Ryerson University

Digital Commons @ Ryerson

Theses and dissertations

1-1-2007

Speech-based human emotion recognition

Talieh Seyed Tabtabae
Ryerson University

Follow this and additional works at: http://digitalcommons.ryerson.ca/dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation
Tabtabae, Talieh Seyed, "Speech-based human emotion recognition” (2007). Theses and dissertations. Paper 313.

This Thesis is brought to you for free and open access by Digital Commons @ Ryerson. It has been accepted for inclusion in Theses and dissertations by

an authorized administrator of Digital Commons @ Ryerson. For more information, please contact bcameron@ryerson.ca.


http://digitalcommons.ryerson.ca?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.ryerson.ca/dissertations/313?utm_source=digitalcommons.ryerson.ca%2Fdissertations%2F313&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bcameron@ryerson.ca

NOTE TO USERS

This reproduction is the best copy available.



UMI Number: EC53700

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform EC53700
Copyright2009 by ProQuest LLC
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346
Ann Arbor, M| 48106-1346



SPEECH-BASED HUMAN
EMOTION RECOGNITION

by

Talieh Seyed Tabtabaei

B.Eng, Azad Islamic University of Najafabad,
Iran, 2003

A thesis
presented to Ryerson University
in partial fulfillment of the
requirement for the degree of
Master of Applied Science
in the Program of
Electrical and Computer Engineering.

Toronto, Ontario, Canada, 2007

© Talieh Seyed Tabatabaei, 2007

PROPERTY OF
RYERSON UNIVERSITY LIBRARY



Author’s Declaration

I hereby declare that I am the sole author of this thesis.
I authorize Ryerson University to lend this thesis to other institutions or individuals for the
purpose of scholarly research.

Signature,

I further authorize Ryerson University to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose
of scholarly research.

Signature

ii



Instructions on Borrowers

Ryerson University requires the signatures of all persons using or photocopylng this thesis.
Please sign below, and give address and date.

iii



Abstract

Talieh Seyed Tabatabaei
Speech-Based Human Emotion Recognition
MAS.c, Electrical and Computer Engineering Department,
Ryerson University, Toronto, 2007

Automatic Emotion Recognition (AER) is an emerging research area in the Human-
Computer Interaction (HCI) field.

As Computers are becoming more and more popular every day, the study of interaction
between humans (users) and computers is catching more attention. In order to have a more
natural and friendly interface between humans and computers, it would be beneficial to give
computers the ability to recognize situations the same way a human does. Equipped with
an emotion recognition system, computers will be able to recognize their users’ emotional
states and show the appropriate reaction to that. In today’s HCI systems, machines can
recognize the speaker and also content of the speech, using speech recognition and speaker
identification techniques. If machines are equipped with emotion recognition techniques,
they can also know “how it is said” to react more appropriately, and make the interaction
more natural.

One of the most important human communication channels is the auditory channel which
carries speech and vocal intonation. In fact people can perceive each other’s emotional state
by the way they talk. Therefore in this work the speech signals are analyzed in order to set
up an automatic system which recognizes the human emotional state. Six discrete emotional
states have been considered and categorized in this research: anger, happiness, fear, surprise,
sadness, and disgust.

A set of novel spectral features are proposed in this contribution. Two approaches are
applied and the results are compared. In the first approach, all the acoustic features are
extracted from consequent frames along the speech signals. The statistical values of features
are considered to constitute the features vectors. Support Vector Machine (SVM), which is
a relatively new approach in the field of machine learning, is used to classify the emotional
states.

In the second approach, spectral features are extracted from non-overlapping logarithmically-
spaced frequency sub-bands. In order to make use of all the extracted information, sequence
discriminant SVMs are adopted.

The empirical results show that the employed techniques are very promising.
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Chapter 1

Introduction

MOTION is a fundamental component of being a human. Joy, sadness, anger, and fear,

among the plethora of other emotions, motivate action and add meaning and richness
to virtually all human experience. Traditionally, human-computer interaction (HCI) has
been viewed as the ultimate exception; users must discard their emotional selves to work
efficiently and rationally with computers, the quintessentially unemotional artifact. Emotion
seemed at best marginally relevant to HCI, and at worst, an oxymoron. Recent research in
psychology and technology suggests a very different view of the relationship between humans,
computers, and emotion. After a long period of dormancy and confusion, there has been
an explosion of research on the psychology of emotion (Gross, 1999). Emotion is no longer
seen as limited to the occasional outburst of fury when a computer crashes inexplicably,
excitement when a video game character leaps past an obstacle, or frustration at an incom-
prehensible error message. It is now understood that a wide range of emotions plays a critical
role in every computer-related, goal-directed activity, from developing a three-dimensional
computer-aided design (CAD) model and running calculations on a spreadsheet, to searching
the Web and sending an e-mail, and to making an online purchase. Indeed, many psychol-
ogists now argue that it is impossible for a person to have a thought or perform an action
without engaging, at least unconsciously, his or her emotional systems (Picard, 1997b). The
literature on emotions and computers has also grown dramatically in the past few years,

driven primarily by advances in technology. Inexpensive and effective technologies that en-



able computers to assess the physiological correlates of emotion, combined with dramatiz
improvements in the speed and quality of signal processing, now allow even personal com-
puters to make judgments about the user’s emotional state in real time (Picard, 1997a).
Multimodal interfaces that include voices, faces, and bodies can now manifest a much wider
and more nuanced range of emotions than was possible in purely textual interfaces (Cassell,
Sullivan, Prevost, and Churchill, 2000). Indeed, any interface that ignores a user’s emotional
state or fails to manifest the appropriate emotion can dramatically impede performance and
risks being perceived as cold, socially inept, untrustworthy, and incompetent.

This chapter reviews the psychology of emotion and the related technologies, with an
eye toward identifying those concepts that are most relevant to the design and assessment
of interactive systems. The seat of emotion is the brain; hence, a brief description of the
psychophysiological phenomena that lies at the core of how emotions emerge from interac-
tion with the environment is presented. Then we talk about Human Computer Interaction

(HCI) and the position of emotion in HCI.

1.1 Human Emotion

The mainstream definition of emotion refers to a state of feeling involving thoughts, phys-
iological changes, and an outward expression or behavior [32]. The contributions to the
subject of emotions come from so many different disciplines. In recent years, especially the
last decade, knowledge in the field of emotion has been steadily increasing. This knowledge
comes from many different areas: psychology, neurology, ethology, physiological psychology,
personality and social psychology, clinical psychology and psychiatry, medicine, nursing, and
social work are all directly concerned with emotion. Professions such as law and architec-
ture have an obvious concern with emotions as they affect human motives and needs. The
various branches of art, specially the performing arts, certainly deal with the emotions and
their expressions. A flurry of recent work in modeling emotional circuitry and recognition
has come out of computer science, and engineering mostly in the applications of intelligent

human-machine interaction. There is a wide range of scientific opinions regarding the nature
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and importance of emotions. Some scientists (Duffy, 1962) have maintained that emotion

concepts are unnecessary for the science of behavior. She, as well as others (i.e. Lindsley,
1957), suggested that the concept of activation or arousal has more explanatory power and is
less confusing than emotion concepts. Others (Tomkins, 1962, 1963; Izard, 1971, 1972) have
maintained that the emotions constitute the primary motivational system of human beings.
Some say that emotions are only transient phenomena while others maintain that people are
always experiencing some emotion to some extent (e.g. Schachtel. 1959). Some scientists
have maintained that for the most part emotions disrupt and disorganize behavior, and are
primarily a source of human problems (Arnold, 1960). Others have argued that emotions
play an important role in organizing, motivating, and sustaining behavior (Rapaport, 1942;
Leeper, 1948). Some scientists have taken the position that emotions are primarily a matter
of visceral functions, activities of organs innervated by autonomic nervous system (Wenger,
1950). Other scientists have emphasized the importance of the externally observable behav-
ior of the face, the voice tone and intonation, and the role of the nervous system (Gellhorn,

1964, 1970).

1.1.1 What Are Emotions?

Most theories either explicitly or implicitly acknowledge that an emotion is not a simple
phenomenon. It cannot be described completely by having a person describe his emotional
experience. It cannot be described completely by electrophysiological measures of occurrence
in the brain, the nervous system, or in the circulatory, respiratory, and glandular systems. It
cannot be described completely by the expressive or motor behavior that occurs in emotion.
A complete definition of emotion must take into account all of these three aspects or compo-
nents: (a) the experience or conscious feeling of emotion, (b) the processes in the brain and
nervous system, and (c) the observable expressive patterns of emotion, particularly those on

the face and in the vocal system [32].



1.1.2 How Do Emotions Occur?

Most people know what kind of conditions or situations interest them or disgust them or
make them feel angry or guilty. Thus in general they know what brings about a given
emotion. However, scientists do not agree on precisely how an emotion comes about. Some
maintain that emotion is a joint function of a physiologically arousing situation and the
person’s evaluation or appraisal of the situation [32]. This explanation of the causal process
comes from a cognitive theory of emotion (Schachter, 1971). Considering the problem at the
neurological level, Tomkins (1962) maintains that emotions are activated by changes in the
density of neural stimulation (the number of neurons firing per unit of time). This rather
persuasive theory does not say much about the causes or conditions at the conscious level

that trigger these changes in neural stimulation.

1.1.3 Components of Emotion

The component that seems to be the core of common sense approaches to emotion, the one
that most people have in mind when talking about human emotions, is the feeling compo-
nent, i.e., the passion or sensation of emotion. For example, people generally agree that the
state of mind during anger is different from that when one is happy. However, this compo-
nent is not observable and measurable by other people in order to distinguish the emotions
and also is not considered a helpful component for a HCI system.

Another obvious descriptive component of emotion is the set of behaviors that may be
performed and observed in conjunction with an emotion. These behaviors are produced
by the muscular system and are of two general types: gross behaviors of the body effected
by the skeletal muscles and the so-called emotion expressions [35]. These categories shade
into each other because any behavior can be interpreted as an expression of emotion. The
gross body behaviors may have no apparent adaptive value, e.g., wringing and rubbing the
hands or tapping a foot, or they may be directed towards a goal, e.g., striking something
or running away. The facial and bodily behaviors called emotion expressions are indicators

of emotion, as opposed to effecting some action or achieving some goal. These expressions
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can differentiate one emotion from another. The most widely discussed and investigated

emotion expressions both in emotion communication between people and in HCI systems
are the emotion faces and vocal intonation.

A less obvious component of emotion is the set of internal bodily changes caused by the
smooth muscles and glands. Chemicals secreted by the body’s various glands are activated
during emotion and spread to other parts of the body, usually by the blood, to act in diverse
ways on the nervous system and other organs. Smooth muscles of the digestive system,
circulatory system, and other bodily components can shift from their typical level or type of
operation during emotion under the effects of chemical and neural action. This component
includes some behaviors that can be observed, such as the constriction or dilation of the
iris of the eye, possibly piloerection, and sweating, blanching, and flushing of the skin, and
other responses that are relatively hidden, such as heart rate, stomach activity, and saliva
production. Autonomic activity has received considerable attention in studies of emotion,
in part due to the relative ease in measuring certain components of the autonomic nervous
system, including heart rate, blood pressure, blood pulse volume, respiration, temperature,
pupil dilation, skin conductivity, and more recently, muscle tension (as measured by elec-
tromyography). However, the extent to which emotions can be distinguished on the basis of
autonomic activity alone remains a hotly debated issue (Ekman and Davidson, 1994; Lev-
enson, 1988). Although the debate is far from resolved, certain measures have proven fairly
reliable at distinguishing among “basic emotions”. Heart rate, for example, increases most
during fear, followed by anger, sadness, happiness, surprise, and finally disgust, which shows
almost no change in heart rate (Cacioppo, Bernston, Klein, and Poehlmann, 1997; Ekman,
Levenson, and Friesen, 1983; Levenson, Ekman, and Friesen, 1990). Decreases in heart rate
typically accompany relaxation, attentive visual and audio observation, and the processing
of pleasant stimuli (Frijda, 1986). However, even assuming that we could distinguish among
all emotions through autonomic measures, it is not clear that we should. In real-world social
interactions, humans have at least partial control over what others can observe of their emo-

tions. If another person, or a computer, is given direct access to users’ internal states, they



may feel overly vulnerable, leading to stress and distraction. Such personal access could also
be seen as invasive, compromising trust. It may, therefore, be more appropriate to rely on
measurement of the external signals of emotion [35].

Another less observable component in emotion consists of Neurological Responses. The
brain is the most fundamental source of emotion. The most common way to measure neu-
rological changes is the electroencephalogram (EEG). In a relaxed state, the human brain
exhibits an alpha rhythm, which can be detected by EEG recordings taken through sensors
attached to the scalp. Disruption of this signal (alpha blocking) occurs in response to nov-
elty, complexity, and unexpectedness, as well as during emotional excitement and anxiety
(Frijda, 1986). EEG studies have further shown that positive emotions lead to greater ac-
tivation of the left anterior region of the brain, whereas negative emotions lead to greater
activation of the right anterior region (Davidson, 1992; see also Heller, 1990). Indeed, when
one flashes a picture to either the left or the right of where a person is looking, the viewer can
identify a smiling face more quickly when it is flashed to the left hemisphere, and a frowning
face more quickly when it is flashed to the right hemisphere (Reuter-Lorenz and Davidson,
1981). Current EEG devices, however, are fairly clumsy and obstructive, rendering them
impractical for most HCI applications.

Finally the ideation, imagery, and thoughts that occur during emotion can be considered
as another component of the emotion process. These aspects of emotion are also cognitive'
activities, and can both give rise to an emotional event and be affected by it, e.g., thinking
about a lost pet may evoke feelings of sadness, which may in turn evoke memories of a
romance now finished. Since thoughts and other cognitions, like feelings, cannot be directly
observed and are hard to measure, there is less understanding of how they fit into the emo-

tion picture than other components.
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Figure 1.1: Limbic system of the brain [34]

1.1.4 Emotions and Brain

Emotions are thought to be related to activity in brain areas that direct our attention, moti-
vate our behavior, and determine the significance of what is going on around us. Pioneering
work by Broca (1878), Papez (1937), and MacLean (1952) suggested that emotion is related
to a group of structures in the center of the brain called the limbic system, which includes
the hypothalamus, cingulate cortex, hippocampi, and other structures (Fig. 1.1). The lim-
bic system (Latin limbus: “border” or “edge”) includes the structures in the human brain
involved in emotion, motivation, and emotional association with memory. The limbic system
influences the formation of memory by integrating emotional states with stored memories
of physical sensations. More recent research has shown that some of these limbic structures
are not as directly related to emotion as others are, while some non-limbic structures have
been found to be of greater emotional relevance. The following brain structures are currently

thought to be most involved in emotion [34]:

e Amygdala - The amygdalae are two small, round structures located anterior to the
hippocampi near the temporal poles. The amygdalae are involved in detecting and
learning what parts of our surroundings are important and have emotional significance.

They are critical for the production of emotion, and may be particularly so for negative



emotions, especially fear.

e Prefrontal cortex - The term prefrontal cortex refers to the very front of the brain,
behind the forehead and above the eyes. It appears to play a critical role in the regu-
lation of emotion and behavior by anticipating the consequences of our actions. The
prefrontal cortex may play an important role in delayed gratification by maintaining

emotions over time and organizing behavior toward specific goals.

e Anterior Cingulate - The anterior cingulate cortex (ACC) is located in the middle of
the brain, just behind the prefrontal cortex. The ACC is thought to play a central role
in attention, and may be particularly important with regard to conscious, subjective
emotional awareness. This region of the brain may also play an important role in the

initiation of motivated behavior.

e Ventral striatum - The ventral striatum is a group of subcortical structures thought
to play an important role in emotion and behavior. One part of the ventral striatum
called the nucleus accumbens is thought to be involved in the experience of goal-
directed positive emotion. Individuals with addictions experience increased activity in

this area when they encounter the object of their addiction.

e Insula - The insular cortex is thought to play a critical role in the bodily experience of
emotion, as it is connected to other brain structures that regulate the body’s autonomic
functions ( heart rate, breathing, digestion, etc.). This region also processes taste
information and is thought to play an important role in experiencing the emotion of

disgust.

Based on discoveries made through neural mapping of the limbic system, the neurobiologi-
cal explanation of human emotion is that emotion is a pleasant or unpleasant mental state
organized in the limbic system of the human brain.

In fact, emotions are human elaborations of general arousal patterns, in which neuro-

chemicals (e.g., dopamine, noradrenaline, and serotonin) step-up or step-down the brain’s
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activity level, as visible in body movements, gestures, and postures [34]. In human beings,

feelings are displayed as emotion cues.

