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Abstract 

IC Testing Using Thermal Image Based on Intelligent Classification 

Methods 

Furat Al-Obaidy 

Master of Applied Science, Electrical and Computer Engineering 

Ryerson University, Toronto, 2016 

 

The goal of this thesis is to propose an algorithm which would can locate the defect IC on 

the PCB during their manufacturing phase based on a thermal image. A 3-dimensional PCB 

finite-element model is developed to estimate the temperature profile of stacked ICs. Image 

processing by noise removing and region of interest segmentation are applied. Two sets of 

feature extraction are presented; first-order histogram features and Gray Level Co-occurrence 

Matrix (GLCM) features. The Principle Component Analysis (PCA) method is applied to 

decrease the feature's extractions into smallest uncorrelated input. Three main intelligent 

techniques; Multilayer Perceptron (MLP), Support Vector Machine (SVM), and Adaptive Neuro-

Fuzzy Inference System (ANFIS) are used to classify the thermal conditions of ICs into normal 

and faulty status. 

On validation, the proposed approach applies to do thermal testing on Arduino UNO. The 

experimental evaluation is performed to detect the fault condition on the real time operating 

PCB.  
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Chapter 1: Introduction 

1.1.  Introduction  

Technology scaling has enabled greater integration because of reduced transistor 

dimensions. The significant increase in complexity of Integrated Circuits (ICs), as the core of 

modern digital circuits, has substantially improved the semiconductor integration level 

production by generation. With technology scaling, the very large scale integrated (VLSI) 

circuits density has grown exponentially. This leads to increase the manufacturing defects in 

circuits. 

This rapid technology scaling has resulted several reliability problems such as instance 

manufacturing defects, power dissipation limits and parametric variations. These threats can 

effect correct program execution which is the most significant aspect of any computer system. 

Therefore, testing of a digital circuit becomes imperative, particularly, in VLSI technologies [1]. 

 In this context, testing techniques for digital circuits have to be improved and augmented 

to achieve quality levels as circuit density and area continue to grow. Traditional testing methods 

of digital circuits includes electronic test, visual inspection, signal analyzer and burn-in scheme. 

These methods are used for diagnosis and eliminate the defects and speed up weak component 

failures. However, problems with a short circuit, a faulty transistor, or a circuit that creates hot-

spot will stay invisible [2]. Therefore, the thermal testing methods are useful in the process of 

designing and testing of complex VLSI circuits. 

The thermal testing method is one of the Non-Destructive Testing (NDT) techniques for 

1 
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testing and showing hot spots on operating ICs, depending on the failure conditions such as 

shorts, over stressed or faulty components [2]. The primary benefits of NDT are to detect the 

flaws and defects of materials without changing or destroying their functionality and guarantee 

the safe operation of the system components. Infrared thermography method is a common 

thermal testing technique in NDT in which an external stimulus is used to heat the Unit Under 

Test (UUT) while an Infrared (IR) camera records the temperature. The shifting of the normal 

thermal dissipation pattern is a sign of fault occurrence. Infrared thermography testing technique 

is a consecutive approach involving thermal image enhancement, detection, main feature 

extraction, classification, decision making and determining whether the IC has a fault or not [2, 

3].  

1.2. Literature Review  

 A brief review about the Infrared thermography testing methods for PCB and electronic 

circuits is presented in the following sections: 

H. Moldovan, M. Marcu, and M. Vladutiu [2], this work presents a testing method 

using infrared thermal signatures to detect and locate a fault in PCB. The proposed method is 

used to classify the ICs into three main categories (e.g. functional fault free, non-functional, 

faulty and less reliable). In this method, a stimuli vector applies to the PCB controllable inputs, 

and then a certain thermal response is observed for each IC on the PCB. The classification 

system uses an artificial neural network to classify the samples extracted from the IR image. The 

main drawback of this approach is the time and cost of solution achievement to get the thermal 

signature for every test vector applied to the primary inputs of the PCB.  
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J. Varghese, T. Singh, and S. Mohan [4], this work presents a method for thermal 

analysis of the PCB using MATLAB. Depending on loading condition of the PCB, two 

parameters are used for analysis the thermal image, the highest temperature and area of the 

highest temperature. Image segmentation algorithms are used based on short changes in the 

intensity. The histogram threshold approach is used for this study. The program compares each 

histogram and finds out the image with a maximum number of pixels of white or the worst-case 

image. But, this study is not recommended for the complex PCBs because the choice of selecting 

a region of interest should be improved by having been clustering based on segmentation 

methods. 

 C. Wagh, and V. Baru [5], presents detection of the faulty region on PCB by thermal 

image processing. In this research, the samples for thermal images of fault and fault free PCBs 

are experimentally obtained. The statistical analysis tool such as a Principal Component 

Thermography (PCT) technique is used to process the IR image sequences and increase the 

contrast of the processed data. Here, to reduce the amount of computations, the SVD technique 

based on the PCT is used. The euclidian distance is used for fault diagnosis and identification by 

comparing the features. The proposed method is conditional due to the excessive work of 

associate calculations. 

 J. Jianliang, and Y. Jiang [6], presents a fault diagnosis for component's location on 

the PCB. The authors worked on a template matching method to locate one specific circuit 

component. The main process includes thermal source identification, feature extraction, and 

thermal pattern recognition. Standard thermal images for PCBs are captured, and databases of 

the coordinate and characteristic values of the circuit components are built. Then a thermal 

image of the circuit under the test is matched with the feature template's images of every 
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component pre-stored in the databases. The results show that thermal image drift can be reduced, 

but with an increase of accuracy, the time takes a higher computational complexity and a longer 

time.  

S. Huang, C., and K. Cheng [7], in this study, present the analysis of PCBs for fault 

diagnosis by vector quantization. The feeding data to Hopfield neural network is used based on 

the code word. The code word is generated from the IR image. However, the main drawback of 

this study is that the mean values of the code words are nonlinearly distributed through the all 

codebooks, especially for small mean values. 

Some other approaches have done on the temperature analysis of PCBs with different 

techniques of thermal imaging. Thermal analysis of PCBs has been done in [8]; in this paper, 

Finite -Element Model (FEM) via Galerkin approach applies to analyze the temperature behavior 

of PCBs for different width of copper and different amount of current. In addition, [9], describes 

another approach for analysis of thermal reliability of components on the PCBs, presented by 

ANSYS software to improve the reliability of the system. In [10], a qualitative based 

measurement of thermal anomalies has been done by detecting the feature point and region of 

interest with using the stable region algorithm and matching with euclidian distance. 

1.3. Thesis Objectives  

An intelligent testing technique should be able to detect ICs fault, extract features from 

the IR images, estimate the defective conditions, and do correct classification of the faults. For 

this purpose, the prime aim of this thesis is to detect the defective ICs on the PCBs by thermal 

image processing. To achieve this goal, the rigid testing method at each processing step is 

required to improve the efficiency of fault detection during the life time of an IC.  
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1.4. Thesis Layout 

Chapter 2  

 In Chapter 2, we describe a theoretical background of fault diagnosis, explain defects in 

digital circuits and describe the fault detection and simulation. Furthermore, the testing technique 

is reviewed in this chapter. Destructive and non-destructive testing methods will be explained, 

thoroughly, in this chapter. 

Chapter 3  

 This chapter will cover the principle of infrared thermography technology and the 

fundamental of the infrared temperature measurements. Moreover, the classification of 

thermography technique, its advantages and disadvantages will be presented in this chapter. 

Chapter 4  

 Chapters 4 will introduce the intelligent classification methods. A detailed review of the 

different classification techniques applied for detection and classification of occurred faults is 

explained in this chapter. Also, we demonstrate the related proposed architectures and the 

corresponding learning algorithms in this chapter.  

Chapter 5 

 This chapter will cover the main contributions of this work. The proposed PCBs 

modeling steps will be explained in this chapter. This chapter also demonstrate our approach for 
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IR image processing and classification methods. The simulation results of our work are discussed 

in this context. 

Chapter 6  

 This chapter will focus on the applied and implemented of the proposed method in the 

earlier chapters. The procedure of performing testing method, experimentally, will discuss in this 

chapter. Image capturing, processing, and feature extraction from the UUT of Arduino are 

illustrated. Experimental results are presented at the end. 

Chapter 7  

 This chapter will present the conclusion, summary of the contributions of the thesis, and 

future works. Finally, the reference section will cover all the sources used in this endeavor. 
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Chapter 2: Review of the Fault and Testing 

Techniques for Integrated Circuits 

 
2.1. Introduction  

This chapter introduces the preliminaries helpful for the rest of this thesis. The fault, 

defect, and failure relationship are discussed in section 2.2. Defect types in VLSI circuits are 

described in section 2.3. The necessaries of fault detection and simulation process are briefly 

introduced in section 2.4. The PCB testing methods, including destructive and non-destructive 

test methods and their types, are discussed in section 2.5.  

2.2. Fault, Defect, and Failure Relationship 

 The defect is defined as the difference between the aimed design and the implemented 

hardware. If any component fails to do its duties, its output will be drastically changed. In this 

case, a component is said to have a fault. Fault is a representation of a physical defect reflecting a 

physical condition that causes a circuit to fail to do in a required way. A failure is defined as the 

inability of the component to perform its design role. A failure in a system is due to the incorrect 

design and specifications, defects during the manufacturing process, or due to the aging and 

environmental causes [11]. 

2.3. VLSI Defect Types 

In the past, the main sources of defects in VLSI circuits were opened, shorts and bridges 

circuits. This is expected to stay in complex circuits where the increasing number of PCB layers 

leads to a risk of open vias and metal bridges. Nowadays, in silicon technologies, shorts and 



8 
 

open due to the particles and spots, opens in vias and interconnection lines, silicidation problems, 

etc. are commonly seen. In addition, in this context, new technologies introduce new types of 

defects which we explain about them. These types of faults occurring in VLSI circuits can be 

arranged as follow: 

1. Resistive Bridge Defects: these defects happen when two or more distinct nodes of the 

circuit get connected due to a fault. Resistive bridge defects are one of the typical 

commonly of manufacturing defects. Figure 2.1.a, shows a bridge defect between two 

parallel interconnection lines [12].  

2. Resistive opens defects: defined as an imperfect resistor connected between two circuit 

nodes. A stuck-open defect is a special case of a resistive open in which the resistance 

value is large. These include open contacts, metallization open and open in diffusion 

[13, 14]. 

3. Interconnect malfunctions: a full open in an interconnection happens when the 

conductive material is fully broken. The main causes for the interconnecting open 

defects during the manufacturing process can be due to the several factors, such as 

chemical polishing process, metal filling, spots during the lithography, and lens 

imperfections. This defect is an interconnected line, shown in figure 2.1.b [12]. 

4. Delay defect:  these faults cause the combinational delay of a circuit to exceed the clock 

period. Delay fault includes gate-delay fault, line-delay fault, and path-delay fault.  

5. Memory defects:  faults happened in memory sections are normally pattern sensitive, 

cell coupling, and single stuck-at faults in the address decoder logics.  
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6. Parametric defects: They refer to the difference between the actual and expected power 

or performance criteria for the component. For example, IC may function at a certain 

voltage, but not over the designed range.  

7. Temperature-dependent defects: They occur when a connection between two circuit 

nodes has a conductance, high or low enough to be connected at the normal 

temperatures. This defect is environmentally sensitive, and appears only under certain 

environmental conditions. However, at high or low temperatures, the conductance 

decreases so much that the connection is disconnected [15]. 

8. Early-life Failures:   Some individual ICs will fail early. These failures can be seen as 

manufacturing faults that are not manifesting as a defect just after the manufacturing. 

Defects and mistakes always cause early-life failures: material defects, design mistakes, 

errors in assembly, etc. This type cannot be detected by the manufacturing test that is 

performed at once after the fabrication process [15]. 

Track defect (Full open line) 

Full  Open 

(a) 

Full  

Open 

(b) 

Full  

Open 

Figure 2.1:  a. Resistive Bridge Defect, b. Interconnect Defect. 

