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Abstract 

A COMPUTATIONAL STUDY OF PHASE SEPARATION 
IN POLYMER SOLUTIONS UNDER A DOUBLE QUENCH 

Ehsan Hosseini, MASc, 2009. 

Department of Chemical Engineering, Ryerson University 
350 Victoria Street, Toronto, Ontario M5B 2K3 Canada. 

Polymer-dispersed liquid crystals (PDLCs) are a relatively new class of materials used 

for many applications ranging from switchable windows to projection displays. PDLCs 

are formed by spinodal decomposition induced by thermal quenching or polymerization. 

The objective of the present study is to introduce a new mechanism of phase separation in 

a binary polymer solution and develop a mathematical model and computer simulation to 

describe the phase separation during the early and intermediate stages of nucleation and 

growth and spinodal decomposition induced by thermal double quenching. The 

equilibrium limits of phase separation as well as phase transition are calculated by taking 

into consideration the Flory-Huggins theory for the free energy of mixing. A two step 

quench is modeled using Cahn-Hilliard theory for asymmetric binary polymer solution 

which is quenched from a stable state in the one-phase region to a metastable region 

where nucleation and growth occurs. The solution is allowed to coarsen for different time 

periods before a second quench was applied to a point further inside the phase diagram. 

The numerical results in two dimensions replicate the experimental and numerical work 

that has been recently done and published. 
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Chapter 1 

Introduction 

1.1 Phase Separation in Polymer Solutions 

The phenomena of phase separation have attracted a great deal of interest in recent years. 

Understanding the phase behavior and the phase separation dynamics of polymer solutions is 

important for many processes encountered in polymer synthesis, purification, processing, and 

modifications. Phase separation in polymer solutions is one of the most important techniques 

for manufacturing many functional polymeric materials that are widely used in engineering 

applications. Typical examples include porous synthetic membranes for separation processes 

and production, processing and modifications of PDLC films for electro-optical devices 

where the knowledge of the phase behavior and phase separation dynamics is essential to 

control the process and the final structures. 

The kinetics of phase separation in polymer solutions that follow a transfer of the system 

from a thermodynamically stable to a thermodynamically metastable or unstable state is the 

subject of many theoretical and experimental investigations. Phase separation can be induced 

by changing the control parameters such as temperature, pressure or composition. When a 
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homogenous mixture is brought into the heterogeneous state, the phase separation can 

proceed via either spinodal decomposition (SD) or nucleation and growth (NG). The phase 

separation pathway depends on the quench depth into the two-phase region [ 1 ,2]. Figure 1.1 

shows a schematic phase diagram of a binary polymer solution. 
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Figure 1.1: Schematic phase diagram of a binary asymmetric polymer solution. 

Spinodal decomposition occurs if the system is quenched into the thermodynamically 

unstable region inside the spinodal line, while nucleation and growth occurs if the system is 

quenched into the metastable region bounded by the binodal and spinodal lines. These two 

processes can result in quite different morphologies in polymer mixtures. 
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1.2 Phase Separation Mechanisms 

1 

A common way to induce phase separation is via a temperature jump or quench into the two-

phase region of the phase diagram, which is known as thermally induced phase separation 

(TIPS). Phase separation in TIPS method often occurs via spinodal decomposition (SD) 

[9,10]. This particular process of phase separation does not require activation energy unlike 

NG mechanism, but proceeds spontaneously in the presence of minimal concentration 

fluctuations or thermal noise. The phase separation mechanism for spinodal decomposition 

may be classified into the following three regimes: (a) early stage, (b) intermediate stage, and 

(c) late stage. These stages are schematically represented in Figure 1.2. In the early stage (a), 

which occurs immediately after a temperature lowers from the single-phase region into the 

two-phase region (see Figure 1.3, D to E) at the same time, fluctuations in the average 

concentration co lead to a change in the Gibbs free energy, f..G M, that can only decrease due 

to the fact [8 2 f..G M I 8c 2
] < 0 which will be explained in details in chapter 3. During the early 

stage of SD, the characteristic wavelength A of the domain size does not change with time, 

only the concentration difference of the polymer in polymer-rich phase and solvent-rich 

phase increases with time. The phase separation at this stage can be predicted by the Cahn-

Hilliard theory [7 ,9, 16]. In the intermediate stage (b), the concentration difference and the 

characteristic wavelength both increase with time. The nonlinear effects on the time 

evolution of the average concentration fluctuations become increasingly important with time. 

The droplet size on the other hand and composition as well increase gradually with time. As 

a consequence, growth of the fluctuations is governed by the nonlinear time evolution 

equation. 

3 



-r- -~ --r-- ---
Co 

A.(t:J 
ca ----. 

Co t3 

Cp 

Distance, X 

(a) (b) 

Figure 1.2: Schematic illustration of phase separation by spinodal decomposition 

mechanism: (a) one-dimensional evolution of concentration profiles; (b) two-dimensional 

picture of the resultant structure. ca and c fJ are the high and low equilibrium solvent 

concentration on the binodal curve respectively and /0 < 11 < 12 < t3 [5]. 

4 



One-Phase 

Spinodal Curve 

Binodal Curve 

Metastable 
Region (NG) 

A D 

E 

Unstable Region 
(SD) 

Concentration, C 

Figure 1.3: Schematic illustration of phase separation by spinodal decomposition mechanism 

(D toE or A to C) and nucleation and growth (A to B) in TIPS process, showing metastable 

and unstable region with binodal and spinodal lines. 

In the late stage (c), the concentration fluctuation reaches the equilibrium concentration ( c a 

and c f3) and the domain size is coarsening without a change in concentration, therefore phase 

separation is terminated by the minimization condition of the Gibbs free energy of mixing 

and the wavelength of the droplets is fixed by the scale of phase-separated structure. In SD, 

the diffusion coefficient determined by the sign of the curvature 8 2 f"..G M I 8c 2 is negative. 

Thus, molecules diffuse up toward higher concentrations from lower concentration (uphill 

diffusion) causing the concentration fluctuations to grow gradually in magnitude. The 

mechanism of phase separation depends on the location of the solution composition relative 

to the binodal and spinodal compositions. 
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For solutions between the binodal and spinodal compositions, small concentration 

fluctuations actually increase the free energy (e.g. point B of Figure 1.3), and phase 

separation cannot proceed until a finite nucleus with a composition close to the binodal 

composition spontaneously forms. With time, the initial nucleus grows while additional 

nuclei continue to form at random locations throughout the system. Phase separation that 

occurs in this way is referred to as nucleation and growth. Once these nuclei are formed, the 

system decomposes with a decrease in free energy, and the nuclei grow. This growth process 

and the corresponding phase structure are depicted in Figure 1.4. During nucleation and 

growth, pore growth occurs at a constant composition as material diffuses down the 

concentration gradient (downhill diffusion). 

Phase separation is typically the result of a deep quench, and evidence suggests that spinodal 

decomposition is the dominant phase separation mechanism over much of the phase diagram 

[11,12]. The experimental study of spinodal decomposition in some polymer solutions is also 

a challenging task. The diffusion constant D in these solutions is normally several orders of 

magnitude larger than the others, and so the time scale for the spinodal decomposition in 

these solutions is very small, however, near the critical point the diffusion rate is very low 

and the spinodal decomposition occurs on an experimentally observable time scale. 

Therefore, most of the experimental studies on polymer mixtures [ 16, 17, 18] were done by 

staying close to the critical temperature. 
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1.3 Phase Separation Methods 

In recent years PDLCs have received great attention because of their leading contribution to 

electro-optical devices manufacturing [1,2]. However, these materials still present some 

challenging problems related to their formation and operation. Indeed, depending on 

fabrication parameters, e.g. time scale, the mixtures of monomers and liquid crystals can 

order themselves into different microstructures either by phase separation or by domain 

morphology. The key product application known as PDLC is obtained by phase separation 

process, which consists of micron-sized droplets of low weight liquid crystals dispersed in a 

solid polymer matrix [3]. These materials can be produced by three different commonly used 

techniques, namely, (i) by TIPS process [7,11] from a mixture of polymers and nematic 

liquid crystals; (ii) by polymerization-induced phase separation (PIPS) [ 14, 18] of a 

polymerizing monomer mixed with a nematic liquid crystal; (iii) by evaporation of a 

common solvent dissolving the liquid crystal and polymer known as SIPS [16]. As the names 

suggest, the phase separation is induced by the change in temperature, polymerization of the 

monomer and the evaporation of a common solvent respectively. Additionally, there is 

another method known as reaction-induced phase separation (RIPS) [19] in which phase 

separation occurs when the polymer is diluted in an anisotropic solvent, such as liquid 

crystals. TIPS process, however, is considered as a cheap, easy to handle and convenient 

method, while the PIPS process is useful when pre-polymer materials are miscible in low 

molecular weight solvents. It is interesting to note that the phase separation technique used 

for producing PDLC films has many advantages over other methods of manufacturing similar 

films [21]. 
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Figure 1.4: Schematic illustration of phase separation by nucleation and growth mechanism: 

(a) one-dimensional evolution of concentration profiles; (b) two-dimensional picture of the 

resultant structure. ca and c fJ are the high and low equilibrium solvent concentration on the 

binodal curve respectively and 10 < 11 < 12 < 13 [5]. 
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This technique, applicable to a wide range of polymers, is quite useful for controlling the size 

and uniformity of LC droplets. Moreover, its comparatively low production cost and 

simplicity are additional merits. The electro-optical properties of PDLCs can be determined 

by the droplet size, morphology and uniformity. The phase separation of the PDLCs mainly 

depends on parameters like temperature, concentration and polymerization rate (in case of 

PIPS), cooling rate (in case of TIPS) and evaporation rate (in case of SIPS). It must be noted 

that the mechanism involved in these kinds of phase separation processes is due to the 

competition between two contributions to the available free energy that are fully described in 

chapter 3. The separated state has lower entropy. The entropy is lower because the molecules 

of the same kind often interact between themselves more than with the molecules of other 

type. In the case of homogeneous state it has higher entropy. At lower temperature, energy 

plays a more important role than entropy, but at higher temperature the situation is the 

reverse. Applying these postulates, the phase transition can be predicted at some intermediate 

temperature, and this gives the frame of the TIPS process. In the case of PIPS, the minimum 

of entropy is reached when polymerizing the polymers as the bounded polymers have lower 

degree of freedom. The decrement of entropy is much larger in the case of homogeneous 

state than that of separate state. 

In recent years many groups have worked on such systems similarly on different 

phenomenological continuous models [20,22,24,26], which were utilized in the coupling of 

the Landau-de Gennes and Flory-Huggins free energy densities with the same microscopic 

techniques [23]. In this thesis we have studied the phase separation process induced by 

thermal double quenching during the formation of PDLC films (Figure 1.5). 
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Figure 1.5: TIPS process taken at three different times for PDLC. The droplets grow in size 

as time passes [26]. 

Our mam objective was the qualitative understanding of the effects of cooling rate, 

temperature and diffusion on the resulting droplet size and uniformity. 

1.3.1 Thermally-Induced Phase Separation Method 

Thermally-induced phase separation, or TIPS, can be used when the polymer binder has a 

melting temperature below its decomposition temperature. In this method, a homogeneous 

mixture of solvent and a melted polymer is formed. The solution is cooled at a specific rate to 

induce phase separation. Solvent droplets begin to form as the polymer solidifies. The 

droplets continue to grow until the glass transition temperature of the polymer is crossed. 

Droplet size is affected the most by the cooling rate of the polymer melt/solvent solution. 

Fast cooling rates tend to produce small droplets because there is not sufficient time for large 

particles to form. Therefore, droplet size and cooling rate are related inversely. Figure 1.5 

shows the snapshots of TIPS process taken at three different times. Note that the droplets 

grow in size as time passes. 
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The phase diagram for the TIPS process is a plot of concentration as a function of 

temperature (Figure 1.6). In the TIPS process, a single-phase mixture is prepared at a certain 

temperature. When the mixture is thrust into the unstable or metastable region due to 

temperature variation, usually one component separates from the other. Figure 1.6 shows 

schematically a typical phase diagram for a binary asymmetric polymer solution with an 

upper critical solution temperature (UCST). The dashed (dotted) curve represents the binodal 

(spinodal) line. The area between binodal and spinodal curves is called the metastable region, 

where phase separation occurs by nucleation and growth (route A). At the beginning, a 

polymer solution in a homogeneous phase is formed at an initial temperature and some 

average concentration. When the solution is cooled to a lower temperature, phase separation 

takes place. When the polymer solidifies, the phase separation is terminated. Two types of 

morphology can be obtained in the unstable region according to the average concentration. 

For an off-critical quench (route B or D) where the average concentration is not the same as 

critical concentration, cc, the droplet-type morphology forms. In route B the white droplets 

belong to solvent phase dispersed in the matrix of polymer (solvent-rich), while in D, dark 

droplets are representing polymer phase dispersed inside the continuous solvent phase. 

Performing a critical quench (route C) where the average concentration is the same as critical 

concentration will result in the interconnected structure. Besides the morphology, the droplet 

size in the TIPS process can also be controlled by the rate of cooling. In addition, there are 

other factors affecting the droplet sizes, such as the rate of diffusion, viscosity, and chemical 

potential of both components. Although the TIPS method seems simple, care must be taken 

to consider the process history and high temperature due to the unstable region in SD. 
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Figure 1.6: A temperature vs. composition phase diagram of TIPS process showing the 

various types of quenching into spinodal region, off-critical (B and D) and critical (C). Route 

A is a quench into metastable region. 

1.3.2 Polymerization-Induced Phase Separation Method 

Polymerization-induced phase separation, or PIPS, occurs when a solvent is mixed with a 

solution that has not yet undergone polymerization (a prepolymer). Once a homogeneous 

solution is formed, the polymerization reaction is initiated. The polymerization is triggered 

by either heat or ultraviolet exposure in the presence of initiator or crosslinking agent, 

depending on the chemistry of the system. Polymerization decreases the miscibility of the 

two components because of the increased molecular weight of the prepolymer. At a certain 
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point, phase separation occurs via either nucleation and growth mechanism, if the system is 

far off the critical composition, or spinodal decomposition mechanism, if the system is close 

to the critical composition. The morphology further evolves with polymerization until the 

system is "frozen" by chemical gelation. A large range of morphologies can be obtained by 

PIPS in a controlled manner, with the two major types being particle/matrix (or sea/island) 

morphology, and co-continuous morphology, as predicted by the two phase separation 

mechanisms. However, in reality, the situation is complicated by the competition of reaction 

rate and phase separation kinetics as well as the interplay of multiple sub-factors such as 

viscosity, temperature, non-covalent interactions, and viscoelasticity. 

Another way to interpret the polymerization induced phase separation is to use the phase 

diagram illustrated in Figure 1. 7. Here, c,, I; and N 2 are the system composition (volume 

fraction), temperature and polymer degree of polymerization, respectively. Considering a 

system with an upper critical solution temperature (UCST, Figure 1.1), since most polymer 

mixtures exhibit UCST behavior, the system with an initial composition c, is initially 

miscible at the polymerization temperature I; . As the polymerization proceeds, the miscible 

mixture becomes less stable as the phase boundary curve shifts upwards. When it reaches the 

curing (system) point ( c,, I;), phase separation begins. The phase diagram becomes 

asymmetric and the system point will either thrust into the unstable region where phase 

separation occurs by spinodal decomposition or metastable region where nucleation and 

growth is inducing the phase separation mechanism. This point is also defined as the "cloud 

point" (the point when phase separation begins). 
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N2 Increasing 

Figure 1.7: Schematic phase diagram of PIPS process. The solid (dashed) curves represent 

the binodal (spinodal) lines. co and T; are average concentration and initial temperature 

respectively. N 2 IS the polymer degree of polymerization which increases with 

polymerization. Note that the phase diagram becomes asymmetric and the system point is 

thrust into the unstable region where phase separation occurs by spinodal decomposition. 

The two mam factors that influence the size of solvent droplets in PIPS are the cure 

temperature and the type and proportions of materials used. The cure temperature affects the 

speed of the polymerization as well as the diffusion rate and solubility of the solvent in the 

polymer. These factors can greatly influence the size of the solvent droplets which translates 

into different macroscopic optical properties. 
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1.3 .3 Solvent-Induced Phase Separation Method 

The third common type of phase separation is called solvent-induced phased separation, or 

SIPS. This process requires both the solvent and polymer to be dissolved in a solvent. The 

solvent is then removed (typically by evaporation) at a controlled rate to begin the phase 

separation. Droplets start growing as the polymer and solvent come out of solution and stop 

when all of the solvent has been removed. The main factor affecting droplet size in SIPS is 

the rate of solvent removal. Like TIPS, droplet size increases as the rate of solvent removal 

decreases. The SIPS method has received the least attention by researchers. The main reason 

for this is that some thermoplastics require strong solvents. If these solvents are not 

recovered, environmental problems will arise and if they are recycled, additional equipment 

is needed [ 15]. 

1.3.4 Reaction-Induced Phase Separation Method 

In reaction-induced phase separation an interesting variation has been to understand phase 

separation kinetics when the polymer is diluted in an anisotropic solvent, such as liquid 

crystals. Here, there are three competing dynamics: one dominated by the transition from 

isotropic to nematic ordering of the liquid crystal, a second determined by the phase 

separation of the polymer from the liquid crystal solvent where the anisotropy of the solvent 

can affect solubility, and a third determined by the growing molecular weight and gelation of 
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the polymer matrix [23]. PIPS, SIPS and RIPS processes are not studied in this thesis and are 

only briefly described. 

1.4 Double Quench TIPS Method 

Phase separation is one of the most fundamental phenomena responsible for the formation of 

heterogeneous structures in polymer solutions [1,2]. It is commonly observed in various 

kinds of polymer mixtures. Generally, the dynamics and morphology of phase separation is 

strongly dependent upon the quenching conditions. From this standpoint, phase-separation 

phenomena as already mentioned are classified into nucleation-growth (NG) type and 

spinodal decomposition (SD) type in the mean field picture [I ,2]. Furthermore, SD-type 

phase separation is grouped into bicontinuous (interconnected) and droplet SD. So far, most 

of studies on phase separation have been focused on the ordering process accompanied by a 

single rapid temperature quench from a one-phase to a two-phase region [10,12]. Kinetics of 

phase separation induced by a single temperature quench has reasonably been understood by 

intensive researches [12-17]. A quench condition including the composition and temperature 

of a solution is one of the key factors that determine how the phase separation proceeds. 

There is a possibility that a variety of interesting phase-separated patterns are created by 

complex temperature modulations. One of such examples is periodic spinodal decomposition, 

which was theoretically predicted by Onuki [27] and experimentally studied by Joshua et al. 

[28]. In this thesis the attention is on a new type of multiple quench, namely, a double 

quench. 
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(a) 

(b) 

Figure 1.8: Schematic phase diagram of TIPS process. The solid (dashed) curves represent 

the binodal (spinodal) lines. Tc and cc are critical temperature and concentration 

respectively. In case (a) the solution is critically quenched into A first and then to B or C 

featuring shallow and deep quenches while in case (b); the solution is quenched off-critically 

into D first and then to E and F for shallow and deep quenches. 
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There are so many different types of double quenches that have been investigated 

experimentally [16-21,59,60] and numerically [25,46,49-52,]. Figure 1.8 shows two common 

cases of double quench studies. Case (a) is composed of two pathways; quenching from one­

phase to unstable region (to A), where phase separation mechanism is caused by SD and the 

second quench could be shallow (to B) or deep (to C) within the unstable region where phase 

separation would still be followed by SD. In case (b), the solution is quenched off-critically 

into unstable region first (to D) where phase separation is caused by SD and the second 

quench depending on shallow (to E) or deep mode (to F) is made into unstable region. The 

morphology of both cases is dissimilar and will be discussed in details in chapters 2, but in 

both cases, however, new droplet formation has been observed which is known as secondary 

droplets. These small droplets will appear inside the phase separated structure resulted from 

the first quench. 

Although the final equilibrium state is determined solely by the final temperature, the process 

is strongly affected by the quench procedure. Thus, it is important to clarify how the quench 

history affects the kinetic pathway of phase separation. In the thesis, this problem is 

considered for two different double quenches, where the second quench occurs in different 

depths: a. shallow quench; inside the metatable region and b. deep quench that brings the 

components' concentrations down into the unstable and metastable region at the same time. 

The pattern evolution caused by these types of double quenches has been numerically [ 49, 78] 

and experimentally [63, 134-138] studied by a few groups. In their studies, the structural 

evolution has been mainly analyzed in the experimental microscopic photos and some 

computational studies [139] have reported the same pattern in a different approach. Instead, 
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the common secondary droplet formation in double quench phase separation has been studied 

by several groups [50,52,59,86-89]. In these studies, the structural evolution has been mainly 

analyzed in the wave number (q) space. Here we aimed at elucidating the characteristic 

feature of the pattern evolution induced by a double temperature quench by presenting and 

analyzing the two-dimensional contour morphology along with their three-dimensional 

graphs. 

1.5 Thesis Objectives 

The objective of this thesis is to present results from a mathematical study of the phase 

separation phenomena for a model of polymer solution when it undergoes a two-step quench 

within the metastable region of its phase diagram using the nonlinear Cahn-Hilliard equation 

and Flory-Huggins free energy equation. The model polymer solution is a low molecular 

weight solvent and a polymer with a degree of polymerization of only ten. The objectives are 

presented in details as following: 

1. To develop and implement a numerical method that solves a model composed of the 

nonlinear Cahn-Hilliard and Flory-Huggins theories with boundary conditions and thermal 

concentration fluctuations in order to study the single quench and double quench TIPS 

method of phase separation in an asymmetrical polymer solution. 

2. To develop, implement, solve, and validate a model that describes the pattern formation in 

one-step and two-step thermal quenching to compare the results with the experimental work 
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that has been done on the phase separation and droplet formation phenomena for the TIPS 

method. 

3. To develop, implement, solve, and validate a model that presents two-dimensional 

simulation of the phase separation and droplet formation phenomena for the TIPS method. 

The model will incorporate the Cahn-Hilliard and Flory-Huggins theories. 

4. To develop, implement, solve, and validate a model that presents two-dimensional 

simulation of single quench and double quench to verify that the model will show the same 

known trends associated with spinodal decomposition and nucleation and growth using TIPS 

method. 

5. To develop, implement, solve, and validate a model that presents two-dimensional 

simulation for a double quench in order to better understand the mechanism of secondary 

phase separation by comparison to the published experimental work on double quench TIPS 

method and clarify the characteristic feature of the pattern evolution induced by a double 

temperature quench by combining both morphology and wave number analyses. 

1.6 Thesis Methodology and Approach 

Computer simulations also provide a route from the microscopic detail (atomic masses, 

atomic charges, etc) to the macroscopic details (equations of state, material properties, etc). 
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They also allow the straight-forward explanation of details at the microscopic scale, which 

can be hard (if not impossible) to investigate from experiment. For instance, the structure of a 

fluid is easily found from simulation but with somewhat more difficulty from the experiment. 

In addition, it also provides a route to determine properties in situations out of the reach of 

experiment, such as high pressures or temperatures [77]. However, in all cases, predictions 

of properties are dependent on a good model of the interactions between particles and 

efficient computer simulation methods. 
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Make a 
Model 

Model the System 

Perform Experiment 

D '----------, 

Perform Simulation 

D~------, 
Construct a Theory 

Experimental Results 
(Real System) 

Theoretical Predictions 

(Model System) 

Figure 1.9: The theory, computer simulation and experiment [77]. 

This thesis has focused on the computational modeling and mathematical simulation of phase 

separation in polymer solutions undergoing spinodal decomposition and nucleation and 

growth mechanism for verifying the phase separation phenomenon in polymer solutions 
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under double quench. The objectives of the thesis in fulfilling the above mentioned 

parameters is shown in Figure 1.10 and described below. The flowchart is designed for better 

understanding the quench process of polymer solutions with the help of mathematical 

modeling. 

Model 
Validation 

Physical Phenomenon: 
Droplet formation from 
phase separation in polymer 
solutions under a 
single and double quench 

0 c___ ___ --, 

Numerical 
Results 

D 
Scientific Visualization 
3D Surface Plots 
Contour Plots 
Morphological Analysis 
Statistical Analysis 

Model Development 
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and Simulation 

Objectives 

Non-Linear Cahn-Hilliard Theory 
Flory-Huggins Theory 
Nucleation & Growth 
Arbitrary Boundary Conditions 

Galer kin Finite Element Method 
Hermitian Basis Function 
Euler Predictor-Corrector Method 
Time Step Controller 

Figure 1.10: Computational modeling flowchart of the thesis objectives. 

The flowsheet specifies that the prime step in the simulation of a physical expenence IS 

suggesting objectives. A model can then be developed and implemented based on the 

objectives, existing theories, and experimental results. This model is then solved using the 

22 



proper computational methods and computer hardware. Lastly, the numerical results obtained 

from the simulations are processed so that they can be validated with on hand experimental 

data. 

1. 7 Thesis organization 

This thesis contains seven chapters that are organized in the following way: 

Chapter 1: This chapter is an introduction and overview of phase separation phenomenon 

with its different methods and mechanisms. The focus of this thesis is on thermally induced 

phase separation for a single (one-step) and double (two-step) quench. The thesis objectives, 

the methodology approach and the thesis organization are also covered. 

