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In this thesis we undertake a theoretical study of the flow stability of a liquid film with power-law rheology

down a heated incline. We develop and implement a mathematical model for the flow that captures the

variation with temperature of the rheological aspect of the fluid. We carry out a linear stability analysis

and obtain Orr-Sommerfeld type equations for the evolution of infintesimal perturbations imposed on

the equilibrium flow. We obtain asymptotic solutions based on the assumption of perturbations of long

wavelength and small variation in viscosity with respect to temperature. We investigate the critical

conditions for the onset of instability and determine the effect of a non-Newtonian reheology and the

dependence of the fluid properties on temperature.
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Chapter 1

Introduction

Thin-film flow in general refers to flows that are characterized by the fact that the flow domain in one

of the dimensions is much smaller than in the other (one or two) dimensions. A typical thin-film flow

consists of an expanse of liquid partially bounded by a solid substrate with a (free) surface where the

liquid is exposed to another fluid (usually a gas and most often air in applications). Thin liquid films

appear in a variety of situations in nature and in engineering applications. Thin-film flow is significant

in a broad class of physical applications and attracts the attention of physicists, engineers, and chemists.

In the field of engineering, thin liquid layers play an important role in the efficient design and gainful

development of units such as thin-film reactors, evaporators, condensers, distillation columns and heat

exchangers. Thin film flows are also relevant in various coating applications [1 - 3]. In biological systems,

we find thin fluid films such as tear films in the eye, membranes in biophysics, the lining of airways in the

lungs of animals, and respiratory flow and transport[4, 5]. In environmental and geophysical settings,

thin flows have been related to geological problems such as gravity currents, lava flows, mud, granular

and debris flows, snow avalanches and mudslides [6, 7].

The systematic exploration of the flow characteristics of the gravity driven flow of a thin fluid layer

down an inclined surface was first carried out by Pyotr Kapitza [8]. Together with his son, Sergey

Petrovitch Kapitza, he later conducted the first well-controlled experiment on falling films [9]. Kapitza

classified a dimensionless group combining the kinematic surface tension, kinematic viscosity, and gravi-

tational acceleration known as the Kapitza number which is very beneficial in the study of wave growth

and instability in falling liquid films. Kapitza predicted that if the Reynolds number was below some

critical value which was a function of the Kapitza number, the film flow would be uniformly stable.

Though his theoretical estimates apparently matched with his and others’ experiments, parts of his

analysis were in error. Following Kapitza’s groundbreaking theoretical and experimental work, many

investigators have contributed to the understanding of the flow characteristics of falling fluid films. The

first theoretical investigations were conducted by Benjamin [10] and Yih [11]. Yih performed a linear

stability analysis to investigate the long-wave instability of isothermal falling films. His study shows that

the basic flat-film flow on an inclined surface is unstable to long-wavelength disturbances if the Reynolds

number is greater than the critical value given by Rec = 5
2 cot θ, where θ is the angle of inclination with

1



CHAPTER 1. INTRODUCTION

the horizontal. The Orr-Sommerfeld equation for the evolution of infinitesimal perturbations was used

to calculate the critical Reynolds number.

Flow instability of thin non-isothermal liquid films is of importance in engineering applications like

facilitating heat transfer and coating application. Falling films on heated planes are subject to insta-

bilities due to shear stress arising from the variation in surface tension due to temperature differences

which is referred to as thermocapillarity or the Marangoni effect. This is measured by a dimensionless

parameter which is proportional to the variation of surface tension with temperature and is referred to

as the Marangoni number. A comprehensive study of interfacial thermocapillary phenomena is given

by Nepomnyashchy et al. [12]. Recently the impact of heating on the flow down an inclined plate has

been investigated by Kalliadasis et al. [13]. They used a first order integral-boundary-layer approxima-

tion to examine the instability of the flow over a uniformly heated inclined plate assuming that surface

tension depends linearly on temperature. A second order weighted residual approach was presented by

Ruyer-Quil et al. [14] and Scheid et al. [15] to obtain the critical Reynolds number for the onset of

instability. The relation between the critical Reynolds number and the Marangoni number has effec-

tively been established by focusing on long-wave perturbations [15 - 17]. Trevelyan et al. [16] considered

two different kinds of bottom conditions: constant temperature and constant heat flux, and applied the

weighted residual model. While D’Alessio et al. [17] showed that the thermocapillary effect destabilizes

the flow over a heated wavy inclined surface.

The influence of temperature dependence in the fluid properties such as density and viscosity have

been largely ignored by researches with the justification that the effect is negligible in comparison with

that of thermocapillarity for thin layers. However, Ogden et al. [18] have shown that the critical

Reynolds number for the onset of instability is unaffected by the variation in the fluid properties only

if these are small enough to be of the same order as the wavenumber of the long perturbations that are

amplified at the onset of instability. Goussis and Kelly [19] have investigated the effect of variation in

viscosity with temperature, however they assumed the temperature at the free surface of the fluid to be

prescribed. As a consequence there is no variation in temperature along the surface and the Marangoni

effect is eliminated. The same assumption was made by Hwang and Weng [20] who set up a Benney

equation and presented a linear and weakly nonlinear stability analysis. On the other hand, Kabova

and Kuzenetsov [21] have combined the variation of viscosity with the Marangoni effect, but they only

consider the steady-state problem. Recently, Pascal et al. [22] and D’Alessio et al. [23] have included in

their investigations of the stability of non-isothermal inclined film flow the Marangoni effect and a linear

variation with temperature of all the fluid properties.

The above investigations of conjugated heat and fluid flow have been entirely confined to the New-

tonian model. However, in many contexts in industry, engineering and geology, the significant problem

deals with how a heated non-Newtonian fluid flows under gravity. The understanding of the physics

involved in the flows of such fluids can have direct effects in polymer processing, food stuff processing,

design of heat exchangers, wire and fibre coating, ink-jet printing, microfluidics, geological flows in the

earth’s mantle, hemodynamics and many others. In view of this a lot of interest has been shown towards

the study of non-Newtonian flows and hence extensive literature can be found regarding analytic and

numerical solutions. The distinguishing feature of a non-Newtonian fluid is a viscoelastic behaviour, or

2



CHAPTER 1. INTRODUCTION

if inelastic, i.e. purely viscous, then a nonlinear rheological behaviour relating shear stress and rate of

strain. As a consequence then, viscosity is a function of shear rate with the fluid referred to as shear

thinning if this is a decreasing function and shear thickening if viscosity increases with shear rate. It

turns out that by far the most commonly encountered non-Newtonian behaviour is shear thinning.

