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ABSTRACT

QUALITY CONTROL METHODOLOGIES FOR 3D GEOMETRIC PRIMITIVES 

DERIVED FROM LIDAR DATA. Artur Edward Fidera, M.A.Sc., Civil Engineering.

Ryerson University, Toronto, 2004.

The purpose of this study is to develop algorithms with a computational ability to reliably 

establish with precision and accuracy the critical parameters of a solid object in space. 

Utilizing a least-squares adjustment method and laser scanned data, a three-dimensional 

computer assisted drawing (3D CAD) model is created based on algorithms for reverse 

engineering of the geometric primitives. The derived 3D CAD model of an object (e.g., 

machinery component) may be then used in the redesign, retrofitting, and updating of 

technical drawings. This thesis presents a unique approach to point cloud data modeling 

and visualization as well as numerical analysis based on stability criteria. Several 

statistical techniques from the literature are reviewed and implemented dealing with 

numerical methods using the stability o f matrices as a criterion. The thesis discusses 

topics ranging from basic statistical analysis to advanced topics such as Singular Value 

Decomposition (SVD) and condition numbers. Various theories and techniques of 

obtaining stability criteria are described and analyzed. Tests of point cloud data revealed 

that combining standard numerical analysis with Condition Numbers allows for 

quantifying the goodness-of-fit of the results and for predicting the behaviour of the 

algorithms.
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1.0 INTRODUCTION

1.1 Overview

While engineering traditionary involves the design and construction of a product, 

engineers are occasionally faced with the problem of redesigning existing structures. 

Reverse engineering is the process of creating a (digital) design model from an existing 

product. For example, the concept o f reverse engineering may be applied in the 

redesigning o f chemical plants, oil refineries, sewage plants, and nuclear plants. 

Furthermore, reverse engineering may also be used to collect data on existing structures 

including road networks and urban areas. The process of reverse engineering includes 

the development o f three-dimensional (3D) models, which allows for a realistic 

representation of original structures. Although reverse engineering is a useful method, it 

may lack in robustness and reliability. The data used in the process o f reverse 

engineering are often poorly defined and incomplete, which compromises the quality and 

integrity o f the model. Consequently, there is a need for more efficient metrology tools 

that would address these issues. This thesis presents a mathematical method, which aims 

to increase the robustness and reliability o f the developed model. More specifically, the 

purpose o f this study is to calculate the critical parameters o f a geometric primitive (i.e., a 

cylinder or a sphere) based on partial and poorly distributed data in order to describe the 

spatial orientation and radius o f such forms.

When establishing the critical parameters o f a solid object in space, the robustness 

and convergence o f the solid model are compromised by many factors. An uneven 

distribution of the data is one of the most significant factors that may jeopardize the 

accuracy o f the model. In a real life situation. Light Detection and Ranging (LIDAR)

1
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systems are able to sense only a portion o f the surface o f the solid. Thus, the estimated 

geometric parameters are not always close to *he actual values of the desired parameters. 

Furthemiore, the processes o f shape recognition are not only lengthy but they produce a 

final product that is difficult to analyze. As such, the derived product is usually not the 

most precise and accurate model of reality. Human error and an overwhelming amount 

o f data from laser scanners further compromise the accuracy o f the model. This study 

offers an alternative approach to the management, utilization, modeling, and visualization 

o f redundant and voluminous data sets through the use o f least-squares adjustment 

process and automatic solid recognition with reliable numerical analysis related to the 

calculated parameters.

1.2 Objectives

In this study, algorithms are developed with a computational ability to reliably 

establish the precision and accuracy o f the critical parameters of a solid object in space. 

Historically, least-squares fitting of primitives other than lines and planes has not been 

studied in detail. The most commonly studied geometric primitives are ellipsoids, 

cylinders, spheres, cones, cuboids, and tori (Kwon et al., 2002; Lukacs et al., 1997; 

Watson, 2000; Werghi et al., 2000; Werghi et al., 2000). In this thesis, the fitting of a 

cylinder is presented and studied. Other common forms such as sphere can be viewed as 

trivial cases o f  a cylinder.

Applying a least-squares adjustment method to terrestrial lidar data, a 3D CAD 

model o f a cylinder is created based on algorithms for reverse engineering of the 

primitives. The created 3D CAD model may be then used in the redesign, retrofitting.
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and updating of technical drawings. In comparison to other methods such as 

photogrammetry, the use of LIDAR technology allows for efficient data collection. 

Although the precision and accuracy of LIDAR is inferior to that of photogrammetry, the 

number o f collected points and the rate o f scanning using LIDAR are significantly better 

than in other methods. This thesis presents a unique approach to point cloud data 

modeling and visualization as well as numerical analysis based on stability criteria. 

Different methods of calculating matrix norms are reviewed and implemented from the 

literature dealing with statistics using stability of the matrices as a criterion. Fundamental 

numerical analysis methods as well as advanced topics such as Singular Value 

Decomposition (SVD) and condition numbers are studied to establish the quality of the 

results. Various teclmiques o f obtaining stability criteria, theories and their background 

are described and analyzed. This study presents a detailed overview of the problem, 

reviews the major areas of interest in numerical analysis and stability criteria, and details 

some of the principal algorithms used. It also examines the practical aspects of applied 

numerical analysis in programming and some obstacles involved in the process. This 

thesis describes least-squares fitting, modeling and numerical analysis of simple three 

dimensional primitives such as lines, planes and, above all, spheres and cylinders. The 

problem can be decomposed into five logical steps: form identification, approximate 

value generation, least-squares fitting, which is described briefly, data modeling, and 

numerical analysis based on stability criteria.
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1.3 Scope of the Study

This work is an attempt to analyze least-squares adjustment algorithms usable for 

robust solid fitting in 3D. The rationale is to create a tool that utilizes an efficient and 

robust least-squares adjustment technique, which allows for the creation o f reliable 3D 

CAD models with minimal human intervention in the process. Numerical analysis and 

stability criteria are applied to ensure and enforce the calculation o f the critical 

parameters of the solid.

1.4 Thesis Organization

In Chapter 2, the least-squares adjustment o f cylinders and spheres is reviewed. 

Detailed algorithms are presented and calculation of the approximate values o f critical 

parameters (i.e., g -offset, / /  -orientation parameter in x-y plane, & -orientation 

parameter in zenith, a  -orientation parameters about nomial, and k  -curvature) is 

examined. Chapter 3 presents the theoretical background of quality control 

methodologies available for statistical analysis. In addition, Singular Value 

Decomposition and techniques for calculating condition numbers are reviewed. In 

Chapter 4, tests of critical parameters are performed with distance and coverage of the 

pipe as the changing variables. It was determined that the condition numbers and the use 

of standard deviations and correlation-coefficient matrices in a controlled environment 

permitted the analysis of the solution and the establishment o f its behaviour as changes 

were introduced into the point data cloud.
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2.0 GEOMETRIC FORM FITTING

The software presented in this paper has been developed for geometric least- 

squares fitting of primitives. In particular, methods have been developed for the fitting of 

spheres and cylinders with numerical analysis. The algorithms for cylinder and sphere 

adjustments are presented in the following sections.

While the method of least-squares fitting of lines and planes is well understood 

and documented in the photogrammetry and mathematical literature (Fausett, 1999), the 

fitting o f spheres and cylinders has not been extensively studied. Marshall et al. (2001) 

applied least-squares fitting to various second order surfaces including spheres, cylinders, 

cones, and tori. The authors used an angular parameterization of a model in order to 

describe the spatial orientation and location of the above-mentioned figures. Although 

the model was useful in fitting the primitives, it required the calculation o f the first 

approximates from the point data cloud, since the point data distribution in the cloud data 

was uneven and potentially biased.

Various techniques may be applied to the task of surface reconstruction from 3D 

range data. Figure 1 depicts the flow of some of the methods used in the process of 

converting an imaged scene into a surface model.

Model

Data Acquisition

Parameter

Physical Data

Figure 2.1 : Flow of logic.

a
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In the process of converting a scene into a surface model, data are first acquired 

from the real world using a sensing device, such as a laser seamier. The laser seamier 

acquires data, which are stored as an x, y, and z component of each point. This study 

presents a model of least-squares adjustment capable of reconstructing a figure based on 

partial point cloud data. A medium to high data set is used for this study. The physical 

object in this trial is a pipe 20nim in diameter and 200mm in length; the data exist for 

only 40% of the object and consist of approximately 29,000 points. The problem 

becomes one of extracting an estimate of the sampled surfaces from the limited range of 

data.

Given the relative lack of research in the area of least-squares adjustments in the 

field of solids, this thesis presents a robust approach to point cloud data fitting with 

advanced statistical analysis. The unique contributions of this study include methods for 

estimating first approximates of the parameters related to cylinders and advanced 

numerical analysis of the derived parameters.

Mathematical problems and calculations in engineering are plagued with 

numerous errors. In numei ical solutions of linear equations, several sources of the 

inaccuracy are encountered even when exact methods are used (Faddeev & Faddeeva, 

1963). The finite accuracy of the computer introduces truncation errors during the 

computational processes. In addition, rounding errors are present when the 

computational limits of the machine are reached. Mathematical models are merely an 

approximation attempting to model and mimic real world situations. Given that

À
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calculations are frequently plagued with observational errors and blunders, it is often 

surprising that a set of approximate values can be calculated at all.

The models often used in linear and linearized systems are vectors and matrices. 

In order to make a statement about computed solutions and errors imbedded in them, it is 

necessary to describe the relative dependency between solutions using, for example, the 

condition numbers, norms, and errors or other stability criteria.

2.1 Cylinder Fitting

The approximates of the cylinder are determined by first calculating the center 

line of rotation, which is the first and most challenging step of this process. Initially, the 

method of least squares adjustment was applied to approximate the center line of the 

cylinder. The calculation of the approximate value of the center line was attempted by 

using parallel projection of the point cloud onto x-y, x-z, and y-z planes. Following this, 

least-squares adjustments o f the line were applied. The equations o f the three lines were 

determined from the corresponding three projections. The equations o f the lines were 

transformed into equations of the planes, which are perpendicular to the corresponding 

projected planes. Thus, the intersection o f the artificially created planes was the actual 

center line of the cylinder (Anderson et al., 1988). However, this method of calculating 

the approximates was unsuccessful since the laser scanned data were unevenly distributed 

over the object of interest. Furthermore, the high correlation between the shape of the 

figure and laser position distorted the orientation of the center line in 3D space. This 

caused the approximate of the center line to be highly inaccurate, which prevented the 

final adjustments from converging.
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2.1.1 Approximate Parameter Estimation

Another attempt was made using Principal Component Analysis (PCA). This is a 

technique used to find the directions in which a cloud of data points is oriented (Jensen 

2004).

Y

Figure 2.2: Direction of stretch in data

These directions define the basic orientation of the data and are, thus, important for 

establishing orientation of parameters (e.g., of a line) in space.

PGA is utilized in statistics to extract the main relations in data of high 

dimensionality. The general method o f determining the principal components of a data 

set is by calculating the eigenvectors o f the data correlation matrix. These vectors 

indicate the directions in which the data cloud is stretched the most. The projections of 

the data along the eigenvectors are the principal components. The corresponding 

eigenvalues give an indication of the amount of information the respective principal 

components represent. Principal components corresponding to large eigenvalues 

represent a great amount of information in the data set and, thus, are very informative
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with regards to the relations between the data points. A 3-D case of PCA was employed 

to determine the first approximation of the line in 3D space.

PCA is a powerful method of analyzing correlated multidimensional data (Byne et 

ah, 1980). The data from the laser scanner has a certain degree of redundancy (Fung & 

LeDrew, 1987). However, the method adopted in this project was a special case of A 

Zero Correlation, Rational Transform form of PCA. The principal components are based 

on the eigenvectors o f the covariance the correlation matrix. The variance-covariance 

matrix Q . can be defined as:

1 ^

;=i

where X is a given set of n-dimensional variables with the mean vector given as M . N is

the number of points used. Each component and N is the number of a point. Each

component Y; is denoted by

Yi=aiiXi+a!iX:+a3iX.i+...-faN.Xi.=ai^X (2.2)

ai^ is the transpose of the normalized eigenvectors of the matrix C%. The complete 

transformation can be shown as

W=A^*1 (2.3)
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where A is the matrix o f eigenvectors which gives the covariance matrix Q  of W by

(2.4)

The Cy matrix will be a diagonal matrix, in which the elements are eigenvalues of C%

Cy -

A 0 ... 0
0 4  •.. 0
0 0 ... 0
0 0 . 4v

(2.5)

where > Xg >Às >

The method of principal components transformation was utilized to successfully 

approximate the center line of the cylinder in 3D space. PCA properties were used to 

establish the orientation of the scanned cylinder, which enabled the definition of the 

directions in which the cloud of data points is stretched. The direction of the axis of the 

cylinder was calculated by normalizing the direction vector of the line. This was based 

on the center line previously determined from PCA.

r = T\+tin where tin = {at,bt,ci) (2.6)

The r represents the vector equation of the line through the point with position vector , 

in the direction m where tE:R.

