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Abstract 

 Current cone-beam CT systems acquire full field-of-view projections in 

which x-ray scatter degrades the contrast of soft-tissue in the reconstructed 

images. The objective of this work was to simulate volume-of-interest (VOI) 

imaging, which reduces scatter and dose to the patient through beam collimation, 

to investigate the improvements in soft-tissue visibility on the Gamma Knife Icon. 

The results indicated that as field size decreased, contrast and noise increased, 

leading to only modest improvements in the contrast-to-noise ratio when using the 

same initial photon fluence. A reconstruction framework called the interior virtual 

method was adapted to suppress truncation-induced artifacts and noise in the VOI 

image. In this framework the projection data were extrapolated using a cosine 

function, an intermediate image was reconstructed analytically, and virtual 

projections of the intermediate image were created for iterative reconstruction. 

The framework supports high quality VOI reconstruction and can allow clinicians 

to optimize dose for soft-tissue visualization. 
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1 Introduction 

 

 

1.1 Motivation 

1.1.1 Gamma Knife Stereotactic Radiosurgery 

 Modern gamma knife radiation units consist of 192 cobalt-60 sources 

situated around the patient. The gamma radiation emitted by these sources is 

collimated to produce beams that intersect at a focal point, forming a sphere of 

concentrated radiation with a diameter as small as 4 mm [1]. The many beam 

directions allow for the delivery of highly concentrated radiation dose to disease 

targets while minimizing collateral dose to nearby healthy tissues. When 

compared to the gantry and couch of a linear accelerator (LINAC), the 

components of a gamma knife have fewer moving parts. LINAC radiotherapy 

treatments deliver radiation to an added margin around the disease to account for 

the uncertainties of treatment delivery, which include the mechanical uncertainties 

of the treatment machine. As gamma knife stereotactic radiosurgery (SRS) strives 

for a higher precision, this additional margin is often not used [2]. The resulting 

gamma knife dose distribution contains precise and steep gradients around the 

target disease. To ensure treatment efficacy, it is imperative that the disease is 

stably aligned with the radiation focal point with submillimeter precision. 

 As a part of the treatment workflow, patients can be positioned and 

immobilized by surgically screwing a metal frame onto the head and fixing the 

frame to the patient bed. The position of the skull and the brain can be inferred by 

knowing the fixed position of the frame. However, the use of the frame is invasive 

and must be worn from the time of treatment planning until treatment delivery, 

causing much discomfort to the patient. Furthermore, the frame is non-idealistic 
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for fractionated gamma knife treatments, where the patient would need to wear 

the frame over a span of several days, or have the frame re-applied each day [3] 

[4]. The newly Health Canada approved Gamma Knife Icon consists of a gamma 

knife radiation unit with an integrated cone-beam CT (CBCT) system that can 

perform online image-guidance and support frameless (i.e. mask-based) 

treatments. Various studies have shown that the components of the Icon have 

errors and propagated errors of less than a millimeter [1] [2] [5] [6] [7]. An 

alternative to the rigid frame is the use of a thermoplastic mask. Thermoplastic 

masks offer a non-invasive, frameless approach, but at the cost of accuracy and 

stability [8]. Under the frameless workflow, acquisition of a cone-beam CT is 

recommended for precise determination of the patient position. 

 

1.1.2 Image Guidance with CBCT 

 A CBCT, as opposed to fan-beam CT, uses a longitudinally expanded 

field and a large area flat panel detector to acquire volumetric projection data in a 

single rotation. Metastatic brain tumors, a common target for gamma knife SRS, 

have x-ray attenuation properties similar to normal soft tissues, which results in 

poor tumor contrast from x-ray-based imaging methods. Contrast resolution is 

further impaired by the cupping and streaks that arise from scatter and beam 

hardening, and the higher levels of noise in the image. Consequently, the patient 

bony anatomy is used as a surrogate for the tumor in the image registration 

between the online CBCT and the planning image. The image registration 

produces a transformation matrix that is used to move the patient into the planned 

position through translations of the couch [9]. 

 Between the time the planning image was acquired and treatment delivery, 

the tumor may change shape, size and position for various reasons, such as natural 

growth or edema-induced displacement. Between fractions, the tumor may also 

reduce in size and be shifted due to loss of surrounding tissue mass. A study 

tested the reliability of using the skull as a surrogate for soft-tissue registration 

and the results suggested that the error of automatic skull registration could be 
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greater than 1 mm [9]. This error is higher than the mechanical uncertainties of 

the Icon gamma knife. To minimize time-induced tumor displacement, treatment 

planning and delivery on the gamma knife are conducted on the same day. 

However, soft tissue and tumor visualization would provide greater confidence in 

tumor targeting and normal tissue sparing. In addition, to prevent a potential loss 

in precision for lengthy fractionated gamma knife treatments, it would be 

desirable to verify the tumor itself on the CBCT. 

 The contrast-to-noise ratio (CNR) on a CBCT can be improved by 

correcting the cupping artifacts caused by scatter and beam hardening. Other 

methods like dual energy CBCT can extend existing levels of contrast [10]. The 

current clinical standard for CBCT image reconstruction is the Feldkamp-Davis-

Kress (FDK) reconstruction algorithm [11], which is a filtered backprojection 

(FBP) extended to the cone-beam geometry with additional weightings. However, 

the FDK algorithm suffers from artifacts when the projection data does not meet 

certain requirements, such as an insufficient number of projection views and the 

need for the projection to cover the patient laterally. It also has limited ability to 

control the noise level in the reconstructed image. Iterative reconstruction 

algorithms with regularization are an attractive alternative because of their relaxed 

data requirements, being able to reconstruct low-noise images with fewer 

projections [12] and at a lower mAs [13].  

 

1.2 Cone-Beam CT Scatter Reduction 

 Scatter in the projection data causes artifacts in the reconstructed image 

such as cupping, streaks and inaccurate CT numbers. An increase in the projection 

scatter-to-primary ratio (SPR) will decrease the contrast and CT number accuracy 

in the image [14]. These effects significantly deteriorate image quality, especially 

when the imaging task is to resolve soft tissue. Many methods have been 

proposed to address the scatter problem [15], either by trying to reject or reduce 

the scatter signal, or by estimating and removing the scatter signal after data 

acquisition. Some of these methods will be discussed in the following paragraphs. 
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 It is known that increasing the air gap between the patient and the detector 

will decrease the amount of scatter received. Scatter photons arising from photon 

interactions within the patient diverge from the point of interaction. An increased 

distance between the patient and the detector will increase the portion of the 

scattered photons that will miss the detector. This method is limited by physical 

space and detector size restrictions. Typical LINAC-mounted CBCT systems 

feature a rotation axis-to-detector distance (ADD) of around 50 cm [16]. The 

ADD on the Icon CBCT is only 21 cm due to the space limitations of making 

additions to a pre-existing design of the gamma knife [17]. Anti-scatter grids can 

be placed over the detector to reduce the SPR but will also decrease both the total 

number of scatter and primary photons, and thus raising the level of noise. To 

maintain a constant CNR, imaging dose may need to be increased by up to a 

factor of 2.5 [18]. Both air gap and anti-scatter grid methods reduce scatter after 

the imaging beam has already passed through the patient, which are not optimal 

for saving dose to the patient. 

 Filters and collimators can be placed before the patient to reshape the 

profile of the beam and reduce scatter. The beam often faces more attenuation 

near the centre of the patient, resulting in a relatively lower primary signal. On the 

other hand, the scatter signal is usually greater near the centre, resulting in an 

overall higher SPR in the centre of the projection. A bowtie filter is a filter placed 

before the patient that is thinner near the centre and thicker towards the lateral 

sides. This has the effect of equalizing the level of attenuation and level of beam 

hardening across the beam. It also reduces dose to the patient and scatter from the 

patient. The primary near the centre of the projection is relatively unchanged 

while the scatter is reduced, resulting in an overall lower SPR. The Icon CBCT 

has a built-in bowtie filter that was optimized to produce a flat response at the 

detector when a 180 mm cylindrical water phantom is scanned [17]. Although 

bowtie filters offer many benefits, designs have been optimized primarily to 

reduce the dynamic range of the detector [19] [20], leaving scatter reduction as a 

secondary benefit. The optimization of a bowtie filter towards minimizing the 
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SPR to a region-of-interest (ROI) would result in the bowtie filter completely 

attenuating the parts of the beam outside the ROI. 

 The aforementioned methods reduce the scatter during data acquisition but 

do not eliminate it completely. Monte Carlo methods estimate the scatter 

distribution after data acquisition and subtract it from the projections [21]. 

Though it is computationally expensive to estimate the scatter with good statistics, 

many simplifying approximations can be made to improve computation times 

without significant loss in accuracy. It has been shown through Monte Carlo 

simulation that the scatter distribution in CBCT projections contain mainly low 

spatial and angular frequencies [22] [23]. The noise can be removed from raw 

simulation data by filtering out the frequencies above a certain known cut-off. 

Monte Carlo scatter results can be scored at lower resolutions and then 

interpolated to higher resolutions after the frequency filtration. Though good 

resemblance to the true scatter distribution is expected, some aspects of the 

simulation differ from reality. The accuracy of segmentation in the patient object 

and the low number of different materials and densities can contribute to the error. 

Furthermore, the estimated scatter distribution from Monte Carlo [24] and other 

methods [25] [26] is smooth, and subtraction from the projection data will result 

in noisier corrected data. Noise suppression after scatter correction has been 

proposed [27] but such methods would further increase the image processing 

times. These scatter correction methods take action after data acquisition and, 

unlike collimator and filter methods, do not have the ability to reduce radiation to 

the patient. 

 

1.3 Volume-of-Interest Imaging 

 The basis of volume-of-interest (VOI) imaging is to acquire projection 

data, only, of a pre-determined VOI. Doing so can reduce scatter and improve the 

contrast in the reconstructed image while making optimal use of dose to the 

patient. Research has been conducted on CBCT VOI imaging for over a decade 

[28] [29] [30] [31] [32]. The objective of these studies was to increase the image 
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quality inside the VOI, while sacrificing quality, or information altogether, 

outside the VOI. While the clinical application, focus of study, and technical 

approaches of these studies were varied, they all involved reducing the beam size 

such that it no longer irradiated the entire patient object. Different methods were 

proposed to address the projection data truncation problem, which arises when the 

beam does not transversely cover the entire patient object for all angles. The 

truncation artifact often appears in FDK-reconstructed images as a bright, circular 

border which extends image value inaccuracies to the centre of the image. 

 Early VOI imaging approaches used filters to reduce the fluence in the 

parts of the beam that would not project the VOI [28] [29] [33]. This is similar in 

effect to the bowtie filter, without the curved profile to compliment the patient 

shape. Chityala et al. demonstrated with simulation of added noise that a filter-

based VOI can be reconstructed with FDK with minimal artifacts while reducing 

dose to the object [28]. Real projections under a beam filter were acquired and 

various projection processing methods were tested, including equalizing the signal 

at the edge of the ROI, smoothing the region outside the ROI, and setting the 

region outside the ROI to a constant [29]. Also with a filter approach, Chen et al. 

used simulation to test the feasibility of VOI imaging for cone-beam breast CT 

[33]. Monte Carlo was used to calculate SPR and dose reductions offered by VOI. 

VOI methods later transitioned to the use of collimators [31] [34] [35], which 

completely blocked the beam outside the VOI, bringing about greater 

improvements in scatter reduction. To deal with data truncation, VOI projections 

were combined with low mAs full-field projections, forming composite 

projections [31] [30]. It was shown that although contrast increased in the VOI, 

noise also increased in the VOI, which led to only modest improvements in CNR 

[31]. This was consistent with an earlier study [14] which showed that noise 

increases as SPR decreases. The effect of increased noise in the collimated scan 

was explained by the decreased scatter photon count in the total incident quanta 

(the primary photon count remains the same). Since the total dose received by the 

patient from the VOI scan would be lower, it was justified to use a greater mAs to 

offset the increased noise. Parsons and Robar used higher mAs for the VOI scan 
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so that the dose to the VOI matched the dose to the VOI in the full FOV scan 

[34], which improved the CNR in the VOI. They also developed a dynamic iris 

aperture that can track non-isocentric VOIs, along with the required controlling 

software. Instead of acquiring a low mAs full-field set of projections, they opted 

to extrapolate, using an exponential function, the boundaries of the VOI 

projection data to 0 to mitigate the truncation artifact. Later their studies led to the 

integration of tube current modulation (TCM), which is the modulation of mAs as 

a function of projection angle to equalize the average signal-to-noise ratio (SNR), 

with VOI imaging to further improve the CNR [35]. It was determined that the 

CNR improvement from TCM alone was marginal compared to the CNR 

improvement from VOI collimation. 

 

1.4 Truncated Projection Data Reconstruction 

 While a subset of the literature focused on measuring CNR improvements 

and dose reductions achievable from the VOI technique, another subset of the 

literature focused on the development of algorithms that can handle the 

reconstruction of truncated projection data. Truncated data reconstruction can lead 

to three main artifacts: cupping, a bright ring around the image, and an offset 

throughout the image (see Figure 1-1). Different algorithms have different 

projection data requirements, making some algorithms better suited to handle the 

so-called interior problem, which is when the projection data does not 

transversely encompass the object. 

 In the FDK algorithm, the projection data is filtered by a ramp filter before 

backprojection. This step can produce bright edges in the projection data if there 

is truncation, which would appear in the reconstructed image as a bright ring. 

FDK is a filtered backprojection, which is derived with the use of the Fourier slice 

theorem [36], and is based on the idea that the spectrum of frequencies in the 

projection data is a line in the 2D frequency spectrum of the object. When the 

projection data is transversely incomplete, the frequency spectrum of the 
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projection will change, which changes the 2D frequency spectrum of the 

reconstructed image, causing inaccurate reconstructed image values. As 

mentioned in the previous section, low mAs full-field projections can be acquired 

to avoid artifacts from data truncation, but doing so requires a second scan, and 

the information outside of the VOI may not be of interest. To reduce the 

magnitude of the truncation artifact with only data from a single scan, various 

extrapolation methods have been implemented, such as extrapolation using an 

exponential function [37], projection estimation from water cylinder data [38], 

and data filling from prior CT images [39].  

