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Abstract 

The concept of reconfigurability and its applications in robotics have become prominent in the past 

few years as they provide versatility, adaptability and scalability to the systems. The reconfigurable 

robots can perform tasks in outer space, under the sea and in hazardous environments by 

rearranging their physical configurations to alter the system’s behavior and geometry. However, the 

concept of reconfigurable robots is not just constrained by the mechanical reconfiguration of the 

components, for the system should also demonstrate a modular reconfigurable behavior to newly 

imposed conditions. 

The objective of this work was to design and implement a multi-modal reconfigurable platform 

based on the concept of “form follows function” to be integrated with 3D-Immersive telepresence 

systems. The developed system was analyzed to verify the feasibility and functionality of the 

proposed architecture, and suggestions were made for future improvements.  
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1. Thesis Introduction  

1.1 Motivation 

Generally speaking, the evolution of the robotic systems can be categorized into three generations: 

i) robots capable of performing repetitive tasks as used in production lines of factories, ii) robots 

equipped with sensory devices capable of performing multiple tasks by switching from one 

repetitive motion to another and iii) robots with some degree of intelligence to make decision and 

adapt their configurations based on circumstances they encounter.  

The adaptation to the environmental conditions and constraints not only requires physical 

reconfiguration of the robotic system but also the behavioral conformation to the confronted 

conditions. Therefore, the physical configuration involves changing the shape, topology and position 

of the physical parts of any kind of robotic system. However, the main difference between the 

physical reconfiguration of the traditional and reconfigurable robotic system is due to the multi-

modality or multi-functionality of the system. For instance, a traditional industrial robotic system 

changes its topology while performing the same operation, such as assembling, manipulating, etc., 

but a reconfigurable robotic system changes the configuration of the components when switching 

from one mode of operation to another. In other words, the reconfiguration of the physical form is 

the means of adaptation to the new mode of operation along with the behavioral accommodation to 

the new functionality of the system.  In this way, we employ the concept of “form follows function”.  

The emergence of reconfigurable logic blocks, such as Field Programmable Gate Arrays (FPGA) has 

opened new horizons for the design and implementation of multi-modal reconfigurable robots that 

are much more efficient in contrast to the expensive and inflexible traditional robotic applications 

implemented by microcontrollers and ASICs. The dynamic partial reconfiguration feature of today’s 

FPGAs leads to more cost-effective designs, as it allows effective adaptation of the multi-modal 

robots to have their functions modified during run-time without entirely interrupting their normal 

operations.    

However, the most effective utilization of intelligent robotic systems still assumes the involvement 

of an operator for strategic level control, while the robotic system provides the tactical level control 

of current operation due to the existing intelligence gap between humans and machines. This allows 

augmenting the intelligence of both humans and machines for the most effective performance in 

areas where humans are physically incapable and robots are intellectually incapable of performing 

the assigned tasks.  
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One of the important applications of this utilized intelligence augmentation is in telepresence 

systems.  In such systems, autonomous and semiautonomous robots perform tasks where the 

physical presence and/or operation are too dangerous or impossible for human beings [1]. The visual 

and control aspects of the contemporary telepresence systems that benefit from multi-modality and 

multi-video-stream processing systems, such as [1, 2], has made it possible to remotely monitor and 

control mobile systems working in harsh environments, such as space, nuclear power plants, mine 

fields, the bottom of the sea, underground pipelines and many other educational and health care 

related areas without endangering people’s lives.  

Therefore, the main goal of this work is to design, implement and verify a mobile multi-functional 

reconfigurable robotic platform based on the concept of “form follows function” that unlike the 

traditional application-specific robotic systems, could be used as an instrument to be integrated with 

existing telepresence systems. 
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1.2 Objectives 

The main objective of this work is to develop a universal multi-functional mobile and run-time mode 

adaptive robotic platform to integrate with systems, in which a mobile robotic subsystem is required 

to eliminate the physical presence of humans in hazardous or inaccessible places. The following 

stages were considered to achieve the above goal: 

1. Research and analyze the existing available approaches in implementation of reconfigurable 

robotic systems; 

2. Propose an alternative approach based on the concept of hybrid reconfigurability of mobile 

applications; 

3. Develop the architecture for a reconfigurable mobile robotic platform to integrate with the 

existing telepresence system; 

4. Design and implement the reconfigurable mobile robotic platform to integrate with the existing 

telepresence system; 

5. Analyze the experimental results associated with the performance parameters; 

6. Verify the proposed approach and identify potential limitations during the test and verification 

process. 
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1.3 Contributions 

The following contributions were made during the course of the work to meet the previously stated 

objectives: 

1. Extended literature research in the area of telepresence, telerobotics and reconfigurable robotic 

system. 

2. Developed the framework of the reconfigurable multi-modal system based on the required 

specifications of the mobile application associated with the implemented telepresence system. 

