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     Over the last century, the energy storage industry has continued to evolve and adapt to changing 

energy requirements. To run an efficient energy storage system two points must be considered. 

Firstly, precise load forecasting to determine energy consumption pattern. Secondly, is the correct 

estimation of state of charge (SOC). 

     In this project there is a model introduced to predict the load consumption based on ANN 

implemented by MATLAB. The Designed intelligent system introduced for load prediction 

according to the hypothetical training data related to two years daily based load consumption of a 

residential area. 

     For another obstacle which is accurate estimation of SOC, two separate models are provided 

based on ANN and ANFIS for Lithium-ion batteries as an energy storage system. There are several 

researches in this regard but in this project the author makes an effort to introduce the most efficient 

based on the MSE of each performance and as a result the method by ANN is found more accurate. 
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Introduction 
 

     Energy storage systems provide a wide array of technological approaches to managing our 

power supply in order to create a more reliable energy infrastructure and bring cost effectiveness 

to both producers and consumers. Energy storage system is categorized to different methods 

including Mechanical, Electrochemical, Chemical and Electrical techniques to store the excess 

electrical energy produced by all resources. In spite of the fact that each technic has its own merit 

and disadvantage, all of them have benefits for electric utilities, end user, equipment vendors, 

energy service providers, regulators and independent system operators and environment.  

     Although energy storage systems may face us some primary costs, feasibility studies show that 

their applications will provide more benefits than the costs are paid at first. Each system can 

provide some of this applications or a combination of them which includes Grid Angular Stability 

(GAS), Grid Voltage Stability (GVS), Grid Frequency Excursion Suppression (GFS), Regulation 

Control (RC), Spinning Reserve (SR), Short Duration Power Quality (SPQ), Long Duration Power 

Quality (LPQ), 3-hr Load Shifting (LS3), 10-hr Load Shifting (LS10). 

     Optimal scheduling of energy storage (ES) systems requires two pieces of information to be 

known. First is an accurate prediction of the load profile over a time period where the ES unit will 

operate and the second available energy in the system at the time of scheduling that is determined 

through state-of-charge (SOC) estimation.  

    To get more precise, there is some clarification provided regarding aforementioned prevalent 

energy storage systems, their benefits, applications, utilities, then we draw an analogy between 

them. Afterwards, Artificial Neural Network(ANN) and Adaptive Neuro Fuzzy Interface System 

(ANFIS) are briefly introduced. In the next step implemented model based on Artificial Neural 

Networks(ANN) as the target of load forecasting for optimal scheduling of ES Systems is 

provided.  

     Subsequently, there is another implementation for state of charge estimation for lithium ion 

batteries. In order to achieve an accurate model for SOC estimation, we consider the lithium ion 

batteries in cell scale and provide an estimation method based on both Adaptive Neuro Fuzzy 

Interface System (ANFIS) and Artificial Neural Network (ANN). The system is trained and tested 

according to an original data prepared for this project. Also an analogy is drawn between two 

methods to nominate more efficient and accurate techniques for this purpose. 



2 
 

     The implementations of this project are performed by Artificial Neural Network (ANN) and 

Adaptive Neuro Fuzzy Inference System (ANFIS). The software provides aforementioned tools is 

MATLAB R2016a Academic for students and the device is Laptop “LENOVO ideapad Z510”. 
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Chapter 1: Energy storage technologies 
 

 

1.Energy Storage System (ES) 

 

     Power systems always face serious challenges with depletion of fossil fuels, environmental 

obligation, integration of renewables, electric vehicle, demand response, electricity market and 

smart grids. Along the same line, energy storage system is a necessity to maintain supply and 

demand balance and also provide ancillary services for power systems. By the way of illustration, 

when electricity exceeds by the other sources such as solar cells or nuclear power plants, it can be 

stored for a long period of time by the help of sustainable technologies such as pump hydro energy 

storage systems. Such energy storage systems are considered as local sources to feed the local 

loads which are connected together to work as microgrids and subsequently they are synchronized 

with the central grid called macro grids. This cooperation can meet the supply and demand 

satisfaction to provide more efficient and reliable system.  In this section we introduce different 

technology of ES, benefits and applications. Here is a categorized list for prevalent energy storage 

methods: 

 

 

1.1. Mechanical Energy Storage Systems 

 

     Electrical energy is converted to mechanical mode for energy storage. Pumped hydro energy 

storage (PHES), compressed air energy storage (CAES) and flywheel energy storage are the most 

common technologies for Mechanical energy storage systems.  

 

 

1.1.1. Pump hydro energy storage (PHES) 

 

    For load levelling (peak shaving) Pumped Hydro Energy Storage (PHES) is the most successful, 

cost effective and widely used ES techniques available to electrical ancillaries and auxiliaries. 

PHES can be useful for the storage of electrical energy which is produced by solar and wind 

energy. Excessive electrical energy is used to water supply (lake, river or any reservoir) at the 

lower level to a higher reservoir with smaller size which is shown in fig. 1.1. As demand exceeds 
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the normal generation capacity, water will flow to the lower reservoir to a hydraulic turbine to 

drive the electric generator to produce electrical energy in order to supply additional demand. 

     In most PHES the generator is reversible and by gaining power from the grid acts as water 

pump as well with changing from turbine to motor mode. So, only in a few minutes The overall 

energy recovery efficiency of pumped storage, that is, the recovered electrical energy as a 

percentage of electrical energy used to pump water, is about 70 per cent. [1] 

     Relatively, there are few appropriate sites at which there is supply reservoir at lower level and 

another one at higher level. It is worth to be mentioned that by the help of natural or excavated 

underground caverns to be considered lower reservoirs, the number of possible PHES sites are 

increased. The Power and Energy of PHES can be gained from equations 1 and 2.  

 
𝐸 = 𝑚𝑔ℎ (1) 

 

where,  

E= potential energy stored in PHES system, J, m = mass of water body, kg, g=gravitational 

acceleration, m/sec2, and h = hydraulic head height, m. 

 

and,  

𝑃 = 𝜌 𝜂 𝑄 ℎ 𝑔 (2) 

 

P = generated output power, W, ρ = fluid density (1000 for water), kg/m3, η = system efficiency,       

Q = fluid flow rate, m3/sec, h = hydraulic head height, m, and g = gravitational acceleration, 

m/sec2. 
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Fig. 1.1: Illustrating the Pumped Hydro principle [2] 

 

 

 

1.1.2. Compressed air energy storage (CASH): 
 

     By Compressed air energy storage (CASH), during off-peak when the low cost electrical energy 

is available, excessive electrical energy is used to compress air. For power plants with energy 

storage in excess of approximately 100 MWh or 5 hours of storage [1] the CASH is the most cost 

effective method. The compressed air is most economically This technology stores compressed air 

underground in salt caverns, hard rock caverns or porous rock formation.  

       A CAES plant with underground storage must be built near a favorable geological formation. 

Aboveground compressed air storage in gas pipes or pressure vessels is practical and cost effective 

for storage plants with less than about 5 hours, however some above ground systems with up to 

about 10 hours of storage may be economically attractive depending on plant design and site 

conditions. [1] 

     During compassion the air is heated but before storage in order to prevent any damage to the 

reservoir inner wall, it is cooled. At time of additional demand, the compressed air is released and 

heated in a combustor and then flows to a gas turbine which is coupled to a motor/generator. 
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     Since CASH reservoirs are huge and expensive for aboveground, underground reservoir is 

considered. Among the possibilities are natural caverns, deep aquifers, depleted gas or oil 

reservoirs mined-out rocks or salt caverns, and abandoned mines. [1] A compressed air energy 

storage is shown in fig. 1.2. 

 

 

Fig. 1.2: Illustrating the Compressed air energy storage [3] 

 

 1.1.3. Flywheel storage: 
 

     Traditionally, flywheels have been used for machines to have a smooth operation. The primary 

models consist of stone wheel coupled to an axel. Now, they are more complex and modern 

flywheels with the composition of steel rotor and magnetic bearings are considered as an energy 

storage to gain and provide mechanical energy by an integrated motor/generator system. The 

flywheels are used in supplementary UPS in different industries.  

     Currently, applications of this technology for the grid is in energy storage systems includes 

Grid Angular Stability (GAS) because of fast injection and absorption of real power for 1 – 2 sec 

periods and also Short Duration Power Quality (SPQ). For other applications electric vehicles and 
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intermediate storage for renewable energy for power quality issued can be mentioned. Energy can 

be stored in flywheels can be calculated by eq.3.   

  𝐸 = 0.5 𝐽 𝜔2 m (3) 

 

According to eq.4 J is the moment of inertia, kg.m2 (depends on mass and geometry of object) 

ωm is the rotational speed, rad/sec   

𝐽 =∫ 𝒓𝒅𝒎 (4) 

r is the distance of each spinning mass element dm to the axis of rotation  

 

Based in eq.5 for a circular disc flywheel of radius r and mass m: 

J = m r2 (5) 

 

Circular High-Mass Rotating Body 

By substituting J into E we have eq.6 as below:  

𝐸 = 0.5 𝑚 𝑟2 𝜔𝑚 2 ≈ 0.5 𝑚 𝑣2 (6) 

 

In which ν is the linear velocity of the flywheel outer rim. 

     There are two different types of flywheel energy storage. High-power flywheels are more 

appropriate for fast discharge in order to make a prompt response to the grid. On the other hand, 

high energy flywheels are more used for long discharge duration. fig. 1.3 shows a schematic of 

flywheel storage system.  