 Other analytic algorithms have demonstrated success with interior 

reconstruction, if some prior information about the object is known. It has been 

shown that the backprojection of the derivative of the projection data is the 

Hilbert transform of the image [40] [41] (also called the Hilbert image). To 

recover the image, the inverse Hilbert transform is performed on the Hilbert 

image. This method has been called differentiated backprojection (DBP) [40] 

[42], backprojection-filtration (BPF) [43] [44], or sometimes neither [41] [45] 

[46]. However, the Hilbert transform convolves the function with a global kernel, 

and therefore the Hilbert image must be known everywhere, which is not the case 

when only truncated projection data are available. Instead, the truncated Hilbert 

Figure 1-1: An example of an image reconstructed with truncated projection data. The image should be 

uniform but a bright ring around the FOV exists instead, along with a cupping in the image values. The units 

of the image are the units of the reconstructed attenuation coefficient, mm-1. The window shown here is [0, 

0.09] mm-1, whereas a typical CBCT window is [0, 0.04] mm-1, meaning that the values are inaccurate. 
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transform can be solved if a sub-region along a specific line (PI-line) is provided 

as prior knowledge [45]. Such a method can reconstruct a VOI with accurate 

attenuation coefficients. 

 An algorithm that does not require prior knowledge and can reconstruct a 

VOI is the approximated truncation robust algorithm for computed tomography 

(ATRACT). The ATRACT algorithm [47] replaces the ramp filter step of FDK 

with the Laplacian followed by residual filtering. Doing so effectively 

extrapolates the missing projection data in the Laplacian domain to 0. This 

algorithm does not produce the bright ring artifact but does require heuristic 

rescaling to reconstruct accurate attenuation coefficients. 

 

1.5 Iterative Reconstruction Algorithms 

 The methods and algorithms in the previous subsection do not innately 

incorporate regularization methods for noise reduction. Generally a CT image can 

be approximated to be piecewise constant or piecewise polynomial [48], as is the 

image model of all total variation minimization problems. Iterative reconstruction 

algorithms incorporate regularization methods to improve convergence rates and 

reduce noise [49]. Iterative reconstruction algorithms also have milder projection 

data requirements, being able to reconstruct an image at a quality similar to FDK 

but with fewer projections [50] and at a lower dose [13]. The ramp filtering step 

from FDK is not required in iterative reconstruction, and with total variation 

regularization the truncation-induced ring artifact can be removed. In each 

iteration, the forward projection and backprojection operation is performed, which 

is computationally expensive for the data and image sizes required for clinical 

tasks. Though this type of algorithm was discovered 80 years ago [51], practical 

implementation has been infeasible until recent advances in computing power. 

 The algorithm models the data acquisition process as a large system of 

linear equations [36], and to find the solution to the system of linear equations is 

to reconstruct the image. In the case of VOI imaging, there often exists more 

variables to solve for than there are equations, leading to an underdetermined 
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system with an infinite number of solutions. However, studies show evidence that 

the interior problem can be solved by minimizing the combination of data fidelity 

and total variation (TV) [48] [52] [53], with minimal cupping and offset artifacts. 

The reduction in truncation artifact can be explained heuristically: the truncation 

artifact can be regarded as a ‘ghost’ function that is non-existent in the measured 

projection data and induces higher TV in the image. It is believed that the ghost 

function cannot survive the TV minimization [46] [52]. 

 A recent study [42] has proposed the use of virtual projections in a 

framework (called the iterative virtual method) that allows them to reconstruct 

underconstrained datasets (truncated, few-view, and low-dose projection data). 

Their framework was demonstrated with 2D parallel beam projection data under 

various underconstrained conditions. Instead of the standard space-based forward 

projectors (ray-driven, voxel-driven, distance-driven, separable footprints, etc.), 

they used their previously proposed forward gridding projector (FGP) [54], which 

is Fourier-based with re-gridding. It was shown that edge padding with the 

boundary data is able to remove the cupping artifact caused by truncation, but the 

reconstructed image is a constant away from the truth. Different acquisition 

geometries were also tested for robustness, such as different size FOVs and non-

isocentric FOVs. 

 

1.6 Summary, Aim and Structure 

1.6.1 Summary 

 Characterization of VOI imaging has been published with hardware 

technologies such as dynamic collimation [34] and TCM [35]. These studies 

quantified the image quality improvements obtainable through the use of real 

beam collimation. Other studies focused on developing algorithms, such as DBP 

[45], ATRACT [47] and compressed sensing based interior tomography [42] [52] 

[55], that can reconstruct stable and accurate attenuation coefficients, without the 

use of a real collimator, and therefore contrast improvements from scatter 

reduction were not considered. 
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1.6.2 Aim of this Work 

 There is a role for soft-tissue visualization and ideally direct tumor 

visualization in frameless stereotactic radiosurgery. The aim of this work is to 

quantify the CNR improvements achievable in VOI CBCT, with the practical 

objective of soft tissue visualization in head CBCT. Firstly, the standard FDK 

algorithm with edge extrapolation is used to establish a baseline for VOI image 

quality from a non-iterative reconstruction approach. Reconstruction is performed 

on synthetic projection data, which were created from a combination of Monte 

Carlo and analytical simulation to emulate the effects of reduced scatter from 

beam collimation. Secondly, the iterative framework with virtual projections is 

adapted to reconstruct the image with TV regularization and the effects on soft-

tissue contrast and noise are examined. Artifacts from both reconstruction 

algorithms are compared. Lastly, Monte Carlo is used to quantify the dose 

distributions under the different VOI geometries, allowing for considerations of 

optimal mAs usage. 

 

1.6.3 Structure of this Work 

 Chapter 1 introduces the clinical motivation behind this work and justifies 

the research of VOI CBCT imaging. The key relevant papers in the literature are 

reviewed. Chapter 2 will go through the methods and algorithms used in this 

work, without discussing the specific structures of experiments. Chapter 3 will 

mention specific details and parameters of each experiment or trial and then show 

the results. Chapter 4 will discuss the significance of the results and make relevant 

comparisons to similar works in the literature, which will then lead to a discussion 

of future work and a summary. The Appendix contains a collection of information 

that did not belong in the main body. 
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2 Methods 

 

 

2.1 Icon Cone-Beam CT 

 The simulation experiments were conducted in conformity with the 

geometry of the Icon CBCT, which is defined here. The source and detector rotate 

in a circular orbit around the patient. Let the right handed Cartesian fixed 

coordinate system (𝑥, 𝑦, 𝑧) represent the image or patient space, where the unit 

vector �̂� points in the anatomical superior direction, �̂� points in the posterior 

direction, and �̂� points in the anatomical left direction. The origin of the (𝑥, 𝑦, 𝑧) 

system, 𝑂, is located at the intersection of the axis of rotation and the plane 

defined by the orbit of the source. A rotating coordinate system (𝑥′, 𝑦′, 𝑧′) can be 

defined in terms of the fixed coordinate system 

𝒙′̂ = (cos 𝜃 , sin 𝜃 , 0)                                        (2 − 1) 

𝒚′̂ = (−sin 𝜃 , cos 𝜃 , 0)                                      (2 − 2) 

𝒛′̂ = (0,0,1)                                                (2 − 3) 

Where positive 𝜃 is a counter-clockwise rotation from the 𝑥-axis. Let the 

projection or detector space be represented by (𝑢, 𝑣, 𝜃), which can be described 

relative to the rotated system (𝑥′, 𝑦′, 𝑧′), where the 𝑢-axis is antiparallel to the 𝑦′-

axis and the 𝑣-axis is parallel to the 𝑧′-axis. The origin of the rectangular (𝑢, 𝑣) 

coordinate system, 𝑃, which is a moving origin, is the point on the detector plane 

that forms the shortest distance with the source. The cross product of �̂� and �̂� 

always points towards the patient; call this direction �̂�. The angle 𝜃 is also the 

angle between 𝒙 and −�̂�. For increasing angles, the rotated coordinate system can 

be viewed as counter-clockwise rotations of the source and detector. Refer to 

Figure 2-1a. By these definitions, the actual Icon system performs a scan with 
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Figure 2-1: a) The 3 coordinate systems are shown at a 30º rotation. The distance between the origins of the 

systems is 210 mm. b) The geometry of the Icon beam and detector, as seen by an observer looking down on the 

plane of rotation. c) The geometry of the Icon beam and detector, as seen by an observer on the plane of rotation. 

Circles with an X indicate that the direction points into the page while circles with a dot indicate that the direction 

points out of the page. 

a) 

b) 

c) 
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decreasing angles, and would appear to rotate counter-clockwise when the 

observer is at the position of the patient’s feet looking towards the head. 

 As mentioned previously, the geometry of the Icon is slightly different 

from the CBCT units on LINAC systems, such as the XVI CBCT on the Elekta 

Synergy. The detector is positioned closer to the axis of rotation, having an ADD 

of 210 mm (compared to an ADD of 500 mm on the XVI), which relatively 

increases the signal SPR [22]. On the other hand, the Icon has a built-in aluminum 

bowtie filter that is approximately 3 mm at the centre and increases up to 30 mm 

laterally, which relatively reduces the SPR. The x-ray tube focal spot is situated at 

a source-to-axis distance (SAD) of approximately 790 mm, making the source-to-

detector distance (SDD) of the system approximately 1000 mm. The beam 

projects a space that is largely located in positive 𝑧, i.e. the bottom of the detector 

sits around 𝑧 = -1 mm and the top of the detector sits around 𝑧 = 264 mm. The 

detector contains 780 x 720 pixels with a pixel resolution of 0.368 mm; the 

detector is around 287 mm by 265 mm. This creates a fan angle, 𝜙𝑓𝑎𝑛, of 

approximately 16º and a cone angle, 𝜙𝑐𝑜𝑛𝑒, of approximately 30º. See Figure 2-

1b and 2-1c. The system natively reconstructs a 224 x 224 x 224 mm3 volume 

with isotropic voxels of width 0.5 mm. The centre of the bottom-most axial slice 

sits at 𝑧 = 0 and the centre of the reconstructed volume sits on the axis of rotation. 

The system utilizes a half scan, rotating and acquiring projections relatively equi-

angularly through an angular distance of 𝜋 + 𝜙𝑓𝑎𝑛. The system natively scans at 

90 kVp but configurations can be altered to scan between a range of 70-120 kVp 

[17]. 

 

2.2 Synthetic Projection Simulation 

2.2.1 Overview of Workflow 

 The data acquisition process can be simulated analytically and through 

Monte Carlo to create synthetic projections. Doing so allows for the economical 

investigation of effects from beam collimation and VOI reconstruction. The 

artifacts and effects from different phenomena such as scatter, beam hardening, 



15 

 

and noise can be separated and studied independently, which would not be 

possible with real projection data. The workflow for producing synthetic 

projection data is comprehensive but effectively models the major physical 

processes of data acquisition, such as beam collimation, primary photons, scatter 

photons, noise, and blurring. This workflow is shown in Figure 2-2. Generally, 

the scatter signal is calculated through Monte Carlo, the primary signal is 

calculated analytically, the two components are combined and Poisson noise is 

added, and finally the projections are convolved with a point spread function. 

These steps will be described in detail in the following sections. 

 

2.2.2 Virtual Head Phantom 

 A patient head CT was used to create a virtual head phantom, which was 

then used for the creation of synthetic projection data. A slice of this phantom is 

shown in Figure 2-2. A virtual head phantom has more realistic anatomical 

structures when compared with virtual head phantoms defined by ellipses and 

rectangles, and also have scatter distributions with greater complexities. The 

patient head CT was resized and translated to an approximate Icon patient 

position and then segmented using image value intervals so that a segment was 

created for each of air, soft tissue, and bone. An 8 mm sphere was inserted on the 

axis of rotation close to where ventricles normally would be, to serve as a low 

contrast object in the VOI (an image of the phantom can be seen in Figure 3-6). 

In this case the level of contrast of the object could represent a tumor with 

injected contrast agent. The atomic composition in terms of weight fractions and 

the mass density of each material is shown in Table 2-1. The composition for air 

was defined from the pdcompos.p08 file from the PENELOPE 2008 Monte Carlo 

software package. The composition for brain is the ICRP defined brain 

composition [56]. The tumor composition was the ICRP defined brain 

composition but with added calcium. Although here calcium was added instead of 

a contrast agent, the object effectively had similar attenuation properties. For 

simplicity, the composition of bone used was pure hydroxyapatite, a common 
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mineral found in bone. To represent a good average between cortical and trab-

Figure 2-2: An overview of the synthetic projection data workflow. 
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ecular bone, a mass density of 1.20 g/cm3 was used. The data in Table 2-1 were 

used to define the phantom materials in Monte Carlo. 

 A Matlab function called ‘xraymu’ from Aprend Technology [57] was 

used to calculate the attenuation coefficients for each material. Xraymu uses x-ray 

attenuation data from NIST Report 5632 [58]. A mass weighted average was used 

to calculate the attenuation coefficients for each material (brain, tumor, and bone), 

which is shown in Eq. (2-4). 

𝜇𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝐸) = 𝜌𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙∑(
𝜇

𝜌
)
𝑖

(𝐸)  𝑤𝑖
𝑖

                            (2 − 4) 

Where the summation is over all the atomic elements in the material, 𝜌 is the 

mass density, and (
𝜇

𝜌
) (𝐸) is the mass attenuation coefficient as a function of 

energy, 𝐸. Eq. (2-5) defines the mass fraction (values shown in Table 2-1). 