3. Designed the system’s hardware components and implemented the architecture of the system for 

the first prototype based on the concepts of reconfigurability and multi-modality. The mobile robotic 

system was presented at the annual conference SVAR-2013: Space Vision and Advanced Robotics 

held at MDA Space Missions, Brampton, Ontario and won the first place for the best presentation 

and demonstration. 

4. Performed in-depth analysis on the experimental results and observation and alternative 

approaches were suggested and discussed for future expansion and implementation of the system. 
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1.4 Thesis Organization 

The remaining organization of this thesis is as follows: 

 Chapter 2 is associated with the analysis of the current approaches and tools in the field to 

address the necessity of redefining the concept of reconfigurability in robotics systems. 

 

 Chapter 3 presents the proposed architecture of the reconfigurable multi-modal robotic 

platform by providing an in-depth analysis of the system’s modes of operation according to the 

anticipated operational tasks for an existing telepresence system. Based on the assigned modes 

of operation, the required resources involved in each mode and their operational functions are 

discussed. Furthermore, the architecture organization of the system is realized after addressing 

the shared and common resources in each operational mode and determining the type of 

implementation for the components associated with each mode of operation. 

 

 Chapter 4 presents the process undertaken to select components of the system according to 

the specifications of each mode of operation discussed in Chapter 3 and covers the detailed 

implementation of the system, including the hardware, firmware and software development. 

 

 Chapter 5 presents the observations and experimental results based on the described 

experimental setup to test and verify the proposed system. Additionally, this chapter discusses 

solutions for further improvement and expansion of the system. 
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2. Related Works  

2.1 Introduction 

Over the past few years, the concept of reconfigurability and its applications in computer 

architecture and robotics have become prominent as they provide flexibility, adaptability and 

scalability to systems that require rapid changes and adaptation due to the environmental, social, 

economic and technological conditions.    

Reconfigurable robots have been used in demining, undersea experiments and planetary exploration 

missions, such as NASA’s Mars rover Curiosity [3], to reduce the risk and eliminate the physical 

presence of humans from hazardous environments. However, absolute replacement of humans with 

robots is not yet attainable due to the limited level of intelligence of existing robotic systems. Hence, 

in most cases human supervision and decision making skills are required to strategically monitor and 

control the robots.  

The main barriers to designing and developing such systems to monitor and control robot operations 

are latency, data volume and bandwidth. Therefore, it is necessary to create a universal 

reconfigurable semi-autonomous robotic platform that can be integrated with existing telepresence 

systems to perform different tactical tasks without human assistance.   

In the following sections, we first discuss some of the existing telepresence systems to address the 

necessity of employing automated tactical adaptation by mobile reconfigurable systems. Then, we 

examine the concept of reconfigurability in robotic systems to differentiate the two aspects of 

reconfigurations, namely, physical and behavioral adaptations by studying some of the related works 

in this area. 

 

 

 

  



7 
 

2.2 Telepresence System 

The concept of telepresence refers to a set of technologies that provide a person with a sense of 

physical presence remote from his/her current location. The rapidly growing applications of 

telepresence systems can be found in business, government, education and health care sectors, 

where the need for transportation seeks to be eliminated due to economic and environmental 

reasons [1]. 

The applications of the system are not only limited to teleconferencing; they can be extended by 

introducing the concept of telerobotics to the system. In such a system human sensory elements of 

vision, sound and manipulation are triggered by incorporating much more advanced video 

conferencing equipment onto mobile robot devices that can be steered from remote locations [4]. 

These telepresence systems can be divided into the three categories below:  

i) Systems controlled directly by the remote operator, such as telerobotics surgery, that enable 

surgeons to operate on patients from remote locations using robotic instruments that mimic the 

movements of a surgeon‘s hands and provide him with 3D imaging system to perform complex 

operations [5]. 

In this type of system, the remote operator becomes the key factor in making decisions that are 

context dependent in real time.  Thus a reliable real-time communication between the remote 

operator and the robot is required that supports both visual and audio streaming to provide the 

operator with a realistic experience via haptic feedback and to assist him in making meaningful and 

crucial decisions [6].  

 ii) Surveillance systems for monitoring and control, such as industrial and commercial security 

systems, where multiple vision units may be integrated in order to expand the surveyed area 

equipped with alarm systems. Upon occurrence of an alarm condition, the remote operator can have 

visual access to the remote environment in which the alarm was activated to take further necessary 

actions [7]. However, these systems require heavy integration with sensing elements to provide best 

results since constant human supervision is not possible. The mobile laptop robot by [8] is a very 

simple commercial example of these systems, where a mobile adjustable frame can hold a variety of 

small laptops to act as a surveillance system which uses the laptop’s webcam as the vision system 

and allows users to control the carrier over the internet. 

iii) Immersive telepresence system that creates an equivalent experience to a human presence in an 

actual remote environment. For instance, [9] has developed a 4D real-time augmented virtual reality 
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(AVR) browser to provide an interactive, integrated, mixed virtual reality remote view of the area-of-

interest (AOI) to the operator. Therefore the operator has a remote presence in the real world and 

can interact with personnel and sensor assets in the AOI in order to analyze and share the captured 

information from multiple sources in real-time. 