   
 

Fig. 1.3: Illustrating the Flywheel storage [1] 
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1.2. Electrochemical Energy Storage Systems 
 

     Electrochemical method stores energy in chemical reactants producing charges according to 

how batteries work. There are several types of batteries with different advantages which are 

clarified as below: 

 

1.2.1. Flow batteries 

 

     They are recognized as a favorable technology for large systems, because they show flexibility 

regarding system design and are eminently scalable. Mechanism wise, both batteries and 

capacitors work based on electrochemistry but batteries have higher energy density Capacitor have 

higher power capability but capacitors store energy directly as charges and have higher power 

capability. Different types of widely used batteries and a brief analogy between them is shown in 

table 1.1.  

 

Battery Lead-acid NaS Li-ion VR 

Advantages 

Low cost, and 

good charging 

rate 

Potential low 

cost, high cycle 

life, high energy, 

good power 

density, and 

high efficiency 

High specific 

energy and 

energy density, 

low self-

discharge, and 

long cycle life 

High energy, 

high efficiency, 

high charge rate, 

and low 

replacement cost 

Disadvantages 

Limited energy 

density, and 

hydrogen 

evolution 

Thermal 

management, 

safety, and seal 

and freeze-thaw 

durabilities 

Low charging 

rate, and safety 

(potential of 

fire) 

Cross mixing of 

electrodes 

Table 1.1: Different types of most used batteries and differences 

 

     Because of low cost and good charging rate, Lithium-ion batteries draw the attention of 

industry. For single-function applications of Lead-acid batteries Grid Angular Stability (GAS), 

Grid Voltage Stability (GVS), Grid Frequency Excursion Suppression (GFS), Short Duration 

Power Quality (SPQ) and Long Duration Power Quality(LPQ) can be mentioned.  
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1.3. Chemical Energy Storage Systems 
 

     Electricity can be stored during chemical reactance. One of the methods to stabilize energy 

during the excess of electricity generation is gasification. For instance, producing hydrogen by the 

help of water electrolysis and synthetic natural gas which is explained in 2.3.2. Another way to 

supply electrical energy during fluctuation is to have a reliable capacity for gasification of biomass 

and carbon containing waste in the energy sector. Gasification is the reaction of carbonaceous raw 

materials with steam at high temperature to produce syngas (mainly CO, CO2 and H2) [4]. 

     When electrical energy is needed, syngas can be used for combustion to generate electricity but 

when electricity exceeds, syngas can be converted to different fuels. In [5], [6], [7], [8] and [9] the 

final processed material can be methane, diesel, methanol and also gasoline. In fig. 1.4 the concept 

of an energy infrastructure utilizing the storage of renewable energy in chemicals through water 

electrolysis and biomass gasification. Always, there is cooperation between electrolysis and 

gasification because the amount of hydrogen which is produced in gasification is low in 

comparison with the syngas conversion but it is compensated with water electrolysis [12]. 

 

  

 

 
Fig. 1.4: The concept of chemical energy storage system process [11] 

 

Wind/solar power 

comsumption 
high electricity 

Water 
Electrolysis 

Hydrogen 
storage 

Combustion 
and electricity 
production 

CO
2 

Biomass and waste 

Gasification 
Catalytic 
conversion 

Natural gas grid 

Methane 
of H /CO/CO 

Methane 
storage 

Liquid-fuels / chemicals 

Pyrolysis 
Upgrading of 

Liquid fuel chemicals 
(e.g. Methanol, DME, 
liquid hydrocarbons) 
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1.3.1. Hydrogen 

 

     The hydrogen is a tool as energy storage molecule in itself or during of the synthesis of other 

storage molecules. During electrolysis process electrical energy can be converted to hydrogen, 

stored and re-electrified again. Hydrogen has less efficiency in comparison with batteries but it 

has much higher energy storage even more than CAES.   

 

 

1.3.2. Synthetic Natural Gas (SNG) 

 

     Gasification is a process in which carbonaceous raw material in high temperature and steam 

produce a synthesis gas, which is a fuel gas mixture consisting primarily of hydrogen, carbon 

monoxide, and very often some carbon dioxide like CO, CO2 and H2. Synthetic Natural Gas (SNG) 

or Power-to-Gas (P2G) is one of the chemical energy storage system technologies. During 

electricity generation by renewable energy, when production exceeds the demand, electricity is 

used for water electrolysis to produce hydrogen (H2) and oxygen (O2). The oxygen is released to 

atmosphere or flows for industrial purposes. But as hydrogen is flammable, it should be inhibited. 

Another option is methane (CH4) production. CH4 can then be obtained starting from CO2 and the 

earlier produced H2 by methanation. [10]    

     It is worth to mention that as the CO2 produced in combustion process will be used in SNG, 

so the balance of the CO2 is zero. With all the pieces in place, the demerit of this technology is 

the low efficiency (about 36%) which can be risen up to 55% by using heat recuperation. [11] 

   

   

1.4. Electrical Energy Storage Systems 
 

     By this method, the energy is stored directly as charges. For the technologies of electrical 

energy storage supercapacitors, superconducting magnetic energy storage (SMES) and thermal 

energy storage system can be mentioned.  

 

 

1.4.1. Supercapacitors 

      

     Supercapacitors have similar mechanism in comparison with batteries including application in 

energy storage, the usage of liquid electrolytes and cell configured to meet voltage, power, and 
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energy requirements. But capacitors have higher power capability. Regarding projected 

applications higher energy and higher voltage applications, power quality and advanced 

transportation, fuel cell and micro-turbine load inrush support, leveling of fluctuating power flow 

from wind and solar generators can be indicated.  

     Supercapacitors categorized to electrostatic, electrolytic and electrochemical capacitor. fig. 1.5 

shows a typical model of capacitor. The energy of supercapacitors like capacitors can be achieved 

according to eq.7 as below:  

 

E=1/2. CV2 

𝐶= 𝜀 𝐴/𝑑 

Q = 𝐶 𝑉 
 

(7) 

Where Q is positive or negative charge, V is the potential difference between the plates in volt, C 

is capacitance in Farads, 𝜀 the dielectric constant, A is the area of the plate in m2 and d is the gap 

between the plates. 

 

 

 
 

Fig. 1.5: Typical model of capacitor 

 

 

RS (ESR): Internal resistance, Ω, Vr: Rated voltage, V and I0: Fixed current, A  

And by eq.8 resonant frequency, eq.9 maximum power and eq.10 discharge efficiency in load 

resistor and eq.11 Constant Current Charge/Discharge Efficiency in RLC circuits can be calculated 

as below: 
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   1 

f0=  

2π √LC 

 

(8) 

          V2 

Pmax =  

   4RS 

 

(9) 

RL
 

η=  

RL+RS 

 

(10) 

    (Vr-I0RS) 

η=  

    (Vr+I0RS) 

 

(11) 

  

 

1.4.2. Superconducting Magnetic Energy Storage (SMES) 

 

     Superconducting Magnetic Energy Storage (SMES) systems store energy in the magnetic field 

created by the flow of direct current in a superconducting coil which has been cryogenically cooled 

to a temperature below its superconducting critical temperature as is shown in fig. 1.6. SMES 

Achieves Novel Storage Technology Based on 3 Concepts: 

-Superconductors carry current with no resistive loss 

-Electric current induces magnetic field 

-Magnetic field carries a form of energy that can be restored 

 

     In SMES since there is no conversion except AC to DC, unlike batteries there is no 

thermodynamic loss. Also, despite flywheel, compressed air and pump hydro energy storage 

systems, SMES has no any mechanical loss. Applications which are compatible by SMES are Grid 

Angular Stability (GAS), Grid Voltage Stability(GVS) and Short Duration Power Quality (SPQ).  

The energy of SMES is calculated in eq.12 as below: 

 

E=0.5 L I2 (12) 

 

In which L is coil inductance and I is the related current.  
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Fig. 1.6: Superconducting Magnetic Energy Storage (SMES) Structure [1] 

 

     As it is shown in fig. 1.6, the superconducting energy storage system includes a coil which is 

connected to the network by power converter system. Basically, there are separate controllers for 

coil and the PCS. There are two other units for cooling and coil protection can be seen in order to 

increase the cycle life of the superconducting energy storage. 

 

1.4.3. Thermal Energy Storage Systems 

 

     There is a way to use electrical energy to store ice or freezing liquid water during the 

distribution of low cost electricity and use the coolness rather than air conditioning when the price 

is high. This section is more related to Mechanical Engineering and related fluid science, so it out 

to continue with other sections which is more related to the concept of this project.  

 

     After the clarification about energy storage system and different technologies, techniques which 

are used for implementations of this project are introduced. In this section, there is brief 
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introduction regarding the tools have been used for this implementation. The Artificial Neural 

Network (ANN) and Adaptive Neuro Fuzzy Interface System (ANFIS), their application and 

mechanism is provided as below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

Chapter 2: Implementation techniques 
 

2.1. Artificial Neural Network (ANN) 
 

     Artificial Neural Network (ANN) is a modelling tool which is based on intelligent machine 

learning. This modelling method is utilized in different applications including system modeling 

[13], classification [14] and control [15]. The mechanism of ANN is based on biological neural 

networks in human brains.  

