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Abstract 

Software Defined Networking (SDN) technology has garnered much attention in the field of networking. 

Even though there have been several SDN based data centre (domain) implementations, there is a need 

to inter-connect multiple SDN domains. In this thesis we will focus on enabling inter-domain layer 2 

switching. We propose an approach wherein a central controller is responsible for inter-domain 

switching while the domain controllers are responsible for intra-domain switching in their respective 

domains. To achieve this, the central controller initially communicates with the domain controllers to 

gather the overall topology of the network. From the overall topology, the central controller can derive 

the domain-level topology, compute the domain-level spanning tree and install the tree on the 

topology. In addition, the central controller also computes the inter-domain shortest path between any 

pair of domains. The shortest path information are then pushed to the domain controllers in order to 

setup the network-wide shortest path. We demonstrate the viability of the proposed approach by 

implementing it in OpenDayLight, a popular SDN platform. To further demonstrate the flexibility and 

openness of the approach, we have also successfully implemented a user case to achieve inter-domain 

load balancing. 

 

 

 

 



  

2 
  

Chapter 1 

 

Introduction 

 

1.1 Introduction of SDN 

Over the past decade the usage of network (Internet) has tremendously increased, which has 

consequently increased the number of physical network devices such as routers, switches, firewalls, load 

balancers and etc. Managing/Configuring these devices have always been a strenuous job in spite of the 

development of various management applications which are mostly vendor specific and not very robust.  

Apart from management there are also several other issues pertaining to the traditional networks. In 

traditional networks each device has its own independent view of the network based on the updates and 

advertisements it receives from the neighboring device, thus having minimum visibility. Different Vendors 

have their own implementation of traditional routing and switching protocols on their network devices. 

These implementations are hidden and hence none of the protocol implementations could be customized. 

Although most of the vendors these days offer programmability, they are not very flexible and cannot be 

applied over the entire network.  

Most of the network related research don’t make it to the real world due to lack of ways to experiment 

them in a realistic setup. SDN led to the advent of programmable networks by decoupling the control and 

data plane. The aim was to motivate vendors to implement a protocol (eg. OpenFlow) in the traditional 

networking devices such as routers and switches so that while network administrators could configure 

them running on the common network protocols, researchers could implement their ideas and run their 

experimental protocols at the same time. The traffic is separated into production flows and researcher 

flows and isolated from each other.  The advent of SDN has promised to help to solve most of them. SDN 

offers Centralized network provisioning, fine grain traffic control, automation, reduced downtime, cost 

reduction etc. 
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In contrast to traditional networking (figure 1.1), SDN architecture (figure 1.2) separates the control plane 

from the traditional network device. The control plane is shifted to a centralized controller that can 

manipulate the forwarding decisions in the data plane of the devices.  

As show in Figure 1.2 there is a single centralized controller that controls the dataplane of a group of 

devices. Since all the devices communicate with the controller, the controller has a complete view of the 

network and thus enables more felixibility when compared to a traditional network. This approach has 

brought a whole new dimension to the way networks can be conceived, controlled and managed. 

 

Figure 1.1: Traditional Networking 

 

Figure 1.2: Software Defined Networking 

 

There have been several successful SDN based data-centre implementations and applications in the real 

world by huge giants in the industry such as Google, facebook, AT & T etc and it is no longer a future or 

pilot technology.                                                                                                                                                                                                                                    

In a distributed data centre environment there will be several controllers controlling several sets of 

devices. We call a group of devices under a SDN controller as its domain. Several proposals have been 

made to interconnect these domains. In this thesis we will discuss about the various approaches. We then 

propose a new approach and describe the implementation in detail. 
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1.2 Research Problem 

SDN based Data centres have been scaling up rapidly. For better scalability and security a number of 

methods have been proposed to partition the SDN into multiple domains with each domain managed by 

an independent controller or a cluster of controllers. Apart from scalability, geographic distribution of 

data centres are also one other reasons for interconnecting multiple SDN domains. In order to setup the 

appropriate paths across multiple domains, the controllers must communicate with each other to 

exchange control information.  

 

There are two approaches to enable communication between SDN controllers. First approach [1], [2] 

called the horizontal approach (figure 1.3), is to enable a communication protocol that is similar to a 

routing protocol such that the controller of a domain directly communicates with the controllers of the 

neighboring domains. The other approach [2], [3] is a hierarchical or vertical approach (figure 1.4) in which 

there is a central controller that communicates with the controllers of all the domains (domain 

controllers). In this approach, there is no inter-communication among the domain controllers.  

 

 

                    

 

http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Inter-SDN-Controller-Communication-Border-

Gateway-Protocol-0314-1.pdf 

Figure 1.3 b): Horizontal Approach Figure 1.3 a): Vertical Approach 

http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Inter-SDN-Controller-Communication-Border-Gateway-Protocol-0314-1.pdf
http://www.tcs.com/SiteCollectionDocuments/White%20Papers/Inter-SDN-Controller-Communication-Border-Gateway-Protocol-0314-1.pdf
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We can use either layer-2 or layer-3 to interconnect multiple SDN domains. In this thesis, we propose to 

use layer-2 interconnection. This is because Zero Downtime is one of the most important requirements 

from various businesses these days. E-commerce and E-business are one among the many sectors that 

are most sensitive to network outages. Any minimal outages may lead to huge loss. Their data centres are 

often distributed across different geographic locations, which also serve the purpose of BCP (Business 

continuity planning). These Data centres could be connected using various layer 2 or layer 3 technologies. 

By using a layer-2 interconnection, we create a stretched layer 2 network which would facilitate live 

migration and many other major activities without any glitches in the production environment. This also 

means easy migration of servers without worrying about the subnetting restriction. Network 

Administrators would also find it easier to troubleshoot issues in such a network (with single L2 domain) 

where extending it is just like adding another switch. Apart from these they also aid stateful services such 

as local balancers and firewalls across the distributed domain. These services play a key role in ensuring 

zero downtime. 

  

 

 

 

 

 

 

 

 

 

 

 



  

6 
  

Chapter 2 

 

Background 

 

2.1 SDN 

SDN [17] is the emerging technology that separates the control plane from the data plane, wherein real-

time network devices could be programmed by intelligent software component. The goal of SDN is to 

leverage the centralized control plane in order to reduce the complexity of today’s network and develop 

innovative ways in which network could be controlled and managed.  

SDN architecture is divided into multiple layers as show in figure 2.1. We will introduce these layers in the 

subsequent sections.  

 

     

 

 

 

 

 

 

 

                

               https://www.opennetworking.org/sdn-resources/sdn-definition 

Figure 2. 1: SDN High-Level Architecture 

https://www.opennetworking.org/sdn-resources/sdn-definition
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2.1.1 Infrastructure Layer 

The infrastructure layer is comprised of network devices. Network device may refer to the physical device 

or a virtual device. It may be implemented in hardware or software. This is the entity through which the 

actual user traffic/ data packets pass through. It receives data packets on its ports and may forward or 

discard or even alter them. The network device is a combination of ports, queues, memory and CPU. 