However, this immersive technology vastly relies on the data volume and bandwidth. For this 

reason, [10] has categorized the requirements of the immersive telepresence system based on the 

applications and design goals, as shown in Table 2.1. 

Table 2. 1: Immersive Telepresence Requirements Comparison for Design Goals courtesy of [10] 

Requirement Science Operational Public 

Data samples High values Medium Low 

Completeness Low priority Medium High 

Fidelity of data High Varies Low 

Non-verified data Low priority Varies High 

Latency demands Required loop Virtually Ok Virtual 

Interactivity Real Simulated Virtual 

Real time bandwidth for 
autonomy 

High priority for complex interactions Varies Low 

 

As can be seen in the table above, the level of system complexity depends on its application, as the 

scientific applications associated with the science exploration, discovery and surface interaction such 

as planetary rovers generally do not require complete and high-precision data sets.  In contrast, 

public engagement concerns do receive a large value benefit upon completion due to the existence 

of an incentive to obtain a threshold of observations that will allow the derivation of an acceptable 

product.  

Furthermore, [11] has also addressed the traditional issues in the application of telepresence in 

mining operations, such as latency, poor vision subsystems, compression schemes, communication 

protocols, etc., and proposed the design of a mining robot tele-operation system that uses a 

combination of several techniques, such as intelligent data-rate adaptive video compression, 

computer vision, obstacle avoidance using range sensing, physics-based motion prediction, way-

point guidance and augmented virtuality-based rendering in order to permit realistic immersive 

telepresence for the operator of the mining robot. 

Similar to mining tele-operation, applications for planetary exploration missions have also been 

developed using semi-autonomous robots, such as Robonaut, the first dexterous humanoid robot to 

enhance and expand the ability of astronauts to safely and accurately construct and discover [12] 

without suffering from the speed of light latency by operating from Earth. 
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However, the main downfalls with these existing immersive telepresence systems are that they do 

not make use of electromechanical (moving) components, have low video quality performance, 

including frame resolution and/or frame rate, and consume a relatively high amount of power in 

case of CPU-based implementation [1]. The designed adaptive 3D-P telepresence system for mobile 

applications by [2] as shown in Figure 2.1, resolved the issues associated with the quality and 

transmission of the telepresence system. 

 

Figure 2. 1: Operation Using the Proposed Telepresence System Courtesy of [2] 

 

The focus of this work will be on the design and development of a multi-functional reconfigurable 

robotic platform that can be integrated with existing telepresence systems to utilize the 

electromechanical components of the system and enhance the tactical reliability and adaptability of 

the system. In the following sections, the existing approaches in designing reconfigurable robotic 

systems will be discussed. 
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2.3 Robotics and Reconfigurability  

A simple robotic platform consists of mechanical parts (chassis, housing, wheels, etc.), 

electromechanical parts (motors, buttons, switches, LEDs, etc.), and sensors (odometer, infra-red, 

accelerometer, etc.). Many of the parts related to the physical configuration of the robots are solely 

monolithic such that introducing a minor upgrade to the system requires scrapping the old design 

and reconstructing the system based on the new requirements.  

In contrast with the traditional fixed-structure robots, modular robotic systems capable of 

reconfiguring their morphology by rearranging the connectivity of their parts have revolutionized the 

design architecture of robotic systems [13]. In other words, the initial configuration of the robot is 

designed for a specific task and, upon completion of the task, the modules in the structure can be 

disconnected and reassembled to create a new configuration to support multiple modalities of 

locomotion, configuration and perception [14].  This feature of modular robots is considered to be 

the foundation of the reconfigurable robotic systems, including self-assembling, self-reconfiguring 

and self-organizing systems that can perform tasks in space, under the sea and human-inaccessible 

environments due to their adaptability and flexibility to serve as different instruments in various 

environments.   

It is worth mentioning that the concept of reconfigurability is not just bounded by the physical 

reconfiguration of the systems; rather, behavioral aspects as well as utilization of hardware 

components by reusing the components for various purposes need to be considered as well. 

Therefore, the reconfigurable system for the physical world can be divided into the following: 

i) Physical adaptation associated with the reconfiguration of the physical and mechanical 

components of the system to ensure the tactical functionality of the system upon 

confronting environmental interferences. 

 

ii)  Behavioral adaptation to utilize the physical components used in the design for a function 

or application that can be further subdivided into : 

a. Reconfiguration by changing only the procedure of the architecture. 

b. Reconfiguration by changing the system structure, including components, links between 

components and procedures. 
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2.3.1 Physical Adaptation 

The physical adaptation of reconfigurable robotic systems is associated with the physical and 

mechanical reconfiguration of the system by changing the orientation and assembly of the physical 

components to expand robotic system capabilities beyond the traditional single-task robotic designs. 

One of the first robotic infrastructures to employ this concept was proposed by [15] to be used for 

planetary surface operations, as shown in Figure 2.2. 