1.1.5 Are Emotions Innate or Learned?

The early work of Darwin (1872, 1877) and the more recent work of Ekman et al. (1972)
and Izard (1971) has shown that certain emotions, referred to as basic (or alternatively fun-
damental) emotions (see Section 1.1.6), have the same expressions and experiential qualities
in widely different cultures from virtually every continent of the globe, including isolated
preliterate cultures having had virtually no contact with civilization [32]. Therefore it can
be concluded that the fundamental emotions are subserved by innate neural programs. How-
ever, the fact that there are genetically based mechanisms for the fundamental emotions does
not mean that no aspect of an emotion can be modified through experience. Almost anyone
can learn to modify the innate emotion expressions [32]. This cognitive part actually has
contributed to a relatively new field, called Emotional Intelligence (EI) [36], which describes
an ability, capacity, or skill to perceive, assess, and manage the emotions of one’s self, of
others, and of groups. People of different social backgrounds and different cultures may
learn quite different facial movements for modifying innate expressions. In addition to learn-
ing modifications of emotion expressions, sociocultural influences and individual experiences
play an important role in determining what will trigger an emotion and what a person will

do as a result of emotion.

1.1.6 Classification of Emotions

One broad classification of emotion is to classify emotions simply as positive or negative.
Scientists as well as laymen agree that there are both positive and negative emotions. While
this very broad classification of emotions is generally correct and useful, the concepts of
positiveness and negativeness as applied to the emotions require some qualification [32].
Emotions such as anger, fear, and shame cannot be considered categorically negative or bad.

Anger is sometimes positively correlated with survival, and more often with the defense of



maintenance of personal integrity and the correction of social injustice [33]. So instead of
saying that emotions are merely positive or negative, it is more accurate to say that there
are some emotions which tend to lead to psychological entropy, and others which tend to
facilitate constructive behavior or the converse of entropy.

One of the most influential classification approaches in the study of emotion is Robert
Plutchik’s eight primary emotions. The emotions that Plutchik lists as primary are: anger,
fear, sadness, joy, disgust, surprise, curiosity, and acceptance. Similar to the way primary
colors combine, primary emotions are believed to blend together to form the full spectrum of
human emotional experience. Plutchik reasons that these eight are primary on evolutionary
grounds, by relating each to behavior with survival value. For example: fear motivates flight
from danger, anger motivates fighting for survival. They are considered to be part of our
biological heritage and built into human nature [33].

Paul Ekman [32] devised a similar list of basic emotions from cross-cultural research.
He found that even members of an isolated, stoneage culture could reliably identify the
expressions of emotion in photographs of people from cultures which they were not yet
familiar with, and concluded that the facial expression of some basic emotions is innate.
The following is Ekman’s list of basic emotions: anger, fear, sadness, happiness, surprise,
and disgust [32]. Ekman believes that there are discrete, basic, universal emotions each of
which has unique physiological arousal patterns, behavioral display patterns, motivational
values, etc. Ekman’s list of basic emotions is perhaps the most well-known classification of

emotions, which is also used in this thesis.

1.1.7 Emotional Communication in Human Beings

In some theories, emotional expression is regarded as an integral aspect of the emotion pro-
cess. Some theorists have proposed that emotional expression underlies the experience of
emotion, which includes the felt quality of emotion.

A large body of literature shows that emotions are communicated both nonverbally and

verbally. On the nonverbal side, emotions are typically accompanied by nonverbal expres-
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sions such as facial expression (Buch, 1984), body gesture, and voice (Burgoob, Buller, and

Woodall, 1996). Emotions are also expressed through verbal communication that implicitly
or explicitly reveals the emotions that a person is experiencing [37]. In fact, body language
and tone of voice are important parts of emotional communication.

Tone of voice reflects psychological arousal, emotion, and mood. Tone of voice may pro-
vide a hint of the feelings that a person is unable to put into words. Emotions have a global
impact on speech since they modulate the respiratory system, larynx, vocal tract, muscular
system, heart rate, and blood pressure [32]. Changes in the speaker’s autonomic nervous
system can account for some of the most significant changes, where the sympathetic and
parasympathetic subsystems regulate arousal in opposition. For instance, when a subject is
in a state of fear, anger, or joy, the sympathetic nervous system is aroused. This induces
an increased heart rate, higher blood pressure, changes in depth of respiratory movements,
greater sub-glottal pressure, dryness of the mouth, and occasional muscle tremor. The re-
sulting speech is faster, louder, and more precisely enunciated with strong high frequency
energy, a higher average pitch, and wider pitch range. In contrast, when a subject is tired,
bored, or sad, the parasympathetic nervous system is more active. This causes a decreased
heart rate, lower blood pressure, and increased salivation. The resulting speech is typically
slower, lower-pitched, more slurred, and with little high frequency energy [38]. Body lan-
guage gives an additional clue. Study of emotion on facial expressions constitutes a vast
part of emotion expression in literature. Sometimes the way that the body is positioned or
even the hands can express what a person is feeling. But the connection between gesture
and emotional state is less distinct, in part due to the greater influence of personality and
culture (Casseli and Thorisson, 1999; Coffier, 1985).

Typically, a facial or vocal expression of emotion is presented to another person(s), who
then indicates which emotion it signals. The impressive empirical foundation for this theory
is the repeated finding that, despite differences in culture, age, or background, receivers agree

on the emotion signaled more often than could be achieved by chance.



1.2 Human Computer Interaction 2

Human-computer interaction (HCI), alternatively man-machine interaction (MMI) or computer-
human interaction (CHI) is the study of interaction between people (users) and computers.

It is an interdisciplinary subject, relating computer science with many other fields of study
and research. Interaction between users and computers occurs at the user interface (or sim-
ply interface), which includes both software and hardware. A basic goal of HCI is to improve
the interaction between users and computers by making computers more usable and recep-
tive to the user’s needs [39).

A long term goal of HCI is to design systems that minimize the barrier between the hu-
man'’s cognitive model of what they want to accomplish and the computer’s understanding of
the user’s task. HCI is an interdisciplinary area. It is emerging as a specialty concern within
several disciplines, each with different emphases: computer science and engineering (applica-
tion design and engineering of human interfaces), psychology (the application of theories of
cognitive processes and the empirical analysis of user behavior), sociology and anthropology
(interactions between technology, work, and organization), and industrial design (interactive
products). Because human-computer interaction studies a human and a machine in com-
munication, it draws from supporting knowledge on both the machine and the human side.
On the machine side, techniques in computer graphics, machine learning algorithms, signal
processing techniques, programming languages, and development environments are relevant.
On the human side, communication theory, graphic and industrial design disciplines, linguis-
tics, social sciences, cognitive psychology, and human performance are relevant.

HCI has been an important research area in the fields of multimedia and telecommuni-
cation. Some applications in the HCI are speaker recognition, speaker verification, speech
recognition, face recognition, gesture recognition, and more recently emotion recognition.

The topic of emotion in Human-Computer Interaction is of increasing interest to the
HCI community. Since Picard’s fundamental publications on affective computing [40], re-
search in this field has gained significant momentum. Emotion research is largely grounded

in psychology yet spans across numerous other disciplines. The challenge of such an inter-
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disciplinary research area is developing a common vocabulary and research framework that

a mature discipline requires. What is increasingly needed for advanced and serious work in
this field is to place it on a rigorous footing, including developing theoretical fundamentals
of HCI-related emotion research, understanding emotions’ function in HCI, ethical and legal
issues, and the practical implications and consequences for the HCI community. The first
workshop on emotion in HCI held in Edinburgh in 2005 brought an interdisciplinary group
of practitioners and researchers together for a lively exchange of ideas, discussion of common

problems, and identification of domains to explore.

1.3 Emotion in HCI

Research related to emotion in HCI often tends to focus on how a computer can autonomously
detect the emotional state of a user and then adapt itself accordingly. Another important
strand of emotion-related research in HCI is the simulation of emotional expressions made
by computer agents. Interface designers often include emotional expressions and statements
in their interfaces through the use of textual content, speech (synthetic and recorded), and
synthetic facial expressions.

Today emotions are more accepted as an important ingredient of human life. Several
studies show that emotions play a vital role in almost everything we do, for example in cog-
nitive functions, including rational decision making and learning, and perception. In every
day life we experience a rich variety of situations; from walking through a park full of fresh
flowers to working out different functions of our new mobile phone or simply having a coffee
with a friend. Emotions and affective responses are central parts of our experience and fre-
quently shape and colour the kinds of experience we have [32]. Recently, the concepts of user
experience and emotion have been receiving growing attention within the Human-Computer
Interaction community as a way of adding value when designing products. It is no longer
sufficient for a product to be simply usable or aesthetically pleasing, but it needs to evoke
positive emotional responses [41]. In fact, emotion appears to be a necessary component of

intelligent, friendly computers. The inability of today’s computers to recognize, express, and
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have emotions severely limits their ability to act intelligently and interact naturally with us.

1.4 Applications

As mentioned before, most of the potential applications of Automatic Emotion Recognition
(AER) systems are in the field of HCI. In today’s HCI systems, machines can recognize the
speaker and also content of the speech, using speech recognition and speaker identification
techniques. If machines are equipped with emotion recognition techniques, they can also
know “how it is said” to react more appropriately, and make the interaction more natural.
One example of computers with emotional intelligent is RoCo (Robotic Computer) [42]. Roco
is a new type of desktop computer that has an articulated “neck” and “head” (a computer
monitor that can be moved in a fluid manner relative to its base via motors and sensors).
RoCo is capable of recognizing and physically responding to human socio-emotive cues such
as postural shifts in principled ways. These cues are inspired by those found in human-human
interaction, to foster a more natural, healthy, and productive human-computer interaction.

Other potential application of AER is intelligent toys such as Furby’s EMOTO-TRONICS
[43], Sony’s AIBO [44], and Paro [45] as they are shown in Fig. 1.2. All these toys are
equipped with AER systems, therefore they are able to recognize their owners’ emotional
state and be affectionate.

Another potential application of automatic emotion recognition is in e-learning applica-
tions, where affective computing can be used to adjust the presentation of a computerized
tutor when a learner is bored, interested, frustrated, or pleased. Psychological health services
such as counseling, can also benefit from AER applications, for example, when determining
a client’s emotional state. AER has also been suggested to apply in monitoring society.
For example a car which can monitor the emotion of its occupants may engage additional
safety measures, such as alerting other vehicles, if it detects the driver is angry. Another
example is in telephone call center conversations in order to provide feedback to an operator

or a supervisor for monitoring purposes. Other potential applications of AER consist of lie



Figure 1.2: Samples of intelligent toys which are able to show affection to people (from left to
right: Sony’s AIBO, Furby’'s EMOTO-TRONIC, and Paro).

detection, customer service, and educational software.

1.5 Organization of Thesis

The main objective of this thesis is to suggest a speech-based automatic emotion recognition
system using a novel set of acoustic features and utilizing powerful and state-of-the-art
machine learning methods. The remainder of the thesis is organized as shown in Fig. 1.3.
Chapter 2 reviews some of the previous works on AER. Since audio and visual channels

are the most important communication channels in humans, the concentration of this chapter
is also on the researches which have utilized audio or/and visual information as input to their
systems. The second part of the chapter addresses some of the existing databases for the
application of emotion recognition and also explains the database which is used in this thesis.

Chapter 3 presents a frame-based approach to emotion recognition where a set of novel
acoustic features is proposed. Least square support vector machine is used to classify the
emotional classes. The corresponding technical procedures are explained in detail.

Chapter 4 proposes a novel sub-band approach AER system, where spectral features are
extracted from non-overlapping logarithmically-spaced frequency sub-bands. The problem
of variable-length sequences is addressed in this chapter, some of the alternative solutions
are discussed and Sequence discriminant SVM (Fisher kernel) is proposed to overcome this
1ssue.

Chapter 5 summarizes the implemented methods and compares the achieved results.

Some of the advantages and disadvantages of the adopted techniques are also discussed. The
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Figure 1.3: Organization of thesis.

last section of the chapter points out directions for future research.
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Chapter 2

Automatic Emotion Recognition

THE popularity of computers has rapidly increased due to the progress of information
technologies. Accordingly, research on human and computer interlace is gaining more
interest in order to have a more natural and friendly interface between humans and machines.
Related to this, various research projects on emotion recognition have been performed. Re-
searchers have used diverse techniques and approaches aiming at getting a satisfactory result.
In this chapter a brief review of previous works on emotion recognition and their employed
techniques are presented and eventually our proposed method is addressed. The database

utilized in this thesis is also described in the second part of the chapter.

2.1 Literature Review

The important and very basic steps of almost every Automatic Emotion Recognition (AER)
system as Fig. 2.1 shows, are extracting some emotional data (i.e. features) from some kind
of input to the system and then classifying the extracted information from the input to one
of the predefined emotions. Different studies differ in the type of inputs they choose for their
systems, the kind of features they extract, and the methods of classification they adopt.

A great number of studies have been performed on emotion analysis utilizing inputs such
as voice (i.e. paralinguistic information), facial expression, body language, physiological sig-
nals (e.g. EEG, ECG, skin temperate variation, etc.), linguistic information of the speech,

etc., or combination of two or more of these (multimodal approach). However, most of the
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Figure 2.1: A very basic AER system.

researchers use voice or/and body language as input to their AER system. The main reason
is that human-computer interaction follows human-human interaction in the basis, and as
“nonverbal communication” (e.g. facial expressions, tone of voice, gesture, eye contact, etc.)
plays a crucial role in humans’ communication, it is also considered a very important factor
in HCI. As mentioned in Chapter 1, the auditory channel (i.e. speech and tone of voice)
and the visual channel (i.e. facial expression and body gesture) are the two primary emotion
communication channels in humans and it is natural to use these channels in HCI systems as
well. Also, using audio or visual information, it is much easier to collect data without causing
any discomfort for users and as a result, it is more practical for the real-world applications.
Extracting the efficient and relevant features which can truly represent the state of emo-
tion in the input data is a great challenge in every AER system. A vast variety of classifiers
has also been adopted in different studies.
The next few chapters present different methods and schemes suggested by other re-
searchers. Although facial expression is not used in this thesis as an input to the AER
system, some of the existing works relating to this are reviewed due to the popularity and

importance of the usage.

2.1.1 Emotion Recognition Using the Visual Channel

Reflection of emotions via the visual channel consists of emotion expression in face and in

body gesture. As described in Section 1.1.7, it is hard to construct an emotion recognition



Table 2.1: Facial cues and emotions (Based on Ekman and Friesen, 1975)

Emotion

Observed Facial Cues

Surprise

Fear

Disgust

Anger

Happiness

Sadness

Brows raised (curved and high)

Skin below brow stretched

Horizontal wrinkles across forehead

Eyelids opened and more of the white of the eye is visible
Jaw drop open without tension or stretching of the mouth

Brows raised and drawn together

Forehead wrinkles drawn to the center

Upper eyelid is raised and lower eyelid is drawn he lower lid
up

Mouth is open

Lips are slightly tense or stretched and drawn back

Upper lip is raised

Lower lip is raised and pushed up to upper lip or it is lowered
Noes is wrinkled

Cheeks are raised

Lines below the lower lid, lid is pushed up but not tense

Brows are lowered

Brows lowered and drawn together

Vertical lines appear between brows

Lower lid is tensed and may or may not be raised

Upper lid is tense and may or may not be lowered due to
brows’ action

Eyes have a hard stare and may have a bulging appearance
Lips are either pressed firmly together with corners straight
or down or open, tensed in a squarish shape

Nostrils may be dilated

Corners of lips are dawn back and up
Mouth may or may not be parted with teeth exposed or not
A wrinkle runs down from the nose to the outer edge beyond

lip corners

Cheeks are raised
Lower eyelid shows wrinkle below it and may be raise but not

tense

Inner corners of eyebrows are drawn up

Skin below the eyebrow is triangulated, with inner corner up
Upper lid inner corner is raised

Corners of the lips are drawn or lip is trembling

19
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system based on gesture since the way people express their emotion in body language highly

depends on their cultural background and personality. Therefore, most of the studies use
only facial expressions as visual emotional information. Table 2.1 describes characteristic
facial features of six basic emotions (Ekman and Friesen, 1975).

Emotion recognition from facial expressions can be performed using either a single image
or image sequence; either way the face region should be detected from the image first. In
the case of still images, information is extracted from the detected face in the image. In the
case of image sequence, the motion of the detected face and its features in the sequence is
tracked.

Analyzing facial expression can be performed when the face is represented as a whole unit
(holistic representation) or when prominent components of the face such as nose, mouth,
eyes, and chin are considered as features. An example of these techniques used for the for-
mer approach is eigenfaces [1] which transforms face images into a small set of characteristic
feature images, called “eigenfaces”. Eigenfaces are the principal components of the initial
training set of face images. Another example is using Gabor wavelet features to represent
facial expression [6]. Facial Action Coding System (FACS) [18] is the most popular repre-
sentation of facial expression for the latter approach. FACS is a system originally developed
by Paul Ekman and Wallace Friesen in 1976, to taxonomize every conceivable human facial
expression. It is the most popular standard currently used to systematically categorize the
physical expression of emotions, and it has also proven useful both to psychologists and to
animators. It defines expressions as one of 46 “Action Units” (AUs), which are a contraction
or relaxation of one or more muscles.

A complete survey on the research regarding facial expression recognition can be found
in [8] and [9].

