user                           [2] 

 { 

  Call the freq method to get the invocation frequency and time value; 

  Computing the ranking score for the service s based on formula (7); 

 } 

 return the ranking score; 

} 
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Algorithm 2. Pseudo code for computing the invocation frequency   

 

 

 

 

  Algorithm 2 shows that the number of executions depends on the number of invocation 

instances used in our algorithm, which is defined as N. In each iteration, the number of 

executions is 4 for the calculation of the f value. There are a few other commands in the loop. 

Therefore, the number of executions for the loop is: (4 + t)*N, where t represents the number of 

executions of other commands in the loop. The total number of executions for Algorithm 2 is q = 

(4+t)*N + z, where z represents the number of executions before the loop, which is a constant 

value. 

 For the first step of Algorithm 1, since it involves sorting the user similarity list and then 

choosing the top K users, the time complexity is O(m*log(m)). For the second step, the algorithm 

loops K times, and each time it calculates f value and the ranking score. The ranking score is 

calculated based on formula (7) which takes a small number of executions, i.e., r. Therefore the 

number of executions for the loop is in the order of K*(r+q). The time complexity for the 

ranking algorithm is O(m*log(m)) + O(K*(r+q)). Since K is a pre-defined integer and r are small 

double freq(…) { 

 … 

 while (numInvocation < N)  

 { 

  if (the instance was invoked with same query) 

- f += (invocationTime - startTime)/(currentTime – startTime) * 

(1+c3); 

  else 

f += (invocationTime - startTime)/(currentTime – startTime) * (c3); 

numInvocation++; 

 } 

 return f; 

} 
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integers and q depends on N, t and z which are fixed numbers, we get the complexity of our 

ranking algorithm as O(m*log(m)). 

3.4.2 Similarity Algorithm 

In the following boxes, Algorithm 3 lists the pseudo code for computing the user 

similarity for every pair of users (U-U matrix) and saving the results in a file. Algorithm 4 is for 

computing the similarity between two users on each commonly invoked service and returning the 

results to the calling method – Algorithm 3. Algorithm 5 computes Kendall tau coefficient for 

user QoS preference similarity and returns the result to the calling method – Algorithm 4. 

Algorithm 6 computes the concordant value for Algorithm 5. Algorithm 7 is the pseudo code for 

computing the user value requirement similarity which is a Jarccard coefficient and returning the 

result to the calling method – Algorithm 4.    
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Algorithm 3. Pseudo code for user similarity computing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

void profiling(…) { 

… 

for (int i = 0; i < numUser; i++)                                                                            [1] 

{ 

  for (int j = 0; j < numUser; j++) 

  { 

   … 

   Get history data for user i;                                                             [2] 

   Get history data for user j;                                                             [3] 

   if (history data exist for both user i and j) 

   { 

    Get services user i invoked;                                               [4] 

    Get services user j invoked;                                               [5] 

    Get commonly invoked services of user i and j;                [6] 

Call similarity computing between user i and j for each   

commonly invoked service and get the result in an array; [7] 

   } 

Computing user similarity using the similarity array based on       

formula (6);                                                                                    [8] 

  

} 

Write result to file;                                                                                     [9] 

… 

 } 

 … 

} 

 



35 

 

 

Algorithm 4. Pseudo code for computing the similarity between user i and j  

on each commonly invoked service 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Algorithm 5. Pseudo code for computing the weight similarity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Void qWVSim(…) { 

… 

if (user i and user j have have history data)          [1] 

{ 

 … 

  if (user i and j have commonly invoked services)        [2] 

  { 

   for (each service in the set of commonly invoked services)      [3] 

   { 

    … 

Computing similarity between user i and j for the service 

based on foumula (1) and store the result in an array for the 

calling method;   

… 

   } 

  } 

} 

… 

} 

double simWins_Kendall(…) { 

 … 

 Get the commonly interested QoS attribute for user i and j on service k;           [1] 

 Get the union of the interested QoS attribute for user i and j on service k;         [2] 

 Call concordant method to get the concordant value;                                          [3] 

Computing the similarity between user i and j on service k using formula (4);  [4] 

… 

Return tau; 

} 
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Algorithm 6. Pseudo code for computing the concordant 

 

 

 

  The number of executions for the first step of Algorithm 6 depends on the number of 

attributes under consideration, which is usually a small pre-defined integer, i.e., h. Sorting two 

lists of this number of integers takes the time in the order of 2h*log(h). In the second step of the 

Algorithm, comparing these two lists using nested loops through h members takes h*h times. 

Therefore, the total amount of executions is: x1 = 2h*log(h) + h*h. It is a constant value when 

the number of attributes of interest is pre-defined, which is the case in our system.  

 The computation for step 1 and 2 of Algorithm 5 involves calculating the intersection and 

the union of the sets of attributes users i and j are interested in for service k. The number of 

attributes is denoted as h as mentioned above. Assume we use multiple search method, the 

execution time is less than or equal to 2h*h. Step 4, calculating the tau value based on formula 

(4) needs a small constant number of steps, i.e., g. So the total number of executions is in the 

order of: x2 = 2h*h +x1+ g. Since h is a pre-defined integer number and x1 is a constant number 

as mentioned above, x2 is a constant number. 

 

 

 

 

 

int concordant(…) { 

 … 

 Make the attributes lists either user i or user j interested for service k  

            in order;                                                                                                               [1]               

 Compare the two ordered list to get the concordant value;                                 [2] 

 Return concordant value; 

} 
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Algorithm 7. Pseudo code for computing the value similarity 

 

 

 

 

 

 

 

 The complexity level of Algorithm 7 is similar to that of Algorithm 5, which depends on the 

number of attributes users i and j are interested in for the invocation of the service. We are not 

going to explain this method in details. We use x3 to represent the execution time complexity, 

which is also a constant value. 