10
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and the parametric form o f the line;

X, = JCo + <3t (2.7)

J'l =  y a  +  b t  (2.8)

z, =Z(,+c/ (2.9)

and transforming the line into direction vector â , where 5 : is a direction vector of a 

approximated center line of the point cloud data

5 = m = {a,b,c) and |d |=1 (2.10)

The next step in calculating the approximates of the parameters for the cylinder involves

finding the normal vector to the line going through the origin of the coordinate system.

n = and | n j=l (2.11)

and parametrized vector is;

« = (cos / /  * sin sin * sin cos ẑ ) (2.12)

( / /  -orientation parameter in x-y plane, z? -orientation parameter in zenith) 

where Cartesian components of the vector are:

II
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[a,b,cYP.Pj
{a,b,cY[a,b,c]= Xq — X, — —/" V. r 1  ̂ T * ̂  (2.13)

It is important to note that the dot product o f vector a and vector n must be equal to zero 

to satisfy orthonormality continuous of these vectors.

(5*«) = 0 (2.16)

This method is employed to verify the fact that vector n is normal to vector 5 and 

includes in its set of points the origin of the coordinate system. Moreover, n is also a 

unit vector calculated along the shortest distance between direction vector â and the 

origin. Therefore, the next calculated parameter is the shortest distance between the 

origin and the line.

Pr J I Q ^  (2.17)
m

12
iW
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,J = QR = ^ ( P Q ) - ~ ( P R f  (2.18)

where P is a point on the line, point Q is the origin of the coordinate system Q=(0,0,0), 

and R is the closest point on the line to the origin.

The next step involves using the approximated parameters to calculate their 

parametrized versions of approximates. The parametrization of the approximated n 

vector is accomplished by converting it from the right-handed Cartesian coordinate 

system into the polar coordinates system parametrized approximates to allow for polar 

coordinates system nonlinear least-squares adjustment.

r — ^Jx^~+~y  ̂ (2.19)

/V = tan“ ' — or / / =  IT + tan"'— (2.20)
X X

and

z? = tan"‘-  or z?= n  + tan“ ' -  (2.21)

where IT is used to resolve the angle position if  angle is located in 1̂ ', 2"'*, 3'̂ ‘’ or 

quadrant.

13
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2"'̂  quadrant quadrant

3"̂  ̂quadrant 4‘̂  quadrant
X

Figure 2.3: Resolving quadrants.

â  is the angle between n vector and the z-axis and / /  is the angle between the 

projection o f vector n onto x-y plane and the x-axis.

The process resolves two special angles / /  and z? out of the five actual parametrized 

approximates subsequently used in the adjustment process.

Taking the first derivative of n from Equation (2.12) with respect to angle u  gives us a 

n'" vector.

n^' = (— sin /z * sin z?, cos //*sinz?,0) (222)

The second derivative of a n vector from Equation (2.22) with respect to angle z? and 

then to angle produces vector :

= (— sin /y * cos ẑ , cos * cosz^, 0) ( 2 2 3 )

14
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Taking a first derivative of n from Equation (2.12) with respect to angle z? gives us a « 

vector.

n'  ̂ =(cos/z*cosz?,sin//*cosz?,—sinz?) (2.24)

The second derivative o f a n vector, from Equation (2.24) with respect to angle z? and

then to angle z? produces vector ;

=  (cos/z*sinz?,—sin/z*sinz?,—cosz?) (2.25)

The second derivative o f a ü vector from Equation (2.22) with respect to angle / /  and 

then to angle / i  produces vector n‘“‘“ ;

— (—cos/',sin //,0) (2.26)

By equating and manipulating the partial derivatives of vector n from from Equations 

(2.22 - 2.26) the vector n" is produced.

—  / /
= ( — sin/z,cos/z,0) = ■ (2.27)

smzz

15
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The next step in determining the parametrized approximates for the cylinder is to 

compute angle a  , which is the angle between vector 5 and vector 1/  .

6Ï — Cos a*n (2.28)

Next, the approximated radius o f the cylinder must be calculated. This is accomplished 

by rotating the data and aligning the approximated center line o f the data cloud along the 

x-axis.

where:

X,

y j y’i
Zj

(2.29)

Casa Sina 0 
—Sina Casa 0 

0 0 1
(2.30)

Cosû 0 —Sinâ 
0 1 0 

Sinÿ 0 Cosâ
(2.31)

/

16
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üs/^ Sin/i 0 
— ~Sin/i Cos// 0 ( 2 .3 2 )

In the next step, the average distance between each point of the data cloud and tire x-axis 

is calculated. The average distance is the average radius o f the cylinder. Then, the 

approximate radius is parametrized by its inverse parameter k (curvature):

(2.33)
k

Now, by combining the shortest distance between the origin of the coordinate system and 

the original center line of the data cloud from Equation (2.18) and subtracting the 

approximated radius Equation (2.33), the last required parametrized approximate may be 

calculated. This approximate value represents the shortest distance between the origin of 

the coordinate system and the surface o f the cylinder:

g = d — R (2.34)

Following these steps has provided the parametrized approximates required for the least- 

squares adjustment o f the cylinder. The parametrized approximates in terms of g-, / /  , z? , 

( z , and k  have been calculated using Equations (2.34), (2.20), (2.21), (2.28), and (2.33), 

respectively.

17
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2.1.2 Least-Squares Adjustment of a Cylinder

The least-squares adjustment of a right circular cylinder is completed by first 

creating a Jacobian matrix A. The derivatives of the parameterized approximates with 

respect to the distance from the symmetry axis to the surface o f the cylinder are given as 

follows:

— k*{g  — (p ' ‘n)) + l ' (2.35)

dd '— ' ■
= - — = ~ k * ( g * ( f  n") + (p* a)*(p* * cosa: + n‘“" *'&ma)) — {p • n'") (2.36)

A{i,2) = = k* ({p • a )* (p*  n)cosa — g * { p ’ n'^)) — { p ' n ^ )  (2.37)

A(i,3) = - — =  k*(^p* a ) *{ p * } /  * s m a  — n-" * cos <3") (2.38)

^ ( ' ,4  ~  ^ I' - 2 g { p  ” n) - { p *  a f  +  g~) (2.39)

where i=0 to N-1 and N is the number of points.

The p is defined as a point in 3D with coordinates read in from data point.

These are associated with a residual vector:

w(i) = - ^ * i \ p \ -  - 2 g ( p  • n ) - ( p » â Ÿ  +g^)  +  g - ( p ’ n)) (2.40)

The parametric least-squares method is used for set of equations as:

18
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dx-=(A^A)-'A^w (2.41)

where 6x is the vector o f  corrections to the approximate values.

The method of least-squares adjustment for a right circular cylinder fitting 

produced satisfactory results in all trials. This method effectively calculates the 

parametrized approximates and allows least-squares adjustments to converge successfully. 

It should be noted at this point that the sphere is the trivial form of the cylinder model.

2.2 Sphere Fitting

In order to proceed with least-squares adjustments for the sphere, the 

approximates of the center of gravity in 3D space need to be determined. In addition, the 

radius of the sphere must be computed using parameter k . Once the parameters have 

been determined, they are used to calculate the parametrized approximates. Finally, the 

process o f least-squares adjustment may be applied. It should be noted that the sphere 

problem is a trivial form of the cylinder model.

2.2.1 Calculating Approximates for Sphere

The approximates of the sphere are determined by first calculating the center of 

gravity o f the data. The approximate of the center of gravity was determined by 

calculating the average value for the x, y, and z coordinates of the point cloud data.

1
X-o v g .  ^

i=0

N~l
(2.42)
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N - \

y = - 7 ; , .J a v g (2.43)

(2.44)

Following this, the approximation of the radius is estimated based on the calculated 

distance difference between the center of gravity and each point in the point cloud data.

R
J .v-l _________________________________

=  *  2  > / f + ( y i ~  3 ’a v g  ) ■  +  ( Z /  -  ) "

;=0
(2.45)

The next step in calculating the approximates of the parameters for the sphere involves 

finding the shortest distance between the origin of coordinate system and the data cloud.

V ( x , - 0 ) “ + ( y , - 0 ) ^  +  ( z , - 0 ) - (2.46)

The n vector which is the vector connecting the origin of the coordinate system and the 

center of gravity is established by:

^  (  ̂ a v g  ’ y avg  » ^ a v g  ) (2.47)
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The next step involves using the approximated parameters to calculate their parametrized 

versions of approximates. The parametrization of the approximated n vector is 

accomplished by converting it from a right-handed Cartesian coordinate system into a 

polar coordinate system parametrized approximates to allow for a polar coordinate 

system non-linear least-squares adjustment Equations (2.19-2.21).

Taking the first derivative of n from Equation (2.47) with respect to angle / /

gives us a n '̂ vector.

n '̂ = (—sin //*sinz?,cos//*sinz?,0) (2.48)

Taking a first derivative of n from Equation (2.47) with respect to angle z? gives us a 

t /  vector.

t /  = (cos//*cosz7,sin//*cos27,—sinz?) (2.49)

In the next step, the average distance between each point o f the data cloud and the x-axis 

is calculated. The average distance is the average radius o f the cylinder. Then, the 

approximate radius is parametrized by:

= (2.50)
k
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Following these steps has provided the parameterized approximates required for the least- 

squares adjustment o f the cylinder. As such, the parametrized approximates are 

computed in terms of g , /y , z?, and k using Equations (2.46), (2.49), (2.50), and (2.53).

2.2.2 Least-Squares Adjustment of a Sphere

The least-squares adjustment fitting for a sphere is begun by creating a Jacobian 

matrix A. The following are the partial derivatives of the parameterized approximates 

with respect to the distance from the origin to the surface of the sphere:

y4(i,0) = ^  =  A * (g - ( f , -n ) )  + l (2.51)

! zl(/,l) = - ^  =  (-A '*g-l)*(p*«'") (2.52)

/1(A2) = - ^  =  ( - ^ * g - l ) * ( f  ' ' / )  (2.53)dv

= ^  =  - 2 g { p ' n )  +  g~) (2.54)
OK 1

These are associated with a misclosure vector:

w(i) = ~ * { \ p \ ~  -2 g (/i» « ) + g-)-t-g-(/7«/ï) (2.55)

The parametric least-squares formulation is used for set of equations:

dx = {A^ * A)~'* *w (2.56)
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The method of least-squares adjustment for a sphere fitting produced satisfactory results 

in all trials. This method effectively calculates the parametrized approximates and allows 

least-squares adjustments to com. erge successfully.

The parametrization of the solid plays a major role in the process of solid fitting. 

There are different general approaches to this problem including Algebraic Fitting, 

Taubin’s Fitting, and Euclidian Fitting. Each of these approaches has both limitations 

and strengths, which are described in the following section.

The Algebraic Fitting (AF) is based on the approximation of the Euclidian 

distance by the algebraic distance and is described by this equation:

= (2.57)

Given the algebraic distance for each point, using the least-squares method to 

minimize the distance between best surface fit and the data is expressed as:

.  p
— ̂ distjxp,Z( /) )  minimum (2.58)

p=\

Equation (2.61) can be formulated as an eigenvector problem. Constraining the 

eigenvectors of the parameter set {a,p} avoids the trivial solution {o#}- Ô and any 

possibilities of the multiple solution. The algebraic approach has high computational

efficiency if  the closed-form solution is available, which is generally the case. However,

the results obtained from the algebraic method are unsatisfactory in most cases.
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Therefore, the algebraic method is often used for first approximation if the situation does 

not necessitate a statistical approach that is more time consuming and advanced.