 

Figure 2. 2: Modular Robot Concept Proposed by [15] 

 

The proposed design consisted of the following modules: 

 Based module: the core of the robot that comes in different shapes based on the application 

and that interconnects with various modules. 

 Power modules: the power supply of the robotic platform. 

 Actuation modules: the modules that produce rotational motion that come in various sizes 

based on the required tasks to be done. 

 Kinematic Modules: also known as links, which are used to alter the dimension of the robot 

by changing the distance between its joints. 

 End-Effecter Modules: they include manipulators to perform assembly and sample 

collection. 

However, the proposed design fails to establish an actual prototype design, and most results 

presented occur only in simulation. Moreover, even though the reconfiguration of the infrastructure 

enhances the functionality of the robot, the proposed approach seems to be simply introducing 

multiple robotic designs for different operations, as the base module is the only one that remains 

unchanged. 
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In contrast with the above approach, where human interaction was required to set up the physical 

configuration of the robot based on the required tasks, a more advanced type of modular 

reconfigurable robotic systems, also known as Self-Reconfigurable (SR) robots, can be employed that 

are capable of adapting their physical configuration for environmental variations without any human 

assistance. 

A Self-Reconfigurable (SR) robot is a robust, multi-functional, scalable and self-repairable modular 

based robotic system, capable of metamorphosing its shape and changing physical connections and 

functions based on the conditions of the surroundings without any assistance from the outside 

world [16]. Configurations with arbitrary shapes and forms can be achieved to perform useful 

functions, such as navigation or handling objects, due to the existence of identical modules, which 

have no specific functionality on their own.  

The roots of creating SR robots were born back in the 1970s when robots with several modules were 

invented.  They were able to automatically switch between modules due to the required functions at 

a specific time. This approach serves the concept of SR robot design as each module can be replaced 

by another similar module, while the replaced module can also function as the initial module to help 

the system reach its objectives. The first SR robot to employ the concept of modular 

reconfigurability is the CEBOT (1988), which was composed of several modules, such as 

transportation and rotational joints and telescopic arms that enabled CEBOT to perform multiple 

tasks [17].  

Furthermore, the modular design of SR robots offers multi-functionality, robustness, flexibility and 

self-restoration.  The self-restoration ability of the SR robots refers to both internal and external 

environmental changes imposed on the system, such as mitigation of hardware faults associated 

with manufacturing defects, module failures, radiation and electromagnetic interferences, etc., and 

efficient and quick adaptation to unexpected changed circumstances. 

Over the past two decades, many advanced and sophisticated SR robot designs in terms of hardware 

architecture, planning and control algorithms, efficient simulation and system integration have been 

developed. However, the general architecture of the SR robots can be classified into two major 

groups [13]: Mobile Configuration Change (MCC) and Whole Body Locomotion (WBL) according to 

the nature of mobility patterns and the reconfigurable properties of the robot, as shown in Figure 

2.4. Each of these two classes is also branched out to sub-classes based on the geometric 

arrangements of the hardware components of the robots. 
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The MCC configuration refers to modular robots, where the modules are self-contained and interact 

independently with the environment. However, the WBL refers to the modular robots whose 

morphology provides different types of locomotion, such as walking, crawling and rolling [18]. The 

sub-categories associated with these two classes of modular robots are as follows: 

 Lattice architecture, which consists of units that are arranged and connected in some regular 

3D pattern, such as a cubic or hexagonal grid. The kinematic features of lattice robots can be 

categorized by their crystallographic displacement patterns [19], which allow specific motion 

patterns that result in simpler physical reconfiguration. However, many actuators and 

connectors are required to transfer the motions among the modules. 

 

 Chain/Tree architecture, which consists of units that are connected together in a string or 

tree topology in such a way that they are able to reach any point in the space. However, 

many units are required to construct a specific configuration that increases the complexity 

and overhead of the systems.  

 

 Hybrid architecture, which takes advantages of both chain/tree and lattice architectures by 

maintaining the control and mechanism of lattice type and exploiting the versatility of 

chain/tree architecture. 

 

Figure 2. 3:  Classification of the Reconfigurable Robots Courtesy of [13] 
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The advantages and disadvantages of the above architectures with respect to their level of 

complexity, scalability and feasibility are listed in Table 2.2, according to [17, 20, 21].  

Table 2. 2: SR Hardware Architecture Comparison 

Architecture Advantages Disadvantage Examples 

Chain/Tree versatile 

Less symmetrical compared to 

Lattice and requires a chain of 

many units to perform a task  

ModRED, 

Polybot 

Lattice 

easy to self-reconfigure and 

suitable for forming various 

static configuration 

Difficulty in generating motion. 