Algorithm 4 computes the user similarity on each service and returns a list of similarity 

values for all services users i and j commonly invoked. In Algorithm 4, step 3 is the major one 

that contributes the most to the final complexity. Step 3 loops through all commonly invoked 

services and computes the similarity values based on each service using formula (1). Each 

iteration computes the similarity on each commonly invoked service for user i and j. The number 

of executions is N’*N’*x2*x3 where N’ is the number of invocations we keep for each service of 

each user in our similarity computation, which is usually a pre-defined constant number. The 

overall execution time is in the order of S*N’*N’*x2*x3, where S is the number of commonly 

invoked services. In the worst case scenario when S = n, the complexity is O(n).   

Double simVIns_Union(...) { 

 ... 

 Get the commonly interested attributes 

 ... 

 for each interested attribute 

 { 

  ... 

  Compute the union of the range of the values 

  Compute the intersection of the range of the values 

  Compute the Jaccard coefficient based on formula (5) 

 } 

 Return the coefficient value; 

} 
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 Algorithm 3 gets the final user similarity values for each pair of users and stores the 

results in a user-user matrix. The main loop going through all users needs m*m iterations. Steps 2, 

3, 4 and 5 take fixed steps of operation. We can denote them as y1 for step 2, 3, and y2 for step 4, 

5. Step 6 computes the union of the sets of services users i and j invoked. In the worst case 

scenario when users have invoked all of the services in the system, it takes n*n = n
2
 times of 

execution. Based on our previous analyses, the complexity of step 7 is O(n). Step 8 involves 

iteration through the similarity array, which is the size of the commonly invoked services. In the 

worst case, it is in the order of O(n). Step 9, writing the result to the file, takes O(m) time, 

because it writes the array of similarity values between current user and all the other users. 

Hence, the overall complexity level is:  O(m*(m*(2*y1+2*y2+n
2
+n+n)+m)) = O(m

2
n

2
). 

Based on above analyses, we can see that the complexity of the ranking algorithm is 

O(m*log(m)), whereas the complexity of the user similarity computation is O(m
2
n

2
). Both 

complexity levels are practical for the system to work efficiently.        

3.5 Case Studies Illustrating the Ranking Algorithm  

In this section, we use case scenarios to illustrate the ranking algorithm. Suppose there 

are seven users who want to find hotel reservation services. They are using our system hoping to 

get better recommendations. Our system has collected some information about the previous 

queries and invocations from them. The three QoS attributes we are considering are response 

time, rating, and cost. The rating is defined as a scale from 1 to 5, with 5 referring to the best 

rating, and cost is defined as the subscription fee per year of usage. There are five services, s1, s2, 

s3, s4, s5 and their QoS parameters are shown in Table 1.  
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Table 1. QoS parameters of 5 hotel reservation services  

 

 s1 s2 s3 s4 s5 

Response time 1.5s 2s 1s 0.8s 0.8s 

Rating 3 2 3 5 5 

Cost $100/year $80/year $110/year $175/year $220/year 

 

After the data extraction step based on the two log files, the QoS part of the user-service 

matrix is shown in Table 2.  

Table 2. A sample user-service matrix 

 
 Name s1 s2 s3 s4 s5 

u1 Alice 

(((3,1s), (2, 3),  

(1, $100)), 

03/09), 

(Ø, 07/09) 

(((2,1.5), (3, 3), 

(1, $90)), 08/09), 

(Ø, 09/09) 

(Ø, 12/09)  

(((3,1s), (1, 3), (2, 

$110)), 12/09), 

 

  

u2 Bob 

(((3,2s), (1, 3),  

(2, $110)), 

05/09) 

  (((3,1s), (2, 3), (1, 

$130)), 12/09), 

(Ø, 02/10) 

  

u3 Cindy 

(((3,1s), (1, 3),  

(2, $120)), 

03/09), 

(Ø, 08/09) 

 

 (((2,1s), (1, 3), (3, 

$120)), 10/09), 

(Ø, 11/09) 

(Ø, 12/09) 

(Ø, 01/10) 

  

u4 David 

  

 

 (((2,1s), (1, 3),  

(3, $150)), 05/09), 

(Ø, 08/09) 

(((2,1s), (1, 5),  

(4, Ø)), 06/09), 

(Ø, 07/09) 

  

(((2,1s), (1, 5),  

(4, Ø)), 01/10), 

 

u5 Emma 

(((2, 1.2s), (3, 3), 

(1, $100)), 2/09), 

(Ø, 4/09), 

 

 (((2,2s), (3, 3), 

(1, $85)), 06/09), 

(Ø, 10/09) 

(Ø, 03/10) 

 

   

u6 Flora 

(Ø, 5/09)    (((3,1s), (1, 3), (2, 

$150)), 10/09), 

(Ø, 10/09) 

(((2,1s), (1, 5), 

(3, $200)), 

12/09), 

 (Ø, 12/09) 

 (Ø, 04/10) 

 

u7 Henry      

 

In the table, we simplify the QoS value requirement to a single value, which will be 

converted to a set later after processing the data. For instance, if an invocation record is (((3,1s), 

(2, 3), (1, $100)), 03/09), it means that in the associated query, the preferences on the 3 attributes 
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are 3, 2 and 1 respectively, and the value requirements are {x | xR, 0<x≤1}, {x | xZ, 3≤x≤5}, 

and {x | xR, 0<x≤100} respectively, and the invocation time is March 2009. The time unit in 

this example is month. In the actual implementation, it can be more fine-grained. The empty cell 

indicates that the user has never invoked the corresponding service and Ø indicates that the user 

invokes the service without a query. ui represents the i
th

 user. 