Chapter 2: This chapter will present a literature review about the history of phase separation 

phenomenon mechanisms and the published findings of TIPS method detailed in both single 

and double quenching. It will furthermore outline the new experimental and numerical work 

and researches that have been done yet. 

Chapter 3: This chapter discusses the theoretical background of phase separation along with 

its governing thermodynamic equations caused by spinodal decomposition mechanism. 

Cahn-Hilliard theory and Flory-Huggins free energy is introduced and applied. 
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Chapter 4: This chapter will deal with the model development technique and the method of 

applied solution. Initial and boundary conditions are also presented. The model is then 

derived in two dimensions. 

Chapter 5: In this chapter, the two-dimensional results for double TIPS quench method are 

discussed and analyzed. Off-critical quench cases are simulated. Different quench 

temperature and diffusion coefficients are examined. The concentration profiles are presented 

in three-dimensional graphs and two-dimensional contour plots. The simulation is also 

validated by comparison to the similar experimental or different numerical work. 

Chapter 6: This chapter will discuss the conclusions on all numerical findings on double 

quenching. 
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Chapter 2 

Literature Review 

This chapter introduces a brief history of PDLC films as a result of phase separation method. 

Various simulation approaches applied to PDLC systems by different groups are reviewed 

here. In addition some new findings are also extensively described. The theory of spinodal 

decomposition is then explained. The mechanism of SD to form binary polymer solutions 

due to the temperature variations is summarized. Two types of phase separation mechanism 

in TIPS method have been discussed in details for binary polymer solutions with any related 

numerical or experimental work that has been done so far. The new type of core-shell 

morphology by double quenching is introduced as well. 

2.1 Polymer Dispersed Liquid Crystal (PDLC) 

As telecommunication and computing have advanced the need for new optically active 

materials remains an important concern, especially for options that minimize power 

consumption as well as weight. Liquid crystals (LC's) have offered a successful option to this 

dilemma in recent years. The liquid crystal display or LCD, for example, has become the 
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leading material in the manufacture of such mobile devices as personal digital assistants, 

notebook computers, and flat-panel televisions. The use of LC's, however, is not limited to 

use in displays. In the past decade one class of LC-polymer composites has shown much 

promise in expanding the role of these small molecules to include variable light valves, 

privacy windows, or even laser resonators [3,7]. These composites, called PDLCs, consist of 

LC droplets that are randomly dispersed in a solid polymer matrix as shown in Figure 1.5 

[3,4]. The PDLC film is a sort of "swiss cheese" polymer with LC droplets filling in the 

holes. These tiny droplets (a few microns diameter for practical applications) are responsible 

for the unique behavior of the material. The history of PDLCs began with Hilsum et al. in 

1976, when he reported glass bead dispersed in a nematic LC [38]. Not much became of 

these initial results until in the early to mid 1980s when Craighead reported studies on a 

porous matrix of esters of cellulose filled with a LC [29]. In 1985, Fergason and Drzaic 

reported the formation of LC-polymer composites formed from the dried mixture of LC in 

aqueous PVOH [35,36]. Later in 1986, Doane reported the induced phase separation of a 

homogeneous mixture of a LC and a prepolymer [23]. Since then, several different methods 

of fabrication and the design of a PDLC are under study and promise to yield new display 

technologies [20]. PDLCs are usually fabricated in two ways: encapsulation and phase 

separation. The former method was introduced by Fergason [35] and Drzaic [36] who dried a 

polymer solution (polyvinyl alcohol) with emulsified LC droplets. The latter method was 

reported by Doane et al. in 1986 [23]. It involved initiating phase separation by thermally 

polymerizing the polymer solution. Other phase separation methods such as evaporation of a 

solvent from a polymer-LC mixture (SIPS), temperature-induced phase separation (TIPS) 

and reaction-induced phase separation (RIPS) of a LC-polymer mixture can also be 
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employed. In TIPS method; which is the focus of this thesis, the size of the LC droplets can 

be well controlled by the temperature. PDLC films are usually formed between two glass 

substrates coated with transparent electrodes such as indium tin oxide (ITO), typically 

separated by 5 tolO ;.on . A voltage can be applied across the PDLC film. As an electrically 

active film, a PDLC can be used as a light valve in which the polymer acts as an optically 

isotropic medium while the birefringent LC makes the composite optically active. The 

polymer matrix by its flexibility gives the PDLC mechanical strength [3,5]. Additionally, 

PDLC can be easily coated as a film onto a conducting substrate for the manufacture of 

electro-optical devices. The basic operation, as shown in Figure 2.1, begins with the 

scattering or "off' state. At this point the alignment of the LC varies from droplet to droplet 

[3,5]. When a voltage is applied (the "on" state), the LCs, change their alignment to the 

direction of the field and the PDLC becomes transparent. 

Incident Light Incident Light 

Glass 

Drive Voltage 

Liquid Crystals 

Glass 

Scattered Light Transmitted Light 

(a) Off State (b) On State 

Figure 2.1: Schematic illustration of a PDLC cell showing the scattered (transmitted) light in 

off-state (on-state) [3]. 
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2.2 Single Quench Studies 

In TIPS, as already discussed, phase separation m a homogeneous system of different 

components is brought about by the changes in temperature. When a polymer blend 

undergoes a quench into the spinodal region of the phase diagram random fluctuations grow 

rather than decay leading to two coexisting domains. To study theoretically the early and late 

stages of growth of the domains, Cahn-Hilliard [I] theory for the dynamics of concentration 

fluctuations was extended to polymeric systems by de Gennes [50] Pincus [56] and Binder 

[37] by combination with the well-known Flory-Huggins theory for a polymer mixture which 

describes the free energy of the system. In PDLC systems, this phenomenon involves the 

separation of a liquid crystal from an initially homogeneous solution of polymer or pre-

polymer. On considering PDLCs' formation and performance, many studies have been 

performed on the experimental side. Similarly, a lot of research on the simulation side for the 

PDLCs has been of the fundamental interest too. Recently, research on polymer solutions has 

intensified [ 11-19] due to the importance of these binary systems as high performance 

materials and the fact that final morphology controls the preferred characteristic mechanical 

properties of the composite. Generally, the dynamics and morphology of phase separation is 

strongly dependent upon the quenching conditions. From this standpoint, phase separation 

phenomena are classified into nucleation-growth (NG)-type and spinodal decomposition 

(SD)-type [13,32]. Furthermore, SD-type phase separation is grouped into hi-continuous and 

droplet SD. So far most of studies on phase separation have been focused on the ordering 

process accompanied by a single rapid temperature quench from a one-phase to a two-phase 

region [5,22]. 
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Kinetics of phase separation induced by a single temperature quench has reasonably been 

understood by intensive researches [37,39]. Chan eta/. [12,15] studied the TIPS phenomenon 

via spinodal decomposition (SD) in a polymer solution under a linear concentration gradient. 

The model was developed using the non-linear Cahn-Hilliard theory to describe the dynamic 

behavior of TIPS via SD, the Flory-Huggins free energy equation for the polymer solution 

thermodynamics, the slow mode mobility theory and the Rouse law for the polymer diffusion 

process and a linear initial concentration gradient applied prior to the phase separation. As a 

result, the linear initial concentration gradient had an effect on the droplet distribution, the 

droplet size and the shape. They showed that the anisotropic morphology is due to the 

polymer solution undergoing SD at different rates along the sample as a result of the initial 

concentration gradient. This model was later successfully used [ 12, 14] to study two different 

types of TIPS phenomenon, namely uniform and non-uniform quench. For the uniform 

quench case, no spatial temperature gradient was imposed on the polymer solution, resulting 

in the conventional TIPS process. For the non-uniform quench case, the polymer solution 

sample was exposed to a linear spatial temperature gradient. The numerical results indicate 

that a uniform quench produces an isotropic morphology, where the droplets are uniform in 

size, whereas a non-uniform quench produces an anisotropic morphology, where the droplets 

vary continuously in size along the sample. 

Gunton et a/. [20,21] gave an extensive review on NG and SD mechanism. His work 

concluded that thermally driven phase separation can result in small concentration 

fluctuations in the metastable region which increases the total free energy of the system. This 

energy is then absorbed by the binary solution. The results fit well within Flory-Huggins 
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r theory predictions. Adequately large but limited concentration fluctuations can decrease the 

total free energy of the polymer mixture which makes the solution unstable and leads to 

phase separation by NG mechanism. As a result, NG is an activated process [10]. Extremely 

small concentration fluctuations in the unstable region (SD) decrease the total free energy of 

the system, and lead the binary solution into phase separation by SD. This type of phase 

separation is then a non-activated (spontaneous) process. The interconnected structure has 

been the solitary characteristic morphology recognized to SD for years but today 

experimental and numerical work has also reached different conclusions. Tanaka et al. [7] 

have shown that droplet-type morphology forms when performing an off-critical quench into 

the unstable region on a binary liquid mixture (Figure 2.2). 

Figure 2.2: Temporal change in the patterns observed with optical microscopy during the 

SD-type off-critical quench in phase separation process [7]. (a) 2.5 s, (b) 10 s, (c) 60s and (d) 

240 s 
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This morphology was later discussed by Chan eta!. [30-34] numerically in details. In their 

work a model, composed of the nonlinear Cahn-Hilliard and Flory-Huggins theories, was 

used to numerically simulate the phase separation and pattern formation phenomena of 

oligomer and polymer solutions when quenched into the unstable region of their binary phase 

diagrams. The model takes into account the initial thermal concentration fluctuations. In 

addition, zero mass flux and natural non-periodic boundary conditions were imposed to 

better reflect experimental conditions. The results confirmed frequently reported 

experimental observations on the morphology of spinodal decomposition in binary solutions 

that critical quenches yield interconnected structures, and off-critical quenches give in 

droplet-type morphology (Figure 2.3). 

(a) 

0.4 

0.2 

z• 

(b) 

Figure 2.3: Dimensionless concentration spatial patterns formed during the SD-type phase 

separation phenomena for the simulation performed by Chan [30] corresponding to (a) off­

critical and (b) critical quench. The black regions (white regions) in the patterns represent 

solvent-rich (solute-rich) regions. For an off-critical (critical) quench simulation, a droplet 

(interconnected) morphology structure forms [30]. 
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His work could provide insights into numerical and experimental studies on the PDLC 

formation. In a research performed by Forrest and Heerman [68], they have demonstrated 

that it is possible to obtain a very good estimate for the coexistence curve for polymer blends. 

They claimed to have used these estimates to perform a deep quench into the two-phase 

region. The results indicate possible power law behavior of the typical domain size which 

forms after a quench even for films. They have also shown that the structure factor scales in 

the later stages for such polymer films. Matsuyama et al. recently studied the early stages of 

SD in various polymer systems by solving linearized time-dependent Ginzburg-Landau 

(TDGL) equations [47-49]. They calculated structure factors for concentration and 

orientation, depending on a quench from the stable phase into the unstable region. All three 

stages of SD mechanism have been analyzed and examined computationally and 

experimentally by a lot of researchers. There are a lot of articles and books written about 

different aspects of phase separation, SD and NG mechanism in general and PDLC formation 

and performance in particular [68]. However, this thesis is only limited to a numerical study 

of SD and NG phenomena for off critical quench conditions. 

Kyu et al. [24] also observed droplets after quenching a liquid crystal-polymer solution off­

critically into the unstable region. In his study, the system was investigated at various 

temperatures, concentrations, and degrees of polymerization. It was also shown that early 

stage SD droplets are not the ones usually observed during the coarsening process occurring 

in the late stage of SD. They furthermore reported the interconnected morphology by 

quenching the solution down spinodal region using critical concentration (Figure 2.4). Lee 

[69] extended the simulation to study the kinetics of microphase separation in a PDLC-
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forming process, and to study several features of the LCs. In his work, an equimolar mixture 

of monomer and LC molecules was thermalized and then polymerized at the same 

temperature. The end product was a gel with LC molecules that combined into droplets. A 

study of the phase separation in LC-polymer mixtures using computer simulations in two 

dimensions was performed by Motoyama et a/. [99]. In this work, the domain morphology 

that results from the phase separation either by temperature quench or by polymerization was 

investigated by solving the coupled set of equations for the local volume fraction. In a 

temperature quench, it was found that transient concentric domains were constituted near the 

nucleation regime. 

Figure 2.4: Interconnected pattern observed with optical microscopy during the SD-type 

critical quench in phase separation process after 360 s [24]. 

Hashimoto eta/. [90,91] and Elder eta/. [88] have worked on the early stages of spinodal 

decomposition in two dimensions. They reported an analytical numerical investigation to 

question the dynamics and the morphology of SD in a polymer system. According to this 

study, the theoretical analysis and simulation on a two-dimensional square lattice were 

carried out by utilizing the kinetics of the Cahn-Hilliard-Cook (CHC) equation. 
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The C-H-C equation is an extension of the C-H equation by an addition of a noise term due 

to the thermal motion of the atoms; the noise term appears to be important only close to the 

critical point [ 44] which will be discussed fully in chapter 3. The theoretical and numerical 

results indicated interconnected morphology for SD in the early and intermediate stage of the 

phase separation. It should be noted that since SD is a spontaneous process, the early stages 

of phase separation is usually very difficult to observe experimentally, but however, the high 

viscosity of a polymer mixture slows down the phase separation and makes it easier to follow 

the early stages. On considering the importance of computer simulation, which can be 

considered as an alternative method besides theory and experiment, Teixeira et a/. [92] 

developed a model of PDLC formation by TIPS. In this work, the cell dynamical systems 

method of Oono and Puri was employed for the spinodal decomposition in the 

thermoplastic-LC mixture. The numerical calculations performed on a two-dimensional 

system for a composition of 30% LC 70% thermoplastic reveal that the final morphology 

depends strongly on the quench rate. It was observed that for a much faster cooling rate, 

complete decomposition can be excluded, while for slower quenches, the usual LC-rich 

droplet pattern of constant-temperature is recovered. In this model, the PDLC is prepared by 

TIPS, by which the droplet formation occurs. 

Copetti and Elliott [16] have solved the nonlinear C-H equation with periodic boundary 

conditions into the intermediate and late stages of SD, numerically by using the nonlinear 

Cahn-Hilliard (C-H) equation in two dimensions using a finite difference approximation for 

space and time [55.57,58] and reported that droplets form for an off-critical quench and the 

interconnected structure forms for a critical quench. They used a fourth-order polynomial to 
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approximate the free energy, which produces a symmetric phase diagram [24]. Their results 

are similar to the experimental observations of Kyu et a/. [24] for critical quenches and 

Tanaka et a/. [7] for off-critical quenches. Computational studies on SD by Chakrabarti [70] 

and Brown and Chakrabarti [71,72] on the nonlinear Cahn-Hilliard-Cook equation in two 

dimensions [67,68] and three dimensions [31,33] show droplets forming for an off-critical 

quench that are more homogeneous in size and equally distributed than NG ones [72]. Their 

results however are restricted to blends of two polymers of equal polymerization degree and 

monomer size that makes the phase diagram symmetric. Chakrabarti used a fourth-order 

Ginzburg-Landau free energy, which does not consider any details of the molecules 

geometry in the binary solution. 

2.3 Double Quench Studies 

A review of the literature, however, shows that comparatively little work has been done on 

the two step mechanism of SD in polymer solutions [20,21]. Despite the frequent researches 

on phase separation morphology of polymer solutions induced by a single temperature 

quench, the dynamic behavior of a two-step quench and its following morphology is still a 

main unanswered dilemma. The C-H equation [15,20,32] is a linear theory that has always 

been applied by experimental and theoretical researchers of different fields as the preliminary 

spot for studying the procedure of phase separation . Nonlinear modifications of the C-H 

equation have also been used to suggest new mechanisms. In this thesis however, double 

quench studies of phase separation have been investigated from a new pathway: quenching 
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from one-phase regiOn into the metastable region and a subsequent (shallow and deep) 

quench into the unstable region in order to verify the transition procedure and its core-shell 

(cavity) morphology resulting from the interference of nucleation and growth mechanism 

with spinodal decomposition mechanism. 

2.3.1 Transition from NG to SD 

It is widely known that the nucleation-growth (NG) type of phase separation occurs in the 

metastable region because of the existence of a barrier for nucleation, while the spinodal 

decomposition (SD) type of phase separation occurs in the unstable region where fluctuations 

can grow without any barrier. Recent theoretical studies [51-55] show that the transition from 

metastability (NG) to instability (SD) may be diffuse and it is sharp only in a mean field-like 

system. The main idea of the mean field theory (MFT), also known as self-consistent field 

theory; is to focus on one particle and assume that the most important contribution to the 

interactions of such particle with its neighboring particles is determined by the mean field 

due to the neighboring particles, namely; many interactions are replaced by one effective 

interaction. It naturally follows that if the field or particle exhibits many interactions in the 

original system, MFT will be more accurate for such a system. Another approximation that 

is made in the mean field theory is that fluctuations can be neglected. A theory of spinodal 

decomposition including fluctuations was formulated by Langer et al. [63]. They concluded 

that their theory describes reasonably well the gradual transition from spinodal 

decomposition to nucleation. Binder et al. [ 43] then discussed the kinetics of phase 

36 



l 
j 

separation with emphasis on the transition between spinodal decomposition and nucleation 

by presenting a theory which describes a gradual transition from nucleation and growth to 

spinodal decomposition. They claimed the transition between nucleation and spinodal 

decomposition is a gradual one, although experimentally it may look rather sharp. The width 

of the transition regime was also estimated and interpreted. 

Tanaka et al. [ 40] as well verified the transition in a binary mixture of oligomers of styrene 

and e-caprolactone. They studied a transition from metastability to instability by changing a 

quench depth systematically under an off-critical quench condition (Figure 2.5). The 

concentration distribution function turned out to be a good fingerprint for determining 

whether phase separation is nucleation-growth type or spinodal-decomposition type. They 

also demonstrated clear morphological and kinetic evidence of a diffuse metastable-unstable 

transition or crossover phenomena; theoretically predicted for the system with a finite-range 

interaction. They believed the broadness of the transition is closely related to the range of the 

bare interaction. There have been few systematic, experimental studies on the transition from 

metastability to instability, though there have been several interesting studies [77, 78] on 

nucleation itself. In a usual binary-liquid mixture, the low viscosity makes the phase 

separation so rapid that within a very short time the phase separation enters in very late stage 

where gravity plays a significant role. Furthermore, the phase-separation behavior is very 

sensitive to small temperature changes, and very delicate experiments are required. In a 

polymer mixture, on the other hand, the high viscosity makes the phase separation very slow. 

Although it is suitable for studying the initial stage of spinodal decomposition, it takes too 
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Figure 2.5: Schematic phase diagram of a binary mixture (temperature vs. concentration). 

The solid curve is the binodal line (the coexistence curve) and the dashed curve the classical 

spinodal line. The shaded area is a transitional region from metastability to instability. The 

broadness of the transition depends on the interaction range. The arrow indicates an off­

critical quench condition. ¢~~~x and ¢~;L are the two branches of the coexistence curve [ 40]. 

long a time to study nucleation in the metastable state or the overall phase-separation 

dynamics. Following Tanaka's experiment; Chakrabarti presented results from a numerical 

study of the Cahn-Hilliard-Cook model in two dimensions. He studied the transition from 

metastability to instability in his model by systematically changing the quench depth for an 

off-critical quench condition. He used different kinetic probes in the simulation to distinguish 

between two types of growth mechanisms: nucleation and spinodal decomposition. Although 

one can distinguish between nucleation and spinodal decomposition in some cases, the 

transition between these two growth processes is gradual; he believed. He did not see any 

evidence of a sharp transition from one to the other at the mean field spinodal line. Actually, 
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the center of the diffuse transition zone that he found in the simulation was located above the 

mean-field spinodal line. No systematic calculation is available to predict how the kinetics of 

the phase-separation process should change as a function of quench depth, as one can quench 

the system at different points on each side of the mean-field spinodal line. 

Theories that do not rely on mean-field-type approximations conclude that the transition from 

nucleation to spinodal decomposition is gradual. It occurs within an area above the mean-

field spinodal. While simulations have supported the predictions of the non-mean-field 

theories, experiments that include both regimes have only been carried out with polymer 

blends separating into two liquid phases upon cooling [89]. This type of phase separation 

exhibits distinctive features. Yet, polymer blends comply with many of the mean-field 

assumptions. Vekilov et al. [89] monitored with optical microscopy, in real time and in real 

space, the generation of a dense liquid phase in high-concentration solutions of the protein 

solutions after temperature quenches into thermodynamically defined metastable and 

unstable regions. Nucleation to spinodal decomposition experiments with small molecule 

liquid or solid mixtures that do not fit the mean-field assumptions are difficult because of the 

fast nucleation rates. However, they claimed with this system, which is a poor fit to mean-

field assumptions that experimental facts on the evolution of the new-phase during L-L phase 

separation in protein solutions show the transition between the nucleation and spinodal 

decomposition mechanisms of generation of the new phase is smooth and occurs over a range 

of driving forces. Their observations mostly agree with the predictions of the nonmean- field 

theories of phase transformations. 
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Kiran and Liu [93,94] also studied the kinetics of pressure-induced phase separation (PIPS) 

in solutions of polydimethylsiloxane in supercritical carbon using time and angle-resolved 

light scattering. Controlled pressure quench experiments were conducted at different polymer 

concentrations to determine both the binodal and spinodal envelopes, and the critical polymer 

concentration. At each concentration, they imposed a series of rapid pressure quenches with 

different depths of penetration into the region of immiscibility and the time evolutions of the 

scattered light intensities were followed to determine the pressure below which the 

mechanism changes from nucleation and growth to spinodal decomposition. This crossover 

was then identified from the characteristic fingerprint scattering patterns associated with each 

mechanism. The study, however, only permits the identification of the width of the 

metastable region. 

2.3.2 Secondary Droplets 

As mentioned before, dynamics and morphology of phase separation are strongly dependent 

on a quench condition, which gives a final equilibrium free energy. Thus a quench condition 

including the change in composition, temperature, and pressure of a mixture is one of the key 

factors dominating the phase separation behavior. So far most of the studies on phase 

separation phenomena have been limited to an ordering process accompanied by a single 

quench from a one-phase to a two-phase region [32,36]. For single quenches, phase 

separation phenomena are divided into nucleation growth (NG) and spinodal decomposition 

(SD), depending upon quench conditions. There is a possibility that, new types of phase 
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separated patterns are caused by unusual quench conditions. From this standpoint, the 

problem related to fluctuations under special quench conditions has been studied by some 

researchers, and so far classified into the following three cases [37]: (i) A temperature or 

pressure quench in a stable, one-phase region [43,57]; (ii) a double quench where the system 

is first quenched from a one-phase to a two-phase region, and then subsequently back to the 

one-phase region [ 61, 79]; and (iii) periodic variations of temperature which bring the system 

alternatively below and above the phase separation point. This latter periodic spinodal 

decomposition was predicted by Onuki [27] and then experimentally studied [71,82]. 

Here we explain a different kind of double temperature quench, which consists of two cases: 

a. quenching from a one-phase to a two-phase region (SD) and a subsequent second quench 

within the two-phase region (SD), b. quenching from a one-phase region into metastable 

region (NG) and a subsequent second quench into the two-phase region (SD) (which is the 

focus of this thesis). The second quench can further be grouped into two kinds: a deeper 

quench and a shallower quench. These kinds of double quenches (specially the second case) 

are largely unexplored [73-75], although interface stability under double-quench conditions 

has been theoretically studied [103]. Following; we describe studies that have been done so 

far on the pattern evolution caused by double quenches within the two-phase region and 

discuss its mechanism along with original domain structure against a second quench. The 

two-step jump was first studied by Ohnaga and Inoue [52] who calculated the concentration 

profile in a one-dimensional system numerically based on the Cahn-Hilliard nonlinear 

diffusion equation that neglected hydrodynamic interactions (Figure 2.6). They investigated 

further the effect of quench depth on the change of profile induced by the shallow and deep 
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quench. This was undertaken for a real polymer system. They chose the binary system 

polybutadiene and poly(styreneco-butadiene). The calculated phase diagram was an UCST 

(upper critical solution temperature) type phase diagram with the critical point being at about 

400°C. After a homogeneous mixture underwent the first temperature-jump from the single-

phase region to the two-phase region of the phase diagram, the system was allowed to demix 

isothermally for a time, and then the demixed system underwent the second jump to a 

shallower or deeper quench. When the quench depth of the second jump was shallow (B to 

C), the concentration fluctuation decayed with time after the second jump and when the 

second jump was to a deeper quench (B to D), a new fluctuation of short wavelength was 

superimposed on the previously developed one. 
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Figure 2.6: UCST -type phase diagram and two-step temperature jump: the first jump from A 

to Band the second from B to C (shallow) orB to D (deep): (-) binodal and(---) spinodal 

curves [52]. 
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When the system with well-developed fluctuation was subjected to deep quenches, new short 

waves overlapped the old ones for a while and then the new short waves were finally 

absorbed into the old ones. There existed a difference in the process between the two cases 

however; the late-state profiles resembled each other. 