Cowie et al. [75] have chosen to measure specific facial feature deformations (e.g. eye-
brows, eyes, mouth) and create appropriate descriptive expression models to develop a rule-
based system capable of analyzing image frames from a video stream of a speaker into MPEG-

4 compliant Facial Definition Parameters (FDPs). FDPs are in turn used to calculate the
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Facial Animation Parameters (FAPs). The FAPs can correlate strongly with emotionality

and can be used to classify a face with respect to the emotional state it expresses. They
use the Ekman dataset to categorize the six universal emotions. In their approach feature
extraction results in a set of binary maps, indicating the position and extent of each facial
feature (i.e. eyebrows, eyes, mouth and nose). The left, right, top and bottom-most coor-
dinates of the eye and mouth, the left, right, and top coordinates of the eyebrow as well as
the nose coordinates, are the facial feature points (FPs) which are used in [11] for defining
the FAP values. By using unsupervised hierarchical clustering technique, they were able to
achieve 84.7% accuracy.

Lien et al. [2] have developed a facial expression recognition system that automatically
recognizes individual action units or action unit combinations in the upper face using Hidden
Markov Models (HMMs). Their approach to facial expression recognition is based on the
Facial Action Coding System (FACS), which separates expressions into upper and lower face
action. They use three approaches to extract facial expression information: (1) facial feature
point tracking, (2) dense flow tracking with principal component analysis (PCA), and (3)
high gradient component detection (i.e., furrow detection). The recognition results of the
upper face expressions using feature point tracking, dense flow tracking, and high gradient
component detection are 85%, 93%, and 85%, respectively. Sixty subjects, both male and
female, were used in their study. Their goal was to develop a system that recognizes subtle
feature motion and complex facial expressions rather than six prototypic expressions.

Byun et al. [3) proposed a novel algorithm for hybrid feature extraction from still images,
which uses not only emotional features that is perceived by human eye, but also various emo-
tional information that is extracted by image processing. They apply the geometrical feature
extraction method to extract the relative position, size, angle, and vector of numerical data
from distinctive features such as eyes, eyebrows, nose, mouth, and chin, and also the RGB
color distributed histogram method that is newly applied to the feature extraction stage.
This paper applies face detection by RGB skin-color model. Skin colored region is selected

and stored as the RGB type for the training data. Their overall accuracy is not reported.
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Kotsia and Pitas [5] present two novel methods for facial expression recognition in facial

image sequences. The user has to manually place some Candide grid nodes to face landmarks
depicted at the first frame of the image sequence under examination. The grid-tracking and
deformation system which is used based on deformable models, tracks the grid in consecutive
video frames over time as the facial expression evolves, up to the frame that corresponds
to the greatest facial expression intensity. The geometrical displacement of certain selected
Candide nodes, defined as the difference of the node coordinates between the first and the
greatest facial expression intensity frame, is used as an input to a multiclass Support Vector
Machine (SVM) system of classifiers that are used to recognize either the six basic facial
expressions or a set of chosen Facial Action Units (FAUs). Fig. 2.2 shows an example of
the deformed frame facial expression models produced for each one of the six basic facial
expressions in this research. In their proposed approach, the facial expression classification is
performed based only on geometrical information, without taking directly into consideration
any facial texture information. They also have developed a novel method of multiclass SVM
by manipulating the original SVM’s formulations. The Cohn-Kanade database [4] was used
in this research to classify facial expressions into one of the six basic facial expression classes.
This database is annotated with FAUs. They show a recognition accuracy of 99.7% for facial
expression recognition using the proposed multiclass SVM and 95.1% for facial expression
recognition based on FAU detection.

Gabor filters are used in [6] by Lyons et al. for facial expression recognition. Facial
expression images are coded using a multi-orientation, multi-resolution set of Gabor filters
which are topographically ordered and aligned approximately with the face. The similar-
ity space derived from this facial image representation is compared with one derived from
semantic ratings of the images by human observers. They have collected a database which
consists of ten subjects each of which posed 3 or 4 examples for each of the six basic facial
expressions (i.e. happiness, sadness, surprise, anger, disgust, fear) and also a neutral face
for a total of 219 images of facial expressions. For simplicity of experimental design they

have only employed Japanese female subjects. The classification is performed by comparing
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Figure 2.2: Example of the deformed Candide grids for each one of the six facial expressions
created in [5]

the produced similarity spaces. The images are first transformed using a multi-scale, multi-
orientation set of Gabor filters. The grid is then registered with the facial image region either
automatically, using elastic graph matching or by manual clicking on fiducial face points.
The amplitude of the complex valued Gabor transform coefficients are sampled on the grid
and combined into a single vector, called a Labeled Graph Vector (LGV). The classification

is performed using the distance of the LGV from each facial expression cluster center.

2.1.2 Emotion Recognition Using Auditory Channel

Speech is one of the indispensable communication channels in humans. Recognition of emo-

tions via auditory channel consists of understanding the emotion expressed explicitly through
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words and/or implicitly through tone of voice. However, research suggests that nonverbal

communication is more important in understanding human behavior than words alone; the
“nonverbal channels” seem to be more powerful than what people say. In its broadest def-
inition, nonverbal communication is, according to Hecht, DeVito, and Guerrero, “all the
messages other than words that people exchange in interactive contexts”. Voice can provide
indications of specific emotions through acoustic properties such as pitch range, rhythm, and
amplitude or duration changes (Ball and Breese, 2000; Scherer, 1989). A bored or sad user,
for example, will typically exhibit slower, lower-pitched speech, with little high-frequency
energy, whereas a user experiencing fear, anger, or joy will speak faster and louder, with
strong high-frequency energy and more explicit enunciation (Picard, 1997a). Murray and
Arnott (1993) provide a detailed account of the vocal effects associated with several basic
emotions (see Table 2.2).

Feature extraction is a very important and decisive part of every speech-based AER sys-
tem. A substantial body of existing works on automatic emotion recognition based on speech
use prosodic features. Prosody deals with the rhythmic patterns of spoken language, includ-
ing stress and intonation. Acoustically, prosody describes changes in the syllable length,
loudness, pitch, and certain details of the formant structure of speech sounds. Phonologi-
cally, prosody is described by tone, intonation (i.e. the contour of the pitch pattern; whether
there is a rising or falling tone at the end of the pattern ), rhythm (i.e. how the words are
grouped together ), and lexical stress (i.e. where the main accent occurs).

Schiiller et al. in [10] use both acoustic features and language information of speech
utterances in their database to construct their speech-based AER system. They are dealing
with emotion recognition in an automotive environment. The emotion corpus used in [10]
consists of German and English sentences of 13 speakers, one female and 12 male. They
conduct their experiment in both person-dependent and person-independent situations to
classify seven emotion categories: anger, disgust, fear, joy, neutral, sad, and surprise. The
set of acoustic features used in this work is static features of prosodic analysis. For acoustic

features classification they compare the performance of several classifiers throughout their
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work:
1. k-means classifier, where the criterion function is the Euclidean distance between the

class mean vectors.

2. k-nearest-neighbors (k-NN) classifier, where the unknown sample is assigned to the

class with majority vote.

3. Gaussian Mixture Model (GMM), with 16 Gaussian models where the well-known
Expectation Maximization (EM) algorithm is used to find the model parameters and a

new sample is assigned to a model (class) according to maximum likelihood criterion.

4. Neural Networks (NNs), with one hidden layer. They use a multi-layer perceptron

(MLP) neural network with back propagation algorithm and sigmoid transfer function.

5. Support Vector Machines (SVMs), with Radial Basis Kernel Function (RBF) to map

the data points from input space to feature space.

To construct a multi-class SVM, they implement three different plots: One-Vs-All en-
coding scheme where the sample belongs to the class with the highest distance to others.
In the second method the distances are fed into a MLP neural network. They also propose
a Multi-Layer SVM (ML-SVM) depicted in Fig. 2.3 for extending the binary SVMs to a
multi-category problem. They rank their extracted features according to Linear Discrimi-
nant Analysis (LDA) in order to choose the best subset of features. Their best classification
result using just acoustic features is 81.29% achieved by ML-SVMs. They use standard
Hidden-Markov-Model-based automatic speech recognition (ASR) engine with zero-grams
as language model. They suggest using a MLP for fusion of the obtained acoustic and lin-
guistic information, where the input feature vector consists of features derived by acoustic
and linguistic analysis and 7 output neurons provide the final emotion probabilities by a
softmax function.

Lin and Wei [11] in their research on AER use only acoustic information of speech sig-

nals. The emotional speech database used in this study is the Danish Emotional Speech
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Figure 2.3: Optimal alignment of the emotions using ML-SVMs suggested in [10]

Table 2.2: Voice and emotion (Based on Murray and Amott, 1993)

Fear Anger Sadness Happiness Disgust
Speech rate Much faster | Slightly Slightly Faster or | Very much
faster lower slower slower
Pitch average | Very much | Very much | Slightly Much higher | Very much
higher higher slower slower
Pitch range Much wider | Much wider | Slightly Much wider | Slightly
narrower wider
Intensity Normal Higher Lower Higher Lower
Voice quality | Irregular Breathy Resonant Breathy Grumbled
voicing chest tone blaring chest tone
Pitch changes | Normal Abrupt on | Downward Smooth up- | Wide down-
stressed inflections ward ward termi-
syllables inflections nal
inflections
Articulation | Precise Tense Slurring Normal Normal
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(DES) database [14], which includes expressions by two male and two female actors familiar

with radio theater. The whole database is divided into four parts for the purpose of cross-
validation. The speech sentences in their database are expressed in five basic emotional
states: anger, happiness, neutral, sadness and surprise. Their experiment is performed in
both gender-dependent and gender-independent cases. In this work, the five groups of short-
term features that were extracted relate to fundamental frequency (FO0), energy, the first
four formant frequencies (F1 to F4), two Mel Frequency Cepstrum Coefficients (MFCC1
and MFCC2), and five Mel frequency sub-band energies (MBE1 to MBES5). The perfor-
mances of three different classifiers are investigated in this work: Hidden Markov Model
(HMM), SVM with RBF kernel function, and k-NN. In order to select the best subset of
features, Sequential Forward Selection (SFS) method is adopted. SFS algorithm is initialized
with the single best feature as determined by maximal correct classification rate criterion.
When combined with the selected ones, subsequent features that have the maximal correct
classification rate are added in turn. The selection of features stops when adding new ones
fails to increase the overall correct classification rate or when the number of the selected
features reaches a pre-set number. The recognition rates reported in [11] are 98.9% by the
HMM classifier for female subjects, 100% for male subjects, and 98.5% for gender indepen-
dent cases. When the SVM classifier and the proposed feature vector are employed, correct
classification rates of 89.4%, 93.6% and 88.9% are obtained for male, female and gender
independent cases respectively.

Petrushin in [12] makes use of acoustic features of the speech signals. The study deals
with a corpus of 700 short utterances expressing five emotions: happiness, anger, sadness,
fear, and normal (unemotional) state, which were portrayed by thirty subjects. The database
is randomly divided into two parts, 70% for training phase and 30% for evaluation. Some
statistics for fundamental frequency F0, energy, speaking rate, first three formants (F1, F2,
and F3), and their bandwidths (BW1, BW2, and BW3) are calculated as their acoustic
features. Three different approaches for classifying the five different emotional states are

implemented:
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1. k-NN

2. NNs, with Back propagation algorithm and sigmoid transfer function.

3. Ensembles of NN classifiers, where an ensemble consists of an odd number of neural
network classifiers that have been trained on different subsets of the training set using
the bootstrap aggregation and the cross-validated techniques. The ensemble makes

decision based on the majority voting principle.

RELIEF-F algorithm is used in this work to reduce the dimensionality of the feature vec-
tor. The overall accuracy achieved in this research is 70% corresponding to ensembles of
NN classifiers. In this experimental study the performance of people for recognizing other’s
as well as their own emotional state is evaluated in order to investigate how well people
without special training can recognize emotions in speech and how well people can recognize
their own emotions that they recorded 6-8 weeks earlier. As a real-world application to this
research, a developed emotion recognition software for call centers is also addressed at the
end. According to the author, this emotion recognition agent was created in order to analyze
telephone quality speech signals and distinguish between two emotional states: “agitation”
and “calm”. The agent can be used as a part of a decision support system for prioritizing
voice messages and assigning a proper human agent to response the message at call center
environment.

Chuang and Wu in [13] present an approach to emotion recognition from acoustic and
textual content of speech signals in order to classify the aforementioned six universal emo-
tional states. Their experiments were performed on a collected drama corpus with 1085
sentences in 221 dialogues from the leading man and 101 Sentences in 213 dialogues from
the leading woman. In their proposed approach, some statistical values of four basic acoustic
features: pitch, energy, formant 1 (F1), and zero crossing rate (ZCR) are calculated. The
most significant features are selected utilizing principle component analysis (PCA) method
to form the acoustic feature vector.

They adopt the SVM classifier that classifies the input data in a space and produce a con-



tinuous probability for emotion recognition. Given the test sample 7', the probability that
' belongs to class ¢ is P(Class.|z’). According to them this value relates to three factors:
distance between the testing input and the hyperplane, distance from class centroid to the
hyperplane, and the classification confidence of the class, which is the number of samples
correctly recognized as class c over total number of samples in class c. In the text analysis
module, emotion content of an input sentence is essentially represented by its word appear-
ance. Two primary word types “emotional keywords” and “emotion modification words” are
manually defined and used to extract emotion from the input sentence. All of the extracted
emotional keywords and emotion modification words have their corresponding “emotion in-
tensity values” and “emotion modification values”, which are manually defined. For each
input sentence, the emotion intensity values are averaged and triggered by the emotion mod-
ification values to give the current emotion output. A front-end speech recognizer is firstly
used to convert the input speech signal into the textual data. To extract the appropriate
emotional state from textual input, they assume that every input sentence includes emo-
tional keywords and emotion modification words. The emotional keywords provide basic
emotion description of the input sentence, and the emotion modification words enhance or
decrease the emotional state. The final emotion output is the combination of the previous
two modules. They report the average recognition of 76.4%, 65.4%, and 81.4% for acoustic

features, textual content, and the integrated system, respectively.

2.1.3 Emotion Recognition Using Bimodal Approach

In humans’ face-to-face communication several different channels and modalities are func-
tioning and thus the communication is very flexible and robust. In fact, failure of one channel
is recovered by another channel and a message in one channel can be explained by another
channel. As a result, some researchers have adopted bimodal approach (i.e. using both
facial expressions and voice intonation) in their emotion recognition systems with the aim of
extending the capability and performance of the system compared to when only single modal

works alone. Some researchers [64] have found out that some emotions (sadness and fear) are
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auditory dominant, some emotions (happiness, surprise and anger) are visually dominant,

while some (disgust) are mixed dominant.

In addition to the applicable requirements and relevant steps in each of the single modules
in a bimodal system (as partly mentioned in the two previous sections), the main challenge
in such a system is to decide how and at which level the fusion of the information derived
from each of the modules should happen to get the final result.

Hoch et al. [15] present a person-dependent emotion recognition system by adopting an
acoustic and a visual monomodal recognizer and combining the individual results on the
“decision level”. In the visual analysis module, OpenCV (Open Source Computer Vision
Library) [16] is used to detect the face areas in a sequence of images and a set of 18 Gabor
wavelet filters results in 88200 different magnitude coefficients. In the acoustic module some
statistical parameters of prosodic features (i.e. pitch, power, formants, duration of voiced
segments) form the acoustic feature vector. In both modules an SVM with linear kernel
function is employed. The output is transferred into a probability distribution (py, p2, p3) by
a soft-max function. Both monomodal emotion recognition systems provide an output vector
containing the individual confidence measurements (posterior probability) of the monomodal
classification process. Their proposed fusion approach combines these two monomodal re-

sults to a multimodal decision using a weighted linear equation:

Pfus;n = M-Pacn + (1 - n)-pvis,n

where pac,n is acoustic confidence measurements, pyis,n is the corresponding visual results,
Psusm is the merged final result, and 7 € [0,1] is called linear fusion coefficient (LFC). An
evaluation of the recorded examples in [15] yields an average recognition rate of 90.7% for
the fusion approach. According to them, this adds up to a performance gain of nearly 4%
compared to the best monomodal recognizer.

Chen, Huang, and Cook in [17] show that combining in “feature level” outperforms
combining in “decision level”. They adopt both visual and acoustic features for categorizing
the six universal emotions. In the facial expression analysis module, first they apply a

facial feature tracking algorithm to track eyes, eyebrows, furrows, and lips. After collecting



all possible features, they employ FACS (Facial Action Coding System) [18] to genera?’;i
the facial feature vectors. Eight acoustic features are calculated in their work, which can
be categorized as three types of information: pitch contour, intensity contour, and energy
spectrum. For bimodal feature analysis they directly combine the vocal and visual features
and then they are fed into a SVM. They achieved the classification rate of 82% which

according to them is an increased performance compared with each single mode.