Complex mechanical design due 

to many connectors and actuators 

ATRON, 

M-Cubes 

Hybrid 
The cross-over between the 

chain and lattice types  

Anisotropic symmetry that makes 

it hard to self-reconfigure 

M-TRAN, 

SMORES 

 

However, there are currently no standard benchmarks for the performance parameter analysis of 

the modular robotic systems since it is difficult to directly compare the mechanical hardware 

architectures with one another. Therefore, most performance analyses such as [22], [23] and [24] 

are subjective and do not clarify if the reported values are based on actual measurements or 

engineering estimations. 

Even though advanced mechanical design of today’s self-reconfigurable robots, such as SMORES [25] 

and M-TRAN [26], which are capable of rearranging their modules in all three reconfiguration 

architectures (as shown in the table above) demonstrate a giant leap for the field of reconfigurable 

robotic systems, the majority of related works in this field rely mostly on the physical configuration 

of the robot and use of redundant and complex hardware to implement a modular reconfigurable 

design [27].  Therefore, in the following section, the behavioral aspect of reconfigurable robotic 

system will be discussed. 
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2.3.2 Behavioral Adaptation 

Behavioral adaptation is associated with the system’s accommodation to new functionality imposed 

by environmental or application variations. As mentioned earlier, the behavioral adaptation of the 

reconfigurable system can be achieved by either changing the procedure element or the entire 

system structure, including the components, the links between the components and the procedure 

of the system architecture.  

The main difference between these two forms of adaptation is the level of involvement of resources 

and the ability to recover in case of hard faults, such as radiation, manufacturing defects and EMI, 

etc. For instance, a mobile robot navigating on an angular terrain uses its sensing elements to avoid 

rolling-over; however, if the components associated with these sensing elements were defective, 

then the system based on the first method could not pursue its objectives.  On the other hand, the 

second method would offer other forms of behavioral adaptation such as decreasing the speed or 

lowering the height of the platform for stabilization.  

Moreover, the first method of adaptation requires switching procedures to alter the behavior of the 

system; this switch can be implemented using traditional high-performance sequential processors. 

This procedure could be as simple as multiplexing among different functions or as complex as 

loading configuration data via custom boot-loaders capable of loading the appropriate firmware 

upon start up [28]. However, consider the system in [26], which uses four microcontrollers for each 

module.  The reliability, high power consumption and cost of some of these elaborate systems may 

not be able to keep up be able to keep up with the performance parameter requirements of most 

embedded systems including reconfigurable robotic systems.   

On the other hand, the second method offers a completely versatile robotic system, in which,  not 

only the system can reconfigure its behaviors based on the required task, but  it can also recover 

from hard faults by partially functioning. For instance, the Spirit Mars rover became stuck in soft oil 

on Mars, but it continued to work as a stationary science platform for a few more months [29]. This 

method requires a high degree of complexity as not only the procedure part of the architecture is 

required to be modified but also the components and their links need to be changed to realize a 

versatile system capable of mitigating to hardware disturbances and adapting to unexpected 

environmental changes. Therefore, these systems can be best implemented using reconfigurable 

logic blocks. 

The reconfigurable logics have been used in industry mainly for development and rapid prototyping 

purposes. However, in robotics application wherein hardware and software could constantly change 
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due to different circumstances, designing a flexible, reconfigurable and adaptable system has many 

advantages.  The life cycle and performance of the robot would be enhanced, while power 

consumption, total cost and risks would be reduced [30].    

There have been some works in design and development of reconfigurable robotic systems using 

reconfigurable logic blocks of FPGAs such as [31], [32], [33] and [34], which will each be addressed in 

the following paragraphs. 

The robot designed by [31] used custom cores described in HDL along with an embedded soft-core 

processor with a traditional architecture to increase the versatility of a modular worm-like robot by 

dynamic hardware modification and hardware/software co-design and remote hardware 

reconfiguration. However, the focus of this work was to extend the previous work done by [35] by 

reducing the number hardware components. It does not examine the potentials of using dynamic 

hardware modification to define a set of modes of operation to reconfigure the system’s behavior as 

well as its physical arrangement. 

The dependability of the existing reconfigurable robots to their physical forms was addressed by [32] 

and [33]. They offered a flexible framework for adaptive locomotion control by taking advantage of 

dynamic partial reconfigurability of the FPGAs (see figure 2.4). However, the proposed system does 

not support the physical aspect of reconfiguration since human assistance is required to connect the 

modules. 

 

 

Figure 2. 4: Different Configuration of YaMoR Courtesy of [33] 
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The dynamic reconfigurable robotic system developed by [34] employed the dynamic partial 

reconfiguration feature of Xilinx Virtex-2FPGA to implement a dynamic run-time behavior 

reconfiguration in their system which includes two mobile robots. The system performs a certain 

task that can involve following a wall, avoiding obstacles, normal driving and leading/following 

during the run-time by downloading the partial configuration bit stream of required behavior to 

implement the corresponding interface circuit. Even though, the proposed system properly aimed 

for the modularity concept [36], where the system’s behavior is constructed from multiple control 

and communication modules to create different modes of operation, the main issue with [34] is the 

incapability of the system to utilize its resources, as many components are idly present during 

different modes of operation. 