     The ANN learns continuously to improve its implementation by using a data as an example but 

without any task-specific programming. For instance, regarding image processing, ANN learn to 

recognize a flower image with analysis of the pictures labels “flower” and “not flower” and by 

using the analytic result can draw an analogy between the flower image with other images.  

     NN includes cells as artificial neurons which are called analogous and axons in biological brain. 

The neurons connect together by synapse which can act as a bridge for signal transition [16]. 

Neurons have state which is introduced by logic numbers 0 and 1. Neurons and synapses have 

different values and weight so they can change the signal strength they send to downstream. 

Meanwhile, they are able to be set in order to send specific signal level to downstream.  

     The NN structure is multi-layer in which different layers conduct various tasks. Signals from 

the first layer as input travel to the last layer as output after passing from other layers in between 

to achieve a main goal which is providing a solution based on the procedure performed in brain. 

Fig. 2.1 illustrates a simple scheme of neural network with three layers.  The neural networks have 

been used in different purposes such as data prediction, image processing, cyber entertainment and 

games, data analysis and medical diagnosis.  

     An artificial neuron network (ANN) is a computational model based on the structure and 

functions of biological neural networks. Information that flows through the network affects the 

structure of the ANN because a neural network changes - or learns, in a sense -based on that input 

and output. ANNs are considered nonlinear statistical data modeling tools where the complex 

relationships between inputs and outputs are modeled or patterns are found. ANN is also known 

as a neural network. 

     An ANN has several advantages but one of the most recognized of these is the fact that it can 

actually learn from observing data sets. In this way, ANN is used as a random function 
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approximation tool. These types of tools help estimate the most cost-effective and ideal methods 

for arriving at solutions while defining computing functions or distributions. ANN takes data 

samples rather than entire data sets to arrive at solutions, which reduces costs. ANNs are 

considered fairly simple mathematical models to enhance existing data analysis technologies. 

     Mostly, ANNs have three layers that are interconnected including the input layer, hidden layer, 

and output layer. The first layer consists of input neurons. Those neurons send data on to the second 

layer, which in turn sends the output neurons to the third layer. Training an artificial neural network 

involves choosing from allowed models for which there are several associated algorithms. 

         In this project there two separate implementations are provided. Firstly, the ANN model for 

load prediction of residential complex is provided according to hypothetical daily dataset for 2 

years. Secondly, there is an implementation by ANN for SOC estimation of lithium-ion batteries 

that is compared to another model for the same purpose which is implemented by ANFIS. 

 

 

 
Fig. 2.1: Scheme of a simple 3-layer neural network 

 

2.2. Adaptive Neuro Fuzzy Inference System 

 
     Generally, The ANFIS refers to an adaptive network which implements the function of a fuzzy 

inference system. System modeling in accordance with mathematical methods is not useful 

anymore on order to handle the area with ill-defined character. On the other hand, fuzzy modeling 
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by taking advantage of if-then method and run qualitative aspects of human knowledge and 

behavior without any quantitative procedures. The fuzzy modelling has been explored by Takagi 

and Sugeno [17]. From then, several applications in prediction and estimation have been found 

[18] and [19]. Although there are various and numerous implementation have been done by the 

ANFIS, there are two aspects need more clarification and better percept: 

1) No standard methods exist for transforming human knowledge or experience into the rule base 

and database of a fuzzy inference system.  

2) There is a need for effective methods for tuning the membership functions (MF’s) so as to 

minimize the output error measure or maximize performance index. [20] 

     Technically, fuzzy system includes five functional units which is shown in fig. 2.2. 

-A rule base unit including a number of fuzzy if-then rules; 

-A database unit which introduces the membership functions of the fuzzy sets in fuzzy rules 

-A decision making unit implements the inference operations on the rules 

-A fuzzification inference which transforms the crisp inputs into degrees of match with linguistic 

values 

-A defuzzification inference unit to transform the fuzzy result of the inference into a crisp output. 

[21] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2: Fuzzy inference system 
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      There are two most famous Fuzzy rule-based Inference System as Mamdani fuzzy method and 

Tagaki-Sugeno (T-S) fuzzy method. Merits of the Mamdani draw considerable attentions to use 

this method in fuzzy projects. It’s intuitive and has widespread acceptance. Besides, it is well-

suited to human cognition [21]. 

     The T-S method is more compatible with linear techniques and guarantees continuity of the 

output surface. On the other hand, it has difficulties regarding multi-parameter synthetic 

evaluation. The problem is it cannot allocate different weight to each input and fuzzy rules. In 

contrast, the advantage of Mamdani method is ANFIS has the ability to learn because of 

differentiability during computation. However, because it is more transparent and has less 

componential exhaustive, the most commonly used fuzzy method is Sugeno. 

     The concept of the adaptive fuzzy network is shown in fig. 2.3. Based on the fuzzy partitioning 

of the input space, the weight of the inputs and number of membership functions the outputs are 

defined. According to the fig. 2.3, for instance, if ANFIS finds input 1 in range 1 and input 2 in 

range 4, the rule 4 will export the related output as X. 

 

  

 

 

 

 

 

 

 

      

Range 1  Rule1 Rule4 Rule7  

Range 2  Rule2 Rule5 Rule8  

Range 3  Rule1 Rule6 Rule9  

      

  Range 3 Range 4 Range 5  

 

 

 

Fig. 2.3: Fuzzy partitioning   
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     The adjustment procedure of the fuzzy network is to set of parameters in order to reduce the 

error between the actual data and the output of the inference system. Along the same line, the most 

appropriate type of membership function shall be chosen. As shown in fig. 2.4 the most common 

use types of membership functions are Triangular and Gaussian Bell for 3 parameters, Trapezoidal 

for 4 parameters and Gaussian for 2 parameters which is used for the implementation of this 

project.  

 
 

Fig. 2.4: Types of membership function 

a) Triangular MF, b) Trapezoidal MF 

c) Gaussian MF, d) Generalized Bell MF[21] 

 

 

 

   In this project the ANFIS technique is utilized to implement an estimation for SOC of lithium-

ion batteries and drawing an analogy with the result achieved from ANN technique and going to 

be explained in section 5.3.1. 
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Chapter 3: 

NN-Based Day-Ahead Residential Load Forecasting for Optimal 

Scheduling of Energy Storage Systems 
 

 

     In this section batteries are considered as a target. They are one of the most efficient and up to 

dated energy storage systems being used for peak shaving in order to discharge to support grid 

during peak time, reduce rating of grid components and asset upgrade deferral, load leveling, 

frequency regulation, spinning reserve to find an accurate schedule for the energy this storage 

system to take advantage from the benefits which can provide. Optimal scheduling of energy 

storage (ES) systems requires two pieces of information to be known. First is the available energy 

in the system at the time of scheduling that is determined through state-of-charge (SOC) 

estimation. Whereas, second is an accurate prediction of the load profile over a time period where 

the ES unit will operate. In residential load applications, the scheduled ES operating period is 

normally a day. 

     Therefore, day-ahead accurate load forecasting for residential customers becomes critical to the 

task of ES scheduling.  Residential electricity customers have a certain pattern for consumption 

that could be learned through historical data. Software agents of artificial intelligence techniques 

have the capability to learn such pattern and complete the load forecasting job. Artificial neural 

networks (ANN) are among the candidates to carry out the load forecasting task, as stated many 

times in the literature. The development of ANN goes through multiple steps. The network size 

has to be first determined, and some network characteristics have to be set forth. In the training 

stage, an optimization algorithm is invoked to best select a number of network parameters. The 

training error is monitored during this phase. Finally, the ANN undergoes a testing step via a 

dataset whose input and output values are known. The network outputs are, therefore, compared 

to the outputs of the testing dataset. Testing data should not be part of the training process at all 

[22]. 

     In this implementation, the target is to develop an ANN tool for 24-hour load forecasting of 

residential customers. A hypothetical spreadsheet file with load measurements over about two 

years is available. This data sets are based on daily load divided by 15 minutes steps during in 24 

hours. Then, the daily load curve is represented by six constant values over six time zones as shown 
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in fig. 3.1. Load steps of one day are known, and will be used as inputs to the ANN, which should 

yield the load curve for the following day. Due to different consumption patterns, seasons 

(summer, fall, winter, and spring) and day types (weekday and weekend) have to be differentiated. 

So, we assign two different indexes for season and day in this regard. Then we proceed to train the 

system and get the optimum result. Firstly, in following, we go to get more familiar with Artificial 

Neural Network (ANN) and its mechanism, then implement the procedure to train the system in 

optimum way to predict the load consumption for the dates required by the project manual.  

Fig. 3.1: Proposed daily load curve of residential customer 

 

     Many different neural network structures have been tried, some based on imitating what a 

biologist sees under the microscope, some based on a more mathematical analysis of the problem. 

The most commonly used structure is the networks which are typically organized in layers [23]. 

Layers are made up of a number of interconnected 'nodes' which contain an 'activation function'. 

Patterns are presented to the network via the 'input layer', which communicates to one or more 

'hidden layers' where the actual processing is done via a system of weighted 'connections'. The 

hidden layers then link to an 'output layer' where the answer is output as shown in below fig. 3.2. 

It can be noted that the hidden layer is usually about 10% the size of the input layer. In the case of 

target detection, the output layer only needs a single node. 