Full  Open 

Track 1 

Track 2 

Extra material creating a 

bridge(short) 

Track 
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2.4. Fault Detection and Simulation 

 Detection and locating of faults in a digital circuit or PCB, is known as the fault 

diagnosis. With VLSI technology scaling, fault diagnoses techniques are important to replace or 

discard the faulty component in the board. In addition, fault simulation is the process of 

simulating a circuit with a set of test patterns and a set of faults. The response of the circuit 

compares with the fault-free circuit. If the response does not match, the set of test patterns 

detects the fault [16]. 

2.5. Digital PCB Testing Methods  

The aim of testing methods is the effective screening of manufactured circuits to detect 

the faults. Because of this work deals with thermography-related VLSI test methods, we focus on 

manufacturing test of PCBs that are produced by VLSI techniques [15]. Based on the variety of 

models on different levels of abstraction, several destructive and non-destructive test methods 

have been developed to perform the efficient and highly reliable testing procedures that detect 

the internal features or surface of the PCB components [17, 18]. 

2.5.1. Destructive Testing Methods 

There are many conventional destructive testing techniques proposed so far that can 

check the VLSI circuits with some techniques such as logic, functional, delay and/or current 

testing such as Level Sensitive Scan Design (LSSD), scan path design, scan logic, random access 

scan, Built –In –Self Test (BIST) technique, the ad-hoc technique, partitioning technique, adding 

extra pin's techniques, and signature analysis technique. However, with developing the PCB 
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production technologies; these destructive testing methods are restricted obviously. At present, 

increasingly PCBs have a greater density and more electrical nodes. This PCBs need to avoid 

arranging many test points which make the performance testing method just test part of electrical 

nodes. The electrical performance testing method needs contact PCBs and probably damaged 

PCBs. This method needs a fixture for each PCBs, therefore the cost is high. It will be necessary 

to introduce new and efficient testing techniques to beat these difficulties [17, 19]. 

2.5.2.  Non-destructive Testing Methods  

With Non-Destructive Testing (NDT) methods, we can detect, locate, measure, and test 

surface or internal layers of the components causing no damage or change the integrity of its 

properties. Thus, non-destructive testing can be done efficiently for the manufactured items. 

Today, modern nondestructive tests are used in production fields to ensure product 

functionality and reliability. Several types of the NDT procedures are being used in the industry 

such; Acoustic Emission Testing (AET), Thermal or Infrared (IR) Testing, Ultrasonic Testing 

(UT), and Radiographic Testing (RT). Each of these techniques has its own advantages and 

disadvantages that mainly relate to the testing system cost, speed, accuracy, and safety. 

Following sections present the most often used NDT methods such as UT, RT, AE, and IR [20]. 

1. Ultrasonic Testing method: Ultra-high frequency wave is sent into the component to 

detect an internal structure of an element under the test. The main advantage of the 

ultrasonic testing technique is that it can seep into objects of high thicknesses and, 

therefore, the flaws can be distinguishable. The main disadvantage of it is that it 
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requires the materials which should be homogenous with uniform surface roughness. 

It requires a medium to transmit the waves from the transducer into the bulk, 

additionally, and ultrasound is a point inspection technique that can be time-

consuming for large areas. 

 2. Radiography Testing: In radiography, the sample shadow is generated using 

penetrating radiation rays, such as gamma or x-ray. Images are recorded using x-rays 

on the film called as radiograms. The recorded radiograms have different contrast 

levels depending on the flaws, thickness, densities, and the nature of its chemical 

composition. Radiograms require access from both sides of the sample being tested 

because it operates based on a transmission mode. 

3. Acoustic Emission Testing; Acoustic emission is the phenomenon of sound 

generation in materials when they are under stress. Most materials designed to 

withstand high-stress levels emit acoustic energy when stressed. Acoustic emission is 

used to non-intrusively monitor structural integrity and characterize the behavior of 

materials when they undergo deformation, fracture, or both. Unlike ultrasonic or 

radiography techniques, acoustic emission does not require external energy for 

inspection.  Acoustic emission techniques have been used to monitor components 

and systems during processing, detecting and locating leaks, and testing pressurized 

vessels.  One of the main problems with acoustic emission is that it produces large 

amounts of data that needs to be stored and retrieved for analysis. 
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4.  Infrared Thermography Testing; Thermal testing, or infrared thermography testing, 

is used to measure the surface temperatures based on the infrared radiation which is 

emitted from the surface of an object as heat. The infrared radiation can be detected 

using thermal devices such as the infrared camera. The thermal image captured can 

be analyzed to retrieve information about the component subsurface thermal body, 

which is then used to understand its internal configuration. Such information helps in 

determining the presence or nature of defects in the body. In the recent years with the 

advancements in the infrared cameras and data processing codes, thermal imaging is 

a standalone technique for testing of several applications [20]. 

In the applications of VLSI testing techniques, the infrared thermography testing method 

has been occupied an important position in the predictive and preventive PCB failure. It has 

advantages of non-contact, less susceptible to electromagnetic interference, safety, and 

reliability. This technology can be diagnostic target instant visualization and verify thermal 

profile.  In addition, the infrared thermography can test PCBs through its real running [21, 22].  

2.6. Summary 

The fundamental of faults, defects, and failure relationship was reviewed in this chapter. 

The main kinds of faults occurring in VLSI chips were described. The benefit of working with 

the simulation process for fault detection in the VLSI circuits was defined. The difference 

between destructive and non-destructive testing methods for PCB was presented. Importance of 

using infrared thermography for VLSI circuit testing was illustrated. In brief, infrared 

thermography has various advantages like wide temperature range, usability with smaller areas, 
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easy for understanding over other contactless methods. With progress in algorithms, infrared 

thermography technique can be used for a wide variety of application right from defect detection 

and analyzing of multi-layered PCBs to circuit design optimization.  

 

 



15 
 

Chapter 3: Fundamentals of Thermal Testing 

3.1. Introduction  

Temperature is a physical parameter that has been used as a parametric test observable for 

ICs in different scenarios, while infrared thermography is a process of temperature measurement 

that detects the invisible infrared radiation and converts the energy from visible light into an 

electrical signal. The thermal imaging technique is a fully non-contact technique. Since images 

of components are difficult to physically access, thermal technique can scan them. Thermal 

testing methods can be defined as temperature measuring for the detection of structural defects in 

an IC [17].  

This chapter will introduce how an infrared image can be generated and how it should be 

interpreted. The knowledge of how to interpret an infrared image will be important for the 

understanding of the rest of this thesis. Various fundamentals to clear the thermography idea will 

be discussed in this chapter. 

3.2. Infrared Thermography Principle 

Infrared thermography is defined as an equipment which detects infrared energy emitted 

from an object, converts it to temperature, and displays the image of the temperature distribution. 

This equipment comprises the IR camera and the thermography processing unit. The camera 

includes the IR optics, IR sensor, unit for conversion of electrical into video signals, display, and 

memory card. Thermography processing unit is processor unit or a Personal Computer (PC) 

using special software, and they process data from the camera memory card. A main block 

diagram of measurement by infrared thermography equipment is shown in figure 3.1 [23]. For         
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discussion about the main characteristics of infrared thermography equipment, we can say: it can 

be captured as a temperature distribution on a surface, and it can be measured from a distance 

without contacting an object. Besides that, a temperature can be measured in a real time.  
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Figure 3.1:  Infrared Thermography equipment. 
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3.3. Principles of the Infrared Temperature Measurement 

Infrared radiation is a part of the electro-magnetic spectrum, and it is radiated from the 

surface of the target object.  The total power of infrared radiation (Itot) consists of three main 

parts: the emission from the main object (Iobj), the emission from the surroundings (Erefl) and the 

emission from the atmosphere (Iatm). It can be expressed as the following equation. In addition, 

the process is shown in Figure 3.2.  

                        𝐼𝑡𝑜𝑡 = 𝐼𝑜𝑏𝑗 + 𝐼𝑟𝑒𝑓𝑙   + 𝐼𝑎𝑡𝑚                                                          (3.1) 

 

  

 

 

 

 

 

 

The equation (3.1) can be rewritten at terms of three collected radiation power terms 

depending on the Stefan–Boltzmann law for a gray-body radiator as follows [24,25]: 

 The emission of the target object (Iobj): It can be expressed as an equation (3.2). 

Where (ɛobj) is the emittance of the object, (τatm) is the transmittance of the 

atmosphere, (α) is the Boltzmann constant, and (Tobj) is the temperature of a gray 

body. 

𝐼𝑜𝑏𝑗 = ɛ𝑜𝑏𝑗 ∙ 𝜏𝑎𝑡𝑚. 𝛼 ∙ (𝑇𝑜𝑏𝑗)4                                               (3.2) 

Figure 3.2:  Radiation received by the infrared camera [25]. 

Trefl 

 

ɛ𝑜𝑏𝑗 ∙ 𝜏𝑎𝑡𝑚. 𝛼 ∙ (𝑇𝑜𝑏𝑗)4 

Object 

 

Atmosphere 

 

IR Camera 

 
ɛ𝑜𝑏𝑗 ∙ 𝛼 ∙ (𝑇𝑜𝑏𝑗)4 

(1 − ɛ𝑜𝑏𝑗). 𝛼 ∙ (𝑇𝑟𝑒𝑓𝑙)4 (1 − ɛ𝑜𝑏𝑗) ∙ 𝜏𝑎𝑡𝑚. 𝛼 ∙ (𝑇𝑟𝑒𝑓𝑙)4 

(1 − 𝜏𝑎𝑡𝑚) ∙ 𝛼 ∙ (𝑇𝑎𝑡𝑚)4 

https://en.wikipedia.org/wiki/Boltzmann_constant
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 The reflection emission from surrounding (Irefl): It can be written by equation 

(3.3). Where the term (1- ɛ𝑜𝑏𝑗) is the reflection of the object and (Trefl) is the 

ambient temperature. 

       𝐼𝑟𝑒𝑓𝑙 = (1 − ɛ𝑜𝑏𝑗) ∙ 𝜏𝑎𝑡𝑚. 𝛼 ∙ (𝑇𝑟𝑒𝑓𝑙)
4                                                   (3.3) 

 The emission of the atmosphere (Iatm): This term can be calculated using equation 

(3.4). Where (1 − τatm) is the emittance of the atmosphere, and (Tatm) is the 

temperature of the atmosphere. 

           𝐼𝑎𝑡𝑚 = (1 − 𝜏𝑎𝑡𝑚) ∙ 𝛼 ∙ (𝑇𝑎𝑡𝑚)4                                                        (3.4) 

 Substituting Equations (3.2)– (3.4) in the main equation (3.1) to get the equation 

(3.5). The temperature variations of the target can be evaluated from the equation 

(3.6) [24, 25]. 

𝐼𝑡𝑜𝑡 = ɛ𝑜𝑏𝑗 ∙ 𝜏𝑎𝑡𝑚 ∙∝∙ (𝑇𝑜𝑏𝑗)4 + (1 − ɛ𝑜𝑏𝑗) ∙ 𝜏𝑎𝑡𝑚 ∙∝∙ (𝑇𝑟𝑒𝑓𝑙)4  + (1 − 𝜏𝑎𝑡𝑚) ∙∝            (3.5) 

𝑇𝑜𝑏𝑗 = √
𝐼𝑡𝑜𝑡−(1−ɛ𝑜𝑏𝑗)∙𝜏𝑎𝑡𝑚∙𝛼∙(𝑇𝑟𝑒𝑓𝑙)4 +(1−𝜏𝑎𝑡𝑚)∙𝛼∙(𝑇𝑎𝑡𝑚)4

ɛ𝑜𝑏𝑗∙𝜏𝑎𝑡𝑚.𝛼

4
                                 (3.6) 

However, to calculate the correct temperature of the observed target from the IR radiation 

received by the camera, the properties of the target surface, the temperature of the surrounding 

objects, camera to the object distance, temperature and the humidity of air must be known. All 

these limits must be set as input data to the camera software [25]. 
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3.4.  Classification of Thermography Techniques  

According to the measurement methods and data processing, thermal imaging can be 

classified into two main categories depending on the sample excitation: 

3.4.1. Passive Thermography: the un-excited infrared radiation (natural emission) that is used to 

test the sample and detect any defect in its structure. In passive thermography, the 

temperature difference between a defect and its surroundings is used to distinguish it. 