2.1.4 The Objective of This Thesis

Between the two major modalities the audio channel is used as the input channel to the AER
system developed in this thesis. In the real-world applications data acquisition is easier and
faster if we deal only with speech signals; we don’t have to be worried about problems caused
by changes in the illumination and angle of the images. Processing one-dimensional speech
signals using signal processing techniques is faster than processing two-dimensional images,
especially when tracking in the image sequences is involved. Also there are some applications
(e.g. in telephone conversations) where there is no access to the visual information.

While some researchers have utilized both acoustic characteristics and textual content of
an emotional spoken utterance [10][13], this work is conducted using only acoustic features
of the speech signal. Although adding the information derived from textual content of an
utterance may provide some clue to recognize the emotion of the speaker and improves the
overall performance of the AER system in some cases, in general human’s speech emotional
state is too complicated to be perceived from language information. People can recognize
each other’s emotional state mostly from intonation and speaking rate, rather than the said
words. Two sentences could have the same lexical meaning but different emotional infor-
mation. In fact, dependency on language information decreases the generalization of system
and even can be misleading in some cases.

As reviewed in the previous three sections, some researchers have developed speaker-
dependent speech emotion recognition systems [10][15]. We think that speaker independency

is one of the intrinsic characteristics of an AER system. When a system is person-dependent
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the accuracy increases, but for each new subject the system has to be trained all over again

and that is a major drawback. So in this thesis it is tried to reach a very satisfying accuracy
with a person-independent system by choosing adequate acoustic features and an appropri-
ate classifier. Gender dependency also can decrease the generalization of the system.
Considering all these facts, the objective of this thesis is to develop a speaker-independent,
gender-independent Automatic Emotion Recognition (AER) system based on acoustic infor-
mation of speech signals. Another important issue in an emotion recognition study is to
provide a representative database. The next section addresses some of the existing common
databases for emotion recognition and also the emotion corpus which is used in this thesis

is explained in detail.

2.2 Emotion Corpus

During the past decade, research on AER has attracted the interest of an ever-growing
community of researchers. Numerous systems achieving emotion recognition from visual or
acoustic features have been developed. However, since the achieved results strongly depend
on the used databases, it remains very difficult to compare the relative performances of the
existing prototypes due to the lack of common databases and protocols.

In the past few years, the Cohn-Kanade facial database [19] imposed itself as the main
benchmark database for facial expression recognition algorithms. It includes over 2000 image
sequences from over 200 different subjects, expressing up to six different emotions. Some
other facial expression databases are also employed. To name just a few, the Japanese
Female Facial Expression (JAFFE) database [20] contains 213 images of 7 facial expressions,
posed by 10 Japanese female models. The AR Face Database [21] is a collection of over 4000
high-resolution color images of faces with different facial expressions, illumination conditions,
and occlusions. For emotion recognition systems based on speech a relatively large number
of databases are employed most of which are in languages other than English. Among
these databases the Danish Emotional Speech (DES) database by Engberg et al. [14] and
the Hebrew emotion speech database by Amir et al. [23], are widely used. DES database
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contains 4 speakers (2 male and 2 female) expressing 5 emotions (neutral, surprise, happiness,

sadness and anger) and Hebrew emotion speech data base contains 30 subjects recalling an
emotional event in which they participated in order to collect samples of basic emotions.
For multimodal emotion recognition, there are very few number of databases available. A
detailed analysis of the state of the art, coupled with an attempt to fill the need for a
multimodal emotion database has recently been made by Douglas-Cowie et al. [24], whose
approach focuses on the generation of genuine emotions. Although their result is interesting,
a database containing the 6 archetypal emotions defined by Ekman et al. [18] is still needed,
as most of the existing systems aim at recognizing this set of archetypal emotions.

The database used in this research is the one created in [25]. This audio-visual emotion
database is a professional reference database for testing and evaluating video, audio or joint
audio-visual emotion recognition algorithms aiming for recognizing 6 archetypal emotions
defined by Ekman et al. (see Section 1.1.6)

As described in [25], the protocol of constructing the database is as follows: First, the
subject is asked to listen carefully to a short story which provokes a particular emotion and
to immerse himself/herself into the situation. Once he/she is ready, the subject may read,
memorize and pronounce (one at the time) the five proposed utterances, which constitute
five different reactions to the given situation. These reactions are presented in Fig. 2.4.
The subjects are asked to put as much expressiveness as possible, producing a message that
contains only the emotion to be elicited. In the post processing stage two human experts
judged whether the reaction expressed the emotion in an unambiguous way. If this was the
case, the sample was added to the database. If not, it was discarded. The final version of
the database contains 42 subjects among which 81% are men, while the remaining 19% are
women.

All the experiments were driven in English. Allowing the subject to react in its own
language has a main drawback: the acoustic features largely depend on the language itself.
To illustrate by an example, the speaking rate is typically higher for an Italian than for a

French-speaking Swiss subject. Thus, to have acoustic features that depend only on the



ANGER
R1: What??? No. no, no. hsten' I need this money!
R2: I don't care about your coffee! Please serve me!

R3: I can have you fired you know!

R4 Is your cof

more important than my money”?

RS: You're getting paid to work, not drnink coftee!

SADNESS
R1: Life won't be the same now
R2: Oh no, tell me this is not true, please!
R3 Everything was so perfect! | just don't understand'
R4: [ still loved him (her)

RS: He (she) was my hife

FEAR
R 1. Oh my god, there 1s someone n the house!
R2: Someone 1s chmbing up the stairs
R3: Please don't kill me
R4 I'm not alone! Go away!

RS: I have nothing to give you! Please don't hurt me!

HAPPINESS

R1 That's great. I'm rich now!""

R2 I won thiss great! I'm so hay

R3: Wahoo.. This is so great
R4 I'm so lucky!

RS I'm so excited!

R2: Something is moving inside my plate

R3: Aaaaah a cockroach!!!
R4 Eeeck, this s disgusting!!!

RS: That's gross'

SURPRISE

R1: You have never told me that!
R2: 1 didn't expect that!
R3: Wahoo, I would never have believed this!

R4 I never saw that coming!

R5: Oh my God, that's so weird!

34

Figure 2.4: Reactions to elicit the six emotions
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Table 2.3: Geographic distribution of the subjects who participated in the database

Country | Number of Subjects || Country | Number of Subjects
Belgium 9 Cuba 1
Turkey 7 Slovakia 1
France 7 Brazil 1
Spain 6 U.S.A. 1
Greece 4 Croatia 1
Italy 1 Canada 1
Austria 1 Russia 1

expressed emotion, we have to deal only with one language. However, the subjects come
from 14 different nationalities listed in Table 2.3, so they talk in different accents.
Regarding technical aspects, the video sequences were processed using a 720 X 576 Mi-
crosoft AVI format. The frame rate is equal to 25 frames per second, while pixel aspect ration
is D1/DV PAL (1.067). The video was compressed using a DivX 5.0.5 Codec, to ensure easy
portability. The audio sample rate is 48000 Hz, in an uncompressed stereo 16-bit format.
Eventually, the database consists of a total of 1287 video sequences, which is a large num-
ber of samples to train and to test a system compared with other databases. Out of 1287
video clips, 296 sequences are recordings from women (23%) and 991 sequences recordings

from men (77%).



Chapter 3

Emotion Recognition Using LS-SVMs

HUMANS are capable of detecting emotions by listening to each other’s voice. Although
different languages and accents are used worldwide and the way people express their
emotions in speech varies according to their cultural background, personality, age, gender,
etc., in most of the cases we can perceive other peoples’s feelings. For more natural HCI ap-
plications, we need to give computers the same capabilities as humans’. As one of the major
indicators of humans’ affective state, speech plays an important role in machine recognition
of human emotion.

To build a more generic emotion recognition system, the extraction of features that can
truly represent the universal characteristics of the intended emotion is a real challenge. A
good reference model is the human hearing system. Previous works have explored several
different types of features. Since prosody is believed to be the main indicator of a speaker’s
emotional state [46], most researchers adopt prosodic features. However, Mel Frequency
Cepstral Coeffcient (MFCC) and formant frequency are also widely used in speech recogni-
tion and some of the other speech processing applications. In this work a set of novel cepstral
features are proposed most of which are being used for the first time in this application.
As explained before, two indispensable characteristics of an AER system are user indepen-
dency and gender independency. So the AER system developed in this contribution possesses

both features. The proposed system is also independent of textual information of the speech

signals.

36
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Figure 3.1: The structure of the speech emotion recognition system for frame approach.

In this chapter the proposed frame-approach AER system is explicated and the corre-

sponding steps are expounded. The achieved results are reported and discussed.

3.1 Frame-approach AER System

The block diagram of the proposed speech emotion recognition system, when all features
are extracted from each frame, is depicted in Fig. 3.1. It consists of five components. The
preprocessing step performs noise reduction and silence elimination. Then, the preprocessed
signal is passed through a windowing process to segment the original signals into short-time
speech frames. Acoustic features are then extracted separately based on short time spectral

analysis. Different steps of this procedure are elaborated in the following sections.

3.1.1 Preprocessing

In the preprocessing stage first each signal is de-noised by soft-thresholding the detail coef-
ficients obtained by three levels of wavelet decomposition using db3 wavelet function. Also

since the silent parts of the signals do not carry any useful information, those parts includ-
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ing the leading and trailing edges are eliminated by thresholding the energy of the small

intervals of the signal. In detail, a basic rectangular window with length of 23ms and zero
percent frequency overlap is used to divide signals into adjacent frames; the energy content
of the frames is calculated and thresholded. So the silent intervals with almost zero energy
value are eliminated. The threshold values are set empirically. Also two-channel signals are
converted to mono-channel by getting the average of the two channels.

Figs. 3.2 and 3.3 show the result of the preprocessing stage after de-noising and silent

part elimination, respectively.

3.1.2 Windowing

In order to extract features from the emotional speech signal, we perform spectral analysis.
The spectral analysis method is only reliable when the signal is stationary, i.e. the statistical
characteristics of a signal are invariant with respect to time. Speech signals like any other
audio signal are highly non-stationary, however; vocal tract can be considered stable over
a very short period of time, typically around 10-30ms. A signal z(n) is divided into a
succession of windowed sequences z;(n), called frames. These speech frames can then be

processed individually.
zi(n) = w(n)zi(n) n=0,...,N—-1, ¢t=0,...,T—1 (3.1)

where w(n) is the impulse response of the window, NV is the size of the window, T is the
number of frames, and z}(n) is the frame before applying the window function.
In this thesis, a Hamming window with length of 23ms and 50% frequency overlap is used.

The impulse response of a Hamming window (Fig. 3.4) w(n) is a raised cosine impulse [47]:

2m™n

w(n) = 0.54 — 0.46 cos(N -

) n=0,...,N—1. (3.2)

Compared with the rectangular window shape, Hamming window has the advantage of

decreasing the leakage effect and to smooth the transition and eliminate the possible gaps

between blocks, overlapping windows are usually employed.
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Figure 3.3: Signal after eliminating the silence parts
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Figure 3.4: Hamming window (32 points). Left: time domain. Right: frequency domain

3.1.3 Feature Extraction

A set of novel acoustic features is proposed in this thesis. Most of the features used in
previous works are prosodic features and their statistical characteristics [11][12][25][26][27].
Fig. 3.5 shows the list of features used in this contribution. These features have been previ-
ously utilized successfully in the applications of audio fingerprinting and speaker verification
(28][29], but most of them are being used for the first time in the application of speech
emotion recognition. More specifically, among these features only Mel Frequency Cepstrum
Coefficients (MFCC) and Zero Crossing Rate (ZCR) have been used for speech emotion
recognition in the past [11][13][30], while the rest are being used for the first time in this
application. All the features are extracted from each frame. The definition of features used

in this work are given below.
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Audio Features
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Figure 3.5: List of acoustic features used for speech emotion recognition.

Spectral Features

In order to perform spectral analysis, the speech signals need to be transformed to the fre-
quency domain. This is done by discrete Fourier transform. Figure 3.6 shows spectrograms
and associated waveforms of the six emotions, as produced by one of the experimental sub-
jects. On the spectrogram, time is represented along the horizontal axis, whereas frequency
is plotted along the vertical axis. For a given spectrogram S, the strength of a given fre-
quency component f at a given time ¢ in the speech signal is represented by the darkness of
the corresponding point S(t, f). It can be observed that each emotion class exhibits different
patterns.

Let s;(n) represents the i'" frame of the signal with n = 1,..., N. Let F; = fi(u),u €
(0, M), be the Fourier transform of the ith frame. where M is the index of the highest

frequency band.

1. Shannon Entropy (SE) : The Shannon entropy of a signal is a measure of its spectral

distribution. Shannon entropy is defined as

M
E; =" fi(u)|logy | fi(w)] (33)

u=0
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Figure 3.6: The spectrograms associated with different emotions (adopted from [76])

2. Renyi Entropy (RE): The Renyi entropy of a signal is also a measure of its spectral

distribution. Renyi entropy is defined as

RE; = 1 log, (i | fi(w) r) (3.4)

u=0

3. Spectral Centroid (SC): The spectral centroid is the center of gravity of the magnitude

spectrum of the STFT and is a measure of spectral shape and ”brightness” of the

spectrum. SC is defined as

0 = Zuzoe Lfiw) (3.5)

Pumo | fi(w) |
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4. Spectral Bandwidth (SB): The spectral bandwidth is measured as the weighted average

of the distances between the spectral components and the spectral centroid. SB is

defined as

M 2 | () I2
Puzo(e = SC). | fi(w) | (3.6)

SB; =
>uco | filw) I?

5. Spectral Flux (SF): The spectral flux is defined as

M
SF;=>Y |l firn(u) | = | fi(w) Il (3.7)

u=0

6. Spectral roll-off Frequency (SRF): The spectral roll-off frequency is defined as

h M
SRF; = maz <h’z fitw) <TH.S f,-(u)) (3.8)

u=0 u=0
where TH is a threshold between 0 and 1. A threshold value of 0.7 is used in this

work.

Cepstral Features

Cepstral based features are widely used in speaker recognition applications. Cesptral coeff-
cients enable us to obtain information about vocal tract configuration.

Essentially, the speech system can be modeled with an input, a filter, and an output.
The input to the speech system is the periodic oscillations for the vocal cords or air from the
lungs, the output is the speech signal, and the vocal tract, mouth, and lips, acts as a time
varying filter that modifies the input signal to produce speech or other sounds in general. Of

course, the shape and thickness of the vocal tract is controlled by a group of muscles, and
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the shape of the mouth cavity and lips are controlled by the speaker; factors which depend

on the anatomical structure of the speaker as well as the way the speaker learns to speak.
Modeling the entire speech system as a time varying excitation and a time varying filter,

the speech signal (s(t)) is given by
Svoiced(t) = x(t) * h(t) (3.9)

Sunvoiced(t) = n(t) * h(t) (3.10)

where z(¢) is a periodic excitation, n(t) is white noise, and A(t) is a time varying filter which
constantly changes to produce different sounds. However, h(t) can be considered stable
over a period of few milliseconds (ms); typically a period of about 10-30ms is commonly
used in literature [48][49]. This convenient short-time stationary behavior can be exploited
to characterize the vocal tract configuration given by h(t). This information can be easily
extracted from the speech spectrum using well established deconvolution techniques.

The cepstrum operator is often found in literature under homomorphic deconvolution
and therefore, it can separate the components of speech found in Equ. 3.9 and Equ. 3.10.
This powerful tool then permits for separate analysis of the vocal tract configuration (given
by the filter component A(t)). The cepstrum (C(t)) of the signal syoicea(t) = z(t) * h(2) is
given by

Cesptrum{s(t)} = FFT~'{|log FFTsysicea(t)]|} (3.11)

Although Mel-frequency cepstral coefficient (MFCC) is perhaps the most popular solu-
tion in the field of speech recognition, identification, etc., since the purpose of MFCC is
to mimic the behavior of human ears by applying cepstral analysis and as our goal is to
identify possible acoustic features that can contribute to the recognition of human emotion,
we also investigate this type of feature. Calculating the MFCCs for a speech signal consists
of preprocessing, windowing, followed by Fourier transform, Mel-scaling and inverse cosine
transform for each time frame. Prior to inverse transform, the magnitude of the spectrum

is made logarithmic. This logarithmic scale is a characteristic of the human hearing system.
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Figure 3.7 shows the flow of the MFCC feature extraction procedure.
Mel-scaled filter bank:  In order to simplify the spectrum without significant loss of

data. the Fourier transformed signal is usually passed through a set of band-pass filters,
which properly integrate a spectrum at defined frequency ranges. In a speech signal, most
of the important and useful information is located at the lower frequency band. Mel-scale is
the most widely used perceptual scale, which is designed to capture and emphasize the in-
formation in low frequency band. The filter bank is usually constructed of triangular-shaped
filters with frequency overlap, so that the center frequency of a filter corresponds to the
upper frequency of previous filter and lower frequency of next filter. The central frequency
of each Mel filter bank (Fig. 3.8) is uniformly spaced before 1 kHz and it follows a logarith-
mic scale after 1 kHz. Furthermore, to emphasize the low frequency components, the filter
magnitude is usually set to 1 at the low frequency band, while decreasing as the frequency
increases. Usually, the range of the frequency covered by the filter bank lies between 20 Hz
till half of the sampling frequency of the signal. Fig. 3.8 shows the diagram of an ideal

Mel-scaled filter bank.
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Figure 3.8: Mel-scaled filter bank design.