Taubin’s Fitting (TF) uses the first order approximation of Equation (2.61) to 

estimate distr{x,.,Z{f)).

= (2.59)

The Taubin’s distance algorithm does not require lengthy iterative calculations. 

The first order approximation of the Taubin’s distance algorithm is the exact distance. 

However, the approximated Taubin’s distance is biased due to a lack of internal 

consistency. The perfect example of this phenomenon is a data point xp which is close to 

a critical point of the polynomial, i.e., ||V/(x/0| == 0 , but f{xp) #  0. The distance between

the point and the described polynomial becomes large due to the fact that magnitude is 

extremely close to zero. However, the fact that the distance is not zero is certainly a

limitation, which leads to an answer which is numerically highly unstable.
I
! Euclidian Fitting (EF) uses the Euclidian distance instead o f approximated

distances, which is invariant to transformation in Euclidian space. The use of the 

Euclidian distances allows for calculating a non-biased estimator. A closed form 

expression exists for primitive curves and surfaces, ellipses, planes, cylinder cones, and 

ellipsoids. The Euclidian distance is obtained from a point to the origin of the Cartesian 

coordinate system in order to calculate a closed form expression, as described in detail 

for cylinder and sphere in Sections 2.0 to 2.2.2.
)
! In its general expression, the Euclidian distance is a highly complicated equation

and there is no known closed form expression for solving the problem. Therefore, an
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iterative optimization procedure must be carried out in order to compensate for this fact. 

Given the Euclidian distance distE{xp,Z{f)) for each point, the following steps are used to

obtain the solution. First, an initial estimate for the parameters of the Euclidian

fitting is obtained. Next, = 0,1... is updated using the algorithms presented in

Sections 2.1.2 and 2.2.2, which involves minimizing the least-squares of Euclidian 

distances for all data points. Finally, each is evaluated by a M-estimator ^  on

the basis of d i s t E { x r , Z { f ) ) . If is satisfied, the adjustment

is  caiTied out. O th erw ise, the adjustm ent is term inated and b eco m es the final

so lu tion .

In order to understand data distribution and data errors, it is important to 

appreciate the basic concepts behind laser technology. The acronym LASER means 

Light Amplification by Stimulated Emission of Radiation. There are two major types of 

laser scanners: triangulation scanners and ranging scanners. LIDAR scanners are of the 

ranging scanners family. The scanner used to collect the data for this study was a LIDAR 

scanner. LIDAR scanners often use a pulsed laser to measure the range to a point on an 

object’s surface. The LIDAR scanner is any ranging laser scanner that has four 

observables, range p, elevation angle a, horizontal direction 6, and intensity that are 

relative to the scanner’s internal coordinate system. The difference in time ( a/ ) between 

the pulse and the detection of the returning energy is used to calculate the distance (/? ) to 

the target using the following equation:

= ̂  (2.60)
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The obtained parameters are used to calculate the x, y, and z point in a Cartesian 

coordinate system. The triangulation and spatial resection algorithms are implemented to 

carry out those calculations. The distance from the scanner to the target is measured 

based on Equation (2.63). The triangulation is based on an active stereoscopic principle 

and the distance to the object is calculated based on the angular orientation of the light 

source and the relative orientation of the receiving unit.

Data quality and distribution are critical issues in the investigation of the 

calculation o f the critical parameters. In this thesis, the data received from J-Tech 

(www.j-techdesign.com) were already compiled in a Cartesian coordinate frame; the 

observables were x, y, z and intensity. The object that the data were derived from was a 

section of cylindrical pipe; 20 mm in diameter and 200 mm in length. The point data 

cloud covered approximately 40% of the surface area of the pipe and consisted of 

approximately 29,000 points. Due to the limited nature of the LIDAR system, namely 

FOV (field of view) and distance from the target, the point cloud data received had a mid 

to heavy density and the point data became sparser as the scan approached the edges o f 

the cylinder.

Different methods of reverse engineering of the primitives allow us to produce 

mathematical models. However, these models have finite accuracy and precision as well 

as errors inherited from data acquisition systems. One example is the LIDAR system. 

The inherent errors as well as errors in calculation are not necessarily controlled in the 

process of least-squares adjustment. In some cases, the best fit is not the actual primitive 

figure that is sought and its spatial orientation may be completely wrong.
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3.0 ADVANCED NUMERICAL ANALYSIS OF A GOODNESS-OF-FIT

The model proposed below presents a detailed explanation o f the mathematical 

algorithms as well as the methodology used to write a fully functional software suite. 

The arising model issues, including parametrization and data distribution, are presented 

and discussed. A cylinder and a sphere are the two geometric primitives that are used in 

this case study due to their frequency o f occunence in industrial settings.

The proposed model has certain design flaws. For example, the model of the 

cylinder is parametrized by using three spatial angles, the shortest distance between the 

origin and the outside of the projected cylinder as well as the radius of the cylinder. Two 

of the mentioned angles describe the orientation of the normal to the line passing through 

the origin. Angle /z describes the orientation of the normal vector in the x-y plane where 

the positive x axis is treated as the reference. The ÿ  angle is a horizontal angle. Those 

two angles define a spatial orientation using a polar coordinate system. The third angle, 

a , i.e., the alpha angle, describes the final orientation of the cylinder. The cylinder is 

pivoting at the imaginary end of the normal and the alpha angle defines the cylinder 

orientation. The distance between the origin and the closest point on the outside shell of 

the cylinder as well as the radius are calculated in a very similar manner.

A detailed description o f parametrization concepts and algorithms may be found 

in Section 2.1.1, which details the cylinder fitting. The sphere is parametrized in similar 

manner but without the use o f the alpha angle.

A geometric least-squares fitting of spheres and cylinders was achieved by 

developing algorithms to calculate first approximates and by utilizing algorithms 

introduced by Marshall et al. (2001).
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3.1 Advanced Analysis using Condition Numbers (Stability) as a Criterion

Mathematical problems and calculations in engineering are plagued with errors of 

all sorts. In numerical solutions o f linear equations, several sources o f the inaccuracy are 

encountered even when exact methods are used (Faddeev et ah, 1963). The finite 

accuracy of the computer introduces truncation errors during the computational processes. 

In addition, rounding errors are present when we reach the computational limits o f the 

computer on which the calculations are carried out. Mathematical models are merely a 

means to an end and they are only an approximation trying to model and mimic a real 

world phenomenon. Given that calculations are often plagued with observational errors 

and blunders, it is often surprising that one is able to calculate an approximated answer at 

all!

The models used in linear systems employ vectors and matrices. In order to make 

a statement about computed solutions and errors imbedded in them, it is necessary to 

describe the relative dependency between solutions using the condition number, norms 

and errors. The definition o f a condition number o f a matrix is derived directly from the 

definition o f norms and errors. The use o f a condition number and norms allows for an 

objective way of estimating the statistical significance of “Hilbert Space” or in this case 

the “N”-Normal Equations matrix. It also allows us to determine the relative accuracy of 

the solved linear system. The problem described in this thesis is a linearized least squares 

problem. The following definition should aid in understanding the notion o f simplified 

linear least squares problems and error estimation techniques.
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3.1.1 L inear Least Squares Problems

A typical linear least squares problem seeks to solve a linear system A*x = b 

where the matrix A is unsuitable for treatment by the standard methods used for square, 

non-singular, well-conditioned coefficient matrices.

In almost all cases involving geomatics-related data, there are many more 

equations than unknowns, so that A is actually a matrix with rectangular order o f M  rows 

by N columns. Generally, M is much greater than N. The right hand side may or may 

not be consistent, and A may not be of full rank. Such problems cannot be solved 

accurately using the linear approach, since the matrix is extremely overdetermined. It is 

possible to obtain a unique solution or many exact solutions ( x ) might exist. 

Altematively, there might be no exact solutions, but some vectors ( x ) offer a better 

goodness-of-fit than others in the sense that they produce a smaller residual error where 

residual error is defined as:

r = b — A*x  (3.1)

where the residual error is a measure of the error that occurs when a given approximate 

solution vector x is substituted into the equations of the problem being solved. For a 

system of linear equations, the residual errors are expressed by the vector r . When 

carrying out an iterative solution process, it is common practice to compute the residual 

error vector for each new approximate solution and to teiminate the iteration successfully 

i f  the vector norm o f the residual en or decreases below some tolerance. It is important to 

realize that the residual error is not, by itself, a reliable estimate o f the error in the 

solution of a linear system. If  the residual error has small norm, it is desirable that the
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solution error .(between the computed % and the true solution x* ) is small. It is necessary 

to know the norm of the inverse of the matrix, in which case the following restriction 

holds;

||x — X* II < II ' I * ||v4(x — X* )|| = ||^~ ' I * I /I * X — Zj + 6 -  ^ * X* )|| =  ||.4~ ' I * II/'II (3.2)

Thus, when the norm o f the residual error ||r|| is small, there is a precise upper bound on 

the enor in the solution. Since such matrix noims are generally not known or 

computable, there is a promise o f continuity in the enors: as the residual is driven down, 

the upper limit on the approximation error is forced down (Dineen, 1998).

Once the residual error is calculated based on its vector norm, the logical operator 

might be put in place to determine which o f the following cases are applicable to the 

solution. I f  there is a unique exact solution, each residual vector component should be 

equal to zero and the exact solution could be obtained. If there are multiple exact 

solutions, then they form a linear space, and that linear space should be described. If 

there are no exact solutions, then a "best" solution, which produces the smallest possible 

residual error, should be produced. This theory is applied in the algorithms and based on 

those criteria the final solution is obtained by selecting the smallest residual error with 

preselected threshold in order to stop iterative process as described and depicted by 

Euclidian Fitting (EF) algorithm described in Section 2.2.2.

A linear space (also known as linearization method) mentioned above is a 

collection X  of "vectors", a scalar field F, (usually the real or complex field) and in the 

cases observed in this paper it is always the real field since we operate in spatial domain 

which can not be imaginary or negative i.e. the negative distances do not exist in real

I
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world. The operations o f vector addition and scalar multiplication, with the properties 

that X  includes the zero vector; if x is in X , then so is Â*x , for any scalar A ; and if x , 

y  and z are in X , then so is the sum x + y  + z .

The problem encountered in this study was solved using the least squares- 

adjustment method applying standardized techniques o f equation linearization in 

geomatics problems. A square coefficient matrix can be constructed by replacing the M  

by N rectangular system A* x = b by the square system of order N: * A* x = * b .

A ^* A * x  = A^*b  (3.3)

and can be further manipulated to the unweighted form of:

x = (3.4)

This linear system is known as the normal equations matrix called the N-matrix in 

the software created by manipulating the A-matrix called the Jacobian matrix or design 

matrix. If the columns of the original matrix A are independent, then A^ * A has a real 

inverse, and the system can be solved by Gauss elimination, Cholesky decomposition or 

another applicable method. The method selected for this exercise was Cholesky 

decomposition, as it offers efficient algorithms. However, the Cholesky algorithm might 

not be the most robust algorithm and it fails in the imaginary domain. However, the 

working domain for this exercise is measurements in the real world and the spatial 

domain is the only domain allowable which rules out the possibility o f the imaginary or 

negative distances. The solution x will not usually satisfy any of the original equations 

exactly, but it will be the estimate that minimizes the Euclidean norm (The L2 vector 

norm is also known as the Euclidean vector norm or the root-mean-square vector norm)
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o f the residual error. The L2 vector norm is described in more details further on in this 

thesis in Section 3.1.10.

The normal equations may be used as a guide as to how the answer can be 

obtained, at least for systems with maximal rank. However, the coefficient matrix of the 

normal equations is sometimes ill conditioned (i.e., its condition number being the square 

o f the condition number of A).  Other methods of solving this problem are preferred, 

usually via the QL factorization, QR factorization or a pseudoinverse. Such methods can 

also handle the case where the matrix does not have full rank. However, the methods 

mentioned above where not selected due to their computational inefficiency and the fact 

that the stated problem classifies as invertible matrices which Cholesky decomposition is 

able to handle with ease and superior computational efficiency.

3.1.2 Condition Number

The condition number of the coefficient matrix T of a linear system is a positive 

number used to estimate the amount by which small errors in the right hand side 6 , or in 

A itself, can change the solution x . Small values of the condition number suggest that 

the algorithm will not be sensitive to errors. Large values indicate that small data or 

arithmetic errors may lead to enormous eiTors in the answer.