3.4.2. Active Thermography:  in active thermography an external source is used to excite the test 

sample thus creating temperature variation between the defective and non-defective areas 

within the test sample. This is accomplished in various manners as current flow and 

potential differences in the suspect board, then powered up and an infrared video system is 

used to generate an image representing the evolution of infrared radiation from the 

energized components on the board [25].  

Active thermography is mostly used in NDT applications, where an exterior, test signal 

applies to the sample under test to detect any thermal contrast between areas under interest [24]. 

3.5.  Thermography advantages and Limitations 

Every experimental method has the advantages and limitations. For thermography, we 

could say that the pros are [18]: 

 Contactless technique: no physical contact, no interaction with a sample under test. 

 Can inspect large parts in one test. 

 Ability to test different materials and composites. 

 Ability to diagnosis components of less accessibility. 
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 Can be used in real time applications such as during production cycles. 

 Ease of numerical thermal modeling and easy to set up, use and keep on a production 

line. 

The limitations of thermography are arranged: 

 Depending on the heating source, duration of heating and location of samples.  

 The capture duration must be studied depending on the material being tested.  

 The performance of the infrared camera used has a major impact on the capture 

quality. 

 Surroundings of the test sample can effect on the image capture. 

 Need for a sample to heat uniformly. 

3.6. Summary 

In this chapter, definition and principles of the infrared temperature measurement have 

been explained in details. Main steps of the temperature measuring by the IR camera with their 

mathematical relations have been provided, and then the classification of thermography 

techniques has been discussed. Differences between passive thermography and active 

thermography have been introduced. Finally, thermography advantages and limitations have 

been introduced. 
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Chapter 4: Introduction to Intelligent 

Classification Models 

4.1. Introduction  

 Classification process is used to train a classifier from a set of labeled data called training 

data set and to classify test set into one of the classes [26]. In this chapter, we review three main 

models based on intelligent classification techniques; MLP, SVM, and ANFIS. We describe their 

structures as well as the corresponding learning algorithms. This chapter will provide the readers 

with essential background information on intelligent classification techniques. We will apply the 

above three models in the classifying and detection the faults for the ICs, which will be discussed 

in the next chapters. 

4.2. Artificial Neural Networks  

We consider a fault classification process using Artificial Neural Network (ANN). In this 

case, ANN has a remarkable ability to learn and get useful results from complicated and 

confused data that can be used to extract features. This characteristic of ANN gives an advantage 

over the conventional classification methods [27]. Neural networks have been used in connection 

with many different applications. In classification, typically a network will be asked to classify 

an input pattern as belonging to one of several different possible classes.  

There are many different types of ANNs, each with its own advantages and limitations 

depending on the application. Selection and implementation of the network topology should be 

more desirable with selecting the smallest number of neuron nodes with an appropriate learning 
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algorithm. The purpose of learning algorithm is to minimize NNs structure by clipping 

unnecessary neurons. The main advantages of that can be reduced the cost of runtime and 

physical implementation. Table 4.1 briefs the main ANN structures used for typical applications 

such as classification purposes, image processing, pattern recognition, associative memory, 

optimization, function approximation, modeling, and control tasks [28]. 

 

Application ANN Structure 

Classification MLP, Kohonen, RBF, ART, PNN 

Pattern Recognition MLP, Hopfield, Kohonen, PNN 

Associative Memory Hopfield, recurrent MLP, Kohonen 

Optimization Hopfield, ART 

Function Approximation MLFFN, CMAC, RBF 

Modeling and Control MLP, recurrent MLP, CMAC, FLN, FPN 

Image Processing CNN, Hopfield 

 

In this work, the network of choice for classification is a MLP with a back propagation 

learning algorithm for supervised classification (which includes a set of inputs and correct 

outputs are used to train the NN). A MLP is a feedforward artificial neural network model  are 

characterized by the fact that the information starting from the input is only allowed to pass 

forward in the network to the output through a specified hidden layer, no feedback is allowed. 

The MLPs are popular due to their computational simplicity, flexibility, finite parameterization, 

stability, and smaller size for a problem as compared to other architectures [29]. 

Table 4.1: Arrangement of ANNs based on their applications. 

 

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
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4.2.1. The Architecture of the MLP 

The architecture of this class of network, besides having the input and the output layers, 

also has one or more intermediary layer or hidden layer [30]. The typical construction of MLP 

illustrated in figure 4.1. The general design considerations for a neural network includes 

determining the number of input and output nodes to be used, the number of hidden layers in the 

network and the number of hidden nodes used in each hidden layer. Typically, the number of 

state variables represents the number of input neurons, while the general classes of the state of 

the system decide the number of output neurons. To determine the number of hidden layer nodes, 

varying numbers of hidden layer are applied for obtaining satisfied results, initially; beginning 

with a small number of hidden nodes and gradually increasing this number with learning 

complexity occurs [28]. 

 

 

 

 

 

 

 

Figure 4.1:  Architecture of a Multi-Layer Feed-Forward Network. 
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4.2.2.  The Training of the MLP 

The objective of training an MLP is to produce the desired output (i.e. the target output) 

when a set of input is applied to the MLP. The proceeding of a neural network starts from the 

system activated by the input layer where the input data are weighted, and then neurons in the 

hidden layer perform a user chosen computation method and continue to activate all neurons to 

the end of this layer. Finally, the output layer determines which characteristics should be read 

[31, 32]. 

The MLPs are learned using various algorithms like Back Propagation (BP). Because of 

the BP network algorithm is simple, a small amount of calculation and parallel advantages. It's 

currently one of the most used and most mature neural network training algorithms.  According 

to statistics, results, between 80%-90%, researchers are using the BP neural network model [22, 

32]. But the limitations of this algorithm are that the traditional BP neural network model in the 

low learning rate, generalization ability is weak, easy to fall into local minima and the algorithm 

does not converge.  The improved algorithms of traditional back propagation neural network 

conclude gradient descent Bp algorithms, Quasi-Newton Bp algorithms, and conjugate gradient 

Bp algorithms [32, 33]. After supervised learning of neurons is over, the trained networks are 

stored to be used in the algorithm. Whenever an image is taken as input to the algorithm, then 

simulated by the trained network and from the results; a percentage can be given to which 

diagnosis should be taken from the data set [22, 31].  
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4.3.  Support Vector Machine  

SVM is a group of learning algorithms primarily used for classification tasks on 

complicated data such as image classifications. In SVM is a single neural network neuron but 

without cost function or kernel function. This method has a few advantages such as its precision, 

the possibility of easy implementation and the speed in the training phase and the classification 

process. That is the reason for its wide use and one of the popular classification algorithms [34]. 

Generally, an SVM finds the best separating (maximal margin) hyper-plane between the 

multiple classes of training samples in the feature space, which leads to maximal generalization. 

It uses statistical learning theory to search for the regularized hypothesis that fits the available 

data well without over-fitting [34, 35]. 

SVM uses a supervised learning approach, which means it learns to classify untrained 

data based on a set of labeled training data. The initial set of training data is typically identified 

by domain experts and is used to build a model that can be applied to any other data outside the 

training set [35]. Internally, SVM manipulates data set to represent them as points in a high-

dimensional space and then finds a hyper-plane (also called "the model") that optimally separates 

the two categories or more. As the example in figure 4.2.a, the data set is represented as points in 

three-dimensional space and the SVM algorithm finds the linear separator that divides the plot 

into two parts corresponding to two different classes. 

On the other hand, it is said that one separator is better than another if it generalizes 

better, i.e. shows better performance on dataset outside of the training set. It turns out that the 

generalization quality of the plane is related to the distance between the plane and the data points 

that lay on the boundary of the two data classes. These data points are called "support vectors", 
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and the SVM algorithm determines the plane that is as far from all support vectors as possible. In 

other words, SVM finds the separator with a maximum margin and is often called a "maximum 

margin classifier" as shown in figure 4.2.b [35]. 

 

 

 

 

 

 

 

 

 

 

 

4.4. Adaptive Neuron-Fuzzy Inference System  

Adaptive Neuron-Fuzzy Inference System (ANFIS) is based on fuzzy logic modeling and 

uses the artificial neural network as the learning algorithm. Therefore, ANFIS is combined    

neural networks and fuzzy logic into a hybrid system, so that both can overcome their individual 

drawbacks as well as a benefit from each other’s advantages [37]. The ANFIS has been proven 

Figure 4.2:  Schematic diagram of a SVM classification. 
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a. Principle of SVM in three- dimensions. 
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b. Both hyper planes separate correctly. The optimal separating hyper 

plane on the left- hand side has a larger margin.  
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as a classifier with high classification accuracy and fast turning speed for data clustering. ANFIS 

uses a hybrid algorithm that consists of a combination between BP and least-square estimation 

techniques. The techniques are implemented in an ANN as a learning algorithm that gives very 

fast convergence and more accurate in ANFIS target [36]. From the topology point of view as 

shown in figure 4.3, and the basic flow diagram of computations in ANFIS is illustrated in [38]. 

The ANFIS consists of five layers. The role of each layer is briefly presented as follows: 

 

 

 

 

 

 

 

 In layer 1 (Fuzzification stage): the fuzzification algorithm is used to calculate 

the magnitude of the membership degree using the member function curve. The 

curve is performed by using the following equations. 

                                              xi(x) =
1

1+(
x−ci

ai
)

2bi
                                                (4.1) 

                                             yi(y) =
1

1+(
y−ci

ai
)

2bi
                                                (4.2) 

Figure 4.3:  A basic ANFIS model with two inputs data and two member functions. 
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Where, xi (x) and yi(y) are fuzzied values for each input data (x,y), where as ai, bi 

and ci are member function parameters.  

 In layer 2 ("IF-THEN" stage): this stage receives the labeled data from the 

fuzzification stage and then evaluate the rules based on equations (4.3) to (4.6). 

                                       𝑒1 = 𝑋1(𝑥) × 𝑌1(𝑦)                                                    (4.3) 

                                      𝑒2 = 𝑋1(𝑥) × 𝑌2(𝑦)                                                     (4.4) 

                                     𝑒3 = 𝑋2(𝑥) × 𝑌1(𝑦)                                                      (4.5) 

                                     𝑒4  = 𝑋2(𝑥) × 𝑌2(𝑦)                                                      (4.6) 

Where:  e1, e2, e3 and e4 are real values for each ‘IF-Then' rule. 

 In layer 3 (Normalization stage): Next, the output signal from the stage of ‘IF-

THEN’ rule will be an input signal to the normalization stage. In this stage, every 

signal is divided by the total of gaining signal as the following equation.  

                                 𝑁𝑖 =
𝑒𝑖

𝑒𝑇
        𝑖 = 1,2,3,4                                                          (4.7) 

           Where:   eT = e1+e2+e3+e4. 

 In layer 4 (Defuzzification stage); in this stage, the set data receive from pervious 

stage is defuzzified to give a crisp number. The membership functions of the 

output signal as following equation.  

                     𝐺𝑖 = 𝑁𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)     i = 1,2,3,4                                     (4.8) 

     Where pi, qi, and ri: The Member function parameters. 
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 In layer 5 (Neuron addition stage); The last process in the ANFIS operation is 

called a neuron addition in which all defuzzification signals, Gi are added together 

as shown below: 

                    𝑂 = ∑ 𝐺𝑖         𝑖 = 1,2,3,4                                                              (4.9) 

Finally, the dataset is classified as training data and testing data in ANFIS’s learning 

process. The total error can be reduced by adjusting the variable membership function and epoch 

parameters. By selecting, an optimal epoch and several member functions, the performance will 

be improved accordingly [36]. 