Cepstral coefficients: By using a Mel-scaled filter bank, the spectrum is smoothed in
the same way it is in the human ear. The next step is to compute the logarithm of the square
magnitude of the coefficients Y;(m). This reduces to simply computing the logarithm of the
magnitude of the coefficients, because of the logarithm algebraic property which brings back
the logarithm of a power to a multiplication by a scaling factor. By taking the log of the
filter coefficients, the characteristics of the human auditory system can be simulated, because
magnitude and logarithm processing are performed by the human ear as well. Furthermore,
the magnitude operation discards the useless phase information, while a logarithm performs
a dynamic compression, making feature extraction less sensitive to variations in dynamics
[63].

MFCCs are the inverse discrete cosine transform of the logarithm of the magnitude of

the filter bank output:

) (3.12)

M| =
<[

oy (k) = > log{[Yi(m)|}. cos(k(m —

m=1
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where m is the index of the filter, and M is the total number of the filters. yg’")(k), m =

1,2,..., M represent the Mel-frequency cepstral coefficients.

By using the above mentioned techniques, we can calculate the MFCCs from each speech
utterance. For each speech utterance, we calculate coefficients matrix of size M x N, where
M is the number of coefficients, while N denotes the total number of speech frames in an
utterance where all processing is performed on 23ms frames with 50% of overlap to ensure
smooth frequency transition from frame to frame. However, the lengths of the utterances
are different, and thus the sizes of the coefficient matrix are different. In order to facilitate
the classification, the features of each utterance that are mapped to the feature space should
have the same length. It has been shown that the first several cepstral coeffcients from
the cepstral domain represent the anatomical structure of a speaker’s vocal tract. In speech
recognition, the common number of used coefficients is between nine and thirteen [66][67]. In
this work, we take the first thirteen coefficients. We then calculate the mean, and standard

deviation of each order of yt(m) (k), m=1,2,..., M as the extracted features.

Time Domain Features
In time domain, only the zero crossing rate (ZCR) is considered. ZCR is a correlate of

the spectral centroid. It is defined as the number of time-domain zero-crossings within the

processing frame [69].

N-1
ZCR; = % (Z |sign(si(n)) — sign(s;(n — 1))|) (3.13)

i=1

Let X; be the set of features extracted for the ith frame. We then have a sequence of
feature vectors (X) for each signal. In order to represent only one feature vector for each

utterance, mean and standard deviation of each variable is computed (see Section 4.1 for

more detail).
X; = [SE;, RE;, SC;,SB;, SF;, SRF;, MFCCL,...,MFCCP, ZCR)"

X =[X1, X, ..., Xn]
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where n is the number of frames. Finally the feature matrix X is mean subtracted and

component wise variance normalized to get a normalized feature matrix. Having six spectral
features, thirteen cepstral features, and one time-domain feature, and by computing mean
and standard deviation of each of these variables, dimensionality of the final feature vectors

comes to 40.

3.1.4 Feature Selection

The task of selecting relevant features in a classification task can be viewed as one of the
most fundamental problems in the field of machine learning. The performance, robustness,
and usefulness of classification algorithms are improved when relatively few features are
involved in the classification. By selecting the most relevant subset from the original feature
set, we can increase the performance of the classifier and on the other hand decrease the
computational complexity. Thus, selecting relevant features for the construction of classifiers
has received a great deal of attention.

Feature Selection (FS) methods in Data Mining (DM) and Data Analysis problems aim
at selecting a subset of the variables, or features, that describe the data in order to obtain a
more essential and compact representation of the available information. The selected subset
has to be small in size and must retain the information that is most useful for the specific
application. The role of Feature Selection is particularly important when computationally
expensive DM tools are used, or when the data collection process is difficult or costly.

In essence, the reduction of the original feature set to a smaller one preserving the relevant
information while discarding the redundant one is referred to as feature selection. In many
cases F'S can be looked at as an independent task in the DM process, that pre-processes
the data before they are treated by a DM method, which often may fail or have significant
computational problems in treating data set with a large number of features directly [33].

The main benefits in using FS in DM may thus be outlined as follows:

e reduction in the amount of information needed to train a DM algorithm;

e better quality of the rules learned from data;
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e ecasier acquisition and storage of the information related to a smaller number of “useful”

features;

Many methods have been proposed in the literature for feature selection. The most

common methods are explained in the following sections.

General Feature Selection Method

In supervised learning, FS is often viewed as a search problem in a space of feature subsets

and is based on four main steps, as follows [33]:
1. generation procedure;
2. evaluation function;
3. stopping criterion;
4. validation procedure.

The generation procedure is in charge of generating the subsets of features to be evaluated.
From the computational standpoint, the number of possible subsets from a set of NV features
is 2. The generation starts with an empty set, and then adds a new feature at each iteration
(forward strategy). Alternatively, it may start from the complete set of features removing one
at each step (backward strategy). Finally, some methods propose to start from a randomly
generated subset to which forward or backward strategy is applied.

The evaluation function is used to measure the quality of a subset. Such value is then
confronted with the best available value obtained, and the latter is updated if appropriate.
More specifically, the evaluation function measures the classification power of a single feature
or of a subset of the features. Different types of evaluation functions can be used.

The stopping criterion is needed to avoid time consuming exhaustive search of the solution
space without a significant improvement in the evaluation function. The search may be
stopped if a given number of attributes has been reached, or when the improvement obtained

by the new subset is not relevant.

PROPERTY OF
RYERSON UNIVERSITY LIBRARY
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Finally, the wvalidation procedure measures the quality of the selected subset. This is

typically accomplished by running the DM algorithm by using only the selected features on
additional data.

According to the type of evaluation function adopted, FS methods are divided into two
main groups: filter methods and wrapper methods(33)]. In the former, the evaluation function
is independent from the DM algorithm that is to be applied. In the latter, the DM algorithm
is, to a certain extent, the essence of the evaluation function: each candidate subset is tested
by using the DM algorithm and then evaluated on the basis of its performance. Wrapper
methods are widely recognized as a superior alternative in supervised learning problems since
can provide better results in terms of final accuracy [33].

Implementing a wrapper is a straightforward task in supervised learning, since there is
always some external validation measure available. It is assumed that the goal of clustering is
to optimize some objective function which helps to obtain good clusters and use this function
to estimate the quality of different feature subsets.

Filter approach presents several weak points, amongst which are:
e They usually do not deal appropriately with noisy data;
e They often leave the choice amongst a number of ”good” subsets to the user;

o In most methods the user is asked to specify the dimension of the final set of features,
or to define a threshold value of some sort that drives the stopping condition of the

algorithm;

e Some methods pose some constraints on the format of the data (e.g. they may require
all data to be in binary format), introducing potential noise and furthermore increasing

the number of features to start from.

However, it is faster than wrapper approach.

A drawback of wrapper method is that they are expensive from the computational stand-

point.
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Feature Selection by Combining Features

LDA-based feature selection: Another approach to cope with the problem of excessive
dimensionality is to reduce the dimensionality by combining features. Linear combinations
are practically attractive because they are simple to compute and analytically tractable. In
effect, linear methods project high-dimensional data onto a lower dimensional space. The
classical approach to supervised linear dimensionality reduction is based on Linear Discrim-
inant Analysis (LDA)[52]. This approach defines the optimal transformation matrix to be
the one that maximizes the between-class covariance matrix and minimizes the within-class
covariance matrix (Fisher criterion). There are two drawbacks with LDA-based methods:
first the number of linear bases is limited by the number of classes and second the bases are
not orthogonal in general [53)].

PCA-based feature selection: Another method to find effective linear transformation
is Principal Component Analysis (PCA), which seeks a projection that best represents the
data in a least-squares sense. PCA is a multivariate procedure which rotates the data such
that maximum variabilities are projected onto the axes. Essentially, a set of correlated vari-
ables are transformed into a set of uncorrelated variables which are ordered by reducing
variability. PCA approach to feature selection has two drawbacks. The first is that it is
based on variance of the features only and does not take the class labels into account, and
the second is that there is no guarantee that selected feature are the most useful variables.
In other words, PCA gives high weights to features with higher variabilities irrespective of
whether they are useful for classification or not. This may give rise to the situation where
the chosen principal component corresponds to the attribute with the highest variability but
having no discriminating power [54].

Considering the advantages and disadvantages of the mentioned methods, in this thesis
the Sequential Forward Selection (SFS) method is applied for each single binary classifier in
the system in order to select the most efficient subset of features. The algorithm starts with
zero feature selected and at each step the variable which increases the performance of the

classifier the most is added to the feature subset. As a result, selection of the subset which
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Figure 3.9: The performance of a binary LS-SVM by adding a new feature at each iteration of
SES algorithm

yields the best result is guaranteed. Fig. 3.9 illustrates the concept. In most researches one
identical subset of features is used for all the classes to be separated. In this work, feature
selection procedure is applied separately to each binary LS-SVM, so the variables which give

the best result for different emotions can be captured.

3.1.5 Classification

The recognition of human emotion is essentially a pattern recognition problem where we
want to categorize the emotional content of an utterance. Selection of a proper classifier has
a significant impact on the overall result. There is no classifier referred in the literature as an
optimal classifier. Therefore almost all the researchers try different classification methods to
find a classifier which works well with their problem. In fact, choosing a proper classification
method is highly related to the geometric distribution of the data points.

Machine Learning in general and the classification methods used in this thesis are elab-
orated in Section 4.12. In this research Least Squares Support Vector Machine (LS-SVM)
explained in Section 3.3.2 is adopted in order to classify six categories of emotion. Since

we are dealing with a multi-class classification problem, we need a method to extend our
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binary SVMs to a multi-category problem. There are different strategies proposed to build a

multi-class SVM. In this thesis the results achieved by one-against-all, fuzzy one-against-all,
pairwise, and fuzzy pairwise [55] mentioned in Section 3.3.2 are compared, in order to achieve
the best result.

For the purpose of comparative study, a linear classifier (described in Section 3.3.1) is

also applied to examine if the data samples are linearly separable.

3.1.6 Implemented Results

Our database consists of 1287 instances of utterance. In the first part of our study for frame
approach, 50% of data samples was used for the training phase exclusively and the remaining
50% for evaluating the trained classifiers (the division is done in random).

All the binary LS-SVM classifiers were trained using RBF kernel function defined in Equ.
3.34 with different optimal regularization and kernel parameters. Kernel parameters (o) and
regularization parameters were set empirically.The linear classifiers were trained using the
gradient descent algorithm (see Appendix B). The initial weight vector and the step size in
the algorithm were both set empirically.

Table 3.1 shows the final results. The abbreviation “FS” in the table means Feature
Selection. As it is shown the best performance (81.3%) belongs to fuzzy pairwise LS-SVM
using the features selected by SFS algorithm. In fact selecting pairwise method over One-Vs-
All is a trade-off between accuracy and computational complexity where the improvement
of accuracy is much more significant. The achieved result by the linear classifier is not an
acceptable accuracy and we can come to the conclusion that the geometric distribution of
the data samples in our experiment is not linearly separable.

Table 3.2 shows the confusion matrix for LS-SVM classifier using fuzzy pairwise method
and SFS algorithm. The abbreviations in this table stand for the six different emotions:
anger, fear, disqust, happiness, sadness, and surprise. We can deduce from Table 3.2 that
the most difficult emotion to recognize in our experiment is surprise and the easiest ones are

sadness and happiness.
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Table 3.1: Final recognition results
Classification method | Recognition Rate
One-Vs-All LS-SVM 44.9%
fuzzy One-Vs-All LS-SVM 53.6%
Pairwise LS-SVM 74.5%
fuzzy Pairwise LS-SVM 78.4%
fuzzy Pairwise LS-SVM, FS 81.3%
fuzzy pairwise LDA 37.7%

Table 3.2: Confusion matrix for fuzzy-pairwise LS-SVM with feature selection
Recognized Emotions (%)
Ang | Fea | Dis | Hap | Sad | Sur
Ang | 83.3 0 2.7 6.4 27 | 4.6
Fea | 1.8 |71.9]| 74 1.8 13 3.7
Dis | 4.6 5.5 | 79.6 0 3.7 6.4
Hap| 1.8 | 1.8 0 |924]| 18 | 1.8
Sad 0 6.1 0.9 0 90.5| 2.3
Sur | 11.1 | 9.2 5.5 46 | 13.8 | 55.5

3.2 Machine Learning

Machine learning methodology is an artificial intelligence approach to establish and train a
model to recognize the pattern or underlying mapping of a system based on a set of training
examples consisting of input and output patterns. The construction of machines capable
of learning from experience has, for a long time, been the object of philosophical and tech-
nical debate. The technical aspect of the debate has received an enormous impetus from
the advent of electronic computers. They have demonstrated that machines can display a
significant level of learning ability, though the boundaries of this ability are far from being
clearly defined [51].

In other words, Machine Learning (ML) is the study of methods for programming com-
puters to learn. Computers are applied to a wide range of tasks, and for some of these it is
relatively easy for programmers to design and implement the necessary software. However,

there are many tasks for which this can be difficult or impossible. These tasks can be divided
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into four general categories.

First, there are problems for which there exist no human experts. For example, in mod-
ern automated manufacturing facilities, there is a need to predict machine failures before
they occur by analyzing sensor readings. Because the machines are new, there are no human
experts who can be interviewed by a programmer to provide the knowledge necessary to
build a computer system. A ML system can study recorded data and subsequent machine
failures and learn prediction rules.

Second, there are problems where human experts exist, but they are unable to explain
their expertise. This is the case in many perceptual tasks, such as speech recognition,
hand-writing recognition, and natural language understanding. Virtually all humans exhibit
expert-level abilities on these tasks, but none of them can describe the detailed steps that
they follow as they perform them. Fortunately, humans can provide machines with examples
of the inputs and correct outputs for these tasks, so ML algorithms can learn to map the
inputs to the outputs.

Third, there are problems where the underlying phenomena are changing rapidly. In
finance, for example, people would like to predict the future behavior of the stock market,
consumer purchases, or exchange rates. These behaviors change frequently, so that even if
a programmer could construct a good predictive computer program, it would need to be
rewritten frequently. A learning program can relieve the programmer of this burden by con-
stantly modifying and tuning a set of learned prediction rules.

Fourth, there are applications that need to be customized for each computer user sepa-
rately. Consider, for example, a program to filter unwanted electronic mail messages. Differ-
ent users will need different filters. It is unreasonable to expect each user to program his or
her own rules, and it is infeasible to provide every user with a software engineer to keep the
rules up-to-date. A ML system can learn which mail messages the user rejects and maintain
the filtering rules automatically.

ML addresses many of the same research questions as the fields of statistics, DM, and

cognition, but with differences in emphasis. Statistics focuses on understanding the phenom-
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ena that have generated the data, often with the goal of testing different hypotheses about

those phenomena. DM seeks to find patterns in the data that are understandable by people.
Cognitive studies of human learning aspire to understand the mechanisms underlying the
various learning behaviors exhibited by people (concept learning, skill acquisition, strategy
change, etc.). In contrast, ML is primarily concerned with the accuracy and effectiveness of
the resulting computer system.

There are two phases in ML algorithms: “learning” or “training” the system with known

data and “testing” where the system performance is tested with new data.

3.2.1 Learning

When computers are applied to solve a practical problem, it is usually the case that the
method of deriving the required output from a set of inputs can be described explicitly. The
task of system designer and eventually the programmer implementing the specifications will
be to translate that method into a sequence of instructions which the computer will follow
to achieve the desired effect. As computers are applied to solve more complex problems,
however, situations can arise in which there is no known method for computing the desired
output from a set of inputs, or where that computation may be very expensive. An example
of this type of situations might be the handwriting recognition problem. These tasks cannot
be solved by traditional programming approach since the system designer cannot precisely
specify the method by which the correct output can be computed from the input data.
An alternative strategy for solving this type of problems is for the computer to learn the
input/output functionality from the examples. The approach of using examples to synthesize
programs is known as the learning methodology. When the underlying function from inputs
to outputs exists, it is referred to as the target function. The estimate of the target function
which is learnt or output by the learning algorithm is known as the solution of the learning
problem. In the case of classification this function is referred to as the decision function.

In the broadest sense, any method that incorporates information from training samples in

the design of a classifier employs learning. Because nearly all practical or interesting pattern
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recognition problems are so hard that we cannot guess the classification decision ahead of

time, we shall spend the great majority of time considering learning. Learning tasks can be
classified along different dimensions. One important dimension is the distinction between

supervised (empirical) and unsupervised learning.

Supervised learning

In supervised learning, a teacher provides a category label or cost for each pattern in a

training set, and we seek to reduce the sum of the costs for these patterns [50].