Switches, Routers and Firewalls are some of the common network devices.  

A network device comprises of the Forwarding Plane and Operational Plane. The Forwarding plane also 

known as the data plane, deals with the handling of packets. Routing and Switching of packets are some 

of the common data plane functionalities. The Operational plane deals with operational state of a device 

such as status of the ports, number of packets transmitted/received over an interface, memory utilization, 

queue length etc. 

 

2.1.2 Control Layer 

The application that implements the functions of the control layer is known as the SDN controller. Its 

responsibility is to control the network devices in the infrastructure layer and enable paths for the user 

traffic. The control layer or the SDN controller has multiple components within itself. Their core 

functionalities could be divided into the Control plane and Management plane. The Control plane is the 

brain of the network which provides various services such as inventory management, topology 

management, Flow programming, route/path selection etc. The component that is used to communicate 

with the Forwarding plane of the network devices in the infrastructure layer is known as the Control-Plane 

Southbound Interface. This may be implemented as Protocol or API.  ForCES (Forwarding and Control 

Element Separation) and OpenFlow are examples of Control-Plane Southbound protocols. The 

Management plane is a central point to collect data from the Operational plane of the network devices 

and provide various functionalities such as, Orchestration, Fault and Monitoring Management and 

Configuration management. This also plays an important role while implementing Network Function 

Virtualization (NFV). The Management plane has its own southbound interface to communicate with the 

Operational plane of the network device. Open vSwitch Database (OVSDB), NETCONF, SNMP and Syslog 

are few of the commonly used Management Plane Southbound protocols. The services provided by the 

control and data plane could be accessed by other applications and services through the Service Interface. 
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RESTful APIs and Remote Procedure call (RPC) are the most popular service interface implementations in 

the SDN controllers.  

 

2.1.3Application Layer 

SDN Applications, Business Applications, Cloud Orchestration, etc. reside on the application layer. They 

utilize the services offered by the control and management plane in the control layer using the service 

interface (RESTful APIs or RPC). This is the layer of innovation wherein several applications are built to 

solve today’s business problems.  Network Provisioning, Network Topology Map and Path reservation are 

some of the example applications.  

 

Figure 2. 2: SDN Architecture in Detail 

https://tools.ietf.org/html/rfc7426 

https://tools.ietf.org/html/rfc7426
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2.2 OpenFlow 

OpenFlow [16] is one of the most popular SDN southbound protocol. It is an open standard protocol built 

with the intention to help researchers run their experimental protocols. Although we say that SDN 

removes the control plane functions from the devices in the infrastructure layer, some control protocols 

still need to be present so that the control layer and the infrastructure layer (handling the data plane) 

could talk with each other. OpenFlow is one of the protocols that the devices (infrastructure layer) and 

the SDN controller (Control Layer) use to enable communication between them. The OpenFlow protocol 

has three messge types: controller-to-switch, asynchronous and symmetric. 

 

2.2.1 OpenFlow switch 

OpenFlow switch is the fundamental component of the infrastructure layer. They initiate Asynchronous 

messages to notify the controller about network events and any changes in the state of the switch. As 

shown in the figure 2.3 the switch agent handles the communication with the SDN controller and the date 

plane. When a packet arrives at the switch in the data plane, the header information is attempted to 

match against the entries in the flow table (as shown in figure 2.4). Multiple tables may be present, but it 

goes through table 0 (default table) first. If there is a match then the instruction/action associated with 

the matched flow entry gets executed. If there is no match, the packet or the header of the packet is 

usually sent to the controller through the OFPT_PACKET_IN message [17] (Asynchronous message type) 

for further processing.  

http://flowgrammable.org/sdn/openflow/#tab_switch 

Figure 2.3 b): OpenFlow Switch Anatomy Figure 2.3 a): Data Plane 

http://flowgrammable.org/sdn/openflow/#tab_switch
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The major components of the flow table are shown in table 2.1. 

 

Table 2: Flow Table Components 

Match Fields: Some of the common match fields are Switch port, Source MAC, Destination MAC, Ether 

type, VLAN ID, Source IP, Destination IP, TCP source and destination port.   

Priority: Higher the priority mean greater precendence 

Counters: When a packet matches a flow entry, its counter is increased 

Instructions: Forward packet to port(s), encapsulate and forward to controller, drop packet and send to 

normal processing pipeline are some of the commonly used instructions. 

Time out: Time until the flow would remain unexpired 

Cookie: non transparent data used by the controller 

 

 

2.2.2 OpenFlow Controller 

POX, NOX, Ryu, Floodlight, Contrail and Opendaylight are few of the well-known SDN controllers. All these 

controllers have implemented the OpenFlow protocol to communicate with the OpenFlow switches. 

These controllers possess various built-in modules that perform base network service functions (e.g. 

Topology Manager, Switch Manager etc.). These modules process the openflow packets sent by the 

switches and populate their database with Configuration data and Operational state data [15]. Switch ID, 

Port ID and Link information are some examples of Configuration data which is populated by the Topology 

Discovery module. Status of ports in a switch (“Up” or “Down") is an example of Operational state data 

which is populated by the Switch manager module. This data is exposed via APIs and can be accessed or 

manipulated by the Northbound Applications 
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2.3 SDN – Intra-Domain Switching 

To enable communication between hosts in a SDN network, its controller must first be aware of the 

network topology. Hence topology Discovery is the foremost step to achieve this. Following that removing 

loops from the topology is another must requirement in a layer 2 network. In the following sections we 

will discuss how the various modules in the controller perform these key functionalities and how intra-

domain switching can be achieved 

 

2.3.1 Topology Discovery 

 SDN controller utilizes LLDP packets for Topology discovery. Specifically, it instructs the switches to send 

LLDP packets to their neighboring switches; when the neighboring switches receive the LLDP packets, they 

will forward the LLDP packet back to the controller. The controller using this LLDP information finds out 

the connections among switches and builds the overall topology of its domain. It should be noted that, by 

default, OpenFlow switches will not forward the received LLDP packets to the SDN controller. Hence the 

switches in the domain should be initially configured such that it sends all the packets to the controller. 

 

2.3.2 Loop Remover  

Switching loop is one of the common issues in a layer 2 domain which is caused by redundant paths in a 

layer 2 network. Switching loop will lead to broadcast storms due to flooding of Broadcast, Unknown 

unicast and Multicast (BUM) traffic. In a SDN network, the SDN controller computes the spanning-tree 

and installs it on the physical topology using the OpenFlow to configure the switch ports to either the 

flooding state or non-flooding state. A port in the flooding state forwards BUM traffic over its interface, 

whereas a port in the non-flooding drop the BUM traffic. Another way to setup the spanning tree is to 

install appropriate flow entries in the flow tables of the switches according to the tree topology. 