4.5. Summary  

In this chapter, we reviewed three types of the classifier models for detection and the 

faulty element based on the IR image, which are; MLP, SVM, and ANFIS. These models are 

used to reduce the amount of training material needed to train a method by selecting the most 

informative features.  

In the first section: we presented the concept of MLP model architecture and explained 

how to the improved the BP algorithms and to determine the optimal training algorithm and the 

number of hidden layers for MLP.  

In the second section: the main concepts of SVM model have been briefly introduced. We 

explained the aim of using the SVM supervised method, by transforming the training data to 

multiple classes such that the new data set became more separable that of the original training 

data. 
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In Final section: we considered hybrid intelligent classification systems as an ANFIS. We 

reviewed an ANFIS model. This model is represented by a neural network with five layers: 

fuzzification, fuzzy rule, normalization, defuzzification, and neuron stage. In the ANFIS model, 

the combination between the least-squares estimator with the gradient descent method is used as 

a hybrid learning method. 
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Chapter 5: Proposed Method for Fault 

Detection and Classification of the PCBs 

5.1. Introduction 

In this chapter, we propose a method for fault detection and classification of the PCBs. 

Main steps of the proposed algorithm in this chapter includes: 

1. PCB’s finite-element model development: A 3-dimensional PCB finite-element 

model to estimate the temperature profile of the stacked ICs is developed in this 

chapter. Procedures like entire thermal simulation, including, geometry 

generation, applied boundary conditions, solving governing equations, meshing, 

and post-processing are performed using finite-element method. Then the thermal 

profile of the developed model is verified with a thermal profile of Atmel 

standard packages. 

2. Collecting image samples. 

3. Image Enhancement: Proposing an image processing technique for the captured 

samples includes denoising, segmentation ROI and using the histogram algorithm 

to extract the image features is used in this chapter.  

4. ROI feature extraction: this chapter presents two sets of feature extraction from 

ROI; first order histogram features and GLCM features.  
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5. Minimize number of features: PCA is applied in our work to minimize the 

feature's extractions into a minimum uncorrelated variation.  

6. Fault classification and detection: To train the software for classification; MLP, 

SVM, and ANFIS techniques are used to classify the thermal image of ICs into 

two classes; normal condition and fault condition.  

7. We use the capabilities of MATLAB to achieve the above steps.  

Figure 5.1 shows an overview of the method undertaken in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Main steps of the proposed algorithm.  
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5.2. Proposed PCB Modeling  

For the optimization of the infrared (IR) thermography, performance results are necessary 

to describe relevant thermo physical processes running on the object under study. In simple 

cases, it is possible to find an analytical solution of the problem, but in the real 3D complex 

objects, it is necessary to use the numerical solution of the Fourier’s differential equation. One of 

the suitable methods is based on finite element models, FEMs. FEM is a numerical computation 

technique commonly used in the engineering design process [39]. The basic concept of this 

method is to divide the area of solution into smaller parts called finite-elements, connected at 

nodal points (mesh generation) and solution processes. The solution processes are known 

boundary conditions along with characteristic differential equations which depend on the physics 

of each layer [39]. Building a detailed finite-element model of the board-level package is 

difficult due to the complicated structure involved, such as the layer structure, through-holes, and 

signal wires. Obtaining the optimal size of the finite element model is necessary to build an 

equivalent PCB model with equivalent material properties [40]. 

Because of our work relates to simulate the temperature distribution of the PCB and study 

how the layouts of chip packages affect the temperature environment, the details of copper wire 

and other electronic circuits of the system are ignored. Therefore, the simplified model can 

reduce the time computing as well. systematic, the simulation process is paved with the 

following essential sections.  
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5.2.1. Geometry Model Generation 

 The geometric model for the whole PCB with three main ICs is created. A PCB size is 

70×55 mm2 with 4 mm thickness. The geometry model and parameter sizes are shown in table 

5.1 and figure 5.2[41]. 

 

The first IC, IC1, is based on the simplified Plastic Dual Inline Package (PDIP) model. 

This is a rectangular shape package with two parallel rows of electrical connecting pins coming 

out of the two sides of the package. The basic geometric shape is imported from COMSOL 

library [42, 43].  

Other ICs packages; IC2 and IC3 simulate a simplified geometry for a Quad Flat No lead 

(QFN). These systems have the same layout but different dimensions. This package is a surface 

mounted device and attached directly on the surface of the PCB [41]. In addition, it is assumed 

that there are no tiny differences in the heat conduction along the leads and pins of the ICs with 

the main body of the package. The 3D PCB Geometry and layout configuration are shown in 

figures 5.2 and 5.3.  

Component 
 

Dimensions 

(△x×△y×△z) mm3 

 IC1 IC2 IC3 

Layout 1 PCB 70×55×4 - - - 

Layout 2 Air 70×55×1.7 - - - 

Layout 3 Die - 2×2×0.1 2×2×0.3 1×1×0.15 

Layout 4 Mold package - 10×3.427×1 6×6×1 2.4×2.4×1 

Layout 5 
Bond wires and 

lead frame 
- (2.358+1.949×16) * 3×3×0.2 1.5×1.5×0.1 

*
: (Bond wire +lead frame × No. of pins). 

Table 5.1: Geometry PCB Dimension. 

 . 
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5.2.2. Physical Materials and Thermal Parameters  

 The next analysis process of FEM is defining layer types and material properties in the 

PCB modeling, depending on the Atmel corporation data sheet [39,44,45]. Basically, the 3D 

PCB model comprises five layers: 

 First Physical Layer: Air convection layer applies to the top surface of the PCB.  

 Second physical layer: The die element acts the silicon IC layer. 

Figure 5.2: 3D layout for the PCB. 

  

Figure 5.3: Top and side views of the PCB. 

  

IC 3 

IC 2 

IC1 
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 Third physical layer: Bond wires and lead frame layer, with copper material layer.  

 Fourth physical layer: Mold covers contact's material, bounding wires and dies 

element.   

 Fifth physical layer: FR4 material (i.e. fiberglass in an epoxy resin) applies to make the 

PCB board. 

 

 

The basic method to move heat away from the source can be explained using the 

following heat transfer equation: 

                   𝑄 = ∇(−𝑘∇𝑇) = ℎ × (𝑇𝑎  − 𝑇𝑏)                                                       (5.1) 

where  

Q:  heat source (W/m2). 

Ta and Tb: temperatures of PCB surface and the ambient temperature (℃). 

 k: thermal conductivity (W/m. K). 

 h: heat transfer coefficient (W/m2.K), h = (
1

Rth×A
), where Rth; is thermal resistance(℃/𝑊), 

and A; is surface area of  the package (m2). 

 

 

 

Layer 

number 
Definition 

Thermal 

Conductivity 

(W/m.K) 

Thermal 

Capacity 

(kJ/kg×K) 

1 Air 0.03 1 

2 PCB (FR4) 0.3 1369 

3 Die (Silicon) 163 703 

4 
Bond wires and lead 

frame  
400 385 

5 Mold 0.163 900 

Table 5.2: Thermal properties for the PCB. 
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The main properties of the layer materials listed in table 5.2, while the boundary conditions 

are: 

1. The energy equilibrium through the upper side of the body is described by the equation 

(5.1).       

2. Heat energy is exchanged between PCB and surroundings only through the upper side 

of the PCB. 

3. The external air temperature is equal to Tb. 

4. Assume air is covered the bottom space of IC1 between mold and PCB surface. 

5. For the layers of ICs, heat flux is according to equation (5.1). The power dissipation of 

ICs groups is considered as a heat source with ambient temperature. 

5.2.3. Mesh Generation  

 Once the geometry is generated, it should be meshed into finite elements. To get a 

solution, FEM first discretizes the body being analyzed in a process meshing. This refers to 

dividing the known domain into many finite elements with points, or nodes, at each of its 

vertices. In each node, the physical equilibrium equation is defined and on the object’s boundary, 

the boundary conditions are defined. In this way, the physical problem described by the partial 

differential equation is broken down into a linear system of equations [39]. The complex 

geometries always need more elements to represent than simple ones, and so, take a longer time 

to solve. It means the minimum number of elements is desirable by which an acceptable 

accuracy is achievable [39,41,44]. The final 3D revision of the meshed geometry of the proposed 

PCB can be seen in figure 5.4. This model has approximately 129599 tetrahedral and 25177 

triangular elements. In addition, the meshing limits used in the PCB are listed in table 5.3. 
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5.2.4.  Simulation Results and Verification 

 The performance of the simulation model is evaluated and verified by comparing its 

thermal performance to thermal profile of Atmel standard packages. 

Number of elements 129599 

Number of boundary elements 25177 

Number of edge elements 1877 

Number of Tetrahedral elements 129599 

Number of triangular elements 25177 

Meshing volume 21940.0 mm3 

Figure 5.4:  Three dimension views of the meshed PCB geometry. 

a. Meshed PCB geometry  

with air layer. 

b. Meshed PCB geometry 

 without air layer. 

Table 5.3:  Mesh limits of detailed model. 
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Thermal performance of a package is measured by the ability to dissipate the power 

required by the ICs into its surroundings. The electric power drawn by the PCB generates heat on 

the surface of the IC. This heat is conducted through the die to the surface and transferred to the 

surrounding air by convection. Each heat transfer step has a corresponding thermal resistance 

coefficient to the heat flow. Commonly used coefficients are Rth(jA) (junction to ambient air). The 

thermal performance can be characterized by equation (5.1). Based on Atmel data sheet [46], the 

average thermal resistance for IC1 (PDIP), and IC2 (QFN) model are 55 and 23 ℃/W, 

respectively. With the same information for physical properties such as thermal conductivities 

and thermal capacities of the different layers of ICs as given in tables 5.1 and 5.2, the heat 

transfer coefficient of IC1 and IC2 can be got. Then, the power dissipation Pdissp curve versus 

temperature changes (Ta-Tb) provides thermal behavior for the developed model. Figure 5.5.a, 

shows the simulation results for power dissipation changed between 0.6W – 1.14W to get 

temperature range 34.055℃ – 43.264℃, respectively, for IC1 model (PDIP).  

Figure 5.5.b, shows power dissipation varied between 1W – 2.337W to get temperature 

range 29.734℃ – 43.325℃ for IC2 (QFN) model. For IC3 (QFN) model, assuming the power 

dissipations swept between 0.6W – 1.5W to obtain the temperatures range between 30.331℃ –

43.699℃ as illustrates in figure 5.5.c. Results for power dissipation versus temperature changes 

agreement with the thermal profile of Atmel packages that will present in experimental results. 

Consequently, simulation results from the thermal model provided good samples on the total 

temperature distribution that will use well in the classification approach. 
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a. Temperature variations vs. power dissipation for IC1 (PDIP) model. 

b. Temperature variations vs. power dissipation for IC2 (QFN) model. 

Figure 5.5:  Thermal profile for the developed model. 

c. Temperature variations vs. power dissipation for IC2 (QFN) model. 
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We have captured a series of about 656 thermal images, with a 260×420 image size under 

(.png) format, from the surface of the PCB. These samples at various thermal loading conditions 

depend on the thermal characteristics of ICs, as shown in figure 5.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f. IC3 with Normal State. e. IC3 with Fault State. 

d. IC2 with Normal State. c. IC2 with Fault State. 

b. IC1 with Normal State. a. IC1 with Fault State. 

Figure 5.6: The simulation results for temperature distribution on the PCB’s surface. 
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5.3. IR Image Enhancement  

The basic goal of image enhancement is to process the image so we can view and assess 

the visual information with greater clarity. Image enhancement, therefore, is rather subjective 

because it depends on the information the user is hoping to extract from the image. The removal 

of noise and the segmentation of images are main enhancement techniques [47]. 

5.3.1. Image Denoising 

Processing the acquisition noise should be included to improve the visualization of 

defects. Therefore, noise filtering would be an important pre-processing technique to improve the 

contrast and achieve better estimation of the size of the defects [48]. 