𝑤𝑖 =
𝑛𝑖𝐴𝑖
∑ 𝑛𝑖𝐴𝑖𝑖

                                                    (2 − 5) 

Where 𝑛 is the number of atoms per molecule of the material and 𝐴 is the atomic 

mass. Avogadro’s number would normally appear in both the numerator and 

denominator and is therefore not shown. The attenuation coefficients calculated 

from Eq. (2-4) were used during polychromatic projection (see Section 2.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 

 

 

Table 2-1: The atomic composition of the materials used in the virtual head phantom. The values in the table 

are the mass fractions of the corresponding atomic element. 

Element, Z 

Air 

𝝆𝒂𝒊𝒓 = 0.0012 

g/cm3 

Brain 

𝝆𝒃𝒓𝒂𝒊𝒏 = 1.03 

g/cm3 

Tumor 

𝝆𝒕𝒖𝒎𝒐𝒓 = 1.04 

g/cm3 

Bone 

𝝆𝒃𝒐𝒏𝒆 = 1.2 

g/cm3 

H, 1 - 1.11E-1 1.04E-1 2.01E-3 

C, 6 1.24E-4 1.25E-1 1.18E-1 - 

N, 7 7.55E-1 1.33E-2 1.24E-2 - 

O, 8 2.32E-1 7.38E-1 6.91E-1 4.14E-1 

Na, 11 - 1.84E-3 1.72E-3 - 

Mg, 12 - 1.50E-4 1.41E-4 - 

P, 15 - 3.54E-3 3.31E-3 1.85E-1 

S, 16 - 1.77E-3 1.66E-3 - 

Cl, 17 - 2.36E-3 2.21E-3 - 

Ar, 18 1.28E-2 - - - 

K, 19 - 3.10E-3 2.90E-3 - 

Ca, 20 - 9.00E-5 6.31E-2 3.99E-1 

Fe, 26 - 5.00E-5 4.68E-5 - 

Zn, 30 - 1.00E-5 9.37E-6 - 

 

2.2.3 X-ray Propagation 

 It is known that the fluence, 𝜙, defined here to be the number of photons 

per unit area, of an x-ray beam decreases as it propagates through space (not 

considering the divergence of the beam), and can be modeled by the standard law 

of exponential attenuation, 

𝜙(𝑙) = 𝜙0𝑒
−∫ 𝜇(𝑙′)𝑑𝑙′

𝑙
0                                          (2 − 6) 

The attenuation coefficient, 𝜇, is a property of the matter that the x-ray beam 

passes through and can be interpreted as the probability of x-ray photon 

interaction with matter per unit length. This is clear when Eq. (2-6) is written in 

its differential form 
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𝑑𝜙

𝑑𝑙
= −𝜇(𝑙)𝜙                                                (2 − 7) 

 In radiography or CT, it is not possible to measure the fluence along the 

path, 𝑙, but rather only at the detector. The position of a polychromatic point 

source in the (𝑥′, 𝑦′, 𝑧′) coordinate system can be defined as 

𝒓𝒔(𝜃) = −𝑑𝑆𝐴𝐷𝒙′̂                                            (2 − 8) 

Where 𝑑𝑆𝐴𝐷 is the source-to-axis distance. The position of the centre of the 

detector plane (or point 𝑃 as described in Section 2.1) is 

𝒓𝒅(0,0, 𝜃) = 𝑑𝐴𝐷𝐷𝒙′̂                                           (2 − 9) 

Where 𝑑𝐴𝐷𝐷 is the axis-to-detector distance. Any point on the detector plane can 

then be described as 

𝒓𝒅(𝑢, 𝑣, 𝜃) = 𝑑𝐴𝐷𝐷𝒙′̂ + 𝑢(−𝒚′̂) + 𝑣𝒛′̂                        (2 − 10) 

Note that the unit vectors 𝒙′̂ and 𝒚′̂ change as a function of 𝜃. Then the direction 

of an x-ray is 

�̂�(𝑢, 𝑣, 𝜃) =
𝒓𝒅(𝑢, 𝑣, 𝜃) − 𝒓𝒔(𝜃) 

|𝒓𝒅(𝑢, 𝑣, 𝜃) − 𝒓𝒔(𝜃)|
                         (2 − 11) 

The length of the path that an x-ray propagates through is 

𝐿(𝑢, 𝑣, 𝜃) = |𝒓𝒅(𝑢, 𝑣, 𝜃) − 𝒓𝒔(𝜃)|                        (2 − 12) 

Eq. (2-6) can then be rewritten for cone-beam geometry. 

𝜙(𝑢, 𝑣, 𝜃) = 𝜙0𝑒
−∫ 𝜇(𝒓𝒔+𝑙�̂�)𝑑𝑙

𝐿
0                                 (2 − 13) 

𝜙0(𝑢, 𝑣, 𝜃) is the fluence in the absence of any attenuating matter, i.e. 𝜇 = 0. That 

is the essential meaning of 𝜙0, but using Eq. (2-13) to define 𝜙0 would mean that 

it is being defined in terms of itself, so it will be defined qualitatively in Section 

2.3. This derivation will be continued in Section 2.7, where more than one photon 

energy, scatter, noise, and blurring will be considered. 

 

2.3 Monte Carlo Simulation 

2.3.1 Phase Space 

 Previous work has been done by the Research and Development Team at 

Elekta to simulate and create phase space files for the Icon system using Monte 
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Carlo. The Monte Carlo software used was called Pegasos, an Elekta-owned and 

developed system. Pegasos is based on Penelope, a well-known and validated 

Monte Carlo system developed at the University of Barcelona for doing electron-

positron-photon transport in arbitrary materials and complex geometries. Pegasos 

features a graphical user interface called Hermes. Simulations were executed on a 

CPU cluster. A phase space file was used as an x-ray source for subsequent 

Monte Carlo simulations, and contained a list of photons with information of 

position, direction, energy, statistical weight, and scatter count number to be able 

to distinguish scattered particles from non-scattered particles. A CAD drawing of 

the Icon x-ray tube and the bowtie filter was used to simulate the phase space. For 

this simulation, a beam of 90 keV electrons was directed towards the anode and 

underwent interactions (e.g. bremsstrahlung and hard collisions) that produced x-

ray photons. The photons that crossed a plane 14 cm away were recorded, 

creating the 90 kVp phase space. 346,180,000 photons were recorded this way; let 

this number be represented by 𝑁𝑃𝑆 (the number of photons in the phase space). 

The creation of the phase space was crucial, as it served as a source for both 

subsequent Monte Carlo and analytical simulations. 

 

2.3.2 Flood Image Simulation 

 All Monte Carlo simulations henceforth were conducted using the 90 kVp 

phase space as the source. All components of the simulation (e.g. source, 

phantom, detector plane, rotation trajectory) were set up in the Icon CBCT 

positions described in Section 2.1. A simulation was conducted with no phantom 

present and 𝑁𝑃𝑆 photons were transported. Phase space information was recorded 

at the detector plane. This detector phase space was processed in Matlab by first 

binning the photons into 1 keV wide bins, with bin centres ranging from 10 keV 

to 89 keV. Then the photons in each energy bin were binned by position, into 58 x 

53 square bins 5 mm in width. Each bin/pixel was multiplied by the statistical 

weight of the photon and divided by the area of the pixel. Then the data was 

smoothed and up-sampled by the method described in Section 2.4, to the native 
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resolution of the Icon. This data, called the flood image, represents the photon 

fluence that reaches the detector when 𝑁𝑃𝑆 photons are used for simulation and 

there is no object in the FOV. This is the 𝜙0 that is used for Eq. (2-13), and is a 

function of 𝜙0(𝑢, 𝑣, 𝐸). Note that 𝜙0 does not change as a function of angle 𝜃. 

 

2.3.3 Scoring Scatter Energy Fluence 

 The realistic effects of beam collimation on scatter reduction can be 

accurately produced by using Monte Carlo to simulate the scatter signal under 

different sizes of collimation. The virtual head phantom was imported into Monte 

Carlo as voxels and materials were assigned to the corresponding segments. When 

simulating for scatter energy fluence, 3𝑁𝑃𝑆 photons were used. A 287 x 265 

fluence plane with pixels 1 mm wide was used to score the energy fluence of 

scattered photons. The simulation was repeated for 30 different angles of the 

beam. Instead of rotating the source and fluence plane, the phantom was rotated 

instead to achieve the same effect. Such a set of simulations represented the limit 

of practicality, taking around 4 hrs to complete on the CPU cluster. 

 To later generate realistic noise, it is necessary to know the scatter photon 

count as a function of 𝑢, 𝑣, 𝜃, and 𝐸. For 80 energy bins, and to maintain similar 

photon statistics, the simulation time could increase by a factor of 80. 

Furthermore, it is impractical to store this information as it would take around 56 

GB per simulated Icon scan. This data can be stored at a lower resolution and then 

up-sampled when it is needed, but that would be too computationally expensive. 

Instead, the number of scatter photons in each energy bin were calculated by 

assuming that the scatter photon energy spectrum was the same everywhere on the 

detector. Under this assumption, only photon energy fluence would need to be 

scored through Monte Carlo, making efficient use of storage and computation. 

Consider that the total photon energy fluence measured at a single pixel, 𝜓, is 

𝜓 =∑𝐸𝑖𝜅𝑖
𝑖

                                                (2 − 14) 
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Where the summation is over the energy bins, 𝐸𝑖 is the photon energy of that bin, 

and 𝜅𝑖 is the scatter photon fluence of that bin. Let Κ𝑠𝑐𝑎𝑡𝑡𝑒𝑟 be equal to 

Κ𝑠𝑐𝑎𝑡𝑡𝑒𝑟 =∑𝜅𝑖
𝑖

                                           (2 − 15) 

Then 

𝜓 = Κ𝑠𝑐𝑎𝑡𝑡𝑒𝑟∑𝐸𝑖
𝜅𝑖

Κ𝑠𝑐𝑎𝑡𝑡𝑒𝑟
𝑖

= Κ𝑠𝑐𝑎𝑡𝑡𝑒𝑟∑𝐸𝑖𝒮𝑖
𝑖

             (2 − 16) 

Where 𝒮𝑖 is the spectrum of scatter photons. Rearranging Eq. (2-16) for Κ𝑠𝑐𝑎𝑡𝑡𝑒𝑟, 

Κ𝑠𝑐𝑎𝑡𝑡𝑒𝑟 =
𝜓

∑ 𝐸𝑖𝒮𝑖𝑖
                                         (2 − 17) 

Then finally multiplying Eq. (2-17) by 𝒮𝑖 

𝜅𝑖 = Κ𝑠𝑐𝑎𝑡𝑡𝑒𝑟 𝒮𝑖 =
𝜓

∑ 𝐸𝑖𝒮𝑖𝑖
 𝒮𝑖                                (2 − 18) 

The scatter photon fluence at each energy bin can be calculated from the Monte 

Carlo computed 𝜓(𝑢, 𝑣, 𝜃). 

 As discussed, it is impractical to store or compute 𝒮𝑖 for every pixel. To 

overcome this practical limitation, an average 𝒮𝑖 was used for every pixel. The 

assumption that 𝒮𝑖 does not vary as a function of detector position was supported 

by a simulation of the virtual head phantom where the scatter photons (only) were 

scored in a phase space. With a binning method similar to the one described in 

Section 2.3.2, the energy spectrum of the scatter photons was analyzed (see 

Section 3.1). After the assumption was justified, a spectrum plane was used in 

subsequent simulations to only measure the average scatter photon spectrum of 

the whole detector area, to obtain 𝒮𝑖(𝜃) for that scan simulation. 

 

2.3.4 Dose Measurements 

 Pegasos accounts for the attenuation coefficients assigned to the virtual 

phantom and uses a dose box to score the energy absorbed throughout the 

simulation. The energy absorbed was divided by the mass density of the material 

to arrive at the dose. A dose box was scored for each simulation, i.e. each angle, 

and the results were summed in Matlab to find the total dose distribution of the 
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scan. The total simulated dose was then upscaled to the correct number of 

projection angles and multiplied by 𝑁𝑚𝐴𝑠 (see Section 2.7.2 for the definition of 

𝑁𝑚𝐴𝑠). Since 3D dose data would be scored for each angle, the data size of the 

results would increase rapidly for large box sizes. For this experiment, low 

resolution dose information was sufficient; a 56 x 56 x 56 voxels dose box with 

voxel width of 4 mm was used. The dose data for different collimator sizes was 

compared using the integral dose fraction 

𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑑𝑜𝑠𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
∑ 𝐷𝑐𝑜𝑙𝑙𝑖𝑚𝑎𝑡𝑒𝑑,𝑖𝑖

∑ 𝐷𝑓𝑢𝑙𝑙𝑓𝑖𝑒𝑙𝑑,𝑖𝑖
                     (2 − 19) 

Where the summation is over all the voxels of the virtual phantom. 

 

2.4 Scatter Distribution De-noising and Up-sampling 

 The scatter energy fluence scored from Monte Carlo is orders of 

magnitude noisier than reality and requires de-noising before use. As discussed 

previously, it has been shown that the scatter distribution from typical CBCT 

scans contain mostly low spatial and angular frequencies [22] [23]. The de-

noising and up-sampling method used in this work was adapted from [23] [24]. 

The raw scatter photon energy fluence, 𝜓𝑟𝑎𝑤(𝑢, 𝑣, 𝜃), is first 3D Fourier 

transformed to �̃�𝑟𝑎𝑤(𝜔𝑢, 𝜔𝑣, 𝜔𝜃). The full spectrum contains, e.g. 287 x 265 x 30 

points. The positive and negative sides of the spectrum are then zero padded so 

that the number of points is equal to the up-sampled size, e.g. 780 x 720 x 334 

points. Then the spectrum is filtered by the 3D Butterworth filter, 𝐵(𝜔𝑢, 𝜔𝑣, 𝜔𝜃), 

of the up-sampled size. Then the data is transformed back to the space domain. 