 

2.3.3 Layer 2 Communication along the Shortest Path  

In a traditional Ethernet network when a host wants to communicate with another host in the same 

network it sends out an ARP request. The ARP request & reply take the path built by the spanning tree. 
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The subsequent packets exchanged between them take the same path, which may not be the shortest 

path. Since the SDN controller has the complete view of the topology, hence when it receives an ARP reply 

packet, the controller can extract the source and destination information, identify the nodes they are 

connected to (using Host Tracker Service) and find the shortest path between them. It can then install the 

flow based on the shortest path computation. Most of the SDN controllers come with a module that does 

shortest path computation. 

 

2.4 Literature Survey 

[1] and [3] have the similar proposals to our work that follow the horizontal/serial and vertical/hierarchical 

approaches respectively. The design in [1] has a single controller which is logically centralized but 

physically distributed. In this approach all the SDN domain controllers have the complete state 

information of all the domains. This is achieved by propagating the events (OpenFlow message events) 

happening in each domain to the SDN controllers of other domain using an application called HyperFlow. 

This makes all the SDN domain controllers capable of taking over in case of failure of any SDN domain 

controller and thus providing scalability and redundancy. Thus any application which requires network 

state information can subscribe to HyperFlow and get the information. One of the major concerns of this 

approach is the overhead for the SDN controller due to huge increase in the number of events it needs to 

process for attaining network wide state information. This problem is addressed in [3]. In [3], the 

controller works on two different levels. One of them is the low-level controllers or the local controllers 

that takes care of local events (flow arrival, network statistics collection). The low-level controllers can be 

scaled linearly with the increase in size of the network. Local applications (example local policy 

enforcement, elephant flow detection, link layer discovery) are offloaded to the local processing resources 

of the local controller. The other one is the root controller that can subscribe to specific events in the local 

controllers. These are mostly events that are required to perform tasks that are non-local or that require 

network wide state information (example routing between SDN domains).  The main objective of this 

approach is to scale the low level controllers and the local applications that rely on them. 

SDNi [6] was one of the first works on SDN inter-domain communication. SDNi is a communication 

protocol that was developed to exchange information between SDN domain controllers. An IETF draft was 

submitted/published during the mid of June 2012, but it had expired at the end of the 2012 without any 

further development. OpenDaylight (ODL) project, one of the largest projects working on open source 
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SDN platform, announced their implementation on SDNi [2] during its yearly summit in July 2015. SDNi 

relies on the BGP protocol to exchange information such as reachability update, topology information, 

QoS information and Network events. The SDNi objective was only to transfer information so that they 

could be used to build applications which require network-wide state information.  

There are few other proposals [7] [8] that follow the vertical approach. These approaches have an 

application that runs along with each SDN domain controller and handles the communication with other 

controllers. Apart from building the east-west communication protocol between SDN controllers they also 

deal with utilizing the information to build the end-to-end path between the hosts in different domains. 

In [7], the exchange of complete topology information does not take place, instead only 

virtualized/abstracted views of their network is communicated to its peer SDN domain controllers. In the 

use case of [7], Layer 3 routing between different SDN domains is achieved. [8] is another approach that 

is very similar to [7]. While [7] focuses on inter-domain communications in the same administrative 

domain, [8] aims to establish communication between different administrative domains by having a 

vendor independent communication protocol. Both the use cases of [8] are implemented on a Internet 

Service Provider environment where routes are exchanged by the SDN controllers and paths are built by 

the northbound applications. 

The authors in [9] have proposed an east-west communication method (for exchanging control 

information) that is adaptable to network conditions such as high traffic or low bandwidth, link congestion 

and even link failures. They have also demonstrated a use case of migrating hosts between different SDN 

domains which is resilient to disruptions, using the distributed control plane information. 

In [10] and [11], layer 3 routing is performed using the network-wide information obtained from routing 

exchanges among controllers. These papers are based on the proposal from [7] that leverage on its east-

west communication protocol. Authors in [10] point out the shortcomings of BGP and proposes a solution 

to achieve fine-grained inter-domain routing using SDN. Unlike BGP routing decisions here can be made 

using TCP/UDP port number, protocol number and QoS attributes apart from just the destination prefix 

and AS number. Hence a single destination could have multiple paths and thus enables great flexibility for 

routing. [11] is an extension of [10] that addresses the concern of increased flow table entries caused after 

the enablement of inter-domain communication by adopting compression techniques.  In this approach 

before a rule can make it to the switch’s flow table they go through a decision table which is a multiple 

index table built using bloom filter. The decision table prevents the redundant rules from entering and 

tries to aggregate rules which are not redundant. The extensive inter-domain SDN testbed built for [10] 
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and [11] and their results prove how SDN could be implemented in the large Internet Service Provider 

networks for exchanging enormous routing information.  

 

2.5 Summary of proposed approach 

Our work follows the vertical approach to enable inter-domain communication. We propose to have a 

central controller on top of all the SDN domain controllers. As show in the figure, each SDN based data 

centre is in a single layer 2 domain and they are connected to their neighboring data-centres/domains 

through a layer 2 link and thus extending the layer 2 connectivity. As a whole all of them belong to a single 

layer 2 domain, but each SDN domain is controlled by their respective SDN controller and they in turn are 

controlled by the central controller to enable inter-domain switching. Using a central controller might 

bring concerns about single point of failure and scalability issues, but as mentioned in [1], [5] and [2] the 

issues might only be a concern in Enterprise and Service Provider environment which have large number 

of domains. Since our emphasis is on Datacentres with the extended L2 network the number of domains 

will not be too many.  

The central controller is a light-weight application with limited functionality in contrast to an SDN domain 

controller which has various functionalities other than just L2 switching. In this entire thesis we only 

consider a topology wherein all the data centres belong to a single layer 2 network.   

 

 



  

15 
  

 

Figure 2. 3: SDN Inter-Domain Topology 

 

 

Even though all the SDN domains belong to one Layer-2 network, the SDN domain controller of a 

domain/data centre would only be aware of the devices in its domain and not the other domains. Hence 

any intra-domain communication is handled by the corresponding SDN domain controller. Our goal is to 

design a mechanism to establish the layer-2 inter-domain paths to support inter-domain communication.  
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Chapter 3 

 

Proposed Mechanism 

As mentioned in section 2.5, our approach uses a central controller to communicate with the SDN domain 

controllers to enable inter-domain data forwarding. Following are the steps performed by the central 

controller to achieve inter-domain communication 

i) Information exchange between the central controller and domain controllers 

ii) Inter-Domain Topology Discovery & Loop removal 

iii) Inter-Domain flow installation along the Shortest Path 

 

3.1 Information Exchange 

Each SDN domain controller has local information about the domain under its control. In order to achieve 

inter-domain communication, it is necessary for the central controller to communicate with the SDN 

domain controllers and acquire the local information of each domain. In our solution there is no 

requirement for any communication among the SDN domain controllers. 