Thermal image has the characteristics of high noise and low contrast.  Noise sources 

include infrared camera system, electronic sensor, turbulence in the environments, etc.  Main 

types of noise include Gaussian noise, sources shot noise, salt and pepper noise, and thermal 

noise. These noises result in image degradation which directly affect the accuracy of image 

segmentation and feature extraction. Therefore, denoising process is aimed to find a non- 

degraded image from the degraded or noisy image [49,50].  

Two main types of noise, applied in this work to create different viewing of unclearly 

for the IR images, are: 

 Gaussian noise: This noise appears in IR images from imaging equipment such as 

sensors, electronic circuit's noise, or amplifiers noise because of poor lighting and 

temperature rising.   

 Salt and pepper noise: This noise called spike or impulse noise, because of this noise, 

dark and bright points or dots appear in the image. The heated faulty elements or dust 

pieces in the image equipment can cause this noise. 
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Test images are artificially corrupted by Gaussian noise plus salt and pepper noise with 

noise power density are 1%, and 0.1%, respectively, as described in [50]. To drop the confused 

noise, many algorithms have suggested based on linear and nonlinear filters and each algorithm 

has its advantages and limitations. We investigate on using seven common types such; the 

median filter, Wiener filter, Gaussian filter, the wavelet threshold method, simple digital filter 

and, block matching three-dimensional filter (BM3D) [51,52]. 

Simulation results show that the method based on above filters could work with noise 

and could preserve the details of the images as shown in Figure 5.7. Comparative performance of 

using the different filters is measured by two quantitative factors: signal-to-noise ratio (SNR) as 

in Equation (5.3) [53], and peak signal-to-noise ratio (PSNR) as Equation (5.2) [54]. These two 

factors use to decide which filter is suitable for using with the IR image as in table 5.4. In this 

comparison, the median filter is very effective for salt and pepper noise removing. Notably, 

experimental results presented, insists us to conclude that BM3D with median filters performed 

well results (as in figure 5.7.h).  BM3D is the best choice of removing the Gaussian noise [52]. 

The Gaussian noise has been largely removed, but at the expense of a slight degradation in image 

quality. 

                          𝑃𝑆𝑁𝑅𝑑𝐵 = 10 𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸
)                                                                    (5.2) 

where: 

MSE: is the mean square error between the original image and a distorted image. 

                    𝑆𝑁𝑅𝑑𝐵 = 10 𝑙𝑜𝑔10(
𝜇

𝜎
  )                                                                        (5.3)                                                   

where: µ: The mean image pixel intensity values and, σ: The standard deviation of the image 

pixel values. 
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     e. Using Wavelet threshold filter 

 (Soft type). 
 

f. Using Wavelet threshold filter 

 (Hard type). 
 

g. Using Wiener filter. h. Using BM3D with Median filter. 

b. Using Median filter. 
 

a. The noisy Image 

(Gaussian + salt and pepper). 

c. Using Gaussian filter. 
 

d. Using Simple Digital filter. 
 

Figure 5.7:  Comparison results for the image filtering methods. 
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5.3.2. Image Segmentation for ROI  

The aim of image segmentation is separating a digital image into independent partitions 

or regions that are more significant to recognize the objects in an image. Segmentation occupies 

a very important role in image processing because so often the vital first step which must be 

successfully taken before next tasks such as feature extraction, and classification [55,56]. 

Through this stage, a thermal image of PCB is converted into a grayscale image, which 

carries the intensity information of the image. In the grayscale image, the faulty region shows 

more brightness than the normally repeated region in the equipment. The segmentation methods 

can be divided into threshold segmentation methods, region segmentation methods, edge 

detection methods and clustering segmentation methods. The result of image segmentation 

method depends on many factors such as intensity, region continuity, computation complexity, 

noise resistance, and accuracy [56].    

One of the most widely used and convenient method is threshold segmentation 

technology [4]. This technology is based on a threshold value to turn a grayscale image into a 

Filter Type 
Parameter 

SNR( dB) PSNR(dB) 

Simple Digital filter 4.628 20.590 

Gaussian filter -0.392 15.569 

Wiener filter 4.628 20.590 

Wavelet threshold filter (hard type) 3.630 19.592 

Wavelet threshold filter (Soft type) 4.477 20.439 

Median filter 9.370 25.332 

BM3D filter 5.868 21.830 

BM3D+Median filter 12.982 28.944 

Table 5.4: Comparison of SNR and PSNR values of different existing filters. 
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binary image.  The key of this technology is to select the threshold value. The reason for using 

this technology on ICs testing always has temperatures higher than the environment. By using a 

threshold method, the image of the main object can be separated from its background. However, 

threshold segmentation technology is useful and a common method for detecting defects in the 

thermal images [58]. 

In the threshold process; the heating abnormal in the PCB element's image can be 

detected by setting a certain threshold filtering [4], if the original image is 𝐺(𝑥, 𝑦), the threshold 

image 𝑍(𝑎, 𝑏) is defined as follows equation. 

                    𝑍(𝑎, 𝑏) = {
1,    𝐺(𝑥, 𝑦) > 𝑇

0,    𝐺(𝑥, 𝑦) < 𝑇
                                                         (5.4) 

where: 𝑇 is the threshold temperature. 

Various algorithms are widely interested in the threshold thermal image; our work 

considers four main thresholding methods; iterative thresholding method, Fuzzy-C mean method, 

Sauvola method, and Otsu thresholding method. 

To evaluate the practical performance of the proposed algorithm, the analysis of above 

segmentation methods and then compare the results of each algorithm is done. The result of the 

simulation showed that it greatly enhanced. Otsu thresholding works well with acceptable results 

for automated thresholding of the gray image, as shown in figure 5.8. In addition, Otsu 

thresholding method is used for the noisy image. The principle of Otsu method requires using the 

function gray-thresh which chooses the optimal threshold to minimize the interclass variance of 

the black and white pixels as explain in [57,59,60]. 

The cropping approach is used at this stage to find the ROI. This process leads to less 

complexity in the image processing and time because the selected region will minimize. The IC 
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noisy IC IC

Global Thresholding - Iterative Method Global Thresholding - Otsu's Method

sauvola Image
 Fuzzy-C mean method

under test region is cropped by using the enclosing rectangle shape to enclose the segmented 

pattern in a compact window, and convert the selected area into another image. The width of 

ROI is adjusted accordingly such that all the thermal effect on the chip is preserved. Thus 

making the segmentation process easier, classification accuracy is higher and production cost, in 

long run, is reduced [61]. Figure 5.9 illustrates an example, with the using a cropping approach 

in the original image and the result of the cropped region of interest. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

        f. Fuzzy-C means method. 
 

e. Sauvola method. 
 

Figure 5.8:  Comparison of segmentation results for different methods. 
 

a. Noisy Image for IC1 

(Salt and pepper + Gaussian) noise. 
b. Denosing Image for IC1. 

c. Iterative method. 
 

d. Otsu's method. 
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5.4. Feature Extraction 

Feature extraction is done after the image enhancement stage. The main goal of feature 

extraction is to get the most relevant information from the original data (i.e. image) and represent 

that information in a lower dimensional space. For large size of data set, the data represent into a 

minimum form set of features or feature set. This process is called feature extraction. A good 

feature set has discriminating information, which can distinguish one object from other objects. 

It must be as robust as possible to avoid generating different feature codes for the objects in the 

same class [62,63]. 

Many feature extraction methods for image processing have been developed. Some of 

the most used statistical properties of the gray level of the pixels comprise an image. Normally, 

in images, there is a periodic occurrence of certain gray levels. The spatial distribution of gray 

levels is calculated. Some of the statistical representation is the histogram statistical analyses 

Figure 5.9:  Image cropping approach. 
 

b. Cropped image (size=101*101). 

a. Original image (size=260×420). 
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[62]. In our approach, image histogram features are extracted by converting an image to gray 

color space and applying the histogram statistical analysis method.  

5.4.1.   Statistical Features Based First Order Histogram Statistical Analysis  

Histograms are widely used in the first step of the thermal image process. The 

histograms can be useful in gathering information about an image and in determining which 

pixel values are important in an image. Formally, the histogram is the grayscale or a color 

histogram of an image is the frequency of existence of pixels of the same intensity in the ROI. It 

can be visualized as if each pixel is placed in a bin corresponding to the color intensity of that 

pixel as in figure 5.10 then all the pixels in each bin are added up and displayed [63,64]. 

 

 

 

 

 

 

 

 

 

a. Original Image b. Histogram Image 

Figure 5.10:  Image histogram representation for both 

color and gray thermal image. 
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Mathematically, the histogram is the distribution of the probability function 𝑃(𝑖) of the 

intensity levels (i) in the histogram bins, and defines using the following equation.  

                               𝑃(𝑖) =
No.of pixels with gray level (i)

Total number of pixels in ROI
                                                  (5.5) 

The histogram is used for defining first order statistical features of the image, such as 

mean value, Standard deviation, skewness, and kurtosis. These features build a feature vector to 

retrieve similar images from the database. The definitions of these parameters are given below 

[64,65].           

1. Mean value: It measures the average value of the intensity values. If mean value is 

high, then it means that the image is bright and if it is low, then the image is dark. The 

mean of the probability distribution can be calculated by the equation (5.6). Where (L) 

represents the total number of bins in histogram figure. 

                                                       𝑚𝑒𝑎𝑛 = ∑ 𝑖. 𝑃(𝑖)𝐿
𝑖=1                                                                   (5.6) 

2. Standard deviation (std): the standard deviation is the second order moment, and it 

shows the contrast of gray level intensities. The low value of the standard deviation 

shows a low contrast and the high value shows the high contrast of the image. This can 

be computed from its mean value as in equation (5.7). 

                                                𝑠𝑡𝑑 = √∑ (𝑖 − 𝑚𝑒𝑎𝑛)2. 𝑃(𝑖)𝐿
𝑖=1                                                     (5.7) 

3. Skewness:  measure the inequality of the intensity level distribution about the mean. 

The value will be positive or negative of the skewness. Negative value shows that the 

large number of intensity values is on the right side of the mean. Positive value shows 
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that many intensity values are on the left side of the mean. Zero value indicates that 

distribute the intensity values is relatively equal on both sides of the mean. Skewness 

can be defined in (5.8). 

                                      𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
1

𝑠𝑡𝑑3 √∑ (𝑖 − 𝑚𝑒𝑎𝑛)3. 𝑃(𝑖)𝐿
𝑖=1                                                    (5.8) 

4. Kurtosis: the fourth order moment is kurtosis. It is used to measure the flatness of the 

thermal distribution for each region. Lower kurtosis shows that the temperature 

distribution within the region is homogenous. The higher value of the kurtosis shows 

that the peak of the distribution is sharp, and the tail is longer and fatter. Kurtosis can be 

defined as an equation (5.9). 

                                               𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
1

𝑠𝑡𝑑4
√∑ (𝑖 − 𝑚𝑒𝑎𝑛)4. 𝑃(𝑖)𝐿

𝑖=1                                    (5.9) 

5.4.2. Statistical features based on Grey Level Co-occurrence Matrix  

A second-order histogram is an array that is formed based on the probabilities that pairs 

of pixels separated by a certain distance and a direction, which have co-occurring gray levels. 

This array, or second-order histogram, is also known as the gray level co-occurrence matrix 

(GLCM) [65,66]. 

The basic difference between above approach and GLCM is that first order statistics 

estimate only the properties of individual pixel values while second order statistics estimates 

spatial relationships between pixel gray levels of the image happening positions relative to each 

other. Some of the features that can be extracted from the GLCM are energy, image contrast, 

homogeneity, correlation, and entropy: 
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1. Energy:   The energy feature measures the uniformity of the intensity level distribution. 

If a value is high, then the distribution is little intensity level. Energy returns the sum 

squared of the GLCM function as in Equation (5.10). 

                                                            𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑃(𝑥, 𝑦)2𝐿
𝑥,𝑦                                                        (5.10) 

where: 

x:  is the gray level of the reference pixel. 

y: is the gray level of neighboring pixel. 

P(x,y):  is the normalized GLCM.  