The condition number is defined in terms o f a particular matrix norm. Many 

different matrix norms may be chosen, and the actual value of the condition number will
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vary depending on the norm chosen. However, the general rule that large condition 

numbers indicate sensitivity will hold time no matter what norm is chosen.

The condition number for a matrix Â is defined as

condition{Â) = (3.5)

If A is not invertible, the condition number is infinite.

The following are the characteristics of the condition number: it is always at least 

1 and the identity matrix produces a condition number equal to 1. In addition, the 

condition number o f any orthogonal or unitary matrix is 1.

Turing's M  condition number, M{A) , for a matrix o f order N , is defined as

M{A) = N*  max|v4»| * max ' | (3.6)

Turing's N  condition number, N{A) is

where Frob(A) is the Frobenius matrix norm.

The Von Neumann and Goldstine P condition number is

maxJ
f(X) = (3.8)

vain A

where max,^ and vain A are the eigenvalues of largest and smallest magnitude, which is 

equivalent to using the spectral radius of A and . The Von Neumann and Goldstime 

P{A) number was selected for the calculations of condition numbers. The P{A) number 

was selected as a stability criterion due to its computational efficiency when compared to
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ii

Other methods. Furthermore, the technique o f obtaining the eigenvalues and eigenvectors, 

which are needed to calculate the condition numbers, played an important role in the 

selection o f the method. The method of calculating the eigenvalues and eigenvectors is 

explained in the following chapters. Moreover, it is the least complicated method of 

obtaining the condition numbers without the need for highly complex and expensive 

statistical softw'are packages.

There is also a condition number defined for the eigenvalue problem, which 

attempts to estimate the amount o f error to be expected when finding the eigenvalues o f a 

matrix A.

Given a square matrix vf, the Z,, condition number k^CA) is defined as:

2̂ = I I 4 * K ' | | ,  (3.9)

if the inverse of A exists. If the inverse does not exist, then we say that the condition 

number is infinite. Similar definitions apply for and k„(A) .

Condition numbers are used in error estimation for linear system problems. This 

study focuses on solving the linear system as described in detail in the Linear Least 

Squares Problems in Section 3.1.1 using the following model A*x = b with the exception

that the right hand side of the equation has a small error in it. This perturbed right hand

side is denoted as b + db and the mathematical model is rewritten as;

A"*̂ (x + dx) = b + db (3.10)

If relative errors and the norm are used to define condition number k(A) and if they are 

compatible with the vector norm used, it is necessary to show that:
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( 3 .1 )

Thus, the condition number needs to be as small as possible, with its smallest possible 

value being 1 (Press, et al., 1986).

3.1.2 Eigenvalues

Eigenvalues are special values associated with a square matrix. They can be used 

to analyze the behavior of a matrix in multiplying any vector as well as to calculate its 

condition number. The formal definition - f̂ an eigenvalue of a matrix A is that it is any 

value Â which is a root of the characteristic equation of the matrix,

det(T —y^*/) = 0 (3.12)

J  is an eigenvalue o f A if and only if there is a nonzero vector x , known as an 

eigenvector described in detail later on, with the property that

A*Xf = Jj*Xi (3.13)

There must also be a left eigenvector y , with the property

y * A  = A^*y = J * y  (3.14)

The characteristic equation has exactly N  roots, so a matrix has N  eigenvalues. An 

important consideration is whether any eigenvalue is a repeated root, which determines 

how difficult the eigenvector computation will be. If a matrix has the maximum possible 

number of linearly independent eigenvectors N , then the eigenvalues and eigenvectors 

can be used to diagonalize the matrix. This only happens when the matrix is ortho­

normal. Eigenvalues of A have the following characteristics: A is singular if  and only if
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0 is an eigenvalue o f ^  ^ is symmetric if all eigenvalues are real; and A is positive 

definite symmetric matrix if all eigenvalues are real and positive. Algorithms for 

computing eigenvalues include the power method and the inverse power method. The QR 

method or QL method are more powerful methods that can handle complex and multiple 

eigenvalues (Press et al., 1986).

3.1.4 Eigenvectors

A nonzero vector x is an eigenvector of the square matrix A if

A*Xi = A; *x, (3.15)

for some scalar value A , called the associated eigenvalue.

Sometimes this eigenvector is more particularly described as a right eigenvector, so that 

we may also consider left eigenvectors, that is, vectors y for which it is true that

y*A = A^*y = / / * y  (3.16)

for some scalar / /  .

For every eigenvalue of a matrix, there is at least one eigenvector. Every nonzero 

multiple o f this eigenvector is also an eigenvector, but in an uninteresting way. If, and 

only if, an eigenvalue is a repeated root, then there may be more than one linearly 

independent eigenvector associated with that eigenvalue. For example, if  an eigenvalue 

is repeated 3 times, then there will be 1, 2 or 3 linearly independent eigenvectors 

corresponding to that eigenvalue.
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The following properties of the eigenvector have to be satisfied: if  x is an 

eigenvector, so is s * x ,  for any nonzero scalar 5  . If ^  is singular, then it has an 

eigenvector associated with the eigenvalue 0, so that ^  * x = 0. If x is a right eigenvector 

for eigenvalue A , and y is a left eigenvector for eigenvalue / /  , and A and / /  are

distinct, then x and y  are oithogonal, that is, * x = 0. This property is sometimes call 

biorthogonality.

The following methods may be used to calculate eigenvalues in order to 

determine condition numbers depending on matrix properties and behaviour: Gershgorin 

Disks, The Cayley-Hamilton Theorem and Circulant Matrix. In addition, more advanced 

methods may be applied to calculate condition numbers. These are called Matrix Norms. 

Although Matrix Norms are more robust and descriptive of the matrix, system, they also 

require advanced teclmiques and additional computational power (Press et al., 1986).

3.1.5 G ershgorin Disks

The method of Gershgorin disks provides an estimate o f the size of the 

eigenvalues of a matrix. The accuracy of the estimate varies significantly, depending on 

the size of the elements of the matrix. It is most useful for matrices that are 

predominantly diagonally or sparse (Press et al., 1986).

Gershgorin's theorem states that the eigenvalues of any matrix A lie in the space covered 

by the disks D{I) :
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£)(/) =
/ -V <R{I )  (3.17)

where R{I) is the sum of the absolute values of the off-diagonal (/) elements of row I :

R(^I) = siim{J = / = I)\A{1,J)\  (3.18)

The theorem may also be applied using columns instead of rows due to symmetry.

3.1.6 The Cayley-Hamilton Theorem

The Cayley-Hamilton Theorem guarantees that eveiy square matrix satisfies its 

own characteristic equation.

For example, if  A is given by:

A=(^ 4)

then the characteristic equation is

4-5 = 0 (3.20)

which is not true for all values A , only those few special values known as eigenvalues. 

The Cayley-Hamilton theorem guarantees that the matrix version of the characteristic 

equation, with A taking the place of , is guaranteed to be true (Press et al., 1986):

A ^ - 6 * A  + 5*1=0  (3.21)

3.1.7 Characteristic Equation

The characteristic equation of a square matrix A is the polynomial equation:
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d e l ( X - , f * / )  =  0  ( 3 .2 2 )

where Â is an unknown scalar value.

The left hand side of the equation is known as the characteristic polynomial o f the matrix. 

If A is of order N , then there are N  roots of the characteristic equation, possibly 

repeated, and possibly complex.

For example, if A given by Equation (3.19), then the characteristic equation is

l l  — A 3
‘‘“ I 1 4 - i r “

or

^ ': - 6 * ^  + 5 = 0 (3 J4 )

This equation has roots i  = 1 or A = 5.

Values of the scalar A which satisfy the characteristic equation are known as eigenvalues 

of the matrix.

A property of characteristic equation of A :

• A and À’' have the same characteristic equation.

The Cayley-Hamilton Theorem guarantees that the matrix itself also satisfies the matrix 

version of its characteristic equation (Press et al., 1986).
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3.1.8 Matrix Norm

A matrix norm is a scalar quantity, which may be thought o f as a type of 

"magnitude" of the matrix. The norm may be used to estimate the effect of multiplying 

the matrix times a vector, solving a linear system, or other matrix operations. The norm 

is also used in the analysis of error and convergence.

A matrix norm ||?|| must satisfy the following four properties:

1. |j/(||>0, unless A = 0 in which case ||t|| =  0;

2. ||j'*T|| = |6'|*||/l|| for any real number s;

3. ||/l + 5||<|j^l| + ||5(j (triangle inequality);

4. 11̂11 (sub-multiplicativity).

Matrix norms are most often needed when dealing with combinations of matrices

and vectors. In such a case, it is important that the matrix norm and vector norm that are

being used are compatible.

Any given vector norm can be used to derive a corresponding matrix norm and 

will be guaranteed to be compatible. This matrix norm is known as the vector-bound 

matrix norm. Only if the matrix nomt and vector norm are compatible can one write a 

useful boundary condition like:

(3.25)

The following matrix norms will be described in the following sections:
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1. Ll matrix norm;

2. L2 matrix norm;

3. Frobenius matrix norm;

4. L Infinity matrix norm;

5. Spectral radius;

6. EISPACK matrix noim;

3.1.9 L l Matrix Norm

The L| matrix norm is a matrix noim that is vector-bound to, and hence 

compatible with, the L, vector norm. Thus, the formal definition of the norm is

/||/( *
I M I I - max

Fll /
(126)

where the vector norm used on the right hand side is the L, vector norm, and the 

maximum is taken over all nonzero vectors x . However, it is easy to show that the L, 

matrix norm has a simpler formula: ||.4|| = the maximum, over all matrix columns, of the 

sum of the absolute values o f the entries in the column (Stewart, 1995).
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3.1.10 L2 Matrix Norm

The Lj matrix norm is a matrix nonn that is vector-bound to, and hence 

compatible with, the 1, vector norm. Thus, the formal definition o f the norm is 

presented in Equation (3.26).

Where the vector norm used on the right hand side is the Lj vector norm, and the 

maximum is taken over all nonzero vectors % .

The Lj matrix norm has another foimulation: ||zl||= the square root of the maximum 

absolute value o f the eigenvalues o f * A.

The computation o f the 2, norm is computationally expensive, and so it is often simpler 

to use the easily-computed Frobenius matrix norm, which is not vector-bound to the Z,, 

vector norm, but is compatible with it (Stewart, 1995).

3.1.11 Frobenius Matrix Norm

The Frobenius matrix norm is a matrix norm that has the simple formula; jj^l = 

the square root of the sum of the squares of all the entries of the matrix.

The Frobenius matrix norm is not a vector-bound matrix norm, although it is compatible 

with the Zo vector norm, and much easier to compute that the Lj matrix norm.

The Frobenius matrix norm is sometimes called the Schur matrix norm or Euclidean 

matrix norm (Press et ah, 1986).
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3.1.12 L Infinity Matrix Norm

The L„ infinity matrix norm is a matrix norm that is vector-bound to, and hence 

compatible with, the infinity vector norm. Thus, the formal definition o f the norm is 

as presented in Equation (3.26).

Where the vector norm used on the right hand side is the vector norm, and the 

maximum is taken over all nonzero vectors x . However, it is easy to show that the 

matrix norm has a simpler formula: ||J4|| — the maximum, over all matrix rows, of the sum 

o f the absolute values of the entries in the row (Stewart, 1995).

3.1.13 Spectral R adius

The spectral radius o f a matrix is the magnitude of the largest eigenvalue o f a 

matrix. The spectral radius is often easy to compute, and it is a useful measure of the 

"size" or "strength" o f a matrix. However, the spectral radius is not a vector-bound 

matrix norm; it is not compatible with any vector norm.

Simply stated, there is no vector norm for which it will be true, for all vectors x, that:

(3-27)

if  the matrix norm used is the spectral radius.

To see this, consider a matrix whose dominant eigenvalue A>0  has algebraic 

multiplicity strictly greater than its geometric multiplicity. Then there must be an 

eigenvector x so that A*x  = J * x  , but there is also a generalized eigenvector y  ,
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orthogonal to x , with the property that A* y  = x+ Â*y  . Now, if the spectral radius is a 

vector-bound matrix norm, then it must be the case that

(3.28)

but, since x is orthogonal to y , we can show that:

I M  *  ) ' l l = t k ' + ^  *  > i l  >  \A ( 3 . 2 9 )

Hence, the spectral radius is not a vector-bound matrix norm.