The proposed system by [37] took a similar approach and incorporated the hardware task scheduling 

into the traditional scheduling process using conventional processors. The system partitioned a 

complex software task into five independent subtasks, which are stored in a memory device. A 

hardware task scheduler controlled the execution order of the subtasks by downloading different 

partial configurations bitstream on to the FPGA. However, the proposed approach was examined 

only through simulation due to the nonexistence of any benchmark packages for a reconfigurable 

system. 

Based on what has been discussed so far, many works have been done in the area of reconfigurable 

robotic systems. However, the main focus of these works is on the physical configuration of the 

system, with a disregard for the behavioral aspects in most cases. On the other hand, the recent 

works focusing on the behavioral aspects are often application-specific and fail to exploit the full 

potentials of the behavioral adaptation aspect of a reconfigurable robotic system. Therefore, it is 

essential that we redefine the concept of reconfigurable robotic system to design a multi-functional 

universal robotic platform capable of functioning in various environments. 
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2.4 Summary 

In summary, we addressed the necessity of using mobile reconfigurable robotic systems in a 

telepresence system, whereby human beings can realistically and remotely operate mobile robots in 

hazardous and inaccessible environments, from safe locations. We discussed the recent and existing 

approaches in design and development of reconfigurable robotic systems and clarified the 

conceptual difference between the physical and behavioral aspects of reconfigurable robotic 

systems. We outlined the limitations of each approach to come up with a universal reconfigurable 

robotic platform that can be integrated with existing systems, including telepresence systems.  
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3. Architecture Development of Multi-

Modal Reconfigurable Robotic Platform  

3.1 Introduction 

The main idea behind implementing reconfigurable robotic systems is the ability to adapt to 

environmental conditions and constraints by altering the physical reconfiguration of the robotic 

system and still maintain the functionality and behavioral conformation to the applied physical 

changes.  In other words, the configuration of the robotic system including its physical, computing 

architecture control and communication configuration, etc. should correspond to the workload and 

environmental conditions imposed upon the system. 

Many works have explored the area of reconfigurable robotic systems in terms of changing the 

physical configuration, as any type of robotic systems that can change its shape, topology and 

position of its physical parts can be considered reconfigurable.  However, the main difference 

between the conventional robotic systems and an actual reconfigurable robotic system is the fact 

that the functionality of the first system does not change as the topology of the system alters, such 

as assembling equipment, moving or manipulating other objects, etc. On the other hand, a true 

reconfigurable robotic system is a multi-modal system, in which the configurations (topological and 

behavioral) are optimized for the modes of operation. In this case the physical reconfiguration 

becomes a process for adaptation to the new mode of operation even as the behavioral 

accommodation leads to the new functionality of the system.   

Moreover, as it was discussed in Chapter 2, most of the works done in the area of reconfigurable 

robotic systems targeted the physical aspect of reconfigurability, while the behavioral aspect and 

utilization of resources are often disregarded. This chapter contains a detailed description of our 

proposed system by analyzing the various modes of operation to determine the architecture of a 

multi-modal autonomous mobile reconfigurable robotic system.   
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3.2 Concept and Theory Analysis 

The concept of reconfigurability has become a popular subject in the realm of computer 

architecture. Reconfigurability is referred to as the ability to change the hardware or parts of the 

hardware either on a problem-by-problem basis or during the lifetime of an algorithm solving one 

problem instance [38].  

Reconfigurability has a tight relationship with the concept of survivability, which can be simply 

defined as the ability to continue to exist by avoiding regression and external disturbances and thus 

maintain overall stability. In engineering, survivability is the overall ability of a system and 

subsystem’s process to continue functioning despite the occurrence of natural or man-made 

disturbances, such as electromagnetic wave interferences, hardware malfunctions, etc. 

A deeper look into nature and wildlife verifies the existence of reconfigurability, wherein the form or 

the physical descriptions of animals determine their characteristics, habitats and activities of species. 

Depending on the type of the species habitat, animals need to adjust themselves to change along 

with the environment. The polar bear is a good example of adaptation of mammals in extremely cold 

Arctic weather. The thick fur and layer of stored fat under the skin help the bears to trap air and 

insulate their body in order to survive [39]. 

Furthermore, survivability dictates the configuration and lifestyle of the species as it tends to 

achieve sustainable growth and avoid regression and degradation. The need to survive has been the 

foundation of species’ evolution to guarantee their existence in a particular ecosystem. For example, 

the difficulty in finding food resources during the winter forces certain mammals to conserve energy 

by reducing their normal body processes to almost a stand-still (hibernation) in order to survive in 

harsh weather conditions. 

The same analysis can be applied when designing reconfigurable systems, where a reconfigurable 

system can be redefined as a system that requires multi-functionality and the ability to change its 

configuration including physical and behavioral aspects to mitigate the environmental harshness and 

adapt to the surrounding variations. Having said this, the general organization of our proposed 

reconfigurable robotic platform can be discussed.  