Sadiq and Usha [24] analysed the linear instability of a thin layer of viscoelastic liquid flowing down a

non-uniformly heated wall. The results show that a non-isothermal viscoelastic film is more stable than

the isothermal film and less stable than the corresponding Newtonian film. There have been a number

of investigations examining the flow and stability of a viscoelastic fluid film on a vertical/inclined plane,

which include the studies in references [24-27].

Regarding purely viscous fluids, it turns out that a power-law relation between shear stress and shear

rate is a good fit for the rheological behaviour for many real fluids over a wide range of stresses, and

also has the benefit of analytical simplicity. The power-law model has been used effectively in describing

the rheological behaviour of polymer solutions and gels. Several investigations of the isothermal flow

of a power-law fluid down an incline are reported in references [28 - 31]. Miladinova et al. [28] have

considered the influence of the non-Newtonian effect on the stability of a thin film flowing along an

inclined plate. Both shear thinning and shear thickening cases are considered. They show that the

behaviour of non-Newtonian fluids is similar to that of the Newtonian one, but the amplitude and the

shape of the permanent surface waves are both influenced by the non-Newtonian properties of the fluid.

Pascal and D’Alessio [31] employ the power-law model, and apply von Karman’s momentum integral

method to obtain a model for the flow down an incline with an applied wind stress at the surface. By

conducting a linear stability analysis they obtain an analytical formula for the relationship between

the Reynolds number, the inclination angle and a wind shear parameter which describes the critical

conditions for the exponential growth of infinitesimal disturbances.

The stability of the inclined flow of a power-law film in the non-isothermal case has been considered

by Sadiq and Usha [32]. At the free surface of the film they implement a thermal insulation condition.

A more realistic condition, which is implemented in the recent investigations for the Newtonian case, is

Newton’s law of cooling which allows for heat transfer from the liquid layer to the ambient gas. The

insulation condition leads to an depth-independent equilibrium distribution for the temperature in the

liquid layer. Consequently, the formation of waves on the surface does not lead to temperature differences

and thus does not generate Marangoni stresses. So, if the surface is assumed to be thermally insulated

then the model does not capture the enhancement to the inertial instability due to the Marangoni effect.

Recently, Bernabeu et a. [33] have established a model for lava flow consisting of a viscoplastic fluid

with a power-law relation for the viscosity. This investigation does not include the Marangoni effect but

a temperature dependence is incorporated into the rheological relation.

In this thesis we study the stability of a power-law fluid film flowing down a heated incline. We

implement Newton’s law of cooling at the free surface and thus take into account the heat transfer from

the liquid layer to the ambient gas above. Our theoretical model also allows for variation in the viscosity

of the liquid with temperature. The thesis is organised as follows. In chapter 2 we set up the equations

governing the flow. In chapter 3 we obtain an equilibrium solution and apply a linear analysis to study

its stability. In chapter 4 we present conclusions drawn from our investigation.
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Chapter 2

Governing Equations

2.1 Dimensional equations

We consider the two-dimensional flow of a thin liquid film with power-law rheology flowing down an

inclined plate heated at a prescribed constant temperature denoted by Tw. The ambient gas is assumed

to remain motionless and at a constant temperature T∞ < Tw. A rectangular coordinate system is set

up as illustrated in Figure 2.1. The position of the free surface of the liquid layer is given by z = h(x, t).

x

z g
z=h(x,t)

q

Figure 2.1: Schematic representation of a thin film flowing down an inclined plane.

Equations of motion are obtained from the conservation of mass, momentum and energy. The

x−momentum equation can be written as

ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
+
∂τxx
∂x

+
∂τxz
∂z

+ ρg sin θ, (2.1)

while the momentum equation in the z direction is given by

ρ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −∂p

∂z
+
∂τxz
∂x

+
∂τzz
∂z
− ρg cos θ, (2.2)
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CHAPTER 2. GOVERNING EQUATIONS 2.1. DIMENSIONAL EQUATIONS

where p is the pressure and u and w are the streamwise and cross-stream velocity components respectively.

The density is given by ρ, the gravitational acceleration is denoted by g while θ represents the angle of

inclination of the plate. The components of the deviatoric stress tensor for a power-law fluid are given

by τxx = 2µnη
∂u
∂x , τzx = τxz = µnη

(
∂u
∂z + ∂w

∂x

)
and τzz = 2µnη

∂w
∂z , where

η =

[
2

((
∂u

∂x

)2

+

(
∂w

∂z

)2
)

+

(
∂u

∂z
+
∂w

∂x

)2
] (n−1)

2

and µn and n are the consistency and power-law index respectively. It is worth pointing out here that

the classic Newtonian model is a particular case corresponding to n = 1, with the consistency being the

Newtonian viscosity.

In order to incorporate a temperature variation into the rheology of the fluid, we proceed as was

done by Bernabeu et al. [33] and assume that the consistency of the fluid is a function of temperature.

The usual assumption for the variation in viscosity is an exponential decrease with temperature which

is referred to as the Arrhenius formulation. As our focus is a linear stability analysis, we linearize this

relation with respect to temperature and assume that the consistency is given by

µn = µ̂n − λ̂ (T − T∞) ,

where µ̂n is the value when T = T∞, and λ̂ > 0 is a constant control parameter which measures the rate

of change with respect to temperature.

From conservation of mass we obtain the continuity equation expressed as

∂u

∂x
+
∂w

∂z
= 0. (2.3)

By applying conservation of energy we obtain the following equation for the temperature of the fluid

∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z
= χ

(
∂2T

∂x2
+
∂2T

∂z2

)
(2.4)

where T denotes the temperature and χ is thermal diffusivity.

Dynamical conditions at the free surface of the fluid film are obtained from the continuity of force.

Now, the total stress tensor associated with the flow is given by

−→−→s = −p
−→−→
I +
−→−→τ ,

where
−→−→τ denotes the deviatoric stress tensor and

−→−→
I is the 2× 2 identity matrix. So, the stress exerted

by the flow on the free surface is given by
−→−→s · n̂ where

n̂ =
1√

1 +
(
∂h
∂x

)2
[
−∂h∂x

1

]

5



CHAPTER 2. GOVERNING EQUATIONS 2.1. DIMENSIONAL EQUATIONS

is the unit normal vector. We assume that the viscous stress exerted by the ambient gas on the surface is

negligible. Therefore, the force of the flow is balanced by the ambient pressure and the effect of surface

tension. The total force balance at the surface can then be expressed as

−→−→s · n̂ = −(p∞ + 2σ K)n̂+
−→
∇sσ (2.5)

where p∞ is the ambient pressure, σ is the surface tension, ∇s is the surface gradient operator which is

defined as

−→
∇s =

1

n2


∂
∂x + ∂h

∂x
∂
∂z

∂h
∂x

∂
∂x +

(
∂h
∂x

)2 ∂
∂z

 ,
and K is the mean curvature of the free surface which is given by K = − 1

2

(−→
∇s · n̂

)
. The normal

component of the force balance is obtained by taking the dot product in equation (2.5) with the unit

normal vector n̂ which yields the following equation

p = p∞ +
2µnη

1 +
(
∂h
∂x

)2
[(

∂h

∂x

)2
∂u

∂x
− ∂h

∂x

(
∂u

∂z
+
∂w

∂x

)
+
∂w

∂z

]

−
σ ∂

2h
∂x2(

1 +
(
∂h
∂x

)2) 3
2

at z = h (x, t) . (2.6)

The tangential component of the force balance can be obtained by dotting equation (2.5) with t̂, the

unit tangent vector, which can be written as t̂ = 1√
1+( ∂h

∂x )
2

[
1
∂h
∂x

]
.