     In this project the academic version of software, MathWorks Matlab®, is used. Matlab provides different 

types of neural networks in which various methods are applied including NN Fitting tools, NN Pattern 

Recognition tools, NN Clustering tools and NN Time series tools that the technique is used for this section 

is Fitting application. Fig. 3.2 illustrate the ANN network model with 4-layers utilized for load prediction.  
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Fig. 3.2: ANN models for predicting 1-year load 

 

3.1. Implementation 
 

     This section describes the step by step procedures for training the neural network to learn by 

the data from the Fall 2013 to Winter 2015 electricity load for residential customers in order to 

forecast load demand in arbitrary dates. The Matlab ANN toolbox was utilized in designing the 

network architecture. The main data list includes daily energy consumption in kW/h for every 15 

minutes from the year 2013 to 2015. For each day, based on the pattern shown in fig. 3.1, data 

average for 6 different periods for each day is set and two separate indexes for season and day are 

allocated to illustrate differentiate energy consumption of different seasons which is shown in table 

3.1. It should be mentioned that the index for weekdays and weekends is 1 and 0. For training the 

ANN, 4 separate data list are required as input training, output training, input testing and output 

testing which are prepared by the help of main data list. To be more clarified, each day in input 

data is a key for ANN to estimate the next date. For instance, for the date Feb 25th, 2014 in output, 

we need Feb 24th, 2014 in input.  

Lookup 
Table   

Date Season  

9/22/2013 30 Fall 

12/21/2013 40 Winter 

3/20/2014 10 Spring 

6/21/2014 20 Summer 

9/22/2014 30 Fall 

12/21/2014 40 Winter 

3/20/2015 10 Spring 

6/21/2015 20 Summer 

9/22/2015 30 Fall 

12/21/2015 40 Winter 
Table 3.1: Different index allocated to various seasons 
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     After the preparation of data sets by using the command “>>nnstart” in MATLAB we proceed 

to load the training input and output data in to the ANN application. In this simulation we take 

advantage from the load consumption for 680 days. In the next step, the number of validation and 

test data and also the number of hidden neurons are 3 critical parameters which shall be changed 

and tested several times to evaluate the result. Related MATLAB code is illustrated in appendix 

as command no.4.  

     After training the ANN the result for regression and MSE is monitored. According to table 3.2 

and 3.3 the dataset for testing input testing output are used to evaluate the performance of the 

model. 

In table 3.2 there are 10 dates have been chosen randomly from the data set as testing input and 

related output based on the date after testing data is illustrated in table 3.3. 

     It should be mentioned that the quantitative method which is used to make a comparison 

between the simulated data and actual data is mean square error (MSE). The MSE is computed 

based on eq. 13v as follows: 

 

 

(13) 

 

 2/24/2014 5/16/2014 7/22/2014 11/13/2014 12/27/2014 1/17/2015 4/5/2015 7/10/2015 8/25/2015 10/28/2015 

T1 25.935 12.743 11.813 21.3214 18.2785 23.044 19.257 11.710 8.367 12.452 

T2 27.262 13.38 13.29 22.05 19.02 21.69 19.462 11.16 9.9225 14.4225 

T3 27.21 14.355 15.3 20.677 20.865 24.33 20.407 12.57 7.6425 15.81 

T4 28.04 21.071 13.867 24.221 28.010 30.93 19.638 16.126 10.792 17.1018 

T5 34.27 19.92 13.55 27.705 26.795 30.305 22.03 21 15.03 20.445 

T6 31.665 16.5675 12.607 23.925 26.3625 29.587 18.292 23.175 12.562 18.6525 

S.I 40 10 20 30 40 40 10 20 20 30 

D.I 1 1 1 1 0 0 0 1 1 1 

Table 3.2: Testing Input 

 

 2/25/2014 5/17/2014 7/23/2014 11/14/2014 12/28/2014 1/18/2015 4/6/2015 7/11/2015 8/26/2015 10/29/2015 

T1 25.8471 12.8528 7.56857 22.5021 21.2207 23.4878 18.282 12.0642 8.297 14.565 

T2 27.96 11.52 8.705 20.28 20.2725 25.065 19.3425 12.0675 9.5925 17.715 

T3 28.32 11.49 10.2075 22.4775 21.6 25.65 17.415 18.495 8.76 17.7675 

T4 29.145 14.6625 12.5618 30.9075 26.6156 27.2156 20.2218 21.5718 10.1981 17.3868 

T5 34.065 13.8 14.1783 34.75 32.335 30.795 22.905 20.345 15.365 21.805 

T6 32.3625 17.85 14.3825 29.6775 29.0775 30.8025 19.2975 19.995 13.095 18.7575 

Table 3.3: Actual data for 10 desired dates (Testing Output) 
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        The first training has been performed by the Neural Network Fitting Tool (NNFT) with 

Validation Sample:15, Testing Sample: 5 and Hidden neurons:10. In each trial the ANN will be 

evaluated by the testing input as it is shown in table 3.2. The result will be assessed by the MSE. 

The target is to achieve the lowest mean square error in order to get the result closest to the actual 

data. The MSE is computed by the MATLAB based on the command no.1 which can be seen in 

appendix. Fig. 3.3 shows the ANN training process. Also fig. 3.4 and fig.3.5 illustrate the 

performance and the regression analysis of the ANN with aforementioned parameters. All other 

performances and regressions are similar to this part but the values are different which is not 

significant, because the MSE is the comparative element of result evaluation. By several training 

processes in NNFT the best value for parameters achieved as Validation Sample:15, Testing 

Sample: 15 and Hidden neurons:15. 

 

Fig. 3.3: ANN training process Validation Sample:15, Testing Sample: 5 and Hidden neurons:15 
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Fig 3.4: ANN regression analysis Validation Sample:15, Testing Sample: 5 and Hidden neurons:15 

 

Fig. 3.5: ANN validation performance 

 

     In fig.3.5 the best validation performance occurred at epoch 9 and according to the MSE and 

also the gap between the validation and test curve (green and red), the parameters allocated to this 

training cannot meet the satisfaction for an accurate load prediction, though the regression 
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parameters in fig. 3.4 can be acceptable. After the first implementation the ANN is tested by the 

dataset in table 3.3. Table 3.4 shows the output data for the first trial. The MSE for this step 

calculated as MSE= 2.4110.  

      

 2/25/2014 5/17/2014 7/23/2014 11/14/2014 12/28/2014 1/18/2015 4/6/2015 7/11/2015 8/26/2015 10/29/2015 

T1 26.5771 12.4053 10.3934 20.5202 17.2186 21.7481 16.6651 12.5494 8.41434 13.9979 

T2 27.2829 13.3368 12.0524 21.6816 17.4573 22.1969 18.3702 12.2947 9.3785 14.6964 

T3 27.6728 14.2403 12.0791 21.7387 19.4774 23.8218 17.4620 13.7487 9.8565 15.3595 

T4 30.0834 17.6311 13.9628 24.7608 23.4582 27.2830 18.0679 17.7538 12.2716 18.74891 

T5 34.2173 19.6732 16.3347 28.4676 27.7938 31.6070 22.0264 20.6708 14.8907 22.0411 

T6 31.7473 18.1150 14.8920 24.7784 26.2487 30.3755 19.0079 18.9834 14.1405 19.3163 

 

Table 3.4: Estimated data for different dates for Validation: 15, Testing: 5 and Hidden neurons:10 

 

     According to above performance, to make a visual comparison between the actual data and 

ANN estimation, by the command of ‘stairs’, related plots for the first and also the best simulations 

for the dates 23/07/2014 and 18/01/2015 are printed and shown in fig.3.6 and fig.3.8.   

 

Fig. 3.6: Actual VS estimation for Validation 15, Testing 5, Hidden Neurons: 10- Date3: 23/7/2014 
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Fig. 3.7: Actual VS estimation for Validation 15, Testing 15, Hidden Neurons: 15- Date3: 23/7/2014 

 

Fig. 3.8: Actual VS estimation for Validation 15, Testing 5, Hidden Neurons: 10- Date6: 18/1/2015 
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Fig. 3.9: Actual VS estimation for Validation 15, Testing 15, Hidden Neurons: 15- Date6: 18/01/2015 

 

 

     According to several results achieved from different training and testing, the most accurate result can 

be gained from NNFT technique can be shown in table 3.5. The comparison between the first and the last 

simulation is also provided in table 3.6. 

 

  

 2/25/2014 5/17/2014 7/23/2014 11/14/2014 12/28/2014 1/18/2015 4/6/2015 7/11/2015 8/26/2015 10/29/2015 

T1 26.6526 13.6855 8.46452 20.2074 19.69627 23.5397 16.4822 12.6688 8.1557 14.3952 

T2 27.7317 14.5947 9.99672 21.1243 20.73791 24.9430 19.0960 12.4344 9.0826 15.2236 

T3 28.0549 15.7401 10.5331 21.6828 21.3828 25.4324 18.2973 13.9671 9.8332 15.9969 

T4 29.875 18.6777 13.2236 25.1499 23.0119 26.6326 17.9765 17.8226 12.4807 18.7237 

T5 34.5247 20.5601 14.9787 28.4483 28.2094 33.1908 22.4312 20.2681 15.1469 22.5527 

T6 32.1562 18.8656 13.1105 25.6300 25.5501 30.7803 19.4803 18.5878 14.2452 20.0675 
 

Table 3.5: Estimated data for different dates for Validation: 15, Testing: 15 and Hidden neurons:15 
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 MSE 

The 1st trial 2.4110 

The last trial 2.2833 

 

Table 3.6: MSE for trials  

 

3.2. Conclusion 

     More accurate forecasting makes a good contribution to adjust an optimal scheduling to have 

an efficient energy storage system. Optimal scheduling of energy storage systems requires two 

pieces of information to be known. First is the available energy in the system at the time of 

scheduling that is determined through state-of-charge (SOC) estimation which will be explained 

in the section. Whereas, second is an accurate prediction of the load profile over a time period 

where the ES unit will operate. In residential load applications, the scheduled ES operating period 

is normally a day. Therefore, day-ahead accurate load forecasting for residential customers 

becomes critical to the task of ES scheduling. 