The 3D Butterworth filter is 

 𝐵(𝜔𝑢, 𝜔𝑣, 𝜔𝜃) =
1

1+((
2𝜔𝑢
𝜔𝑢,𝑐𝑢𝑡

)
2

+(
2𝜔𝑣
𝜔𝑣,𝑐𝑢𝑡

)
2

+(
2𝜔𝜃
𝜔𝜃,𝑐𝑢𝑡

)
2

)

3               (2 − 20) 

This filter has a value of 1 for the DC frequency and decreases as 𝜔𝑢, 𝜔𝑣, and 𝜔𝜃 

increases. The ‘width’ of this filter is controlled by the cut-off frequencies 𝜔𝑢,𝑐𝑢𝑡, 

𝜔𝑣,𝑐𝑢𝑡, and 𝜔𝜃,𝑐𝑢𝑡. The cut-off frequencies were determined heuristically and are 
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shown in Table 2-2. This same method was used to de-noise and up-sample the 

flood image. 

Table 2-2: The frequency cut-offs for de-noising results from Monte Carlo. 

 𝝎𝒖,𝒄𝒖𝒕 (mm-1) 𝝎𝒗,𝒄𝒖𝒕 (mm-1) 𝝎𝜽,𝒄𝒖𝒕 (rad-1) 

Catphan 503 0.030 0.030 8/𝜋 

Virtual Head Phantom 0.032 0.032 8/𝜋 

Flood Image 0.028 0.014 - 

 

2.5 Forward Projection Operation 

 The forward projection operation in CT is the calculation of the integral in 

Eq. (2-13), rewritten here  

𝑝(𝑢, 𝑣, 𝜃) = ∫𝜇(𝒓𝒔 + 𝑙�̂�)𝑑𝑙

𝐿

0

                               (2 − 21) 

For discrete data, this integral can be evaluated in many different ways with 

varying levels of accuracy. Generally, the higher the accuracy, the more 

computationally expensive it is. The forward projection is used many times 

repeatedly in iterative reconstruction algorithms and its accuracy and efficiency is 

important for fast convergence rates. 

 For this work a ray-driven forward projector is used, similar in idea to 

[59]. The first step is to start in the rotated coordinate system (𝑥′, 𝑦′, 𝑧′) and the 

detector coordinate system (𝑢, 𝑣, 𝜃). A line is connected in thought from the 

source to a pixel on the detector at (𝑢, 𝑣). The vectors 𝒓𝒔 and �̂� are not calculated 

explicitly, but rather the proportionality of similar triangles is used to find the set 

of points (𝑥′, 𝑦′, 𝑧′) that lie on this line. A loop is made over each of the 𝑥′ 

planes, e.g. 𝑥′ = -111.75 mm, 𝑥′ = -111.25 mm, 𝑥′ = -110.75 mm, …, 𝑥′ = 111.75 

mm, to find the values 𝑦′ and 𝑧′ that lie on the line and the 𝑥′ plane. Eq. (2-22) 

and (2-23) are true from the proportionality of similar triangles. 

𝑦′

𝑢
= −

𝑑𝑆𝐴𝐷 + 𝑥
′

𝑑𝑆𝐷𝐷
                                          (2 − 22) 

𝑧′

𝑣
=
𝑑𝑆𝐴𝐷 + 𝑥

′

𝑑𝑆𝐷𝐷
                                            (2 − 23) 
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Where 𝑑𝑆𝐷𝐷 is the source-to-detector distance. The second step is to convert the 

set of points on the line in terms of (𝑥′, 𝑦′, 𝑧′) back to the fixed coordinate system 

(𝑥, 𝑦, 𝑧) so that the array holding the object can be referenced. Let 𝑹𝒛(𝜃) be the 

rotation matrix that rotates the 𝑥 and 𝑦 axes about the 𝑧-axis counter-clockwise. 

𝑹𝒛(𝜃) = [
cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0
0 0 1

]                                (2 − 24) 

The points on the line in terms of (𝑥, 𝑦, 𝑧) are then just 

[
𝑥
𝑦
𝑧
] = 𝑹𝒛(−𝜃) [

𝑥′

𝑦′

𝑧′
]                                       (2 − 25) 

The set of points in terms of (𝑥, 𝑦, 𝑧) are then converted to the matrix indices 

(𝑖, 𝑗, 𝑘) by 

[
𝑖
𝑗
𝑘
] =

1

𝑤𝑣𝑜𝑥
([
𝑥
𝑦
𝑧
] − [

𝑥0
𝑦0
𝑧0
])                                 (2 − 26) 

Where (𝑥0, 𝑦0, 𝑧0)
𝑇 is the position of the most negatively positioned image voxel 

and 𝑤𝑣𝑜𝑥 is the width of an image voxel. So the forward projection can then be 

written as 

𝑝(𝑢, 𝑣, 𝜃) = 𝑑𝐿∑�̅�(𝑖, 𝑗, 𝑘)

𝑥′

                                (2 − 27) 

Where �̅�(𝑖, 𝑗, 𝑘) is the trilinearly interpolated 𝜇 value at (𝑖, 𝑗, 𝑘) and 𝑑𝐿 is the 

pathlength 

𝑑𝐿 = 𝑤𝑣𝑜𝑥
√𝑢2 + 𝑣2 + (𝑑𝑆𝐷𝐷)2

𝑑𝑆𝐷𝐷
                          (2 − 28) 

The interpolated �̅�(𝑖, 𝑗, 𝑘) is shown in the Appendix. 

 

2.6 Backprojection Operation 

 The backprojection operation is the calculation of the integral 

𝑏(𝑥, 𝑦, 𝑧) = ∫ 𝑝(𝑢, 𝑣, 𝜃)𝑑𝜃

2𝜋

0

                                (2 − 29) 
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It is unclear what is happening in this integral until the variables 𝑢 and 𝑣 are 

written in terms of 𝑥, 𝑦, and 𝑧. Furthermore, the backprojection operation does 

not model any physical process, but rather appears in reconstruction algorithms as 

a result of using the Fourier slice theorem [36], inverting the Radon transform 

[40] [60], or as the transpose of the forward projection matrix [36]. This integral 

alone does not necessarily reconstruct an image; filtering or weights are needed. 

Eq. (2-29) merely shows that the idea of the backprojection is to integrate 

projection values over a range of projection angles. Many ways exist, also, to 

evaluate Eq. (2-29) for discrete data. It is important that it is computed accurately 

and efficiently for image reconstruction. 

 A voxel-driven backprojection is used in this work. A loop over each 

voxel in the image is performed. The position of each voxel is then rotated by 

[
𝑥′

𝑦′

𝑧′
] = 𝑹𝒛(𝜃) [

𝑥
𝑦
𝑧
]                                        (2 − 30) 

Or 

𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃                                    (2 − 31) 

𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃                                  (2 − 32) 

𝑧′ = 𝑧                                                   (2 − 33) 

The voxel-driven idea is to imagine a line that connects the source with the image 

voxel. Then, using the proportionality of similar triangles again, the point on the 

detector that is hit by the line is 

𝑢 = −𝑦′
𝑑𝑆𝐷𝐷

𝑑𝑆𝐴𝐷 + 𝑥′
                                          (2 − 34) 

𝑣 = 𝑧′
𝑑𝑆𝐷𝐷

𝑑𝑆𝐴𝐷 + 𝑥′
                                           (2 − 35) 

Eq. (2-29) can now be rewritten with Eq. (2-34) and (2-35) to get an equation for 

backprojection under cone-beam geometry. 

𝑏(𝑥, 𝑦, 𝑧) = ∫𝑝 (−𝑦′
𝑑𝑆𝐷𝐷

𝑑𝑆𝐴𝐷 + 𝑥′
, 𝑧′

𝑑𝑆𝐷𝐷
𝑑𝑆𝐴𝐷 + 𝑥′

, 𝜃) 𝑑𝜃

𝜋

0

          (2 − 36) 

Like for the forward projector, 𝑢 and 𝑣 were converted to array indices 
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[
𝑖
𝑗
] =

1

𝑤𝑝𝑖𝑥
([
𝑢
𝑣
] − [

𝑢0
𝑣0
])                                 (2 − 37) 

Where (𝑢0, 𝑣0)
𝑇 is the position of the most negatively positioned projection pixel 

and 𝑤𝑝𝑖𝑥 is the width of a projection pixel. The voxel-driven backprojection can 

now be written discretely as 

𝑏(𝑥, 𝑦, 𝑧) ∝∑�̅�(𝑖, 𝑗)

𝜃

                                   (2 − 38) 

Where �̅� has been interpolated using bilinear interpolation (See the Appendix). 

 The forward and backprojection operations were written in CUDA C to be 

executed mainly on the GPU using texture memory. Texture memory is designed 

to be able to efficiently perform 3D linear interpolations and offers a tremendous 

reduction in computation times. However it only performs linear interpolation 

when reading pixel/voxel values and therefore it is most practical for these 

algorithms to loop over the pixels/voxels of the output array. For example, the 

ray-driven forward projector loops over and writes to the projection pixels, which 

do not require interpolation, and each ray reads image values stored on texture 

memory, which need to be interpolated. The voxel-driven backprojector loops 

over image voxels, which do not require interpolation, and reads projection values 

stored on texture memory, which need to be interpolated. Texture memory could 

not be exploited this way for voxel-driven forward projectors and ray-driven 

backprojectors. 

 

2.7 Polychromatic Projection 

2.7.1 Material Length Projection 

 Discussion here will continue from Section 2.2.3, now that the scatter 

generation and forward and backward projections have been discussed. Eq. (2-13) 

describes the fluence at a detector pixel for photons of a single energy. To do the 

forward projection the virtual phantom array can just be filled with the attenuation 

coefficients of a certain energy using Eq. (2-4). However, the virtual phantom 

would need to be refilled with attenuation coefficients for each energy bin and 
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forward projected each time. Instead, it is faster to find the total path length of a 

certain material, e.g. 𝐿𝑏𝑟𝑎𝑖𝑛, 𝐿𝑡𝑢𝑚𝑜𝑟, and 𝐿𝑏𝑜𝑛𝑒. To do this, the virtual head 

phantom was forward projected only 3 times, once for each of the materials brain, 

tumor, and bone. For example, during the forward projection of the brain, the 

voxels containing brain were set to a value of 1, and all other voxels are set to 0. 

Then Eq. (2-27) would calculate 𝐿𝑏𝑟𝑎𝑖𝑛(𝑢, 𝑣, 𝜃). The forward projection of each 

material is shown in Figure 2-2. This is efficient because 𝐿𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 does not 

change as a function of energy, and it is fast for xraymu to compute the vector of 

attenuation coefficients for each material, 𝜇𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝐸). Eq. (2-13) can be 

rewritten with the new exponent 

𝜙(𝑢, 𝑣, 𝜃) = 𝜙0exp(− ∑ 𝜇𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝐸)𝐿𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙(𝑢, 𝑣, 𝜃)

𝑁𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙

)     (2 − 39) 

 Let Eq. (2-39) be equal to 𝜙𝑃(𝑢, 𝑣, 𝜃, 𝐸): the number of primary photons 

of a certain energy that hit a certain detector pixel per unit area. Now 𝜙𝑃 needs to 

be added with 𝜙𝑆(𝑢, 𝑣, 𝜃, 𝐸), the number of scatter photons per unit area. From 

de-noising and up-sampling the raw Monte Carlo scatter energy fluence, 

𝜓𝑟𝑎𝑤(𝑢, 𝑣, 𝜃), to get the processed scatter energy fluence 𝜓(𝑢, 𝑣, 𝜃), Eq. (2-18) 

can be used to get 𝜙𝑆(𝑢, 𝑣, 𝜃, 𝐸). The total of both primary and scatter fluence 

incident on the detector is then 

𝜙𝑇(𝑢, 𝑣, 𝜃, 𝐸) = 𝜙𝑃(𝑢, 𝑣, 𝜃, 𝐸) +
1

3
𝜙𝑆(𝑢, 𝑣, 𝜃, 𝐸)             (2 − 40) 

The scatter fluence is divided by 3 because 3 times as many photons from the 

phase space were used for the scatter simulation (Section 2.3.3) than for the flood 

image simulation (Section 2.3.2). 

 

2.7.2 Poisson Noise Generation 

 Poisson noise was generated in Matlab using the ‘imnoise’ function. The 

mean used for the Poisson distribution was 𝑁𝑇, the total photons at the pixel 

𝑁𝑇(𝑢, 𝑣, 𝜃, 𝐸) = 𝜙𝑇(𝑢, 𝑣, 𝜃, 𝐸)𝑤𝑝𝑖𝑥
2𝑁𝑚𝐴𝑠                     (2 − 41) 
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𝜙𝑇 is the fluence (from both primary and scatter) that results from using 𝑁𝑃𝑆 

photons in the simulation, but does not represent the actual level of fluence from a 

real scan. 𝑁𝑚𝐴𝑠 is a factor to rescale 𝜙𝑇 to get a realistic number of photons 

hitting the detector, and was determined by comparing noise power spectra of real 

and synthetic Catphan projections (see Section 2.8). For completeness, 𝑁𝑚𝐴𝑠 was 

5 x 103. Let the tilde represent that the number of photons is Poisson distributed. 

After noise generation the units were converted back 

�̃�𝑇(𝑢, 𝑣, 𝜃, 𝐸) =
�̃�𝑇(𝑢, 𝑣, 𝜃, 𝐸)

𝑤𝑝𝑖𝑥2𝑁𝑚𝐴𝑠
                             (2 − 42) 

 Assume that the signal produced by the detector is linearly proportional to 

the fluence reaching the detector for photon energies under 100keV. Then the 

signal can be written as 

𝐼(𝑢, 𝑣, 𝜃, 𝐸) = 𝜀𝐸�̃�𝑇(𝑢, 𝑣, 𝜃, 𝐸)                             (2 − 43) 

Where 𝜀 is a proportionality constant. The tilde is not used for 𝐼 but it is 

understood that there is noise in 𝐼. Since the beam is polychromatic, as are the 

simulations using phase space sources, the signal should be an integration over 

energy 

𝐼(𝑢, 𝑣, 𝜃) = ∫𝜀𝐸�̃�𝑇(𝑢, 𝑣, 𝜃, 𝐸) 𝑑𝐸                          (2 − 44) 

To find the signal when there is no object in the FOV, Eq. (2-39) to (2-44) can be 

used in the case that 𝜇 = 0, there is no scatter, and there is no noise.  