We thus obtain

[
∂σ

∂x
+
∂h

∂x

(
∂σ

∂z

)]√
1 +

(
∂h

∂x

)2

= µnη

[(
1−

(
∂h

∂x

)2
)(

∂u

∂z
+
∂w

∂x

)
+ 2

∂h

∂x

(
∂w

∂z
− ∂u

∂x

)]
at z = h (x, t) . (2.7)

The left-hand side of this equation corresponds to the so-called Marangoni stress which is due to variation

in surface tension, and pulls fluid along the surface in the direction of increasing surface tension.

The surface tension is assumed to depend linearly on the temperature and is expressed as

σ = σ∞ − σt (T − T∞) , (2.8)

where σ∞ is the surface tension of the fluid at the reference values T = T∞. The parameter σt is defined

as

σt = − ∂σ
∂T

> 0. (2.9)

6



CHAPTER 2. GOVERNING EQUATIONS 2.2. NON-DIMENSIONAL EQUATIONS

So surface tension decreases with temperature.

A kinematic condition for the free surface of the liquid layer can be derived from the assumption

that evaporation is negligible, so fluid particles on the surface must remain on the surface as the fluid

flows. The kinematic condition at the surface can be expressed as

w =
Dh

Dt
=
∂h

∂t
+
∂h

∂x
u at z = h(x, t). (2.10)

Here Dh
Dt represents the change in the elevation of the surface.

The relation between the heat flux normal to the surface and the difference in the temperature of

the liquid and the ambient gas is expressed through Newton’s law of cooling which is given by

−κ∇T · n̂ = α (T − T∞) at z = h(x, t), (2.11)

where α is the heat transfer coefficient and κ is the thermal conductivity.

At the bottom interface appropriate boundary conditions arise from the requirement of no slip and

no penetration and can be written as

u = w = 0 at z = 0, (2.12)

and since the substrate is maintained at temperature Tw, we have the condition

T = Tw at z = 0. (2.13)

2.2 Non-Dimensional equations

The governing equations can be written in dimensionless form by using an appropriate scaling. For the

length scale we choose

H =

(
µ̂n

ρg sin θ

) 1
2n+1

Q
n

2n+1

(
2n+ 1

n

) n
2n+1

. (2.14)

This is called the Nusselt thickness, and it corresponds to a steady flow, uniform in the streamwise

direction, that would result under isothermal conditions from a prescribed flow rate Q. Now, we expect

the flow to be destabilized by the amplification of perturbations much longer than the characteristic

depth of the fluid layer. We will obtain approximate solutions based on this expectation. In order to

be able to identify which terms in the governing equations are negligible, we use a different length scale

in the streamwise direction and denote the ratio of H to this scale by δ. To scale the equations we

introduce the following transformation

(x, z) = H

(
x∗

δ
, z∗
)
, h = Hh∗, (u,w) = U (u∗, δw∗) , t =

H

Uδ
t∗,

p− p∞ = ρ U2p∗, T = T∞ + ∆T T ∗ (2.15)

7



CHAPTER 2. GOVERNING EQUATIONS 2.2. NON-DIMENSIONAL EQUATIONS

where U = Q/H and ∆T = Tw − T∞.

Scaling the continuity equation gives

∂(Uu∗)

∂(Lx∗)
+
∂(Uδw∗)

∂(Hz∗)
= 0.

Simplifying this equation and dropping the asterisks for notational convenience yields

∂u

∂x
+
∂w

∂z
= 0. (2.16)

Transforming the x- momentum equation gives

δ
Du∗

Dt∗
= −δ ∂p

∗

∂x∗
+ 2µ̂n

Un−2δ2

Hnρ

∂

∂x∗

(
(1− λT ∗) η∗ ∂u

∗

∂x∗

)
+µ̂n

Un−2

Hnρ

∂

∂z∗

(
(1− λT ∗) η∗

(
∂u∗

∂z∗
+ δ2 ∂w∗

∂x∗

))
+
H

U2
g sin θ,

where

η∗ =

[
2

(
δ2(

∂u∗

∂x∗
)2 + δ2(

∂w∗

∂z∗
)2

)
+

(
∂u∗

∂z∗
+ δ2 ∂w

∗

∂x∗

)2
]n−1

2

and

λ =
λ̂∆T

µ̂n
.

Introducing the Reynolds number defined as Re = ρ
µ̂n
U2−nHn and dropping the asterisks we obtain the

following scaled x-momentum equation

Re δ
Du

Dt
= −Reδ ∂p

∂x
+ 2δ2 ∂

∂x

[
(1− λT )η

∂u

∂x

]
+

∂

∂z

[
(1− λT )η

(
∂u

∂z
+ δ2 ∂w

∂x

)]
+

(
2n+ 1

n

)n
. (2.17)

Scaling the z− momentum equation we get

ρU2δ

H

Dw∗

Dt∗
= −ρU

2δ

H

∂p∗

∂z∗

+µ̂n
Unδ

Hn+1

∂∗

∂x∗

(
(1− λT ∗) η∗

(
∂u∗

∂z∗
+ δ2 ∂w∗

∂x∗

)
+ µ̂n

Un

Hn+1

∂

∂z∗

(
(1− λT ∗) η∗ ∂w

∗

∂z∗

))
− ρg cos θ,

which upon simplifying and dropping the asterisks gives

Re δ2Dw

Dt
= −Re∂p

∂z
+ 2δ2 ∂

∂z

[
(1− λT )η

∂w

∂z

]
+ δ

∂

∂x

[
(1− λT )η

(
∂u

∂z
+ δ2 ∂w

∂x

)]
−
(

2n+ 1

n

)n
cot θ (2.18)

Scaling the temperature equation yields

HU

χ
δ

(
∂T∗
∂t∗

+ u∗
∂T ∗

∂x∗
+ w∗

∂T ∗

∂z∗

)
= δ2 ∂

2T ∗

∂x∗2
+
∂2T ∗

∂z∗2

8



CHAPTER 2. GOVERNING EQUATIONS 2.2. NON-DIMENSIONAL EQUATIONS

which reduces to

δRePr

(
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

)
= δ2 ∂

2T

∂x2
+
∂2T

∂z2
, (2.19)

where Pr = µ̂n

ρχ

(
U
H

)n−1
is the Prandtl number.