On the other hand, the value of the spectral radius is a lower bound for the value o f any

vector-bound matrix norm on A , because there must be an eigenvalue A and a vector of 

unit norm x with the property that

A*x  = A*x  (3.30)

Thus, the norm of A*x  divided by the norm of x is i  . Therefore, the matrix norm of A 

must be at least \A\.

The Euclidean norm of a real symmetric matrix is equal to its spectral radius (Press et al., 

1 9 8 6 y
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3.1.14 EISPACK Matrix Norm

The EISPACK matrix norm is used in the EISPACK eigenvalue package. 

The definition o f the norm for an M by N matrix is;

M N
(3.31)

/=! J=1

This is a simple exercise to verify that this quantity satisfies the requirements for a 

matrix norm.

This norm is easy to calculate and was used in EISPACK in order to have a 

standard against which to compare the size o f matrix elements that were being driven to 

zero (Press et al., 1986).

3.1.15 Householder and Givens Transformation Method

The actual calculations used to estimate the condition number using the

Householder Method are based on the QL method, which was preceded by a reduction of 

a symmetric matrix to tridiagonal form. The Householder Method is used to reduce the 

matrix to the simple form in order for the iterative process to be implemented. The 

algorithm is applied to the symmetric matrix to transform it into the tridiagonal form. 

There are two approaches to this method: first is the Givens Method which is a modified 

Jacobi Method which instead of reducing the whole matrix to diagonal form reduces it to 

a tridiagonal form. This variation to the Jacobi method allows for carrying a finite 

number o f operations unlike Jacobi method which requires iterations (Press et al., 1986).
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A Givens rotation is a linear transformation applied to two vectors, or two rows or 

columns o f a matrix, which can be interpreted as a coordinate axis rotation. The intent of 

the rotation is to zero out an entry of the vector or matrix using an orthogonal 

transformation. A Givens rotation is similar to the elementary row operation that adds a 

multiple o f one row to another, but because a Givens rotation employs an orthogonal 

similarity transformation, it offers greater stability and ease of inversion (Press et al., 

1986).

A Givens rotation matrix G has the form:

'l  0 0 0 0 O'
0 (cos(^))„. 0 0 (sin(($'))g 0
0 0 1 0 0 0
0 0 0 1 0 0
0 (—sin(<f))y; 0 0 (cos(if))^ 0
0 0 0 0 0 1

(T32)

It is possible to zero out entries o f a matrix, one by one, using Givens rotations, 

similar to the way that Householder matrices are used, to reduce a matrix to a simpler 

form. The process can be used to zero out the entire lower triangle o f a matrix, but 

further operations on the upper triangle would reintroduce zeroes in the lower triangle. 

Nonetheless, zeroing out the lower triangle means that Givens rotations can be used to 

produce the QL factorization o f the matrix.

On the other hand, the Householder method is as robust and stable as the Givens 

Method. The Householder method is superior to the Givens method due to its efficiency. 

There are experiments done with the Givens method which reduce the number of 

operations to the some as the Householder method and even avoid the necessity o f taking
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square roots which makes those methods competitive. However, this approach is still in 

the development phase and is not yet recommended to be used over the Householder 

reduction.

The Householder algorithm reduces a square matrix A of the dimensions N by 

N  to tridiagonal form by #  — 2 orthogonal transfonnation. Householder matrices can 

be used to compute the QL factorization o f a matrix. A Householder matrix can be found 

which will eliminate all the subdiagonal entries of the first column o f the original matrix. 

Another Householder matrix can be found which will eliminate all the subdiagonal

entries of the second column, and so on. At the end of N  — l steps o f this process, the

following series is computed which is the product o f a Householder matrix:

^  =  (3.33)

the computed matrix is an orthogonal matrix and it is important to note that:

(3.34)

Therefore, by multiplying both sides by its transpose, which is also its inverse, one gets

A = H'^*L (3.35)

or, if  Q is defined to b e //^  :

A = Q*L (3.36)

where X is a lower triangnlar. The QL algorithm is preferred over the QR due to the 

significantly smaller round off error. Moreover, it is important to mention that the A 

matrix that is being used here is always a real, symmetric, and tridiagonal matrix. Those 

properties are guaranteed by the Householder algorithm.
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3.2 QL Algorithm - Factorization of A

The QL factorization factors a matiix A into an orthogonal matrix Q and a lower 

triangular matrix L , so that:

= (3.37)

The factorization can also be applied to rectangular matrices, in which case one of the 

factors is no longer square.

The QL factorization can be useful for solving the full range of linear systems, 

whether they are nonsingular, under-determined, over-determined or ill conditioned. It 

can be used to carry out the Gram-Schmidt orthogonalization of a set o f vectors 

constituting the columns of A . The QL factorization is also used repeatedly in an 

iterative solution of eigenvalue problems. This property was exploited in the code in 

order to calculate the condition numbers.

The QL factorization was achieved by producing incrementally, by a series of 

transformations utilizing Householder matrices. It is also possible to achieve the same 

results using Givens rotation matrices. However, due to the issues and factors discussed 

in Section 3.1.15, the Householder method was selected for this particular factorization 

(Press et al., 1986).

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



3.3 Singular Value Decomposition

The singular value decomposition of a rectangular M by N  matrix ^  is a 

factorization of the form:

= (3.38)

where; U is an M by N  matrix with orthogonal columns; S is an V by V diagonal 

matrix, containing the non-negative singular values of ^  ; F is an V by V orthogonal 

matrix.

The solution of A*x  = b for non-square A can be found by seeking that x which 

minimizes the ||T *x -6 ||. That x is equal to

V * s ~ '* u '^  (3 .39)

where, since S may have zeroes on its diagonal, 3'” ' is constructed by replacing each 

nonzero diagonal element by its inverse.

For any column I  no greater than the minimum of M  and N , let be the I - th  column 

o f U , and v, be the /  -th column o f V , and be the 1 -th diagonal element o f 3'. Then 

it is a fact that

A*Vi = Sii*u^ (3.40)

and

A^ *Uj = Sij*Vi (3 .41 )

which leads to the conclusion that

A* A^* 11/ = s,i * s,i * lif (3.42 )
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and

A * * v ,  = S;,*Si,*Vj (3.43)

In other words, U , V and 5 contain information about the eigenvalues and eigenvectors 

of A* A^ . Conversely, if  the eigenvalues and eigenvectors of ^*.4^ are known, then the 

squares of the singular values o f A , and the left singular vectors of A (the U matrix) are 

also known. The singular value decomposition can be used to construct the 

pseudoinverse of a rectangular or singular matrix A (Press et ah, 1986).

3.4. Chapter Summary

Numerous methods o f calculating condition numbers by using different 

techniques o f calculating eigenvectors and eigenvalues were discussed above in order to 

illustrate the complexity and diversity of using condition numbers as a stability criterion. 

The simple change in the method o f calculating the eigenvector might produce a different 

answer when computing condition numbers. In addition, there is more than one approach 

to calculate the condition number itself. This multitude of combinations produces a large 

number of possibilities to calculate the condition number where each calculated condition 

number will produce a different answer due to the variation in the manner of calculating 

the condition number itself and varying the way of calculating the eigenvalues and 

eigenvectors.

The situation is much less complicated when choosing calculations of the SVD 

(Singular Value Decomposition). The choice was made based mainly on the availability 

of the source code. The code was rewritten to the Visual Basic programming language 

and modified to fit into the scope of this thesis. However, the code and its intricacies are
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not as well explained as condition numbers due to the lack of detailed information on the 

subject. This situation exists due to the problem of using “black box” approaches in 

programming and the concept o f SVD being quite mature. Therefore, the SVD method 

was tested many times in the past and there is no need of proving the functionality and 

correctness o f this method. On the otlier hand, a controversy still exists around the 

condition numbers, the best way to compute them, and their usefulness for setting 

stability criteria of the solutions of the matrices.
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4.0 EXPERIMENTATION

The five parameters are tested to determine their critical values. The g parameter, 

which is the distance from the origin o f the Cartesian system to the outer-shell o f the 

solid, is tested first. The test is carried out by constructing a cylinder model. The 

cylinder is created by software (Data Kreator) designed to calculate the position of the 

points in the X-Y plane with the spacing between the points provided by the user in 

degrees on the circumference o f the circle. Then the angle is decreased by half to 

simulate the LIDAR data, which is sparse on the sides and dense in the middle of the 

scanned object.

In order to control the coverage of the circle, an additional control box is 

introduced into the software. This option provides the user with the ability to control 

how much surface coverage there is on the cylinder, e.g., 90 degree coverage or preset of 

180 degree coverage (i.e., half o f the circle). The total number o f points on a ring is 

about 1450 points if 180 degree coverage is selected.

Data Kreator B a
Output File Name; |data original.txt 

Radius

Spacing in deg.

Coverage of the pipe in deg.

Number of rings 
Spacing between rings

Start

1

F
180

[2 0 ”

0.5

Exit

Figure 4.1: Preset for Data Kreator.
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The user has the power to specify tiie radius of the circle as well as the number of 

rings he/she wants. The user can also define spacing between the rings. Then the ring is 

copied upward along the z-axis.

The second component of the software suite designed for testing is Data Flipper. 

Data Flipper allows seven degrees of freedom when manipulating the data. These 

include one scale, angle omega (ay), angle phi ( p ), angle kappa { a t ) ,  translation in the 

x-direction, translation in the y-direçtion, and translation in the z-direction.

% Data Flippèr

Input File Name; jdata original.txt 

Scale

Omega ( about x-axis) in deg.

Phi ( abouty-axis) in deg.

Kappa ( about z-axis) in deg.

Translalion in x-direction 

Translation iny-direction 

Translation in z direction

F

Flipp Create Data Exit

Figure 4.2: Preset for Data Flipper.

The scale is the first option on the form, and the preset is scale equal to one. 

There are three rotations: one each about x-axis, y-axis and z-axis, respectively. 

Additionally, three translations in x, y and z directions, respectively, may be introduced. 

This set up allows for a fully controlled environment and data manipulation in 3D.
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4.1 Testing the g  parameter

The first parameter to be tested is g , assumed to be in centimeters, which is the 

shortest distance between the outer shell o f the “extended” cylinder and the origin of the 

coordinate system. The “extended” cylinder can be defined as the cylinder projected to 

infinity in both axial directions. Data are created using the software Data Kreator with 

the following five preset parameters:

Radius = 1

Spacing = 10 degrees 

Coverage of the pipe = 180 degrees 

Number of rings = 20 

Spacing between rings = 0.5.

Data Kreator

Output File Name; [data original.txt 

Radius

Spacing in deg.
r
10

Coverage of the pipe in deg. j i80

Number of rings 
Spacing between rings

Start

20

|ÔT

Exit

Figure 4.3: G-test-1, Data Kreator.
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The cylinder that is wrapped around the z-axis is translated down along the z-axis 

to ensure that the center of the cylinder coincides with the origin o f the coordinate system. 

The translation along the z-axis by -5 units is achieved by using the software Data Flipper. 

The remaining six parameters o f the Data Flipper are treated as control values and were 

not changed during this test.

% Data Flipper

Input File Name; jdata original.txt 

Scale

Omega (about x-axis) in deg.

Phi ( about y-axis) in deg.

Kappa ( about z-exis) in deg. 

Translation in x-direction 

Translation in y-direction 

Translation in z direction -5

Flipp Create Data Exit

Figure 4.4: G-test-1 translation along z-axis by -5 units.

The data cloud used in this thesis can be found in Appendix A, (File name “g-test- 

1”). The data are translated down the z-axis by -5 units to align the centroid of the 

cylinder with the origin of the x, y, and z coordinate system. In order to ensure no further 

transformation, the following seven parameters are set to;

Scale = 1

Omega = 0 degrees
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Phi = 0 degrees 

Kappa = 0 degrees 

Translation in x-direction = 0 

Translation in y-direction = 0 

Translation in z-direction = -5.