     In this part, by the favor of Artificial Neural Network (ANN) an artificial intelligence is 

modeled to forecast the load consumption. For this purpose, by the help of daily hypothetical load 

for 2 years which are divided by 15 minutes, related data sets including training of the neural 

network is prepared.  

     The mechanism of ANN forecasting for a specific date is training the system by the data 

provided for the day prior to that date. Due to different consumption pattern in a day, all 4 data set 

organized based on 6 different periods in 24 hours. By taking advantage from ANN toolbox in 

MATLAB, the system is trained by the initial values for Validation Sample:15, Testing Sample:5 

and Hidden neurons:10. After calculation the MSE and the monitoring the regression and errors 

for this result, we tried to retrain the system several times to decrease the MSE and more accurate 

values. At the end, after several trial and error implementations, the best result achieved as below: 

Validation Sample:15, Testing Sample: 15 and Hidden neurons:15 with the lowest MSE as 

2.2833 among all implementations.  
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Chapter 4: 

Accuracy Improvement of SOC Estimation in Lithium-Ion Batteries 

by ANFIS and ANN Modeling of Nonlinear Cell Characteristics 

 
     As mentioned before, to achieve an optimal scheduling of energy storage system, in addition to 

have an accurate load prediction, there is a precise estimation for state of charge (SOC) is needed.        

This section presents two separate intelligent systems for the battery management system (BMS) 

to schedule a series of lithium-ion battery for energy storage purpose. Because of high energy 

density, good self-discharge rate and better discharge voltage in comparison with other battery 

types and also wide usage in portable electronic device and considerable advancement in weight, 

power and capacity, lithium-ion battery pack is considered for this project.  

     The essential part of this section is based on an adaptive neuro-fuzzy inference systems 

(ANFIS) and Artificial Neural Network (ANN). In this simulation we train the ANFIS and ANN 

separately based on the technical specifications provide by manufacturer as shown in fig.4.1. This 

technical data is non-linear relation between Open Circuit Voltage (OCV) and SOC for 6 different 

temperatures from -30°c to 55°c provided by the manufacturer. By the curve fitting technique, 

accurate 5 order polynomial equations of the curves are extracted as below in eq. 14 [23] and 

related coefficients are shown in table 4.1. 

 

 

y = a5 x5 + a4 x4 + a3 x3 + a2 x2 + a1 x + a0 (14) 

 

 

Temperature a5 a4 a3 a2 a1 a0 

55 0C -4.1599 8.3420 -4.6414 0.5083 0.6186 3.4710 

40 0C -2.1649 3.2388 -0.0489 -1.1715 0.8145 3.4770 

25 0C -2.6941 4.2599 –0.5109 -1.2740 0.8955 3.4613 

0 0C -0.2981 0.5460 1.1475 -1.6024 1.0298 3.3935 

-20 0C -0.5971 0.6231 0.8659 -0.5327 0.3995 3.4431 

-30 0C 25.5020 -78.174 92.857 -52.03 14.117 2.0284 

Table 4.1: Coefficient of approximating polynomial 

 

     The result is the nonlinear model in which there OCV and SOC are available in any arbitrary 

different temperatures for a lithium-ion battery pack. With all the pieces in place, the comparison 
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between two aforementioned methods is made to choose the efficient method based on MSE 

calculation to increase the accuracy of Coulomb counting at the cell level.  

 

4.1. Theory 
 
     Balancing power supply and demand is always a complex process. Lithium-ion (li-ion) batteries 

in particular are the subject of much interest as they have a high energy density for energy storage. 

State of charge estimation is of great significance for the safe operation of a lithium-ion battery 

(LIB) pack. The efficiency and accuracy of the algorithm are two important indicators of its 

performance. [24] One of the challenges facing the lithium-ion battery technology is the accurate 

estimation of state of charge (SOC). The SOC is related to the open-circuit voltage (OCV) of the 

battery.  

     There are numerous researches conducted for SOC estimation of batteries. For several 

implementations complex mathematical algorithms are used. One of these algorithms is Linear 

Quadratic Estimation (LQE) which is known as Kalman Filtering considered as liner model in 

[25], nonlinear electrochemical model in [26] in order to reduce the measurements and have more 

accuracy. An adaptive extended Kalman Filtering model is provided in [27] and [28] to accurately 

identify nonlinear parameters of Lithium-ion batteries.  

     Another tool to estimate the SOC is Artificial Neural Network (ANN). In [29] by 480 

charge/discharge cycle the capacity of a lithium-ion battery pack is evaluated and in [30] a hybrid 

intelligent model based on fuzzy logic neural network and genetic algorithm is introduced. A 

combination of ANN which is trained offline with Kalman Filtering to eliminate the noise is also 

conducted in [31] In all aforementioned implementations the main disadvantage is mathematical 

aspect and equations which shall be considered and as a result, the complexity will increase 

accordingly.  

     Besides, neuro fuzzy inference system (ANFIS) is another way to model an intelligent system 

for SOC estimation. According to [32] over training with huge data is an obstacle for ANFIS to 

achieve an accurate estimation. In [33] a model introduced based on the nonlinear relationship 

between SOC and OCV with considering the considering RC model of battery.  

     In addition, there are several online estimation techniques have been performed with taditional 

Coulomb Counting method. In [34] and [35] because the models are designed based on pack level 
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instead of cell level, it is assumed that all cells are working in the same voltage and temperature. 

This concept can reduce the accuracy. 

     In [23], a model based on Coulomb Counting and ANFIS is designed during offline mode. In 

comparison with all aforementioned techniques, this method is easy to implement and is a great 

deal more accurate than traditional Coulomb counting. Moreover, the relation between temperature 

and voltage is considered based on cell level to consider the battery characteristic supplied by 

related manufacturer. As already mentioned, ANFIS will be get confused by the huge training data, 

so this technique can take advantage from lower data during shorter cycle time. 

     The standard method adopted by the industry uses Coulomb counting, which initializes the 

SOC corresponding to OCV during an idle operation state. The DC current is continuously 

measured during charging/discharging at definite time intervals. The current times time is 

added/subtracted to/from the stored energy to update its value, hence SOC. The SOC is corrected 

at the next idle state to neutralize the effect of accumulated integration error. This technique has 

two drawbacks which add to its inaccuracy. First, it does neglect the effect of temperature. Second, 

it works at the pack level such that cell imbalances are neglected.  

     It is strongly believed that working with Coulomb counting at the cell level accounting for 

different cell temperatures would increase the accuracy of the Coulomb counting method which 

remains preferable by the industry. The major obstacle is to model the nonlinear cell characteristics 

which relate cell SOC to cell OCV at different temperatures. Nevertheless, the battery management 

system (BMS) usually monitors cell voltages and temperatures. The objective is to develop a 

nonlinear modeling tool which yields the cell SOC if the cell OCV and temperature are known. 

Coulomb counting will continue at the cell level.  

     With all the pieces in place, the method which is introduced in [23] is implemented again and 

tested to evaluate the MSE. In the next step by the same training data, another model based on 

ANN is introduced and in the end, there is an analogy is drawn between these two techniques to 

choose more accurate estimation for lithium-ion battery SOC.  

 

4.2. Problem statement 
 

     The traditional Coulomb counting technique for battery SOC estimation is preferred by most 

BMS manufacturers due to its simplicity and ease of implementation. [23] As for each cell the 
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level of voltage and temperature varies during all operation modes, this method is inaccurate. To 

increase the estimation accuracy, we utilize a nonlinear modeling tool will employ adaptive neuro-

fuzzy inference systems (ANFIS) and Artificial Neural Network (ANN) which learns the cell 

characteristics as given by the manufacturer, fig.4.1. The characteristics show how SOC varies 

with OCV at different temperatures. The curves slightly outside, the training range. ANFIS and 

ANN should be able to generate other curves at different temperatures, which is part of the testing 

procedures.  

4.3. ANFIS modelling of nonlinear cell characteristic 
 
     The nonlinear modeling tool will employ adaptive neuro-fuzzy inference systems (ANFIS) 

which learns the cell characteristics as given by the manufacturer, fig. 4.1. The characteristics show 

how SOC varies with OCV at different temperatures. The curves are approximated within the 

operating range through fifth order polynomials. Polynomial points are generated to form ANFIS 

training data. ANFIS testing is carried out within, and slightly outside, the training range. ANFIS 

should be able to generate other curves at different temperatures, which is part of the testing 

procedures. 