Okada et a!. [59,66] performed the two-step temperature jump for a polymer blend and 

observed a new morphological structure using an electron microscope (Figure 2.7). By the 

second temperature jump, small droplets were emerged inside large co-continuous domains 

that were already formed by the first temperature jump. Inner small droplets grew in size 

first, but after a certain period the average sizes of droplets did not change appreciably and 

the number of droplets started to decrease. Independently, Tanaka [86] also studied 

experimentally the morphological structures formed by the two-step temperature jump with a 

phase-contrast microscope (Figure 2.8). 

Figure 2.7: Backscattered electron image of the phase-separation structure formed in the 

two-step temperature jump of blend ( 1.3 5 x 1 04 s after the second temperature jump). White 

regions correspond to the poly(2-chlorostyrene )-rich phase [66]. 
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He demonstrated the evolution of an unusual phase-separated pattern caused by a double 

quench. The first quench was from a one-phase to a two-phase region and a subsequent 

second quench within the two-phase region (Figure 2.9). The resulting pattern evolution 

strongly depends upon the type of a double-quench sequence. By the second temperature 

jump, small droplets were emerged inside large co-continuous domains that were already 

formed by the first temperature jump. Tanaka et al. [87] also found by numerical simulations 

that spinodal decomposition of fluid mixtures is strongly dependent upon their fluidity. Thus 

for a high fluidity, they claimed the double phase separation to be spontaneous. They 

reported a systematic numerical study on how fluidity affects the phase-separation kinetics of 

two-dimensional incompressible fluid mixtures. 

Figure 2.8: Pattern evolution caused by a double quench: (6.8°C, 600 s, 21.4°C) (163.0°C, 

168.0°C) in a PS-PVME (50-50) mixture; (a) 60s, (b) 120 s, (c) 240 s, (d) 480 s, (e) 720 s, 

and (t) 960 s after the second quench [86]. 
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To study phase-separation kinetics of two dimensional critical fluid mixtures, they solved the 

scaled kinetic equations by the Euler method under periodic boundary conditions and the 

incompressibility condition. Figure 2.10 represents the overall pattern evolution during bi-

continuous spinodal decomposition for a symmetric composition under a high-fluidity 

condition [87]. It is evident that, even after the formation of a sharp interface, domains do not 

reach the final equilibrium composition and the temporal change in the darkness 

(composition) of domains can be seen. It should be noted that it has so far been widely 

believed that there is no change in composition after the formation of a sharp interface. This 

local-equilibrium assumption is the heart of the scaling concept. 
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Figure 2.9: Various kinds of double-quench sequences consisting of a first deeper quench 

and a subsequent deeper quench. In case a, both phases become metastable. In case b, one 

phase becomes metastable, while the other unstable. In case c, both phases become unstable. 

In case d, phase inversion is induced by the second quench [86]. The resulting morphology is 

shown in Figure 2.8. 
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This strong violation of the local equilibrium after the formation of a sharp interface is never 

seen for spinodal decomposition under a small fluidity condition. In the late stage of phase 

separation however, they claimed to have seen spontaneous secondary phase separation of 

nucleation-growth type at the beginning. For t > 40, one can clearly see the birth of small 

white and black droplets in the large black and white domains, respectively which tend to 

rearrange in a SD-type droplet formation (Figure 2.1 0). This nucleation-growth probability is 

dependent upon the noise level (see 3.1) because the nucleation is an event overcoming the 

energy barrier by thermal noises. Hashimoto et a!. [90,91] performed time-resolved light 

scattering experiments on the two-step phase separation process for a binary polymer mixture 

of deuterated polybutadiene and protonated polyisoprene with the critical composition 

(Figure 2.11 ). 

Figure 2.10: Two dimensional pattern evolution during hi-continuous spinodal 

decomposition for a symmetric composition under a high-fluidity condition at different time 

steps [87]. 
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A very important point which is the core of the research on double phase separation, 

however, is that this mechanism has been observed only for hi-continuous (critical) phase 

separation in nearly symmetric mixtures showing hydrodynamic coarsening (which will be 

explained later) under deep quench conditions and has never observed for off-symmetric 

mixtures having droplet morphology (off-critical). Tanaka [95] verified this phenomenon 

experimentally for both symmetric and off-symmetric solutions in a mixture of oligomers of 

e-caprolactone (OCL) and styrene (OS). 

(a) Phase Diagram 
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Ttc (b) Thermal History 
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Figure 2.11: (a) Phase diagram of a binary mixture of dPB-hPI. The two-step temperature 

jump was performed according to the scheme indicated by arrows. (b) Thermal history 

applied to the two-step phase separation experiments. The first-step SD process at T; (542 

0 C) lasted for t0 minutes and subsequently the second-step T-jump from T; to T2 (570 °C) 

was performed. The two phases developed after the first-step SD was brought again in 

spinodal region for the second-step phase separation process [90]. 
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He showed that the morphology, as already mentioned, is generally observed for nearly 

symmetric binary mixtures under deep quench conditions (Figure 2.12). In his experiments, 

he showed double phase separation morphology (droplet inside the droplet) in confined, 

symmetric binary mixtures under deep quench conditions. This phenomenon is likely 

universal for any confined, symmetric binary mixtures. He actually observed the same 

phenomena in other mixtures such as PVME/water. 

Hashimoto et al. [91] also investigated nonlinear time evolution of phase-separating 

structures in the two-step phase separation process for the same mixture [90] by using a time-

resolved light scattering technique. 

Figure 2.12: Pattern evolution ofthe OCL/OS mixture. Secondary droplets are more clearly 

observed for a deeper quench of nearly symmetric mixtures and never observed for off­

symmetric mixtures having droplet morphology under any quench conditions. This can be 

easily confirmed by comparing Figs. 2(al)-2(a3) with Figs. 2(cl)-2(c3) [95]. 
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The first-step phase separation via spinodal decomposition was conducted by a temperature 

jump (T-jump) from 23 octo 42 °C, and to the late stage of the SD for varying time periods, 

!0 , in order to develop phase-separated domains with varying characteristic size. This phase 

separation was followed by the second-step T-jump to a higher temperature of 70 oc so that 

each phase-separated domain was again quenched into thermodynamically unstable region. 

Nonlinear time evolution processes of phase-separating structures after the second-step SD 

were explored as a function of size of the initial structures. There, they found the effects of 

the initial structures on further evolution of phase-separating structure via the second-step 

SD. Small domains were evolved within the initial domains (defined as large domains) 

developed during the first-step SD process. They claimed to have succeeded in separating the 

scattering due to the small domains and that due to the large domains from the observed 

scattering profile. The separation allowed them to investigate a coupling of the time 

evolution of the large and small domains and nonlinear pathways for the system to achieve a 

new equilibrium structure after the second-step SD process. 

Henderson and Clarke [53] have studied the early stage of secondary order structure growth 

from a numerical study of the Cahn-Hilliard-Cook equation, where they use a Flory-

Huggins-de Gennes free-energy functional to model a polymer blend. Along with numerical 

simulations, they studied the early stages of double phase separation growth by using the 

linearized theory of Cahn-Hilliard and quantified the maximum degree of secondary phase 

separation as a function of quench depth. In these simulations, however, thermal noise was 

not included; hence thermal fluctuations in the order parameter are not accounted for. A 

direct comparison of their simulations with the experimental study of Sigehuzi and Tanaka 
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[96] is thus difficult. In their numerical work; using a finite difference scheme for a spatially 

and temporally discretized version of the Cahn-Hilliard equation for symmetric binary 

polymer mixtures; The blend was quenched from a stable state in the one-phase region to an 

unstable state in the two-phase region where it undergoes spinodal decomposition (Figure 

2.13). The mixture was then allowed to coarsen for two different time periods before a 

second quench was applied to a point further inside the unstable region. 

2nd quench 

X 

151 quench 

0 

Figure 2.13: Phase diagram illustrating the two-step quench phase separation process in a 

symmetric binary polymer blend [53]. 

As expected, the morphology of the first shallow quench resembled the interconnected 

structure of a critical quench studied by several groups (Figure 2.14). The secondary phase 

separation has been absorbed back into the larger phases, and the original morphology has 

been returned (Figure 2.14). The model was based on Cahn-Hilliard-Cook nonlinear 
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diffusion equation extended to polymer blends by using Flory-Huggins-de Gennes theory to 

determine the free energy of mixing per lattice. De Gennes [50] argued that chain 

connectivity reveals itself as an explicit entropic contribution and proposed that in the 

presence of fluctuations the Flory-Huggins type free energy functional needs to be 

supplemented with a square gradient term, the coefficient of which is given by the sum of 

enthalpic and entropic terms [50]. The work was carried out on a 256 x 256 two-dimensional 

lattice using periodic boundary conditions. 

a b 

c d 

e f 

Figure 2.14: Development of the polymer morphology following the second deep quench 

into the two-phase region [53]. 
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The morphology development was probed by determining the structure factor. They also 

quantified the maximum degree of secondary phase separation as a function of quench depth. 

During the initial stages following the second deep quench, smaller secondary domains 

appeared briefly in the primary domains obtained from the first quench step (Figure 2.14). 

Tanaka et al. [96] recently studied phase-separation behavior of an off-symmetric (nearly 

symmetric) fluid mixture (OS/OCL) induced by a double temperature quench (Figure 2.15). 

They first quenched a system into the unstable region. After a large phase-separated structure 

was formed, they again quenched the system more deeply and followed the pattern-evolution 

process. The second quench made the domains formed by the first quench unstable and led to 

double phase separation; that is, small droplets were formed inside the large domains created 

by the first quench (Figure 2.16). The complex coarsening behavior of this type of structure 

having two characteristic length scales was studied in detail by using the digital image 

analysis. They found three distinct time regimes in the time evolution of the structure factor 

of the system. In the first regime, small droplets coarsen with time inside large domains. 

There; a large domain containing small droplets in it can be regarded as an isolated system. 

Later, however, the coarsening of small droplets stops when they start to interact via 

diffusion with the large domain containing them and finally, small droplets will disappear. 

Thus the observed behavior was explained by the crossover of the nature of a large domain 

from the isolated to the open system; this is a direct consequence of the existence of the two 

characteristic length scales. The pattern evolution caused by this type of double quench has 

been studied experimentally and numerically by several groups [53,59,60,90,91]. 
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Figure 2.15: The phase diagram of the OS/OCL mixture. The solid and dashed curves are 

the binodal and spinodal lines, respectively. The dashed line is the composition symmetry 

line [96]. 

In previous studies, the structural evolution has been mainly analyzed in the wave-number 

(q) space. Here they aimed at explaining the characteristic feature of the pattern evolution 

induced by a double temperature quench by combining both real (r) and wave-number (q) 

space analyses. On the basis of these analyses, they proposed a simple mechanism for 

domain coarsening of a phase-separated structure. In their experiment, after the first quench, 

spinodal decomposition takes place. In the late stage, droplets of the minority phase (the 

OCL-rich phase) are formed and coarsen with time. They called this structure formed by the 

first quench; the first-order structure. After the second quench there appeared small OS-rich 

droplets in the OCL-rich droplets formed by the first quench. They called this structure inside ~~ 

• 
large droplets; the second-order structure. First this subsystem coarsens with time mainly by 

the Brownian-coagulation mechanism [93-95] accompanying direct droplet collisions and 

coalescence. 
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Figure 2.16: Temporal change of the pattern inside a large OCL-rich droplet after the 

second quench. The size of an image corresponds to 25 x 25 )..till [96]. 

However, the small droplets near the interface of the large OCL-rich droplet start to 

evaporate and disappear. Eventually all the small OS-rich droplets disappear. 

Rullmann and Alig [ 49] investigated the phase separation process in a critical mixture of 

polydimethylsiloxane and polyethylmethylsiloxane (PDMS/PEMS, a system with an upper 

critical solution temperature) by time-resolved light scattering during continuous quenches 

from the one-phase into the two-phase region. Continuous quenches were realized by cooling 

ramps with different cooling rates. Phase separation kinetics was then studied by means of 

the temporal evolution of the scattering vector (q) and the intensity (I) at the scattering peak. 

They observed a secondary scattering maximum in very late stages of non-isothermal phase 

separation which was due to secondary demixing. They explained the beginning of secondary 

demixing by a competition between inter-diffusion and coarsening mechanism. 
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In a research performed by Chan et a/. [25], they studied through one-dimensional modeling 

and computer simulation the two-step TIPS in a symmetric polymer blend via spinodal 

decomposition. The two-step phase separation phenomenon involved the two-step process 

where the initial quench was allowed to phase separate for a certain period of time before the 

second quench took place into the unstable region. They showed the second quench occurred 

at the transition between the early and intermediate stages of spinodal decomposition, which 

is the time frame when functional polymeric materials with predefined material properties are 

fabricated. The one-dimensional model consisted of the Cahn-Hilliard theory for spinodal 

decomposition, and incorporated the Flory-Huggins--deGennes free energy equation, the 

slow mode mobility theory and reptation model for polymer diffusion. The numerical results 

simulated frequently reported experimental observations published in the literatures 

including the observation that secondary phase separation occurs only if the second quench is 

sufficiently deep. Furthermore, their numerical results indicated that a dimensionless 

diffusion coefficient may be used as a parameter to control the formation and evolution of the 

phase-separated regions during spinodal decomposition as a way to tailor-make functional 

polymeric materials with predefined material properties. 

Chakrabarti et a/. [73] also numerically studied a two-step quench process in an asymmetric 

binary mixture. The mixture was first quenched to an unstable state in the two-phase region. 

After a large phase-separated structure was formed, they again quenched the system deeper. 

The second quench induced the formation of small secondary droplets inside the large 

domains created by the first quench. They characterized this secondary droplet growth in 

terms of the temperature of the first quench as well as the depth of the second one. The 
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comparison of Chakrabarti's model with the so far performed modeling and experiments 

shows that the droplets however; are not conspicuous in their snapshots and since the phase 

diagram is not provided it is not clear how asymmetric the system chosen to be modeled is. 

As already mentioned; secondary droplets have been just observed for a deeper quench of 

symmetric or nearly symmetric mixtures and never observed for off-symmetric mixtures 

having droplet morphology under any quench conditions. This can be easily confirmed by 

comparing Figs. 2(al)-2(a3) with Figs. 2(cl)-2(c3) of Figure 2.12 provided experimentally by 

Tanaka [95] and numerically by others [25,52,53] but since the numerical model they have 

used includes thermal noise, they believe to have studied the dependence of secondary 

droplets on the depth of the first and second quenches in a natural way. 

2.3.2.1 Critical Double Quench Mechanism 

Figure 2.17 schematically shows the two-step TIPS method for a polymer solution with a 

symmetric phase diagram (N1 = N 2 = 1 ). Initially, a polymer and a solvent material form a 

homogeneous solution at some average concentration (co = cc) and elevated temperature To 

which is denoted by the dot. The temperature is then lowered to I; at a prescribed cooling 

rate, thus bringing the solution into the unstable region where phase separation occurs by 

spinodal decomposition. Upon decreasing the temperature the solution thermodynamic 

driving force increases and the solution separates into two phases in order to minimize the 

free energy. The tie line (Figure 3.9) connects the two coexisting phases that are both at 

equilibrium. At the equilibrium stage, solvent concentration has increased to c" and the 
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polymer concentration has decreased to c' while the average initial concentration is still 

constant ( cc ). Since the system is under critical quench the resulting morphology would be 

interconnected solvent dispersed inside the polymer matrix as observed and modeled by 

several groups [ 12,16,24]. Phase separation continues until the polymer solidifies. After 

imposing the second deep quench on the acquired phase separated solution (Figure 2.17), 

SD-like phase separation reoccurs in the two original, coexisting phases. Then the phase-

separated domains evolve toward the equilibrium composition values as determined by the 

coexistence curve and the late stages of SD would approach through the observable domain 

growth. 

The second quench is carried out deeper within the two-phase region to temperature T2 • In 

the second quench spontaneous secondary phase separation of spinodal decomposition type 

occurs for both polymer and solvent independently, namely, the birth of small droplets in the 

domains of polymer and solvent. In the late stage, on the other hand, the large and small 

domains start to interact with each other through diffusion, and consequently small droplets 

gradually evaporate from the neighborhood of the interface of the original droplets. The 

deeper the depth of the quench, the greater the degree of secondary phase separation, the 

finer the secondary morphology and the longer it takes to return the morphology to its 

original T.. state. The small droplets newly appeared grow with time in both original droplets 

(solvent-rich phase) and polymer matrix, and at the same time they disappear first from the 

interfacial region. The secondary structure is absorbed back into the primary structure while 

the primary structure coarsens. 
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Figure 2.17: Schematic representation of TIPS in a two-step critical quench in a symmetric 

polymer solution. Both polymer and phase separated solvent obtained from the first quench 

undergo another phase separation independently. 

In phase separation under a critical quench, the total interface area of the system is 

significantly reduced within a short time by the fast hydrodynamic coarsening driven by 

interface tension [17]. It is well known that the increase of the domain size is mainly caused 

by the hydrodynamic flow and diffusion [145]. Since the hydrodynamic interface motion is 

much faster than the concentration diffusion, the hydrodynamic flow due to interface motion 

causes only the geometrical coarsening and does not accompany the concentration change. 
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That is, the hydrodynamic coarsening can be too quick for concentration diffusion to 

establish the local equilibrium. This should cause double quench effects, which we call 

interface quench effects. Eventually coarsening of the domains occurs to reduce the 

interfacial area. It is also known [139] that there is an enormous acceleration of the domain 

coarsening for phase separation of a critical polymer mixture. The mechanism of the unusual 

fast growth of domains on the other hand is not yet understood. 

2.3.2.2 Off-Critical Double Quench within SD Mechanism 

Traditionally two-step SD process has also been studied in such a way that mixtures undergo 

an off-critical quench from a single phase state at a temperature 7;, to temperatures T; and 

then the second quench to T2 inside spinodal region in the phase diagram (Figure 2.18). 

Similar to the critical quench conditions, here an initial structure which is the single phase 

state characterized by thermal composition fluctuations at 7;, will be transformed into an 

equilibrium droplet type structure at T; which is a macroscopically phase-separated structure. 

This process has already been well explored. By changing the temperature from T; to T2 due 

to the increase in the driving force of the phase separation, the structure developed before the 

second-step temperature jump can be regarded as the initial structure for the second-step 

phase separation process (Figure 2.18). By the deeper quench involved in the second-step 

phase separation, an additional thermodynamic instability may occur to result in formation of 

small domains inside the phase-separated domains developed by the first-step phase 
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Figure 2.18: Schematic representation of TIPS in a two-step off-critical quench in a 

symmetric polymer solution. Both polymer and phase separated solvent obtained from the 

first quench undergo another phase separation independently. 

separation. We designate the domain developed before the second-step T -jump as the large 

domains and the ones developed inside them as the small droplets. It is worthwhile to 

investigate whether or not the small droplets are developed inside the large domains. The 

light scattering experiments by Hashimoto et a!. [90,91] indicated that the large domains 

grew further with time after the second step T -jump. It also showed that within the large 

domains the small droplets grew in amplitude of the composition fluctuations, while keeping 
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their size nearly constant, which may be similar to the phenomena observed in the early stage 

of isothermal single-step SD process. While the large domains further grew with time, they 

will absorb small droplets in order to decrease excess interfacial energy caused by the 

presence of the small droplets inside them. Generally, the time-evolution process for the 

double phase-separation structures via the SD can be classified into the following three 

stages: (a) early stage, (b) intermediate stage, and (c) late stage. In early stage after the 

second-step T -jump, the composition profiles are expected to change eventually from c' and 

c" to c t and c tt in Figure 2.18 and correspondingly the domain morphology changes by 

creating small droplets rich in polymer (solvent) in the large domains rich in solvent 

(polymer), and gets quickly local equilibrium in terms of the composition fluctuations as 

shown in the figures. The large domain containing small droplets in it can be regarded as an 

isolated system. Intermediate stage, after the second-step T -jump; corresponds to the stage 

where the small droplets develop and grow in size and their compositions reach the 

equilibrium compositions, though these processes themselves are not shown in the figures. 

Then the small droplets grow via diffusion (droplet collisions) and coalescence. In this stage 

both small and large domains grow with time. The coarsening of the second-order droplets is 

much slower than that of usual droplets induced by a single quench phase separation. And 

finally the coarsening of small droplets stops when they start to interact via diffusion with the 

large domain containing them. 

The grown coarsened small droplets rich in polymer (solvent) inside the large domain of 

solvent (polymer) are absorbed back into the large domains of polymer (solvent) resulting 

eventually in the domain structure of the first quench. The structure evolution after this stage 
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becomes identical to that for the single-step isothermal SD at T2 • In stage (c) the small 

domains grew as a consequence of a diffusion-coalescence process and eventually were 

absorbed into the large domains, resulting in a reduction of the interfacial free energy. In this 

process the small domains having larger sizes were found to disappear faster than those 

having smaller sizes. Figure 2.19 shows the time evolution of the local structure factor of the 

second-order structure investigated by Tanaka et al. [96]. The peak wave number q 

decreases with time, while the peak intensity S(q) increases. In stage (b), this tendency stops 

and both q and S(q) are almost constant with time. Finally, in late stage, which stage, q 

starts to decrease again while S(q) keeps idling [it finally decays (not shown), reflecting the 

disappearance of small droplets]. This stage continues until the second-order structure 

completely disappears. 

S(q) 
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Figure 2.19: Temporal change in the structure factor of the second order structure [96]. 

In the first two stages, a subsystem inside a large first-order droplet can be regarded as an 

isolated system, while in the last regime it can no longer be regarded as an isolated one and it 
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strongly interacts with the surrounding matrix. It should be noted that double phase 

separation can be induced even by a single quench [ 140] when the diffusion cannot catch up 

with the fast hydrodynamic coarsening. There the original phase-separated structure is 

completely reorganized. This phenomenon would not happen under a symmetry-preserving 

quench, namely under a critical quench condition in a symmetric phase diagram. Further 

studies are highly desirable for clarifying the mechanism dominating phase separation 

ordering under various multiple quenches and applying the phenomena to the structural 

control of material. 

Figure 2.20 schematically summarizes the whole procedure of a two-step deep quench in a 

TIPS method. The thick darker arrows around each droplet indicate the diffusion flux 

induced by the concentration gradient [96]. 

I 

+ 
I I :m 

+ + + 
Figure 2.20: Schematic figure describing the pattern evolution after a double quench. The 

thick black arrow indicates the diffusion flux induced by the concentration gradient [96]. 
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2.3.3 Cavity Structure 

Recent theoretical studies [64,134-139] have addressed a new pattern formation originating 

from a double quench by carrying out numerical simulations of model systems. Fialkowski 

and Holyst [83] have studied a two-step quenching process where the first quench is inside 

the unstable region of the phase diagram but the second quench is above the spinodal line. 

The decay of the peak of the structure factor is studied in their simulations. In this thesis 

however, we consider a completely asymmetric binary polymer solution and characterize the 

secondary droplet growth after the second quench through the nucleation and growth region. 

Ohshima et al. [64] prepared a unique porous polymeric film by drying a ternary polymer 

solution: a polystyrene (PS), polyethylene glycol (PEG), and toluene solution. Highly 

ordered micropores, ranging from 5 to 12 11m in diameter, were formed on the film surface, 

and the rim of each micropore was surrounded by a ring of PEG. 

Figure 2.21: SEM micrographs ofPS/PEG200 (70/30) (w/w) cast from 90 wt% toluene 

solution surface micrograph (notice the cavity structure) [64]. 
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The effects of the weight ratio of the polymer blend and molecular weight of the polymer 

(PEG) on the porous structure were investigated. Based on the visual observation and light 

scattering measurements, the formation mechanism of the cavity (core-shell) structure was 

speculated to be a two step phase separation: the phase separation into PEG-rich and PEG-

poor (i.e., PS-rich) phases occurred first at the surface area of the ternary solutions, where 

polymers were condensed due to solvent evaporation. The PEG-rich phase became droplets 

and had an ordered structure on the surface. The PEG-poor phase became a matrix where PS 

and solvent coexisted as a single phase solution. Secondary phase separation then followed in 

the PEG droplets, which was induced by further solvent evaporation, and formed into 

solvent-rich and PEG-rich domains within the droplets. Solvent evaporation and secondary 

phase separation created a cavity (core-shell) structure in each PEG droplet structured on the 

film surface (Figures 2.21 and 2.22). 

Formation of cavity structure in 
PEG-rich droplets 

Figure 2.22: Pictures taken with a microscope in the visual observation mode to explain the 

formation of the core-shell structure [64]. 

65 



They also numerically concerned the two-step SDPS (surface directed phase separation) in 

asymmetry polymer mixtures by coupling the Flory-Huggins-de Gennes equation with the 

Cahn-Hilliard-Cook equation. The morphology and evolution dynamic of the phase structure, 

especially the secondary domain structure, were analyzed in detail. The simulated results as 

well; demonstrated a core-shell structure in the bulk and a light concentration drop in the 

wetting layer induced by the second quench with deeper quench depth when the minority 

component is preferred by the surface. 