Applying the scaling to the continuity of normal stress condition at the free surface yields

ρU2p∗ =
2µ̂n
F ∗2

Un

Hn
η∗ (1− λT ∗)

[
δ3

(
∂h∗

∂x∗

)2
∂u∗

∂x∗
+ δ

∂w∗

∂z∗
− δ ∂h

∗

∂x∗

(
∂u∗

∂z∗
+ δ2 ∂w

∗

∂x∗

)]

− δ2

HF ∗3
∂2h∗

∂x∗2
(σ∞ − σt∆TT ∗)

where

F ∗ =

[
1 + δ2

(
∂h∗

∂x∗

)2
] 1

2

which reduces to

p =
2δ

ReF 2
η (1− λT )

[
δ2

(
∂h

∂x

)2
∂u

∂x
+
∂w

∂z
− ∂h

∂x

(
∂u

∂z
+ δ2 ∂w

∂x

)]

− δ
2

F 3

∂2h

∂x2
(We−MT )

(2.20)

where We = σ∞
ρU2H is the Weber number and is proportional to the surface tension strength and

M = σt∆T
ρU2H which measures the variation in surface tension and is sometimes referred to as the film

Marangoni number.

Scaling the continuity of tangential stress condition at the free surface leads to

−σt∆T
H

(
δ
∂T ∗

∂x∗
+ δ

∂T ∗

∂z∗
∂h∗

∂x∗

)
=

µ̂n
Unη∗

Hn
(1− λT ∗)

[(
1− δ2

(
∂h∗

∂x∗

)2
)(

δ2 ∂w
∗

∂x∗
+
∂u∗

∂z∗

)
+ 2δ2 ∂h

∂x

(
∂w∗

∂z∗
− ∂u∗

∂x∗

)]

which reduces to

−Mδ

(
∂T

∂x
+
∂T

∂z

∂h

∂x

)
=
η (1− λT )

Re

[(
1− δ2

(
∂h

∂x

)2
)(

δ2 ∂w

∂x
+
∂u

∂z

)
− 4δ2 ∂h

∂x

∂u

∂x

]
. (2.21)

Applying the scaling to the Newton’s law of cooling yields

∂T ∗

∂z∗
− δ2 ∂h

∗

∂x∗
∂T ∗

∂x∗
= −αH

K
F ∗T ∗ at z∗ = h∗(x∗, t∗),

9



CHAPTER 2. GOVERNING EQUATIONS 2.3. THE LONG-WAVE APPROXIMATION

which, upon dropping the asterisks leads to

∂T

∂z
− δ2 ∂h

∂x

∂T

∂x
= −BFT at z = h(x, t), (2.22)

where B = αH
κ .

The kinematic condition transforms into

Uδw∗ =
∂(Hh∗)

∂
(
H
Uδ t
∗
) +

∂(Hh∗)

∂(Lx∗)
(Uu∗) at z∗ = h∗(x∗, t∗),

which, after we drop the asterisks simplifies to

w =
∂h

∂t
+ u

∂h

∂x
at z = h(x, t). (2.23)

The remaining boundary conditions at z = 0 are non-dimensionalized to give

u = 0, w = 0, T = 1 at z = 0. (2.24)

Equations (2.16)-(2.24) represent the dimensionless form of the full equations governing the flow. In

the next section we simplify these equations by discarding certain terms base on the assumed smallness

of the ratio of cross-stream to streamwise length scales. The resulting approximate formulation is known

as the long-wave equations.

2.3 The long-wave approximation

To obtain the long-wave equations we let δ tend to zero and discard the O(δ2) terms from equations

(2.16)-(2.24), while assuming all the other parameters to be O(1), with the exception of the Weber

number, which is assumed large enough so that δ3We = O(1). This allows us to eliminate the pressure

from the problem. Specifically, the z-momentum equation and the continuity of normal force condition,

equations (2.18) and (2.20), reduce to

∂p

∂z
= −

(
2n+ 1

n

)n
cot θ

Re
, p = p∞ − δ2We

∂2h

∂x2
at z = h,

which yields the following expression for the pressure

p = p∞ − δ2We
∂2h

∂x2
−
(

2n+ 1

n

)n
cot θ

Re
(z − h) .

In obtaining these equations we also discarded the O(δ) terms since the pressure is multiplied by δ in

the x−momentum equation.

Once the negligible terms have been identified and discarded, we rescale the equations with scale H

10



CHAPTER 2. GOVERNING EQUATIONS 2.3. THE LONG-WAVE APPROXIMATION

for both x and z. This can be accomplished by simply setting δ = 1 in the current formulation. We thus

get the long-wave equations consisting of

∂u

∂x
+
∂w

∂z
= 0 (2.25)

Re

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
=

∂

∂z

[
(1− λT )

(
∂u

∂z

)n]
−
(

2n+ 1

n

)n
cot θ

∂h

∂x
+

+ReWe
∂3h

∂x3
+

(
2n+ 1

n

)n
(2.26)

PrRe

(
∂T

∂t
+ u

∂T

∂x
+ w

∂T

∂z

)
=
∂2T

∂z2
, (2.27)

with the conditions

−MRe

(
∂T

∂x
+
∂T

∂z

∂h

∂x

)
= (1− λT )

(
∂u

∂z

)n
, at z = h (2.28)

∂T

∂z
= −BT, at z = h (2.29)

w =
∂h

∂t
+ u

∂h

∂x
at z = h. (2.30)

u = 0, w = 0, T = 1 at z = 0. (2.31)

In the next chapter we will employ this model to investigate the stability of the flow.

11



Chapter 3

Linear Stability Analysis

The problem (2.25) - (2.31) governing a falling power-law fluid film along a heated inclined plate admits

a simple solution corresponding to a steady flow uniform in the streamwise direction. In this chapter we

obtain this equilibrium solution and investigate its stability by means of a linear analysis.