The weight similarity is calculated using formula 3 and 4. For instance, both u1 and u2 

invoked s1 and s3.  The weight similarity between u1 and u2’s first invocations on s1 would be: 

                                                
 

 
 

 
 
 
    

      

The weight similarity between u1 and u2’s first invocations on s3 would be: 

                                                
 

 
 

 
 
 
    

      

The value similarity is calculated using formula 5. The value similarity between u1 and 

u2’s first invocations on s1 would be: 

                                                  

 
 

 
  

 

 
 

   

   
 

   

   
          

The value similarity between u1 and u2’s first invocations on s3 would be: 

                                                  

 
 

 
  

 

 
 

   

   
 

   

   
          

To calculate the similarity between u1 and u2 on s1, s3 we can use formula 1: 

                   = 
 

   
                         

                   = 
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We can see that the similarity between u1 and u2 on s3 is slightly lower than on s1, 

because the similarity on QoS value requirements is slightly lower. And finally the similarity 

between u1 and u2 would be calculated with formula 6: 

      
   

   
 

 

 
                                               

                            

Similarly, both u1 and u3 invoked s1 and s3.  The weight similarity between u1 and u3’s 

first invocations on s1 would be: 

                                                 
 

 
 

 
 
 
    

      

The weight similarity between u1 and u3’s first invocations on s3 would be: 

                                                
 

 
 

 
 
 
    

   

The value similarity is calculated using formula 5. The value similarity between u1 and 

u3’s first invocations on s1 would be: 

                                                  

 
 

 
  

 

 
 

   

   
 

   

   
          

The value similarity between u1 and u3’s first invocations on s3 would be: 

                                                  

 
 

 
  

 

 
 

   

   
 

   

   
          

To calculate the similarity between u1 and u3 on s1, s3 we use formula 1: 

                   = 
 

   
                         

                   = 
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We can see that the similarity between u1 and u3 on s3 is much lower than on s1, because 

the similarity on QoS weight is 0, but it still contributes to the similarity value on s3 because a 

constant value 0.1 is added. And finally the similarity between u1 and u3 is calculated using 

formula 6: 

      
   

   
 

 

 
                                               

                            

We calculate all the similarity values between each pair of users. The final User-User 

matrix for all users is shown in Table 3: 

Table 3. User-User matrix 

 u1 u2 u3 u4 u5 u6 u7 

u1 1 0.751 0.488 0.197 0.846 0.48 0 

u2 0.751 1 0.854 0.244 0.28 0.47 0 

u3 0.488 0.854 1 0.489 0.292 0.147 0 

u4 0.197 0.244 0.489 1 0 0.406 0 

u5 0.846 0.28 0.292 0 1 0 0 

u6 0.48 0.47 0.147 0.406 0 1 0 

u7 0 0 0 0 0 0 1 

 

 Based on above User-User similarity matrix, we use the following case studies to explain 

our ranking algorithm.  

 

Case I: 

Suppose u2 (Bob) submits a query to find a hotel reservation service with cost <= $120, 

after doing the matchmaking, the result set RSf is {s1, s2, s3}. Suppose the value of ts is 01/09 and 

tc is 06/10. To simplify the calculation, we assume that SF(.) value would be 1, which means that 

they all have the same query. Suppose K = 3, based on the user similarity matrix in Table 3, we 
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know u3, u1, and u6 are the top three neighbors of u2 with similarity value of 0.854, 0.751, 0.47 

respestively. However, u2 has invoked s1 too and  its own experience should be the most 

significant factor in the ranking. So, we compute the similarity based on u2, u3, and u1 for the rank 

of s1. Based on formula 7, the collaborative filtering based ranking scores for s1, s2, s3 are:  

              
 

 
  

   

      
 

   

  
          

          
 

 
  

   

  
 

   

  
            

 

 
 

   

  
               

             = 0.272  

             = 0.88 

 So the ranking order of these three services would be: s3, s2, s1.  

 

Case II: 

Suppose u2 (Bob) submits a query to find a hotel reservation service with only functional 

part, after doing the matchmaking, the result set RSf is {s1, s2, s3, s4, s5}. The value of ts, tc and 

SF(.) are assumed the same as in Case I. Based on the user similarity matrix in Table 3 and 

formula 7, the collaborative filtering based ranking scores are: 

              

             = 0.272  

             = 0.88 

             = 0.158  

             = 0 
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The ranking order of the services is   ,   ,   ,   ,   . We could see from this case, the 

recommendation for top three services doesn’t change. The system could implicitly capture the 

user’s preference from his previous experiences. 

 

Case III: 

Suppose u7 (Henry) submits a query to find a hotel reservation service with only 

functional part, after doing the matchmaking, the result set RSf is {s1, s2, s3, s4, s5}. The value of 

ts, tc and SF(.) are assumed the same as in Case I. Since Henry doesn’t have any similar users, 

based on formula 8, the collaborative filtering based ranking scores are: 

         
 

 
  

   

      
 

   

  
          + 

 

 
  

   

  
          + 

 

 
  

   

  
 

   

  
          +

 

 
  

   

  
 

   

  
          + 

 

 
  

   

  
           

= 0.376 

          = 0.763  

            = 2.66 

            = 0.466 

            = 0.155 

For new user Henry, the ranking order of the services would be   ,   ,   ,    ,   . 

Although as we can see from user-service matrix, s1 has more invocations than s2 and s4, the 

invocations of s2 and s4 are more recent than s1. As a result, the rank scores of s2 and s4 are higher 

than that of s1. If Henry submits a query to find a hotel reservation service with cost <= $120, the 

result set RSf  is {s1, s2, s3} and the order is s3, s2, s1. 