 

Fig. 4.1: SOC and OCV based on different temperatures 
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4.3.1. Implementation by ANFIS 
 
     As providing the data list based on the manufacturer technical specification, we proceeded to 

start our simulation in MATLAB. Firstly, by the command ‘anfisedit’ we import the 

aforementioned data file into the ANFIS in 2 different ways. Firstly, SOC and temperature as input 

and OCV as target and secondly, OCV and temperature as inputs and SOC as target. Our file 

includes 486 data set. For MF type ‘gaussmf’ is utilized. According to fig.4.2 We begin with the 

number of MFs for both temperature and OCV are 10 and 10 and start to train and test the ANFIS. 

In fig.4.2 the training process of the ANFIS based on 2 inputs and mfs 10:10 is shown. Afterwards, 

the testing process starts to evaluate the testing error based on the training data as is illustrated in 

fig.4.3.  

    Along the same line, after testing process by the help of rule viewer different values for inputs 

imported to analysis design performance. Based on the command 2 which can be seen in appendix, 

for each trial relevant output exported for MSE and visual evaluation as well. As a test, plots for 

different temperatures including those which are indicated in manufacturer technical data and a 

few temperatures between them are shown in fig. 4.5 and fig. 4.6.  

 

Fig. 4.2: Training of first-order ANFIS with 10 and 10 MF per input 
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Fig. 4.3: Testing of first-order ANFIS with 10 and 10 MF per input 

 

Fig. 4.4: Rule viewer of the ANFIS with 10 and 10 MF per input 
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Fig. 4.5: ANFIS test 10:10 MFs VS training data for temperatures 10 to -35 

 
Fig. 4.6: ANFIS test 5:15 MFs VS training data for temperatures 10 to -35 

 

     As it is shown that by changing the number of MFs the change in output is made. After several 

implementations [23] it the end, the most appropriate MFs would be considered as 3 for 

temperature and 20 for open circuit voltage. Referring to section 3.2, the MFs make the partitioning 
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over dataset. It is reasonable to indicate that because of the training data volume, the MFs of the 

SOC or OCV with 490 datasets shall be great deal more than the temperature with 6 datasets. 

Fig.4.7 shows the plot related to the training data and fig4.8 illustrate the test of ANFIS 

performance based on the training data.     

 
Fig. 4.7: ANFIS testing on points from the training dataset 

 
Fig. 4.8:  ANFIS test 3:20 MFs VS training data 
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Fig. 4.9:  ANFIS structure for 3:20 MFs  

 

     It should be mentioned that all the training data is based on below information. Fig.4.9 clarify 

the ANFIS structure which is modeled in this section. 

 

-Number of nodes: 171 

-Number of linear parameters: 180 

-Number of nonlinear parameters: 46 

-Total number of parameters: 226 

-Number of training data pairs: 486 

-Number of checking data pairs: 0 

-Number of fuzzy rules: 60 

 

4.3.2. ANFIS Result 

 
     The accuracy of SOC estimation is a crucial part of using Lithium-Ion batteries pack in energy 

storage to make a contribution with Battery Management System (BMS) to keep the storage 

system in a safe and efficient condition in order to reduce the depreciation and also increase the 
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cycle of the batteries. In this part the author proceeds to design an intelligent system by using the 

manufacturer technical specification [23]. This data includes a nonlinear relation between OCV 

and SOC in 6 different temperatures. Since providing these values always faces limits for 

manufacturer, it is necessary to have aforementioned system to estimate the OCV and SOC for 

any arbitrary temperature. For this project we have an adaptive neuro-fuzzy inference system 

(ANFIS) to be trained by the manufacturer dataset. For set the ANFIS we used 490 datasets and 

choose Gaussian type for MFs. The value for Epochs is set as 10 to train the ANFIS 10 times for 

each number of member functions.   

          The first value for MFs was 10:10 for each inputs. The result is not satisfactory and does not 

have any similarity to the reference graphs and after changing the MFs for several time we figure 

out MFs depends on the number of dataset for each input. As we have only 6 different temperatures 

for the first input, and almost more than this amount for OCV, the number of the MFs for 

temperature shall be smaller. As a result, we try to train the system by smaller MFs for temperature. 

The value 5:15 is considered for temperature and OCV and we figure out the trend of SOC 

improves. It can be noted that for each step of training, ANFIS results are evaluated by ‘evalfis’ 

command which can be seen in appendix as command no.2. Although, the mean square error 

(MSE) in the first step (10:10) is reasonable, in subsequent steps it improves in a small range.  

Consequently, by trial and error we reached the MFs 3:20[23] to temperature and OCV or for 

temperature and SOC. It should be mentioned that as for each cell the level of voltage and 

temperature varies during all operation modes, this nonlinear tool is more accurate than traditional 

Coulomb counting at the pack level [23]. 

     Regarding the less error during training for epoch 10 also less MSE for different 

implementations, it should be noted that considering the SOC and temperature as input and OCV 

as output has been found closer to actual data and more accurate. This result is shown in table 4.2.  

 

 

Table 4.2: MSE and Error for epoch 10 during ANFIs training methods 

 

 

 

Model Epoch 10 Error MSE 

ANFIS_Input [OCV, Temperature] Output: SOC 0.0003052 0.0561 

ANFIS_Input [SOC, Temperature] Output: OCV 0.00014615 0.0272 
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4.4. Implementation by ANN 
 
          Along the same line, for the SOC estimation another model is introduced by the help of 

Artificial Neural Network (ANN). Since neural networks are self-learning and adaptive, they can 

deal with nonlinear systems easily and they are not supposed to consider any physical aspect of 

the system so they can be used for complex systems. As ANNs are self-learning tools, learning 

data plays an important rule for them and its amount depends on the system complexity. The 

estimation of SOC in batteries can be more efficient by the contribution of ANNs. Different 

techniques of ANN are conducted in academic researches and industrial project as well. In [36] a 

Back Propagation Neural Network (BPNN) is modelled for SOC estimation of an NIMH battery 

pack based on relationship between the open circuit voltage (OCV) and SOC based on the 4 

situations of the battery, charging, discharging, laying aside after charging or laying aside after 

discharging. In [37] another BPNN is introduced to for SOC estimation of LiFePO4 batteries. In 

[38] an Adaptive Wavelet Neural Network (AWNN) provide an accurate SOC estimation for 

Lithium batteries. [39] draws an analogy between the result of an Elman Neural Network (ENN) 

and BPNN for SOC estimation. In [40] a Radial Basis Function Neural Network (RBFNN) is 

performed on a Lead-Acid battery.  

     The disadvantages of all aforementioned implementations is that the battery characteristic such 

as battery behavior during different temperatures which is provided by the manufacturer in not 

considered. Besides, battery is analyzed in pack level instead of cell level. Pack level consideration 

means that all cells charge and discharge at the same situation with the equal voltages. As a result, 

the accuracy of the estimation decreases.  

     In this project a multi-layer artificial neural network (ANN) is utilized for SOC estimation 

Lithium-ion battery pack based on the characteristics of SOC which varies with OCV at different 

temperatures. A multi-layer artificial neural network (ANN) typically consists of an input layer, 

one or more hidden layers and an output layer, [20]. 

      This section is also handled by MATLAB. There are two choices as “nntool: and “nftool” to 

create an ANN model. Any model that can be performed by the “nftool” it can also be conducted 

by the “nntool”, but there are some models can be done by the “nntool” but not by the “nftool”. 

On the other hand, since the “nntool” is more general, there are more parameters to be adjusted for 

running the neural network to achieve more efficient estimation. Network type is used for this 
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model is a 2 layer “Feed-forward backprop” with 10 neurons. “TRAINLM” is considered as 

training function and “LEARNFGM” is set for adaption learning function.  

     Data set have been already used in previous section to train the ANFIS is used for ANN. By 

taking advantage from ‘nntool, the desired ANN is provided. In this section there are two 

implementations exactly according to the previous section. One ANN for SOC and temperature as 

inputs and OCV as output, another one based on OCV and temperature as inputs and SOC as 

output. Fig.4.9, illustrates the training process for methods which take advantage from 2-layer 

training technique. Minimum the value of gradient coefficient better will be training and testing of 

networks. From fig.4.12 which shows plot training state of the neural network it can be seen that 

gradient value goes on decreasing with increase in number of epochs. Fig.4.11 also shows the 

performance of the training process which illustrate the accuracy of the training. 

 

 

 

Fig. 4.10: ANN training for OCV and temperature as input and SOC as output 
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Fig. 4.11: ANN training, regression and validation performance of SOC estimation (plotperform) 

 

 

 
Fig. 4.12: ANN training state for SOC estimation (plottrainstate) 
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4.4.1. ANN Result 
 

    Table 4.3 shows the calculated MSE between ANN results and actual data which are great deal 

less than the MSE achieved in both ANFIS implementations. As it is shown, the MSE for the ANN 

that SOC and temperature are inputs and OCV is output is closer to the actual data extracted from 

the curve by curve fitting technique.  

Model MSE 

ANN Input [OCV, Temperature] Output: SOC 0.0017 

ANN Input [SOC, Temperature] Output: OCV 0.0013 
 

Table 4.3: MSE result for ANN implementations 
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Chapter 5: Conclusion and Future Work 
 

     To gain an optimal energy storage system there are 2 separate point shall be considered. The 

first is an accurate prediction for load demand and the second is precise estimation of SOC. For 

the first point, by the help of artificial neural networks there is a model introduced according to 

the daily based data set for 2 years load consumption to help the energy storage covers the demand 

in case of need. Based on the graphical and also mathematical comparison, the ANN result is close 

to the actual data but the system needs more accuracy for more optimization of energy storage 

system. 