3.1 Equilibrium solution

In order to determine the equilibrium solution we set derivatives with respect to x and t to zero in

equations (2.25) - (2.31). We assign the uniform thickness of the liquid layer to be h = 1 and use the

notation w = ws, u = us, T = Ts. We thus obtain the following equations for the equilibrium flow

dws
dz

= 0

d

dz

[
(1− λTs)

(
dus
dz

)n]
+

(
2n+ 1

n

)n
= 0 (3.1)

d2Ts
dz2

= PrRews
dTs
dz

,

with the conditions at z = 1 being

dus
dz

= 0

−BTs =
dTs
dz

,

12



CHAPTER 3. LINEAR STABILITY ANALYSIS 3.2. LINEAR STABILITY THEORY

and at z = 0

us(0) = 0, ws(0) = 0, Ts(0) = 1.

These equations can easily be solved for Ts and ws and we obtain

ws(z) ≡ 0 (3.2)

and

Ts(z) = 1−
(

B

B + 1

)
z. (3.3)

In order to obtain a closed-form solution for us(z) we must resort to an approximation. We integrate

equation (3.1) and linearize with respect to λ and thus get

dus
dz

=
2n+ 1

n2(B + 1)
[n(B + 1) + (1 + (1− z)B)λ] (1− z) 1

n .

Integrating this and applying the boundary conditions we obtain

us =
1

(B + 1) (1 + n)n
{B (1− z)

1+n
n λnz −B (1− z)

1+n
n λn+B (1− z)

1+n
n λ z

−2B (1− z)
1+n
n n2 −B (1− z)

1+n
n λ−B (1− z)

1+n
n n+Bλn+ 2Bn2 − 2 (1− z)

1+n
n λn

−2 (1− z)
1+n
n n2 +Bλ+ nB − (1− z)

1+n
n λ− (1− z)

1+n
n n+ 2λn+ 2n2 + λ+ n}.

(3.4)

This approximate solution is based on the assumption that O(λ2) terms as λ→ 0 are negligibly small.

3.2 Linear stability theory

We consider the perturbed equilibrium solution given by

h = 1 + ζ(x, t), u = us(z) + ũ(x, z, t), w = w̃(x, z, t), T = Ts(z) + T̃ (x, z, t),

where ζ, ũ, w̃ and T̃ are the added infinitesimal perturbations.

Introducing the perturbed solution into the governing equations (2.25)-(2.31), then linearizing with

respect to the infinitesimal perturbation variables we obtain

∂ũ

∂x
+
∂w̃

∂z
= 0 (3.5)

Re

(
∂ũ

∂t
+ us

∂ũ

∂x
+ w̃

dus
dz

)
= −N cot θ

∂ζ

∂x
+ReWe

∂3ζ

∂x3
+
df1

dz
T̃ + f1

∂T̃z
∂z

+
df2

dz

∂ũ

∂z
+ f2

∂2ũ

∂z2
(3.6)

13
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PrRe

(
∂T̃

∂t
+ us

∂T̃

∂x
+ w̃

dTs
dz

)
=
∂2T̃

∂z2
, (3.7)

where f1 = −λ
(
dus

dz

)n
, f2 = (1− λTs)n

(
dus

dz

)n−1
and N =

(
2 + 1

n

)n
.

Transferring the boundary conditions at the free surface, i.e. at z = 1 + ζ, to z = 1 and linearizing

yields the following conditions

−MRe

[
∂T̃

∂x
+
∂ζ

∂x

dTs
dz

]
= (1− λTs)

(
dus
dz

)n−1

n

(
∂ũ

∂z
+ ζ

d2us
dz2

)
at z = 1 (3.8)

−BT̃ =
∂T̃

∂z
+B

dTs
dz

ζ at z = 1 (3.9)

and

w̃ =
∂ζ

∂t
+ us

∂ζ

∂x
at z = 1. (3.10)

At z = 0 the conditions are

ũ = 0, w̃ = 0, T̃ = 0. (3.11)

We next employ normal modes into the linearized perturbation equations which are defined as(
ũ, w̃, T̃ , ζ

)
=
(
û(z), ŵ(z), T̂ (z), ζ̂

)
eik(x−ct),

where ζ̂ is a constant, k represents the perturbation wavenumber which is a real positive number, c is a

complex number whose real is the phase speed of the perturbation, while the product of the imaginary

part and k gives the growth rate. Then the linearized perturbation equations (3.5) - (3.11) can be written

as

Dŵ + ikû = 0 (3.12)

ikRe(us − c)û+ReDusŵ = −ik
(
N cot θ +Re We k2

)
ζ̂ +Df1T̂ + f1DT̂ +Df2Dû+ f2D

2û (3.13)

PrRe
[
ik (us − c) T̂ +DTsŵ

]
= D2T̂ (3.14)

where D denotes the differentiation with respect to z operator. Applying the normal modes defined

above to the interface conditions at z = 1 gives

−ikMRe
(
T̂ +DTsζ̂

)
= (1− λTs) (Dus)

n−1
n
[
Dû+ ζ̂D2us

]
(3.15)

14
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−BT̂ = DT̂ +BDTsζ̂ (3.16)

ŵ = ik(us − c)ζ̂. (3.17)

While the boundary conditions evaluated at z = 0 will take the following form

û(0) = ŵ(0) = T̂ (0) = 0. (3.18)

We introduce the stream function, ψ, to satisfy the perturbed continuity equation (3.12). The stream

function is related to the velocity disturbances ũ, w̃ and is defined as

ũ(x, z, t) =
∂ψ

∂z
, w̃(x, z, t) = −∂ψ

∂x
.

In terms of the normal modes, ψ can be written as

ψ = Ψ(z)eik(x−ct).

Then û and ŵ are expressed as

û(z) = DΨ, ŵ(z) = −ikΨ.

Consequently, we have the following Orr-Sommerfeld type equations

f2D
3Ψ +Df2D

2Ψ + ik(c− us)ReDΨ + ik ReDus Ψ

+Df1 T̂ + f1DT̂ − ik(N cotβ +ReWek2) ζ̂ = 0
(3.19)

D2T̂ + ik Pr Re[(c− us) T̂ +DTsΨ] = 0. (3.20)

The boundary conditions at z = 1 are

−ikM Re
(
T̂ + ζ̂ DTs

)
= (1− λTs) (Dus)

n−1
n
[
D2Ψ + ζ̂ D2us

]
(3.21)

−B T̂ = DT̂ +BDTs ζ̂ (3.22)

and

Ψ + us ζ̂ = c ζ̂. (3.23)
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While the conditions at z = 0 are

T̂ = Ψ = DΨ = 0. (3.24)

The equations (3.19) - (3.24) constitute an eigenvalue problem with c being the parameter that is

to be assigned eigenvalues. For a given set of flow parameters (Re, Pr,B,M, λ, n, θ,We), solving the

problem for c provides the growth rate of the perturbation with wavenumber k. A positive value of =(c)

indicates that the perturbation amplitude grows in time, whereas if this quantity is negative then the

perturbation is reduced. A set of flow parameters for which =(c) = 0 is referred to as the state of neutral

stability for the perturbation with wavenumber k, and corresponds to the threshold between stability

and instability for this perturbation. Regarding the stability of the flow, if all the perturbations are

damped then the flow is stable otherwise, it is unstable.