  

3.6 Summary 
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In this chapter, we have explained the system architecture, the history data used for 

selection, the algorithms used in finding similar users, as well as the ranking algorithm. The 

efficiency of our algorithms has been assessed by the time complexity analysis. Three use cases 

are used to explain how the computation is done on similarity and ranking. From the use cases, 

we can see how the user similarity value, invocation frequency, and invocation time can affect 

the ranking score. In next chapter, we will do further evaluation on this algorithm. 
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CHAPTER 4 

 

EXPERIMENTS 
 

 

The main purpose of our experiments is to evaluate the accuracy of the collaborative 

filtering based ranking algorithm, and in the mean time test the impact of different parameter 

settings to the system performance. 

 

4.1 Dataset 

 

Currently there is no standard dataset to evaluate the QoS-based web service selection 

systems, let alone for collaborative filtering based approaches. Since our algorithm depends on 

the invocation and query logs to do the ranking, we use a simulation program to generate the 

service requests and invocation records, and then use the simulated dataset to do the evaluation. 

 The dataset reported in [33] was from the actual crawling and monitoring of the online 

web services. Each service in this dataset has a name, URL of its WSDL file, and the values of 9 

QoS attributes. There are altogether 2507 services. We used this dataset as our service 

repository. By checking the name of each service and its WSDL file, we chose 15 most popular 

keywords as single-word functional queries such as “genome”, “weather”, “sequence”, and 

“map”. For each query, there is a list of matching services, for instance, 52 services on topic 

“protein”, 21 services on topic “user”, and 24 services on topic “genome”. The numbers of 

services for all the 15 topics are shown in table 4. 
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Table 4. The collection of services used in the experiments 

 
Topic 

Number of 

services 

 Topic 
Number of 

services 

1 Protein 52 9 Development 19 

2 User 21 10 Business 21 

3 Genome 24 11 Weather 19 

4 Amazon 31 12 Management 23 

5 Commerce 27 13 Match 21 

6 Sequence 28 14 Google 19 

7 Net 17 15 Code 24 

8 Map 21    

 

 

 

4.2 Implementation and Design 

 

 Our simulator program was implemented in Java using NetBeans IDE under Windows 

XP platform, and it could generate query and invocation requests. Each query record includes a 

user’s functional and QoS requirement, as well as the service selected from the returned results 

and invoked afterwards. It is possible that a query may not have the QoS part. It is also possible 

that there is no invocation after the query, and some invocations are not resulted from query 

submissions. In the current setting, the functional query is one of the 15 keywords as listed 

above. The QoS attributes are reliability, availability and response time, which are supported by 

QWS dataset [33]. The QoS priorities are randomly produced from the range 1~4 where 1 

represents the highest priority and 4 represents no requirement for that QoS attribute. The QoS 

value requirement is in accordance with the attribute data type as well as its actual values as in 

the QWS dataset, and we also make sure there are a reasonable number of matching services. To 

make our simulator more generic, we use a configuration file to save the values of different 
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parameters, and by adjusting their values we could generate different datasets. The major 

parameters are listed and explained below: 

 The values of constant numbers c1, c2, c3 in equation (1), (6), (7), (8). 

 The value of K, which measures how many similar users we are going to consider. 

 The value of N, which measures the maximum number of invocations of a service 

saved for each user. 

 NQ: the number of effective queries a user might submit, which is a range value, e.g. 

1~10. An effective query is a query which is followed by an actual invocation. The 

queries without any follow-up actions are not considered. For each user, the number of 

actual queries submitted would be a random number within this range. 

 NSI: the number of invocations of a service after submitting a query and selecting this 

service from the matching results. This is also a range value. 

 NII: the number of invocations which is not the result of a query. Again, it is a range 

value. 

 NU: the number of users who are using the system. 

 The generated queries and invocation instances were randomly distributed among 12 

months. We used the first 11 months’ data as the training data to calculate the user similarities, 

and then the last month’s data as the testing data. For queries submitted in the last month, we 

applied our collaborative filtering algorithm to rank their functionally matching services. The 

precision of the ranking algorithm is measured afterwards. By checking whether the actually 

invoked service is in the top result list, we define our measurement as: 

         

     
             

   (9) 
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where Q12 contains the queries in the last month, and inq is a Boolean value, if the service user 

selected for query q is in the top TN results returned by our ranking algorithm, it is 1, and 

otherwise 0. In our experiment, the value of TN is chosen as 5 and 10. We denote the precision 

on top 5 and 10 as P-5 and P-10 respectively in the rest of the thesis. 

 

4.3 Experiment Results and Analyses 

 We ran each experiment 3 times, and the final precision value was averaged on 3 runs. 

By default, the parameters are set as: NU = 100, NQ = 1~10, NSI = 1~100, NII = 1~10, K=5, 

N=5, c1 = 0.1, c2 = 0.2, c3 = 0.5. Then in each experiment we change one parameter at a time to 

different values to see how it affects the precision values. There are altogether 3 groups of 

experiments. In the first group of experiments, we changed the values of c3, K, N and NQ. Figure 

5, 6, and 7 show the results of P-5 and P-10 when we change these parameters. In the second 

experiment, we changed the values of NSI and NII to test their impact on the precision values. 

The results are presented in Figure 8, 9, 10, and 11. The last experiment is to test how the value 

of NU affects the precision value. Figure 12 and 13 show the results. 