The central controller which is a northbound application communicates with all the SDN domain 

controllers via their exposed API’s. Depending on the type of API that is exposed, corresponding calls can 

be made to access/modify the information stored in the domain controllers.  If for instance the exposed 

APIs are REST APIs then appropriate HTTP calls can be made. The central controller needs to know IP 

addresses of all the SDN domain controllers in order to communicate with their APIs. These IP addresses 

need to be manually configured at the central controller. Also, depending on the type of API, security 

features need to be explored to authenticate the central controller. The security issue, however, is not in 

the scope of this thesis. 
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3.2 Inter-domain Topology Discovery & Loop Removal 

In a topology involving multiple SDN domains, a switch can be an internal switch or border switch. An 

internal switch only has internal connections with hosts/servers and other switches that belong to the 

same domain. On the other hand, a border switch has at least one connection with the switch in the other 

domain. The port connecting to a switch in the other domain is referred as the External port. 

Since the domain controller does not know the inter-domain topology, it’s important that no BUM traffic 

is flooded through the external port before the setup of an inter-domain spanning tree. This is because 

any redundant inter-domain connection would lead to broadcast storms and duplication of traffic. 

 Since the devices in each domain are controlled by their respective domain controller, topology discovery 

and loop issues within a domain are not handled by the central controller Instead, it is the domain 

controller that builds the internal spanning tree for its domain. Here we defined the domain level topology 

as the abstract topology where each domain is represented by a logical switch as illustrated in figure 3.1b. 

The central controller’s first focus is to install a spanning tree over the domain-level topology. We name 

such tree as the domain-level spanning tree. Thus, the complete spanning tree is the internal spanning 

trees of all the domains connected by the domain-level spanning tree. To build the domain-level spanning 

tree, the central controller first builds the domain-level topology using the Topology building Algorithm 

to be discussed next. 

 

 

 

 

 

 Figure 3.1 b): Actual Topology Figure 3.1 a): Central Controller's abstracted view 
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3.2.1 Topology Building Algorithm 

The central controller runs the topology building algorithm to abstract the domain-level topology from 

the complete physical topology. To run the algorithm, the central controller first gathers the following 

information from the domain controllers. 

Domains = {𝐷1, 𝐷2, 𝐷3 … 𝐷𝑖} 

𝐻𝑖  = {ℎ𝑖1, ℎ𝑖2, ℎ𝑖3… ℎ𝑖𝑛} 

𝑆𝑖  = {𝑠𝑖1, 𝑠𝑖2, 𝑠𝑖3 … 𝑠𝑖𝑛} 

𝐿𝑖 = { 𝑙1𝑠𝑖𝑥↔𝑠𝑖𝑦

𝑚↔𝑝
, 𝑙2𝑠𝑖𝑥↔𝑠𝑖𝑦

𝑚↔𝑝
 … 𝑙𝑛𝑠𝑖𝑥↔𝑠𝑖𝑦

𝑚↔𝑝
} 

Where 𝐷𝑖 is the ID of domain 𝑖, 𝐻𝑖 is the set of hosts in domain 𝑖, ℎ𝑖𝑛 is the ID of host 𝑛 in domain 𝑖, 𝑆𝑖 is 

the set of switches in domain 𝑖, 𝑠𝑖𝑛 is the ID of switch 𝑛 in domain 𝑖, 𝐿𝑖 is the set of links in domain 𝑖, 

𝑙𝑛𝑠𝑖𝑥↔𝑠𝑖𝑦

𝑚↔p is the ID of link , where 𝑚 and 𝑝 are source and destination ports, and 𝑠𝑖𝑥 and 𝑠𝑖𝑦 are source and 

destination switches. Note that the ID of the switch has two parts: the domain ID and the local ID. The 

controllers identify the switch based on its ID. The pseudocode of the Topology Building Algorithm is given 

in Fig. 3.2. 
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Figure 3. 1Figure 3. 2: Algorithm – Pseudocode for building the Domain-level Topology 

 

 

Figure 3. 3 Basic Topology (4 domains) 
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Let us use an example to illustrate the algorithm. We use the topology of Figure 3.3 for this and 

subsequent examples. In Fig 3.3, we identify a switch by its ID using 4 digits in the form of DDLL, where 

DD and LL identify the domain ID and switch number, respectively. A switch with the ID of “0102”, then, 

is a switch in domain 1 whose number is 2. In Figure 3.3, switch “0102” has an external connection with 

switch “0201”. In the topology discovery phase, switch “0102” will receive a LLDP packet on port 3 sent 

by switch “0201” on port 3 (and vice versa), it forwards the LLDP packet to its domain controller and the 

controller builds the link information. The format of the information of the link ( 𝑙𝑛𝑠𝑗𝑥↔𝑠𝑗𝑦

𝑚↔p ) between 

switches “0102” and “0201” used in our implementation is displayed below. 

"link-id": "openflow:0102:3", 

            "source": { 

              "source-tp": "openflow:0102:3", 

              "source-node": "openflow:0102" 

            }, 

            "destination": { 

              "dest-node": "openflow:0201", 

              "dest-tp": "openflow:0201:3" 

            } 

 

Based on the above information from the domain controller, the central controller can identify an external 

link that connect domain 1 and 2.  

The central controller then builds a graph G whereamn
 is a set that contains border switch and port IDs 

in domain m that are connected to domain n. Essentially, the information of the link connecting domains 

n and m is split into amn
and anm

. 
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Continuing our example, we use the information of the link connecting domains 1 and 2 to derive a12

and a21
. The content of a12

consists of the border switch and its external port in domain 1; similarly, the 

content of a21
 consists of the border switch and its external port in domain 2: 

a12
= {openflow:0102:3} where 01 is the domain ID, 02 is the switch number and 3 is port number 

a21
= {openflow:0201:3} where 02 is the domain ID, 01 is the switch number and 3 is port number 

If there is no external connection between the domains m and n, amn
 and anm

 will be null. 

After building the domain-level topology the central controller runs the loop removal algorithm and then 

overlay the tree by installing flows on the border switches based on the tree information.  

 

3.2.2 Loop Removal Algorithm 

Graph G is the output of domain-level topology building algorithm and the input to the method 

Minimum_Spanning_Tree. The method Minimum_Spanning_Tree implements the spanning tree 

algorithm and returns the border switches and port IDs through which BUM traffic should not be 

forwarded. 

 

Figure 3. 4: Algorithm – Pseudocode for Loop Removal 
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Once the spanning tree is determined, the FlowInstall_Block (switch ID, port number) method takes switch 

ID and port number as arguments and installs a flow in the switch’s flow table to block any inbound BUM 

traffic on that port. Continuing our previous example, if the algorithm determines that the external link 

between switches “0102” and “0201” should not be a part of the domain-level spanning tree, flows are 

installed to block any data traffic on port 3 of switch 0102 and port 3 of switch 0201. The installation of 

flows is again done using the RESTful API by sending HTTP PUT requests to the associated SDN domain 

controllers. 