Yan et a!. [78] investigated numerically surface-directed phase separation via a two-step 

quench process in asymmetry polymer mixtures by coupling the Flory-Huggins-de Gennes 

equation with the Cahn-Hilliard-Cook equation. Two distinct situations, i.e., the minority 

component is preferred by the surface and the majority component is preferred by the 

surface, were discussed, respectively. The morphology and evolution dynamics of the phase 

structure, especially the secondary domain structure, were analyzed. The simulated results 

demonstrated that different secondary domain structures in these two situations can be 

induced by the second quench with deeper quench depth, which can be used to modify phase 

morphology (Figure 2.23). 

Clarke [54] investigated the two step dissolution-quench process in polymer blends. Particles 

of one type of polymer were allowed to dissolve in a matrix of a dissimilar polymer. Prior to 

complete dissolution the blend was quenched into the two-phase region, such that phase 

separation took place. The method is basically similar to the concept of a two step quench 
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Figure 2.23: Development of the polymer morphology following a second shallow (a) and 

deep quench (b) (notice the cavities inside the droplets for deep quench at timer 2 = 10) [78]. 

It also showed that a core-shell structure in the bulk and a light concentration drop can be 

induced by the second quench with deeper quench depth. 

process, studied experimentally by Okada et al. [59,60], Tanaka [86,87] and Hashimoto et al. 

[90,91]. In his model he started with undissolved particles dispersed in a matrix, with the 

bulk composition being such that the blend is miscible. During dissolution the interface 

between the particle and the matrix broadened with time and eventually disappeared. The 

blend was then quenched into the unstable region, inducing phase separation. He modeled the 

kinetics of this process by using Cahn-Hilliard theory. The free energy used for the mixture 

was given Flory-Huggins theory. The model was in two dimensions, using periodic boundary 

conditions. Although his model is not exactly the same as the others but the resulting 

morphology is the characteristic of a double quench phase separation (Figure 2.24). 
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Figure 2.24: Development of the morphology following the quench into the spinodal region. 

To highlight the existence of cores rich in component A, only a selected 128 x 128 area of 

the simulation, corresponding to the boxed region in (a) is shown in (b) to (d). The grey scale 

range, which is the same for all snapshots, is such that white represents regions of pure A, 

and black represents regions of pure B [54]. 

Some groups experimentally approached the same morphology by different pathways. 

Hourston et al. [134] experimentally prepared droplets with cavities by a system exhibiting 

lower critical solution temperature (LCST) phase behavior. On increasing the temperature 

two times (deep at the second time), phase separation occurred. They divided the core shell 

structure in the study into three parts: a. the core, b. interface between the core and the shell, 

c. and the shell. The system was composed of polymethyl methacrylate (PMMA) and PV Ac. 

In their experiment they proposed a quantitative method which can be used to study 

macromolecular diffusion in the interfacial phase of core-shell droplets. The macromolecular 
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diffusion behavior during phase separation was confirmed experimentally. Sun et al. [135] 

also investigated the same morphology formation mechanism for a mixture of PBA/PV Ac. 

At first, PBA was formed outside the PV Ac droplets and then migrated to the inside of PV Ac 

droplets. According to the calculation of the total interfacial free energy change in different 

possible migration pathway, they proved that the migration pathway of the chains in the 

experiment was in agreement with the principle that the interfacial free energy gradually 

decreases. Ishizu [136] independently observed the phase-separated microdomains of cavity 

microspheres in a PMMA matrix. This micrograph (Figure 2.25) shows clearly the structure 

of the cavity microspheres with a narrow size distribution. Meijer et a!. [138] used two 

different blending routes, using chemically induced phase separation (or RIPS) to prepare 

rubber modified PS and PMMA blends. 
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Figure 2.25: TEM (transmission electron microscopy) micrograph of cavity microsphere 

[136]. The cavities inside the droplets are clearly evident. 
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In both cases, the morphology was tailored during the coarsenmg process after phase 

separation either by controlling the system viscosity or the reaction rate. The morphology 

could not be realized via conventional processing techniques like physical blending, and in 

their study, chemically induced phase separation was used as a route for obtaining a fine 

dispersion of rubbery particles in polystyrene (PS) and PMMA which resulted in a significant 

increase in impact toughness. In their work, deformation tests at different rates were 

conducted along with morphological studies using time-resolved X-ray scattering, to reveal 

the underlying microscopic deformation processes (Figure 2.26). Huang et al. [139] have 

studied the phase separation process in a mixture of a liquid crystal material and two 

different monomers A and B undergoing a PIPS process. Phase equilibrium was theoretically 

analyzed using a Vander Waals free energy density approach. 

Figure 2.26: Morphology of polymerized PMMA/epoxy 50/50 blends, start temperature of 

polymerization profile: 60 oc [ 13 8]. 
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Their results indicate that the more slowly reacting monomer will be found at higher 

concentration at the droplet boundary in the fully cured polymer dispersed liquid crystal 

(cavity). They also used experimental evidence to show that in the homogeneous mixture, 

component A polymerizes first and this leads to phase separation. Two phases are formed, a 

more viscous matrix containing mostly B and liquid crystal. At later times B will start to 

polymerize and then two different processes may occur: a secondary phase separation within 

the droplets, or the reaction of B at the droplet surface. 
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Chapter 3 

Theoretical Background 

This chapter introduces the basic phase separation method and theory of spinodal 

decomposition and nucleation and growth. We describe a novel mechanism to form binary 

polymer solutions due to temperature variations. Phase diagram for polymer solutions are 

presented in detail. The experimental techniques to obtain these thermodynamic phase 

diagrams are introduced as well. Polymer solutions are differentiated according to Gibbs free 

energy of mixing f..G M. The majority of polymer solutions are immiscible. These 

heterogeneous polymer solutions have a positive f..G M value. In some cases, they are 

soluble. However, they tend towards phase separation to form multiphase at some 

temperature and molecular weight. In many applications, miscibility of the phases is not 

desired or required. Therefore, phase separation methods have been one of the practical 

methods to obtain multi-component polymer solutions. For example, the desired morphology 

of the solutions can be obtained by controlling the polymer concentration and processing 

conditions such as temperature, shear rate and pressure. In order to obtain the heterogeneous 

mixtures and control their phase morphology, it is fundamentally important to understand the 

phase separation method. In addition, phase separation is an important field of polymer 

formation, modification and processing. 
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3.1 Phase Separation Thermodynamics 

Thermodynamics is a fundamental factor in determining polymer solutions miscibility [7 ,8]. 

Based on the second law of thermodynamics, miscibility takes place when the Gibbs free 

energy of mixing is negative; i.e. /1G M < 0 . In addition, the second partial derivative of free 

energy with respect to composition is positive; i.e. [8 2!1GM I 8c 2
] > 0 where c; is the volume 

fraction ofthe ith component. The Gibbs free energy of mixing is expressed as: 

(3.1) 

where 111! M and /1S M are the enthalpy and entropy of mixing, respectively. T is the 

temperature. Generally, the distinctive property of polymers is their large molecular weight 

that can be used to control the miscibility of a multi-component mixture. The mixing entropy 

!1S M of a large molecular weight polymer almost equals zero. On the other hand, the 

enthalpy of mixing 111! M is always positive in most polymers, at least for non-polar polymer 

systems [54]. Therefore, the Gibbs free energy of mixing is seldom negative, which means 

that phase separation always occurs in polymer solutions. In the case of binary polymer 

solution systems, the Gibbs free energy of mixing /1G M versus volume fraction of a polymer 

diagram can be constructed as a function of temperature. Figure 3.1 shows a schematic 

diagram of /1G M as a function of polymer concentration at different temperatures in the 

upper part. A temperature-polymer concentration phase diagram is shown in the lower part of 

the figure. 
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Figure 3.1: Schematic diagram of Gibbs free energy of mixing as a function ofpolymer 

concentration [74]. 

As shown in Figure 3.1, the shape of the free energy of mixing curve and the beginning of 

phase separation vanes by changing the temperature values from I; to T4 

(I; > T2 > T3 > T4 ). Critical point is also shown in the figure. In phase separation mechanism, 

the miscible polymer solution at an initial temperature I; goes down into the lower 

temperatures, eventually becomes a totally immiscible system. 

74 



In the upper part of this diagram, the binodal (cloud-point) curve is formed by determining 

the projected points, which are shown in Figure 3.1. The straight lines are the common 

tangential lines for the free energy curve. Meanwhile, the spinodal curve is obtained by the 

projection of the inflection points. For a mixture of two components involving a polymer and 

a solvent (PDLC for instance) as well, the Gibbs free energy of mixing I!:.G M must be 

negative to form a homogenous mixture. 

In Figure 3.1 at T; , I!:.G M shows only one minimum over the polymer concentration range. 

Therefore, the system is completely miscible over the whole range of polymer concentration 

as shown in the phase diagram. At T2 and T3 , even though I!:.G M is lower than zero for the 

whole range of polymer concentration, the system is only partially miscible. Since !!:.G M 

shows two local minima, in order to have the free energy !!:.G M of the system at the overall 

minimum, the system will separate into two phases with the concentrations of the two phases 

determined by the tangent points on the !!:.G M curve where 

[ 

ai!:.G M ] First phase = [ ai!:.G M ] Second phase 

8c I 8c 2 

(3.2) 

These two points are called binodal points, and the curve connecting all these points at 

different temperatures is the binodal curve. The inflection points of I!:.G M- c curve 

corresponding to [ 8 2 !!:.G M I 8c 2
] = 0 are the spinodal points, and the curve connecting these 

points is called the spinodal curve. The spinodal and binodal curves meet at the critical point. 
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The critical temperature, which is the intersection point of the binodal and spinodal curves, is 

an important quantity for binary polymer solution phase diagrams since 

(3.3) 

In the phase diagram, the region above the binodal curve is the stable region where a 

homogenous solution can be formed. The region inside the spinodal curve is the unstable 

region corresponding to[o 2 !lGM I oc 2
] < 0 where the system spontaneously phase-separates 

into two co-continuous phases. Between the binodal and spinodal curves, the system may be 

one phase but not stable, which is called the metastable region, where [ o 2 !lG M I oc2
] > 0. 

At T4 , the free energy of mixing is larger than zero, and therefore the system is completely 

immiscible over the whole range of the polymer concentrations. This is not shown in the 

phase diagram. The phase behavior shown in the lower part of Figure 3.1 is the typical 

behavior of systems showing an upper critical solution temperature (UCST), where the 

system enters the two phase region upon decreasing temperature from A to C. If increasing 

the temperature brings the system from miscible to immiscible region, it is referred to a lower 

critical solution temperature (LCST) type of phase behavior. Figure 3.2 shows different 

combinations of these two types of behaviors. In addition to only UCST (B) and LCST (C), a 

system can display both types of phase behaviors. This is illustrated by diagram D and E, 

which shows an island of immiscibility. The UCST and LCST branches in diagram D can 

merge to form an hourglass shape phase diagram. 
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This type of transition has been observed experimentally in polystyrene solutions in acetone 

[103] where two branches at higher pressures move to each other and merge at lower 

pressures. 
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Figure 3.2: Schematic of phase behavior in polymer solutions. Shaded areas represent the 

two-phase regions and the un-shaded areas represent one-phase regions [105]. 

3.1.1 Flory-Huggins Theory 

In this section, we review the derivation of the thermodynamics of solutions of polymers. 

This theory was formulated independently by P. J. Flory [112] and M. L. Huggin [113] in the 
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middle of the last century. The entropy and enthalpy of mixing of two polymers was derived 

and phase diagrams of polymer pairs were explained on the basis of enthalpy interactions. 

We will also review contributions of several researchers that have extended this theory to 

explain the phase diagram that occurs in the literature. 

3.1.1.1 Entropy of Mixing of Polymer Solutions 

The phase stability of a binary polymer mixture system can be well understood in terms of 

the lattice theory of Flory- Huggins. Thus, the Flory-Huggins free energy equations (3.6) and 

(3.8) are the most widely and successfully used theories in phase equilibrium studies [80]. A 

polymer chain molecule in itself is a large and complicated structure of repeat units and can 

assume a high number of configurations by itself. Entropy is defined as the degree of 

randomness of a system. Thus, a polymer chain molecule has higher entropy than an ordinary 

small molecule. Consequently, a polymer solution is not affected significantly by mixing as 

the increase in entropy due to mixing is minor. Considering Baltzmann's law of emopy 

which is: 

(3.4) 

where k 8 is the Boltzmann's constant and n is the number of possible random 

arrangements in the lattice space; the determination of the entropy of mixing for binary 

polymer solutions is important for the strictness of the theory and is defined analogous to 
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simple liquids. After some mathematical changes, the entropy change of mixing for a 

polymer solution can be expressed as: 

(3.5) 

where c1 is now the volume fraction of component one (solute), and N 1 and N 2 are the 

degree of polymerization of the solvent and solute (polymer) respectively. For a low 

molecular weight solvent N 1 =I. By taking c1 = c then c2 = 1- c. Using the constant 

density approximation yields a correlation between mole fraction and volume fraction in a 

straight forward manner and by substituting the resultant equation in equation (3.5) yields an 

expression for the entropy of mixing for a polymer solution: 

(3.6) 

3.1.1.2 Enthalpy of Mixing of Polymer Solutions 

According to Flory's approach [113], the enthalpy of mixing (M! M) for a polymer solution 

consisting of two components can be calculated by taking the difference between the 

enthalpy of the solution (H1•2 ) and the enthalpy of the pure components (H 1,1 andH2 2 ) to 

yield the relation: 

(3.7) 
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r 
[ 

H 1_1 , H 2•2 , and H 1•2 are defined using an interaction energy that exists between every two 

segments. Hence, the total enthalpy of mixing for a polymer solution would be derived as: 

(3.8) 

where X is temperature dependent Flory's interaction parameter which is a measure of the 

effective interaction between solvent and solute. For the case of a polymer solution, a variety 

of effects would have to be taken into account, such as incomplete filling of the lattice sites, 

chain connectivity, branching and more. It is for this reason that the Flory-Huggins 

interaction parameter is not generally calculated by this expression. An empirical relationship 

is used to define the parameter that has a reciprocal dependence on absolute temperature as 

described by the theory and whose constants can be derived and fitted to the experimental 

phase diagrams to account for the deviations in both the entropy and enthalpy of mixing in 

real polymer mixtures [104]: 

B 
x=A+­

T 
(3.9) 

where A and B constants are determined experimentally and represent the entropic and 

enthalpic contribution respectively. The entropic contribution accounts for the segment-

segment interactions between the polymers within the mixture. The enthalpic term accounts 

for the change in energy upon mixing of the polymers as a result of the interactions between 

segments. The Flory-Huggins interaction parameter is directly related to the critical 

temperature Tc and the interaction parameter at the critical point x c. 
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The critical temperature is then obtained from the following theta temperature relationship 

with X: 

(3.10) 

where If is a dimensionless entropy of dilution parameter, and B is the theta temperature. 

The theta temperature is where the polymer solution appears to behave as if it is ideal [ 45]. 

The X parameter measures the solubility of polymer solutions (The values are presented in 

Appendix B). 

3 .1.2 Determination of Phase Diagram 

The Flory-Huggins treatment represents the free energy density of mixing, f(c), as a sum of 

the configurational entropy and enthalpy of mixing [ 104]. The starting point of the model is 

the Gibbs free energy of mixing, /1G M , given by equation (3 .1 ). The incompressibility 

assumption, c1 + c2 = 1 , leads to the reduction of the free energy /1G M in a single 

independent thermodynamic variable c1 = c and c2 = 1- c. Gibbs derived a necessary 

condition for the stability of a fluid phase that the chemical potential of a component must 

increase with increasing density of that component. In the situation of a two component 

system this yields the relation, [ 8 2/1G M I 8c 2 ] > 0. If this condition is not satisfied, then the 

mixture becomes unstable with respect to any infinitely small composition fluctuations. Also, 

the total free energy of mixing should be negative for the process to be thermodynamically 
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favorable, i.e. /1G M < 0. It is a fundamental principle of thermodynamics that materials 

always progress towards a state of minimum free energy until equilibrium is reached. This 

concept is expressed mathematically utilizing the Gibbs free energy of isotropic mixing. 

According to the F-H theory, entropy of mixing is given by equation (3.6) and enthalpy of 

mixing can be expressed as equation (3.8). Equation (3.1 0) introduces the temperature 

dependence into the F-H equation, thus providing a direct temperature-concentration 

relationship. 

300~------------------~ 

200 

100 
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0 0.2 0.4 0.6 1.0 

cpPS 

Figure 3.3: Experimentally determined phase diagram of the PCLIPS blend by Tanaka and 

Nishi [53]. The black circles are the experimental data for the melting temperature and the 

white circles are the phase separation temperatures obtained from cloud point measurements. 

Solid and dashed curves are computed using the Flory-Huggins mixing theory [105]. 
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The F-H free energy density of mixing is obtained by combining equation (3.1) and (3.6) 

with equations (3.8) and (3.10), which is expressed as [104]: 

f(c) = - 8
- --Inc +--ln(l-c) +X c(l-c) k T [ c (1- c) l 
v N 1 N 2 

(3 .11) 

where v is the volume of a cell or segment. Based on the condition for phase equilibrium 

that the chemical potential of each component is the same in all phases at a specified 

temperature and pressure, the two binodal points are calculated by solving a pair of nonlinear 

algebraic equations. The chemical potentials of each components, f-1 1 and f-1 2 are obtained by 

taking the first order partial derivative of I'!..G M with respect to N 1 and N 2 : 

ll.J-1, ~ k8 T [lnc + (1- ;,)(1-c)+ X c(l- c)'] 
l'!..f-12 =k8 T [tn(1-c)+(l-N2 )X N 2c 2

] 

(3.12) 

(3.13) 

The conditions for equilibrium between two phases in polymer solutions are expressed by 

specifying equality of the chemical potentials in the two phases: 

f.lp(ca) = f.lp(cfJ) 

f.ls(ca) = f.ls(cfJ) 

(3.14) 

(3.15) 

where the subscripts a and ~ designate two equilibrium phases. The binodal points at a given 

temperature can be determined by solving equations (3.14) and (3.15) simultaneously.Under 

the same equilibrium condition, the two spinodal points at the same temperature can also be 
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obtained by solving the second order partial derivative of the free energy of mixing with 

respect to concentration (Figure 3.3) [105,106]: 
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(3.16) 

Figure 3.4: Schematic phase diagram with corresponding the free energy of isotropic 

mixing and its derivative at a certain temperature [ 1 07]. 
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Figure 3.4 schematically illustrates a free energy curve, its derivative and a hypothetical 

phase diagram demonstrating the thermodynamic conditions for polymer mixtures. The 

regime enclosed by the spinodal curve is called the unstable phase, which originates from 

spinodal decomposition (SD). Metastable phase due to nucleation and growth (NG) belongs 

to the regime between the spinodal curve and the binodal curve. The critical point can be 

obtained from the condition for the criticality: 

(3.17) 

By solving equation (3 .17), the critical concentration c c and the critical interaction parameter 

X c can be determined. 

3.2 Spinodal Decomposition Theory 

It is of great importance to understand the dynamic aspects of the phase separation as well as 

the thermodynamic features. Hence, in this section, the basic theories on the phase separation 

kinetics will be briefly reviewed. Starting from the stable region, the polymer solution can be 

quenched to the metastable region or unstable region. Depending on the location where the 

system is brought to, the system will undergo phase separation via two different mechanisms: 

(a) nucleation and growth, or (b and c) spinodal decomposition (Figure 3.5). Furthermore, 

SD-type phase separation is grouped into hi-continuous (interconnected) and droplet SD 

which was already discussed in literature. 
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When a polymer solution is quenched critically (passing through critical point of its phase 

diagram) into the unstable region (Figure 3.5-c) the mechanism of phase separation is 

proceeded by spinodal decomposition and the resulting morphology would be interconnected 

or bicontinuous structure (Figures 2.3, 2.4 and 3.6). Figures 1.2 and 3.10 (1.4 and 3.8) 

schematically illustrates the growth of the concentration fluctuation of one component during 

phase separation according to SD (NG). In the early stages of SD, periodic concentration 

fluctuations with wavelength A are built up throughout the sample space and amplitude of 

concentration fluctuation increases with time, while A remains essentially constant. The 

wavelength is influenced by the thermodynamic conditions of the solution characterized by 

the quench depth while the amplitude of the fluctuation is determined by the kinetics and the 

time of phase separation. 

T 
(a) (b) (C) 

c 

Figure 3.5: Typical phase diagram of a symmetric polymer mixture for the TIPS process. 

The arrow (a) indicates a temperature change from the homogeneous region into the 

metastable region (NG) and arrows (b) and (c) represent temperature jumps into the unstable 

region (SD) off-critically and critically respectively. The solid (dotted) curve represents 

binodal (spinodal) line. 
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Figure 3.6: SD-type phase separation droplet (interconnected) morphology resulting from 

off-critical (critical) temperature quench [34]. 

Spinodal decomposition refers to the phase separation, which takes place under the condition 

that the energy barrier is negligible and the compositional fluctuation is even small. It is a 

kinetic process of generating a spontaneous and continuous phase within the unstable region 

in Figure 3.5. The time evolution of domain structure in polymer solutions via SD may be 

classified into three major regimes: (i) early stage, (ii) intermediate stage, and (iii) late stage 

as illustrated in Figures 1.2 and 3. 7. In the early stage of SD, the growth of the fluctuations is 

weakly nonlinear so that it can be well approximated by the predictions based on the 

linearized Cahn's theory [36], which may describe the structure in terms of a 

superpositioning of sinusoidal composition modulations of a fixed wavelength, but random in 

amplitude, orientation and phase. In this stage of SD, the concentration fluctuations are small 

at t0 and as time increases to t, the amplitude of the concentration increases but the 

wavelength remains constant. 

87 

'. ·~ 



This region is usually the most difficult to visualize since it happens at such a fast rate. For 

this reason, the C-H equation can be approximated by a linear function [33]. This has proven 

to be a very useful estimation for the initial stage of SD. In the early stage, Figure 3.7(a), 

droplet formation occurs. 
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Figure 3. 7: The three stages of SD plotted as concentration vs. distance, (a) early stage, (b) 

intermediate stage and (c) late stage [32]. 
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The reduction of solvent from the polymer, migrating towards the droplet, forms the 

dispersion of droplets within a continuous phase of the polymer. Figures 3.7(a) and 3.10 also 

show the depletion and migration of one the solvent with arrows moving from low 

concentration to high concentration known as uphill diffusion [ 17,34]. In the intermediate 

stage, Figure 3.7(b), the concentration fluctuations are still increasing with time from t1 to t2 

showing an increase in amplitude. However, there is an increase in the wavelength of the 

concentration fluctuation spatially. This effect requires the use of the non-linear C-H 

equation [33]. Finally, in Figure 3.7(c), the late stage of SD, the concentration fluctuations 

increase until they reach their respective equilibrium concentrations (Figure 3.9 A to B) with 

constant amplitude, labeled c" (upper concentration) and c, (lower concentration). The 

wavelength increases with time as the droplets join together to form larger droplets. 

3.2.1 Nucleation and Growth 

Nucleation and growth are associated with metastability, implying the existence of an energy 

barrier and the occurrence of large composition fluctuations. Nucleation is the process of 

generating the initial fragments, which are called nuclei, within the metastable region in 

Figure 3.5. Once these nuclei are formed, the system decomposes with a decrease in free 

energy, and the nuclei grow. For those nuclei whose sizes are larger than the critical nucleus 

size, growth occurs rapidly. This growth process and the corresponding phase structure are 

depicted in Figures 1.4 and 3.8. 
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Figure 3.8: Illustration of the nucleation and growth phase separation mechanism at (a) 

early, (b) intermediate and (c) final stages. At stage (b) the nuclei form and grow with time 

leading to the final structure in (c) where many length scales are obtained [34]. 

As the NG process progresses the concentration of the continuous phase approaches that of 

the equilibrium composition (Figure 3.9 C to D) labeled c" (upper concentration) and 

c' (lower concentration). The average size of the nuclei is determined by the kinetics of the 

process and the amplitude of the fluctuations is determined by the thermodynamic driving 

force of the system i.e. quench depth. A nucleus possesses an excess surface energy that 

induces a process forming a new stable phase. This activation energy /1G*, required to 

initiate the NG mechanism is expressed as: 

• 4 3 G 4 2 11G =--;r r 11 
1
+ Jr r CJ 

3 
(3.18) 

where the first term is the free energy contribution of the nucleus and the second term is the 
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Figure 3.9: Temperature vs. volume fraction phase diagram illustrating the tie lines in TIPS 

method. 

energy required to form an interface between the nucleus and the main phase. !:J.G1 is the free 

energy difference between a nucleus and the main phase while CY is the interfacial energy per 

unit area and r is the radius of the nucleus that can be calculated by minimization of the 

activation energy with respect to r : 

(3.19) 

When nuclei form, the system decomposes with a decrease in the free energy causing nucleus 

growth resulting in droplet domains. 
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3 .2.2 Spinodal Decomposition vs. Nucleation and Growth 

Although the equilibrium structure of the NG and SD is identical, regardless of the 

mechanisms of the phase separation; intermediate demixed structures, especially those in the 

early stage of the phase separation are expected to be quite different for the two mechanisms 

[125]. The size and amplitude control ofthe fluctuations in NG mechanism is also opposite 

ofthose in SD. 
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Figure 3.10: Illustration of the spinodal decomposition phase separation mechanism at (a) 

early, (b) intermediate and (c) final stages [34]. 