The software “Point Cloud Data 3-D Adjuster and Analyser” is first used to depict 

the generated point cloud data from the file “g-test-1.txt”. The created data are displayed 

below:

Point Cloiid Dgta 3'D Adjuster and Analyser;

g-lesH  W

L ett p  R ig h t

D o w n

Z o o m  Z o o m  
In 1 O u t I

Scale 11,5 
(actor:

<. 16.6

y 157.B

y o lc u lo t e
Param eters

3-D Graph

Figure 4.5: G-test-1 visualisation of data.
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The next step is to adjust the data and calculate the geometric parameters o f the 

cylinder. Furthermore, an analytical and numerical analysis is applied to establish the 

stability o f the estimated parameters. This thesis concentrates on the development of the 

advanced stability criterion routines and testing the stability and thresholds of the 

calculations.

Two methods of calculating the condition numbers are compared to ensure the 

validity o f calculated eigenvalues and condition numbers derived from them. The 

cortelation-coefficient matrix is used to establish the strength of the relationship between 

the geometric parameters.

The following table illustrates the summary of values obtained from the analysis:
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Expected Values o f critical pararneters:
g Angle_u_polar Angle_v_poh alpha ■* radir. I l k

-1 0 90 O.OOE+00 1

Converged ans'A>ers:
g Angte_u polar Angle v poA alpha * radt< 1 /k

-1 226.8545559 90 1.1 IE-15 1

Square root of the diagonal terms ((diag i.ii'^.S):
2.41 E-02 6.29358E*14 8.36E-03 5.91 E-02 2.22E-02

Unsorted rearranged Eigenvalues for a real syrtjmetnc mabix using TRED2
Eigenvalue 1 = 0
Eigenvalue 2 = 14630.089
Eigenvalue 3 = . 14310.632
Eigenvalue 4 = 1661.6976
Eigenvalue 5 = 2111.9079

Unsorted Eigenvalues for a real sym m etic  matrix using SVD
Eigenvalue 1 = 14630.089
Eigenvalue 2 — 14310.632
Eigenvalue 3 = 1661.6976
Eigenvalue 4 = 2111.9079
Eigenvalue 5 = 1.90E-13

CNHfrom TRED CW# from SVD Correlation-Coeffident Matrix
1.46E+18 1 1 -7.13E-05 8.02E-02 1.52E-03 8.44E-02

1 1.022323083 -7.13E-05 1 -6.83E-02 0.9900026 5.90E-04
1.022323083 8.804302916 8.02E-02 -6.83E-02 1 -6.91 E-02 4 .04E-O3
B.804302916 6.927427651 1.52E-03 0.9900026 -6.91E-02 1 9.85E-03
6.927427651 7.71E-T16 8.44E-02 5.90E-04 4.04E-03 9.85E-03 1

Table 1: G-test-1 Summary Table

The pre-defined value of g is identical to the estimated value as well as the value 

for 1/yt, which is the radius of the cylinder. The marginal difference between the 

expected and converged answer in the alpha, ( a )  , angle. This can be explained by the 

fact that a finite number of digits is used. In addition, truncation and round off error may 

influence this particular quantity. The remaining parameters, which are the most 

important ones, match the expected values. The / /  angle has an extremely large 

calculation enor o f approximately 227 degrees, which could be explained by the very
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poorly defined angle ^  in the x-y plane. The / /  angle is an angle in the x-y plane. In 

this test, the center line o f  the cylinder coincides with the z-axis. This setup creates the 

problem o f a numerically unstable angle, since the x and y components o f this angle are 

calculated based on residuals and the lengths of x and y components are zero. On the 

other hand, the û  angle is well defined. Its numerical value of 90 degrees corresponds 

precisely with the converged answer. In addition, the critical parameters have 

conesponding standard deviation values for each calculated critical parameter 

ofg  , / /  , 2? ,<2 -, andyt. Thus, the only value with an extremely high standard deviation is 

the / /  angle due to extremely poor geometry for this particular data set. The high value 

o f the condition number suggests that the solution is unstable. This is time, since the 

cylinder is wrapped around the z-axis and the / /  angle is highly unstable.

In order to further investigate the stability of the software, especially the g 

parameter, the data are moved down by 5 units as in the last instance and then moved 

away from the origin of the coordinate system by 100 units along the x-axis.
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Data FUjpper

Input File Name: jdata original.txt

Scale

Omega ( about x-axis) in deg. 

Phi ( about[)^axis) in deg. 

Kappa ( about z-axis) in deg. 

Translation in x-direction 

Translation in y-direction 

Translation in z direction ■5j

Flipp Create Data

100

Exit

Figure 4.6: G-test-2, Data Flipper.

This approach enables one to predict the value of the g parameter. The output

file is renamed to g-test-2.txt (see Appendix A).
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Expected Values o f chb'cal parameters;
9 Angle u polar Angle_v polar alptia * radtoi I l k

99 0 90 0 1

Converged answers:
9 Angle u polar Angle v  polar alpha * radtoc I l k

99 7.81 E-15 90 1.16E-15 1

Square root of the diagons^ terms ((diag ij)'^.5):
0.191809238 1.71 E-03 0.3OE-O3 8.39E-03 3.92E-02

Ur^sorted Eigenvalues for a real symmetric matrix using TRED2
Eigenvalue 1 13662.1913
Eigenvalue 2 = 18050137.8
Eigenvalue 3 = 26.8921286
Eigenvalue 4 = 828.92372
Eigenvalue 5 - 740880.86

Unsorted Eigenvalues for a real symmetric matnx using SVD
Eigenvalue 1 = 740880.86
Eigenvalue 2 — 18050137.8
Eigenvalue 3 - 26.8921286
Eigenvalue 4 - 828.92372
Eigenvalue 5 = 13662.1913

CNflfrom TRED CHU from SVD Correlation-Coefficient Matrix
1321.174428 24.36307743 1 1.55E-14 0.876991 -1.58E-14 0.465048

1 1 1.55E-14 1 1.80E-14 -0.990113 -1.30E-15
671205.2447 671205.2447 0.87699063 1.80E-14 1 -1.81 E-14 1.17E-03
21775.39056 21775.39056 -1.58E-14 -0.99011284 -1.81E-14 1 9.10E-17
24.36307743 1321.174428 0.465048395 -1.30E-15 1.17E-03 9.10E-17 1

Table 2: G-test-2 Summary Table

The pre-defined value of g is identical to the estimated value as well as the value 

for [/k , which is the radius of the cylinder. The marginal difference between the 

expected and the converged answer in the alpha {or) angle and /y angle occurs because a 

finite number of digits is used. As in the previous test, truncation and round off error 

may influence this particular quantity. The remaining parameters, i.e., the most 

important ones, match the expected values. The / /  angle is an angle in the x-y plane. In 

this test, the center line of the cylinder coincides with the x-axis due to translation of 100
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cm in the x-direction. On the other hand, the û  angle is well defined and its numerical 

value of 90 degrees corresponds precisely with the estimated answer. In addition, the 

critical parameters have corresponding standard deviation values for each calculated 

critical parameter of g , / /  , , a-, and k . It is important to emphasize a high correlation

of 0.876991 (where 1 is the highest possible correlation, 0 is the lowest) between the 

g parameter and angle û . The g parameter is the shortest distance between the origin 

and the outer shell of the cylinder. Angle. & is the zenith angle. There is also a notably 

high correlation of 0.465045 between the g parameter and k parameter (where k is the 

inverse of the radius). Moreover, there is a trend of the / /  angle being inversely 

con-elated to the z? angle by - 0.990113 (where -1 is highest inversely correlated value 

and 0 is the lowest). The value of the condition number is considerably smaller, since the 

cylinder was moved away from the origin. This translation allowed the g parameter and 

other free parameters to be well defined, with the exception of the u  angle. The 

improvement in the geometry of the problem yields a smaller condition number. Thus, it 

is clear that the condition number can be used as a measure of stability o f equations 

including the geometi-y of a cylinder.

The final test for g compliance is test-3, where the data are moved away from the 

origin by 1 km. This test indicates that the software is able to handle the difference in 

scale of 1:100000. However, the software is unable to maintain the stability o f the 

algorithms at great distances. The cylinder is created in the same manner as in two 

previous tests, with the difference in the translations. The cylinder is moved by -5 units 

in the z-direction as before and translated in the y-direction by 100,000 units.
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tu Data Flipper

Input File Name; jdata original.txt

Scale r .........
Omega (aboutx-axis) in deg. |o
Phi ( about y-axis) in deg. |o
Kappa ( about z-axis) in deg. |o
Translation in x-direction |o
Translation in y-direction [iQOOOG

Translation in i direction [-5

Flipp Create Date Exit

Figure 4.7: G-test-3, Data Flipper.

The values for translation were selected based on easily predictable solutions to 

the parameters. The table below depicts the output o f this test:
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Expected Values of critical parameters."
g AngIe_u_polar Angle_v_p< alpha * rad 11k

99999 90 90 0 1

Converged answers:
g Angle u polar Angle v  p alpha * rad I l k

99999.05 89.94270424 90 -1.89E-07 0.9999994

Square root of the i)'^0.5):
0.381923628 3.60E-06 8.39E-03 6.30E-03 3.92E~02

Unsorted Eigenvalues for a real symmetric matrix using TRED2
Eigenvalue 1 = 14509.303
Eigenvalue 2 = 6.65Ï6938
Eigenvalue 3 = 668.73656
Eigenvalue 4 = 3562663.1
Eigenvalue 5 = 1.746E+13

Unsorted Egenvalues for a real symmetnc matrix using SVD
Eigenvalue 1 = 1.746E+13
Eigenvalue 2 = 3562663.1
Eigenvalue 3 = 6.8576944
Eigenvalue 4 = 656.74182
Eigenvalue 5 14509.381

CW#frorr7 TRED CNitfrom SVD Correlation-CoefScient Matrix
1203129683 1 1 -1.35E-02 0.9927265 9.93Ê-05 0.102669

2.54763E+12 4699894.339 -1.35E-02 1 6.07E-05 -0.909345 -0.13239
26500233387 2.&4763E*12 0.992726 6.07E-05 1 -2.01 E-05 1.18E-06
4699894.339 2550(X)21857 9.93E-05 -0.989345 -2.01 E-05 1 1.15E-03

1 0^3130059 a t  02669 -0.132386 1.18E-06 1.15E-03 1

Table 3: G-test-3 Summary Table

The pre-defined value of g-has an error of 5 mm in a distance of 100 km to the 

estimated value. The value for l / t ,  which is the radius of the cylinder, has a negligibly 

small error. This test demonstrates that the software has an ability to correctly calculate 

the distance and the radius of the cylinder with 5 mm accuracy from 1 km. This test 

assumes that the data are error free. The marginal difference between the expected and 

converged answer in the alpha ( a  ) angle and the / /  angle may be explained, as before,
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by the fact that a finite number of digits is used. In addition, truncation and round off 

error may influence this particular quantity. The r  ’■’ng parameters, i.e., the most 

important ones, match the expected values. The /.i 'gle s a  value of 90 degrees in the 

x-y plane due to the translation in the y-direction . J,000 cm. As in all tests, the

Û angle is very well defined and its numerical value of 90 degrees coiTesponds precisely 

to the converged answer. In addition, the critical parameters have coiTesponding standard 

deviation values for each calculated critical parameter of g , //  , z? , ^  , and k . The 

standard deviation tables are suggesting that the angles are vei-y strongly defined with the 

increase of the distance. However, the g parameter and the radius are decreasing in 

precision. On the other hand, g and k become de-correlated. The large increase in 

distance increases the value of condition number. The increase in the condition number 

is not as dramatical as it is when the cylinder is wrapped around the z-axis. This suggests 

that the distortion of the geometry of the cylinder is not as significant as when the 

cylinder coincides with the origin or one of the axes.

It is important to emphasize a high correlation of 0.9927265 between the 

g parameter (i.e., the shortest distance between the origin and the outer shell of the 

cylinder) and angle / /  (i.e., the X-Y plane angle). There is also a high inverse 

correlation of -0.989345 between the / /  parameter and the zr parameter. The 

/ /  parameter and zr parameter have a large negative correlation due to the normal 

pointing in the z-direction. This creates a singularity situation and the / /  angle is not 

solved properly.

In summary, the g  parameter influences the statistical analysis rather strongly. 