 

3.3 Inter-Domain flow installation along the Shortest Path 

From the previous section we know that the central controller constructs the domain-level topology based 

on the information it received from all the SDN domain controllers then builds the domain-level spanning 

tree and blocks the ports that are not part of the tree 

Whenever a host from one domain sends an ARP request broadcast to begin communication with another 

host in a remote domain, the ARP request broadcast travels across the local spanning-tree path built by 

the domain controller. Once the broadcast reaches the border switches, the decision to forward to other 

domain is based on the domain-level spanning tree installed by our central controller in the border 

switches. Thus the ARP request broadcast would flood over the complete spanning tree (Local spanning 

tree + the domain-level spanning tree). During this entire process whenever an ARP packet arrives at an 

OpenFlow switch, apart from forwarding the packet along the spanning tree path, the packet is also 

forwarded to their respective domain controller. Since ARP request is a broadcast packet and the domain 

controller knows that it has already constructed a spanning tree, the domain controller takes no action 

when the packet arrives. 

 When the ARP reply unicast is sent by the destination, it reaches the OpenFlow switch and the switch 

again forwards the packet to their respective domain controller. Now, unlike the ARP request broadcast 

packet whose destination address would have been a L2 broadcast address, the ARP reply packet has a 

reachable L2 address in its destination address field. Since there is information on both the source and 

destination, building an optimal (shortest) path between them is possible. Each domain controller will 

build a shortest path from the ingress switch to the egress switch within its domain. The ingress switch is 

the switch the controller receives the packet. If the domain is not the destination domain, the egress 

switch will be a border switch. The central controller, which is aware of the domain-level topology, will 
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compute the domain-level shortest path and provide the IDs of the border switch and the external port 

to the domain controller. 

We propose two approaches here to achieve inter-domain communication and ensure that optimal paths 

are taken. 

 

 

3.3.1 First Approach 

Figure 3.6 gives the flow chart of the first approach. In this approach we propose to install a local agent 

at each domain controller. This approach requires some modifications to be made in the domain 

controller to make it compatible with the client application. Depending on the vendor of the domain 

controller the changes that need to be made might vary, but these changes should be very minimal.  

In this approach the central controller collects the end-host information of each domain from the domain 

controllers through their exposed APIs. It then uses the Dijkstra’s shortest-path algorithm to determine 

the inter-domain shortest path to reach each domain. Based on that, it computes a databases for 

respective domains. Each entity of the database (table) of a domain contains the MAC address of a host 

and the corresponding Domain IDs. It also contains the border switch (with respect to the domain) that 

should be used based on the inter-domain shortest path to reach the host. It then populates the database 

to the agents of respective domains. The Central Controller registers with all the domain controllers for 

API change notification, so that whenever a domain controller discovers a new host it will notify the 

central controller. The central controller in turn would update the databases of the agents and thus 

ensuring that the databases stay up to date. 

We will use an example to illustrate the concept. Figure 3.5 shows a four-domain topology. Let us 

concentrate on domain 3. The Table 3.1 shows the local agent database of domain 3. The table is 

populated by the central controller. Based on the domain-level topology, the shortest paths for domain 3 

to reach domains 1 and 4 are through switches 31 and 33, respectively. There are two shortest paths from 

domain 1 to domain 2, through switches 31 and 33. Since hosts A, B and C are in domain 1. The central 

controller will push the entries associated with hosts A, B and C to the database of the agent in domain 3. 

Each of these entries points to switch 31 as the egress switch and port 4 as the external port. The other 

entries in the table are derived in the similar fashion. Since domain 2 can be reached from domain 3 via 
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domain 1 and domain 4 (two different shortest paths), the entries associated with domain 2 have two 

options for egress switch. With this information load balancing could be easily achieved. Note that we can 

introduce additional attributes such as load of the links and reliability to the table. Thus, the proposed 

method is readily support more sophisticated forwarding mechanism. 

Modifications should be made in the domain controllers such that, whenever they receive an ARP reply 

unicast and if they cannot locate the destination Layer 2 address in their local domain, they should contact 

the agent to get the inter-domain forwarding information. Now the agent would refer its database and 

fetch the egress switch and the external port information through which the destination could be reached 

based on the inter-domain shortest path. After receiving the information from the agent, the domain 

controller will call the shortest path flow installation algorithm to determine the shortest path between 

the ingress and egress switches within the domain and then install bidirectional flows on the switches 

according to the shortest path. 

Note that when the ARP reply packet reach the transit domain, both the ingress and egress switches used 

to compute the intra-domain shortest path are the border switches of the transit domain. Also note that 

when the ARP reply packet reach the destination domain, the corresponding controller does not need to 

contact its agent for it knows the location of the destination host, thus the destination switch. 

Consequently, the controller just needs to build the intra-domain shortest path from the border switch to 

the destination switch. 



  

25 
  

 

Figure 3. 5: Basic Topology (4 domains) 

 

 

MAC Address Domain ID Exit Port 

MAC - A 1 openflow:31:4 

MAC - B 1 openflow:31:4 

MAC - C 1 openflow:31:4 

MAC - D 2 openflow:31:4 

openflow:33:4 

MAC - E 2 openflow:31:4 

openflow:33:4 

MAC - F 2 openflow:31:4 

openflow:33:4 

MAC - F 4 openflow:33:4 

MAC - K 4 openflow:33:4 

MAC - L 4 openflow:33:4 

Table 3. 1: Domain 3 Agent’s Database 



  

26 
  

 

Figure 3. 6: Work Flow of First Approach 
Figure 3. 6: Work Flow of Approach 1 Figure 3. 6: Work Flow for Approach 1 
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3.3.1.1 Shortest-Path Flow Installation Algorithm 

Each domain controller runs the Shortest-Path Flow installation algorithm to install the intra-domain 

shortest path inside the domain. The Pseudo code of the algorithm is shown in Fig 3.7. Let SRC_MAC and 

DST_MAC denote Source MAC address and Destination MAC address respectively. Let INGRESS_NODE 

and I_PORT be the switch and port through which the SRC_MAC could be reached. Similarly, let 

EGRESS_NODE and E_PORT be the switch and port through which DST_MAC could be reached.  The 

INGRESS_NODE and I_PORT information are derived when the ARP reply packet when it is received by the 

domain controller (The ARP reply packet arrived on I_PORT of INGRESS_NODE). The EGRESS_NODE and 

E_PORT information is retrieved by the domain controller from its local agent if the domain is not the 

destination domain. By running the shortest path algorithm, the domain controller derives a set, which 

contains a set of links that form the shortest path. 