It has been clearly established that SD process of phase separation does not require activation 

energy like NG and proceeds spontaneously in the presence of minimal concentration 

fluctuations or thermal noise. 
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In the metastable region, all small fluctuations tend to decay and hence phase separation can 

proceed only by overcoming the barrier with a large fluctuation in composition. This 

fluctuation is called a nucleus and once such a nucleus is formed, it grows by a normal 

diffusion process. The new phase starts forming small nuclei that proceed to grow in size. 

The molecules that feed the new phase follow the ordinary transport phenomenon by 

downhill diffusion (Figure 3.8). Inside the spinodal, on the other hand, where the mixture is 

unstable to infinitesimal fluctuations, there is no thermodynamic barrier to the phase growth, 

and thus phase separation should occur by a continuous and spontaneous process. Since the 

solution is initially uniform in composition, this spontaneous reaction must occur by a 

diffusional flux against the concentration gradient created by small composition fluctuations, 

that is, by uphill diffusion with a negative diffusion coefficient (Figure 3.1 0). 

In SD, in contrast toNG, there is no sharp interface between the phases until later stages of 

decomposition. The most significant differences between NG and SD are the mechanisms of 

decomposition caused by the difference characters of the instability. Even if a solution is 

homogenous, concentrations are not uniform on microscopic scales. There are always 

fluctuations about the average concentration c0 , and these fluctuations lead to a change in the 

Gibbs free energy. Depending on the curvature, the Gibbs free energy can increase or 

decrease by the concentration fluctuation. In the metastable region characterized by 

8 2 f I 8c 2 > 0, the concentration fluctuations cause the increase in the Gibbs free energy and 

the resulting structure is stable with respect to spontaneous concentration fluctuations. That is 

why NG is a non activated process and some form of activation mechanism such as 

nucleation is necessary. In the unstable region characterized by 8 2 f I 8c 2 < 0 the fluctuations 

93 



lead to the decrease in the Gibbs free energy and the system becomes unstable even for an 

infinitesimally small fluctuation. In SD, as already mentioned, phase separation takes place 

spontaneously and continuously. That is why SD is an activated and irreversible mechanism 

meaning, once the phase separation has started the system cannot homogenize. During phase 

separation of NG, the composition of the minor phase domains i.e. nuclei remain constant, 

and only the size of the domains and their distribution will change with time while in SD a 

multi-component system of composition co with a concentration fluctuation continuously 

decompose into two phases of composition. In this case both the composition and size of the 

domains increase continuously with time. The arrows in Figures 3.8 and 3.10 indicate the 

direction of diffusion. Therefore, the molecules diffuse from higher concentrations toward 

lower concentrations in NG which is a positive diffusion (downhill diffusion) and in SD the 

diffusion coefficient is negative and molecules abnormally diffuse toward higher 

concentrations from lower concentrations (uphill diffusion). 

Experimental results by Kiran and Liu [93,94] show that phase separation by nucleation and 

growth and spinodal decomposition mechanisms can be differentiated and the binodal and 

spinodal envelopes can be mapped out using time- and angle-resolved light scattering. For 

quenches leading to spinodal decomposition, the characteristic wave number q corresponding 

to the scattered light intensity maximum is observed to be non-stationary in the nearby q 

range of the instrument, moving to lower wave numbers in time within seconds, suggesting 

that, in polymer solutions undergoing pressure quench, the early stage of phase separation is 

limited to extremely short times. Figure 3.11 is a phenomenological description of the time 
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Figure 3.11: Schematic representation of the time-evolution of the scattered light intensities 

with time and angle (or wave number q) during spinodal decomposition. The spinodal ring 

that forms becomes more intense and moves to smaller angles with time. The scattering 

maximum in the angular dependence corresponds to the location of the ring (93]. 
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Figure 3.12: Schematic representation ofthe time-evolution of the scattered light intensities 

with time and angle (or wave number q) during nucleation and growth. In contrast to 

spinodal decomposition, ring formation is not observed and the scattered light intensities do 

not pass through a maximum [93]. 
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evolution of the light scattering pattern in a system undergoing phase separation by spinodal 

decomposition. The light scattering pattern develops a distinct scattering ring indicative of 

structure formation in the system. In the later stages of phase separation the ring moves 

towards the center and eventually collapses. The ring shows itself as a scattering maximum 

in intensity versus scattering angle B or scattering number [q = 4n"/ ...tsin(B/2)] plot 

where A, is the wavelength of the laser. With time the maximum in the scattered light 

intensity moves to lower angles, whereas the scattered light intensity increases [93]. Figure 

3.12 shows the fingerprint scattering when the phase separation proceeds with the nucleation 

and growth mechanism. The scattered light intensity I shows a gradual decrease from low to 

high angles or wave numbers q. The scattered light intensities increase with time at a given 

angle. No distinct scattering ring is observed in this case. 

Both experimental [33-35] and numerical [41-44] results from the TIPS method indicate that 

the droplets formed by SD mechanism are more homogeneous in size and evenly distributed 

in the matrix (Figures 1.2 and 3.10) but the ones formed by NG mechanism are almost 

inhomogeneous droplets that from and grow individually and are randomly positioned 

(Figures 1.4 and 3.8). As noted in the introduction, the droplet size and distribution are 

important factors that affect the efficiency of PDLC's as light shutters. The droplet diameter 

decreases with increasing diffusion, polymer molecular weight and quench depth. Thus, as 

diffusion increases so does the driving force for phase separation, and a structure of shorter 

wavelength results. In other words, there is more phase separation. 
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3.2.3 Cahn-Hilliard Theory 

While nucleation theories date back to Becker and Doring [ 140] in 1935 and later Lifshitz 

and Slyozov [145] in 1961, the first attempt to treat spinodal decomposition was in 1958 via 

the phenomenological Cahn-Hilliard equation [1]. Cahn and Hilliard were the first to discuss 

the spontaneous phase separation of mixtures via spinodal decomposition in binary alloys of 

metals. This particular process of phase separation does not require activation energy unlike 

NG mechanism, but proceeds spontaneously in the presence of minimal concentration 

fluctuations or thermal noise. As already mentioned, SD can be classified by three stages 

according to time: early, intermediate, and late. The early stage can be characterized by a 

linearized diffusion equation which has been solved analytically. There is, however, no 

analytical solution to the intermediate and late stages of SD. Cahn-Hilliard equation is based 

on the assumption that the total free energy of an inhomogeneous, binary mixture is 

expressed as sum of two terms: 

(3.20) 

where c is the volume fraction. In this thesis, c is defined as the solvent volume fraction in 

the binary mixture. K is a positive gradient energy parameter related to the interfacial 

constant, and f(c) is the free energy of a homogeneous mixture. The first term in equation 

(3.20) represents the homogeneous free energy, and the second term takes into account any 

increases in free energy arising from concentration gradients. 
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These two terms can be obtained from the Taylor series expansion of a free energy density 

[ 42]. In order to describe phase separation in polymer solutions, the model equation can be 

derived from a continuum model. Considering only diffusional flux J, continuity equation 

can be written as: 

ac = -V.J 
at (3.21) 

If we consider only pure diffusion, the net flux J, might be expressed as the product of 

concentration dependent mobility M and the gradient of the chemical potential fJ of each 

component: 

(3.22) 

Here M is the mobility, which is treated as a constant in the linear theory. The chemical 

potential is the functional derivative of the free energy: 

(3.23) 

Combining equations (3.21), (3.22) and (3.23) results m the nonlinear Cahn-Hilliard 

equation: 

(3.24) 
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Cahn linearized this non-linear equation about the average concentration co . For very short 

times following the quench, one would expect this linearization to be valid since the 

concentration fluctuations should be small. 

Therefore, the linear C-H equation would be: 

(3.25) 

M and K are assumed constant. For long wavelength fluctuations in which V4 c can be 

neglected in the above equation, the diffusion equation would be recovered but with a 

spatially changeable diffusion constant: 

(3.26) 

Equation (3 .26) is known as a collective diffusion coefficient [ 14]. This diffusion constant is 

negative inside the spinodal region. For this reason, Cahn termed the initial stage of spinodal 

decomposition uphill diffusion. Taking the Fourier transform of equation (3.25): 

c(r,t)-co = ,LA(k,t)eikr 
k 

(3.27) 

where A(k,t), the magnitude of the Fourier transform of the concentration fluctuations in the 

system is: 

A(k, t)eik.r = A(k,O)eR<kJr (3.28) 
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and the growth rate (amplification factor), R(k) is given as: 

(3.29) 

2Jr 
where k; =- and A; is the wavelength for fluctuation i. For concentration fluctuations to 

A; 

occur R(k) has to be positive and a~~c) I Cn > j2~&l Thus inside the classical spinodal 

region where (8 2 f I 8c 2
) < 0, R(k) is positive for k < kc in the unstable region as shown in 

Figure (3.13). R(k) changes sign at the critical wavenumber: 

(3.30) 

and has a sharp minimum at: 

(3 .31) 

In equation (3.28) the exponent contains the amplification factor, therefore, the concentration 

fluctuations that grows the fastest is km [1 08]. The above derivation shows that the linear C-

H equation predicts phase separation as a superposition of periodic concentration fluctuations 

of fixed wavelengths with random amplitude, orientation and phase [17]. This model has 

been used in the prediction of morphology for TIPS and polymerization induced phase 
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separation (PIPS) [17]. In scattering experiments, however, c(r,t) is not measured but 

instead, the structure factor which is proportional to scattering intensity is measured by: 

I(k,t) = J(k,O) e 2
R(k)t (3.32) 

Roo 

0 K K 
m c 

Figure 3.13: Growth rate R(k) vs. the wavevector k. Following the linear theory, R(k) is 

positive for k < kc and exhibits a maximum at k = km [108]. 

where I(k,O) is the initial intensity. Thus according to the linear theory the initial stages of 

SD should produce an exponential growth in intensity for k < kc, with a peak at time 

dependent wavenumber km. Cahn interpreted this km as the wavenumber which 

characterizes the fine uniformly dispersed precipitate seen in SD studies [ 115]. Quantitative 

information can be obtained from the time-resolved light scattering intensity profile I ( q, t), 

where q is the scattering wavevector. 
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The numerical equivalence of this profile is the structure factor S(k,t) [120], i.e. 

I(q,t) oc S(k,t) =II A(k,t) 2 11 for q = k. Consequently, the light intensity l(q,t) contains 

information on the concentration fluctuation time and length scales. Figure 3.14 shows a 

sharp peak existing at time t
1 

which gradually decreases in sharpness with increasing time to 

t 2 and finally at t 3 , the peak decreases further and increases in width. This is representative 

of what occurs in SD. The change in the intensity (shifting of the height and position of the 

peaks) as time changes indicates the changes in the coarsening of the phase separating 

structure for the intermediate and late stages of SD. The relation is shown in equations (3.33) 

and (3.34) for q = k . The first is the scattering intensity, which is now defined as: 

l(q,t) = l(q,O)e 2
R(qJt (3.33) 

l(q,t) is the scattering intensity, q is the scattering vector, Ran amplification factor and tis 

time. The scattering vector q, is a function of the wavelength A, and the scattering angle B, 

expressed as: 

(3.34) 

The wavelength A is obtained from equation (3.25) and is expressed as: 

(3.35) 
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Figure 3.14: A typical plot of the intensity l(q,t) vs. scattering vector q, for studying phase 

separation by SD with time. 

The morphological features study, such as the phase structure type and droplet size 

distribution, is the most important aspect of the TIPS process. Depending on initial average 

concentration, two different types of morphology are formed: the interconnected structure 

morphology and the droplet-type morphology. Therefore, equation (3.35) is a key 

methodology to predict the morphological features of polymer solutions in off critical TIPS. 

The predicted droplet diameter ( d m oc A I 2) can be calculated in advance so that the desired 

and required phase structure can be obtained at an initial concentration. Figure 3.15 

schematically shows relationship between the droplet diameter dm and the wavelength A . 
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c 

Figure 3.15: Schematic representation of the relationship for droplet diameter d m and 

wavelength A in two dimensions. c is the average concentration. The circle represents a 

polymer droplet, since the droplet diameter equals half of the wavelength d m oc A I 2 [ 120]. 

3.2.3.1 Noise Term 

Cook [149] made an important contribution to the theoretical development of the linear 

theory by observing that it is necessary to add a noise term 1J, to C-H equation (3 .21) in 

order to have a correct statistical description of the dynamics. Cook's observation was that, in 

addition to a flux produced by the gradient of a local chemical potential, there is additional 

flux arising from random thermal motion of the atoms: 

oc 
-=-V.J+ry at (3.36) 

where 1J is the random force term taken to be a Gaussian distribution. Its mean value is zero 

and the correlation satisfies the fluctuation-dissipation relation [150], i.e.: (ry) = 0. Cook's 

noise term, however, is neglected from the current study. This term has been found to have 
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little effect on the domain growth of simple fluids and in off-critical quench conditions. It is 

often omitted for numerical studies which cover the areas far from critical point. Novick 

[160] in his numerical work verified he behavior of the nonlinear Cahn-Hilliard equation for 

asymmetric systems within the unstable spinodal region. He tried to demonstrate those 

features of spinodal decomposition and nucleation which are obtainable by study of the 

nonlinear Cahn-Hilliard equation without reference to a specific noise source and 

demonstrated that while the Cahn-Hilliard equation cannot be considered to contain all the 

information contained in a full noise driven approximation the theory is considerably richer 

than what would be predicted from linear theory only. Oono and Puri [173] computationally 

modeled space-time phase ordering dynamics of unstable SD region. The two dimensional 

lattice of 100 x 1 00 was used for the simulation. There, they supported the idea that the noise 

effect is unimportant for the late stages of phase separation kinetics [173]. In another 

simulation performed by them, the long-time behavior of two-dimensional systems 

undergoing spinodal decomposition was studied numerically with the aid of a cell-dynamical 

approach both without and with noise [174]. In both cases, the representative length scale of 

the pattern behaved the same where the crossover time increased with an increase in 

amplitude of the noise. They demonstrated that the effect of noise appears to be unimportant. 

They also performed simulations in which noise had a Gaussian distribution and this made no 

difference to their results. Furthermore, they also studied the evolution patterns in the case 

where they started off with zero (non-zero) amplitude of noise and switched on (off) the 

noise after a certain number of iterations. The patterns rapidly (within about 10 iterations) 

went to the noisy (noiseless) forms. This indicated that there is no cumulative effect of noise. 
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In the usual interpretation of the deterministic C-H-C equation they even simply discarded 

the noise while retaining the usual kinetic coefficients. 

(a) (b) (c) 

Figure 3.16: Typical pattern for the noiseless case (a), noisy case (b) and strongly noisy (c) 
[174]. 

Figure 3.16 shows the patterns obtained from the same initial conditions for the noiseless and 

noisy cases. For the noiseless case (a) the boundary walls are smooth and regular. In the 

noisy (b) case the pattern size at comparable times is of the same order as in the noiseless 

case, but the boundary walls are ragged. In case (c) a typical pattern for the strongly noisy 

case with the same initial conditions as before is shown. This pattern is more ragged than the 

pattern for the case (b) and is similar to previously published patterns [174] from Monte 

Carlo simulations. They, as well, plotted the scaled scattering function S(k,t)((k)(t)) 2 as a 

function of k /(k)(t) for different times. In the scaling regime a universal curve was 

expected. Figure 3.17 shows data from different times for the noiseless case (denoted by 

circles). 
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They can be seen to lie on a smooth master curve. The points marked by tiny crosses in 

Figure 3.17 correspond to the noisy case. Both the noiseless and noisy cases have the same 

master curve for moderate values of k /(k)(t). However, the tails of the curves, which 

correspond to relatively (compared to pattern size) short wavelength fluctuations, are quite 

different though this difference is not evident on the scale of the figure. For the noiseless 

case, the tail of the curve drops off faster than x- 3
, where x = k /(k)(t). The same model as 

Oono and Puris' [173,174] without noise was studied extensively by Chakrabarti and Gunton 

later. 

12 

~ 
.~ .,o 
rJ. .. 

<> # 

a 0 

• 6 .., 
• 

S(k, t)( (k)(t)) 2 
4l 

• 
" .. 

' 

4 
.. ;,., . .. 

"I> 'Q ... ,.. 
~· .. .. 

fo ~8 

"'" 
•• 

I 
0 2 J 4 5 

k /(k)(t) 

Figure 3.17: Scaled scattering function S(k,t)((k)(t)) 2 as a function of k /(k)(t) for the 

noiseless and noisy cases. The circles (tiny crosses) are data from the noiseless (noisy) case 

at different times. Though it is not evident on the scale of this figure, for the noiseless case, 

the tail of the curve drops off faster than x- 3 
• 
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In a study performed by Yeung [ 178] over the dynamics governed by the time-dependent 

Ginzburg-Landau and Cahn-Hilliard equation, the results were consistent with numerical 

simulations which confirmed that the scaling function is independent of the magnitude of the 

noise. Chakrabarti and Brown [71,72] demonstrated in contrary to the Ginzberg-Landau 

model that suggests the noise effects are irrelevant for the late time growth laws and scaling 

behavior in small molecule systems [189] when noise effects are included, the thermally 

induced fluctuations in the local concentration are important in late time domain growth for 

the polymer solutions but however, both off critical and critical mixtures behave similarly for 

deep quenches (which is a benefit to our assumption of ignoring the noise term in the 

simulation). Zhu et a!. [175] implemented semi-implicit Fourier spectral method is to solve 

the Cahn-Hilliard equation with a variable mobility. The method is more efficient than the 

conventional forward Euler finite-difference method, thus allowing them to simulate large 

systems for longer times. They studied the coarsening kinetics of interconnected two-phase 

mixtures using a Cahn-Hilliard equation with its mobility depending on local compositions. 

To simplifY the problem, they did not include the noise term in their study because it usually 

took a lot of CPU time for generating the Gaussian noise. The noise term has no significant 

effect on the time to get scaling results or the stability of the numerical algorithm, they 

believed. For bulk-diffusion-controlled dynamics, it is usually accepted that the noise term 

does not affect some important features of the late stages of evolution such as the growth law 

for the characteristic domain size and the scaling functions for spinodal decomposition. 

However, Yeung et a!. [ 178] believed that noise might be more important in interface 

diffusion-controlled dynamics. Noise may affect the mobility, leading to a faster rate of 

growth. The effect of the noise term on the kinetics of coarsening through both bulk diffusion 
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and interface diffusion remains a topic for researchers to carry out large scale and long time 

simulations. Clarke [55] independently investigated a process for obtaining controlled 

morphologies in polymer blends and modeled it numerically. Particles of one type of 

polymer were allowed to dissolve in a matrix of a dissimilar polymer. Prior to complete 

dissolution the blend was quenched into the two-phase region, such that phase separation 

took place. The noise term in his simulation has also been neglected. The inclusion of the 

noise term greatly increases the computation time and is believed not to affect the general 

behavior he admitted. Fialkowski and Holyst [83] analyzed a two-step process of phase 

separation for binary mixtures. The system was first quenched into the thermodynamical 

instability region where the mixture undergoes a process of spinodal decomposition. Next, 

they heated up the system to make a temperature jump back to the curing temperature above 

the spinodal. There, they assumed a fully deterministic dynamic without the thermal noise in 

the system. In this thesis however, we have ignored the noise term for simplicity of the 

simulated model and decreasing the computational time based on the experimental and 

numerical studies that have been so far performed on its effects. 

3.2.3.2 Concentration Dependent Mobility and Mutual Diffusion 

The kinetics of phase separation by SD can best be described by the Cahn-Hillard equation 

(C-H). The C-H equation describes the fluctuations in concentration in terms of wavelengths 

for the three stages ofSD. The early stage ofSD can be described by the linear C-H equation. 
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The intermediate and later stages require the non-linear C-H equation. The difficulty in 

modeling polymer solutions is determining the constants in C-H equation such as mobility, 

F-H interaction parameter and the constant related to the interfacial constant. However, there 

have been several techniques used to determine these parameters for polymer solutions [35-

72]. The mobility in the C-H equation is assumed constant but has been shown to be 

dependent on concentration and temperature [36]. The mobility can be written in the form of: 

M(c) = D(c) 
02 f(c) 

oc 2 

(3.37) 

The mobility M and interfacial parameter K are dependent on both the polymer molecular 

chain length and local concentration. Many numerical studies (including this paper) however, 

have been performed assuming M and K constant with an attempt to simplify the problems 

[ 43-45] and only a few studies have been performed with a molecular weight and 

concentration dependent mobility [ 48-50]. The interfacial parameter K can be assumed to be 

concentration independent in the absence of any accurate information about its behavior, 

however, M is known to be highly sensitive to concentration changes [47]. The molecular 

chain lengths and local concentration dependence of the mobility can be captured from its 

relation with the self diffusion coefficient by equation (3.26). The mutual diffusion 

coefficient A, for a binary system, is generally given by: 

(3.38) 
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where A; of each component can be obtained as: 

(3.39) 

where k 8 is the Boltzmann's constant and T is an absolute temperature. Replacing equation 

(3.39) in (3.38), considering a binary mixture would result in: 

1 1 I 
-=-+­
M M 1 M 2 

(3.40) 

where M is the total mobility and M
1 

and M 2 are the individual mobility of two 

components. The total mobility M can be also expressed as: 

M = cv(l-c) 

~ 
(3 .41) 

where c is the average concentration of the solution, v is the volume of a cell or segment 

and ~ is monomer friction coefficient. Equation (3.41) is obtained from combining equations 

(3.37), (3.40) and the self-diffusion coefficient equation of Rouse model: 

(3.42) 

where N; is the degree of polymerization for each component. 
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Chapter 4 

Numerical Method of Solution 

This chapter deals with a computational study of TIPS on the basis of a one and two­

dimensional mathematical model that describes the TIPS phenomenon of a model binary 

polymer solution (PDLC) exposed to an externally controlled single and double temperature 

quench. During the model development, the nonlinear Cahn-Hilliard (CH) theory was used to 

describe the dynamic behavior of phase separation via NG and SD, and the Flory-Huggins 

free-energy expression to describe the thermodynamic behavior of the model polymer 

solution. 

The emphasis in this thesis is placed on understanding the influence of a double temperature 

quench on the formation of cavity structures during the double quench TIPS process. The rest 

of this thesis is focused on the development of the model, presenting the governing 

equations, initial and boundary conditions, and numerical methods. The numerical results are 

presented and discussed in chapter 5, and finally conclusions and recommendations are 

drawn in chapter 6. 
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4.1 Model Development 

The nonlinear C-H equation [1] was originally developed from the continuity equation of 

mass for metals, and was later extended to polymer blends by deGennes [50]. The continuity 

equation may be expressed as: 

8c = -V.J 
at (4.1) 

where c is the concentration (taken as volume fraction in this thesis) of one of the polymer 

components, and J is the interdiffusional flux of the components. J is related to the gradient 

in chemical potential through: 

(4.2) 

In the derivation of the C-H equation the mobility M is assumed to be constant. However, 

the concentration dependence of the mobility for polymer solutions is considered. f.1
1 

and 

f.1 2 are the chemical potentials of the polymer and solvent, respectively. The total free energy 

F is expressed as: 

F = J{icc) + KIIVci1 2
) dV (4.3) 

where f(c) is the free energy density of the homogeneous polymer mixture and KIIVcll 2 

takes into account the increase in free energy from the concentration fluctuations. 
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In the derivation of the C-H equation the concentration dependence of J for polymer 

solutions is taken into account as well. An essential ingredient of a nonlinear modification of 

the C-H equation is the selection of an appropriate expression for the bulk free energy 

density, and a proper choice in polymer studies is the Flory-Huggins (F-H) free energy. The 

F-H free energy equation [112,113] is derived from a combinatorial lattice theory, and is 

used to describe polymer solution thermodynamics. The F-H equation can be adapted for 

simple binary solutions (i.e., small molecule solutions) by setting the degrees of 

polymerization to unity and the interaction parameter term to zero. Consequently, the 

remaining terms form the so-called strictly regular solution theory. The F-H equation can 

also be used for polymer blends, because it can take into account the degrees of 

polymerization of both polymers. For instance, Brown eta!. [121,122] and Chakrabarti eta!. 