 

2. Contrast: Contrast feature measures the spatial frequency of an image. It is the 

difference between the highest and the lowest values of a contiguous set of pixels as in 

Equation (5.11).  

                                                             𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ |𝑥 − 𝑦|2. 𝑃(𝑥, 𝑦)2𝐿
𝑥,𝑦                                     (5.11) 

3. Homogeneity: The closeness of gray levels in the spatial distribution over the image. 

The homogeneity calculated through the following equation. 

                                                                 𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝑃(𝑥,𝑦)2

1+|𝑥−𝑦|
𝐿
𝑥,𝑦                                          (5.12) 

4. Correlation: Correlation that brings out how correlated a reference pixel to its neighbor 

over an image. The correlation representation for row and column in the GLCM matrix 

is illustrated in Equation (5.13). 

                                                             C𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑
(𝑥,𝑦).𝑝(𝑥,𝑦)−(𝜇𝑥∗𝜇𝑦)

𝜎𝑥∗𝜎𝑦

𝐿
𝑥,𝑦                                (5.13) 

where: µ is the mean value of p and, 𝜎 : Standard deviations of p. 
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5. Entropy: it measures the disorder or complexity of an image. If the value of entropy is 

high, then the distribution has more intensity levels in the image. A simple image has 

low entropy while a complex image has high entropy. It can be defined following 

equation. 

                                                  Entr𝑜py = − ∑ 𝑃(𝑥, 𝑦) × 𝑙𝑜𝑔 (𝑃(𝑥, 𝑦)𝐿
𝑥,𝑦                                         (5.14) 

Figure 5.11 shows feature changing plots versus temperature increase of ICs under test. 

The analysis show that energy; homogeneity, skew, and Kurtosis decrease with increasing ROI 

temperature, since contrast, entropy, mean, and standard deviation show a consistent increasing 

with increasing ROI temperature. 

 

 

  

  

 

  

 

 

 

  

 

  

 

a. Mean Feature vs. Temperature. b. Standard Deviation Feature vs. Temperature. 

c. Skewness Feature vs. Temperature. d. Kurtosis Feature vs. Temperature. 
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e. Energy Feature vs. Temperature. f. Contrast Feature vs. Temperature. 

g. Homogeneity Feature vs. Temperature. h. Correlation Feature vs. Temperature. 

f. Entropy Feature vs. Temperature. 

Figure 5.11:  Features variations plots versus the temperature.   
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5.5. Principle Analysis Components 

Principle Component Analysis (PCA) is a statistical analysis tool used for multi-

dimensional data set and represent them in a way to highlight the similarities and differences in 

the original data set. The pattern matching of the data becomes difficult when the data dimension 

is high. In such situations, PCA comes in handy for analyzing and graphically representing of 

such data. Once the patterns in the data are found, the data is compressed by reducing the data 

dimensions with little loss of information. This dimension reduction can be achieved by 

transforming the original data set into a series of uncorrelated principal components. 

Principle algorithm for PCA is shown in figure 5.12. In this flowchart, the first step is to 

collect the data set to be analyzed. Mean value of the data set is calculated. The calculated mean 

value is subtracted from the data set to normalize the data.  Covariance matrix is calculated for 

the normalized data matrix. From the covariance matrix, we calculate the eigen-values and the 

corresponding eigenvectors. The eigen-vectors are arranged in the descending order of size in the 

eigenvector matrix. Then the eigen-vector with the highest eigen-value is considered as the 

principal component of the data set.  More than 95% of the variance is contained in the first three 

to five components. Main contributions of PCA algorithm are [18, 67]: 

1. Extract the most important information from the data table. 

2. Compress the size of the data set by keeping only this important information. 

3. Simplify the description of the data set.  

In this work, to ease the processing of the IR image sequences and to increase the 

consistency of our results, the added action conducted using the PCA approach due to the 
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number of features for each IR image sample is nine features. So that, by applied PCA analysis, 

minimizing these features into just three uncorrelated variables is achieved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Calculate covariance matrix 

  Extract   the Eigen-values and 

corresponding eigenvectors  

Find the highest Eigen-values and 

eigenvectors 

Find Principal Components 

Rebuild data 

Calculate the mean of data and 

normalize them 

Figure 5.12:  Diagram flow of the PCA algorithm. 
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5.6. Classification Modules 

In this section, the final step of the process, shown in figure 5.1, is explained. After 

gathering the main features of the IR images, the next key step is fault classification and 

detection. We can feed these features into a classifier to discriminate the thermal images into 

different categories. 

The whole process of the intelligent classification can learn the relationship between a 

data set of training database and a dataset of the testing database. It trains and creates a fitting 

network of data set and gives the predicted output, as illustrated in block diagram of figure 5.13 

[28].  In this diagram, the intelligent classification technique is used to learn a model called a 

classifier.  The data set is divided into two groups; training set and testing set. In the training 

phase, the training set is fed to the classifier for labeled data set into one of the classes depending 

on the target output. In the testing phase, the test samples are verified depending on the target 

output [68]. Once essential features have been identified, the classification of a fault condition is 

straightforward performed. The three main intelligent classifier models include MLP, SVM and 

the fuzzy set theory methods are used in this work for fault classification.  

 

 

 

 

 

 Figure 5.13:   Block diagram for the General Intelligent Classification steps.  

Data base 

 (Training images) 

Data base  

(Testing images)  

 

(testing images) 

Input 

Samples  
 

Output results 

 
 
 

 
Classifier  

Target Output 
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5.7.   Results and Discussion 

For simulation analysis, the input data (i.e. the extracted features) are got and arranged 

in Microsoft offices such as excel, and then entered to the intelligent classification program. The 

classifier models are trained for functional fault classification. Once trained, the network 

performance validates using testing data different from the training data.  

Depending on behaving the real PCB in the experimental part, and characteristics of ICs 

at [41], the classifier model decides a separate decision for each IC into two main conditions:  

 Fault-free condition: happens when the maximum temperature of IC's surface 

is lower than the threshold value (i.e. 𝑇 < 40℃). 

 Fault condition: happens at the maximum temperature of IC's surface equal or 

higher than the threshold value (i.e. 𝑇 ≥ 40℃). 

Furthermore, the whole data set is divided randomly into two different sets: training 

data set and testing data set. Among 656 samples, 459 samples (i.e. 70% of data set) are selected 

as a training data set and the remaining 197 samples (i.e. 30% of data set) are selected as a 

testing data set. The conditions of the PCB for the normal state and the defective state of the 

entire data set can be illustrated as in table 5.5. 
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The accuracy percentage of classification is defined as the percentage of total samples 

classified correctly to the total number of samples in the dataset as in Equation (5.15).  

          Accuracy of classification =
Total no.of  samples classified correct𝑙𝑦

Total no.  of samples in the  data set
∗ 100%                         (5.15) 

 

5.7.1. Classification Results based on MLP  

To decide that the chosen MPL network layout is good enough, several layouts are 

tested with the number of hidden neurons ranging from 4 to 40 in steps of 4. The configuration 

that produces the minimum performance factors comprises one hidden layer with 12 neurons. 

The input layer has 4 neurons, which takes the value of the input data while the output layer has 

4 neurons corresponding to the UUT condition. The output layer transfer function is selected to 

be a Soft max transfer function suitable for the binary output as shown in figure 5.14.  

 

 

 

 

    UUT 
The normal 

condition 

The defect 

condition 

IC1 119 82 

IC2 141 226 

IC3 152 77 

Total 412 244 

Table 5.5: Distribution of conditions for entire samples. 
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As mentioned in the chapter 4, there are several training algorithms, which can apply to 

training MLP. Here, the performance comparison between three main methods of training 

algorithms is done. These methods with eight training functions have been implemented by 

MATLAB program: 

1. Gradient Descent algorithms: they have three functions: 

  Gradient descent backpropagation (i.e. Traingd).  

  Gradient descent with momentum backpropagation (i.e. Traingdm).  

  Resilient backpropagation (i.e. Trainrp).  

2. Conjugate Gradient algorithms: they have three functions: 

 Scaled conjugate gradient backpropagation (i.e. Trainscg) 

 Fletcher-Powell conjugate gradient backpropagation (i.e. Traincgf) 

 Polak-Ribiere conjugates gradient backpropagation (i.e. Traincgp). 

3. Quasi-Newton algorithms: they have two functions: 

 BFGS quasi-Newton backpropagation (i.e. Trainbfg). 

 Levenberg-Marquardt backpropagation (i.e. Trainlm). 

 

Figure 5.14:  The proposed neural network architecture layout. 
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From the results in table 5.6, the convergence speed of Trainlm is higher than other 

training functions. While the average of the classification percentage between Trainrp, Trainscg 

and Trainlm functions are near. On the other hands, comparing on epochs and MSE parameter, 

Algorithm 
Training 

Function 

Hidden 

layer 
Epoch 

Best 

validation 

MSE 

Average 

Training 

Classification 

Average 

Testing 

Classification 

Gradient 

Descent 

Traingd 

4 1000 0.53059 47.93 % 50.76 % 

8 1000 0.54126 62.52 % 58.37 % 

12 1000 0.52677 49.01 % 48.73 % 

Traingdm 

4 1000 0.53277 49.23 % 50.25 % 

8 1000 0.54636 61.65 % 60.40 % 

12 1000 0.52745 49.01 % 48.73 % 

Trainrp 
4 1000 0.33175 98.69 % 97.46 % 

8 1000 0.33201 98.25 % 97.96 % 

12 1000 0.331 98.69 % 97.46 % 

Conjugate 

Gradient 

Trainscg 

4 1000 0.33043 99.34 % 97.46 % 

8 1000 0.32915 99.34 % 97.46 % 

12 1000 0.32986 98.91 % 96.44 % 

 

Traincgp 

 

4 1000 0.40595 86.71 % 83.75 % 

8 2 0.64485 99.34 % 60.91 % 

12 775 0.40234 84.26 % 86.92 % 

Traincgf 

4 440 0.40217 88.01 % 83.24 % 

8 1000 0.40088 88.23 % 82.74 % 

12 1000 0.40487 87.14 % 84.26 % 

Quasi 

Newton 

Trainbfg 

4 521 0.40606 87.36 % 85.27% 

8 2 0.64868 63.18 % 61.92 % 

12 624 0.40814 86.71 % 85.27 % 

Trainlm 

4 1000 0.0014375 99.34 % 97.46 % 

8 403 0.0006971 99.78 % 97.96 % 

12 246 1.0296e-08 100 % 96.44 % 

Table 5.6:  Samples for the comparison results of MLP Training Functions.  
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Trainlm outperformed other training function. The best training algorithm is found to be the 

Trainlm which converges to the minimum performance factor in the minimum possible time. The 

training, performance curve, figure 5.15, shows the fast convergence of the selected training 

algorithm where the performance response reduced to 1.0296e-8 after 246 epochs on average.  

 

 

 

 

 

 

 

 

 

 

 

 

 

To confirm the developed neural network, a set of input data not used within the 

training stage, is given to the neural network. Neural network output is then compared with the 

desired output to confirm the neural network. Data set has IR image data covers the full 

operating range for both healthy and faulty operation modes. Output from the neural network is 

the ICs condition, according to the table 5.7. If all the UUTs are working with healthy mode the 

binary outputs would give a value of (0100)b. Under any fault operation, the corresponding 

output will classify the fault into three main classes: (1000)b= IC1 is a fault, (0010)b=IC2 is a 

fault, and (0001)b =IC3 is a fault. The comparison between the neural network outputs and the 

Figure 5.15:  The MLP network performance response.  
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… 

desired target outputs shows the correct prediction of the ICs condition. The summarized 

proposal MLP network setting parameters in this work can be shown in table 5.8.     

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Description 

Input layer size 4 

Hidden layer size 12 

Output layer size   4 

Training data 70% 

Testing data 30% 

Performance criteria Mean squared error (MSE) 

Training algorithm Levenberg–Marquardt 

Hidden layer activation function Sigmoid  

 

Table 5.8: Summarized settings parameters for the MLP network.  