3.3 Asymptotic solution

The solution of the eigenvalue problem (3.19) - (3.24) can be obtained by carrying out an asymptotic

analysis as k → 0. First, we expand the perturbations Ψ, T̂ , ζ̂ and the eigenvalue c in powers of k as

follows

Ψ =ψ0(z) + kψ1(z)

T̂ =T̂0(z) + kT̂1(z)

ζ̂ =ζ̂0 + kζ̂1

c =c0 + kc1.

Substituting into the system of equations (3.19) - (3.24), we then have a hierarchy of problems at different

orders of k. Without loss of generality we can normalize the eigenvalue problem and set ζ̂0 = 1 and

ζ̂1 = 0.

Collecting the O(1) terms, we obtain

D
[
n(1− λTs) (Dus)

n−1
D2ψ0

]
−D

[
λ (Dus)

n
T̂0

]
= 0 (3.25)

D2T̂0 = 0 (3.26)

with

n(1− λTs) (Dus)
n−1

D2ψ0 = −n(1− λTs) (Dus)
n−1

D2us at z = 1 (3.27)

DT̂0 +BT̂0 +BDTs = 0 at z = 1 (3.28)
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ψ0 + us = c0 at z = 1 (3.29)

and

Dψ0(0) = ψ0(0) = T̂0(0) = 0. (3.30)

From equation (3.26) T̂0 can be expressed as

T̂0 = Ā1z + Ā2, (3.31)

where the constants Ā1, Ā2 are determined using the boundary conditions (3.28) and (3.30) giving

T̂0 =
B2

(1 +B)2
z. (3.32)

Integrating the ordinary differential equation (3.25) from 1 to z, using the boundary condition (3.27)

and the fact Dus(1) = 0 we obtain

n(1− λTs) (Dus)
n−1

D2ψ0 − λ (Dus)
n
T̂0 = N. (3.33)

Now linearising with respect to λ and applying the boundary conditions (3.30) we obtained an explicit

formula for ψ0(z) using the symbolic algebra software Maple. However, the expression is very long and

complicated and displaying it does not serve a useful purpose. Substituting the expression into the

kinematic condition (3.29) we can solve for c0 and obtain

c0 =
C1

C2
,

where

C1 = 6n3 (B + 1)
2

+
(
(4λ+ 5)B2 + (9λ+ 10)B + 6λ+ 5

)
n2+(

(4λ+ 1)B2 + (9λ+ 2)B + 5λ+ 1
)
n+ λ (B + 1)

2
(3.34)

and

C2 = (B + 1)
2
n2 (3n+ 1) . (3.35)

Focusing now on the O(k) terms we obtain the problem

D2T̂1 + iPrRe
[
(c0 − us)T̂0 +DTsψ0

]
= 0 (3.36)

DT̂1(1) +BT̂1(1) = 0 (3.37)
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T̂1(0) = 0, (3.38)

which has been solved for T̂1 using Maple. This solution was then introduced into the equations

D
[
n(1− λTs) (Dus)

n−1
D2ψ1

]
−D

(
λ (Dus)

n
T̂1

)
= iRe(us − c0)Dψ0 − iReDusψ0 + iN cot θ (3.39)

n(1− λTs) (Dus)
n−1

D2ψ1 =
iMReB

(B + 1)2
at z = 1 (3.40)

Dψ1(0) = ψ1(0) = 0. (3.41)

This problem was also solved using Maple and we obtained a long expression for ψ1(z). We point out

that in this process we again linearized with respect to λ. So the assumption is that O(λ2) and O(k2)

are negligible as λ and k tend to zero, but O(kλ) is not. Consequently then we are assuming that

k � λ� 1.

Extracting the O(k) terms from equation (3.23) we obtain c1 = ψ1(1). Since c0 is real, the state of

neutral stability for very long perturbations (small k) is given by

=(c1) = 0. (3.42)

For a Newtonian fluid with constant viscosity it can be shown that infinitely long perturbations are the

most unstable [34] and thus relation (3.42) describes the conditions at the threshold of instability for

the equilibrium flow, and solving it for Re gives the critical Reynolds number for the onset of instability.

We have obtained an explicit formulation for the neutral stability relation (3.42), however it is too

long to display here. As an illustration we present a weakly non-Newtonian approximation accurate for

power-law index values near n = 1 given by

Recrit =
R1

R2

where

R1 = 6 (3n+ 2) (B + 1)
2

(5n+ 2) (5n+ 3) (5n+ 1) (n+ 1)
3
n2 (4n+ 1) (3n+ 1) cot θ(

2Bλn+ 3Bn2 +Bλ+Bn+ 3λn+ 3n2 + λ+ n
)

(4n+ 3) ,
(3.43)

R2 = C1 + C2λ
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and

C1 = −5376 (B + 1)
(
10080B2 ln (3)n

+4200BM ln (3)n− 10080B2 ln (3)− 92844B2n− 4200BM ln (3)

−44705nBM + 20160B ln (3)n+ 82764B2 + 40505BM − 20160 ln (3)B

−185688Bn+ 10080n ln (3) + 165528B − 10080 ln (3)− 92844n+ 82764)

(3.44)

C2 = −1172247552 + 1334817792n− 3105636288B − 892433136B3 − 2825821872B2

+15052800B2M ln (3) + 15775032B3Pr n+ 24685848B2Pr n− 51460992BPr n+ 142661120B2Mn

−124326720B3 ln (3)n− 127608320B2M + 1016759856B3n− 14222712B3Pr − 22407768B2Pr

+45977472BPr + 124326720B3 ln (3) + 162570240 ln (3)

+395115840B2 ln (3) + 3220937712B2n− 195175680BM + 433359360 ln (3)B

−162570240n ln (3)− 15052800B2M ln (3)n− 22579200BM ln (3)n

+22579200BM ln (3)

−395115840B2 ln (3)n+ 217754880nBM − 433359360B ln (3)n+ 3538995648Bn.

(3.45)

We also present exact formulations of the neutral stability relation (3.42) for certain particular cases.