[71,72] used this equation in their simulations of phase separation in polymer blends. The F-

H equation, however, does have its limitations; nevertheless, it is quite successful in phase 

equilibrium studies [124]. The homogeneous free energy term that can be obtained from the 

Flory-Huggins theory [104] is: 

f(c) = - 8
- --ln c + --ln(l- c)+ X c(l- c) k T [ c (1- c) ] 
v N 1 N 2 

(4.4) 

where x is the interaction parameter, v is the volume of a polymer segment (i.e., 

monomer), k 8 is Boltzmann's constant, T is temperature, and N 1 and N 2 are the degrees of 

polymerization of solvent and solute (polymer), respectively. The nonlinear C-H equation is 

then obtained by combining equations ( 4.1) and ( 4.4) for two-dimensional analysis: 
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(4.5) 

The fast mode and slow mode theories are used to describe the mobility of polymers upon 

mixing [160]. The fast mode theory predicts that the diffusion rate is limited by the faster 

component, while the slow mode theory predicts that mutual diffusion of the binary polymer 

solution is limited by the slower component in the mixture. The slow mode theory is used in 

this thesis since it better reflects the slow diffusion process in viscous polymer solutions. The 

slow mode theory states that the mobility is related to the self-mobility of the individual 

components M 1 and M 2 : 

M = M 1M 2 = cv(1-c) 

M 1 +M2 ~ 
(4.6) 

The individual mobility of each component are expressed m terms of a self-diffusion 

coefficient: 

for i = 1,2 (4.7) 

where c; is the concentration of component i, so that c1 + c2 = 1 and c1 = c then 

c2 = 1- c . The self-diffusion coefficients measure the rate at which individual components 

of the mixture diffuse. The self-diffusion coefficient can be described by: 

(4.8) 
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where N; is the degree of polymerization, and ~; is the monomer friction coefficient of 

component i. For polymer solutions, the degree of polymerization of the solvent is taken as 

unity; that is N 1 = 1. Flory's interaction parameter X is related to the temperature via the 

theta temperature (} and dimensionless entropy of dilution parameter If : 

(4.9) 

The structure factor is an important parameter that is typically used to characterize the 

development and evolution of the morphology during SD and relates numerical results with 

experimental findings. The structure factor is computed using the fast Fourier transform of 

the computed concentration values [ 118]. The relationship between experimental results (the 

intensity from light scattering experiments) and numerical results (the structure factor) is of 

the following form: 

I(q,t) = S(k,t) for q = k (4.10) 

4.2 Governing Equation 

To develop a model for two-dimensional two-step TIPS phenomenon by SD in an 

asymmetric polymer solution, following assumptions have been made. This model was 

programmed and run through SHARCNET (a consortium of Canadian academic institutions 
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who share a network of high performance computers) [ 188], which helps solve highly 

complex problems, perform heavy numerical analyses, or to run computationally intensive 

workloads that are in scale far beyond the tasks that could be achieved on today's leading 

desktop systems. The following conditions and assumptions are made in the model 

developed in this thesis: 

1. Entanglement properties are considered to be identical ( ~~ = ~2 = ~ ). 

2. Interaction parameter (X) is a function of temperature only. 

3. Noise term ( '7) is neglected. 

4. Mobility (M) is constant. 

5. Gradient energy parameter ( K) is a positive constant. 

The following two-dimensional fourth-order partial differential equation governing the phase 

separation phenomenon via SD is obtained after substituting equations (4.4) and (4.6) into 

equation ( 4.5): 

( 4.11) 
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The following scaling relations along with parameters of Appendix B were used to non-

dimensionalize the governing and auxiliary (i.e., the initial and boundary conditions) 

equations for two-dimensional model development: 

Dimensionless concentration: c • = c 

Dimensionless space in x direction: x • = ~ 
L 

Dimensionless space in y direction: y = y 
L 

D. · 1 r· T 1mens10n ess temperature: = -

• 2vKl 
Dimensionless time: t = -­

~4 

e 

Dimensionless diffusion coefficient: D* = k 8 L
2

B 
2vK 

Superscript asterisks denote dimensionless variables. In terms of these dimensionless 

quantities, the governing equation can be then written as: 

(4.12) 
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4.3 Initial and Boundary Conditions 

An appropriate initial condition for equation ( 4.12) is the one that describes the infinitesimal 

thermal concentration fluctuations that exist initially in the homogeneous phase of the binary 

polymer solution at thermal equilibrium. Thus far, the most frequent and popular choice of 

boundary conditions are of periodic type [14,19], which lead to ideal pattern formation [38]. 

These boundary conditions are used to avoid surface effects [26], and to simplify the 

computational scheme. The periodic boundary conditions are only appropriate if the 

computational cell represents a sample of infinite dimensions, which in reality is never true 

because samples are finite in size and have bounding surfaces through which various 

exchanges with the environment may occur. Therefore, to model more realistic SD phase 

separation and pattern formation phenomena, non-periodic boundary conditions are needed. 

Since there is no mass flow normally through the surfaces, the zero mass flux criteria is an 

appropriate boundary condition [ 18,3 7]. In addition, the natural boundary conditions 

obtained from the variation of the free energy provide another complementary set of 

boundary conditions for the numerical solution of the nonlinear C-H equation [ 18,3 7]. The 

detailed development of this initial and boundary condition is given by Chan and Rey [32] 

who used Monte Carlo simulations including the linearization approximation and the 

equipartition theorem. Another improvement that may lead to more realistic simulation 

results for polymer solutions is the use of asymmetric phase diagrams instead of symmetric 

ones. The phase diagrams used by Hashimoto et al. [90,91] and Clarke [53-55] were 

symmetric and those by Inoue [52] and Tanaka [86,87] were nearly symmetric ones. In 
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reality, however, binary phase diagrams of polymer or oligomer solutions are generally not 

symmetric. The dimensionless expression of this initial concentration is written as: 

(4.13) 

where c~ is the dimensionless (initial) average concentration and & • (t* = 0) represents the 

initial concentration fluctuations (at thermal equilibrium). Additionally, two non-periodic 

boundary conditions are used to solve the governing equation. The natural boundary 

conditions, which are obtained from variational analysis, are expressed as following in 

dimensionless form for a two-dimensional model: 

ac· = 0 . 
>0 and 

. 
=0 and 

. 
=1 (4.14) ax· at t X X 

ac· = 0 . 
>0 and 

. 
=0 and 

. 
=1 (4.15) ay· at t y y 

The zero-mass flux boundary condition, which implies that no mass is exchanged with the 

surroundings and is obtained from the derivation of the CH equation, is expressed in 

dimensionless form as: 

_c_+ c _ 0 (a' · a' • J 
ax· 3 ax·ay· 2 

-
at t. > 0 and x· = 0 and x· = 1 (4.16) 

c +-c- _ 0 ( a" a" J 
ax· 2ay· ay·3 

-
at t' > 0 and y* = 0 and y· = 1 (4.17) 
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In summary, the dependent variable is the dimensionless concentration 
. 

c , and the 

independent variables are the dimensionless lengths, x * and y *and dimensionless time t • for 

two-dimensional model. 

4.4 Method of Solution 

Equation ( 4.12) with their related initial and boundary conditions are solved numerically 

using the Galerkin finite element method (GFEM) with a linear mesh of 31 x 31 elements. 

Hermitian basis functions are used to discretize space, and a first-order implicit Euler 

predictor-corrector method is used for time integration. The Newton-Raphson method is used 

to solve the set of equations resulting from the implementation of the Galerkin finite element 

method. An adaptive time-step controller is used to optimize the computational time. The 

values of the parameters used for the computation in this study are listed in chapter 5. 

However, In this thesis, as already mentioned, double quench studies of phase separation 

have been investigated from a different pathway: quenching from one-phase region into the 

metastable region and a subsequent (shallow and deep) quench into the unstable region in 

order to verify the transition procedure and its cavity morphology resulting from the deep 

quench from nucleation and growth mechanism into spinodal decomposition mechanism. 

The Galerkin finite element method has been widely used for solving problems governed by 

ordinary differential equations, partial differential equations and integral equations in many 

applications. When we suppose that the given differential equation with appropriate initial 

condition and boundary conditions for two dimensional problems is expressed as: 
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L(u) = 0 for a ~ x ~ b and a ~ y ~ b (4.18) 

then an approximation solution ua can be assumed to be written as: 

N 

u)x,y,t) = L:u /t) fp (x,y) ( 4.19) 
}=I 

where ¢1 's are known analytical functions, called global trial and test functions and u. 's 
I 

are time dependent unknown coefficients. Replacing u in equation ( 4.18) with ua m 

equation ( 4.19), we can obtain the following expression: 

(4.20) 

where R is the residual. An approximation solution u a is assumed to be presented in a 

piecewise approximate function, so that if this approximation is correctly constructed. Then it 

will approach the corresponding exact solution u . In other words, the aim of this method of 

residual is to force R to zero and consequently to make an approximate solution ua 

approach the exact solution. To do this, we need to set the inner product of the residual R 

and an independent weight function w, equal to zero: 

F; = JfR w;(x,y) dxdy = JfL(ua) wJx,y) dxdy = 0 (4.21) 

In the Galer kin method, the weighted function w is chosen from the same family of function 

in equation ( 4.19), therefore equation ( 4.21) can be written as: 
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(4.22) 

where i, j = 1,2, .... N and F; is the residual vector. It should be noted that equation ( 4.22) 

can be expressed as a set of N differential equations to be solved for the unknown 

coefficients ua when we use the Gaussian integration. Consequently equation (4.18) has 

been reduced to a set of ordinary differential equations ( 4.22). The system of equations can 

be arranged in the form of: 

[J] {u}=[F] (4.23) 

where [J] is the Jacobian matrix expressed as: 

(4.24) 

u 1 's are the unknown coefficients of interest and F; is the residual vector. The Newton-

Raphson iteration method is used to solve the set of equations obtained from equation (4.23). 

Considering equation ( 4.5) the residual vector can be written as: 

( 4.25) 

Replacing ( 4.25) in equation ( 4.22) would result to: 

F; = fJRqYdxdy = Jf~~ ¢;dxdy- fJvMV(a~~) J;dxdy- fJMV 2 (a~~) }idxdy 

(4.26) 
+ fJ2KVMV 3c¢;dxdy+ fJ2KMV 4c¢;dxdy 
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To lower the order of the derivatives of equation (4.26), divergence theorem can be used: 

fav.pdv = fan.;Jds- Jfva.;Jdv (4.27) 

where a can be any scalar and f3 can be any vector. By applying divergence theorem 

several times and after applying boundary conditions the resulting equation in terms of the 

dimensionless residual vector F; would be: 

equation (4.28) is then placed into the equation (4.24) in order to form the Jacobian matrix: 

[ 
1 1 ·][ ac • ac • ac • ac *]} . . --+--2x(l-2c) -. -. +-. -. dx dy -

N, N 2 ax ax 8y ay 

''{[ 1(2* 2*] •• i 1 1 • ac ac i 
D T ¢ f f --+--2x(l-2c) -.-2 +-.-2 ¢ + 

o o N, N2 ax 8y 

[
1-c* c· • ·][a2

¢j a2¢jJ} .. --+--2xc (1-c) --+-- dx dy + 
N N a .2 ;+.,*2 

I 2 X vy 

125 



1 1 

{ 1[ac· a¢; ac· a¢;J[a2c* a2c*J ff -2..1. --+-- -+- + 
'f/ a · a · a · a · *2 *2 

o o X X Y Y ax 8y 

(4.29) 

Hermitian bicubic basis functions are then used to solve the resulting fourth-order partial 

differential equation ( 4.29). This type of basis function is applied due to its capability of 

minimizing the order lowering of the partial differential equations and being a good basis 

function in discretizing space. The first-order implicit Euler predictor-corrector method is 

used for time integration. The Newton-Raphson method is used to solve the set of equations 

resulting from the implementation of the Galerkin finite element method. An adaptive time-

step controller is also used to optimize the computational time. The resulting set of 

dimensionless governing equations was adapted to the FORTRAN 77 source codes written 

by Chan [30-34] for solving the phase separation in polymer solutions with constant 

mobility. 
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Chapter 5 

Results and Discussion 

Paying attention to Figure 1.8 reveals that the phase diagrams are symmetric in both cases. 

Generally, working with symmetric or nearly symmetric phase diagrams are much easier task 

for numerical simulation purposes. That is why most researchers prefer to model these types 

of mixtures. What actually makes this research different from the other related studies is that 

the simulated model is completely asymmetric which is better in representing the real 

polymer solutions. Figure 5.1 (a) is depicting an asymmetric phase diagram of a polymer 

solution. In this case, a critical quench is performed from one-phase region to unstable region 

(to G) and a subsequent quench either to metastable region (to H) representing a shallow 

quench or to unstable region (to I) featuring a deep quench. Considering a homogeneous 

binary polymer solution; where the components are a polymer and a solvent and according to 

the numerical and experimental work performed by several groups explained in the literature 

review, the expected morphology for the two-step deep quench would be polymer droplets 

(secondary droplets) appearing inside the solvent interconnected (due to critical quench) 

matrix. 
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Figure 5.1: Schematic phase diagram of TIPS process. The solid (dashed) curves represent 

the binodal (spinodal) lines. In case (a); the solution undergoes a critical quench into G first 

and then to H or I for shallow or deep quench respectively, while in case (b); the solution 

undertakes a critical quench into J first and then to K and L for shallow and deep quenches 

respectively. 
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This type of morphology as already stated was also verified for a polymer blend with a 

symmetric phase diagram in one dimension by Chan eta! [25]. Figure 5.2 (a) and (b) show, 

respectively, the evolution of the dimensionless spatial concentration profile for the critical 

quench after a shallow and deep second temperature jump in the two-step phase separation 

phenomenon. 
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Figure 5.2: The evolution of the dimensionless spatial concentration profile for the (a) 

shallow and (b) deep two-step phase separation. The initial average concentration is 

c~ = 0.5, and the dimensionless diffusion coefficient is D* = 2 x 105 [25] . 
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Figure 5.2 (a) indicates that there is no evidence of double phase separation for a shallow 

quench case after the second temperature jump. What is observed in the evolution of the 

spatial concentration profiles is a continuous growth of the already growing initial profiles 

present in the initial quench. In the two-step deep quench case (Figure 5.2, b), there appears 

to be a secondary small peak forming in the evolution of the dimensionless spatial 

concentration profile. This small broad peak is not reflected in the evolution of the spatial 

concentration profile in Figure 5.2 (a) where a continuous increase of the original growth of 

the concentration fluctuations is observed. 

Figure 5 .1 (b) shows the polymer solution undertaking an off critical quench into 1 first and 

then to K and L for shallow and deep quenches respectively. As mentioned in advance, there 

has been no numerical or experimental evidence of obtaining the secondary droplets by 

imposing a double quench on a polymer solution with an asymmetric phase diagram. That is 

why the previous studies on double quench phase separation have considered a symmetric 

mixture for their modeling or morphological analyses. 

5.1 Off-Critical Double Quench within NG 

It is now the aim of this work to study a new pattern formation caused by a second quench 

within the metastable region where the dominant phase separation mechanism is nucleation 

and growth. So far, only a few numerical investigations [49,78] have been reported and 

mostly experimental work have been done on this special type of phase separation. Even 
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among the numerical and experimental work, our approach to the resulting morphology is 

different from the others. For the first time, the off-critical double quench within NG region 

has been verified using Cahn-Hilliard nonlinear equation to describe the dynamic behavior of 

phase separation via NG and SD and the Flory-Huggins free-energy expression to describe 

the thermodynamic behavior of the model polymer solution. The reason that we focused on a 

polymer-solvent solution is that in polymer-polymer mixtures, we see only the rather early 

stage of a second phase separation before the large-scale exchange of materials over the 

original domains, because of slow dynamics in polymer mixtures. The overall pattern 

evolution caused by a double quench can be observed much easier in polymer-solvent 

mixtures than in polymer-polymer mixtures since the elementary diffusion process is much 

faster in the former than in the latter. 
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Figure 5.3: Schematic representation of a PDLC phase diagram curvature from symmetric 

state into asymmetric one [13]. 
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The model is then chosen to be a polymer solution composed of a polymer and a solvent. The 

phase diagram has been intentionally selected to be asymmetric in order to better feature the 

real polymer solutions. Figure 5.3 depicts the pathway of a polymer solution from symmetric 

state ( N 2 = 1 ) to asymmetric one ( N 2 = 1 0 ). As discussed in chapter 1, by increasing the 

degree of polymerization, the phase diagram tends to shift gradually to the right side. Next 

we describe the pattern evolution caused by a double quench composed of a first quench 

within the nucleation and growth region and a subsequent shallower quench within the same 

(metastable) region (Figure 5.4). 
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Figure 5.4: Schematic representation of TIPS m a two-step off-critical quench in an 

asymmetric polymer solution. The solid (dashed) line represents the binodal (spinodal) curve. 
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Figure 5.5: Dimensionless 2D contour spatial concentration profiles for c* (x* ,y* )(left 

column) and 3D concentration fluctuation patterns (right column) for an off-critical shallow 

double quench case (A to B) at the following dimensionless times respectively: 

t* = 1.2386 X 1 o-3
' t* = 1.2467 X 1 o-3 and t* = 1.2540 X 10-3 where D* = 5000. 
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The solution is first quenched from an arbitrary temperature above the binodal curve in 

which the solution is in its homogeneous state into the metastable region (A) where the 

temperature is I; (Table 5 .I). After the commencement of phase separation, when solvent 

droplets and polymer phases are trying to reach the equilibrium concentrations ( c~ and c~ ), 

at some elapsed time ( t* = 1.2337 x 1 o-3
) given to the solution (the second quench was 

performed through numerous different transition times, see appendix A) the solution is 

quenched again to the new temperature T2 (B) representing a shallow quench. 

Table 5.1: Parameter values used for the shallow and deep double quench phase separation 

within NG and SD regions in TIPS method. 

Parameter Value 

Nl 

N2 10 
If/ I . 
cc 0.7597 

rc· 0.7319 

D* 5 X }03 

co 0.545 

T.* 0.675 
I 

r· 0.65 
2 

r· 0.625 
3 

0.56 r· 
4 1.1667 

% 
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After this second quench, no secondary structure has been observed (Figure 5.5). The 

parameter values used in the simulation of Figure 5.5 case is listed in Table 5.1. The legend 

has been rescaled in order to simplify the contour and it will be the same for all the figures. 

Using different parameters (appendix A), the obtained morphology would be still the same. 

The solution then approaches the equilibrium concentrations ( c~ and c; ). This type of 

pattern formation, which looks the same as regular first step quench; is due to the fact that 

after the second quench both polymer and solvent will phase separate almost independently. 

Since the concentration curvature is not big enough (shallow quench) the driving force for 

making a new structure will be weak which can not affect the morphology (i.e. droplets) 

formed from the first quench. The morphology has already been investigated experimentally 

and reported by Tanaka [86]. Figure 5.5 shows the pattern formation of a shallow double 

quench in two and three dimensions. The contours have been enhanced with color for better 

observation and in order to be able to track the morphology changes. In this work, however, 

we are also mainly interested in the effects of the second deeper quench on the pattern 

evolution. In an asymmetric phase diagram or under an off-critical quench condition, the two 

coexisting phases could be brought into different states of instability by a further deeper 

quench. In case of second deeper quench, two sections were investigated: (i) second deep 

quench within NG region (A to C) where both polymer and solvent phases are undergoing 

nucleation and growth mechanism and (ii) second deep quench (A to D) where polymer 

undergoes SD phase separation and solvent droplets will still follow NG mechanism namely, 

one phase becomes untastable, while the other metastable. In both categories, similarly the 

solution is first quenched from one phase region into the metastable region (A) where the 

temperature is T, (Table 5.1 ). 
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After the first quench the polymer solution exhibits the usual droplet morphology based on 

the formation mechanism of nucleation and growth in the off-critical phase separation. As 

solvent droplets and polymer phase separate to reach the equilibrium concentrations ( c~ and 

c~ ), the second quench is imposed on the system at different transition times (appendix A) 

down into the temperature T3 = 0.625 . When a further second quench is applied to the 

solution within NG region, the concentration in the centers of the solvent droplets 

instantaneously decreases. At the same time, the concentration at the edges of the droplets 

correspondingly increases, leading to the formation of a cavity structure [78]. After the 

second quench, however, a concentration adjustment is required at the boundary to establish 

local equilibrium. The diffusion flow caused by the concentration imbalance (due to the 

second quench) across the interface of polymer and solvent carries the polymer molecules 

towards the center of each solvent droplet [86]. During this process, the flow coming from 

the surroundings of the droplet starts to accumulate at the center of the solvent droplet (see 

Figures 5.7 and 5.9). This again causes the droplet to have excess polymer components, and 

accordingly a new non-equilibrium state [ 181]. Then the redistribution of concentration 

further proceeds to establish a final equilibrium. Figure 5.6 (a) shows at t* = 1.2240x 10-3 a 

light concentration polymer drop occurs in the middle of solvent droplet. With the increasing 

time, these typical secondary domain structures disappear gradually. The original 

morphology is returned but with higher concentration contrast between two phases. Then, the 

coalescence of the cavities occurs (Figure 5.6 b), and the irregularly anisotropic droplets 

gradually shrink and reshape into circular ones. With the increasing time, some small cavities 

shrink and disappear, which leads to the decrease of the total cavity number. 
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Figure 5.6(a): Dimensionless 2D contour spatial concentration profiles for c· (x* ,y*)(left 

column) and 3D concentration fluctuation patterns (right column) for an off-critical deep 

double quench case within NG region (A to C) at the following dimensionless times 

respectively: t* = 1.2179 X 1 o-3
' t* = 1.2240 X 1 o-3 and t. = 1.2354 X 1 o-3 where D* = 5000. 
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Figure 5.6(b): Dimensionless 2D contour spatial concentration profiles for c*(x*,y*)(left 

column) and 3D concentration fluctuation patterns (right column) for an off-critical deep 

double quench case within NG region (A to C) at the following dimensionless times 

respectively: t* =1.2459x10-3
, t* =1.2563x10-3 and t* =1.2686x10-3 where D* =5000. 
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Figures 5.6 a and b show the three-dimensional (3D) diagrams of the concentration 

fluctuation with their corresponding contour graphs highlighting a more detailed 

development of the secondary domain structures. In the 3D diagrams, the cavity of the 

solvent droplets fall down when a further second quench is applied to the solution, 

demonstrating the formation of the secondary domain structures. These falling parts will rise 

again and reach to a new altitude with higher concentration (Figures 5.7 and 5.10). The 

structure developed before the second-step T -jump can be regarded as the initial structure for 

the second-step phase separation process. When the temperature is brought to T3 the driving 

force of the phase separation would increase. 

Concentration 

Mesh Spacing 

Figure 5.7: Typical time evolution of the one-dimensional cross-section through one of the 

droplets depicting the formation and dissolution of a cavity. 
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On the other hand, the two pattern evolutions of polymer and solvent with different spatial 

scales are strongly coupled with each other through the global diffusion between the solvent 

droplets and the polymer matrix. During the late stage, the composition difference between 

solvent droplets and the polymer causes the diffusion flow from solvent droplets into the 

polymer matrix which leads to cavity disappearance. Thus the cavities gradually disappear 

from the neighborhood of the solvent droplets (see Figures 5.7 and 5.10). Another pathway 

of double quench phase separation is when we lower the temperature down enough to T4 

inside the unstable region (A to D). Here, the polymer matrix enters the unstable region 

(Figure 5.4), therefore the governing phase separation mechanism for polymer would be 

spinodal decomposition while for the solvent droplets; phase separation is still followed by 

NG. Since solvent droplets are almost reaching their equilibrium state, polymer mixture is 

playing an important role in the morphology. As it is clear from Figure 5.8, the cavity 

patterns are almost the same as the earlier case. After the crossover from NG to SD there is 

always the possibility that the diffusion process cannot catch up with the geometrical growth 

of domains and the domains may become out of equilibrium. Once the diffusion of solvent 

molecules cannot follow the geometrical growth, a secondary phase separation occurs inside 

the droplets, in which the size of the droplet grows as usual. It should be noted that although 

experimentally the mobility is temperature and hence quench depth dependent, it is not 

necessary to explicitly account for this since the difference between mobility during the first 

and second quench can be reflected in a different scaling factor from numerical time to real 

time for each of the two stages. Importantly, the structural growth is not affected by this 

assumption. 
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Figure 5.8: Dimensionless 2D contour spatial concentration profiles for c * ( x *, y *) (left 

column) and 3D concentration fluctuation patterns (right column) for an off-critical deep 

double quench case within SD region for polymer phase and NG region for solvent phase (A 

to D) at the following dimensionless times respectively: t * = 1.2349 X 1 o-3
' t * = 1.2405 X 1 o-3 

and t* = 1.2593 x 10-3 where D* = 5000. 
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As the simulation proceeds, small cavity domains appear in the solvent domains (Figures 

5.8). Although these cavities are initially created, they dissolve into the surrounding solvent 

since they create large interfacial areas and a large increase in free energy. The second-order 

system starts to lose the cavity due to its flux toward the interface of the solvent and polymer. 

The smaller a cavity is, the higher the concentration of the solvent rich droplet phase at the 

matrix side boundary of the cavity is. 

Figure 5.9: Schematic cross section of concentration profile corresponding to cavity 

formation in a droplet. 
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The interface of the first-order droplet should be regarded as the boundary for small 

secondary cavities. So the concentration near the inner boundary of the first-order solvent­

rich droplet must be lower than the final equilibrium value of the solvent-rich phase. Solvent 

droplets that are rich in the second order cavity will lose the cavity as polymer molecules are 

transferred via diffusion to the inside of the polymer matrix. Accordingly, the second-order 

cavities evaporate and eventually disappear completely (Figure 5.10). 

Figure 5.10: Schematic cross section of concentration profile representing the cavity 

deformation in a droplet. 