Table 5.7 Samples for testing and output results of the MLP Model. 
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1
0.6598 0.9882 0.9572 0.5428 3.7598 30.4455 8.2192 67.5562 0.0899 3.509996 2.617815 -0.63745 1 (0100)b Pass PCB 

… … … … … … … … …
…

… … … … … …

189 
0.8732 0.9844 0.8005 0.9020 25.4473 72.3419 3.1593 9.9814 0.3325 -3.71374 0.248826 0.861656 1

(1000)b Fault IC 1

… … … … … … … … …
…

… … … … … …

388 0.5674 0.9898 0.8709 0.9015 15.7644 59.3511 4.0140 16.1122 0.2488 -1.1600 -1.0041 0.1644 2
(0010)b Fault  IC 2

… • • • • • • • • 
•

• 
• • • … … …

558 
0.5668 0.9898 0.9354 0.7821 6.8617 40.6199 6.0841 37.01695 0.1407 1.5408 0.1611 -0.6911 3 (0100)b Pass PCB 

… • • • • • • • • 
•

• 
• • • … … …

656 
0.7028 0.9874 0.8961 0.8401 11.8335 52.2702 4.6329 21.4643 0.2061 0.894117 -0.13368 -0.62562 3

(0001)b Fault  IC 3

Table 5.7:   Samples for testing and output results of the MLP Model.

(0100)b 

(1000)b 

(0010)b 

(0100)b 

(0001)b 

Pass PCB 

Fault IC1 

 

Fault IC2 

Pass PCB 

Fault IC3 
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5.7.2. Classification Results based on ANFIS  

The model of the ANFIS classification adopted by scaled conjugate gradient method 

scheme is shown in figure 5.16 with parameters setting in table 5.9. To assess the efficiency of 

our diagnostic technique, we do a series of attempts and compare their accuracy for a different 

structure of ANFIS.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Description 

Number of Inputs 4 

Number of Outputs 1 

Number of input membership functions 64 

Number of Output membership functions 16 

Number of Rules 16 

Fuzzy model type sugeno 

Figure 5.16:  ANFIS model structure.  

Table 5.9:  ANFIS parameters setting.  
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Table 5.10 shows the training target for fault classification. The training performance is 

illustrated in figure 5.17. This figure shows making less error for final epochs and reaching the 

minimum error target, also, there is no further reduction of error possible. It shows that ANFIS 

scheme with 16 membership functions for each input has better performance. In this structure, it 

uses 16 fuzzy rules and then have 1280 linear parameters and 48 nonlinear parameters needed to 

be adjusted. Figure 5.18 illustrates that the predicted output values are found in the ruler viewer 

of ANFIS, i.e. For the testing feature values (-0.34632, -0.07653, -0.45628, 3), the predicted 

output is shown as 4 (i.e. IC3 is faulty). This is the complete training and testing procedure of 

ANFIS for fault classification of the PCBs. 

In figure 5.19(a, b), there are two different points, circle points (in blue color) which 

represent the target result and points (in red color) which represent the classified outputs for 

given training and testing phases. As shown in these figures, the training output results are like 

the training target values. This shows the ANFIS can classify the faults correctly. 
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Table 5.10 Samples for testing and output results of the ANFIS Model. 
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Figure 5.17:  Performance Evaluation of ANFIS during training phase.  

.  
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1 0.6598 0.9882 0.9572 0.5428 3.7598 30.4455 8.2192 67.5562 0.0899 3.509996 2.617815 -0.63745 1 1 Pass PCB 

… … … … … … … … … … … … … … … …

189 0.8732 0.9844 0.8005 0.9020 25.4473 72.3419 3.1593 9.9814 0.3325 -3.71374 0.248826 0.861656 1 2 Fault IC 1

… … … … … … … … … … … … … … … …

388 0.5674 0.9898 0.8709 0.9015 15.7644 59.3511 4.0140 16.1122 0.2488 -1.1600 -1.0041 0.1644 2 3 Fault  IC 2

… … … … … … … … … … … … … … … …

558 0.5668 0.9898 0.9354 0.7821 6.8617 40.6199 6.0841 37.01695 0.1407 1.5408 0.1611 -0.6911 3 1 Pass PCB 

… … … … … … … … … … … … … … … …

656 0.7028 0.9874 0.8961 0.8401 11.8335 52.2702 4.6329 21.4643 0.2061 0.894117 -0.13368 -0.62562 3 4 Fault  IC 3

Table 5.10:  Samples for testing and output results of the ANFIS Model.

Pass PCB 

Fault IC1 

Fault IC2 

Fault IC3 

Pass PCB 

1 

2 

3 

1 

4 
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Figure 5.18:  ANFIS Fuzzy rules for the classify network.  

Figure 5.19:  Performance graph for the ANFIS Fault 

type classification model.  

.  

b. Testing result. 

. 

a. Training result. 

. 
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Consequently, the SVM classifier model is implemented according to the parameters set 

in the table 5.11. In this classifier, a kernel function, called quadratic function, is used to the 

hidden layers for the same effect. This technique improves the average accuracy about 97.16% 

and 94.87% in training and testing, respectively, after the epoch equal to 10000. Therefore, this 

method can classify correctly 446 samples out of 459, and 185 samples out of 197 in training and 

testing phases, respectively. Table 5.12 (a, b), summarizes the comparative results of the various 

models used for the detection of the defect in the ICs. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Description 

Number of Inputs 4 

Number of Outputs 1 

Kernel function Quadratic 

Method for separating Sequential Minimal Optimization 

The tolerance value 1e-3 

No. of classes 4 

Parameters 
Training process 

MLP ANFIS SVM 

No. of all samples 656 656 656 

No. of training samples 459 459 459 

Network structure 4-12-4 4-16-1 4-0-1 

Epochs 246 75 10000 

No. of Unclassified samples 4 2 13 

Average Accuracy of classification 99.12% 99.96% 97.16% 

Table 5.12.a: Comparative training results. 

 

Table 5.11:  SVM parameters setting.  
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5.8. Summary  

In this chapter, The finite-element method was successfully used for thermal 

propagation in 3D-PCBs with different sizes and physical layouts of ICs. For the proposed 

model, the main equivalent material properties of the PCBs and ICs are designed and simulated 

to estimate the temperature profile of stacked ICs. This developed model was shown to simulate 

the thermal profile of PCBs with a high accuracy for the experimental results. Then, the sample 

database for non-destructive testing IR image is obtained from the finite-element model. 

To improve the accuracy of thermal fault detection of ICs, the algorithms of denoising, 

segmentation, and significant feature extraction are presented in details;  

 First stage: To drop the confused noise, a comparative study of different 

filtering method's performance for IR images is measured to decide a suitable 

filter. 

 Second stage: To improve the quality of thermal image segmentation, the 

advanced threshold method, the Otsu thresholding algorithm, produces good 

results compared with the other different techniques. 

Parameters 
Testing process 

MLP ANFIS SVM 

No. of all samples 656 656 656 

No. of training samples 197 197 197 

Network structure 4-12-4 4-16-1 4-0-1 

Epochs 246 75 10000 

No. of Unclassified samples 7 5 12 

Average Accuracy of classification 96.16% 97.46 % 94.87% 

Table 5.12.b: Comparative testing results. 
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 Third stage: to extract the significant image features, the histogram is used for 

calculating the first and second order statistical features of the image. 

The supervised classification techniques such as MLP, SVM, and ANFIS are applied. 

The fault detection, classification and simulation results of various classifier models are pointed 

out. The performance of each classifier for classification of fault is given in table 5.12.  
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Chapter 6: Experimental Evaluation 

6.1. Introduction  

 The kernel of this thesis is to develop a tool that will help to manufacturers of PCBs in 

testing their production lines with an acceptable rate of fault detection and minimize test time. 

This chapter summarizes that how we can apply the proposed approach on a real PCB. Also, we 

evaluate of our proposed approach in the earlier sections of this chapter. The PCB unit, namely 

Arduino UNO, is used to provide us the thermal profile for the UUT. 

6.2. Platform Setup 

The main imaging equipment of the experimental setup includes a project hardware 

board, FLIR infrared camera system, digital thermometer and data acquisition unit is explained 

in this section; 

6.2.1. Real PCB under Test 

Arduino board is one of the famous electronic devices in the world due to being open 

source, flexible software, and hardware. This board is a micro-controller board, which is a small 

circuit that comprises many electronic components. There are many types of Arduino hardware 

available on the field. In this work, the Arduino UNO based on the ATmega328 is selected as 

shown in figure 6.1. The main properties of this board are as follows: 

 Micro-controller ATmega328P chip. 

 ATmega8U2 chip. 

 Operating voltage 5V. 

 Input voltage (limits) 6-20V 
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 Digital I/O pins 14. 

 Maximum DC current per I/O pin 20 mA. 

 SRAM 2 KB and EEPROM 1 KB.  

 Clock speed 16 MHz. 

 Dimension board: width of 70 mm × high 54 mm. 

 

 

 

 

 

 

 

 

 

According to the thermal profile of Arduino UNO board, the hot spot is expected to 

appear on the two main ICs on the board which is; ATmega328P and ATmega8U2. These ICs 

are considered as the UUTs.  

 ATmega328P IC: PDIP with two parallel rows of electrical connecting pins comes out 

from the two sides of the package. The typical dimension is 34.798×7.493×4.5724 mm3. 

A typical ATmega328P IC and PDIP structure are illustrated in figure 6.2. More 

specifications of the IC are prepared in [41]. 

 

 

Figure 6.1:  Arduino UNO board. 

IC1: ATmega328P 

IC2: ATmega8U2 
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 ATmega8U2 IC: Quad Flat No lead (QFN), with size 7×7×1.2 mm3 and lead pitch 0.8 

mm. This package is a surface-mounted unit and should be stacked directly on the 

surface of the PCB. The leads and connections are made on the four sides of the 

package that is mounted. A typical ATmega8U2 IC is illustrated in figure 6.3. The 

technical description of the ATmega8U2 IC can be reviewed in [41]. 

 

 

 

 

 

 

 

 

 

Figure 6.2:   ATmega328P IC configuration. 

Figure 6.3:  ATmega8U2 IC configuration. 
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6.2.2. FLIR Infrared Camera Unit 

The infrared camera used in the evaluation setup is a FLIR SC4000 camera shown in 

figure 6.4. This is a high-speed, high-resolution, high sensitivity, and science-grade infrared 

camera with Gigabit Ethernet. Using the PC-Link (Gigabit Ethernet), the camera system captures 

and transfers 125fps with 320×256-pixel imagery. In this work, Gigabit Ethernet connect the 

camera due to its faster speed and allows a higher frame rate.  thus, the IR camera system can 

measure the temperature "through" the unit being tested. More specifications of the FLIR 

SC4000 camera system can be found in [69, 70].  

 

 

 

 

 

6.2.3. Data Acquisition System and Auxiliary Unit  

IR images are captured and analyzed using an integrated data acquisition unit of the 

optical system, supported by PC-based FLIR Researcher IR max software (i.e. Version 

4.20.2.74), for data acquisition, analysis, and image capturing. The obtained input data are 

recorded in real time for later analysis using this software package [70]. Other auxiliary unit is a 

digital thermometer which is used with thermocouple probe to measure the ambient temperature 

of the surrounding area. The digital thermometer used in the present work is HH-23A from 

Omega Industries [71]. 

Figure 6.4:  FLIR SC4000 camera. 
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6.3. Experimental Setup  

In this setup, the IR camera should be able to generate right thermal image and should be 

able to increase the accuracy of the image. Object parameters such as emissivity, the atmospheric 

temperature and distance of measurement are to be set before the image capturing. The 

emissivity of the surface under test should be uniform; therefore, there are various methods for 

determining the emissivity of an object. One of the methods to find the emissivity of objects is to 

use materials in an emissivity table [25]. 

The atmospheric temperature is measured by a thermocouple and a digital thermometer. 

There is a possibility that there might be changes in atmospheric temperature. Therefore, an 

updated temperature must be fed into the object parameter, setting of the image to keep the track 

of the atmospheric temperature.  