𝐼0(𝑢, 𝑣) = ∫𝜀𝐸𝜙0(𝑢, 𝑣, 𝐸) 𝑑𝐸                            (2 − 45) 

 

2.7.3 Projection Point Spread Function Blurring 

 When a photon hits the detector, more than just conversion to an electric 

signal occurs. The photon is propagated through a scintillating material that 

causes the spread of a ray of photons. This spread is difficult to model, as it 

depends on the direction of the incident ray and its energy. Almost all primary 

photons that are absorbed by a pixel will have hit the detector from the same 

angle of incidence. On the other hand, scatter photons that are absorbed by a pixel 
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hit the detector from many different angles of incidence. Furthermore, the object 

is in constant rotational motion with respect to the source and detector, so the 

attenuation coefficients picked up by the ray are blurred. The beam of photons 

produced by the x-ray tube can be traced back to originate from a focal spot rather 

than a single point, as described by the position of the point source, 𝒓𝒔, in Eq. 2-

13. Therefore the forward projector does not account for the fact that the point 

source exists in many different locations. These are all blurring effects that have 

not yet been accounted. 

 For practicality, a single, radially symmetric point spread function (PSF) 

was used to represent all the effects mentioned above. The point spread function 

model used in this work was adapted and simplified from Mikael Kordel’s thesis 

[61]. Through trying a range of PSF parameters and comparing the real and 

simulated noise power spectrum (NPS) of a Catphan 503 phantom, the best 

matching point spread function used was 

























0013.00039.00062.00039.00013.0

0039.00213.00565.00213.00039.0

0062.00565.06271.00565.00062.0

0039.00213.00565.00213.00039.0

0013.00039.00062.00039.00013.0

),( vuh  

Though not shown in the equation, the PSF was convolved simply with the signal 

in Eq. (2-44). 

 

2.8 Noise Power Spectrum Calculation 

 Real projections of Catphan 503 scanned with the Icon CBCT were 

acquired. Synthetic projections of Catphan 503 were created by using a structural 

model of the Catphan. The objective was to compare the noise in the uniformity 

module of the Catphan, CTP486. The Catphan contains over 15 materials and 

inclusion of all materials would result in massive memory use for Eq. (2-39) as 

well as Monte Carlo. Since Monte Carlo was used only to generate the scatter 

distribution, only 3 materials were assigned: the uniformity material in CTP486, 

and two filler materials. It was assumed that not assigning materials to the smaller 
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objects of the Catphan would not significantly affect the scatter. The same 3 

materials were used to calculate the primary fluence, since the cylinders in the 

sensitometry module and the bars in the line pair module did not interfere with the 

forward projection of the uniformity module. To evaluate both the level of noise 

and the blurring, the noise power spectrum of the data was calculated. The 

following formula was used to calculate the NPS 

𝑁𝑃𝑆(𝜔𝑢, 𝜔𝑣) =
𝑤𝑝𝑖𝑥𝑤𝑝𝑖𝑥

𝑁𝑢𝑁𝑣
〈|𝐹𝑇[𝐼(𝑢, 𝑣) − 𝐼(̅𝑢, 𝑣)]|2〉           (2 − 46) 

Where 𝑁𝑢 and 𝑁𝑣 are the number of pixels on the projection. The mean of the 

signal, 𝐼(̅𝑢, 𝑣), was approximated by calculating the mean of pixels in a flat 

region. The NPS was calculated for a 50 x 50 pixel region near the centre of the 

Catphan in the uniformity module that was as uniform as possible (see Figure 2-

3). This was repeated for 60 projections to get a good average NPS. A range of 

PSF parameters and 𝑁𝑚𝐴𝑠 values were searched to find the PSF and 𝑁𝑚𝐴𝑠 value 

that made the best match between real and synthetic NPS. The NPS-matching 

𝑁𝑚𝐴𝑠 was found to be 5 x 103, and the best matching PSF is shown in Section 

2.7.3. After this initial verification of the synthetic data with Catphan 503, the 

same 𝑁𝑚𝐴𝑠 and PSF was used for all subsequent simulations. 

Figure 2-3: A synthetic projection of the Catphan 503, shown with a very narrow window. The blue 

box shows the selection of a uniform (as uniform as possible) region in which the NPS was calculated. 
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2.9 FDK Reconstruction 

2.9.1 Standard FDK 

 An image of the scanned object can be reconstructed by the data collected; 

that is, a map of the attenuation coefficients can be reconstructed. From the signal 

collected, an integral of the attenuation coefficients can be written 

ln
𝐼0(𝑢, 𝑣)

𝐼(𝑢, 𝑣, 𝜃)
= ∫𝜇(𝒓𝒔 + 𝑙�̂�)𝑑𝑙

𝐿

0

= 𝑝(𝑢, 𝑣, 𝜃)                   (2 − 47) 

Let the projection data be denoted in short by 𝑝(𝑢, 𝑣, 𝜃). It is not necessary to 

know 𝜀 in Eq. 2-44 and 2-45 since it will cancel out in Eq. 2-47. Note that the 

reconstructed attenuation coefficients will not be a function of any single energy, 

but rather an average from the spectra in the acquisition beam. From the 

projection data, the integral of the attenuation coefficients is known, the purpose 

of the reconstruction algorithm is to find the location of the attenuation 

coefficients. 

 FDK is the clinical standard for CBCT reconstruction because of its 

accuracy, ease of computation, and robustness. The first step is to multiply the 

projection data with the cosine weights, 𝑊𝑐, 

𝑊𝑐(𝑢, 𝑣) =
𝑑𝑆𝐷𝐷

√𝑑𝑆𝐷𝐷
2 + 𝑢2 + 𝑣2

                            (2 − 48) 

The CBCT systems that use a half scan (𝜋 + 𝜙𝑓𝑎𝑛) will have some redundant data 

at the beginning and end of the scan [62]. To prevent rays from being double-

counted, the projections are multiplied by the cone-beam Parker weights [63], 𝑊𝑃, 

shown in the Appendix. The weighted data are then filtered by the ramp filter 

multiplied by a Hamming window. 

𝐻(𝜔𝑢) = |𝜔𝑢| (0.54 + 0.46 cos (𝜋
|𝜔𝑢|

𝜔𝑢,𝑁𝑦𝑞
))              (2 − 49) 

The weighted and filtered data is 

𝑝𝐹(𝑢, 𝑣, 𝜃) = ℎ(𝑢) ∗ (𝑊𝑃(𝑢, 𝑣, 𝜃)𝑊𝑐(𝑢, 𝑣)𝑝(𝑢, 𝑣, 𝜃))     (2 − 50) 
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The ramp filter in Eq. (2-50) is shown in the space domain but is often applied in 

the frequency domain. Using Eq. (2-36), the last step is to back project with an 

additional weighting [36] 

𝜇(𝑥, 𝑦, 𝑧) ≈ ∫ (
𝑑𝑆𝐴𝐷

𝑑𝑆𝐴𝐷 + 𝑥′
)
2

𝑝𝐹 (−𝑦
′

𝑑𝑆𝐷𝐷
𝑑𝑆𝐴𝐷 + 𝑥′

, 𝑧′
𝑑𝑆𝐷𝐷

𝑑𝑆𝐴𝐷 + 𝑥′
, 𝜃) 𝑑𝜃

𝜋+𝜙𝑓𝑎𝑛

0

      

(2 − 51) 

 

2.9.2 Cosine Edge Extrapolation 

 To reconstruct truncated projections, the edges were transversely 

extrapolated with a cosine function as a preprocessing step. The extrapolation is 

performed in the transverse direction, which is the same direction as the ramp 

filtering. For data with 𝑁𝑢 pixels in the full FOV, consider the acquisition of VOI 

data from pixels 𝑛1 to 𝑛2 (inclusive), where 1 < 𝑛1 < 𝑛2 < 𝑁𝑢. Data 

extrapolation is done to fill in the pixels from pixel 1 to 𝑛1 − 1 and 𝑛2 + 1 to 𝑁𝑢. 

On the left side of the projection, the extrapolated values are 

𝑝(𝑛𝑢) = 𝑝(𝑛1) cos
2 (

𝜋

2(𝑛1 − 1)
(𝑛𝑢 − 𝑛1))                   (2 − 52) 

On the right side of the projection, the extrapolated values are 

𝑝(𝑛𝑢) = 𝑝(𝑛2) cos
2 (
𝜋

2

𝑛𝑢 − 𝑛2
𝑁𝑢 − 𝑛2

)                            (2 − 53) 

This extrapolation makes the data continuous at the truncation boundary. The 

frequency of each cosine function was chosen such that the extrapolation reaches 

0 at the edge of the detector. However, different frequencies can be used, or the 

same frequency can be forced for both sides of the projection. Generally the 

extrapolation can be performed for frequencies 𝑓1 and 𝑓2 

𝑝(𝑛𝑢) = 𝑝(𝑛1) cos
2(𝜋𝑓1(𝑛𝑢 − 𝑛1))                          (2 − 54) 

𝑝(𝑛𝑢) = 𝑝(𝑛2) cos
2(𝜋𝑓2(𝑛𝑢 − 𝑛2))                         (2 − 55) 

For the left and right side of the projections respectively. 
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2.10 Iterative Reconstruction 

2.10.1 OS-SART with TV Regularization 

 The x-ray forward projection can be modelled by a large system of linear 

equations. To see a good explanation of this, refer to Chapter 7 of [36]. Instead of 

referring to the image as 𝜇(𝑥, 𝑦, 𝑧), let 𝝁 represent a vector of dimension 

𝑁𝑥 𝑥 𝑁𝑦 𝑥 𝑁𝑧 (or the number voxels, 𝑁𝑣𝑜𝑥 in the reconstructed image). Let 𝒃 

represent a vector of dimension 𝑁𝑢 𝑥 𝑁𝑣 𝑥 𝑁𝜃 (the number of projected pixels, 

𝑀𝑝𝑖𝑥). Then 

𝑨𝝁 = 𝒃                                                    (2 − 56) 

Where 𝑨 is an 𝑀𝑝𝑖𝑥 𝑥 𝑁𝑣𝑜𝑥 matrix that represents the forward projection 

operation, and 𝒃 is the projected data. For this section, let 𝑖 represent the index of 

the projection pixel and 𝑗 represent the index of the image voxel. 

 In theory, an image is reconstructed by finding 𝝁 that minimizes the data 

error norm. The reconstructed image can be regularized by also minimizing the 

total variation of the image. This is a powerful technique that can remove noise 

from the image and ‘fill in’ data in few-view CT [12]. The definition of the total 

variation used in this work is the ℓ1-norm of the gradient-magnitude image [12]. 

The total variation is minimized using gradient descent; that is, the gradient with 

respect to 𝝁. 

𝝁(𝑘+1) = 𝝁(𝑘) − 𝛽𝛾𝛁𝝁‖𝝁
(𝑘)‖

𝑇𝑉
                             (2 − 57) 

Where 𝛽 is a parameter that is used to control the strength of the regularization 

and 𝛾 is a normalization for the gradient. Let the total variation of an image be 

represented by ‖𝝁‖𝑇𝑉, then the gradient of the total variation with respect to 𝝁 is 

[12] 

𝛁𝝁‖𝝁‖𝑇𝑉 =∑
𝜕

𝜕𝜇𝑖
‖𝝁‖𝑇𝑉�̂�𝒊

𝑖

                             (2 − 58) 

Where �̂�𝒊 is the unit vector of the 𝑖-th voxel. 

 For this paragraph only, regard 𝝁 instead as an array in 3D space. Let 𝑖 

represent the 𝑖-th voxel in the x-direction, 𝑗 represent the 𝑗-th voxel in the y-
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direction, and 𝑘 represent the 𝑘-th voxel in the z-direction. Then Eq. (2-58) can be 

written discretely as [12] 

𝑑𝑖,𝑗,𝑘

=
3𝜇𝑖,𝑗,𝑘 − 𝜇𝑖−1,𝑗,𝑘 − 𝜇𝑖,𝑗−1,𝑘 − 𝜇𝑖,𝑗,𝑘−1

√(𝜇𝑖,𝑗,𝑘 − 𝜇𝑖−1,𝑗,𝑘)2 + (𝜇𝑖,𝑗,𝑘 − 𝜇𝑖,𝑗−1,𝑘)2 + (𝜇𝑖,𝑗,𝑘 − 𝜇𝑖,𝑗,𝑘−1)2 + 𝜀

−
𝜇𝑖+1,𝑗,𝑘 − 𝜇𝑖,𝑗,𝑘

√(𝜇𝑖+1,𝑗,𝑘 − 𝜇𝑖,𝑗,𝑘)2 + (𝜇𝑖+1,𝑗,𝑘 − 𝜇𝑖+1,𝑗−1,𝑘)2 + (𝜇𝑖+1,𝑗,𝑘 − 𝜇𝑖+1,𝑗,𝑘−1)2 + 𝜀

−
𝜇𝑖,𝑗+1,𝑘 − 𝜇𝑖,𝑗,𝑘

√(𝜇𝑖,𝑗+1,𝑘 − 𝜇𝑖−1,𝑗,𝑘)2 + (𝜇𝑖,𝑗+1,𝑘 − 𝜇𝑖,𝑗,𝑘)2 + (𝜇𝑖,𝑗+1,𝑘 − 𝜇𝑖,𝑗+1,𝑘−1)2 + 𝜀

−
𝜇𝑖,𝑗,𝑘+1 − 𝜇𝑖,𝑗,𝑘

√(𝜇𝑖,𝑗,𝑘+1 − 𝜇𝑖−1,𝑗,𝑘+1)
2 + (𝜇𝑖,𝑗,𝑘+1 − 𝜇𝑖,𝑗−1,𝑘+1)

2 + (𝜇𝑖,𝑗,𝑘+1 − 𝜇𝑖,𝑗,𝑘)
2 + 𝜀

 

(2 − 59) 

Where 𝜀 is a small constant to prevent the evaluation of a singularity. 