     Besides, for the second point, there are 2 separate models introduced based on ANFIS and 

ANN. Each technique has 2 implementations. MSE for each implementation is shown in table 5.1. 

Although the result of ANFIS for SOC estimation is accurate enough, as it is crystal clear, the 

MSE for the ANN in which the SOC and temperature are input and OCV is output has been found 

the most accurate technique among all 4 implementations and can be considered as a substitution 

for the ANFIS method. With all the pieces in place, the achievement of lower MSE results in more 

safety, lower depreciation, longer cycle life and more reliable lithium-ion battery packs for the 

energy storage system.  

 

Model MSE 

ANN Input [OCV, Temperature] Output: SOC 0.0017 

ANN Input [SOC, Temperature] Output: OCV 0.0013 

ANFIS Input [OCV, Temperature] Output: SOC 0.0561 

ANFIS Input [SOC, Temperature] Output: OCV 0.0272 

 

Table 5.1: MSE result for ANFIS and ANN implementation 

 

5.1. Future Work 
 

     This project is a concept that adaptive neuro fuzzy inference system and artificial neural 

network is able to design a model for accurate estimation of SOC and load prediction in energy 

storage systems such as batteries. This concept will be used to develop this project to a hybrid 

model which is combined ANN and ANFIS for the estimation of lithium-ion batteries based on 

cell level and in accordance with the characteristics supplied by the manufacturer to achieve more 

accurate model for SOC estimation. Moreover, this hybrid design can be implemented for load 
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prediction and as a result, the desired ES system is aimed to be optimized and more efficient to 

meet the grid satisfaction accordingly.   
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Appendices 
 

 

A.1. MATLAB Command for MSE calculation, Section 4.1 
 
function rmse (data, estimate)  
r = sqrt (sum((data(:)-estimate (:)).^2)/numel(data)) 
rmse (data, estimate) 

 

 

A.2. MATLAB Command for ANN model for load prediction, Section 4.1 
 

function [Y,Xf,Af] = myNeuralNetworkFunction(X,~,~) 

%MYNEURALNETWORKFUNCTION neural network simulation function. 

% 

% Generated by Neural Network Toolbox function genFunction, 08-

Nov-2017 20:55:23. 

% 

% [Y] = myNeuralNetworkFunction(X,~,~) takes these arguments: 

% 

%   X = 1xTS cell, 1 inputs over TS timesteps 

%   Each X{1,ts} = 8xQ matrix, input #1 at timestep ts. 

% 

% and returns: 

%   Y = 1xTS cell of 1 outputs over TS timesteps. 

%   Each Y{1,ts} = 6xQ matrix, output #1 at timestep ts. 

% 

% where Q is number of samples (or series) and TS is the number 

of timesteps. 

  

%#ok<*RPMT0> 

  

% ===== NEURAL NETWORK CONSTANTS ===== 

  

% Input 1 

x1_step1.xoffset = 

[6.865714286;6.72;6.855;9.009375;10.815;9.7575;10;0]; 

x1_step1.gain = 

[0.058318753645408;0.0601684717208183;0.0630566721841255;0.06332

24497872761;0.0528890651857728;0.0619290911905868;0.066666666666

6667;2]; 

x1_step1.ymin = -1; 

  

% Layer 1 



47 
 

b1 = [1.6688018676241783;2.3198783867080759;-

0.9073173102144706;1.5147867588231203;-

0.61094623012872185;0.13253425680472447;-0.69014178045747598;-

0.061421005767732073;-0.82699145169695554;-0.84331240366466065;-

0.81066523707402371;-1.5029524469273532;-1.5593522942131139;-

2.1624476614513788;1.3450576062053876]; 

IW1_1 = [0.32789452536458152 0.095085939651819662 

0.62024469435877028 -1.2393150963843409 0.2316578383590015 

0.15869111270377068 1.3803290274258151 -

0.53755326600501963;0.65932806281063461 -0.45955301146081573 

0.12571353390004442 -0.39072881011712618 0.14756201632783428 -

0.13681790047612469 0.31140901222939388 -

1.1113551640937813;0.28067554516028975 -0.16453820151899948 

0.36665844241283474 -0.51561691423615463 -0.28311424579562178 

0.3786815139504171 0.41094228447333647 -0.16292982158951397;-

0.82917957837258949 1.0198016999896444 1.3690699031195674 

0.70796540936189023 0.34796591433475532 -0.15683051836332487 -

0.76930927306682517 -1.0712978537472446;1.5980240540686903 -

1.3159219935059354 0.0092969371002519161 0.46595359945467951 

1.2230826190429673 0.092469701929221812 0.23292337098868912 

0.077651877690495336;-0.86187490989861615 0.211311821302545 

0.58039051025200661 -0.18685659671725732 0.81950000287587044 

1.2256678984989287 0.61954317417439819 

0.4138655590491751;1.0269176014987613 1.076681432388424 

0.047026929083136777 -0.6964628193107365 0.2459177218498558 

0.37365549839103956 -1.9853302530444037 

0.15144310272564843;0.33232751079822942 -0.66649528051247819 -

0.27654415396655008 -0.43711767409356317 0.33573395004301132 

0.95420550940422277 0.06225653410947888 0.15842739982699358;-

0.37735483217856858 -1.6254945586656979 -0.75733199903514614 -

0.6391044073965646 0.60363613613074596 1.7748566264539045 -

0.18798050254408732 -0.04360748871574132;-0.28626216307245167 

0.43692533567949915 0.042760192068174427 0.41920298730326599 -

0.34841559560979324 0.096438986619627479 -0.80571883869194671 -

1.4794887654338584;-0.33499469456573622 1.2848321060625669 -

0.42957672129140684 0.87292174588339722 0.65876282858508961 -

0.18097638133660163 0.089524719907588257 

0.04428733950890907;0.36871806101329196 -1.1381388907183185 

0.071140948536311865 1.2838953513829168 1.9351239941035807 

1.8333333842934749 -0.64985363350308234 0.91532428699310842;-

0.81349408360249531 0.7026504424520551 0.19513974495408595 

0.4005369478502615 0.40196408011863832 0.30152400614651548 -

1.2867934619468324 1.4853279428338955;-1.3186553914391661 -

0.20364498962248498 -0.27859230379784972 0.041214426350606195 -

0.29647710210664002 -0.45062046338515915 -0.6698841697142196 -

0.67215424121377532;-0.079000443231553169 1.0572815359148957 
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0.61929417068138182 0.25996219254625674 0.47855872780053832 -

0.053560255331131137 -0.73598884353439031 -0.6805327546786416]; 

  

% Layer 2 

b2 = 

[0.46868642536080884;0.24778808839980054;0.9650882036110312;-

0.22955128360028479;-0.80932987485693408;0.61640003227954288]; 

LW2_1 = [-0.1336120059432466 -0.51059944546397862 

0.10783449545159116 0.2155571583250136 -0.042557760158794068 

0.14554379740495765 0.1219134158401065 0.68620021358032945 -

0.32794668620962825 0.1812602835347821 0.47215928513227345 -

0.081324426052363882 -0.11652115589090627 -0.064852880605638638 

-0.1599664553719054;-0.19910104395101569 -0.20880496375242874 

0.11997132739626823 0.25656746514149209 -0.093841971995448109 

0.1937161059334741 0.18248123084226198 0.63520465870435872 -

0.38675279586029121 0.12003243582434252 0.45706684132007397 -

0.095433741882829187 -0.1556832395710416 -0.043543189189657827 -

0.17866343492180739;-0.22685063047939952 -1.1136581511354087 -

0.043753836459923583 0.42759171221292935 -0.059224425407783422 

0.15976425628701671 0.059422243730743868 0.868662628018812 -

0.44754651066305362 0.22787534103068563 0.49324616625491363 -

0.13749736453133587 -0.19801671201906529 -0.03903692175765569 -

0.33969699284368321;-0.42049309765419596 -0.19944910035750993 -

0.64238001298227176 0.60874606808107812 -0.0065706753696241071 

0.22345357319630185 -0.11397200319670189 1.0458128674644911 -

0.47401144112892768 0.29322620264298976 0.40031547445706622 -

0.13481327358067327 -0.15104720494843965 -0.13962863556273516 -

0.5574150743445091;-0.24869761841946544 0.34487296424587721 -

0.59947720686182449 0.46828101095138863 0.10924066579671421 

0.22326180171706839 -0.058499709786872078 0.76188153180104046 -

0.32024116571535999 0.19986832222284842 0.26149607542948494 -

0.15696279607942848 -0.068516788937278597 -0.12683730104540794 -

0.38500250639983224;-0.29499450261544347 -0.71104564773195789 -

0.28226308928057431 0.57282252772719633 0.20044265886159573 

0.19213936102318471 -0.034010835594407714 1.2179315872200283 -

0.51413076633643207 0.37581627560262365 0.36395214874895687 -

0.2778990535510581 -0.083512160198936744 0.0039964447557942415 -

0.60106724550138113]; 

  

% Output 1 

y1_step1.ymin = -1; 

y1_step1.gain = 

[0.058318753645408;0.0601684717208183;0.0630566721841255;0.06332

24497872761;0.0528890651857728;0.0619290911905868]; 

y1_step1.xoffset = 

[6.865714286;6.72;6.855;9.009375;10.815;9.7575]; 

  



49 
 

% ===== SIMULATION ======== 

  