Unsupervised Learning

In unsupervised learning or clustering there is no explicit teacher, and the system forms
clusters or “natural groupings” of the input patterns. “Natural” is always defined explicitly
or implicitly in the clustering system itself, and given a particular set of patterns or cost
function, different clustering algorithms lead to different clusters. Often the user will set the

hypothesized number of different clusters ahead of time [50].

3.2.2 Testing

Once we have chosen a model, we have to estimate its performance. The training set error
rate can be highly misleading and is usually an overoptimistic estimate of performance.
Inaccuracies are due to the over-fitting of a learning machine to the data. In fact we want to
know how well the model that has just learned from some training data is going to perform
on future as-yet-unseen data (generalization). There are at least two reasons for wanting
to know the generalization rate of the classifier on a given problem. One is to see if the
classifier performs well enough to be useful; another is to compare its performance with that
of a competing design.

Some of the most common validation methods are:
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Random Sub-sampling

Random sub-sampling performs K data splits of the data set. Each split randomly selects
a (fixed) number of examples without replacement. For each data split we retrain the
classifier from scratch with the training examples and estimate the error rate, E;, with the
test examples. The true error estimate is obtained as the average of the separate estimates

E;.
K-fold Cross Validation

This technique creates a K-fold partition of the data set. For each of K experiments, it uses
K — 1 folds for training and the remaining one for testing. So the classifier is trained K
times, each time with a different set held out as a validation set. The estimated performance
is the mean of these K errors. The advantage of K-Fold cross validation is that all the

examples in the data set are eventually used for training and testing.

Leave-One-Out Cross Validation

Leave-one-out is the degenerate case of K-Fold cross validation, where K is chosen as the
total number of examples N. Each resulting classifier is tested on the single deleted point,
and the estimate of accuracy is then simply the mean of these leave-one-out accuracies. Here

the computational complexity may be very high, especially for large N.

3.3 Machine Learning Algorithms for Classification

The task of a classifier is to use the feature vector to assign the object to the proper category
[50].

There are many different classifiers with different approaches, different cost functions
and different algorithms. Considering the type of our data and the amount of information
we have about it, we can decide on a more proper classifier; however, it is hard to find a
perfect classifier unless we compare the result of several different algorithms. Classifications

can be categorized as: supervised or unsupervised, and the classifiers as: linear or non-linear
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Figure 3.10: A linear separating hyperplane (w,b) for a two dimensional data set

and probabilistic or deterministic. Some of the existing classification methods are explained

below.

3.3.1 Linear Discri_minant Function

A discriminant function that is a linear combination of the components of x can be written

as

g9(x) = wix +wp (3.14)

where w is the weight vector and wy the bias (Fig. 3.10)

A two-category linear classifier implements the following decision rule: Decide w; if
g(x) > 0 and w; if g(x) < 0. Thus, x is assigned to w; if the inner product wTx exceeds
the threshold wp and w; otherwise. If g(x) = 0, x can ordinarily be assigned to either class.
Figure 3.11 shows the general structure of a linear classifier. The equation g(z) = 0 defines
the decision surface that separates points assigned to w; from points assigned to wy. When

g(z) is linear, this decision surface is a hyperplane. If x; and xo are both on the decision
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Figure 3.11: A simple linear classifier having d input units

surface, then
wl(x; —%3) =0 (3.15)

and this shows that w is normal to any vector lying in the hyperplane.
In general, linear discriminant function divides the feature space by a hyperplane decision
surface. The orientation of the surface is determined by the normal vector, and the location
of the surface is determined by the bias. The discriminant function g(x) is proportional to
the signed distance from x to the hyperplane, with g(x) > 0 when x is on the positive side,
and g(x) < 0 when x is on the negative side.

In a two-category linearly separable problem, we have a set of n samples x;, X, ..., Xp,
some labeled w; and some labeled w,. We want to use these samples to determine the

Tx .

weights w in a linear discriminant function g(x) = w

A sample x; is classified correctly if wx; > 0 and x; is labeled w; or if wx; < 0 and x; is
labeled w,. This suggests a “normalization” that simplifies the treatment of the two-category
case: the replacement of all samples labeled w, by their negatives. With this normalization
we can forget the labels and look for a weight vector w such that wy; > 0 for all of the
samples (where y; is the normalized sample). Such a weight vector is called a separating

vector or more generally a solution vector [50]. The solution vector, if exists, is not unique.

The approach to finding a solution to the set of linear inequalities wy; > 0 will be to
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define a criterion function J(w) that is minimized if w is a solution vector. This reduces

our problem to one of minimizing a scalar function, a problem that can often be solved by
a gradient descent procedure.
One good choice for our criterion function is Perceptron Criterion Function, which is defined

as

Jpw) = —w'y (3.16)
Yev

where y(w) is the set of samples misclassified by w . Geometrically, Jp(w) is proportional

to the sum of distances from the misclassified samples to decision boundary.

3.3.2 Support Vector Machines

Support Vector machines (SVMs) are learning systems that use a hypothesis space of linear
functions in a high dimensional feature space, trained with a learning algorithm from opti-
mization theory that implements a learning bias derived from statistical learning theory.
SVMs are kernel machines based on the principle of structural risk minimization, which are
used in applications of regression and classification; however, they are mostly used as binary
classifiers. Although the subject can be said to have started in the late seventies (Vap-
nik, 1979), it is receiving increasing attention recently by researchers. It is such a powerful
method that in the few years since its introduction, it has outperformed most other systems
in a wide variety of applications, especially in pattern recognition.

Linear learning machines are the fundamental formulations of SVMs. The objective of
the linear learning machine is to find the linear function that minimizes the generalization
error from a set of functions which can approximate the underlying mapping between the
input and output data. Consider a learning machine that implements linear functions in the

plane as decision rules
f(x;w,b) = sign(w?x + b) (3.17)
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with N given training data with input values zx € ®" and output values y; € {1,—1}.

The empirical error is defined as

N N
1 1 .
Remp(0) = & ; lys = flxw,0) = < kX—; |y — sign(wTx — b)| (3.18)
where 6 = (w,b).
The generalization error can be expressed as
R(6) = [ v = £(x,6)lp(x,)dzdy (319)

which measures the error for all input/output patterns that are generated from the underlying
generator of the data characterized by the probability distribution p(z,y) which is considered
to be unknown.

According to statistical learning theory, the generalization (test) error can be upper bounded

in terms of training error and a confidence term as shown in Equ. 3.20:

R(0) < Remyp(6) + \/ Min(2N/h) X,l) — In(n/4) (3.20)

The term on left side represents generalization error. The first term on right hand side
is empirical error calculated from the training data and the second term is called confidence
term which is associated with the VC dimension % of the learning machine. VC dimension
is used to describe the complexity of the learning system. The relationship between these
three items is illustrated in Fig. 3.12.

Thus, even though we don’t know the underlying distribution based on which the data
are generated, it is possible to minimize the upper bound of the generalization error in place
of minimizing the generalization error. That means one can minimize the expression in the
right hand side of the equation 3.20.

Unlike the principle of Empirical Risk Minimization (ERM) applied in Neural Networks
which aims to minimize the training error, SVMs implement Structural Risk Minimization
(SRM) in their formulations. SRM principle takes both the training error and the complexity

of the model into account and intends to find the minimum of the sum of these two terms
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Figure 3.12: The relation between expected risk, empirical risk and VC confidence in SVMs.

as a trade-off solution (as shown in Fig. 3.12 ) by searching a nested set of functions of

increasing complexity.
Linear Support Vector Machines

Consider a binary classification problem with x; € R? as its feature vector and y; € {—1. —I—l}
the class labels (i.e. (X1,¥): > (Xn.y,) are the training sets). The hyperplane which

separates the two classes 1s

f(x)=w'x+b=0 (3.21)

The function of SVM is based on choosing the hyperplane which minimizes the mar-
gin between two classes (Fig. 3.13) [51][56]. Thus, the hyperplane (w,b) that solves the

optimization problem
1

minimizew p 5 | w? (3.22)

subject to

iUi(<W~Xi>+b)Zl i=1.....n

realizes the maximal margin hyperplane with geometric margin.

This is convex optimization problem (quadratic criterion with linear inequality constraints)
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Figure 3.13: A linear SVM classifier. Support vectors are those elements of the training set which
are on the boundary hyperplanes of two classes.

that has one unique solution.
The primal Lagrangian is
n
L(w,b,a) = % <wWwW > — Zai[yi(< w.x; > +b) — 1] (3.23)
i=1
where a; > 0 are the Lagrange multipliers.
The corresponding dual is found by differentiating with respect to w and b:
n 1
W(a) = ;ai —3 ”2;1 YiYjicy < X Xj > (3.24)

subject to

The advantage of using the dual representation is derived from the fact that in this
representation the number of free parameters relies on the number of data instead of the
number of dimensions of the input space (equals the dimension of weight vector in the primal
space). This property enables the classification in a high dimensional space.

But in many real-world problems the data is noisy; therefore there will in general be no
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linear separation. In this case instead of hard margin, we use soft margin (the noise tolerant

version), and slack variables denoted by £ , can be introduced to relax the constrains [51][56].
So our optimization problem would be
minimizewp l||w||2 +C ; & (3.25)
2 i=1
subject to

yi(< w.X; > +b) >1-& £&>0i=1,..,n

where C is regularization parameter which is a trade off between the empirical risk (reflected
by the second term in Equ. 3.25) and model complexity (reflected by the first term in Equ.
3.25). The dual form of this case is the same as Equ. 3.24 except that the constraint is

different:
OSaigg ,i=1,..,n (3.26)
N
Considering the model complexity in the optimization problem, prevents overfitting.
Now if we suppose that o is the answer to 3.25, and with making use of so important
Karush-Kuhn-Tucker (KKT) conditions, the optimal hyperplane can be expressed in the

dual representation:
Nsy

f(x,a*, b) = Zyia’{ < XX > +bo (3.27)

i=1

where Ny, is the number of support vectors.

Non-linear Support Vector Machines

In most of the real-world cases the data points are not linearly separable. In this case we
use a non-linear operator ¢(.) to map the data to a higher dimensional space F (Feature

Space), where it can be classified linearly. Figure 4.2 illustrates this mapping.

In other words, a linear learning machine can be employed in the feature space to solve
the original non-linear problem. Kernel functions satisfying Mercer condition not only enable

implicit mapping of data from input space to feature space but also ensure the convexity
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Figure 3.14: Mapping from input space to a higher dimensional feature space by means of a kernel
function.

of the cost function which leads to the unique optimum. Mercer condition states that a
continuous symmetric function K (z, z) must be positive semi-definite to be a kernel function
which can be written as inner product between the data pairs.

So the hypothesis in this case would be
F(x) =wlp(x) +b (3.28)

which is linear in terms of the mapped data (p(x) ). Now we can extend all the presented

optimization problems for the linear case, for the transformed data in the feature space. If

we define the Kernel function as
K (xi,%;) =< @(x:).0(%;)) > (3.29)

where ¢ is a mapping from input space to an (inner product) feature space F . Then the

corresponding dual form is

n 1
W(a) = Z o; — 5 Z y,;ijliOle(Xi.Xj) (330)
i=1

i,j=1

subject to i,
Zaiyi=0 aiZO,i=1,...,n

i=1
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The cost function W(a) in Equ. 3.30 is convex and quadratic in terms of the unknown

parameters. This problem is solved through quadratic programming. The Karush-Kuhn-
Tucker conditions for Equ. 3.30 lead to the following final decision rule

Ny
flx,a,bo) = Y viof K (xi-x) + bo (3.31)

i=1
where Ny, and o} denote number of support vectors and the non-zero Lagrange multipliers
corresponding to the support vectors respectively. Note that we don’t have to know the
underlying mapping function, however it is necessary to define the Kernel function.

Several typical choices of kernels are linear, polynomial, Multi-Layer Perceptron (MLP)

and Radial Basis Function (RBF) kernel. Their expressions are as following:

K(x,x;) = x/x linear kernel (3.32)
K(x,%;) = (T +x;x)* polynomial kernel (3.33)
K(x,%;) = exp(—|)x — xi||3/02) RBF kernel (3.34)
K(x,%;) = tanh(kix] x + kz) MLP kernel (3.35)

Least Squares Support Vector Machines

Although SVMs have many appealing properties that avoid the problems (e.g., overfitting,
inefficient of training and testing, a large set of parameters to be tuned) frequently associated
with the classical supervised learning methods, they also have some drawbacks as any other
techniques. The standard SVM requires the kernel matrix to be cashed to improve the com-
putation speed that makes online learning infeasible. Also, the fact that SVM formulation is
a convex quadratic programming (QP) guarantees the global optima, but QP is still difficult
to solve, especially for the learning tasks where the speed is concerned. Based on the concept
and formulation of SVMs, many researchers have been investigating the modification and
improvements for different purposes. Least Squares Support Vector Machine (LS-SVM) is
a reformulation of the standard SVM. LS-SVM models for classification and nonlinear re-

gression are characterized by simplifying the quadratic optimization problem into a system
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of linear equations. Such characterizations of LS-SVM allow fast training and less storage

hence enable its use in on-line training.

LS-SVMs are reformulations to standard SVMs which lead to solving linear KKT systems
[51]. In LS-SVMs the inequality constraints in SVM are replaced with equality constrains.
As a result the solution follows from solving a set of linear equations instead of a quadratic
programming problem which we have in original SVM formulation of Vapkin and obviously
we can have a faster algorithm.

In LS-SVM’s an equality constraint based formulation is made within the context of ridge
regression [57] as follows

minimizew pJ (W, b) = %Hw[[2 + 'yl 2": e? (3.36)
23
subject to

vi[wlo(x;) + b =1 —e; i=0,1,...,n
with Lagrangian

N
L(w,b,e;a) = J(w,b) — z osyi[weo(x;) + b — 1 +e; (3.37)

i=1
where a;’s are Lagrange multipliers (Support Values).
This LS-SVM formulation modifies Vapnik’s SVM at two points. First, LS-SVM takes equal-
ity constraints instead of inequality constraints. Second, the error variable e; was introduced
in the sense of least-square minimization. These error variables play a similar role as the
slack variables in SVM formulation such that relatively small errors can be tolerated.
Taking the condition for optimality of the Lagrangian yields a set of linear equations

shown in equation set 3.38:

(ZL=0 - w= YL, aip(x:)
=0 - =0

) (3.38)
%=0 — a; = e, i:]_’.“’N
%:0 — wTQO(xi)+b+ei—yi=0,i=1,_”’N’

\ i
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Solving this set of linear equations in a and b, the resulting LS-SVM model becomes the
following equation:

N
y(x) = a:K(x,x;) +b (3.39)

i=1

As it was shown in the previous section, SVMs solve the nonlinear regression problems by
means of convex quadratic programs (QP). The use of least squares and equality constraints
for the models leads to solving a set of linear equations, which is easier to use than QP solvers.
It also has potential drawbacks such as the lack of sparseness which is indicated from the
condition o; = 7ye; in equation set 3.38 since the error would not be zero for most of data
points. This is important in the context of an equivalence between sparse approximation and
support vector machines. One can overcome the drawbacks using special pruning techniques

for sparse approximation [58].

Multi-class Support Vector Machines

Support vector machines were originally designed for binary classification; therefore we need
a methodology to adopt the binary SVMs to a multi-class problem like our emotion recogni-
tion problem. How to effectively extend SVMs for multi-class classification is still an ongoing
research issue. Currently the most popular approach for multi-category SVM is by construct-
ing and combining several binary classifiers. Different coding and decoding strategies can
be used for this purpose among which one-against-all and one-against-one (pairwise) are the

most popular ones. Some of these methods are elaborated below.

a) One-Against-All SVMs: Assume that we have n discrete classes. For a one-against-
all SVM, we determine n decision functions that separate one class from the remaining

classes. Let the it" decision function, with the maximum margin, that separates class i from

the remaining classes be
Di(x) = wig(x) + b, (3.40)
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The hyperplane D;(x) = 0 forms the optimal separating hyperplane and if the classifica-

tion problem is separable, the training data x belonging to class i satisfy

D;(x)>1 ,x belong to class i
{ i(x) & g (3.41)

D;(x) £ -1 ,x belong to remaining classes

In other words, the decision function is the sign of D;(x) and therefore it is a discrete func-

tion. If 3.41 is satisfied for plural #'s , or there is no x that satisfies 3.41, x is unclassifiable.

b) Fuzzy One-Against-All SVMs:  One way of avoiding unclassifiable regions is to intro-

duce membership functions [55]. For class i we define one-dimensional membership functions

m;;(x) as
1)fori=3j
ey S 1 for D;(x) > 1
mi;(x) = { D;(x) otherwise (3.42)
2)fori#j
S 1 for D;(x) < -1
mi(x) = { —D;(x) otherwise (3.43)
For i # j , class i is on the negative side of D;(x) =0 .
After computing the membership values m;;(x) for j = 1,...,n , we define the member-
ship function of x for class i as
1
mi(x) = ; Z mij(x) (344)
Jj=1l,..,n
And finally the data point x classified into the class with the maximum membership
value:
arg  max m;(x) (3.45)

¢) One-Against-One SVMs:  Another encoding method for converting the binary classi-
fier into a multi-class one is one-against-one. In this method we construct a binary classifier

for each possible pair of classes and therefore for n classes we will have =1 ;“1 decision
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functions. The decision function for the pair of classes i and j is given by

Di; = wi;g(x) + bij (3.46)

where D;;(x) = —D;;(x).