 An image is reconstructed by the following equation 

𝝁∗ = argmin{‖𝒃 − 𝑨𝝁‖2
2 + 𝛽‖𝝁‖𝑇𝑉}                       (2 − 60) 

Where 𝒃 is the acquired projection data. For minimization of the data fidelity 

term, the ordered subset simultaneous algebraic reconstruction technique (OS-

SART) [64] is used. Dividing the projection data into subsets increases the 

convergence rate when compared to using all projections in one iteration. In 

regular SART the image is updated with 

𝝁(𝑡+1) = 𝝁(𝑡) + 𝛼𝑪𝑨𝑻𝑹(𝒃 − 𝑨𝝁(𝑡))                           (2 − 61) 

Where 𝑹 (row-sum) is an 𝑀𝑝𝑖𝑥 𝑥 𝑀𝑝𝑖𝑥 diagonal matrix whose entries are 

𝑟𝑖,𝑖 =
1

∑ 𝑎𝑖,𝑗𝑗
                                                  (2 − 62) 

𝑪 (column-sum) is an 𝑁𝑣𝑜𝑥 𝑥 𝑁𝑣𝑜𝑥 diagonal matrix whose entries are 

𝑐𝑗,𝑗 =
1

∑ 𝑎𝑖,𝑗𝑖
                                                  (2 − 63) 

𝑨𝑻 represents the backprojection operation and 𝛼 is a relaxation parameter. 

 In OS-SART the set of projection data are divided into subsets and Eq. (2-

61) cycles through each subset. In the case of the Icon projection data set, the 334 

projections were divided into 25 subsets with 13 projections in each subset, 

leaving 9 projections unused. A 26th subset with 9 projections in it could be used, 
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but for simplicity, the size of each subset was kept the same. This procedure 

implies that the forward projection matrix, 𝑨, back projection matrix, 𝑨𝑻, inverse 

row-sum matrix, 𝑹, inverse column-sum matrix, 𝑪, and the measured projections, 

𝒃, will be unique to each subset of projections. Let 𝑠 represent the subset number, 

𝑁𝑠 represent the total number of subsets, and 𝑡 represent the iteration number, 

then 

𝑠 = mod(𝑡, 𝑁𝑠)                                             (2 − 64) 

Eq. (2-61) can be rewritten to acknowledge the current subset in the iteration 

𝝁(𝑡+1) = 𝝁(𝑡) + 𝛼𝑁𝑠𝑪𝑨
𝑻
𝑠𝑹𝑠(𝒃𝑠 − 𝑨𝑠𝝁

(𝑡))                    (2 − 65) 

From an implementation standpoint, none of the subset dependent matrices 

require re-computation except for 𝑪𝑠. To alleviate computational burden, in this 

work 

𝑪𝑠 = 𝑁𝑠𝑪                                                 (2 − 66) 

For all 𝑪𝑠, which should be a close approximation, given 𝑁𝑠 is not too large. In 

this work, one iteration is counted after one subset is used, since the 

computational costs of Eq. (2-61) and Eq. (2-65) are similar. 

 The algorithm contains a few hyperparameters, 𝛼, 𝛽 (which were already 

mentioned), 𝛼𝑟, 𝛽𝑟, 𝛽𝑚𝑖𝑛, 𝑇𝑂𝑆−𝑆𝐴𝑅𝑇, and 𝑇𝑇𝑉. 𝛼𝑟 and 𝛽𝑟 are the relaxation rates. 

After each respective iteration, 𝛼 and 𝛽 are updated by 

𝛼 ≔ 𝛼 × 𝛼𝑟                                                (2 − 67) 

𝛽 ≔ 𝛽 × 𝛽𝑟                                                (2 − 68) 

Following the algorithm in [52], 𝛼 = 1, and is not relaxed (𝛼𝑟 = 1). The 

regularization strength and its relaxation rate are varied depending on the 

reconstruction, and will be specified correspondingly in the Results section. Since 

the OS-SART step never relaxes, after many iterations when 𝛽 is sufficiently low, 

noise will be reintroduced into the image. To control the level of noise, 𝛽 is 

always reduced to a minimum of 𝛽𝑚𝑖𝑛, which was 0.000033. Note that in some 

reconstructions this point was never reached. 𝑇𝑂𝑆−𝑆𝐴𝑅𝑇 and 𝑇𝑇𝑉 are the number of 

iterations for each of the minimization steps. The structure of the algorithm is 

summarized below 
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1. Iterate outer loop 𝑇𝑂𝑆−𝑆𝐴𝑅𝑇 times 

2.  Do OS-SART (Eq. (2-65)) 

3.  Iterate inner loop 𝑇𝑇𝑉 times 

4.   Do TV minimization (Eq. (2-57)) 

5.  End 

6. End 

In this work 𝑇𝑇𝑉 = 5. Lastly, the normalization for the gradient in Eq. (2-57), 𝛾, 

was equal to the max of the image divided by the max of the gradient of total 

variation. 

 

2.10.2 Iterative Virtual Method 

 The method in Section 2.10.1 can reconstruct a VOI with accurate 

attenuation coefficients near the centre of the image, but towards the border there 

still exists an erroneous cupping in the image values (Figure 3-10). Although this 

cupping is not as severe as in VOI images reconstructed with raw FDK, it does 

reduce the size of viable FOV, especially when looking at soft tissue. Evidence 

shows (Figure 3-11) that the cupping exists, but seems to disappear as the number 

of iterations increases; therefore either the algorithm is unable to remove the 

cupping artifact, or it can but takes too long to satisfactorily remove it. It is likely 

that the cupping is caused by the incomplete projection information; the measured 

projection data contains line integrals of the space before and after the VOI, but 

integrals of that space are missing at different angles. On the other hand, VOI 

FDK reconstruction with cosine extrapolation shows a resilience against the 

cupping artifact (Figure 3-7) when compared to other methods like exponential 

extrapolation [37]. 

 The iterative virtual method (IVM) [42] was adapted for VOI 

reconstruction, which is outlined in Figure 2-4. IVM was originally proposed by 

[42] and demonstrated for 2D data, but will be described and demonstrated here 
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with cone-beam data. IVM is a framework that starts by reconstructing a VOI 

image with an analytical algorithm; which can be FDK with cosine extrapolation, 

ATRACT, or DBP. The second step is to zero the voxels outside of the VOI. The 

third step is to forward project the reconstructed VOI to make a set of virtual 

projections. Lastly, iterative reconstruction is performed using the analytically 

reconstructed image as the initial solution and the virtual projections in place of 

Figure 2-4: Visualization of the iterative virtual method. 
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the measured projection data. The benefit is that the virtual projections will 

contain line integrals of the reconstructed VOI only and will not introduce any 

cupping, while the TV regularization will remove noise. In the case of initial 

reconstruction with FDK or ATRACT, the offset in the image will carry over to 

the virtual projections. This could, in theory, be corrected by starting a separate 

reconstruction with OS-SART to find the correct value of the image and using 

that to adjust the FDK or ATRACT reconstructed image. In this work IVM was 

implemented with cosine-extrapolated FDK as the analytical reconstruction and 

OS-SART with gradient TV descent as the iterative reconstruction. 

 

2.11 VOI Contrast, Noise, and SPR Measurements 

 Using the virtual phantom created from a CT patient, VOI synthetic 

projections were created and reconstructed using FDK and IVM. The position of 

the VOI centre lies on the axis of rotation so that the position of the collimator 

was fixed. A range of collimator sizes was used to produce the following square 

field sizes at isocentre: 22 x 22 cm2 (no collimator), 12 x 12 cm2, 8 x 8 cm2, 6 x 6 

cm2, 4 x 4 cm2, and 2 x 2 cm2. The contrast of the tumor was measured by 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = �̅�𝑡𝑢𝑚𝑜𝑟 − �̅�𝑏𝑟𝑎𝑖𝑛                             (2 − 69) 

For each field size. An average of pixels was taken. The noise of the image was 

calculated by considering the pixels of the brain close to the tumor. The CNR 

calculated was 

𝐶𝑁𝑅 =
�̅�𝑡𝑢𝑚𝑜𝑟 − �̅�𝑏𝑟𝑎𝑖𝑛

𝜎𝑏𝑟𝑎𝑖𝑛
                                (2 − 70) 

The SPR (scatter energy fluence/primary energy fluence) on the projections was 

measured by taking the average scatter signal and the average primary signal in a 

50 x 50 x 334 pixel region in the projection of the VOI. It was averaged over all 

the projection angles, hence the dimension of 334. 
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3 Results 

 

 

3.1 Scatter Photon Energy Spectrum 

 Phase space information of the scattered photons from the virtual head 

phantom were recorded and analyzed. From binning (binning method described in 

Section 2.3.2) the results from the recorded phase space, the scatter photons were 

separated into 80 energy bins. The 2D Butterworth filter was used to de-noise the 

spatial frequencies. Figure 3-1 displays the energy spectrum envelop (grey), 

which consists of all 58 x 53 individual spectra for each detector element, as well 

as the average energy spectrum (in black). The 3 different plots represent the 

results at 3 different rotation angles, 180º, 135º, and 90º. Despite the irregular 

shape of the human head, the energy spectrum of the scatter photons did not vary 

much as a function of detector pixel position as indicated by the narrow envelop, 

nor as a function of rotation angle. This supports the assumption that an average 

scatter photon energy spectrum can be used to accurately perform calculations of 

Eq. (2-18), which would lead to accurate scatter noise levels. The 3 simulations 

were done with a full field beam. It is expected that this assumption would hold if 

the simulation were repeated with a collimated beam. 
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Figure 3-1: The energy spectra of the scatter photons. The energy spectrum was plotted for each pixel, 

shown as a grey envelop. The average energy spectrum was plotted in black. Top: Simulation performed at a 

rotation angle of 180º. Middle: Simulation performed at a rotation angle of 135º. Bottom: Simulation 

performed at a rotation angle of 90º. 

𝜃 = 180° 

𝜃 = 135° 

𝜃 = 90° 
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3.2 De-noising and Up-sampling Monte Carlo 

 The Monte Carlo calculated scatter distributions were de-noised using the 

3D Butterworth filter and up-sampled by Fourier interpolation. The cut-off 

frequencies used were shown in Table 2-2. Figure 3-2 shows the raw scatter 

energy fluence, the processed scatter energy fluence, and the difference image 

from a full-field beam. The scatter distribution is shown for a simulation at a 

rotation angle of around 155º. The filtering was able to remove the noise without 

changing the shape of the low frequency scatter distribution, which is apparent in 

the relatively flat but noisy difference image. 

 

Figure 3-2: Top left shows the raw Monte Carlo calculated scatter energy fluence for a full-field beam. Top 

right shows the de-noised scatter energy fluence. Bottom shows the difference image. 

v 

u 
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Figure 3-3 shows the results for the simulation repeated but with a beam 

collimator that produces a field size of 6 x 6 cm2 at isocentre. 

 

The image range shown in Figure 3-3 is about 4 times smaller than the range 

shown in Figure 3-2, which indicates that the max scatter signal was around 4 

times lower when the 6 x 6 cm2 collimated beam was used. The de-noising works 

well even with the sharp cut-off from the collimated beam. 

 

v 

u 

Figure 3-3: Top left shows the raw Monte Carlo calculated scatter energy fluence for a 6 x 6 cm2 beam. Top 

right shows the de-noised scatter energy fluence. Bottom shows the difference image. 
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3.3 Noise Matching in Synthetic Projections 

 It was necessary to find the scaling factor, 𝑁𝑚𝐴𝑠, to establish a realistic 

level of noise in the synthetic projections as well as to scale the Monte Carlo 

calculated dose to the correct amount. The width and shape of the point spread 

function had an effect on both the level of noise and the type of noise. It was 

desirable to have correlated noise in the reconstructed image, as it would have an 

effect on object visibility and the TV denoising process. To find a good estimation 

for 𝑁𝑚𝐴𝑠, the NPS of synthetic and real projections of the Catphan 503 were 

calculated respectively and compared. If the synthetic projections were not 

blurred, the level of noise would be higher, and 𝑁𝑚𝐴𝑠 would be underestimated as 

a consequence after noise matching, which would then increase the error when 

scaling the Monte Carlo calculated dose. 

 Figure 3-4 shows the 1D NPS for rows (𝑣-direction) of synthetic 

projection data and real data. The data used was in the form 𝐼/𝐼0; before 

performing the natural logarithm. The 0 frequency data point is not shown since it 

was just 0. 

 

Figure 3-4: The 1D NPS along the 𝑣-direction of the non-blurred and blurred synthetic projections, and the 

real projections of the Catphan 503. The PSF shown in Section 2.7.3 was used. The shape of the NPS and the 

area under the NPS of the synthetic data better approximate the real data after blurring. 
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The NPS of the synthetic projection data before blurring was relatively flat, which 

was expected of uncorrelated noise. The first frequency point was higher possibly 

due to the fact that the background was not perfectly flat (see Figure 2-3). After 

blurring, the area under the NPS was reduced, indicating a reduction in noise in 

the projection data as expected. The shape of the NPS of the synthetic data was 

also closer to the NPS of the real data after blurring. Figure 3-5 shows the 2D 

NPS of the synthetic and real data.  

 

Again, it can be seen that the 2D NPS was flat when PSF blurring was not used. 

There appears to be a higher correlation in the 𝑢-direction of the real data that was 

Figure 3-5: Comparison of the 2D NPS of synthetic data with and without blurring and real data. 
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not seen in the synthetic projections. This could be a result of the blurring caused 

by the movement of the source and detector during data acquisition, which was 

not taken into consideration by the radially symmetric PSF used in the modelling. 