 

4.3.1 Changing c3, N, K, and NQ 

 From Figure 5 ,6, and 7, we could see that the values of P-5 are normally above 

0.6 and the values of P-10 are around 0.8, which means that the probability for users to find their 

desired services from the top 5 or 10 results is pretty high. This result indicates the effectiveness 

of our collaborative filtering based ranking algorithm. Without our ranking algorithm, users have 

to select through the functionally matching services. For instance, for the functional query 
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“protein”, users may need to check 52 matching services to select the one they want. With our 

algorithm, it is very likely users could locate the service from the top 10 results.  

 

4.3.1.1 Changing c3 and NQ 

In Figure 5(a), we show the result of P-5 and P-10 in which c3 is 0.1, 0.5, and 1 

respectively.  Figure 5(b) shows the result of P-5 and P-10 with different NQ values per user. 

 

 

(a) Changing c3 values 

 

 
 

(b) Changing NQ values   

Figure 5. Precisions when changing c3 and NQ values 
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4.3.1.2 Changing K   

Similarly, we do the experiments on the different values of K. The results are shown in 

Figure 6.  

 

 

Figure 6. Precisions when changing K values 

 

 

4.3.1.3 Changing N   

 Figure 7 shows the result of changing N values. 

 

  

       Figure 7. Precisions when changing N values 
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 We use the following tables to show the percentage of change (increase or decrease) on 

P-5 and P-10 with different experiment values for parameter c3, K, N, and NQ corresponding to 

the above figures. A positive value indicates an increase in precision and a negative value 

indicates a decrease in precision. The percentage is calculated as the difference between the 

second and the first value divided by the first value. 

 

Table 5. Comparison of P-5 and P-10 on different c3 values 

Precision 
Precision change (%  ) 

(c3:0.1 → 0.5) 

Precision change (%  ) 

(c3:0.5→1) 

P-5 0 0 

P-10 -1.4 -0.5 

  

Table 6. Comparison of P-5 and P-10 on different K values 

Precision 

Precision 

change (%)  

(K:5 → 10) 

Precision 

change (%)  

(K:10 → 15) 

Precision 

change (%)  

(K:15 → 20) 

Precision 

change (%) 

(K:20 → 25) 

Precision 

change (%)  

(K:25 → 30) 

P-5 -0.9 0 0 -0.9 -0.9 

P-10 0 -0.7 -2.2 0.8 0 

 

Table 7. Comparison of P-5 and P-10 on different N values 

Precision Precision change (%) (N:5 → 10) 

P-5 0 

P-10 0 
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Table 8. Comparison of P-5 and P-10 on different NQ values 

Precision 
Precision change (%) 

(NQ: 1~10 → 10~20) 

Precision change (%)  

(NQ :10~20 → 20~30) 

Precision change (%)  

(NQ : 20~30 → 30~40) 

P-5 30 8 4.5 

P-10 14 5.6 3.9 

 

Figure 5(a) and Table 5 show that changing the value of c3 doesn’t affect the precision 

values much; P-10 has only changed 1.4% when c3 changes from 0.1 to 0.5 which is the biggest 

change in our results. We got similar results for c1 and c2. The experiment results also show that 

the values of K and N also have no obvious impact on the precision value. The biggest change on 

precision for K is 2.2% when K changes from 15 to 20, and changing of N does not change the 

precision based on our results.  So in the later experiment we fix their values to 5 because when 

this number is bigger, it takes longer time to run the algorithm. Figure 5(b) and Table 8 show that 

when there are more queries recorded for users, the precision level is higher, which is a 

reasonable conclusion because normally the recommender system is more accurate when there is 

more user data collected. Increasing NQ can significantly improve the precision, especially when 

NQ increases from 1 ~ 10 to 10 ~ 20, there is a 30% increase for P-5 and 14% increase for P-10. 

If we keep increasing this number, the precision value will be even higher, however, the 

improvement is becoming less and less. Since a larger number of queries definitely increase the 

processing time, to balance the efficiency and accuracy, we set this number to 20~30 in the rest 

of the experiment.   
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4.3.2 Changing NSI and NII 

 In the second experiment, we changed the values of NSI and NII to test their impact on 

the precision values. The results are presented in Figure 8, 9, 10, and 11. 

 

 

              Figure 8. Precisions when changing NSI values 
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Precision 
Precision change (%)  
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Precision change (%) 
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P-5 1.6 -2.2 

P-10 1.9 -2.3 
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Figure 9. Precisions when changing NII values (NSI = 1~50)  

 

 

 

Table 10. Comparison of P-5 and P-10 on different NII values (NSI = 1~50) 

Precision 
Precision change (%) 

(NII : 1~10 → 10~50) 

Precision change (%) 

(NII : 10~50  → 50~90) 

P-5 -35.6 -33.8 

P-10 -24.4 -16.1 

 

 

 

Figure 10. Precisions when changing NSI values 

(NQ = 20~30 and NII = 20~30)  
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Table 11. Comparison of P-5 and P-10 on different NSI values  

(NQ = 20~30 and NII = 20~30)  

Precision 
Precision change (%) 

(NSI :1~50 → 50~100) 

Precision change (%) 

(NSI :50~100 → 100~150) 

P-5 5.3 1.4 

P-10 3.6 -0.9 

 

 

 

Figure 11. Precisions when changing NII values 

 (NQ = 20~30 and NSI = 50~100)  

 

Table 12. Comparison of P-5 and P-10 on different NII values  

(NQ = 20~30 and NSI = 50~100) 

Precision 
Precision change (%) 

(NII :1~10 → 10~50) 

Precision change (%) 

(NII :10~50  → 50~90) 

P-5 -36.5 -31.4 

P-10 -24.5 -14 
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 According to the results shown in previous figures and tables, changing NSI value doesn’t 

affect the precision value much. The biggest percentage change is only around 5% on P-5 when 

NSI increases from 1~50 to 50 ~100. It is understandable since this value is only used in the 

similarity calculation, and in the ranking part, we only consider a certain number of invocation 

instances. However, NII value has a very obvious impact on the precision value as shown in 

Figure 9 and 11. When it is higher, the precision is lower. The precision decrease can be more 

than 30% on P-5 and more than 20% on P-10. The main reason is that our ranking algorithm 

heavily depends on users’ previous query histories, and if there are more invocations which are 

not results of query submissions, the ranking accuracy will definitely be lower. From above 

results, we can also see that changing NQ, NSI and NII have more influence on P-5 than P-10.   