However, it takes some time for this diffusion process to be really operative. On the other 

hand, since the contribution of the volume part to the free energy is much larger than that of 

the interface part, the volume ratio between the solvent droplet and the cavity first 

approaches its final one. This imbalance and the resulting diffusion field between the solvent 

droplet and the regions having polymer components cause the cavity deformation, namely a 

kind of interface instability. 
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Up to this stage, the initial droplet distribution just before the second quench strongly affects 

the pattern formation. Finally the shape relaxation occurs very slowly to reduce the total 

interfacial energy. This process accompanies the complete reorganization of droplet shape 

and droplet distribution. However, as the driving force coming from the interface energy is 

too weak for a quick, large-scale reorganization, this final process is likely very slow. It 

should be noted that this kind of cavity occurs only for a second quench within the 

metastable region. 

The simulated morphology for the primary phase separation structure shows solvent droplets 

dispersed in a matrix of polymer. Increasing solvent concentration increases the size of the 

droplets, but the growth behavior remains similar. During the second deeper quench, the 

equilibrium compositions are not constant; they move apart. Both polymer and phase 

separated solvent obtained from the first quench undergo another phase separation 

independently. Therefore the coexisting phases have to change their composition 

continuously by material exchange. Due to domain growth and the increasing distances, 

material exchange by diffusion becomes more and more difficult. At a certain time the 

diffusion becomes too slow to follow the structure coarsening. At this time secondary 

demixing starts inside the primary domains, which are created by the primary phase 

separation. Based on this idea there would be a competition between structure coarsening and 

interdiffusion in double quenches. In Figure 5.6 (b), the last 3D concentration fluctuation 

pattern for an off-critical deep double quench case within NG region (A to C) at time 

t • = 1.2686 x 10 -J has been rescaled (Figure 5.11) for dimensionless concentration from -1 to 

3 on purpose in order to make it easier for cavity observation. 
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3 

2 

Figure 5.11: 3D concentration fluctuation patterns c*(x* ,y*) for an off-critical deep 

double quench case within NG region (A to C) at t • = I.2686 xI o-3
• 

When the scale is from 0 to I, one might have difficulty to see the cavities inside the 

droplets. The cavities are more conspicuous in Figure 5.II. Obviously, when the second 

quench is applied, the extreme concentration fluctuation occurs around each droplet. With the 

increasing time, the range of the fluctuation will expand and finally cover almost the whole 

phase region of the majority component. Hence, the height contrast between two phases is 

enlarged. Although the appearance of these secondary domain structures in both situations of 

off-critical conditions are brief, but they can still be used to tune the phase separation process 
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by appropriate control methods and obtain the interesting phase structures that could be 

considered for the industrial applications such as electro-optical devices. One can also note 

that the secondary domain structures with deeper second quench depths are clearer than those 

with shallower ones demonstrating again that a deeper second quench depth can induce a 

more intensive concentration fluctuation and a smaller initially favored length scale . 

-lOOnm .....___. • • • 
Figure 5.12: The comparison between the simulated morphology and the experimental 

results [23,136,138]. 
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Clearly, the concentration in the middle of the droplet falls down at the initial time of the 

second quench process, corresponding to the formation of the light concentration polymer 

drop as shown in Figures 5.7 and 5.9. A clearer secondary domain structure may be obtained 

by tuning the initial phase structure of the second quench depth using different methods, e.g., 

the coarsening time. It is also sensible to compare the achieved morphology with the 

experimental photos. Figure 5.12 evaluates the simulated model with the experimental work 

of Ohshima et a!. [64], Ishizu [136] and Meijer et a!. [138] respectively. In all three, the 

cavities are inside the second component droplets whether as a bulk (core-shell) or droplets. 

5.2 Structure Factor Evolution in Shallow Double Quench 

The structure factor is an important parameter that is often used to characterize the shape of 

phase-separated domains by NG and SD and relates numerical and experimental studies. The 

numerical data of the computed composition fluctuations are used to calculate the structure 

factor by taking the fast Fourier transform. The relationship between experimental (the 

scattering intensity from light scattering experiments) and numerical work (the structure 

factor) is ofthe following form: 

for q = k* (5.1) 

I is the scattering intensity, q, is the scattering wave vector, S is the structure factor and k * 

is the wave number in Fourier space. The experimental light scattering data is then directly 

proportional to the structure factor [ 16]. 
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From light scattering data, in the early stages of phase separation by SD, the scattering 

intensity grows exponentially and the scattering vector, q, is independent oftime .The growth 

of the composition fluctuations is weakly nonlinear. Plotting the natural log of the scattering 

intensity evolution: 

l(q,t) = l(q,t = O)exp(2R(q)t) (5.2) 

where R (q) is a growth rate of the concentration fluctuation that can be obtained from: 

R(q) = -Mq 2((i f~c) lc +2Kr/J ac II 

(5.3) 

should produce a straight line for the early stages of SD. In intermediate stages the scattering 

intensity continues to increase but at a slower rate than in early stages of phase separation by 

SD and q decreases and A (wavelength) increases. The relation between q and A is: 

(5.4) 

where B is the scattering angle. A typical plot of the scattering intensity in the early to the 

beginning of the intermediate stages for phase separation by SD is shown in Figure 5.13 

where the scattering intensity is increasing with time. As mentioned before, A* (k *, t *) is the 

Fourier transform of the composition fluctuations, c(r, t). Following equation (5.1) at the 

early and intermediate stages of phase separation by SD, the concentration fluctuations in 

Fourier space, A* (k *, t *) should then describe the same characteristics as discussed above 

regarding the development of the scattering data (Figure 5.13). Thus, the structure factor, 
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s· (k ·, t*) and the wave (position) vector, k • closely are similar to the scattered light 

intensity, I(q,t) and wave number, q in the small angle light scattering experiments 

performed for the phase separation studies in polymer mixtures, respectively . 

....., 

.6 
·~ 

= Qj .... 
= -

Wave Number, q 

Figure 5.13: Typical light scattering profile showing the evolution of phase separation by SD 

in the early to the beginning of the intermediate stages. Each profile represents the intensity 

at a certain time t. The increase in time is indicated by the arrow in the up direction. The 

scattering intensity is increasing with time. 

The dimensionless structure factor s· (k • ,t*) is calculated simply by taking the squares of 

the magnitude of the Fourier transform, A· (k *, t *) of the concentration fluctuations in the 

system. In consequence, from equation (5.1), the structure factor can be expressed as: 
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(5.4) 

where, c(r, t) is the concentration of solvent at node (m, n), co is the mean solvent 

concentration, and k* is the two-dimensional position vector, (kl' k 2 ) in Fourier space. To 

ensure that the numerical work in this study is in agreement with the known evolution of 

scattering profiles as associated to the structure factor, the dimensionless structure factor was 

calculated at different dimensionless times. Then a small algorithm was developed in 

MATLAB to determine the Fast Fourier Transform of the simulation results at a specific 

time. Taking the square of the magnitude of the Fast Fourier Transform results leads to 

determine the value of the structure factor. 

Table 5.2: Dimensionless parameters used in the simulation for the analysis of structure 

factor evolution (fist three cases where D* = 5000) and the investigation of thermal diffusion 

coefficient effect on TIPS in binary polymer solutions with D* = 8000. 

* D* T* N] N2 Quench co 

A toB 0.545 5000 0.650 1 10 

A toC 0.545 5000 0.625 1 10 

A toD 0.545 5000 0.560 1 10 

A toD 0.545 8000 0.560 1 10 
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The dimensionless parameters used in the first three simulation cases listed in Table 5.2 are 

considered for the analysis of structure factor evolution during double phase separation with 

D* = 5000. The last case investigates the effect of thermal diffusion coefficient on the phase 

separation mechanism with D* = 8000. As already noted, the growth process can be 

quantified by determining the evolution of the structure factor with quench time. Figure 5.14 

shows the evolution of the dimensionless structure factor as a function of dimensionless 

wave number, k • and dimensionless time for the off-critical shallow double quench case (A 

to B) with D* = 5000 where the phase separation is followed by NG mechanism. 
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Figure 5.14: The evolution of the dimensionless structure factor for off-critical shallow 

double quench (A to B) at different dimensionless times within NG region. 
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As observed in Figures 3.11 and 3.12, the spinodal decomposition process leads to a 

maximum in the angular variation of the scattered light intensity. The nucleation and growth 

mechanism is characterized by the absence of such a maximum and the continual decrease of 

the scattered light intensities with increasing angles [93]. For systems undergoing spinodal 

decomposition, dimensionless structure factor increases exponentially with time in the early 

stages of phase separation and displays a maximum that also grows with time. For systems 

undergoing nucleation and growth, dimensionless structure factor increases with time without 

displaying this maximum (Figure 5.14). The structure factor then begins to slow down as it 

approaches the beginning of the intermediate stages for both SD and NG mechanisms. Also 

during the early to the beginning of the intermediate stages, the wave number is constant. 

Thus, the evolution of the dimensionless structure factor for off-critical shallow double 

quench case show the same trends that have been reported both in experimental [93,94] and 

numerical work [70,134,159]. 

5.3 Structure Factor Evolution in Deep Double Quench 

This section is split into two parts to describe the evolution of the dimensionless structure 

factor after the second quench: i) to T3 * = 0.625 and ii) T4 * = 0.56 for the off-critical deep 

quench cases. The dimensionless structure factor is calculated in the same way as described 

before for the shallow double quench case. The evolution of the dimensionless structure 

factor for case A to Cis shown in Figure 5.15 and for case A to Dis shown in Figure 5.16. 
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Experimentally, after the second deep quench at a certain domain size formed from the first 

quench by NG, there appeared a second small peak that grew with time in the light scattering 

profile [ 134, 136]. This observation from the light scattering data was a result of the 

formation of cavity domains. The structure factor from the numerical work also shows the 

appearance and growth of this small peak. Henderson and Clarke [168] have observed the 

appearance and growth of a second small peak in the evolution of the structure factor after 

the second quench at the late stages of phase separation by SD in their numerical study. 
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Figure 5.15: The evolution of the dimensionless structure factor for off-critical deep double 

quench (A to C) at different dimensionless times within NG region. The second broad peak is 

caused by the cavity formation inside the solvent droplets. 
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This is the basis of comparison for the numerical results presented in this section since the 

structure factor at the start of the second quench in their simulation is developed as a weak 

but distinct shoulder [ 168] representing the secondary structure. As time increases, the 

magnitude of the secondary peak also increases. This is because the number of droplets 

increases with time as the phase separation of solvent and polymer continues [ 168]. 
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Figure 5.16: The evolution of the dimensionless structure factor for off-critical deep double 

quench (A to D) at different dimensionless times within NG (solvent) and SD (polymer) 

region. The second broad peak is caused by the cavity formation inside the solvent droplets. 

The value of dimensionless structure factor tends to increase exponentially with time in the 

early stages ofphases separation by SD. 
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Eventually the peak stops increasing in magnitude and decays as the secondary structure 

disappears. But in Figure 5.15 the secondary peak, which is created by imposing the second 

deep quench, will remain weak and does not grow with time. This is due to the fact that the 

second quench (A to C) although is deep but is still in the metastable region where the phase 

separation of both polymer and solvent would follow nucleation and growth mechanism. In 

Figure 5.16, the second deeper quench (A to D) thrusts the polymer into the unstable region 

and the solvent still within the metastable region (Figure 5.4). Both polymer and solvent 

follow the phase separation mechanism independently by spinodal decomposition and 

nucleation and growth respectively. Figure 5.16 shows an exponential trend at the beginning 

similar to the structure factor evolution resulted from SD mechanism which is in agreement 

with experimental results of Kiran and Liu [93,94) and numerical results of Henderson and 

Clarke [ 168]. 

5.4 Structure Factor Growth from NG to SD 

From experimental observation of the early stages of SD phase separation by Hashimoto et 

a!. [ 103] the growth of the scattering intensity is exponential in the early stage and taking the 

natural log of these values should produce a straight line. In the later stages of phase 

separation by SD mechanism, the growth rate slows down and nonlinear effects take place. 

This was thought to be due to the coarsening of the mixture. Taking the natural log of 

equation (5.2) gives: 

lnl(q,t) = 2R(q)t + lnl(q,t = 0) (5.5) 
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Equation (5.5) is the equation of a straight line. Figure 5.17 shows the natural log plots of the 

maximum value of the dimensionless structure factor versus dimensionless time for the off-

critical shallow (A to B), deep (A to C) and deeper (A to D) double quench case respectively 

with D* = 5000. At the early stages of phase separation by NG in shallow and deep quench 

cases (A to B and C) the initial increase is linear and gradually slows down into the 

beginning ofthe intermediate stage. 
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Figure 5.17: The evolution of the dimensionless maximum structure factor versus 

dimensionless time for shallow (A to B), deep (A to C) and deeper (A to D) double quench 

cases respectively. The natural logarithm of the maximum structure factor increases linearly 

(non-exponentially) with time for A to Band C quenches which is considered to be typical of 

NG mechanism while, it increases exponentially with time for A to D case which is the 

characteristic of SD mechanism. Transition time (downward arrow) is at 1.2315 x 10-3
• 
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The natural logarithm of the maximum structure factor increases non-exponentially with time 

for A to B and C quenches which is considered to be typical of NG mechanism. This is 

consistent with experimental work of Hashimoto eta!. (159], Inoue eta/. [60] and Vekilov et 

a/. (89] and numerical studies of Henderson and Clarke [168]. At the early stages of phase 

separation by SD mechanism the natural logarithm of the maximum structure factor increases 

exponentially with time for A to D case which is the characteristic of SD mechanism. The 

transition point occurs where the two tangent lines intersect. The dimensionless transition 

time, !
1 
·, is defined as the time at which phase separation moves away from the early stage 

dynamics and enters into the beginning of the intermediate stages. From the plot of the 

maximum values of the dimensionless structure factor at given dimensionless times (Figure 

5 .17), the dimensionless transition time can be obtained by making two tangent lines where 

the change in the growth rate is obvious. In Figure 5.17, the two tangent lines are drawn and 

the point of intersection is where the transition time is located. The intersection of the two 

straight lines drawn on each side of the curve represents the transition point between the 

early and the intermediate stages of the SD mechanism and the dimensionless time indicated 

by the downward arrow gives the dimensionless transition time. 

5.5 Effect of Diffusion Coefficient 

As already mentioned dimensionless diffusion coefficient D*, controls the amount and rate 

of phase separation. When D* increases the amount and rate of phase separation increase as 

well. 
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Figure 5.18: Dimensionless 2D contour spatial concentration profiles for c • (x •, y • )(left 
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double quench case (A to D) at the following dimensionless times respectively: 
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Figure 5.18 illustrates the same quench path from A to D. Similar to Figure 5.8 the cavities 

are formed inside the solvent droplets but the diffusion coefficient is increased from 5000 to 

8000. Figure 5.18 proves that the dimensionless diffusion coefficient controls the 

characteristic length scale and time scale of the pattern formed during phase separation. 

When the diffusion is increased the number of solvent droplets in polymer matrix and the 

phase separation rate are increased consequently. Diffusion coefficient affects the amount of 

phase separation, and the transition time for macroscopic phase separation to first occur [32]. 

As diffusion coefficient increases, there is more phase separation and the transition time 

decreases. This should be expected since phase separation occurs at a much faster rate with 

increasing diffusion and thus, should reach the beginning of the intermediate stage much 

faster. Diffusion coefficient, however, does not affect the type of morphology formed during 

the phase separation process. 

Differences between the simulations arise due to the numerical difficulty of capturing the 

true early stages. In all cases the secondary structure reaches a maximum before the 

morphology relaxes back to the initial structure, but with a greater difference in composition 

between the two phases. As in experiments, [86-91] the secondary structure is absorbed back 

into the primary structure while the primary structure coarsens. However, we do not observe 

coarsening of the secondary structures; this is probably due to the initial primary structure not 

having a significantly greater length scale than the secondary, although another possibility is 

the neglect of hydrodynamic effects that has been considered in the simulations. Achieving 

such a wide range of length scales with the resultant increase in time scales is beyond the 

scope ofthis study. 
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Chapter 6 

Conclusion 

In this thesis, we studied usmg mathematical modeling and computer simulation the 

morphology development and evolution during the two-step phase separation phenomenon in 

an asymmetric polymer solution. Many properties of polymer solutions can be determined 

from computer simulation, as the simulation route provides an opportunity to test the 

assumptions made in the theory and analysis. Although a large number of parameter values 

were used in our comprehensive numerical study (appendix A), Table 5.1 lists only a sample 

of parameter values, which are sufficient to achieve the objective stated above. For this study 

we used three different values for the dimensionless diffusion coefficient D* (appendix A). 

The initial quench is to I; followed by a second quench after some elapsed time to T2 for a 

shallow quench or T3 and T4 for a deeper quench. It should be noticed that the transition 

time decreases as D* increases. This is to be expected since phase separation occurs at a 

greater rate with increasing D* and, therefore, should reach the beginning of the intermediate 

stage much faster. After the second quench, the growth of the dimensionless structure factor 

continues as if in the early stages of phase separation and proceeds to take the same course as 

a single quench into the intermediate stage. We then studied the formation of the cavities 

which are often found in asymmetric solutions. The formation of the cavities, growing inside 
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the solvent droplets, is divided into three regimes: (a) early (cavity formation), (b) 

intermediate (cavity growth) and (c) late (cavity shrinkage) regimes. The formation of the 

cavity is generally associated with a high rate of polymer diffusion. In early regime when the 

rate of polymer diffusion inside the solvent droplets is high, a cavity structure will be 

obtained. The formation of cavities can be also explained as the result of changing interface 

diffusion during the second quench. The interface diffusion of the solvent-rich phase will 

decrease, while the interface diffusion of the polymer phase increases. At this point cavity 

formation is easily initiated till the interface diffusions of solvent and polymer become equal. 

In intermediate regime, growth of cavities will occur through more diffusion of the polymer 

into the solvent phase. Polymer molecules outside of the solvent droplets will reduce their 

chemical potential. Eventually, the solvent droplets will contain so much of the cavity. In the 

late regime the deliverance of the polymer molecules from each droplet into the polymer 

matrix just outside the solvent droplet occurs by diffusion mechanism. This transfer will 

occur by creeping. Eventually, complete cavity removal will take place. Cavities will 

diminish when the difference in chemical potential of the solvent droplets in the polymer 

solution and the polymer matrix is lowered. When the phase separation has proceeded 

through the diffusion of cavities from spherical solvent droplets into polymer-rich phase, the 

polymer matrix will gradually become more concentrated until it eventually solidifies. If the 

cavity is not given enough time to diffuse into the polymer through the solvent droplets, the 

final structure would be a continuous matrix of polymer with the typical sponge-like (core­

shell) structure. In this case the cavities tend to accumulate inside the solvent droplet 

boundary, affecting the anchoring of the solvent and the optical homogeneity of the polymer 

matrix. 
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However, we expect that this morphology of solvent droplets would improve the electro­

optical properties such as the removal of the hysteresis effect and various optical properties 

can be obtained by introducing various types of solvent and by controlling the composition 

and properties of the matrix polymers. This work is of both' academic and commercial 

interest. The motivation for this study was the need to understand and control the 

morphology formation and evolution in polymer solutions to fabricate functional polymeric 

materials with predefined specific material properties and characteristics. The model is able 

to reproduce recently reported experimental observations reported in the literature. This 

includes the observation that secondary phase separation occurs only if the second quench is 

sufficiently deep. Lastly, the numerical results indicate that the dimensionless diffusion 

coefficient and the quench depth can be used as a parameter to control the formation and 

evolution of the morphology during a double quench to tailor-make functional polymeric 

materials with predefined material properties and characteristics. The rate of phase separation 

and size of the phase-separated regions will decrease as D* increases. As well, phase 

separation occurs at a much faster rate with increasing diffusion reaching the beginning of 

the intermediate stage much faster. 

162 



References 
[1] J. W. Cahn, J. E. Hilliard. J. Chern. Phys. 28,258 (1958). 

[2] J. W. Cahn. J. Chern. Phys. 42, 93(1965). 

[3] Y. C. Chou and W. I. Goldburg. Phys. Rev. A 20,2105 (1979). 

[4] N.C. Wong and C. M. Knobler. Phys. Rev. A 24,3205 (1981). 

[5] T. Hashimoto, M. Itakura and Shimazu N.J. Chern. Phys. 85,6118 (1986). 

[6] P. Guenoun, R. Gastaud, F. Perrot, and D. Beysens. Phys. Rev. A 36,4876 (1987). 

[7] H. Tanaka, T. Yokokawa, H. Abe, T. Hayashi, and T. Nishi. Phys. Rev. Lett. 65, 25, 

(1990). 

[8] A. Onuki, Phys. Rev. Lett., 48, 753 (1982). 

[9] F. S. Bates and P. Wiltzius, J. Chern. Phys., 91, 3258 (1989). 

[10] H. Tanaka and T. Sigehuzi, Phys. Rev. Lett., 75, 874 (1995). 

[11] P. Guenoun, B. Khalil, D. Beysens, Y. Garrabos, F. Kammoun, B. LeNeindre, and B. 

Zappoli, Phys. Rev. E 47, 1531 (1993). 

[12] K. D. Lee, Philip K. Chan, Xianshe Feng. Macromol. Theory Simul., 11, 996, (2002). 

[13] K. D. Lee, Philip K. Chan, Xianshe Feng. Macromol. Theory Simul., 12, 413, (2003) 

[14] K. D. Lee, Philip K. Chan, Xianshe Feng. Chern. Eng. Sci., 59, 1491- 1504, (2004). 

[15] Bai Tao Jiang, Philip K. Chan. Macromol. Theory Simul., 16, 690-702, (2007). 

[16] Copetti and C.M. Elliott, Mater. Sci. Tech., 6, 273 (1990). 

[17] J.L. West, Mol. Cryst. Liq. Cryst., 157,427 (1988). 

[18] G.W. Smith and N.A. Vaz. Liq. Cryst., 3, 543 (1988). 

163 



[19] I. C. Henderson. N. Clarke. The Jour. ofChem. Phy., 123, 144903, (2005). 

[20] J.D. Gunton, M. San Miguel, and P. Sahni, in Phase Transition and Critical 

Phenomena, edited by C. Domb and J. H. Lebowitz. London., Vol. 8 (1983). 

[21] J.D. Gunton and M. Droz, Lecture Notes in Physics, edited by H. Araki, SpringerVerlag, 

New York, Vol. 183 (1983). 

[22] H. Tanaka, Phys. Rev. Lett. 70,2770 (1993); J. Phys.: Condens. Matter 13,4637 (2001). 

[23] T. Nihei, J. Nephew, and S. A. Carter 80,15, 3276 (1998). 

[24] T. Kyu, M. Mustafa, J. C. Yang, J. Y. Kim, and P. Palffy-Muhoray, Stud. Polym. Sci., 

11,245 (1992). 

[25] P. K. Chan, Tuyet L. Tran, D. Rousseau. Comput. Mater. Sci., 37, 328, (2006). 

[26] H. Tanaka, J. Chern. Phys., I 05, I 0099 (1996). 

[27] A. Onuki, Phase Transition Dynamics. Cambridge University Press, Cambridge, 

England., (2002). 

[28] M. Joshua, W. I. Goldburg, and A. Onuki, Phys. Rev. Lett., 54, 1175 (1985). 

[29] H.G. Craighead, J. Cheng, and S. Hackwood, Appl. Phys. Lett., 40, 22 (1982). 

[30] P. K. Chan, A. D. Rey, Macromol. Theory Simul., 4, 873, (1995). 

[31] P. K. Chan, A. D. Rey, Comput. Mater. Sci. 3, 377, (I 995). 

[32] P. K. Chan, A. D. Rey, Macromolecules 29,8934, (1996). 

[33] P. K. Chan, A. D. Rey, Macromolecules 30,2135, (1997). 

[34] P. K. Chan, A. D. Rey, Macromolecules 4, 2135. 873, (1995). 

[35] J.L. Fergason, SID Digest, 16,68 (1985). P.S. Drzaic, Liquid Crystal Dispersions, World 

Scientific, Singapore (1995). 

[36] J.L. Fergason, U.S. Patent., 4,435,047 (1990). 

164 



[37] Binder, K. J. Chern. Phys., 79, 6387, (1983). 

[38] C. Hilsum, U.K. Patent 1,442,360 (1976). 

[39] Rogers, T. M.; Elder, K. R.; Desai, R. C. Phys. Rev. B 1988,37,9638. 

[40] H. Tanaka, T. Yokokawa, H. Abe, T. Hayashi, and T. Nishi., Phys. Rev. Lett., 65,25 

(1990). 

[41] A. Chakrabarti, R. Toral, J.D. Gunton, M. Muthukumar. Phys. Rev. Lett., 63, 2072, 

(1989). 

[42] A. Chakrabarti, J.D. Gunton, Phys. Rev. B, 37, 3798, (1988). 

[43] K. Binder, Phy. Rev., 29, 1, (1984). 

[44] M. Takenaka, T. Hashimoto., Phys. Rev. E 48,647, (1993). 

[ 45] P. Chan, PhD thesis, McGill University, Montreal, Canada., (1997). 

[46] C. Huang, M. 0. Cruz, Macromolecules, 27,4231, (1994). 

[47] H. Matsuyama, M. Teramoto, S. Kudari andY. Kitamura, Jour. of App. Poly. Sci., 82, 

169,177 (2001). 

[48] H. Matsuyama, T. Maki, M. Teramoto, M. and K. Asano., Jour. ofMemb. Sci., 204,323 

328 (2002). 