The final decision is achieved by maximum voting scheme. That is for the datum x we

calculate
D;(x) = Z sign(D;;(x)) (3.47)
=1
And the datum is classified into the class

arg max D;(x) (3.48)

i=1l,..,n

d) Fuzzy One-Against-One SVMs: If 3.48 is satisfied for plural i’s, x is unclassifiable.

To avoid this, similar to fuzzy one-against-all, we introduce the fuzzy membership function.

First, we define the one-dimensional membership function m;; as

_J1 for D;j(x) > 1
mas(x) = { D;;(x) otherwise (349)

m;(x) of x for class i is given by

1 n
ma(x) = ——= > mi(x) (3.50)
n-l i

And x is classified into class

arg max  m;(x) (3.51)

i=l,..,n

3.3.3 Advantages and Disadvantages of Machine Learning

It is not surprising that the promise of a learning methodology should be so tantalizing. First,

the range of applications that can potentially be solved by such an approach is very large.

Second, it appears that we can also avoid much of the laborious design and programming

inherent in the traditional solution methodologies, at the expense of collecting some labeled
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data and running an off-the -shelf algorithm for learning the input/output mapping. Finally,

there is the attraction of discovering insights into the way that humans learn, an attraction
that inspired early work in neural networks. There are, however, many difficulties inherent in
the learning methodology, difficulties that deserve careful study and analysis. One example
is the choice of class of functions from which the input/output mapping must be sought. The
class must be chosen to be sufficiently rich so that the required mapping or an approximation
to it can be found, but if the class is too large the complexity of learning from examples can
become prohibitive, particularly when taking into account the number of examples required
to make statistically reliable inferences in a large function class. In practice these problems
manifest themselves in specific learning difficulties. The first is that the learning algorithm
may prove inefficient as for example in the case of local minima. The second is that the
size of the input hypothesis can frequently become very large and impractical. The third
problem is when there is only a limited number of training examples to reach a hypothesis
class, therefore it will lead to overfitting and hence poor generalization. The forth problem
is that frequently the learning algorithm is controlled by a large number of parameters that
are often chosen by tuning heuristics, making the system difficult and unreliable to use.
Despite the drawbacks, there have been notable successes in the application of the learning

methodology to problems of practical interest.



Chapter 4

Emotion Recognition Using Sequence
Discriminant SVMs

PEECH , vision, text and biosequence data can be difficult to deal with in the context
S of simple statistical classification problems, because the examples to be classified are
often sequences or arrays of variable size that may have been distorted in particular ways.
It is common to estimate a generative model for such data, and then use Bayes rule to
obtain a classier from this model. However, many discriminant functions which predict the
class labels directly, as in support vector machines, have proven to be superior to generative
models for classification problems.

During the last decade Support Vector Machines (SVMs) have proven to be successful
discriminative approaches to pattern classification problems. Excellent results have been
reported in applying SVMs in multiple domains. However, the application of SVMs to
data sets where each element has variable length remains problematic. On the other hand
statistical models such as Gaussian Mixture Models (GMM) or Hidden Markov Models
make strong assumptions about the data. They are simple to learn and estimate, and are
well understood by the multimedia community. Tt is therefore attractive to explore methods
that combine these models and discriminative classifiers. The Fisher kernel proposed by
Jaakkola [59] effectively combines both generative and discriminative classifiers for variable

length sequences.
In this chapter the issue of variable length in speech sequences is addressed, several

73
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proposed alternative solutions are discussed and our adopted technique is explained. The

experimental results are compared with the results achieved in the previous chapter.

4.1 The Problem of Variable-Length Sequences

In our approach to emotion recognition problem, the goal is classifying the whole speech
utterances, rather than frame-level classification. Since the lengths of utterances are different,
the sequences of feature vectors for each signal show different lengths.

A drawback of SVMs when dealing with audio data is their restriction to work with fixed-
length vectors. Both in the kernel evaluation and in the simple input space dot product,
the units under processing are vectors of constant size. However, when working with audio
signals, although each signal frame is converted into a feature vector of a given size, the
whole acoustic event is represented by a sequence of feature vectors, which shows variable
length. In order to apply SVM to this kind of data, one needs either to somehow normalize
the size of the sequence of input space feature vectors or to find a suitable kernel function
that can deal with sequential data. Several methods have been suggested to cope with this

problem [60] some of which are explained below:

Extracting Statistical Parameters

The easiest and the most common approach is to extract some statistical parameters (e-g.
mean and standard deviation) from the sequence of vectors and thus transform the problem
into that of fixed-length vector spaces. This is the method we adopted in Chapter 3. Despite
the good results we obtained using this approach, when frame-level features are transformed

into statistical event-level features, there exists an unavoidable loss of information.

Outerproduct of Trajectory Matrix

The time analysis of the data gives a sequence of I-dimensional parametric vectors. The

sequence is considered as a trajectory in the l-dimensional space. If we define the I-by-m
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trajectory matrix as X = [z1, %2, ..., Zm], the outerproduct matrix Z [60] is defined as

Z=XxX" (4.1)

Thus the outerproduct matrix Z is I-by-I and no longer depends on the length of the sequence.
The vectorized outerproduct thus can feed the SVM classifier directly. It is obvious that this

method explicitly considers sequence duration information.

Gaussian Dynamic Time Warping (GDTW)

This approach as well as the previous one does not assume a model for the generative class
conditional densities. The GDTW [60] method addresses the problem of variable length
sequences classification by introducing the DTW technique to SVM kernel. Recalling the

standard RBF kernel for SVM
K(xy) = e 2=l 2)

where x and y denote two patterns to compare. As mentioned before, if the two patterns are
sequences of different length, they cannot be compared in the kernel evaluation directly. An
obvious modification of 4.2 is to substitute the squared Euclidian distance computation with
the equivalent that can cope with temporally distorted, variable-length sequences. GDTW
kernel is defined as

Kix,y) = exp( =22 @3)
where D(x,y) is a DTW distance between sequences x and y. The proposed method was

applied to handwriting recognition in [70].

Fisher Kernel

Fisher kernel is one of the most successful methods that enable SVM to classify whole
sequences. Generative probability models such as hidden Markov models provide a principled
way of treating missing information and dealing with variable length sequences. On the
other hand, discriminative methods such as support vector machines enable us to construct

flexible decision boundaries and often result in classification performance superior to that of
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the model based approaches. An ideal classifier should combine these two complementary

approaches.

A generative method focuses on explaining the training data. A discriminative model,
on the other hand, focuses on finding the boundary between classes in some feature space.
Because of this property, discriminative methods often outperform generative models at
classification. A major difficulty with using a discriminative method for audio classification
is that each audio file X consists of a sequence z3,...,z, , where n varies among audio files;
discriminative methods require a fixed length feature vector.

Fisher kernels make use of the information obtained by underlying generative models.
It was first developed and applied to biological sequence analysis by Jaakkola and Haussler
[59].The basic theory of Fisher kernels is to map the variable-length sequences to a single
point in a fixed-dimension (and comparatively high-dimension) space called score-space. The
Fisher scores for a given input sequence X and a generative model M parameterized by
are computed as:

Ux = Vglog P(X|M, ) (4.4)

In fact, Fisher scores are derivatives of the log-likelihood with respect to all single param-
eters of the model. In some sense, it is a measure of how well a sequence matches the model.
When the model is considered Gaussian Mixture Model (GMM), the parameter set consists
of mean vectors, covariance matrices, and weights. See Appendix A for explicit formulas for
computing Fisher score when the generative model is the diagonal covariance matrix.

The Fisher kernel is defined as:
K(X;, X;) = U,’{J"ij (4.5)
where I is called Fisher information matrix and is computed by
I = Ex{ UxUx} (4.6)

where the expectation is over P(X|6) .
Fisher kernel defined in 4.5 is a valid kernel function since I is positive definite. Fur-

thermore, in [59] it was shown that, under the condition that the class variable is a latent
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variable in the probability model, the learning machines that use Fisher kernel, are asymp-

totically at least as good as making decision based on the generative model itself (maximum
a posteriori).

Applying this approach results in a sparse data problem for which SVMs are well suited.

4.2 Sub-Band Approach AER System

In our second approach to the emotion recognition problem, spectral features are extracted
from non-overlapping logarithmically scaled frequency sub-bands listed in Table 4.1 rather
than frames. The sub-band approach will provide better discrimination since for different
emotions, different energy distributions in different frequency sub-bands can be captured.
Since the resolution of the human hearing approximately decreases according to a logarithmic
relationship with increasing frequency, it is reasonable from a perceptual point of view to
divide the frequency bands according to a logarithmic frequency scale. The Mel cepstrum
scale, which is used in this thesis, is a widely-known scale aiming at resembling the critical
bands of human hearing. The following equation shows the relationship between Hertz and

Mel frequency (m):
m = 1127.01048 log, (1 + f/700) (4.7)

As Fig. 4.1 shows, most of the important information in speech signals is located in

the lower frequencies; therefore the 6t" sub-band is dismissed. As a result, we gain more

precision and also less computation complexity.

The structure of the proposed AER system when features are extracted from frequency

sub-bands is depicted in Fig. 4.2.

The preprocessing and windowing procedures are exactly the same as those of previous

approach described in sections 3.1.1 and 3.1.2.



Table 4.1: Sub-band allocation for calculating spectral features.
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Figure 4.1: The corresponding spectrograms for
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Figure 4.2: The structure of the speech emotion recognition system for sub-band approach.
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The features used in this part are the same as those listed in Table 3.5 with three additional

acoustic features. The complete list of features is listed in Table 4.3 and the definitions of

the three new features are given below:

Let s;(n) represents the ith frame of the signal with n = 1,...,N. Let F; = fi(u)u €

(0, M) be the Fourier transform of the it frame, where M is the index of the highest fre-

quency band. As mentioned before, in order to capture more detail, spectral features are

extracted from non-overlapping logarithmically spaced frequency sub-bands. Let [, and u,

be the lower and upper edges of the frequency band .

1. Spectral Flatness Measure (SFM): The spectral flatness measure quantifies the flatness

of the spectrum and distinguishes between noise-like and tone-like signal. SFM is



defined as |
L, | fi(w) Pt

SFM;, = .
T Lo, 1)

2. Spectral Crest Factor (SCF): The spectral crest factor is also a measure of tonality of
the signal. SCF is defined as
maz (| fi(u)[?)

SCFip = =
T Doy, [ fi(w)?

(4.9)

3. Spectral Band Energy (SBE): The spectral band energy is the energy in the frequency
bands normalized by the energy in the whole spectrum. SBE is defined as

SBE,, = 2, | fi(W)? (4.10)

Y )

Let X; be the feature vector extracted for the i" frame. So we have a sequence of feature

vectors (X) for each signal.
X;=[SE},...,SE®,...,SBE,.. .wSBE{?,MFCC},...,MFCC}3, ZCR;)"
where s; denotes the " sub-band frequency.
X =[X1,Xs,...,X,)

where n is the number of frames. Finally the feature matrix X is mean subtracted and

component wise variance normalized to get a normalized feature matrix.
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Figure 4.3: Complete list of acoustic features used for speech emotion recognition.

4.2.2 Classification

We could again consider some statistical values of the variables in order to present one feature
vector per signal, but as explained in Sec. 4.1. this method causes some loss of information.
As our goal in the sub-band approach is gathering more information, we have to adopt some
other method in order to have an utterance-level classification. Fisher kernels are utilized in
our second approach to the AER system. In order to compare the result obtained by Fisher
kernel (sequence discriminant SVMs) and generative models, GMMs are also applied. These

two methods are elaborated below.

Gaussian Mixture Models (GMMs)

Gaussian Mixture Models (GMMs) are among the most statistically mature methods for
clustering. Finite mixtures are a flexible and powerful probabilistic modeling tool for uni-
variate and multivariate data. The usefulness of mixture models in areas that involve sta-
tistical modeling of data (such as pattern recognition, computer vision, signal and image
analysis,and machine learning) is currently widely acknowledged. GMM is in fact the most

popular and widely-used method in the fields of speak recognition and speaker verification



82
[29][71][72]. Here GMM is used to model the extracted emotion content of speech signals as

a probability density function (PDF), using a weighted combination of Gaussian component
PDFs (mixtures). In fact, finite mixtures adequately model situations where each observa-
tion is assumed to have been produced by one (randomly selected and unknown) of a set of
alternative random sources. Inferring the parameters of these sources and identifying which
source produced each observation naturally leads to a probabilistic clustering of the set of
observations.

A GMM is just a weighted average of several Gaussian PDFs, called the component
PDFs. The density function of a random variable X € R? with a mixture of k Gaussians is

defined as:
f(x|6) = Zag \/—— p{ 5 = py) 07 (x uJ)} (4.11)
with parameter set 6 = {aj, 1j, ®;}5_; having the following parameters:
e weight a; >0, Z;;l a;j=1
e mean p; € R% and
e covariance matrix ®;.

The standard method used to fit finite mixture models to observed data is the well-known
Expectation-Maximization (EM) algorithm [61]. The EM algorithm is used to locate a
maximum likelihood (ML) to estimate the mixture parameters.

QGiven a set of feature vectors Xj,Xa,. .., Xn, the maximum likelihood estimation of @ is:

Oy = arg max L(0|x1,%2,...,Xy,) (4.12)

= argmax Y | logp(x:|6)

i=1
Given the current estimation of the parameter set 6, each iteration of the EM algorithm

re-estimates the parameter set according to the following two steps:



83
1. Expectation step:
a; (x| s, @5
= kjf(x s ®5) (4.13)
>y aaf (il @)

j=1....k i=1,...,n

Wij

The term w;; is the posterior probability that the feature vector x; is sampled from

the jt* component of the mixture distribution.

2. Maximum step:

1 n
, — — ..
of == Zw,, (4.14)
=1
Dy Wi
yh = =5—— (4.15)
! Zi=1 Wi
z _ Z?=1 wij(xi - p',j)(xi - /J’,j)T (4 16)
R 2?:1 Wij

The parameter set 8 is updated repeatedly until the log-likelihood is increased by less than a
predefined threshold from one iteration to the next to get the maximum likelihood parameters
0,11 However, the EM algorithm for finite mixture fitting has several drawbacks: it is a
local (greedy) method, thus sensitive to initialization because the likelihood function of a
mixture model is usually multi-modal and for certain classes of mixtures it may converge to
the boundary of the parameter space (where the likelihood is unbounded) thus leading to
meaningless estimates [61].

A fundamental issue in mixture modeling is the selection of the number of components.
The usual tradeoff in model order selection problems arises: with too many components,
the mixture may over-fit the data, while a mixture with too few components may not be
flexible enough to approximate the true underlying model [61]. The most common methods
are setting the number of mixture components to an arbitrary constant, or a fraction of

instances to the training set. However, there is no statistical justification for these methods,
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and neither of these methods take the complexity of the data points distribution into account.

To determine the number of components per GMM to best represent the true distribution
of the data, model selection (MS) techniques will be used. This will provide a method to
maximize the likelihood of the training data while attempting to avoid overfitting. Perhaps,
the most widely-used model selection technique is the Akaike Information Criterion (AIC)

[62], which penalizes the model based on its complexity. It is defined as:
AIC(0) = —2logp(X|0) + 2k (4.17)

where 0 is the model, X is the input data, log p(X18) is the log of the probability of X given
0, and k is the number of parameters in the model §. The model selected will have the
lowest AIC score.

After training the GMMs and obtaining the parameter sets for each class of data, the
un-known feature vectors are used to evaluate the log-likelihood value (Equ. 4.12) of the
all the models present in the database. We can choose the model that gives the highest
log-likelihood.

Exploiting GMMs in Discriminative Classifiers (SVMs)

The approach to emotion recognition problem outlined in the previous section operates at
the frame-level with an overall sequence score obtained by averaging the likelihoods of each
frame in the sequence rather than complete utterances. On the other hand, Support Vector
Machines has shown a very good result in classification task in literature as well as our
previously-reported results in Chapter 3 but they are restricted to fixed-length sequences.
Therefore, by combining these two approaches we can benefit the strong performance of the
SVMs and overcome the problem of variable-length (Fisher kernels, Sec 4.1).

The EM algorithm described in the previous section is again used to train the Gaussian
Mixture Model. After finding the model parameters, the fisher score mapping is performed
using Equ. 4.5. SVMs classify the mapped data points in the Fisher score space.
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4.2.3 Implemented Results

As mentioned in previous sections, our database consists of 1287 instances of utterance. In
this part of our experiment, the 5-fold cross validation technique (explained in section 3.2.2)
is utilized to train and evaluate the classifiers.