 

3.4 FDK VOI Truncation Cupping Artifact Compensation 

 The truncation-induced artifacts in the reconstructed image were examined 

by reconstructing a set of noiseless and scatter-free synthetic projections of the 

virtual head phantom. The synthetic projections were manually truncated 

according to a VOI of a certain size and at a certain position. Cosine extrapolation 

of the truncated projection data before FDK reconstruction was used to reduce the 

magnitude of the cupping artifact in the reconstructed VOI image. The method 

was compared to extrapolation with an exponential function [37]. Figure 3-6 

shows the full FOV reconstruction of the synthetic projection data, with the 

dashed blue circle indicating the position of the VOI. Since the reconstructed 

image is a map of attenuation coefficients, each pixel of the image has units of 

mm-1, not to be confused with the unit of frequency, which is also mm-1. 

 

y 

x 

Figure 3-6: Full FOV FDK reconstruction of the synthetic projections. Dashed blue circle indicates the 

position of the VOI. (Window = [0.017, 0.027] mm-1) 
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Figure 3-7 shows the comparison between using cosine extrapolation and 

exponential extrapolation to reconstruct truncated projections using FDK. The 

diameter of the FOV was 6 cm. All images are shown with a window that is 0.006 

mm-1 wide, but the centres of each of the windows are different, indicating that 

there is an offset error in the reconstructed VOI images when compared to the 

ground truth on the left. 

 

The FDK reconstruction with cosine extrapolation appears to be more resilient 

against the cupping artifact, though the left side of the image was still brighter 

than it should be. These images can be compared with Figure 1-1, where no 

extrapolation was used. 

 

3.5 VOI Image Quality 

 This section quantifies the effect of reducing the field size on the image 

quality. Synthetic VOI projections were created using the whole workflow (i.e. 

including scatter, noise, and blurring) at a constant 𝑁𝑚𝐴𝑠. The projections were 

reconstructed with cosine extrapolation and FDK. In the absence of scatter and 

noise, the ground truth contrast of the tumor object was 0.0026 mm-1. Figure 3-8 

shows the contrast, noise, and CNR of the tumor as a function of field size. 

Figure 3-9 shows the average SPR in a small centre region of the projections as a 

function of field size. As the field size decreased, the scatter from the object was 

Figure 3-7: Left is a close-up of the VOI region shown in Figure 3-6. Middle is the VOI reconstructed 

with cosine extrapolation and FDK. Right is the VOI reconstructed with exponential extrapolation and 

FDK. All images are shown with a window width of 0.006 mm-1. However, left has a window of [0.0186, 

0.0246] mm-1, middle has a window of [0.0205, 0.0265] mm-1, and right has a window of [0.0142, 

0.0202] mm-1. 
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reduced and the SPR decreased. The reduced SPR increased both the contrast and 

the noise in the image. As a result, the CNR increased only marginally. The CNR 

at full FOV was 1.72 while the CNR at a FOV of 6 cm was 1.90, resulting in a 

CNR improvement factor of 1.10 (later seen in Figure 3-12 and Table 3-1). 

 

Figure 3-8: Image quality of the VOI as a function of field size. The 22 x 22 cm2 field size represents the 

full FOV. 
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Since the CNR improvements were marginal, the visibility of the tumor in the 

FDK reconstructed VOI images was very similar between the different field sizes.  

 

3.6 VOI Iterative Reconstruction 

 This section shows the reconstruction of the synthetic VOI projections 

using OS-SART and TV regularization. An initial image of 0 was used for the 

reconstruction. As mentioned before, the projections were divided into 25 subsets 

with 13 projections in each subset. They were divided such that the projections in 

a subset were as angularly separated as possible. First the reconstruction was 

performed on a set of noiseless and scatter-less projections to assess the ability of 

the algorithm to handle the truncation artifacts. Figure 3-10 shows the 

reconstructed VOI image after 400 iterations. This image can be compared with 

the images in Figure 3-7. The cupping in the iteratively reconstructed VOI image 

appears to be worse than the FDK reconstructed images with edge extrapolation. 

The iteratively reconstructed image was perfectly smooth because of the TV 

regularization, whereas the high frequency artifacts of the forward and back 

projection operation can be seen in the FDK images. The image was displayed 

with the same window as the FDK-reconstructed ‘ground truth’ image (Figure 3-

7 left), indicating that the attenuation coefficients exist without the offset error. 

  Figure 3-9: The scatter-to-primary ratio as a function of field size. 
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 Figure 3-11 shows line profiles across the image along the dashed line in 

Figure 3-10 at the 100th, 200th, 300th, and 400th iteration. 

 

 

The cupping artifact appeared near the beginning of the reconstruction process 

and lingered up until at least the 400th iteration, although the magnitude of 

cupping was reduced as the number of iterations increased. It is possible that as 

the number of iterations approaches a large number, the cupping artifact will 

disappear. 

 

Figure 3-10: Iterative reconstruction of the VOI using noiseless and scatter-less synthetic projections. The 

image shown is the result after 400 iterations. The regularization strength used was 𝛽 = 0.005 and 𝛽𝑟 = 0.996. 

The window was [0.0186, 0.0246] mm-1. 

Figure 3-11: Line profiles of the image across the dashed line in Figure 3-10 showing the progress of the 

iterative reconstruction at the 100th, 200th, 300th, and 400th iteration.  
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3.7 Iterative Virtual Method 

 Since it was either difficult or impossible to remove the cupping artifact 

with the iterative algorithm from the previous section, the iterative virtual method 

was adopted for a more accurate and faster reconstruction. The ability of FDK 

with cosine extrapolation to reduce the truncation-induced cupping artifact was 

combined with the de-noising ability of TV regularization. 

 Figure 3-12 shows a comparison between the non-VOI and VOI image (6 

cm FOV), and a comparison between FDK with cosine extrapolation and IVM. 

The offset correction was not used. Here synthetic projections with noise, scatter, 

and blurring were used. 

 

 

The left image is the FDK-reconstruction of full FOV projections. This represents 

the image quality achievable if the phantom were scanned in reality with the Icon 

CBCT. The middle image is the FDK with cosine extrapolation reconstruction of 

VOI projections. The image on the right is the IVM reconstruction, which is 

essentially a continuation of the middle image but with de-noising. The de-noising 

is fast when compared to full iterative reconstruction from an image of 0, so a 

weaker regularization strength was used, and only 25 iterations were performed. 

All the images were shown with a window width of 0.006 mm-1. The FDK full 

FOV reconstruction had lower reconstructed attenuation coefficients (compared to 

Figure 3-7 left), which was expected since scatter reduces the image values. The 

Figure 3-12: Left is the FDK-reconstructed image under a full FOV beam. Middle is the 6 cm FOV VOI 

image reconstructed with FDK and cosine extrapolation. Right is the VOI reconstructed with IVM after 25 

iterations. The regularization strength used was 𝛽 = 0.002 and 𝛽𝑟 = 0.993. All images were displayed with 

a window width of 0.006 mm-1. Left has a window of [0.0159, 0.0219] mm-1, middle has a window of 

[0.0180, 0.0240] mm-1, and right has a window of [0.0180, 0.0240] mm-1. 
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attenuation coefficients in the middle were also incorrect, but due to both cupping 

from scatter and the offset error from data truncation. The window for the image 

on the right is the same as the window for the middle image. This is because the 

errors were carried over to the virtual projections. It can be seen that the FDK 

VOI image has higher contrast and higher noise compared to the FDK full FOV 

image. There also appears to be a bit of cupping in the FDK VOI image, despite 

the use of cosine extrapolation. The difference between Figure 3-12 and Figure 

3-7 was that scatter and noise was added. This cupping carried over to the IVM 

image, where much of the noise was removed while the contrast remained the 

same. It is arguably easier to delineate the tumor in the IVM image than the FDK 

images. Although the noise was removed, the tumor in the IVM image was not 

perfectly circular, as it was defined to be. This was a result of the noise structures 

being similar in intensity to the tumor in the FDK reconstructed image, and then 

being merged with the tumor during TV regularization. Table 3-1 lists the 

contrast and CNR of the tumor for the 3 different images. 

 

Table 3-1: The contrast and CNR values of the tumor for the images shown in Figure 3-12. 

 
Ground 

Truth 

FDK-Full 

FOV 
FDK-VOI IVM-VOI 

Contrast (mm-1) 0.0026 0.0015 0.0021 0.0021 

CNR - 1.72 1.90 12.84 

 

3.8 VOI Dose 

 The dose delivered to the patient because of image guidance was reduced 

due to the smaller beam in VOI imaging. The dose was calculated by Monte Carlo 

simulation of the virtual head phantom with the materials and densities listed in 

Table 2-1. Axial and sagittal views of the dose distributions for several different 

field sizes are shown in Figure 3-13. As discussed previously, the Icon beam 

begins by projecting the patient from a little below the left ear, and then rotates 

over the patient’s face, and ends a little below the right ear. The beam itself is also 

slightly angled towards the anatomical superior direction. The dose absorbed by 
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the virtual head phantom ranged between 0 to 20 mGy, where the parts of the 

head far from the beam received 0 while the bone received around 20 mGy. It can 

be seen from the sagittal views that the dose mainly originates from the primary 

photons of the 90 kVp beam. Anything outside of the shape of the beam is dose 

originating from scatter photons, although there appears to be very little of it. 

 

 

Figure 3-13: Monte Carlo calculated dose distributions for field sizes between 2 cm to 22 cm (full). Top 6 

are axial views and bottom 6 are sagittal views. 
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 The dose in a few regions of interest were plotted as a function of field 

size, shown in Figure 3-14. 

 

 

The frontal bone region was a region of the bone between the eyes and was 

chosen because it was irradiated, at least from the front, for all of the field sizes. 

The chosen region inside the VOI was always irradiated for all field sizes. The 

region in the hindbrain was irradiated during the full FOV scan but not irradiated 

for any other field size. Figure 3-15 shows the integral dose fraction, which was 

the average dose of a scan under a certain field size over the average dose of a 

scan using the full field. From Figures 3-14 and 3-15, information is available for 

the optimization of dose usage for VOI imaging. 

 

 

 

Figure 3-14: The dose as a function of field size for a few regions of interest. 
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Figure 3-15: The average dose to the patient under a certain field size over the average dose to the patient  

under the full field. 
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4 Discussion and Conclusions 

 

 

4.1 Discussion 

 The synthetic projections used in this work were able to produce the 

effects of reduced SPR when smaller and smaller field sizes were used. This was 

strongly indicated in Figure 3-9 and was similar to Figure 7 in [34], though 

different system geometries and calculation methods were used. This allowed for 

the assessment of change in image contrast and noise as a function of field size, 

which were the main benefits of using a collimated beam. Although the synthetic 

projections were not at the same level of complexity as real data, it is expected 

that the results of using a collimator would be similar if the simulations were 

repeated in reality. 

 Certain physical processes were difficult to simulate and were either 

omitted or approximated. For example the electron beam used in the simulation of 

the phase space was a parallel beam uniform in energy, although in reality that 

would have been a simplification of the electric field in a real x-ray tube. The 

response of the detector to photons involves a cascade of interactions. For 

example, x-ray photons that reach the detector undergo interactions that produce 

optical photons and the optical photons further convert to electric charges. These 

processes are stochastic in nature and would contribute to the noise in the final 

signal, but it has been assumed in this work that these additional noises were 

negligible compared to the x-ray photon noise. Using Eq. (2-18) to estimate the 

number of scatter photons per energy bin would also contribute to a small error in 

the noise of the projection. In reality, the point spread function would change 

depending on the position, angle of incidence, and energy of the photon. This 
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would be difficult to apply for the scatter photons since phase space information 

(position, direction, energy) would need to be saved, resulting in large disk space 

usage. It is expected that not modelling these processes and effects would produce 

only very minor errors in the synthetic projections, and would not affect large 

scale results such as contrast and the level of noise. 

 The truncation-induced cupping artifact was difficult to remove 

completely using cosine extrapolation (see Figure 3-12). However, reconstruction 

with the IVM framework produced images (Figure 3-12 right) with less cupping 

than OS-SART and TV regularization alone (figure in A.4). It is possible that 

after a sufficient number of iterations, OS-SART and TV regularization would be 

able to reduce the cupping so that it is reduced to the same degree as in IVM, 

however this would take at least 6 times longer than IVM given the large number 

of iterations required (at least 400 iterations were performed in the case of Figure 

3-11). There was an asymmetry in the cupping for both reconstruction algorithms; 

the cupping in the horizontal direction was worse than the cupping in the vertical 

direction. This may be due to a combination of effects: the asymmetric shape of 

the head phantom, the cosine extrapolation better approximating the projection of 

the phantom at some angles than others, and certain voxels being updated more 

than others due to the half scan protocol. Depending on the size and contrast of 

the structures within the VOI, the visibility of the structures may not be affected 

by the cupping artifact. For IVM, a 5 mm margin could be added around the VOI 

so that the cupping artifact would not interfere with the structures of interest. It 

was shown that cosine extrapolation removed the cupping artifact almost 

completely for projections without scatter and noise (Figure 3-7) but worked 

more poorly for projections with scatter and noise (Figure 3-12 right). Edge 

extrapolation remains a heuristic method that may not necessarily perform well 

for all different types of VOIs. For example, it was shown for 2D data that 

extrapolation with a constant was able to remove the cupping artifact almost 

completely [42], but that was not true for cone-beam data. OS-SART with TV 

regularization may be a more robust and appealing alternative if the computation 

times can be reduced. 
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 The results in Section 3.5 quantified the image quality improvements 

achievable for a VOI positioned near the ventricles in the brain, reconstructed 

using FDK. The noise levels in the FDK reconstructed images depended on the 

reconstruction filter used. As mentioned before, the ramp filter was multiplied by 

a Hamming window, which reduces the noise and spatial resolution of an image 

when compared to the unmodified ramp filter. The same image quality metrics in 

Figure 3-8 (contrast, noise, and CNR) were calculated for the IVM reconstructed 

images, but were not shown and compared with Figure 3-8 in the main body. The 

comparison is shown in A.5. Total variation regularization is able to completely 

remove the noise in an image but also reduces the spatial resolution and the 

contrast. For the VOI images of the virtual head phantom, the noise was 

significantly removed while the contrast was only slightly reduced, resulting in 

high CNR values for all field sizes, e.g. a CNR of 12.84 as recorded in Table 3-1. 