 

4.3.3 Changing NU 

 The last experiment is to test how the value of NU affects the precision value. Figure 12 

and 13 show the results. 

 

 

Figure 12. Precisions when changing NU values(NII = 20~30)  
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Table 13. Comparison of P-5 and P-10 on different NU values 

Precision 
Precision change (%) 

(NU :100 → 300) 

Precision change (%) 

(NU :300  → 500) 

P-5 2.2 1.6 

P-10 1.9 -0.08 

 

 

  

        Figure 13. Precisions when changing NU values (NII = 50~90)  

 

Table 14. Comparison of P-5 and P-10 on different NU values (NII = 50~90)  

Precision 
precision change (%) 

(NU :100 → 300) 

precision change (%) 

(NU :300  → 500) 

P-5 -8.1 1.5 

P-10 -3.1 1 

 

  

 From these figures and tables, we could see that the value of NU has no obvious effect on 

increasing the precision values. There is a relatively bigger decrease of 8.1% on P-5 when the 

NU changes from 100 to 300. This can be caused by larger NII values due to our experiment 
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setting which uses randomly produced numbers. Normally for the recommender system, when 

more users are using the system, the accuracy is higher. However, in our experiment setup, all 

users followed one of a few pre-defined patterns when they submitted queries, which is to make 

sure there are similar users in the generated dataset. Due to this configuration, even when there 

are more users, the precision value does not change much. Since a higher NU value means a 

longer processing time, this value is set as 100.  

 From these experiment results, we could see that the precision of our ranking algorithm is 

mainly affected by the number of effective queries and the number of random invocations. When 

the number of queries is larger, which means there is more usage data, the accuracy is better. 

When the number of random invocations is smaller, which means most of invocations are 

connected to queries, the accuracy is better. When we apply our algorithm to the real selection 

system, as long as we could collect a reasonable amount of user data, and there is a high chance 

of finding similar users, the accuracy of the service selection system could be largely improved. 

 

4.4 Summary 

 

In this chapter, we explained the dataset we used for experiments as well as the 

experiment design. We have evaluated and analyzed our system and proved that our system 

worked for different user invocation histories and different number of users.  We could see from 

these experiments that the increased number of initial invocation can positively affect the 

precision, whereas the increased random invocations can negatively affect the precision. It could 

be easily understood that users who have clear preferences will get better recommendations, and 

users who select web services in a random pattern will benefit less from the recommendation. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORKS 

 

5.1 Conclusions 

In this thesis, we proposed a collaborative filtering based service selection algorithm. The 

user similarity is calculated mainly based on the past QoS queries and the actual invocations. 

Users are considered similar if they invoked same services and submitted similar queries. During 

the selection process, the service will be recommended to users depending on its matching 

degree with the QoS requirement and its collaborative filtering ranking score calculated on its 

invocation history from similar users.  

Our system overcomes the cold start problem for new users and new services, using the 

following strategies: if the user is a new user, the system makes recommendation based on all 

other users’ interests; for services which have never been invoked before, we provide a separate 

list ordered by their publication dates. Our system is flexible to support as many QoS attributes 

as the user prefers.  

The effectiveness of our system is proved by our experiments and use case scenarios. We 

could see from the experiments that the recommendation precisions depend on the number of 

invocations. The increased number of invocations due to queries can increase the precision of the 

recommendation and the increased number of random invocations would decrease the precision. 

From use case scenarios, we can see that our system can make recommendation based on users’ 

previous experiences; it can infer a user’s preference from previous query and invocation history 

even when the user doesn’t submit QoS requirements in the current query. The use case scenario 
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also shows how invocations, user QoS preferences, and required values, can affect user similarity 

and how invocation frequency and time can change the ranking scores. 

 The major contributions of this research work are: 

 To the best of our knowledge, it is a novel idea of using invocation and query history, 

especially the QoS query part to build the collaborative filtering system.  We compute the 

user similarity based on multiple factors: invocation, QoS preference and QoS required 

values. 

 With the implicit feedback, our selection and ranking algorithm considers the changing 

requirement and service performance over time and it supports the personalized 

recommendation. Our algorithm could take advantages of the existing QoS-based 

selection models and overcome some of the shortcomings (e.g. cold start problem) of the 

traditional collaborative filtering systems. 

 To implicitly collect data, we introduce a unique and practical architecture model which 

includes a centralized data collecting mechanism for the web service selection system 

using collaborative filtering techniques. 

5.2 Future Works 

 A few directions we would like to work on in the future include:  

Firstly, a statistical analysis on our experimental results should be conducted to evaluate 

the confidence level of the result. 