First of all, in the Newtonian case we obtain

Recrit =
D1

D2

where

D1 = 1680 (B + 1)
2

cot θ (3Bλ+ 4B + 4λ+ 4)

and

D2 = (8064 + (231Pr + 18501)λ)B3 + ((2240M + 339Pr + 58797)λ+ 3360M + 24192)B2

+ ((3360M − 816Pr + 64488)λ+ 3360M + 24192)B + 24192λ+ 8064.

If we set λ = 0 in this result we arrive at

Recrit =
10 cot θ (B + 1)

2

12B2 + (5M + 24)B + 12
,

which coincides with the result obtained by D’Alessio et al. [17] for the case with constant viscosity.

Finally, in the general power-law case under isothermal conditions we have

Recrit =
1

2

(
n

2n+ 1

)2−n

(3n+ 2) cotθ ,
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which agrees with the formula reported by Fernandez-Nieto et al. [35].

Finally, we point out that the Weber number does not figure in the neutral stability of the flow. This

is because the strength of surface tension does not affect very long surface perturbations. It is rather the

variation in surface tension, gauged by the parameter M , that plays an important role in the Marangoni

instability.

3.4 Interpretation of results

We first explain the basic physical mechanisms related to the instability of the flow [34]. Non-isothermal

inclined film flow is subject to two types of long-wave instabilities: the H mode and the S mode. The H

mode refers to the amplification of surface waves due to inertia, and is the only instability mechanism

in an isothermal flow. The fluid ahead of a crest on a propagating wave must accelerate when the crest

passes over it in order to obtain the faster velocity profile associated with the expanded cross section of

the flow. However, fluid inertia resists this adjustment and essentially effectuates a deceleration which

causes fluid to accumulate under the crest thus amplifying the amplitude of the wave. At the troughs,

inertia accelerates the flow thus pulling fluid away which lowers the troughs which also acts to amplify

the wave. Since sufficient inertia is required to destabilize the H mode, there is a critical Reynolds

number such that the H mode is unstable if this value is exceeded.

If the liquid layer is also heated from below, then a temperature variation is induced along the surface

if it is wavy due to differences in distance from the heated bottom. The crests of waves are colder, while

the troughs are warmer. As such, surface tension is stronger at the crests and weaker at the troughs

generating Marangoni stresses which pull fluid away from the troughs toward the crests thus amplifying

the waves. So, thermocapillarity enhances the H mode and lowers the critical Reynolds number for

instability.

Now the S mode refers to the instability that is due entirely to the Marangoni effect when the surface

is flat (wavy perturbations being effectively damped due to low levels of inertia). In this case thermocap-

illarity is generated by perturbations in surface temperature as opposed to differential heating resulting

from position relative to the heated bottom. Fluid motion along the surface caused by Marangoni

stresses, if sufficiently strong, destabilizes the equilibrium flow. Resisting this action is inertia which

works to preserve the equilibrium flow. So, the S mode is unstable only if the Reynolds number is

sufficiently small. The critical value increases with the strength of the thermocapillarity.

The upshot then is that for weak enough thermocapillarity there are two critical Reynolds numbers:

one for the S mode and a larger one for the H mode. For Reynolds numbers in the interval in between the

equilibrium flow is stable while outside the interval it is unstable; due to the S mode for the smaller values

and due to the H mode for the larger Reynolds numbers. As the level of thermocapillarity is increased,

the interval of stable Reynolds numbers shrinks and eventually the two modes merge rendering the flow

unstable for all Reynolds numbers.

In order to determine both critical Reynolds numbers, we must redefine two of our current control

parameters. It turns out that B and M are implicitly dependent on the Reynolds number. To make
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this explicit we now express them as

B =

[
csc θ

(
2n+ 1

n

)n] 2−n
n+2

Re
n

n+2Bi

and

M =

[
csc θ

(
2n+ 1

n

)n] 3n−2
n+2

Re−
3n+2
n+2 Ma,

where

Bi =
α

κ

(
µn
ρ

) 2
n+2

g
n−2
n+2 , is the Biot number

and

Ma =

(
ρ

µn

) 4
n+2

g
2−3n
n+2 σt∆T, is the Marangoni number.

The Biot number is the scaled heat transfer coefficient of the free surface. The Marangoni number is

proportional to the variation in the surface tension with temperature and measures the level of ther-

mocapillarity for the system. Substituting these expressions for B and M into the neutral stability

relation (3.42) results in a much more complicated formula that must be solved for Re numerically. We

accomplished this by employing the Matlab subroutine fsolve.

In order to present the results from our investigation we plot the critical Reynolds numbers as a

function of the Marangoni number. As it can be seen in Figure 3.1, for example, these curves consist

of two branches: The upper which tracks the critical Reynolds number for the H mode and the lower

branch corresponding to the S mode. The region inside the curve reveals the evolution of the interval of

stable Reynolds numbers with Ma.

We begin by determining how the temperature dependence of the fluid rheology affects the stability

of the flow. To accomplish this, in Figures 3.1 and 3.2 we plot the Recrit versus Ma curves for different

values of λ. We first consider the Newtonian case in Figure 3.1. Clearly, for a Newtonian fluid increasing

λ results in a lower viscosity. Also, if we calculate the flow rate in the equilibrium flow we obtain

qs =

∫ 1

0

us(z)dz = 1 +
(3B + 4)λ

4B + 4
,

which increases with λ. Examining the results in Figure 3.1 reveals that Recrit on the upper branch

decreases with λ, indicating that the H mode is destabilized. This is most likely a consequence of a

faster flow rate which boosts the destabilizing acceleration and deceleration phenomenon brought about

by surface waves.

Looking now at the S mode in Figure 3.1 we see that there is no significant effect due to varying λ,

with the exception of cases with greater thermocapillarity. In these cases increasing λ has a destabilizing

effect. The culprit could possibly be the reduction in viscosity which allows for a stronger fluid motion

along the surface generated by the Marangoni stresses.

In Figure 3.2 we consider the effect of λ on the stability of the flow for a non-Newtonian fluid which
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Figure 3.1: Recrit as a function of Ma for cot θ = 1, Pr = 7, Bi = 1, n = 1.

can be obtained from our model by setting the power-law index to n 6= 1. It is apparent from these

results that a temperature dependent consistency has the same qualitative effect as for a Newtonian

fluid. In the non-Newtonian case we do not have a “viscosity” in the Newtonian sense. We can instead

think of an “apparent” viscosity defined as µapp = µn
(
∂u
∂z

)n−1
. For the equilibrium flow this is given by

µapp =
1

2n+ 1

(
2n+ 1

n

)n
(1− z)1−1/n

(
n− 1 + (1− z)B

B + 1
λ

)
, 0 < z < 1,

which, like the Newtonian viscosity, is a decreasing function of λ. And the flow rate is given by

qs = 1 +
(2B + 3)n+B + 1

n(3n+ 1)(B + 1)
λ,

which increases with λ for all the relevant values of n.