% Format Input Arguments 

isCellX = iscell(X); 

if ~isCellX, X = {X}; end; 

  

% Dimensions 

TS = size(X,2); % timesteps 

if ~isempty(X) 

    Q = size(X{1},2); % samples/series 

else 

    Q = 0; 

end 

  

% Allocate Outputs 

Y = cell(1,TS); 

  

% Time loop 

for ts=1:TS 

     

    % Input 1 

    Xp1 = mapminmax_apply(X{1,ts},x1_step1); 

     

    % Layer 1 

    a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1); 

     

    % Layer 2 

    a2 = repmat(b2,1,Q) + LW2_1*a1; 

     

    % Output 1 

    Y{1,ts} = mapminmax_reverse(a2,y1_step1); 

end 

  

% Final Delay States 

Xf = cell(1,0); 

Af = cell(2,0); 

  

% Format Output Arguments 

if ~isCellX, Y = cell2mat(Y); end 

end 

  

% ===== MODULE FUNCTIONS ======== 

  

% Map Minimum and Maximum Input Processing Function 

function y = mapminmax_apply(x,settings) 

y = bsxfun(@minus,x,settings.xoffset); 

y = bsxfun(@times,y,settings.gain); 
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y = bsxfun(@plus,y,settings.ymin); 

end 

  

% Sigmoid Symmetric Transfer Function 

function a = tansig_apply(n,~) 

a = 2 ./ (1 + exp(-2*n)) - 1; 

end 

  

% Map Minimum and Maximum Output Reverse-Processing Function 

function x = mapminmax_reverse(y,settings) 

x = bsxfun(@minus,y,settings.ymin); 

x = bsxfun(@rdivide,x,settings.gain); 

x = bsxfun(@plus,x,settings.xoffset); 

end 

 

 

A.3. MATLAB Command for ANFIS evaluation, Section 5.3.1 
 
a=readfis(‘ANFIS1010’) 

b=evalfis([Input_Test],a) 

 

 

A.4. MATLAB Command for ANN Feed-forward backprop, Section 5.4 
 
function createfigure(X1, YMatrix1, X2, Y1, YMatrix2, X3, X4, 

YMatrix3, X5, YMatrix4, X6) 

%CREATEFIGURE(X1, YMATRIX1, X2, Y1, YMATRIX2, X3, X4, YMATRIX3, 

X5, YMATRIX4, X6) 

%  X1:  vector of x data 

%  YMATRIX1:  matrix of y data 

%  X2:  vector of x data 

%  Y1:  vector of y data 

%  YMATRIX2:  matrix of y data 

%  X3:  vector of x data 

%  X4:  vector of x data 

%  YMATRIX3:  matrix of y data 

%  X5:  vector of x data 

%  YMATRIX4:  matrix of y data 

%  X6:  vector of x data 

 

%  Auto-generated by MATLAB on 08-Nov-2017 20:10:40 

 

% Create figure 

figure1 = 

figure('Tag','TRAINING_PLOTREGRESSION','NumberTitle','off',... 
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    'Name','Neural Network Training Regression (plotregression), 

Epoch 415, Validation stop.'); 

 

% Create subplot 

subplot1 = subplot(2,2,1,'Parent',figure1); 

hold(subplot1,'on'); 

 

% Create multiple lines using matrix input to plot 

plot1 = plot(X1,YMatrix1,'Parent',subplot1); 

set(plot1(1),'DisplayName','Y = T','LineStyle',':','Color',[0 0 

0]); 

set(plot1(2),'DisplayName','Fit','LineWidth',2,'Color',[0 0 1]); 

 

% Create plot 

plot(X2,Y1,'Parent',subplot1,'DisplayName','Data','Marker','o',.

.. 

    'LineStyle','none',... 

    'Color',[0 0 0]); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create title 

title('Training: R=0.99998','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 

0.00018','FontWeight','bold','FontSize',12); 

 

% Uncomment the following line to preserve the X-limits of the 

axes 

% xlim(subplot1,[0.03 0.92]); 

% Uncomment the following line to preserve the Y-limits of the 

axes 

% ylim(subplot1,[0.03 0.92]); 

box(subplot1,'on'); 

axis(subplot1,'square'); 

% Create legend 

legend1 = legend(subplot1,'show'); 

set(legend1,'Location','northwest'); 

 

% Create subplot 

subplot2 = subplot(2,2,2,'Parent',figure1); 

hold(subplot2,'on'); 
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% Create multiple lines using matrix input to plot 

plot2 = plot(X1,YMatrix2,'Parent',subplot2); 

set(plot2(1),'DisplayName','Y = T','LineStyle',':','Color',[0 0 

0]); 

set(plot2(2),'DisplayName','Fit','LineWidth',2,'Color',[0 1 0]); 

 

% Create plot 

plot(X3,Y1,'Parent',subplot2,'DisplayName','Data','Marker','o',.

.. 

    'LineStyle','none',... 

    'Color',[0 0 0]); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create title 

title('Validation: 

R=0.99994','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 

0.0024','FontWeight','bold','FontSize',12); 

 

% Uncomment the following line to preserve the X-limits of the 

axes 

% xlim(subplot2,[0.03 0.92]); 

% Uncomment the following line to preserve the Y-limits of the 

axes 

% ylim(subplot2,[0.03 0.92]); 

box(subplot2,'on'); 

axis(subplot2,'square'); 

% Create legend 

legend2 = legend(subplot2,'show'); 

set(legend2,'Location','northwest'); 

 

% Create subplot 

subplot3 = subplot(2,2,3,'Parent',figure1); 

hold(subplot3,'on'); 

 

% Create multiple lines using matrix input to plot 

plot3 = plot(X4,YMatrix3,'Parent',subplot3); 

set(plot3(1),'DisplayName','Y = T','LineStyle',':','Color',[0 0 

0]); 
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set(plot3(2),'DisplayName','Fit','LineWidth',2,'Color',[1 0 0]); 

 

% Create plot 

plot(X5,Y1,'Parent',subplot3,'DisplayName','Data','Marker','o',.

.. 

    'LineStyle','none',... 

    'Color',[0 0 0]); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create title 

title('Test: R=0.99995','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 

0.0013','FontWeight','bold','FontSize',12); 

 

% Uncomment the following line to preserve the X-limits of the 

axes 

% xlim(subplot3,[0.0337333083488191 0.92]); 

% Uncomment the following line to preserve the Y-limits of the 

axes 

% ylim(subplot3,[0.0337333083488191 0.92]); 

box(subplot3,'on'); 

axis(subplot3,'square'); 

% Create legend 

legend3 = legend(subplot3,'show'); 

set(legend3,'Location','northwest'); 

 

% Create subplot 

subplot4 = subplot(2,2,4,'Parent',figure1); 

hold(subplot4,'on'); 

 

% Create multiple lines using matrix input to plot 

plot4 = plot(X1,YMatrix4,'Parent',subplot4); 

set(plot4(1),'DisplayName','Y = T','LineStyle',':','Color',[0 0 

0]); 

set(plot4(2),'DisplayName','Fit','LineWidth',2,'Color',[0.4 0.4 

0.4]); 

 

% Create plot 

plot(X6,Y1,'Parent',subplot4,'DisplayName','Data','Marker','o',.

.. 
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    'LineStyle','none',... 

    'Color',[0 0 0]); 

 

% Create xlabel 

xlabel('Target','FontWeight','bold','FontSize',12); 

 

% Create title 

title('All: R=0.99996','FontWeight','bold','FontSize',12); 

 

% Create ylabel 

ylabel('Output ~= 1*Target + 

0.00077','FontWeight','bold','FontSize',12); 

 

% Uncomment the following line to preserve the X-limits of the 

axes 

% xlim(subplot4,[0.03 0.92]); 

% Uncomment the following line to preserve the Y-limits of the 

axes 

% ylim(subplot4,[0.03 0.92]); 

box(subplot4,'on'); 

axis(subplot4,'square'); 

% Create legend 

legend4 = legend(subplot4,'show'); 

set(legend4,'Location','northwest'); 

 

% uicontrol currently does not support code generation, enter 

'doc uicontrol' for correct input syntax 

% In order to generate code for uicontrol, you may use GUIDE. 

Enter 'doc guide' for more information 

% uicontrol(...); 
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Glossary 
 

 

-ANFIS:  Adaptive Neuro Fuzzy Inference System 

-ANN:  Artificial Neural Network 

-AWNN:  Adaptive Wavelet Neural Network 

-BPNN:  Back Propagation Neural Network 

-CASH:  Compressed air energy storage 

-ENN:  Elman Neural Network 

-ES:  Energy Storage System 

-DS: Demand Response 

-GAS:  Grid Angular Stability 

-GFS:  Grid Frequency Excursion Suppression 

-GVS:  Grid Voltage Stability 

-LPQ:  Long Duration Power Quality 

-LS3:  3-hr Load Shifting 

-LS10:  10-hr Load Shifting 

-MFR:  Manufacturer 

-NNFT:  Neural Network Fitting Tool 

-NN:  Neural Network 

- MSE:  Mean Square Error 

-OCV:  Open Circuit Voltage 

-PHES:  Pump hydro energy storage 

-RBFNN:  Radial Basis Function Neural Network 
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-RC:  Regulation Control 

-SNG:  Synthetic Natural Gas 

-SOC:  State of Charge 

-SR:  Spinning Reserve 

 