Secondly, a larger-scaled experiment could be conducted with more user records, and a 

few different data distribution patterns could be tested. We would also like to try the method as 

proposed in [3] [4] for the data collection.  
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Finally, we may expand our work to the hybrid approach to check whether it will further 

improve the performance. Also, implementing the actual QoS-based ranking algorithm and using 

a rank aggregation method to combine it with the recommendation algorithm will be helpful to 

evaluate the overall system performance. 
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APPENDIX A – Computing similarity matrix 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

void profiling(String historyRandom, String history, String fileProfile) 

     { 

         profile = new double[numUsers]; 

          

         double[] simWVij = new double[totService]; 

         ArrayList CSij, ISi, ISj;  

  //lists of commonly invoked services and user i invoked and user j invoked services 

 

         Object[][] hisUi, hisUj; 

         int rowi, rowj; 

         FileOutputStream fos; 

         PrintWriter out; 

         try 

         { 

            fos = new FileOutputStream(fileProfile); 

            out= new PrintWriter(new OutputStreamWriter(fos)); 

            out.close(); 

 

            fos= new FileOutputStream(fileProfile, true); 

            out = new PrintWriter(new OutputStreamWriter(fos)); 

 

            int i, j; 

            for (i = 0; i < numUsers; i++) 

            { 

                for (j = i; j < numUsers; j++) 

                { 

                       

                    CSij = new ArrayList(); 

                    ISi = new ArrayList(); 

                    ISj = new ArrayList(); 

 

                    rowi = getNumLines(i, history); 

                    rowj = getNumLines(j, history); 

                    if (rowi > 0 && rowj > 0) 

                    { 

                        hisUi = new Object[rowi][his_col]; 

                        hisUj = new Object[rowj][his_col]; 

 

                        hisUi = getRecordsU(historyRandom, i); 

                        hisUj = getRecordsU(historyRandom, j); 

                        if (hisUi != null && hisUj != null) 

                        { 

                            CSij = cInvok(hisUi, hisUj, i, j); 

                            ISi = getServiceU(hisUi, i); 

                            ISj = getServiceU(hisUj, j); 

                         

                            qWVSim(hisUi, hisUj, CSij, history, simWVij, i, j); 

                        } 

 

                        profile[j] = 0; 

 

                        if (CSij != null && ISi != null && ISj != null) 

                        { 

                            if (simWVij !=  null) 

                            { 

                                int k; 

                                for (k = 0; k < CSij.size(); k++) 

                                { 

                                    profile[j] += (simWVij[k] + c2); 

                                } 

                            } 

                            profile[j] = (2.0/(ISi.size() + ISj.size()))*profile[j];   

                        } 

                    } 

                } 
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                writeLine(profile, out); 

                size = new int[] {numUsers, numUsers}; 

                writeSize(size, "F:\\Coding\\configure_rank.dat"); 

            } 

            out.close(); 

         } 

         catch (IOException e) 

         { 

            e.printStackTrace(); 

         } 

     } 

 

void qWVSim(Object[][] hisUi, Object[][] hisUj, ArrayList CijQoS, 

            String hisFile, double[] simWVij, int i, int j) 

    { 

        ArrayList simKij = new ArrayList(); 

          

        double simK; 

        int numLineSerik = 0; 

        int numLineSerjk = 0; 

 

        Object[][] serUik, serUjk; 

 

        int rowi = getNumLines(i, hisFile); 

        int rowj = getNumLines(j, hisFile); 

 

        if (rowi > 0 && rowj > 0) 

        { 

              

            serUik = new Object[rowi][his_col]; 

 

            serUjk = new Object[rowj][his_col]; 

 

            int s, k; 

            if (CijQoS != null) 

            { 

                for (s = 0; s < CijQoS.size(); s++) 

                { 

                    simK = 0.0; 

 

                    k = toInt(CijQoS.get(s)); 

 

                    serUik = getServiceHis(hisUi, k); 

                    numLineSerik = numLineSer; 

                    serUjk = getServiceHis(hisUj, k); 

                    numLineSerjk = numLineSer; 

 

/* Kendall and Jacard coefficient for all instances for service k 

of user i and j */ 

                    if (numLineSerik != 0 && numLineSerjk != 0) 

                    { 

                        int m, n; 

                        try { 

                            m = 0; 

                            while (serUik[m][0] != null && m < serUik.length) 

                            { 

                                n = 0; 

                                while (serUjk[n][0] != null && n < serUjk.length) 

                                { 

simK += (simWIns_Kendall(serUik, serUjk, m, 

n)+c1) * (simVIns_Union(serUik, serUjk, m, n)); 

                                    n++; 

                                } 

                                m++; 

                            } 
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        // similarity value of user i and j on service k 

                            simK = simK/(numLineSerik*numLineSerjk); 

                        } 

                        catch (ArrayIndexOutOfBoundsException e) 

                        { 

                            e.getStackTrace(); 

                        } 

                                                  

                    } 

                    simKij.add(simK); 

                } 

            } 

        } 

        if (simKij != null) 

         { 

            int l; 

            if (i != j) 

            { 

                for (l = 0; l < simKij.size(); l++) 

                { 

                    simWVij[l] = toDouble(simKij.get(l)); 

                } 

            } 

            else 

            { 

                for (l = 0; l < simKij.size(); l++) 

                { 

                    simWVij[l] = 1.0; 

                } 

            } 

         } 

         else 

         { 

             simWVij= null; 

         } 

    } 

 static void writeLine(double[] array, PrintWriter out) 

    { 

        if (out != null) 

        { 

            int i; 

            for (i = 0; i < array.length; i++) 

            { 

               out.print(array[i] + ","); 

            } 

            out.println(); 

 

        } 

    } 
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APPENDIX B – Computing weight similarity  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/* return Kendall coefficient for service k on instance m and n of user i and j*/ 

double simWIns_Kendall(Object[][] serUik, Object[][] serUjk, int m, int n) 

     { 

        double tau1 = 0.0; 

        double tau = 0.0; 

        int p = 0; 

        int Nc = 0; 

 

        ArrayList atti = new ArrayList(); 