The results suggested that CNR is a poor indicator for visibility for TV 

regularized images, with seemingly arbitrary behaviour for different field sizes. 

 The absolute dose values reported in Section 3.8 were the raw Monte 

Carlo calculated dose values scaled to the correct number of projection angles and 

scaled by the factor 𝑁𝑚𝐴𝑠. The error in the dose is proportional to the error in the 

factor 𝑁𝑚𝐴𝑠. As mentioned previously, a PSF too broad would overestimate 

𝑁𝑚𝐴𝑠, while a PSF too narrow would underestimate 𝑁𝑚𝐴𝑠. It was difficult to 

quantify the match between the NPS of the synthetic and real projection data so 

the error in 𝑁𝑚𝐴𝑠 was difficult to estimate. However, the dose values can be 

reliably compared relative to each other for different field sizes. Parsons and 

Robar [34] investigated the image quality improvements from VOI while 

maintaining a constant dose to the VOI for different collimator sizes. A more 

aggressive approach would be to match the average dose of the VOI scan to the 

average dose of the full field scan. For example, by considering Figure 3-15 the 

mAs could be increased by a factor of 5 for the 6 cm FOV scan and the dose to 

the frontal bone would still be less than 25 mGy (from considering Figure 3-14). 

 The contrast of the tumor used in this version of the virtual phantom was 

relatively high compared to the contrast of the soft tissues in the brain, (e.g. the 
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contrast between white and grey matter or the contrast between brain and 

cerebrospinal fluid) and does not fully demonstrate the utility of VOI imaging, 

since the tumor was still quite visible in the full FOV scan. The contrast of the 

tumor was 0.00257 mm-1 in the absence of scatter, and the noise for the average 

Icon CBCT scan was around 0.0009 mm-1 (seen in Figure 3-8), making the 

contrast of the tumor comfortably higher than the level of noise. Preliminary work 

has been done with a second virtual head phantom with a lower contrast object of 

0.00019 mm-1. A first set of full FOV synthetic projections with scatter and noise 

was reconstructed with FDK and the object was not visible. A second set of full 

FOV synthetic projections without scatter but with noise was reconstructed with 

FDK and the object was not visible. A third set of full FOV synthetic projections 

with scatter but without noise was reconstructed with FDK and the object was 

visible (although at a lower contrast because of the scatter). These results were 

expected, since the image viewing window can be made arbitrarily narrow to 

resolve anything in the absence of noise. These three sets of projections were also 

reconstructed iteratively with OS-SART and TV minimization. In the first two 

sets, the noise was removed but the low contrast object itself was also removed. In 

the third set, the object survived the TV minimization in the absence of noise. 

These results suggest that for structures to survive the TV minimization, they 

have to be above a certain minimum CNR (the CNR of the FDK reconstructed 

image). This is supported by the following observations. Recall from Figure 3-8 

that CNR increases as the field size decreases. In the contrast figure in A.5, after 

the regularization from IVM the contrast of the object decreased along with the 

noise. However, the drop in contrast was greater for the objects which initially 

had lower CNR after FDK reconstruction, and for the 4 cm and 6 cm field sizes 

where the CNR was higher than the others, the contrast barely dropped at all. This 

phenomenon may be explained by considering the usual progression of image 

reconstruction with OS-SART and TV minimization. OS-SART starts by 

reconstructing a blurry, low spatial resolution image and increases the spatial 

resolution after each iteration. TV minimization removes noise very quickly, then 

starts to slowly erode the edges of structures, until the structures sink into the 
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background completely. For structures above a minimum CNR, they survive the 

TV minimization by OS-SART increasing the spatial resolution faster than TV 

minimization can erode the edges. 

 

4.2 Future Work 

 The results of the present simulation work indicate that VOI imaging 

improves image contrast. These results will be validated in the future with the 

acquisition of real projection data. Also, there are two aspects of this work that 

would benefit from additional investigation. The first is the ability of low contrast 

objects to survive the regularization process, and the second is the robust 

elimination of the truncation-induced cupping artifact. In general, any object can 

be visualized with confidence if the CNR is high enough (and there is minimal 

interference from artifacts). It is hypothesized that the minimum CNR to visualize 

an object in the FDK reconstruction regime is higher than the minimum CNR 

required for an object to survive the TV regularization in the iterative 

reconstruction regime. In the case that this is true, iterative reconstruction would 

be able to save imaging dose delivered to the patient while offering comparable 

levels of image quality. After determining the minimum CNR required for an 

object to survive the TV regularization, VOI imaging can be optimized to achieve 

that minimum CNR, either by increasing the contrast by using a smaller 

collimator, or by reducing the noise by increasing the mAs, which was afforded 

by the reduced dose from the collimated beam. This may or may not require the 

integral dose fraction of the VOI scan to be greater than 1, since at this point the 

minimum CNR required is unknown. It is likely that the minimum CNR required 

can change depending on the speed parameters controlling OS-SART and TV 

minimization, 𝛼, 𝛽, 𝛼𝑟, 𝛽𝑟, and 𝛽𝑚𝑖𝑛. 

 To assist in the survival of low contrast objects against the TV 

regularization, the definition of total variation was redefined in [65] to include a 

penalty for edges, i.e. parts of the image with large gradients, which was called 

edge-preserving total variation regularization. Adapting this method may be 
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beneficial to the goals of this work since it may assist in increasing the 

aforementioned minimum CNR required. 

 The components of the IVM framework can easily be replaced by other 

algorithms that can improve the overall image quality. Statistical iterative 

reconstruction algorithms have been developed for the purpose of CBCT soft 

tissue visualization [66] [67] and may be worth considering as a replacement for 

OS-SART and TV, since TV would not be needed for truncated reconstruction in 

IVM. ATRACT may be a good replacement for FDK with cosine extrapolation in 

the IVM framework, since ATRACT can eliminate the truncation-induced 

cupping artifact [47]. DBP may also be a suitable replacement, although it 

requires that a sub-region be known prior to reconstruction. Prior information 

might be obtainable for the Icon CBCT, because in some treatment workflows, a 

full FOV CBCT is acquired for treatment planning. However, the scatter signal in 

the full FOV projections is different than the VOI projections, so the 

reconstructed attenuation coefficients would not be exactly the same. 

 For VOI reconstruction with OS-SART and TV directly, if it is true that 

the cupping artifact can be eliminated as the number of iterations approaches 

infinity, then a deep convolutional neural network may be integrated into the 

algorithm to improve the rate of convergence. The objective would be for the 

network to learn what the non-truncated reconstructed image should look like (no 

cupping) when provided with a reconstruction of the VOI with cupping. 

 Regardless of the algorithms used, the reconstructed images of an iterative 

algorithm with regularization should be compared fairly to analytically 

reconstructed images, since the noise is completely removed in the former. 

Studies in the literature [66] [67] have made fair CNR comparisons by matching 

the spatial resolution of the two types of images, which has yet to be included in 

this work. The spatial resolution of the iterative algorithms can be controlled by 

the regularization strength, 𝛽, and relaxation rate, 𝛽𝑟. The spatial resolution of 

analytical algorithms can be controlled by applying low-pass filters with different 

cut-off frequencies. 
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4.3 Conclusion 

 Progress has been made towards the objective of soft tissue visualization 

for image-guided gamma knife radiosurgery. Results indicate that collimation of 

the image-guidance beam on the Icon gamma knife to reduce the portion of the 

patient being irradiated can reduce scatter and improve the contrast of a 

reconstructed VOI. The IVM reconstruction framework has been adapted for 

truncated data reconstruction and noise suppression, producing promising VOI 

images that could be superior to results published in literature, once a fair 

comparison is completed. Soft tissue visualization through high quality VOI 

images can improve the accuracy of gamma knife radiosurgery, which currently 

relies on the bony anatomy to deduce the position of the tumor. This is 

particularly important for fractionated gamma knife treatments, where the dose is 

prescribed in fractions over several days, during which the tumor can change in 

shape, size, and position. Visualization of soft tissue and the tumor itself will 

improve confidence in the treatment and reduce the likelihood of misalignment of 

the tumor, thus reducing the risk of radiation to normal tissues. Contrast and noise 

of the VOI and dose delivered to the patient have been mapped as a function of 

field size, which provides a useful reference for future work. Preliminary work 

has begun on VOI reconstruction of a lower contrast virtual head phantom that 

will help realize the role of VOI imaging in radiation therapy. 
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Appendix 

A.1 Trilinear Interpolation 

Following the derivation in Section 2.5, the interpolated �̅�(𝑖, 𝑗, 𝑘) using trilinear 

interpolation is 

�̅�(𝑖, 𝑗, 𝑘) = (1 − 𝑎)(1 − 𝑏)(1 − 𝑐)𝜇(𝑖′, 𝑗′, 𝑘′) + 𝑎(1 − 𝑏)(1 − 𝑐)𝜇(𝑖′ + 1, 𝑗′, 𝑘′)

+ (1 − 𝑎)𝑏(1 − 𝑐)𝜇(𝑖′, 𝑗′ + 1, 𝑘′) + 𝑎𝑏(1 − 𝑐)𝜇(𝑖′ + 1, 𝑗′ + 1, 𝑘′)

+ (1 − 𝑎)(1 − 𝑏)𝑐𝜇(𝑖′, 𝑗′, 𝑘′ + 1) + 𝑎(1 − 𝑏)𝑐𝜇(𝑖′ + 1, 𝑗′, 𝑘′ + 1)

+ (1 − 𝑎)𝑏𝑐𝜇(𝑖′, 𝑗′ + 1, 𝑘′ + 1) + 𝑎𝑏𝑐𝜇(𝑖′ + 1, 𝑗′ + 1, 𝑘′ + 1) 

Where 

𝑖′ = 𝑓𝑙𝑜𝑜𝑟(𝑖) 

𝑗′ = 𝑓𝑙𝑜𝑜𝑟(𝑗) 

𝑘′ = 𝑓𝑙𝑜𝑜𝑟(𝑘) 

𝑎 =
𝑖 − 𝑖′

𝑤𝑣𝑜𝑥
 

𝑏 =
𝑗 − 𝑗′

𝑤𝑣𝑜𝑥
 

𝑐 =
𝑘 − 𝑘′

𝑤𝑣𝑜𝑥
 

 

A.2 Bilinear Interpolation 

Following the derivation in Section 2.6, the interpolated �̅�(𝑖, 𝑗) using trilinear 

interpolation is  

�̅�(𝑖, 𝑗) = (1 − 𝑎)(1 − 𝑏)𝑝(𝑖′, 𝑗′) + 𝑎(1 − 𝑏)𝑝(𝑖′ + 1, 𝑗′) + (1 − 𝑎)𝑏𝑝(𝑖′, 𝑗′ + 1)

+ 𝑎𝑏𝑝(𝑖′ + 1, 𝑗′ + 1) 

Where 

𝑖′ = 𝑓𝑙𝑜𝑜𝑟(𝑖) 

𝑗′ = 𝑓𝑙𝑜𝑜𝑟(𝑗) 

𝑎 =
𝑖 − 𝑖′

𝑤𝑝𝑖𝑥
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𝑏 =
𝑗 − 𝑗′

𝑤𝑝𝑖𝑥
 

 

A.3 Cone-Beam Parker Weights 

Following the discussion in Section 2.9 about the Parker weights. The Parker 

weights are shown here. 

𝑊𝑃(𝑢, 𝑣, 𝜃)

=

{
  
 

  
 sin2 ((

𝜋

4
)

𝜃′

𝜙′𝑓𝑎𝑛/2 − 𝜙′
)                𝑓𝑜𝑟 0 < 𝜃′ < (𝜙′

𝑓𝑎𝑛
− 2𝜙′)            

     1                                                            𝑓𝑜𝑟 (𝜙′
𝑓𝑎𝑛

− 2𝜙′) < 𝜃′ < (𝜋 − 2𝜙′)

sin2 ((
𝜋

4
)
𝜋 + 𝜙′𝑓𝑎𝑛 − 𝜃′

𝜙′𝑓𝑎𝑛/2 + 𝜙′
)            𝑓𝑜𝑟 (𝜋 − 2𝜙′) < 𝜃′ < (𝜋 + 𝜙′

𝑓𝑎𝑛
)

 

Where 

𝜃′ =
𝜃

√1 +
𝑣2

𝑑𝑆𝐷𝐷
2

 

𝜙′ = tan−1
𝑢

𝑑𝑆𝐷𝐷
′ 

𝑑𝑆𝐷𝐷
′ = √𝑑𝑆𝐷𝐷

2 + 𝑣2 

𝜃 is the rotation angle of the source and detector. 

𝜙 is the azimuthal angle of the ray. 

 

A.4 Interior Reconstruction 

Reconstruction similar to Figure 3-10 was performed (OS-SART with TV 

regularization, 𝛽 = 0.005 and 𝛽𝑟 = 0.996, 400 iterations), except synthetic 

projections with scatter, noise, and blurring were used. The image window was 

[0.0170, 0.0230] mm-1. The image is visually similar to Figure 3-10. 
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A.5 IVM Image Quality 

The following plots show the contrast, noise, and CNR comparison between FDK 

and IVM. It is the addition of IVM image quality to the plots in Figure 3-8. The 

regularization strength used was 𝛽 = 0.002 and 𝛽𝑟 = 0.993. 25 iterations were 

performed. 
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