Half of the procedure is exactly the same for both approaches (i.e. Fisher kernels and
GMMs): a mixture of gaussian pdfs are fit to each class of data (emotion), and the cor-
responding parameters are found using EM algorithm. To initialize the parameters in the
algorithm, k-means algorithm[73] is used. Also the covariance matrices are considered di-
agonal in order to reduce computational complexity. AIC criterion (Equ. 4.17) is used to
determine the number of mixture components. Figure 4.4 shows the result of AIC criterion
performance for one of the classes. The algorithm is stopped as soon as the AIC score is in-
creased as the number of iterations is increased. In order to be consistent, the same number
of components (i.e. the average of the result achieved according to AIC criterion) is assumed
for GMM-based approach and for Fisher kernel-based approach, which is 20.

In the GMM-based approach emotion recognition, after finding the parameters of the
models, the unknown samples are probabilistically classified, according to ML (Equ. 4.12)
rule. In the Fisher kernel-based approach, after finding the parameters of the models, the
data points are mapped into the Fisher score space (Equ. 4.4). The mapped data points are
discriminatively classified using LS-SVMs. All the binary LS-SVMs are trained using linear
kernel functions with different optimal regularization parameters. Fuzzy-pairwise method
was adopted in order to extend the binary LS-SVMs to our multi-class problem, since this
approach yielded the best result in our previous approach.

77.8% accuracy and 97.6% accuracy were achieved for GMM-based method and Fisher
kernel-based method respectively, which shows the better performance of discriminative mod-
els at classification task.

Table 4.2 and Table 4.3 show the achieved confusion matrices. (The abbreviations in
these tables stand for the six different emotions: anger, fear, disgust, happiness, sadness,

and surprise.) We can see that in all cases the most difficult emotion to recognize in our
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Figure 4.4: Deciding the number of Gaussian mixture components according to AIC criterion.

experiment is surprise.

The result obtained by sequence discriminant SVMs outperforms GMMs and all the
methods adopted in Chapter 3. The flowchart in Fig. 4.5 enables us to have a comparative
glance at all the performances obtained by the methods adopted in this thesis.

The performance of different implemented classifiers are also compared by means of
Receiving Operating Characteristics (ROC) curves. ROC curves are a useful technique

for organizing classifiers and visualizing their performance. ROC graphs have long been

Table 4.2: Confusion matrix for GMMs
Recognized Emotions (%)

Ang | Fea | Dis | Hap | Sad | Sur
Ang | 81.0| 1.0 | 4.3 0 64 | 7.3
Fea | 2.7 | 70.2 ]| 1.6 3.4 | 135 | 86
Dis | 54 | 63 |785| 0 4.1 | 5.7
Hap| 09 | 1.3 0 |887| O 9.1
Sad | 24 | 1.2 | 7.7 0 |87.8| 0.9
Sur | 9.3 | 84 | 42 | 121 | 12.3 | 53.7




Table 4.3: Confusion matrix for fuzzy-pairwise LS-SVM with Fisher kernel
Recognized Emotions (%)

Ang | Fea | Dis | Hap | Sad | Sur
Ang | 99.8 0 0.15 0 0 0
Fea 0 100 0 0 0 0
Dis 0 0 99.8 0 0.15 0
Hap | 0.15 0 0 99.8 0 0
Sad 0 0 0.31 0 99.6 0
Sur 0 0 1.24 0 0 98.7

miuzzypairvise LDA

100.00% y
@ One-Vs-All S
80.00% -
Ofuzzy One-VWs-Al S\
$0.00% Opairwise S
40.00% 1 Oiuzzy painwise $\Wil
20.00% Dzzypairwise S,
e ature selection
0.00% Bizzy painvise SWM,
D ifferent classification Fisher kemel
methods Opeople perrmance

Figure 4.5: Flowchart of achieved accuracies for different methods.
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used in signal detection theory to depict the tradeoff between hit rates and false alarm

rates of classifiers (Egan, 1975; Swets et al., 2000). ROC analysis has been extended for
use in visualizing and analyzing the behavior of diagnostic systems (Swets, 1988). One
of the earliest adopters of ROC graphs in machine learning was Spackman (1989), who
demonstrated the value of ROC curves in evaluating and comparing algorithms. Recent
years have seen an increase in the use of ROC graphs in the machine learning community.
ROC graphs are two-dimensional graphs in which True Positive (TP) rate is plotted on the
Y axis and False Positive (FP) rate is plotted on the X axis. An ROC graph depicts relative
trade-offs between benefits (true positives) and costs (false positives). Informally, one point
in ROC space is better than another if it is to the northwest (TP rate is higher, FP rate
is lower, or both) of the first. The common method of comparison between different ROC
curves is to calculate the area under the ROC curve, abbreviated AUC. Since the AUC is a
portion of the area of the unit square, its value will always be between 0 and 1.0. However,
because random guessing produces the diagonal line between (0, 0) and (1, 1), which has an
area of 0.5, no realistic classifier should have an AUC less than 0.5. The corresponding ROC
curves are presented in Fig. 4.6. As it shows the AUC for Fisher kernels is almost 1.0, which
is an indication of their excellent performance.

In fact, sequence discriminant SVM (Fisher kernel) is the first time being used in the
application of speech emotion recognition (it has been successfully used in other applications
before [59][60]) and together with all other carefully-chosen methods in the rest of stages of

the whole process, it gives a superior result (97.6%) in comparison with the previous works

[25]26][65][27)-



Receiver Operating Characteristic curves for different methods of classification with LS-SVM
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Figure 4.6: Receiver Operating Characteristic Curves for different methods of classification.
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Chapter 5

Conclusions

5.1 Summary of the Thesis and Contributions

FFECTIVE computing has grown an important field of research in today’s man ma-
A. chine interaction. Applications span a wide range of fields going from entertainment
and intelligent toys to emotion aware board computers in cars. Speech analysis is among
the most promising information sources considering AER. While performance obtained by
automatic systems based on this channel are among the most reliable ones, it is still not
sufficient for usage in real-life scenarios. We therefore strive to bridge the gap between the
commercially highly interesting multiplicity of potential applications and current accuracies.

In this thesis an AER system based on paralinguistic information of speech signals is
presented aiming at enhancing human-computer interaction. The proposed system is inde-
pendent of speakers and gender in order to offer more versatility. A genuine database with
large number of data samples, which is exclusively created for the applications of automatic
emotion recognition is used for training and testing the system. Six basic and universal
emotions are being categorized throughout this research: anger, happiness, fear, disgust,
surprise, and sadness. These basic emotions are said to be independent of cultural back-
ground.

As opposed to prosodic features used in most of the studies, a set of novel acoustic
features has been proposed in this contribution most of which are being used for the first

time in this application. The proposed set of acoustic features can be divided into three
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main categories: spectral features, time-domain features, and cepstral features. In order to

select the most effective set of features, the Sequential Forward Selective (SFS) method is
employed with the goal of maximizing the performance accuracy criteria. By applying SFS
algorithm, selection of the subset which yields the best performance is guaranteed. Rather
than performing the feature selection algorithm on all the classes, it is performed on each
pair of classes separately. It helps us to obtain more detailed insight into individual emotions
and their corresponding significant features.

To categorize the extracted features to the six basic emotions, some sort of machine learn-
ing and classification method has to be adopted. While most people use the very common
methods of classification such as Neural Networks or Hidden Markov Models, this research
made use of the Least Squares Support Vector Machine (LS-SVM), which is a relatively
novel and powerful method of classification. In essence two different approaches have been

considered and experimented which are summarizes in the next two sections.

Frame Approach

In the first approach after applying a Hamming window of léngth 23 ms with 50% frequency
overlap in order to divide the speech signals into sequential frames which are considered
stationary, all the features are extracted from each frame. Mean and standard deviation for
each feature is computed in order to represent one feature vector for each speech utterance.
To extend the binary LS-SVMs to our multi-category problem, four different coding and
decoding strategies are implemented and compared: one-against-all, fuzzy one-against-all,
one-against-one (pairwise), and fuzzy pairwise. For the purpose of comparative study we are
also applying a Linear Classifier with gradient descent optimization algorithm.

Fifty percent of data samples was used for the training phase exclusively and the remain-
ing 50% for evaluating the trained classifiers (the division is done in random). All the binary
LS-SVM classifiers are trained using RBF kernel function with different optimal regular-
ization and kernel parameters. The linear classifiers are trained using the gradient descent

algorithm and perceptron criterion function.
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Sub-band Approach

In the second approach spectral features are extracted from six non-overlapping logarith-
mically scaled (according to Mel scale) frequency sub-bands rather than frames. Sub-band
approach will provide better discrimination since for each emotion different energy distribu-
tions in different frequency sub-bands can be captured. Also because most of the important
information in speech signals is located in the lower frequencies, the 6 sub-band is dis-
missed, as a result more precision and also less computation complexity is gained.

In this approach Fisher kernels are adopted to have sequence discriminant SVMs in or-
der to conquer the problem of variable-length feature sequences in speech signals and also to
avoid an inevitable loss of data caused by computing the statistical parameters (as was per-
formed in the first approach). Fisher kernel has been successfully used in the applications of
biosequence analysis and classification, speech recognition, speaker verification, and acoustic
event classification before, but it is the first time it is being employed in the application of
emotion recognition. In order to compare the result of sequence discriminant SVMs, which is
the combination of discriminative classifiers and generative models, with probabilistic clas-
sification, Gaussian Mixture Models are also applied to classify the different emotions.

Five-fold cross validation method is utilized to achieve the final result. To classify the
mapped data points in the Fisher score space, all the binary LS-SVMs are trained using

linear kernel functions with different optimal regularization parameters.

Discussion of Results

Among different methods of multi-class SVM, fuzzy-pairwise method shows the best perfor-
mance. In fact, since in pairwise method more binary classifiers construct the final result
compared to one-vs-all method, there exists a trade off between accuracy and computation
cost, where in this experiment the improvement of accuracy is much more potent. Also by
using the best subset of features selected by SF'S algorithm 2.9% improvement was achieved

in the accuracy. The linear discriminant classifier shows a very poor performance, which
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: Overall
Reference Input to the system Features Classifier
Accuracy
(10] Acoustic f'ea‘tures z}nd Stati'stit:s of ML-SVM 81.2%
language information prosodic features and HMM ;
[11] Acoustic information  F0, F1-F4, MBEI-MBES, SVM 88.9%
MFCC1-MFCC2
[12] Acoustic information Prosodic features Ensemble of 70%
NN classifier
Acoustic and textual Statistical values of FO
33 ’ S 4°
131 content F1, energy, and ZCR O i
. Statistics of
s : ANN 73%
[25] Acoustic content prosodic features
[26] Acoustic information Statistics of pitch HMM 77.8%
and energy
Spectral features, Sequence
This thesis  Acoustic information MFCC, ZCR discriminant 97.6%
(Fig. 4.3) SVM

Figure 5.1: Comparison of some of the existing works with this work
(=]

could be due to the complexity of geometric distribution of the data points.

By upgrading our system to the sub-band approach and using Fisher kernel for se-
quence discriminant SVMs, 16.3% improvement in the best overall classification accuracy
was achieved. The inferior classification rate achieved by GMMs shows the better perfor-
mance of discriminative models at classification task compared to probabilistic models. In
more detail, exploiting generative models in discriminative classifiers (Fisher kernel) outper-
forms both the generative model (GMM) and discriminative classifier (LS-SVM) per se.

The achieved classification rate (97.6%), which is a very promising and satisfying result,
proves a very good choice of features along with very powerful employed methods for assign-
ing those features to the corresponding emotions. A comparison of this work with some of

the existing works are given in Fig. 5.1.
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The sub-band approach has also become popular in recent years in speech recognition

and speaker verification [74]. In addition to capture more detailed information, the main
motivation has been to achieve robust recognition in the face of noise. It is often found
that the sub-band approach delivers performance improvements (especially in the presence
of noise) [74]. In other words, the system is robust in the case of speech corrupted by a noise
affecting a limited number of sub-bands. A disadvantage of sub-band approach compared to
frame-based approach could be its increased computational complexity.

Using spectral features makes the system faster and therefore more suitable for real-time
applications, since they are easy to compute compared to prosodic features. Also because
prosodic features represent speaker’s habitual speaking style, including duration and pausing
patterns, and intonation contours [75], they are relatively speaker-dependent. This is another
disadvantage of using prosodic features in an AER system since we are avoiding any sort of
subject dependency.

SVM is a good choice of classifier not only because of the excellent empirical results, but

also because of the following advantages:

e Generalization capabilities in the high dimensional manifold are ensured by enforcing

the largest margin classifier.

Projection onto a high-dimensional manifold by means of kernel function is only im-

plicit.

e There are few model parameters to select: the penalty term C and the parameter(s)

of kernel function (e.g. ¢ in the case of RBF kernel).

The final results are stable and repeatable (i.e. no random initial values).

SVM provide a method to control complexity independently of dimensionality.



5.2 Future Work %

For future work, a combined time and frequency approach can be explored in order to take
advantage of both frame-based and sub-band approach and take into account the temporal
evolution of the speech signals.

One of the important issues in sub-band approach is choosing the number and locations
of the frequency bands. It could be a future improvement to the system to achieve an optimal
division of the frequency domain. Also as one of the benefits of sub-band approach is that
different sub-bands can be processed separately, a good potential future work in this regard
can be to investigate and localize the most emotional-dependant sub-bands. In other words,
those sub-bands which carry the most emotional-relevant information can be detected, those
information might then be emphasized\weighted to improve recognition.

As a potential future work, the intensity of emotions also could be considered in the
system.

As the main drawback of LS-SVM is lack of sparseness (i.e. number of support vectors is
equal to number of data points), one potential future research could be replacing LS-SVM
with original SVM and investigating the resulting trade-off between accuracy and speed.
Another alternative can be applying some pruning techniques to overcome this drawback.

Wrapper methods for feature selection, such as SFS algorithm which is adopted in this
thesis, are very high in computation cost, especially when dealing with large data sets. This
drawback might make a system impractical in on-line applications. Therefore, as a future
work it would be beneficial to try other feature selection algorithms which are more time

. efficient in order to obtain a satisfying result between time and accuracy.

To extend this research and apply the reported methods to a real-world application, a

potential future research is to apply the proposed techniques to recognize the emotional state

in infants using their crying sounds as input information to the system.



Appendix A

Computing the Score Vectors for
Fisher kernel

In this section, we derive the formulas for computing derivatives of the log likelihoods when

the generative model is a diagonal covariance GMM.

Let N
a1y 1 1(zi—p\®
R(i,j) = H Aon eXP{“g (TJ) (A1)

1=1 %J J
so that the diagonal covariance GMM likelihood is

Ny
P(xi|M,6) = > a;R(i, ) (A.2)

j=1
where 6 = {a;, u.’j, aj-} is the set of parameters in the GMM, M. In particular, a; is the prior
of the j®" Gaussian component of the GMM, p; is the mean vector of the j** component,
and o; is the corresponding diagonal covariance vector. The superscript on the mean and
covariance enumerate the components of the vectors. N, is the number of Gaussian com-
ponents that make up the mixture model and Ny is the dimensionality of the input vectors
with components f(x;) = [z},2?,...,2M4)].

The global log likelihood of a sequence X = {x;,...,xy,} is

Ny
log P(X|M,0) =" log P(x;| M, 6) (A.3)

i=1
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where N, is the number of frames in the sequence.

The score-vector is the vector of derivatives with respect to each parameter of A.3. The
derivatives are with respect to the covariances, means, and priors of the Gaussian mixture

model. The derivative with respect to the j prior is

d S~ R(:7")
da” log P(XIM,0) = >

- (A.4)
i=1 1—1 a;R(3, j)

The derivative with respect to the I** component of the j** mean is

Ny . I _ z:
log P(X|M, 8) = z-—R(L”—)— 1 (”’—l—“’> (A.5)

d
d,u" i=1 ZJ—I a;R(i,5) © l O

The derivative with respect to the I** component of the j** covariance is

d o R(,5* (@ —ph)? 1
I l. log P(X|M,6) = Z Ng( J ) . ( D ; _T) (A.6)
i=1 Ej:l ajR(%J) (Uj') O«

The likelihood score-vector can then be expressed as

d d d]T

isher X)= o) DR - .
¢F h ( ) [da_, le'l dO'.li. (A7)

for j*=1,...,Ngand I*=1,..., Ng.



Appendix B

Steepest Gradient Descent Procedure
for Optimization

Basic gradient descent is very simple. We start with some arbitrarily chosen weight vector
a(1) and compute the gradient vector J(a(1)). The next value a(2) is obtained by moving
some distance from a(1) in the direction of steepest descent [22]. In general, a(k + 1) is

obtained from a(k) by equation
a(k +1) = a(k) — n(k)VJ(a(k)) (B.1)

where 7 is learning rate that sets the step size. We hope that such a sequence weight vector
will converge to a solution minimizing J(a). We should be careful with the choice of learning
rate. If it is too small, convergence is needlessly slow, whereas if learning rate is too large,

the correction process will overshoot and can even diverge.
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