The general organization of our proposed multi-modal robotic system is based on the concept of 

“form follows function” and is expected to be used as a universal multi-functional robotic platform 

for integration with existing systems, such as telepresence systems. The proposed concept simply 

implies that the physical form and configuration of the system should comply with the task in 
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process. For instance, a mobile robotic subsystem of a telepresence system should be able to 

perform multiple tasks such as navigation, recording and transmission of image data to the control 

center. However, the number of physical components of the system can be reduced by utilizing the 

hardware resources during the performance of each task. For instance, the tower holding the 

camera modules of the robotic system can be placed down during navigation to enhance stability 

and avoid roll-overs and therefore eliminate the need to have sensing elements, such as 

accelerometers to constantly monitor and adjust the tower’s level. Additionally, the number of 

camera modules can be reduced based on the application’s need to see far objects; the two front-

view cameras can be adequate to provide a telescopic view rather than using four cameras to 

provide a panoramic view to a remote operator. 

Based on what has been discussed so far, it is necessary to define the reconfigurable system by its 

operations and to categorize its functions into a set of modes of operation that also incorporates 

resources arrangement and optimization. In this case the physical adaptation aspect of the 

reconfiguration becomes a process for adaptation to the new mode of operation with the behavioral 

accommodation to the new functionality of the system.  Therefore, the multi-functional 

characteristics of our reconfigurable moving platform imply that unlike the uni-functional systems, 

traditional ASICs, there should be a set of operation modes, which may vary the physical 

configuration of the system and switch during various stages of task executions on the basis of 

request or environmental conditions.  

To put our proposed robotic platform to the test, we took advantage of the existing 3D-P 

telepresence system, designed and developed earlier by this laboratory, and defined a set of 

operational modes for the platform to determine the general system architectural organization.  
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3.3 Modes of Operation Analysis  

In order to distinguish the primary modes of operation for the moving platform, the required tasks 

of the system need to be defined. A typical scenario will be discussed to shed some light on the 

behavior of the system and the actions of which it is capable: 

 The system is out on the field and initially at rest. The system conserves energy by eliminating 

and reducing unnecessary activities. However, the system is able to communicate with the 

teleoperator, who is located at the master side. 

 

 The system enters an observation stage upon receiving a request from the master side, in which 

the vision system performs stereo-panoramic acquisition of the scene and then pre-processes 

and transmits the captured data back to the master site for further actions. The hardware 

organization of the system needs to be formed in such a way to enhance and maintain the 

quality of the captured images and perform further adaptation mechanisms, such as changing 

video frame resolution, frame rate, compression levels, disparity, noise reduction, etc. 

 

 The transmitted data is received by the teleoperator, who now has a clear vision and perception 

of what is happening on the slave side and can act accordingly by remotely controlling the 

moving platform via the provided manipulators.  

One of the most important and interesting features of the system comes into effect when the 

system is required to relocate itself to another position due to a request by the master side. In this 

case the system will not capture any more images due to noise, vibrations and other factors that can 

affect the data and the operator’s vision and perceptual capabilities during the movement. However, 

the system autonomously drives itself to the requested position by exploiting its navigation sub-

system that controls the speed, distance, balance and obstacle avoidance features.  

It should be noted that, even though no image is captured and transmitted to the master side, the 

teleoperator will not notice the interruption and continues to observe stereo-panoramic video, 

which is modified and updated by the control unit at the master side, based on the video generated 

earlier by the moving platform. 

Upon arriving at the destination, the moving platform will notify the control center and then start to 

transmit new stereo-panoramic video, which will be picked up and demonstrated to the 

teleoperator for further decision making. 
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By knowing the possible tasks of the moving platform, the behavior of the FPGA- based control and 

communication system for the mobile autonomous re-configurable robotic platform can be grouped 

and implemented as shown in Figure 3.1, to accommodate various tasks requirements.  

 

 

 

 

 

 

 

One of the advantages of using a multi-modal design is the scalability or the ability to expand the 

system’s tasks by simply adding individual modes without interfering with other modes of operation. 

A multi-modal system also enhances flexibility of the design in the sense that modes of operation 

can be modified or even removed without sabotaging the overall performance of the system. For 

instance, UAVs, Quadra-copters, equipped with cameras enhance the flexibility and scalability of the 

system by increasing the range of motion, are able to fly and gather data from places otherwise 

difficult or impossible for a heavy surface-drive platform to reach. These features along with 

versatility, robustness and low cost become handy when the system is unable to perform its regular 

tasks due to an external interference or disturbance from the surrounding environment. In this case 

the system can carry on by operating in other modes.  

In the following subsections, we will describe the required tasks, physical configuration and 

resources of each mode to come up with the architectural organization of the system. 

IDLE Mode Observation 

Mode 

Front view 

Mode 

Navigation 

Mode 

RF cmd: Mode 1   

RF cmd: Mode 2 

RF cmd: Mode 3 

 RF cmd: Mode 0 

Mode 1 Mode 2 

Mode 3 Mode 4 

Figure 3. 1: Robotic Platform’s Modes of Operation 
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3.3.1  Idle Mode 

Function: In the idle mode, the robotic platform is in a stationary state and conserves energy by 

shutting down all the unnecessary components. The RF link is engaged to receive further instructions 

from the control center. 