𝑃𝑎𝑡ℎ = { 𝑙1𝑠𝑖𝑥↔𝑠𝑖𝑦

𝑚↔𝑝
, 𝑙2𝑠𝑖𝑥↔𝑠𝑖𝑦

𝑚↔𝑝
 … 𝑙𝑛𝑠𝑖𝑥↔𝑠𝑖𝑦

𝑚↔𝑝
} 

where 𝑙𝑛𝑠𝑖𝑥↔𝑠𝑖𝑦

𝑚↔p is the link in domain i , 𝑚 and 𝑝 are source and destination ports, and 𝑠𝑖𝑥 and 𝑠𝑖𝑦 are source 

and destination switches.  

Once the shortest path is derived, the algorithm will install the flow on every switch along the path as 

described in 𝑃𝑎𝑡ℎ. 
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Figure 3. 7: Pseudocode for Flow Installation along the Shortest Path 
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3.3.2 Second Approach 

In the second approach, we propose to update the database of the SDN domain controller directly using 

the APIs without the agent. Similar to the previous approach the Central controller fetches the host 

information from all the SDN domain controllers. Then, it computes the inter-domain shortest path tree 

for a given source and destination. After the computation of the shortest-path, the central controller 

updates the local databases (host tracker database) of all the SDN domain controllers with the host 

information of other domains.  

In order to clarify the procedure further, we need to introduce the structure of the local database of the 

domain controller. Essentially, each entry of the local database consists of the MAC address of the host, 

the ID of the switch it is attached to and the associated switch port ID. For a single domain, all the hosts 

are internal hosts, that is, the hosts are attached to the switches that belong to the domain. Usually, the 

information in the database is derived by the domain controller. Our second approach uses the same 

database but allows the central controller to push the entries associated with the MAC addresses of the 

external hosts into the database. The IDs of switches and ports in these entries, however, will be the IDs 

of the corresponding border switches and external ports. In this way, the domain controller will treat the 

external hosts as internal hosts and build the intra-domain shortest path using the same procedure of 

building the shortest path between two internal hosts. 

The following example demonstrates the approach. Referring to the network in Fig 3.8 and focusing on 

Domain 3. The controller of domain 3 will derive the local database of internal hosts as shown in Table 

3.2. The central controller, in turn, will push the entries of external hosts to this database as shown in 

Table 3.3. With the extra information, the domain controller is capable of setting up the shortest path to 

the external host across its domain. For example, if host H sends a packet to host A, the domain controller 

will think that host A is attached to switch 31 on port 4. Consequently, it will setup a shortest path from 

switch 32, port 3 to switch 31, port 4. This setup will lead the packets from host H to host A to exit on port 

4 of switch 31 to reach domain 1. Once they reach domain 1, they follow the shortest path installed by 

the domain controller of domain 1 to reach host A. 
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Figure 3. 8 : Basic Topology (4 domains) 

 

 

MAC Address Port 

MAC – G openflow:31:3 

MAC – H openflow:32:3 

MAC – I  openflow:33:3 

 

 

 

Table 3. 3: Domain 2’s Controller Database (After 

Central controller’s update) 

MAC Address Port 

MAC – G openflow:31:3 

MAC – H openflow:32:3 

MAC - I openflow:33:3 

MAC – A openflow:31:4 

MAC – B openflow:31:4 

MAC – C openflow:31:4 

MAC - D openflow:31:4 

MAC – E openflow:31:4 

MAC - F openflow:31:4 

MAC – J openflow:33:4 

MAC – K openflow:33:4 

MAC – L  openflow:33:4 

Table 3. 2: Domain 2’s Controller Database 
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3.3.3 Comparison between the approaches 

As mentioned before the second approach does not require any modification in the SDN controller 

application. Hence it is easily deployable when compared to the first approach which requires 

modification on the SDN controller application. In approach two, however not all inter-domain paths could 

be utilized i.e. if multiple paths exist to reach an external destination host, only one of them could be 

used, meaning load balancing is not possible. The central controller in this approach proactively updates 

the local database of the domain controllers. In approach one, the SDN domain controller reactively 

reaches our agent when it cannot find the destination address in its domain. The decision on path 

selection is made by the agent, based on the information it receives from the central controller. Since the 

decision making process is influenced by the central controller which is aware of the overall inter-domain 

topology, it is possible to achieve traffic-driven load balancing with this approach. Apart from shortest 

path and load balancing, Approach 1 is also more flexible and open for further enhancement. Because of 

these advantages of approach 1 over approach 2, we will implement approach 1 only and test our design 

in the OpenDayLight (ODL) SDN platform. 
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Chapter 4 

 

Implementation 

 

We will implement approach 1 using the OpenDayLight Platform. To test the implementation, we use 

Mininet to emulate a Layer 2 network with inter-domain topology. 

4.1 System Environment 

Mininet 

Mininet is a software application used to build custom realistic network topologies. It runs on linux 

operating system and has been popularly used to simulate SDN networks and perform various tests in 

them. The network topology mostly comprises of Open vswitches, links and virtual hosts. Custom and very 

complicated networks could easily be built by using the python code. Open vswitch is an open source 

virtual switch that is used extensively in network virtualization under production environment. 

 

Opendaylight  

Opendaylight is one of largest open source Software Defined Networking projects. This was founded by 

huge consortium in the networking industry such as Cisco, Juniper, Brocade, Arista, Ericsson, HP, 

Microsoft, Red Hat etc. The controller runs in a JVM and hence can run on any operating system that 

supports Java. As show in the figure below OpenFlow is one among the many Southbound protocols that 

it supports. The SAL layer provides abstraction to the modules north of it. The various in-built modules 

utilizing the services provided by the SAL offer various network services. The controller exposes 

Northbound RESTful APIs to enable developer to write applications on top. It provides HTTP basic 

authentication to access them. 
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Figure 4. 1: OpenDaylight Architecture 

http://sdnhub.org/wp-content/uploads/2013/11/opendaylight_helium.jpg 

 

4.2 System Design 

The OpenDaylight controller has a number of built-in modules that support various basic network 

functions and services as show in figure 4.1. L2Switch is a one of the built-in modules within the 

OpenDaylight Controller. The module implements various layer 2 functionalities. Our implementation is 

based on this module. Following are the various components within the L2Switch module and their 

functions in brief.  

 Packet Handler: This component is used to classify and decode the packets based on the 

EtherType. They possess decoders for Ethernet, ARP, IPv4 and IPv6 

 

http://sdnhub.org/wp-content/uploads/2013/11/opendaylight_helium.jpg
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 Loop Remover: This component constructs a loop free graph using Spanning Tree protocol and 

removes network loops in a layer 2 domain. They move the status of all the switch ports either to 

“Forwarding” state or “Discarding” state (based on STP). They enable default flows on all the 

switches to forward all the LLDP packets to the SDN controller. They also listen to topology change 

events to update any changes in its loop free graph.  

 

 ARP Handler: It installs a flow on all the switches to forward any ARP packets it receive to the 

controller. It processes the incoming ARP packets and forward them to ports that are in 

“Forwarding” state. 

 

 Address Tracker: Subscribes for ARP, IPv4 and IPv6 packet notifications. Once they receive any of 

those packets, they update the addresses in their inventory. 