To excite the ICs, the circuit board is programmed to exceed total micro-controller 

current for a period by running at least 10 I/O pins (e.g. lighting 10 LED’s) on high mode and 

draw 20mA from each one. According to Arduino UNO specifications, the total current sourced 

from all I/O pins must not exceed 200mA,  

Finally, a steady-state image of real time operating UUT board is taken to get the 

temperatures on the PCB surface. All the setting parameters for the operation of IR camera 

system should be fixed during the experiment. Table 6.1 shows the main setting parameter values 

for IR cameras are used. The experimental IR capturing system is set as shown in figure 6.5. 
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Parameters Value 

Image format . png 

Distance 0.65 m 

Emissivity  0.94 

Lens Focal Length 25 mm 

Resolution 320 (H) x 256 (V) 

Atmospheric temperature 23.0 ℃ 

Figure 6.5:  Real PCB with IR capturing system. 

 

Table 6.1: IR camera parameters set up. 
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6.4. Image Capture and Processing  

The IR camera is used to obtain the temperature changes verse power dissipation of 

ATmega328P and ATmega8U2 ICs. Power dissipation of the ICs is calculated according to 

equation (5.2) by applying thermal resistance values for Atmel standard packages. Figure 6.6 

illustrates the power dissipation versus temperature changes for two hot units. In the first unit; 

ATmega328P, the power dissipation is changed from 0.632W to 0.751W to get the temperature 

range 34.612℃–42.322℃, as shown in figure 6.6.a. In the second unit; ATmega8U2, the power 

dissipation is varied from 1.086W to 1.296W to get the temperature range 34.761℃–41.913℃, as 

shown in figure 6.6.b. From results above, the IR thermography shows a near result for the 

temperature profile got from finite element simulation and experimental results. 

After ICs are excited; the thermal image sequence of the PCB is captured using the IR 

camera. Figure 6.7 illustrates the samples of captured images for temperature distribution on the 

PCB’s surface with the geometry. The captured thermal images are filtered and segmented to 

extract ROI according to the proposed approach as shown in figures 6.8 and 6.9. 
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Figure 6.6.a: Temperature variations vs. power dissipation for ATmega328P chip. 



78 
 

30

32

34

36

38

40

42

1
.0

9

1
.1

1

1
.1

2

1
.1

4

1
.1

5

1
.1

5

1
.1

8

1
.1

9

1
.2

0

1
.2

0

1
.2

3

1
.2

3

1
.2

3

1
.2

4

1
.2

6

1
.2

6

1
.2

6

1
.2

9

Te
m

p
e

ra
tu

re
  (

ᵒC
)

Power Dissipation  (Watt)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. IC1 (ATmega328P)  

at 36.3 ℃. 
 

a. IC1 (ATmega328P)  

at 41.81.3 ℃. 
 

d. IC2 (ATmega8U2) 

at 36.04 ℃. 
 

c. IC2 (ATmega8U2) 

 at 39.48 ℃. 
 

Figure 6.7:  Samples of captured IR image for real PCB.  

Figure 6.6.b: Temperature variations vs. power dissipation for ATmega8U2 chip. 

Figure 6.6: Thermal profile for UUT. 
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Final Filter Image
without noise image

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 6.8:  Filtering image results. 

b. Using BM3D + Median filter. a. Original Image.  

Figure 6.9:   Image segmentation (i.e. Otsu's method) and cropping results. 
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In the next stage, the extracted features are calculated and stored in a database as feature 

vectors. The features include: mean, standard deviation, skewness, kurtosis, energy, entropy, 

correlation, contrast, and homogeneity are got by using the probability distribution of the 

histogram levels. Figures 6.10 (a, b) shows feature variation plotted versus the temperature 

increase of IC1 and IC2.  
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d. Energy Feature vs. Temperature. c. Homogeneity Feature vs. Temperature. 
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Figure 6.10.a:  Features changing plots versus temperature for IC1. 
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Figure 6.10.b:  Features changing plots versus temperature for IC2. 
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6.5. Classification Results 

After capturing and processing the image, the final step is the intelligent fault diagnosis 

and decisions. From the experimental classification, results can be concluded to the optimal MLP 

architecture as shown in figure 6.11. In the figure 6.12, the convergence of the Levenberg-

Marquardt BP training algorithm is illustrated where the performance factor reduced to 1.187e-7 

after 1634 epochs. 
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Figure 6.11:  Proposed neural network architecture layout. 

 

Figure 6.12:  Proposed neural network architecture layout. 
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The model of the ANFIS classification topology is shown in figure 6.13. According to the 

feature reduction results, three superior features have been selected by the PCA and then are fed 

into the ANFIS classifier. The ANFIS system has six rules, 4 inputs, and one output. After taking 

30 epochs, the RMSE is 0.0300841. The decrement in the error while training the ANFIS is 

shown in the figure 6.14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 6.14:  RMSE response of ANFIS.  

.  

Figure 6.13:  ANFIS structure.  
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A graphical view of ANFIS output is shown in figure 5.15 (a,b), yellow squares represent 

the target of ANFIS while the red circles represent the output values. Where the squares and 

circles overlap with each other, it means that the ANFIS target matches the output value. The 

circle sign represents the difference in ANFIS output and the actual value for both phases; 

training and testing. 
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Figure 6.15:  Graphical classification output based on ANFIS. 

a. Training phase.  

b. Testing phase.  
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Finally, table 6.2 shows that the ANN with MLP network present training and testing 

accuracy about 98.43% and 94.186%, respectively. Therefore, it detects 189  samples out of 192, 

and 77 samples out of 82 samples after 1643 epoch in the training and testing process, 

respectively.  

The SVM method achieves an average accuracy of 88.54% and 88.90% in training and 

testing, respectively. Therefore, this method can classify correctly 170 samples out of 192 and 73 

samples out of 82 in training and testing phases, respectively, after 10000 epochs. 

The ANFIS produces the training and testing process accuracy of 97.44% and 97.43%, 

respectively, with 30 epoch only. For 82 testing samples, only two unclassified samples got with 

ANFIS while were 5, and unclassified samples with ANN and SVM respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 
Training Process 

MLP ANFIS SVM 

No. of all samples 274 274 274 

No. of training samples 192 192 192 

Network structure 4-12-4 4-16-1 4-0-1 

Epochs 1643 30 10000 

No. of Unclassified samples 3 4 22 

Average Accuracy of classification  98.43% 97.44% 88.54% 

Table 6.2.a:  Comparison of training results. 
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6.6.  Summary  

Experimental evaluation has been performed to confirm the proposed approach in this 

chapter. The results of FEM simulations were experimentally verified in real PCB experiments. 

In the first part, the major equipment in the experimental setup was discussed in this 

chapter. In the second part, Arduino UNO  board  was  presented  to verify the testing results. 

Two ICs which are; ATmega328P and ATmega8U2 chips  were considered as  the  UUT  in this 

work. Then the infrared FLIR SC4000 system was used to capture and transfer 320×256 pixels 

imagery. In next part, filtering and segmentation process were implemented on the thermal 

image to extract main histogram features. The feature's pre-processing is implemented to 

generate new parameters by PCA method. It allows getting data, which less correlated and lower 

order. The final part was classifed fault condition for the PCB based on  MLP, SVM and ANFIS 

classifier. The performance of each classifier for detection and classification of fault was given 

in table 6.2. From the experimental results, the efficiency of the proposed approach has been 

shown. 

Parameters 
Testing Process 

MLP ANFIS SVM 

No. of all samples 274 274 274 

No. of training samples 82 82 82 

Network structure 4-12-4 4-16-1 4-0-1 

Epochs 1643 30 10000 

No. of Unclassified samples 5 2 9 

Average Accuracy of classification  94.18% 97.43% 88.90% 

Table 6.2.b: Comparison of testing results. 
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Chapter 7: Conclusion and Future Work 

7.1. Conclusions 

 Although several techniques in the literature were proposed to study fault detections and 

diagnosis, still challenges related to the performing reliable testing systems for PCB 

manufacturing has been remained because of increasing complexity of PCBs. The goal of this 

thesis is to develop an intelligent testing approach to tackle these related challenges. The aim of 

our work is to develop a more robust method at each processing stage to improve the condition 

for fault detection in the UUTs. Main contributions of our work are as follows: 

 Infrared thermography as a non-destructive fault detection testing of PCB is presented. 

The fundamental and essential theoretical background in this field have been reviewed in 

this thesis. This background information is provided to help and assist the researchers of 

these technologies in a better understanding of the subject. 

 In this thesis, a three-dimensional PCB model comprising five physical layers has been 

designed and simulated by the FE analysis software. The IR images for the PCB model 

are captured and successfully presented.  

 Through a preprocessing step, to remove the thermal noise (i.e. Salt & pepper + Gaussian 

noises) from IR images, combination of Median and BM3D filters is applied. 

Performance of this advanced filter is verified by using the performance metrics such as 

SNR and PSNR factors.  

 The enhanced IR images are segmented and cropped to identify ROI object. Various 

algorithms have compared the IR image to a threshold. From the results, it can be 
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inferred that the Otsu's algorithm works better for IR images as compared with the other 

thresholding algorithms. The Otsu's algorithm works on finding the best optimum 

threshold value and minimizing the variance among the different image pixels. 

 After that, the PCA is performed on the first and second order of histogram features to 

extract the major information, which reduces the number of features significantly. These 

major features are then fed into the intelligent classifier models for training and then 

testing. 

 In the classification work, the results conducted in this part can be summarized as 

follows: 

1. The three classifier models, MLP, SVM, and ANFIS, are used to 

classify the fault condition of ICs corresponding to different 

classes. The effectiveness of models tested by comparing the 

performances and accuracy of classification. 

2. MLP technique used to develop the classified model and the data 

required for training the model used for the simulation the PCB 

model. Various training algorithms trained with the different 

number of hidden neurons to arrive at the optimal model. The tool 

disadvantages are that they train slowly and training network 

process has taken a large time. The developed MLP classifies the 

fault condition for ICs with average percentage accuracy 96.16% 

in testing phase after 246 epochs. 

3. ANFIS software has used to develop the classified model. Various 

membership functions trained to arrive at the suitable model. The 
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ANFIS model provided fast train and high accuracy. Furthermore, 

the network trained for 75 epochs and the average percentage 

accuracy about 97.46 % of test data. 

4. In the multi-classes SVM classifier model, the algorithm achieved 

the average accuracy of 94.87% in testing phases. 

 Experiments based on Arduino UNO board have performed to show the efficiency and 

applicability of the developed method. The experimental results of classifier models 

illustrate in Table 6.2. The efficiency of the proposed method has been shown in Table 

6.2. 

7.2.  Summary of Contributions of this thesis 

The major contribution of this thesis is that it proposes a set of test techniques to decrease 

test application time with different considerations, includes testing efficiency and defect 

diagnosis. The following parts summarizes the main contributions of this work: 

 Designing a 3D-PCB complex geometry model based on FE software of COMSOL. In 

this model, three types of ICs are implemented. The dimensions, physical properties such 

as thermal conductivities, thermal capacities, and densities of different layers of PCB is 

selected to generate the thermal profile for a numerical population of data sets. 

 This project has classified the defects of PCBs into IC level groups. This method 

increases the efficiency of the testing system in locating the defect IC on the PCB. Since 

a PCB pattern is produced in different processes, classification of defects can help in 

determining the sources which create errors and reduce production cost in the long run. 
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 To increase the quality of IR image, we arrange median with BM3D filters in series. This 

advanced filter is useful for eliminating different thermal noises. 

7. 3. Future work 

The future work should be recommended in the following directions: 

 Extending the intelligent classification algorithm in multi-layer PCBs; classification 

techniques can be applied in multi-layer to locate the exact position of the defected 

component. 

 Automatic extraction of optimal features; as we mentioned in the earlier chapters, 

successfully applying of the intelligent classification algorithms depends on choosing the 

proper IR image features. Automatic extraction of the optimal features of the IR image 

seems an interesting research area for future researchers. 
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