We next explore the effect of the non-Newtonian nature of the fluid on the stability of the flow.

In Figure 3.3 we display the Recrit as a function of Ma curves for different values of n. We include

only values less than 1 since this corresponds to most non-Newtonian power-law fluids encountered in

applications. It can be seen that the S mode is stabilized as the fluid is made more non-Newtonian,

since the critical Reynolds number decreases. The threshold for the H mode also decreases, but this

means that it is destabilized. However, the rate at which Recrit decreases with Ma slows down as n is

decreased and as a result the interval of stability collapses a larger Ma value. In other words, the critical
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Figure 3.2: Recrit as a function of Ma for cot θ = 1, Pr = 7, Bi = 1, n = 0.5.

Ma value for the flow to be rendered unstable for all Reynolds numbers increases as n is decreased.

So, for example, if thermocapillarity if sufficiently strong, a Newtonian fluid is unstable for all Reynolds

numbers, but for a non-Newtonian fluid there is an interval of Reynolds numbers for which the flow is

stable.

We next focus on the effect of the heat transfer across the surface between the liquid and the

ambient gas which is measured by the Biot number. We begin by considering the limiting cases Bi = 0

and Bi → ∞. If Bi is set to zero then Newton’s law of cooling dictates that the heat flux across the

surface is prescribed to be zero and consequently the equilibrium flow is isothermal (same temperature

throughout). Therefore, even if the surface is wavy its temperature is uniform and so thermocapillarity

does not contribute to the amplification of surface waves. At the other extreme we have a similar

situation. As Bi→∞ the condition at the surface approaches that of a prescribed temperature (that of

the ambient gas). In this case the surface temperature does not experience any variation in temperature

(including perturbations) and thus the Marangoni effect does not occur. Therefore, as we increase Bi

from zero we expect thermocapillarity to strengthen and the flow to become more unstable. However,

this trend must eventually reverse since for large values of Bi thermocapillarity becomes weaker.

In Figure 3.4 we consider the Newtonian case and show the critical Reynolds number curves for

different values of Bi with λ = 0, i.e. no temperature dependence of the consistency of the fluid. In

accordance with the expectation described above, we see that for smaller values of Bi the region of

stability contracts as this parameter is increased, but it begins to expand with Bi for sufficiently large
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Figure 3.3: Recrit as a function of Ma for cot θ = 1, Pr = 7, Bi = 1, λ = 0.2.

values.

Now, if we introduce temperature variation in the viscosity we discover an interesting correlation.

Specifically, we find that, for sufficiently small Marangoni numbers, the critical Reynolds number for

the H mode actually increases with Bi. To illustrate this, in Figure 3.5 we plot Recrit as a function

of Bi. To explain this behaviour we point out that with Bi = 0 we have Ts(z) ≡ 1 (this being the

largest possible temperature value), and so the viscosity is reduced by the maximum amount. Now, as

explained above, lowering the viscosity destabilizes the flow. So, increasing Bi has a stabilizing effect

because it relaxes the reduction in viscosity. Yes, it is true that increasing the Biot number from zero

also unleashes destabilizing thermocapillarity, however if the surface tension is only weakly dependent

on temperature differences (small Ma) the stabilizing effect of increasing the viscosity dominates the

Marangoni instability.

This phenomenon is also found for the non-Newtonian case, as it is illustrated in Figure 3.6, where

we have set n = 0.8.

To conclude our analysis of the results we plotted the Recrit as a function of Ma curves for different

Prandtl numbers ranging from 0 to 20. We found these curves to be very close together and almost

indistinguishable on the plot, and we do not display the figure here. But we conclude that varying the

Prandtl number has little effect on the stability of the flow.
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Figure 3.4: Recrit as a function of Ma for cot θ = 1, Pr = 7, λ = 0, n = 1.
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Chapter 4

Conclusions

In this thesis we derived a mathematical model for the flow of a liquid film down a heated incline. The

rheology of the fluid is described by a power-law relation which includes the classic Newtonian fluid, but

also allows for non-Newtonian behaviour. The model also accounts for variation with temperature in the

properties of the fluid by implementing a temperature dependent formulation for the rheological relation.

In addition, the model incorporates the realistic Newton’s law of cooling at the surface of the liquid layer,

which allows it to capture the enhancement to inertial instability provided by thermocapillarity.

We carried out a linear stability analysis to determine the critical conditions for the onset of long-

wave instability in the steady flow uniform in the stream wise direction. We accounted for both relevant

types of instability. One that is entirely due to thermocapillarity and is associated with slower flows (S

mode), and the one that occurs in more rapid flows and consists of the amplification of surface waves

due to inertial effects which is intensified by thermocapillarity (H mode). The S mode is stabilized

by inertial effects (measured by the Reynolds number), while the opposite is the case for the H mode.

Thermocapillarity raises the level of inertia necessary to stabilize the S mode and lowers the one sufficient

to destabilize the H mode. As thermocapillarity is increased the two thresholds eventually coincide, the

two modes are said to “merge”, and beyond this level of thermocapillarity the flow is unstable for all

Reynolds numbers.

Our investigation has revealed that a non-Newtonian rheology has a stabilizing effect on the S mode

in the sense that a smaller Reynolds number is required to prevent the related amplification of per-

turbations. Contrarily, the H mode is destabilized; a smaller Reynolds number is sufficient to amplify

perturbations in the position of the free surface. On the other hand, the rate at which the critical

Reynolds numbers change with thermocapillarity is lowered by the non-Newtonian aspect of the fluid

and the merging of the two modes is postponed. In other words, we can have a flow configuration

that is unstable for all Reynolds numbers, but if we replace the fluid by one with the same capillary

properties but a stronger non-Newtonian rheological behaviour, we can then obtain a flow that is stable

for a specific range of Reynolds numbers.

Regarding the effect of temperature variation in the consistency of the fluid, we found that it desta-

bilizes both modes. Another interesting conclusion pertains to the correlation with the effect of heat
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transfer from the liquid to the ambient gas. In the idealized case of a perfectly insulated free surface,

its equilibrium temperature is uniform even if undulations are generated by perturbations. In this case

the Marangoni effect is decoupled from the amplification of surface undulations related to inertial ef-

fects. As heat is allowed to start flowing across the surface the contribution to the amplification of

surface undulations made by thermocapillarity becomes more and more significant and the flow is desta-

bilized. But if the rheological nature of the fluid is affected by temperature the destabilization effect is

reversed; increasing the heat transfer from the liquid results in a temperature distribution for which the

destabilizing inertial effects themselves are weakened.
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