 

 Host Tracker: Similar to address tracker, here the host attachment to the switch is updated to the 

topology 

 

 L2Switch-Main:  It installs flows based of MAC addresses in the switches dynamically when a 

packet arrives to the controller. Reactive Flow Writer a sub-components within L2Switch-main 

module subscribes to the Packet Handler module (which decodes ARP packets from the      

Ethernet packet) for receiving ARP packets. Once it receives the ARP packet, destination MAC 

address, Source MAC address and Ingress switch details are extracted from it. Following this the 

packet is sent to Inventory Reader module which finds out the location of the address within its 

domain. If the source and destination are attached to the same switch, a bidirectional flow is 

installed. 

 

To achieve our goal, below changes were made to the sub-components of L2Switch-Main: 

 

 Inventory Reader: We have modified the inventory reader such that if it cannot locate the  

Destination MAC address within the domain, it contacts the local agent application to fetch the 

location information (egress switch and port). Once the information is received, it is passed on to 

the Reactive Flow writer. The Reactive Flow writer or none of the other modules know that the 
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address is remotely located. This is because the agent returns the border switch ID which is local 

to its own domain. 

 

 

 Reactive Flow Writer: As mentioned before bidirectional flows are installed only when both the 

source and destination address are located in the same switch. We have modified the code here 

such that irrespective of where the destination is located corresponding bi-directional flows 

would be installed in the switches along the shortest path between the source and destination. 

We have implemented our Flow Installation along the Shortest Path algorithm in this module to 

achieve this. If the destination host is in the remote domain, then the flows will be installed only 

up to the border switch. Subsequently when the packet reaches the next domain, it will be 

handled by the corresponding domain controller and local agent. 

 

Central Controller & Agents 

The central controller application is a software program built using Python language. We have 

implemented this as two modules: 1) Loop Remover module 2) Shortest Path Computation module. Both 

of them use the requests HTTP libraries to make requests to OpenDayLight’s RESTful APIs. They use HTTP 

GET request retrieves information from all the domain controllers through their respective RESTful API’s. 

The response data is in JSON format which in turn is parsed to extract the required information (Nodes, 

Links and Hosts information).  With the acquired information, the Loop Remover module implements the 

topology building algorithm and loop removal algorithm. It uses HTTP PUT requests to push the flows 

proactively via the controller, into the border switches, to build the spanning tree. The Shortest Path 

computation module implements Dijkstra’s shortest path algorithm to compute the shortest path 

between a given pair of domains.  

The agent is also written in Python language. It is invoked by its domain controller and is provided with 

the external host entry that the domain controller could not find in its own domain. The Agent connects 

to the central controller via SSH, invokes the controller application and provides it with the MAC 

information. The central controller then locates the entry associated with the MAC information, calculates 

the inter-domain level shortest path and returns the corresponding Border switches and Port IDs to the 

agent, which in turn returns the information to the domain controller. 
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4.3 Testbed Setup 

The figure 4.1 depicts our testbed’s set up. Following are the components and functionalities of each of 

the VM 

- VM1 runs the Central Controller Application 

- VMs 5, 6 and 7 run mininet application in each of them, simulating three different networks 

comprising open vswitches and virtual hosts 

- VMs 2, 3 and 4 run Opendaylight and Agent application in each of them. They control the networks 

running in VMs 5, 6 and 7 respectively 

VMs 1, 2, 3 and 4 have a single network adapter. All these virtual adapters are attached to a single “internal 

network” named Management network. The central controller and Opendaylight controllers 

communicate with each other through this network. VMs 5, 6 and 7 also have one of its adapters (eth2) 

attached to the Management network through which they communicate with their respective domain’s 

Opendaylight controller. 

VMs 5, 6 and 7 also have two additional adapters (eth0 and eth1) that are used to enable a layer 2 

connection among themselves. These adapters are attached to LAN segments 1,2 or 3. To simulate a layer 

2 point-to-point connection between a pair of domains, these adapters are attached to one of the open 

vswitches in their respective mininet topologies running on VMs 5, 6 and 7 as show in the Fig 4.2.  
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Figure 4. 2: Testbed Setup 

To simulate a larger number of domains, the VM-‘s’ running mininet and Opendaylight just have to be 

replicated based on the number of domains that are required. In addition, we create a suitable number 

of point-to-point links for extra connections. 
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4.4 Experimental results and Analysis 

Below figure shows the network topology that was simulated in our testbed. Since we had only 3 domains 

and each of them had only 3 devices we assumed only one digit each for representing the domain ID and 

the switch number. In the figure, switch ID “openflow:12”, the digit “1” represents domain ID and “2” 

represents switch number. 

 

Figure 4. 3: Network Topology simulated in Testbed 

 

Once the above devices got connected to their respective domain controllers (OpenDaylight), the 

controllers installed internal spanning trees to prevent loops within the domains. The flow tables of the 

border switches are shown in the tables 4.1a, 4.1b and 4.1c. 
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In the flow table of openflow:22 (Table 4.1b), there are no flows related to port 2 which is connected to 

port 1 of openflow:23. This is because the link between them is not a part of the internal spanning tree.  

As highlighted in all tables above, flows are installed in all of them to forward traffic through the external 

ports 4 and 5 which are part of the inter-domain connectivity. Since none of them are blocked they form 

a loop. This is because their domain controllers are not aware of the domain level topology.  

When we tried initiating a ping from host connected in openflow:13 (IP address 10.0.0.13/24) to host 

connected in openflow:21 (IP address 10.0.0.21/24) we found that the host received duplicate packets as 

expected. 

 

Table 4.1 a): Flow table - openflow:22 

 

Table 4.1 b): Flow table - openflow:22 

 

Table 4.1 c): Flow table - openflow:22 

 

Table 4.1 d): Flow table - openflow:22 

Table 4.1 e): Flow table - openflow:13 

 

Table 4.1 f): Flow table - openflow:13 

 

Table 4.1 g): Flow table - openflow:13 

 

Table 4.1 h): Flow table - openflow:13 

Table 4.1 i): Flow table - openflow:31 



  

40 
  

 

Figure 4. 4: Ping Results after initial setup 

 

Below were the entries in the flow tables of the border switches after our central controller application’s 

loop remover module was started. 