When increased, the g parameter allows the angle to be strongly defined, but at the some
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time it minimizes its own precision. Overall, the increase of the g parameter results in a 

positive effect on the algorithms. As the angle definitions are strengthened, the 

g parameter looses its precision, but only by 1 ppm. Moreover, the radius accuracy is not 

influenced. By increasing the g parameter, the correlation between g and 1/k is 

minimized. Understanding the role of the g  parameter in numerical analysis is critical, 

since this parameter significantly influences test values. The condition numbers are 

affected in a not very significant way by increase in g parameter. The G-test-1 test has 

the highest condition number due to poor geometry. The condition number is 

significantly improved as the cylinder is moved away from the origin. Finally, the 

condition number is increased as the cylinder is translated by great distance. Therefore, 

the condition number suggests a stable solution.

4.2 Testing the Influence of the Coverage of the Pipe

The following tests are completed to determine how the point cloud coverage of 

the pipe would influence the five parameters. This is of particular importance, since this 

reduced coverage is a commonly encountered problem with LIDAR data. In order to 

keep the standard deviations and stability constant, the tests will be performed using data 

with the center of gravity at the origin of the coordinate system.

The first test is completed with the pipe coverage of 150 degrees which is 43% 

coverage. Data are created using Data Kreator:
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#  Data Kreator ma
Output Rie Name: |data origind.txt 

Radius fi

Spacing in deg. po

Coverage o1 the pipe in deg, ji5o|

N um ber of rings 

S pacing  betw een rings

Start

p "

Exit

Figure 4.8: Coverage-150 degrees. Data Kreator.

As in previous tests, the data are created using the radius of 1 unit, 10-degree 

spacing, and 20 rings with the spacing between the rings of 0.5 units. The coverage of 

the pipe is reduced to 150 degrees in order to detemiine how this will affect the standard 

deviations of the estimated parameters and the stability criteria of the algorithms.

No further changes are applied. Thus, the data are centered around the z-axis and 

the data’s center of gravity is located at the center of the coordinate system.

67

R eproduced with perm ission of the copyright owner, t-urther reproduction prohibited without perm ission.



% Data Flipper

Input File Name: jdata originai.txt 

Scale

Omega ( aboutx-axis) in deg.

Phi ( abouty-axis) in deg.

Kappa ( about z-axis) in deg. 

Translation inx-direction 

Translation in y-çJirection 

Translation in z direction

Flipp Create Data Exit

Figure 4.9: Coverage-150 degrees, Data Flipper

The depicted data are the result of this simulation. The 150 degree coverage of 

the pipe in the x-y window is quite noticeable. There is also a recognizable naiTOw 

pattern in the x-z projection. This pattern represents one of the sides of the cylinder 

being reduced when compared to the y-z projection:
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data ofigiimllxl

Up :
LeH j |S Right 

Do'/m .

Zoom I Zoom 
In I Oui

Scale K s"^  
lector- ! 

ix 9.6

/  64.2

Calculate
Parameters

3-D Graph

Figure 4.10: Coverage-150 degrees, Data Visualisation

The depicted data have been processed in the software and the following chart 

was produced based on the summary o f the numerical analysis:
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Caive.fged
&' Ang!e_u_polar Ar>gie_v_pc alpha * rac U k

-f 40 .70778983 90 18Q 1

Square root of the diagonal terrais ((diag l.i) '‘0.5):
5.07E -02 1.27722E+14 6.46E -02 2.29E-02 6.32E-02

Unsorted B g en va lu es for a real s'ymmetric matrix using TRED2
Eigenvalue 1 0
Eigenvalue 2 = 469.7096
Eigenvalue 3 = 243.7539
Eigenvalue 4 = 36432.86
Eigenvalue 5 54846.48

Unsorted E igenvalues for a real s-ymmetric matrix using SVD
Eigenvalue 1 = 54846.48
Eigenvalue 2 = 36432.86
Eigenvalue 3 - 469.7096
Eigenvalue 4 243.7539
Eigenvalue 5 - 3.80E-13

CNft from TRED C N 4 from SVD Correlation-Coefficient Matrix
6.48E +18 1 1 2.23E-02 -9.04E-02 -1.32E -02 -0 .27629

116.7867836 1.505412393 2.23E -02 1 0.9909461 0.9661954 -0.3153
2 2 5 .W 75962 116.7667836 -9.04E-G2 0.990946 1 0.9595428 •0.30728
1.505412593 225.0075962 -1.32E -02 0.966195 0.9595428 1 -0 .18809

1 1.44E+17 -0 .275289 -0.3153 -0 .188092 1

Table 4: Coverage-150 degrees. Summary table

The value of g is computed correctly without any errors. The value for 1/A-, 

which is the radius of the cylinder, has no errors as well. The difference between the 

expected and the estimated answer in the a lp h a  ( a  ) angle and the / /  angle can be 

explained, as before, by the fact that ihtalpha { a )  angle is unable to distinguish which 

part of the pipe is the beginning and which is the end of the pipe. Moreover, the /c angle 

is calculated based on small errors in the residuals, as explained previously.

As in all instances, the â angle is very well defined and its numerical value o f 90 

degrees conesponds precisely to the expected answer. In addition, the critical parameters
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have corresponding standard deviation values for each calculated critical parameter 

of g , / / ,  , <»•, and k . The standard deviation tables indicate that the angles are strongly

defined with the exception of the / /  angle. In contrast to previous tests, this is a new 

trend of angles being highly correlated. The condition number is not influenced by 

changing coverage from 180 degrees to 150.

The next test is completed to detemiine the effect o f decreased coverage of the 

pipe on the outcome of the numerical analysis. The following test is completed in 130- 

degree coverage with the same parameters as in the previous test.

[ i ]

Output File Name; jdata originai.txt

Radius 1
Spacing in deg. |io

_

1 Coverage of the pipe in deg. [130

1 Number of rings |20

1 Spacing between rings jo.5

1 Start Exit

Figure 4.11; Coverage-130 degrees, Data Kreator

In order to better control the environment, Dai a Flipper is used with the scale set 

to one while the other parameters are zero.
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Data Flipper

Input File Name: jdata originai.txt 

Scale

Omega (about x-axis) in deg.

Phi ( about praxis) in deg.

Kappa ( about z-axis) in deg. 

Translation in x-direction 

Translation in y-djrection 

Translation in z direction

Flipp Create Data ! Exit

Figure 4.12: Coverage-130 degrees, Data Flipper.

Data are depicted in the figure below. The change in the coverage o f the pipe is 

noticeable in the x-y window.
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dalaoriQirid.txt

Left I  !b Right

Down :

Zoom
Out

Scale J1.5 
factor' 

c  7.2

Selculate
Param eters

3-D g raph

Figure 4.13: Coverage-130 degrees, Data VisuaJization

The Point Cloud Data 3-D Adjuster and Analyser is mn. The output files are 

combined into one summary chart, which is depicted below. The input and output files 

can be found in Appendix A, in the folder entitled “ 130 deg coverage”.
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Converged answers:
S Ar)gle_u_polar Angle v po! alpha ‘ radtoc 1 !k

-1 -124.9604723 90 130 1

Sguare root of the diagonal terms ((diag !J) ''0.5):
5.90E-Q2 3.16E-05 1.10E-02 8.&3E-03 4.80E-02

Unsorted Eigenvalues for a real s-ymrnetric matrix using TRED2
Eigenvalue 1 -2.33E-26
Eigenvalue 2 = 230.4094893
Eigenvalue 3 = 423.3083807
Eigenvalue 4 26640.54901
Eigenvalue 5 = 53021.17753

Unsorted Eigenvalues fora real symmetric matrix using SVD
Eigenvalue 1 63021.17763
Eigenvalue 2 26640.54901
Eigenvalue 3 280.4094893
Eigenvalue 4 = 423.3083807
Eigenvalue 5 7.62E-13

CN'iffrotv TRED CNif from SVD Correlation-Coefficient Matrix
-2.27 E+30 1 1 -1.04E-20 -0.828559 5.43E-03 -6.63E-03

189.084BIQ 1.990243426 -1.04E-20 1 -1.17E-19 1.81E-19 -6.03E-2Q
125.254259 189.084819 -0.8285591 -1.17E-19 1 -0.2733882 0.21790036

1.990243426 125.254259 5.43E-03 1.81E-19 -0.273388 1 -0.8192815
1 6.96E*16 -6 .63603 -6.03E-20 0.2179004 -0.8192815 1

Table 5: Coverage-130 degrees, Data Summary

As in previous examples, the parameters are calculated correctly with the 

exception of the angle in the x-y plane. It is important to emphasize that this is a singular 

example. When the û  -angle is 90 degrees and the cylinder is wrapped around the z axis, 

the / /  -angle is calculated based on calculation errors. The remaining parameters are

well-defined based on the standard deviations. The values are recovered with the 

standard deviation in millimeters for linear parameters and hundredth o f a degree for 

angular parameters. The correlation-coefficient matrix suggests strong inversely 

corrected g and / /  angle parameters. The condition number increased in value which 

suggests that the reduction in coverage have impacted the solution.
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The data are further reduced down to 100-degree coverage to further investigate 

the influence of the coverage on the outcome of the statistical analysis.

fc Data Kreator

1

Output File Name: jdata originai.txt 

Radius

Spacing in deg. jio

Coverage of the pipe in deg.

Number of rings 
Spacing between rings

20

0,5

Start Exit J
Figure 4.14: Coverage-100 degrees, Data Kreator.

There is no rotation or translation introduced to the data in order to keep them consistent 

with previous tests.

75

R eproduced  with perm ission  of th e copyright owner. Further reproduction prohibited without perm ission.



Data Flipper
'-T  > , r  ;  y A  * 5  -. W:'-

Input File Name; jdata originai.txt 

Scale

Omega (about x-axis) in deg.

Phi ( about y-axis) in deg.

Kappa ( about z-axis) in deg. 

Translation inx-direction 

Translation in >^direction 

Translation in z direction

Flipp Create Data Exit

Figure 4.15; Coverage-100 degrees, Data Flipper.

The data are displayed in three projections for easy comprehension and data 

visualization. When observing the data, it is noticeable that the coverage is decreased to 

100 degrees in the x-y window as well in the x-z window. The data in the x-z window 

are a projection of the pipe from the side view. The y-z projection allows for 

visualization of the frontal side o f the pipe.
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d ata  ofiginal.tct

Up i 

Left I [5 Right 

Down

Zoom Zoom 1 
In j Out

Scale r f s  
factor I 

1.334401

J 43 7422037

Calculais
Parameters

3-D Graph i

Figure 4.16; Coverage-100 degrees. Data Visualization.

The following compiled chart presents the numerical summary for the data set described 

above:
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C onverged  an sw ers:
Q A ngle_u_polar Angle_v_ii alpha * radti I l k

-1 330 .9218981 90 180 1

Square r o d  of the d iagonal term s ((diag I.i)''0.5):
0 .437186101 2 .49533E + 13 1.50E-02 1.42E-02 0.206844

Unsorted S g e n v a lu e s  for a real sy^mivetrh matrix using i'RED2
Eigenvalue 1 - -1.37E-26
Eigenvalue 2 = 5.4495954
Eigenvalue 3 1451.8416
Eigenvalue 4 - 7874.76
Eigenvalue 5 = 30834.099

U nsorted E igenvalues fo ra  real sym m etric matrix using SVD
Eigenvalue 1 = 30884 099
Eigenvalue 2 = 5.4495954
Eigenvalue 3 = 1451.8416
Eigenvalue 4 - 7874.76
Eigenvalue 5 = 1.74E-14

CNftfrom  TRED C N iffrom  SVD Correlation-Coefficient atrix
-2 .25E +30 1 1 -0.45Ù2544 0.154464 -0 .39538 0 .991054

5667 .227917 5667 .227917 -0 .45625 1 -0.69769 -0 .21085 -0 .4 8 6 2 8
21 .27236157 21 .27236157 0.154464 -0.5976903 1 0.14030Ô 0.261401
3 .921909921 3 .921909921 -0 .39538 -0.2108521 0.140306 1 -0.39^7^

1 1.7SE+1S 0.991054 -0.4862831 0.261401 -0 .39474 1

Table 6: Coverage-100 degrees, Data Summary.

The summary chart illustrates a strong trend of decreasing precision of the g 

parameter. There is also a similar trend in the definition o f the radius o f the cylinder. 

Moreover, the correlation-coefficient matrix demonstrates that all parameters are 

becoming positively correlated or inversely correlated. The condition numbers show 

highly unstable equations, which is a continuation of the trend from the previous test. 

Thus, the prediction of a highly degradable precision of the calculations is demonstrated. 