[49] Matsuyama, H., Kim, M.-m., and Lloyd, D. Journal ofMembrane Science 204,413-419 

(2002). 

[50] P. G. deGennes, J. Chern. Phys. 1980, 72,4756. 

[51] A. C. Balazs, V. Ginzburg, F. Qui, G. Peng, D. Jasnow, J. Chern. Phys. 104, 3411, 

(2000). 

[52] T. Ohnaga, T. Inoue. Jour. ofPoly. Sci.: Part B: Poly. Phy., Vol. 27, 1675-1689 (1989). 

[53] N. Clarke, Macromolecules 37, 1952-1959, (2004). 

165 



[54] N. Clarke, Phys. Rev. Lett., 89, 215506, (2002). 

[55] M. Hayashi, H. Jinnai, T. Hashimoto, I. Chern. Phys., 113, 3414, (2000). 

[56] P. Pincus, J. Chern. Phys. 75, 1996 (1981). 

[57] K. Kwak, M. Okada, T. Chiba, T. Nose, Macromolecules, 26, 4047, (1993). 

[58] M. Fialkowski, R. Holyst, I. Chern. Phys. 117, 1886, (2002). 

[59] I. Tao, M. Okada, T. Nose, T. Chiba. Polymer Vol. 36 No. 20, pp. 3909-3917, 1995 

[60] Y. Yang, H. Fujiwara, T. Inoue, T. Chiba. Polymer Vol. 39 No. 13, pp. 2745-2750, 1998 

[ 61] Cook, H. E. Acta Metall. 1970, 18, 297. 

[62] Glotzer, S. C. Annu. Rev. Comput. Phys. 1995, 2, 1. 

[63] [44] Langer, J. S. ActaMetall. 1973,21, 1649. 

[64] I. K. Kim, K. Taki, M. Ohshima Langmuir, 2007, 23 (24), 12397-12405 

[65] A. Onuki, Phase Transition Dynamics. Cambridge University Press, Cambridge, 2002. 

[66] K. D. Kwak, M. Okada, T. Chiba, and T. Nose, Macromolecules 26,4047, 1993. 

[67] M. Hayashi, H. Jinnai, and T. Hashimoto, I. Chern. Phys. 112, 6897, 2000 

[68] B. M Forrest and D. W. Heermann. I Phys II France (1991) 909-919 AOUT 1991,909 

[69] 2. I.-P. Chen and Y.-D. Lee, Polymer, 36, 55 (1995). 

[70] Chakrabarti, A.; Toral, R.; Grunton, J.D.; Muthukumar, M. J. Chern. Phys. 1990, 92, 

6899. 

[71] Brown, G.; Chakrabarti, A. J Chern. Phys. 1993,98,2451. 

[72] G. Brown and A. Chakrabarti, Phys. Rev. E, 4S, 3705 (1993). 

[73] I. Podariu, A. Chakrabarti. Jour. of Chern. Phy. 126, 154509, 2007 

[74] D. A. Huse, Phys. Rev. B 34, 7845,1986. 

[75] J.W. Cahn, I. Chern. Phys. 66, 3667 (1977). 

166 



[76] For a review, see D. Jasnow, Rep. Prog. Phys. 47, I 059 (1984); P.G. de Gennes, Rev. 

Mod. Phys. 57,827 (1985). 

[77] Y. J. leon, Y. Bingzhu, J. T. Rhee, D. L. Cheung, M. Jamil Macromol. Theory Simul. 

2007,16,643-659 

[78] L. T. Yan, J. Li, F. Zhang, X. M. Xie. J. Phys. Chern. B 2008, 112, 8499-8506 

[79] P. Guenoun et al., Phys. Rev. Lett. 65, 2406 (1990). 

[80] R.A.L. Jones et al., Phys. Rev. Lett. 66, 1326 (1991). 

[81] P. Wiltzius and A. Cumming, Phys. Rev. Lett. 66, 3000 ( 1991 ). 

[82] A. Cumming et al., Phys. Rev. A 45, 885 (1992). 

[83] M. Fialkowski, R. Holyst. Jour. ofChem. Phy. 117, 4, 2002 

[84] H. Tanaka, Phys. Rev. Lett. 70,2770 (1993). 

[85] E.D. Siggia, Phys. Rev. A 20, 595 (1979). 

[86] H. Tanaka, Phys. Rev. E 47,2946 (1993). 

[87] H. Tanaka, Phys. Rev. Lett. 81,2 (1998). 

[88] P. Guenoun et al., Phys. Rev. A 36, 4876 (1987). 

[89] Mrinal Shah, Oleg Galkin, and Peter G. Vekilov. Jour. of Chern. Phy. 121, No. 15, 2004 

[90] Hashimoto, T.; Hayashi, M.; Jinnai, H. J. Chern. Phys. 2000, 112, 6886. 

[91] Hayashi, M.; Jinnai, H.; Hashimoto, T. J. Chern. Phys. 2000, 112,6897. 

[92] F.8. Bates and P. Wiltzius, J. Chern. Phys. 91,3258 (1989). 

[93] Ke Liu and Erdogan Kiran. Macromolecules 2001, 34, 3060-3068 

[94] Ke Liu and Erdogan Kiran. Journal ofSupercritical Fluids 16 (1999) 59-79 

[95] H. Tanaka, Phys. Rev. Lett. 72,23 (1994). 

[96] H. Tanaka, T. Sigehuzi. Phys. Rev. E 70, 051504 (2004) 

167 



[97] T. Hashimoto et al., J. Chern. Phys. 85, 6773 (1986). 

[98] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49,435 (1976). 

[99] Comp. and Theo. Poly. Sci., Vol.ll, No.6, 2001, 445-458(14) Nakazawa H.; Fujinami 

S.; Motoyama M 

[100] E. D. Siggia, Phys. Rev. A 20, 595 (1979). 

[101] Y. C. Chou and W. I. Goldburg, Phys. Rev. A 20,2105 (1979); N.C. Wong and C. M. 

[102] Knobler, Phys. Rev. A 24,3205 (1981). 

[103] T. Hashimoto et al., J. Chern. Phys. 85,6118 (1986). 

[104] P. Guenoun et al., Phys. Rev. A 36, 4876 (1987) 

[105] F. S. Bates and P. Wiltzius, J. Chern. Phys. 91,3258 (1989). 

[1 06] A. Shinozaki andY. Oono, Phys. Rev. E 48, 2622 (1993). 

[107] T. Koga and K. Kawasaki, Physica (Amsterdam) 196A, 389 (1993). 

[ 1 08] See, e.g., H. Furukawa, Phys. Rev. E 55, 1150 (1997). 

[109] P. Wiltzius and A. Cumming, Phys. Rev. Lett. 66,3000 (1991). 

[11 0] A. Cumming eta/., Phys. Rev. A 45, 885 (1992). 

[111] B. Q. Shi et al., Phys. Rev. Lett. 70, 206 (1993). 

[112] 41. P.J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca 

(1953). 

[113] J.M.G. Cowie, Polymers: Chemistry and Physics of Modern Materials, 2nd edition, 

Chapman and Hall, New York (1991). 

[114] Phys. Rev. E 51, 1313 (1995). 

[115] B. Chu et al., J. Am. Chern. Soc. 90, 3402 (1968); E. Gulari et al., J. Chern. Phys. 56, 

6169 (1972). 

168 



[116] S.M. Troian, Phys. Rev. Lett. 71, 1399 (1993). 

[117] H. Tanaka, Phys. Rev. Lett. 72, 1702 (1994). 

[118] Dynamics of Ordering Process in Condensed MaUer, edited by S. Komura and H. 

Furukawa (Plenum, New York, 1987). 

[119] H. Tanaka eta!., Phys. Rev. Lett. 65, 3136 (1990). 

[120] K. Binder, Phys. Rev. B 15,4425 (1977). 

[121] G. Brown and A. Chakrabarti, J. Chern. Phys., 98,2451 (1993). 

[122] G. Brown and A. Chakrabarti, Phys. Rev. E, 48,3705 (1993). 

[123] R. Ruiz, Phys. Rev. A 26,2227 (1982). 

[124] A. Onuki, Prog. Theor. Phys. 66, 1230 (1981). 

[125] A. Onuki, Phys. Rev. Lett. 48, 753 (1982). 

[126] A. Onuki, Prog. Theor. Phys. 67,768 (1982); 67,787 (1982); 67,1740 (1982). 

[127] M. Joshua eta/., Phys. Rev. Lett. 54, 1175 (1985). 

[128] D. Beysens and F. Perot, J. Phys. (Paris) Lett. 45, L31 (1984). 

[129] D. Jasnow eta!., Phys. Rev. A 23,3192 (1981). 

[130) H. Tanaka, Polym. Prep. Jpn. 40,766 (1991). 

[131] M. Okada et al., Polym. Prep. Jpn. 40, 767 (1991). 

[132] K. Binder and D. Stauffer, Phys. Rev. Lett. 33, 1006 (1974). 

[133] K. Binder and D. Stauffer, Adv. Phys. 25, 343 (1976). 

[134] D.J. Hourston, H.X. Zhang, M. Song, M. Pollock, A. Hammiche. Thermochimica Acta 

294 (1997) 23-31 

[135] K. Zhao, P. Sun, D. Liu, G. Dai. Euro. Poly. Jour. 40 (2004) 89-96 

[136) K. IshizuProg. Polym. Sci., Vol. 23, 1383-1408, 1998 

169 



[137] J. J.M. Halls, C. A. Walsh, N.C. Greenham, E. A. Marseglia, R. H. Friend, S.C. 

Moratti, and A. B.Holmes, Nature (London) 376, 498 (1995). 

[138] B. J.P. Jansen, S. Rastogi, H. E. H. Meijer, P. J. Lemstra Macromolecules 2001,34, 

3998-4006 

[139] Z. Huang, G. Chidichimo, A. Golemme, H. A. Hakemi, M. Santangelo. F. P. Nicoletta. 

Liquid Crystals, 1997, Vol. 23, No.4, 519-524 

[140] K. Binder, J. Non-Equi1ib. Thermodyn. 23, I (1998). 

[141] M. Boltau, S. Walheim, J. Mlynek, G. Krausch, and U. Steiner, Nature (London) 391, 

877 (1998). 

[142] B. D. Ermi, G. Nisato, J. F. Douglas, J. A. Rogers, and A. Karim, Phys. Rev. Lett. 81, 

3900 (1998). 

[143] A.M. Higgins and R. A. L. Jones, Nature (London) 404, 476 (2000). 

[144] A. Karim, J. F. Douglas, G. Nisato, D.-W. Liu, and E. J. Amis, Macromolecules 32, 

5917 (1999). 

[145] I. M. Lifshitz and V. V. Slyozov, Phys. Chern. Solids 19,35 (1961). 

[146] K. D. Kwak, M. Okada, T. Chiba, and T. Nose, Macromolecules 26, 4047 (1993). 

[147] H. Tanaka, Phys. Rev. E 47,2946 (1993). 

[148] M. Hayashi, H. Jinnai, and T. Hashimoto, J. Chern. Phys. 113, 3414 (2000). 

[149] H. E. Cook, Acta Meta11. 18, 297 (1970). 

[150] J.W. Cahn and J. E. Hilliard, J. Chern. Phys. 28, 258 (1958). 

[151] P.G. deGennes, J. Chern. Phys. 72,4756 (1980). 

[152] M. Okada, K. D. Kwak, and T. Nose, Po1ym. J. (Tokyo, Jpn.) 24,215 (1992). 

[153] K. Binder, J. Chern. Phys. 79, 6387 (1983). 

170 



[154] S.C. Glotzer, Annu. Rev. Comput. Phys. 2, 1 (1995). 

[155] P. 1. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, N.Y., 

1953). 

[156] H. Tanaka, Phys. Rev. E 47,2946 (1993). 

[157] M. Graca, S. A. Wieczorek, and R. Holyst, Macromolecules 35, 7718 (2002); M. 

Fialkowski and R. Holyst, J. Chern. Phys. 117, 1886 (2002). 

[158] J. Tao, M. Okada, T. Nose, and T. Chiba, Polymer 36,3909 (1995). 

[159] T. Hashimoto, Kumaki, J. and Kawai, H., Macromolecules, Vol. 16, No.4, (1983). 

[160] A. Noviek-Cohen. Journal of Statistical Physics, Vol. 38, Nos. 3/4, 1985 

[161] M. Hayashi, H. Jinnai, and T. Hashimoto, J. Chern. Phys. 112, 6897 (2000). 

[162] M. Rullmann and I. Alig, J. Chern. Phys. 120, 7801 (2004). 

[163] N.C. Wong and C. M. Knobler, Phys. Rev. Lett. 43,1733 (1979); 45,498 (1979). 

[164] N.C. Wong and C. M. Knobler, J. Chern. Phys. 69,725 (1978). 

[165] M. Berggren, 0. Inganas, G. Gustafsson, J. Rasmusson, M. R. Andersson, and T. 

Hjertberg, Nature (London) 372,444 (1994). 

[166] S. Puri and H. L. Frisch, J. Phys. Condens. Matter 9, 2109 (1997). 

[167] B. P. Lee, J. F. Douglas, and S.C. Glotzer, Phys. Rev. E 60, 5812 (1999). 

[168] I. C. Henderson and N. Clarke, Macromolecules 37, 1952 (2004). 

[169] H. Tanaka, T. Hayashi, and T. Nishi, J. Appl. Phys. 59,3627 (1986); 65,4480 (1989). 

[170]1. M. Lifshitz and V. V. Slyozov, J. Phys. Chern. Solids 19, 35 (1961). 

[171] C. Wagner, Z. Elektrochem. 65, 581 (1961). 

171 



[172] A.C. Edrington, A.M. Urbas, P. DeRege, C. X. Chen, T.M. Swager, N. Hadjichristidis, 

M. Xenidou, L. J. Fetters, J.D. Joannopoulas, Y. Fink, and E. Thomas, Adv. Mater. 13, 421 

(2001). 

[173] S. Puri, Y. Oono. J. Phys. A: Math. Gen. 21 (1988) L755-L762. Printed in the UK 

[174] S. Puri, Y. Oono. 1987 Phys. Rev. Lett 58 836. 

[175] Jingzhi Zhu and Long-Qing Chen.l999 Phys. Rev. E 60,4. 

[176] E. D. Siggia, Phys. Rev. A 20, 595 (1979). 

[177] H. Tanaka, Phys. Rev. Lett. 72, 1702 (1994). 

[178] C. Yeung. Phys. Rev. Lett. 61,9 (1988). 

[179] H. Tanaka, Phys. Rev. Lett. 72,3690 (1994); Phys. Rev. E 51, 1313 (1995); H. Tanaka 

and T. Araki, Phys. Rev. Lett. 81,389 (1998). 

[180] N.C. Wong and C. M. Knobler, J. Chern. Phys. 69,725 (1978). 

[181] D. M. Koenhen, M. H. V. Mulder, and C. A. Smolders,Journal of Applied Polymer 

Science; 21, 199-215 (1977) 

[182] Tanaka, H. J. Phys.: Condens. Matter 2000, 12, R207. 

[183] Peng, G.; Qiu, F.; Ginzburg, V. V.; Jasnow, D.; Balazs, A. C. Science 2000,288, 1802. 

[184] de Gennes, P. G. Scaling Concepts in Polymer Physics; Cornell University Press: 

Ithaca, NY, 1993. 

[185] T. Sigehuzi and H. Tanaka, Phys. Rev. E 70,51504,2004. 

172 



Appendices 

A 

Numerical parameter values featuring different system models with different average 

concentrations ( c,), mesh sizes, quench depths (temperatures), diffusions and transition 

times respectively. 

c = 0.41 
0 

Mesh Size= 3lx31 Mesh Size= 20x20 

Shallow Quench Deep Quench Shallow Quench Deep Quench 
0.56 to 0.54 0.6499 to 0.525 0.56 to 0.54 0.6499 to 0.525 

Diffusion 

1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 

M ..... ..... M ..... M ..... ..... M M M M 
I I I I I I I I I I I I 

0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - - -X X X X X X X X X X X X 

""'" 
r- 0\ 

""'" 
r- 0\ 

""'" 
r- 0\ 

""'" 
r- 0\ 

0 (") r- 0 (") r- 0 (") r- 0 (") r-
""'" - N 

""'" - N 

""'" - N 

""'" - N 
N N - N N - N N - N N -- - - - - - - - - - - -
II II II II II II II II II II II II 

* * * * * * * * * * * * ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... 
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co = 0.47 

Mesh Size= 31x31 Mesh Size = 20x20 

Shallow Quench Deep Quench Shallow Quench Deep Quench 
0.6115 to 0.59 0.675 to 0.525 0.6115 to 0.59 0.675 to 0.525 

Diffusion 

1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 

"' "' "' "' "' "' "' "' "' "' "' "' I I I I I I I I I I I I 

0 0 0 0 0 0 0 0 0 0 0 0 
......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... 
X X X X X X X X X X X X 

'<T r-- 0'1 '<T r-- 0'1 '<T r-- 0'1 '<T r-- 0'1 
0 M r-- 0 M r-- 0 M r-- 0 M r--
'<T ......... N '<T ......... N '<T ......... N '<T ......... N 
N N ......... N N ......... N N ......... N N ......... 

......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... 

II II II II II II II II II II II II 

* * * * * * * * * * * * ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... 

co= 0.53 

Mesh Size= 31x31 Mesh Size = 41 x 41 

Shallow Quench Deep Quench Deeper Quench Shallow Quench Deep Quench Deeper Quench 

0.66 to 0.63 0.66 to 0.58 0.66 to 0.525 0.66 to 0.63 0.66 to 0.58 0.66 to 0.525 

Diffusion 

1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 

"' "' "' "' "' "' "' "' "' "' "' "' 
...., 

"' "' 
...., ...., 

"' I I I I I I I I I I I I I I I I I I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - - - - - - - - - - - - - -X X X X X X X X X X X X X X X X X X 

-.:::t r-- 0'1 -.:::t r-- 0'1 -.:::t r-- 0'1 -.:::t r-- 0'1 -.:::t r-- 0'1 -.:::t r-- 0'1 
0 M r-- 0 M r-- 0 M r-- 0 M r-- 0 M r-- 0 M r--
-.:::t - N -.:::t - N -.:::t - N -.:::t - N -.:::t - N -.:::t - N 
N N - N N - N N - N N - N N - N N -- - - - - - - - - - - - - - - - - -
II II II II II II II II II II II II II II II II II II 

* * * * * * * * * * * * * * * * * * ...... ...... ...... ...... ...... ...... ...... ...... .._ .._ - ...... ...... - ...... ...... - ...... 
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co = 0.585 

Mesh Size= 31x31 Mesh Size = 20 x 20 

Shallow Quench Deep Quench Deeper Quench Shallow Quench Deep Quench Deeper Quench 

0.691 to 0.672 0.691 to0.6115 0.691 to 0.525 0.691 to 0.672 0.691 to0.6115 0.691 to 0.525 

Diffusion 

1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 

"' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' I I I I I I I I I I I I I I I I I I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ........ ........ ........ ........ ........ ........ - ........ - - - - ........ - ........ - ........ -X X X X X X X X X X X X X X X X X X 

'<j" r-- 0\ '<j" r-- 0\ '<j" r-- 0\ '<j" r-- 0\ '<j" r-- 0\ '<j" r-- 0\ 
0 M r-- 0 M r-- 0 M r-- 0 M r-- 0 M r-- 0 M r--
'<j" ........ ('.1 '<j" - ('.1 '<j" - ('.1 '<j" ........ N '<j" - ('.1 '<j" - ('.1 
('.1 ('.1 ........ ('.1 ('.1 - ('.1 ('.1 ........ N ('.1 ........ ('.1 ('.1 ........ N ('.1 ........ 

........ ........ - ........ ........ - ........ ........ ........ - ........ - - - - ........ ........ -
II II II II II II II II II II II II II II II II II II 

* * * * * . . . . . * * * . . . . * .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ 

co= 0.65 

Mesh Size= 31x31 Mesh Size = 20 x 20 

Shallow Quench Deep Quench Deeper Quench Shallow Quench Deep Quench Deeper Quench 

0.715 to 0.7 0.715 to 0.63 0.715 to 0.525 0.715 to 0.7 0.715 to 0.63 0.715 to 0.525 

Diffusion 

1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 

"' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' "' I I I I I I I I I I I I I I I I I I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - - - - ........ - - - - - - - - ........ - - -X X X X X X X X X X X X X X X X X X 

'<j" r-- 0\ '<j" r-- 0\ '<j" r-- 0\ '<j" r-- 0\ '<j" r-- 0\ '<j" r-- 0\ 
0 M r-- 0 M r-- 0 M r-- 0 M r-- 0 M r-- 0 M r--
'<j" ........ ('.1 '<j" - ('.1 '<j" ........ ('.1 '<j" - ('.1 '<j" - ('.1 '<j" ........ ('.1 
('.1 ('.1 ........ ('.1 ('.1 - ('.1 ('.1 ........ ('.1 N - ('.1 N - ('.1 ('.1 -- - - - - ........ ........ - - - ........ ........ - - ........ ........ - ........ 

II II II II II II II II II II II II II II II II II II 

* * * * . * . . . . * * . . * . . . .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ .._ 
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co = 0.845 

Mesh Size = 31 x3J Mesh Size = 20 x 20 

Shallow Quench Deep Quench Deeper Quench Shallow Quench Deep Quench Deeper Quench 

0.715 to 0.695 0.715 to 0.63 0.715 to 0.525 0.715 to 0.695 0.715 to 0.63 0.715 to 0.525 

Diffusion 

1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 

..... ..... ..... ..... ..... ..... M M M M M M ..... M M ..... M M 
I I I I I I I I I I I I I I I I I I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... 
X X X X X X X X X X X X X X X X X X 

"'1' r- 0\ "'1' r- 0\ "'1' r- 0\ "'1' r- 0\ 

""'" 
r- 0\ 

""'" 
r- 0\ 

0 M r- 0 M r- 0 M r- 0 M r- 0 M r- 0 M r-

""'" 
....... N "'1' ....... N 

""'" 
....... N 

""'" 
....... N 

""'" 
....... N 

""'" 
....... N 

N N ....... N N ....... N N ....... N N ....... N N ....... N N ....... 
....... ....... ....... ....... ....... ....... - - ....... ....... - ....... - ....... - ....... - -
II II II II II II II II II II II II II II II II II II . . . . . . . . . . . . . . . . . * ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... 

co = 0.89 

Mesh Size= 3Ix3I Mesh Size = 20 x 20 

Shallow Quench Deep Quench Deeper Quench Shallow Quench Deep Quench Deeper Quench 

0.6795 to 0.6445 0.6795 to 0.58 0.6795 to 0.525 0.6795 to 0.6445 0.6795 to 0.58 0.6795 to 0.525 

Diffusion 

1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 

M ..... M M M M <') <') <') ..... M M <') ..... <') <') <') M 
I I I I I I I I I I I I I I I I I I 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - ....... - - - ....... - ....... ....... - ....... - - - - - -X X X X X X X X X X X X X X X X X X 

""'" 
r- 0\ "'1' r- 0\ 

""'" 
r- 0\ "'1' r- 0\ "'1' r- 0'1 "'1' r- 0\ 

0 M r- 0 M r- 0 M r- 0 M r- 0 M r- 0 M r-
"'1' - N 

""'" 
....... N "'1' ....... N 

""'" - N 

""'" - N 
""'" - N 

N N - N N - N N - N N - N N - N N ....... 
....... ....... - - ....... - ....... ....... - - - - - - - - - ....... 
II II II II II II II II II II II II II II II II II II 

* * * * * * * * * . * * * . * * * * ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... 
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co= 0.93 

Mesh Size= 31x31 Mesh Size = 20x20 

Shallow Quench Deep Quench Shallow Quench Deep Quench 
0.6795 to 0.6445 0.6795 to 0.525 0.6795 to 0.6445 0.6795 to 0.525 

Diffusion 

1000 5000 8000 1000 5000 8000 1000 5000 8000 1000 5000 8000 

,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., ,.., 
I I I I I I I I I I I I 

0 0 0 0 0 0 0 0 0 0 0 0 ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... 
X X X X X X X X X X X X 

-.:t r-- 0\ -.:t r-- 0\ -.:t r-- 0\ -.:t r-- 0\ 
0 M r-- 0 M r-- 0 M r-- 0 M r--
-.:t ....... N -.:t ....... N -.:t ....... N -.:t ....... N 
N N ....... N N ....... N N ....... N N ....... 
....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... ....... 
II II II II II II II II II II II II 

* * * * * * * * * * * * ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... 
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B 
Numerical parameter values 

Parameter Value Reference 

NI This study 

Nz 10 This study 

If/ 45 

M(m5 J-1s - 1 x I0-23 ) 45 

e (K) 300 45 

X 1.1667 This study 

L -6 (m x 10 ) 5 This study 
3 -1 -27 

U (m segment x 10 ) 45 

k
8 

(JK-I x 10-23 ) 1.3806504 Universal Constant 

K (Jm 
-1 x10-7 ) 45 

D 2-1 (m s X 10-IO) 1.21 This study 

3 t (s x 10 ) 1-10 This study 
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