        ArrayList attj = new ArrayList(); 

 

        ArrayList unionAtt= new ArrayList(); 

        ArrayList interAtt = new ArrayList(); 

 

        atti = getAttrUkh(serUik, m); 

        attj = getAttrUkh(serUjk, n); 

 

        unionAtt = unionAttr(atti, attj); 

        interAtt = interAttr(atti, attj); 

 

        if (unionAtt != null && interAtt != null) 

        { 

           Nc = concordant(atti, attj, unionAtt); 

           p = unionAtt.size(); 

           if (p > 1) 

                tau1 = (double)2*Nc/(p*(p-1)); 

           else if (p == 0) 

                tau1 = 0; 

           else 

                tau1 = 1.0; 

 

           tau = tau1*((double)interAtt.size()/p); 

        } 

        return tau; 

     } 



71 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/* return the number of concordant pairs*/ 

int concordant(ArrayList atti, ArrayList attj, ArrayList unionAtt) 

     { 

        int concord = 0; 

 

        ArrayList orderAttm = new ArrayList(); 

        ArrayList orderAttn = new ArrayList(); 

 

        orderAttm = orderPre(unionAtt, atti); 

        orderAttn = orderPre(unionAtt, attj); 

 

        if (orderAttm != null && orderAttn != null ) 

        { 

            int i, j; 

             

            for (i = 0; i < orderAttm.size() - 1; i++) 

            { 

                for (j = i + 1; j < orderAttm.size(); j++) 

                { 

                    if (toInt(orderAttm.get(i)) > toInt(orderAttm.get(j)) && 

                            toInt(orderAttn.get(i)) > toInt(orderAttn.get(j))) 

                        concord++; 

                    if (toInt(orderAttm.get(i)) < toInt(orderAttm.get(j)) && 

                            toInt(orderAttn.get(i)) < toInt(orderAttn.get(j))) 

                        concord++; 

                } 

            } 

              

        } 

        return concord; 

     } 
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APPENDIX C – Computing value similarity  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

/* return Jaccard coefficient for service k on instance m and n of user i and j*/ 

double simVIns_Union(Object[][] serUik, Object[][] serUjk, int m, int n) 

     { 

        double simV = 0.0; 

        int index = 0; 

        double[] range1 = new double[2]; 

        double[] range2 = new double[2]; 

 

        ArrayList attikm = new ArrayList(); 

        ArrayList attjkn = new ArrayList(); 

 

        ArrayList interAtt = new ArrayList(); 

 

        attikm = getAttrUkh(serUik, m); 

        attjkn = getAttrUkh(serUjk, n); 

  

        if (attikm != null && attjkn != null) 

        interAtt = interAttr(attikm, attjkn); 

 

        if (interAtt != null) 

        { 

            int i; 

            for (i = 0; i < interAtt.size(); i++) 

            { 

 

                index = toInt(interAtt.get(i)); 

                if (index == 0) 

                { 

                    range1[0] = toDouble(serUik[m][6]); 

                    range1[1] = toDouble(serUik[m][7]); 

                    range2[0] = toDouble(serUjk[n][6]); 

                    range2[1] = toDouble(serUjk[n][7]); 

                } 

                else if (index == 1) 

                { 

                    range1[0] = toDouble(serUik[m][9]); 

                    range1[1] = toDouble(serUik[m][10]); 

                    range2[0] = toDouble(serUjk[n][9]); 

                    range2[1] = toDouble(serUjk[n][10]); 

                } 

                else if (index == 2) 

                { 

                    range1[0] = toDouble(serUik[m][12]); 

                    range1[1] = toDouble(serUik[m][13]); 

                    range2[0] = toDouble(serUjk[n][12]); 

                    range2[1] = toDouble(serUjk[n][13]); 

                } 

                else 

                    System.out.println("Error"); 

                if (max(range1[0], range1[1]) <= min(range2[0],range2[1]) || 

                        min(range1[0], range1[1]) >= max(range2[0], range2[1])) 

                { 

                    simV += 0; 

                } 

                else 

                    simV += interRange(range1, range2)/unionRange(range1,range2); 

            } 

            return simV/interAtt.size(); 

        } 

         return 0; 

     } 
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APPENDIX D – Ranking 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

double rank(int qId, int ui, int s) 

    { 

        double score = 0; 

          

        Object[][] topSims = new Object[numTopUsers][2]; 

        topUsers(ui, topSims); 

         

        int uj; 

        int j = 0; 

        while (j < topSims.length && topSims[j][0] != null) 

        { 

            uj = toInt(topSims[j][0]); 

            score += toDouble(topSims[j][1])*(freq(qId, uj, s)/N); 

            j++; 

        } 

 

        return score; 

    } 

double freq(int qId, int uj, int s) 

    { 

        int f = 0; 

        int row = getNumLines(uj, fnt); 

        Object[][] hisUj = new Object[row][his_col]; 

        Object[][] serUjk = new Object[row][his_col]; 

 

        hisUj = getRecordsU(fntRandom, uj); 

        serUjk = getServiceHis(hisUj, s); 

        int numLineSerjk; 

        if (N > numLineSer) 

            numLineSerjk = numLineSer; 

        else 

            numLineSerjk = N; 

 

        int insk, tjk; 

        insk = 0; 

        while (insk < numLineSerjk) 

        { 

            tjk = toInt(serUjk[insk][3]); 

            if (qId != -1) 

                f += ((double)(tjk- startTime)/(double)(currentTime -   

    startTime))*(1+c3); 

            else 

                f += ((double)(tjk- startTime)/(double)(currentTime - startTime))*(c3); 

            insk++;    

        } 

          

        return f; 

    } 
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