Further testing will demonstrate this trend more dramatically.
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The next step is to reduce the coverage of the pipe even further and to detennine 

whether this will influence the five parameters as well as the stability criterion. In order 

to maintain the standard deviations and the stability constant, the tests will be completed 

using data with the center of gravity at the origin of the coordinate system. The test is 

earned out with the pipe coverage of 70 degrees. Once again, the data are created using 

“Data Kreator”.

Output File Name; jdata originai.txt

Radius

Spacing in deg.

Coverage of the pipe in deg.

Number of rings 
Spacing between rings

Stu:t !

|TF
[?r
|2tT

0.5

Exit

Figure 4.17: Coverage-70 degrees. Data Kreator.

As in previous examples, the data are created using the radius of 1 unit and 10- 

degree spacing. There are 20 rings with the spacing between the rings of 0.5 unit. The 

coverage o f the pipe is reduced to 70 degrees in order to deteimine how it will affect 

standard deviations and the algorithms’ stability. No further changes are applied and the 

data are centered around the z-axis. The data’s center of gravity is located at the center of 

the coordinate system.
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dalaoncinal.M

Down ;

Zoom Zoom 
In Out

Scale j i .5 
(actor 

X . 4 2

y 156.6

Eelculale 
Paremeters ;

3-D Graph

Figure 4.18; Coverage-70 degrees, Data Visualization.

The chart below represents the statistical summary of the calculated data.
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Convt^rged answers:
g Angie_u_po!ar Ang!e_v poir a lp h a  * .r a d tc 1J k

-1 1.72E-09 90 180 1

Square root of the diagona! terms ((diag l.i)‘̂ 0.5):
0 .9 9 3 6 8 4 5 4 1 3 . 1 6 E - 0 5 1 . 0 5 E - 0 2 1 . 4 4 E - 0 2 0.4760878

Unsorted Egenvafues for a real symmetric matrix using TRED2
Eigenvalue 1 - -8.69E-17
Eigenvaiue 2 = 4840.76439
Eigenvalue 3 = 0.83858263
Eigenvalue 4 = 1343.50747
Eigenvalue 5 = 41938.Q166

Unsorted Egenvaiuss for a real symmetric matrix using SVD
Eigenvalue 1 41938.0166
Eigenvalue ^ 2 = 1343.50747
Eigenvalue 3 = 0.83858263
Eigenvalue 4 = 48^0.76439
Eigenvalue 5 — 1.15E-14

c m  from TRED CNitfrom SVD Co.'relation-Coeifici e.nt Matrix
-4.82E*20 1 1 -6.74E-22 -8.83E-02 1.61E-10 0.998198

8.663511204 31.2153207 -6.14E-22 1 -9.72E-19 -8.38E-20 -6.81 E-22
50010.59535 50010.59535 -8.&3E-02 -9.72 E-19 1 -4.17E-11 -3.63E-02
31.2153207 8.663511204 1.61E-10 -8.38E-20 -4.17 £-11 1 1.62E-1Q

1 3.65E-r18 0.99819804 -6.81 E-22 -3.63E-02 1.62E-1Û 1

Table 7: Coverage-70 degrees, Data Summary

There is clearly visible the degradation of the parameters in terms o f the precision. There 

is almost now a degradation of 100% of a g parameter, and 47% of radius. However the 

correlation-coefficient matrix shows that the parameters are not correlated. The 

exception is the g parameter and radius. Moreover, the stability criterion suggests that 

the equation is more stable in this test that in previous one. The stability is almost as 

good as in the 150 degree coverage test. This suggests that stability criteria can not be 

used alone. It is obvious that stability criteria become stable since the error is so great 

that even a large change in eirors will not have much influence on the poorly defined 

parameters.
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The last test presented is the 20-degree coverage test. This test demonstrates that 

data without errors can be calculated even with extremely low coverage. The user should 

be aware that this software would calculate the parameters even though they may not be 

coirect or well defined. The numerical summary is designed for the user to verify the 

answer. The 20-degree coverage test was the lowest coverage that the software was able 

to complete. This software is unable to process data with less than 20-degree coverage.

Output File Name; jdata originai.txt 

Radius R

Spacing in deg.

Coverage of the pipe in deg.

Number of rings 
Spacing between rings

Start

K

[t 5

Exit

Figure 4.19: Coveragc-20 degrees, Data Kreator.

The data are depicted below. There is a clearly visible arch in x-y window. However, 

the data in the x-z window resemble a line instead of a rectangle.
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3-p AdjHSter a n d # M y se r  .

d a ta  cnginal Ut

Left |5

Zoom j Zoom j 
In 1 Oui ;

Scale 
factor 

<. 1,8
F

V 127.2

-fty r *Ry

-Rz fRz
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P aram eters

3-D Graph 

Exit

Figure 4.20: Covcrage-20 degrees, Data Visualization.

The summary is a good example of how the results may look when there is no 

random error introduced to the data. The parameters are recovered ver>' well. However, 

the estimates are showing an extremely poor definition of those parameters.
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C on verged  an sw ers:
g Angle__u_polar A ngle_v_f alpha * radti I l k

-1 -3 9 8 .5 3 5 9 5 0 6 90 9.66E-14 1

Square root o f  th i)^0.5):
14 .30038906 1.37E+15 0 .9 5 7 4 1 5 4 .1 0 2 6 7 4 2 8 .797347

U nsorted  E g e n v a lu e s  fo ra  real sym m etn c  matrix using TRLD2
E igenvalue 1 = -1.60E -29
E igenvalue 2 = 5 .W E -0 2
E igenvalue 3 = 9.0545 f 05
E igenvalue 4 - 51 .552019
E igenvalue 5 = 1 431 .8757

U nsorted  E g e n v a lu e s  for a rea l sym m etric  matn'x using SV D
E igenvalue 1 1431 .8757
E igenvalue 2 = 51 .552019
E igenvalue 3 5 .10E -02
E igenvalue 4 - 9 .0 5 4 5 1 0 5
E igenvalue 5 = 3.41E -15

C N itfrom  TRED C N itfrom  SVD Correlation-Coefficient Matrix
-8.93E+31 1 1 -0 .9 5 7 7 2 5 3 -0 .86016 -0 .9 8 0 U 0 .9 9 2 1 5 3

28084 .26171 2 7 .7 7 5 3 5 5 5 5 -0 .95773 1 0 .7 0 6 2 2 9 0 .9 9 4 3 9 3 -0 .9 8 5 8 7
158.139489 2 8 0 8 4 .2 6 1 7 1 -0 .8 6 0 1 6 0 .7 0 6 2 2 8 6 0 .7 7 5 3 8 7 -0 .80034

27 .77535555 158 .139489 -0 .9 8 0 4 4 0 .9 9 4 3 9 2 7 0 .7 7 5 3 8 7 1 -0 .9 9 6 6
1 4.20E-^17 0 .9 9 2 1 5 3 -0 .9 8 5 8 7 1 2 -0 .80034 -0 .9966 1

Table 8: Coverage-20 degrees, Data Summary

As mentioned above, the statistics are very degraded. The statistical deviation of 

the g parameter is calculated to be +/-14.3 units when g = -1 and the radius error is 

calculated to be at +/-S.79 units when radius = 1 unit. The condition numbers are 

suggesting that even a small change will greatly influence the stability of the algorithm. 

This phenomenon occurs because this is a point where the program numerically 

overflows if  lower coverage is introduced. There is no stability of the algorithm at this 

point and the numerical summary demonstrates it very clearly.
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4.3 Summary of Results

It should be noted that the software presented in this study, Point Cloud Data 3 0  

Adjuster and Analyser, is comparable with software Cyclone by Cyra (Hong, 2003). 

However, testing has revealed that Point Cloud Data 3D Adjuster and Analyser is able to 

calculate a more accurate approximation of the radius. Table 9 depicts a comparison of 

pipe diameter measurements for the two software packages.

Pipe ID Materials Actual
Diameter

3D
Adjuster

Errors Cyclone 
by Cyra

Errors

1 Brass 38.02 33.81 4.21 29.99 8.03
2 PVC 38.05 21.74 16.31 21.04 17.01
3 Stainless

Steel
31.69 24.60 7.09 23.63 8.06

4 Galvanized
Iron

80.9 74.64 6.26 77.28 3.62

5 Steel 63.45 54.35 9.10 55.56 7.89
6 Ceramic 111.4 112.21 -0.81 109.23 2.17
7 Aluminum 113.25 113.09 0.16 110.77 2.48

Table 9: Results of Diameter Measurements by Two Different Softrware Packages (Unit: mm)
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5.0 C O N C L U SIO N S A N D  R E C O M M E N D A T IO N S  

5.1 Conclusions

The importance o f using a full set of numerical analyses in order to establish 

algorithm stability was demonstrated in this thesis. Various numerical methods were 

implemented to derive the goodness-of-fit o f the cylinder. The findings indicate that it is 

possible not only to find the goodness-of-fit o f the results, but also to foresee the 

behaviour of the algorithms if the condition numbers were calculated. The condition 

numbers combined with the use o f standard deviations and con elation-coefficient 

matrices in a controlled environment allowed to analyze the solution and establish the 

behaviour o f the solution as changes were introduced into the point data cloud.

The test of the g  parameter reveals that as this parameter increases, angles / /  and 

â  increase in precision. This is particularly noticeable with the / /  angle, which is 

extremely poorly defined when it is wrapped around the z-axis and its centre of gravity 

corresponds to the origin o f the coordinate system. This finding is not surprising given 

that angles are better defined over great distances. This is also clearly seen in the 

correlation-coefficient matrices. The conelations between the g parameter and the / /  

angle and the û  angle are almost 1 as the distance is increased to 100000 units.

The parametrization methods used to derive the critical parameters in the 

algorithm are taking full advantage o f this property. The alpha ( zr ) angle is not 

influenced by this property since it is defined locally and it is not dependent on the 

distance from the origin. The correlation-coefficient matrix clearly shows almost a zero 

correlation between the g parameter and the alpha { a )  angle.
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Moreover, the radius o f the cylinder is not influenced by increasing the distance 

from the origin. This allows the radius to be well defined wherever the cylinder is 

positioned. In addition, the increase in the distance allows the radius to be less correlated 

with the g parameter. The only degradation in the quality o f the estimates is seen in the

g  parameter alone. However, this degradation is minimal if compared to the distance. 

For example, it was observed that at a distance of 100,000 units, the degradation of 

precision is 0.3819 units, which corresponds to a loss o f precision of 3.8 centimetres in 1 

km.

The test of the coverage of the pipe revealed that decreasing the coverage does not 

influence th e // and z? angles greatly. Therefore, th e // and ÿ angles are not a function 

o f the rc ige. However, the test strongly suggests that the //.a lpha  angle is strongly 

influer, i  by the changes in coverage of the pipe. The most susceptible parameters are 

the g parameter and the radius. They both decrease in precision as the coverage is 

decreased. Moreover, the condition numbers drastically increase in value as the threshold 

o f 130 degrees is exceeded. This is a sign that less than 130-degree coverage will 

destabilize the precision of calculations. The 100-degree coverage is an example of this 

trend. The 100-degree coverage test shows a rather large decrease in the precision of the 

g parameter and the radius. Those errors are amplified even more in the 70-degree and 

20-degree coverage configurations.
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5.2 Recommendations

One o f the recommendations for data collection is to maintain the scan coverage 

between 130 degrees and 360 degrees, since this coverage produces the most reliable 

algorithms. Moreover, it is recommended that a distance of at least 10 times the radius is 

maintained when pipes are scanned. The distance should not exceed 10,000 times the 

radius. This is necessary to ensure that angles are well defined and that the g  parameter 

has not been corrupted. In addition; it is recommended that the effects of operational 

errors on the solution are analyzed. Operational eirors occur during data collection and 

they may distort the data and affect the solution. It is also desirable to study data filtering 

techniques in order to create algorithms that are able to detect and reject blenders and 

outliers.

Furthennore, intensity values should be taken into consideration to improve the 

quality of the solution. Studying the influence of incident angles and range may produce 

additional useful information in calculating spatial orientation. Also, the use o f different 

materials as targets will help to better understand the point cloud data coverage of the 

pipe.
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APPEN D IX

Software and directory folders are included on the attached CD. 

Input and output test files are included on the attached CD.

91

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.