 

 Table 4.2 e) Flow Table - openflow:13 

 

Table 4.2 f) Flow Table - openflow:13 

 

Table 4.2 g) Flow Table - openflow:13 

 

Table 4.2 h) Flow Table - openflow:13 

Table 4.2 a) Flow Table - openflow:22 

 

Table 4.2 b) Flow Table - openflow:22 

 

Table 4.2 c) Flow Table - openflow:22 

 

Table 4.2 d) Flow Table - openflow:22 
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The flow tables in openflow:22 (Table 4.2a) and openflow:31 (Table 4.2c) each had an additional entry to 

drop traffic on external port 5 after the loop removal module at the central controller is enabled. This is 

because, the link between domain 3 (openflow:31) and domain 2 (openflow:22) are not a part of the 

domain-level spanning tree. After a loop free topology was achieved, ping between the hosts were tested 

again and there were no duplication of packets this time. The ping results are show in the Figure 4.5 

 

 

 

Figure 4. 5: Ping Results after starting Loop Remover module 

 

 

Table 4.2 i) Flow Table - openflow:31 
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Thus the inter-domain communication had been enabled. But the communication took place via the 

spanning tree path which may not be optimal in all the cases. Fig 4.6 depicts the complete spanning tree 

topology (internal spanning tree + domain level spanning tree) built by the domain controllers and the 

central controller. The dotted blue lines represent the links blocked by domain controllers and the black 

dotted lines represent the link blocked by central controller. The arrows depict the sub-optimal path taken 

when host A (connected to openflow:32) communicated with host B (connected to openflow:23). 

 

 

Figure 4. 6 Packet flow between host A and host B (after starting loop remover module) 

 

 

After starting the central controller’s shortest path computation module and their agents, we initiated 

ping traffic towards host B from host A.  Bi-directional flows were dynamically installed in the switches 

along the shortest path. The following tables show the flow table entries of the switches involved in the 

shortest path. 
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In the highlighted portion of Table 4.3a, we can see that any packet from host A (address: 

a6:ae:f9:1d:09:9b) to host B (address: 92:a4:d8:fe:6b:78) will be sent out on port 3 of switch 

“openflow32”. When the packet arrives at switch “openflow31”, it will be sent out on port 5 (Table 4.3b). 

Thus the flow follows the shortest path as shown in Fig. 4.8. 

 

 

 

 

Table 4.3 a): Flow table – openflow:22 Table 4.3 d) Flow table – openflow:23 

Table 4.3 b): Flow table – openflow:31 

Table 4.3 c): Flow table – openflow:32 



  

44 
  

The ping result is show in Fig 4.7 shows, the time taken to receive ICMP replies packets had then decreased 

by 3 times when compared to sub-optimal path results show in figure 4.5. 

 

 

Figure 4. 7 Ping Results (After starting the agents and shortest path computation module) 

 

 

 

Figure 4. 8 Packet flow between host A and host B (after starting Shortest Path computation module) 
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4.5 Load balancing implementation and results 

To demonstrate the flexibility and openness of our proposed approach, we add a simple load balancing 

mechanism in our implementation. The central controller runs a load balancing algorithm to select one of 

the equal-cost paths, thus one of the border switches. In our implementation, we have modified the 

Dijkstra’s Algorithm to return all equal-cost paths.  The equal-cost paths are then numbered consecutively 

starting with 1. If the number of equal-cost paths is M, then the path is chosen based on the below formula 

Path number = mod (Hash (source MAC address + destination MAC address), M) + 1 

In other words, we use a hash of the source and destination MAC addresses to select one of the equal-

cost paths. Other more sophisticated load balancing algorithms can be used in the future. 

Since our test-bed topology had only 3 domains, there was only one shortest path (or least-cost path) 

between any two domains if the costs of all links are equal. To test our load-balancing implementation, 

we create two equal-cost paths between domains 1 and 3 by assigning the cost of 2 to the link 

(bidirectional) connecting domain 1 and 3 and the cost of 1 to the links connecting domains 1 and 2 and 

domains 2 and 3 (Fig 4.9). Thus, a flow between hosts in domains 1 and 3 can choose either the path 

directly connecting domains 1 and 3 or the path through domain 2. 
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Figure 4. 9 Network Topology simulated in Testbed 

 

Figures 4.10a and 4.10b shows path taken during communication between host A and C, and host A and 

D once the load balancer module was enabled.  

 

2 

1 

1 

Link Costs 

Figure 4.10 a) Packet flow between host A and D Figure 4.10 b) Packet flow between host A and C 
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The following tables show the flow table entries of the switches involved in the communication path 

between A to C and A to D. 

 

 

 

 

 

Let’s concentrate on the flow table of switch openflow:31 (Table 4.4b), which is the border switch of 

domain 3. For the flow from host A to host C (address: 96:7d:74:be:9e:40), the output port is 4, which 

connects to domain 1 directly. On the other hand, for the flow from host A to host D (address: 

Table 4.4 d) Flow table – openflow:22 Table 4.4 c) Flow table – openflow:11 

Table 4.4 a) Flow table – openflow:32 

Table 4.4 f) Flow table openflow:13 
Table 4.4 e) Flow table openflow:12 

Table 4.4 b) Flow table – openflow:31 
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c6:a9:af:12:1e:73), the output port is 5, which connects to domain 2. The results show that both equal-

cost paths are utilized for the inter-domain communications between domains 1 and 3. 

 

4.6 Concluding Remarks 

In this chapter, we show the results of the implementation of our proposed approach for SDN inter-

domain switching. The results demonstrate that the implementation is successful and the proposed 

approach is a viable method for inter-domain switching. 
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Chapter 5 

  

Conclusion and Future Work 

In this thesis we proposed and approach to achieve layer 2 communication between SDN domains. We 

achieved inter-domain switching by taking the vertical approach. In our proposal there is a central 

controller, logically on top of all the domain controllers. The central controller communicates with the 

domain controllers (through the RESTFul API interface) and acquires all the information required to enable 

inter-domain communication.  

Using the acquired information, the central controller constructs an abstract domain-level topology and 

computes spanning tree for layer 2 loop removal. Based on the spanning tree results it blocks the ports 

which are not a part of the tree. Following the topology discovery and loop removal, we deal with two 

approaches to achieve inter-domain communication via the shortest path. 

 The first approach requires few changes to be made in the domain controller. Apart from this, agents 

(which communicate with central controller) need to be installed in each of the domain controllers. Each 

agent maintains a local database which is used for inter-domain traffic forwarding. This database can be 

easily expanded with multiple fields to perform more advanced traffic engineering. The second approach 

does not require any changes to be made in the domain controller. The central controller directly updates 

the local database of the domain controller, but this approach is proactive and not traffic driven.  

Our implementation was based on the first approach. We validated our algorithms by implementing them 

in a test environment that comprised of 3 domains connected in a full mesh topology and controlled by 

ODL controllers.  

Following are the some of the shortcomings that were noticed and suggestions on how they can be 

improved 

 In our approach, since we used the first two digits of the switch ID to represent the domain ID, all 

the switches in a domain must be carefully named (manually). In future a mechanism could be 
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devised in the central controller to distinguish the domains in an efficient way which is 

independent of any configuration in the switches or the domain controllers.  

 The central controller’s focus is only on achieving shortest path in the abstracted domain-level 

topology, the complete path i.e the intra-domain shortest path + inter-domain shortest path may 

not always be the overall shortest path. To overcome this, the central controller can construct the 

complete topology and calculate the best path based on that. 
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