Physical configuration: The platform is stationary, the Head and Tower are in low position facing 

the horizon, as shown in Figure 3.2. 

 

Figure 3. 2: Description of the Idle Mode 

Resources: To realize the system in this mode, the system requires the following subsystems as 

shown in Figure 3.3:  

 Power-saving 

The power saving module is responsible for conserving energy by turning off all unnecessary devices 

and placing them in disabled mode. Such components as the camera module, motors and 

transceivers may be turned off to save power. 

 RF-Link 

The RF-Link module is responsible for sending and receiving commands from the master’s side and 

direct the mode transitions based on the received command.  

 

RF-Link Idle     Mode Power Saving 

Figure 3. 3: Initial Block-Diagram of Idle Mode 
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3.3.2  Observation Mode 

Function: In the observation mode, the system captures, processes, compresses and transmits 3D-

Semi-Panoramic images of the scene by means of the 4 video sensors located at the top of the Head 

compartment. An RF-Link is also used to obtain further instructions, such as Head angles and future 

destinations. 

Physical Configuration: The platform is in stationary state, the Head, which contains the video 

sensors is facing the horizon, parallel to the body of the platform.  The Tower, which connects to the 

base of the platform to its “Head,” is in high position, as shown in Figure 3.4. 

 

Figure 3. 4: Description of the Observation Mode 

 

Resources: to realize the system in the Observation mode, the system requires the following 

subsystems, which will be described below: 

 RF-Link 

The RF-Link module, discussed in Section 3.3.1 can be applied in the observation mode as well. 



26 
 

 Video-Acquisition and Pre-Processing Unit 

The video-acquisition and pre-processing module is responsible for capturing 3D-Semi-Panoramic 

images of the scene by means of 2 frontal and 2 peripheral video sensors located at the top of the 

Head. The 3D-SP video packages are compressed by the JPEG2000 compressors and then 

transmitted to the control center via Coded Orthogonal Frequency Division Multiplexing (COFDM) 

Modulator based Satellite transmitter as discussed in [1]. This module has been implemented as 

shown in Figure 3.5 by [1]. 

 

 

 

 

 

 Linear Actuators 

To move the Head, which contains the video sensors, up or down, a linear actuator sets the level of 

observation. Another linear actuator can be used to enhance the degree and focus of observation by 

lifting the Head vertically.  

 Accelerometer  

The angle of observation can be precisely set by using an accelerometer placed in the Head 

compartment mode since the platform is stationary and the orientation of the robotic platform 

relative to any surface can be simply identified.  

The overall required components of this mode can be categorized as illustrated in Figure 3.6: 

 

  

Video 

Compressor 

Video Pre-processor 

3D-SP 

Camera 
Transceiver 

Transport stream 

combiner 

Video-Acquisition and 
Pre-Processing 

 

Accelerometer 

Linear Actuators 

RF-Link 

Observation Mode 

Figure 3. 5: Video-Acquisition and Pre-Processing Subsystem Block-Diagram Courtesy of [1] 

Figure 3. 6: Initial Block-Diagram of Observation Mode 
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3.3.3  Front-View mode 
Function: Two video-sensors are capturing 3D images at each of N-angular positions of the Head. 

Disparity mapping analyzer is “ON” to create the map of obstacles and their allocation on frontal 

distance of X-steps of “Body” movement. COFDM RF-transmitter is actively transferring the number 

of compressed 3D images to the mission control centre, and an RF-Link is present to obtain further 

instructions.  

Physical configuration: The platform is in the stationary state similar to idle mode. However, the 

Head is moving from the horizontal position to the vertical as shown in Figure 3.7.  

 

Figure 3. 7: Description of the Front-View Mode 

Resources: The Front-View mode requires the following resources: 

 3D- Image Interpolation Unit 

This subsystem is similar to the VAPP, in terms of capturing, compressing and transmitting the image 

to the control center. However, only 2 frontal cameras are used to create a map of obstacles and 

their distance from the platform. The generated map is then sent to the control center, which will 

use it to predict the robotic platform during navigation, whenever no video data is being transmitted 

to the control center. 

 Linear Actuator 

A linear actuator is also used to set the level of observation along the Y-axis to help provide a frontal 

view in 3D. 

 RF-Link 

The RF-Link module, discussed in Section 3.3.1 can be applied in the observation mode as well. 
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3.3.4 Navigation Mode 

Function: In the navigation mode, the system drives the robot’s motors, monitors displacement, 

avoids hitting the obstacles and communicates with the control center for verification and receiving 

further instructions.  

Physical configuration: The Head is in low position, facing the horizon to avoid hitting obstacles. 

The Tower is also in low position similar to the configuration of idle mode to enhance stability and 

avoid roll-overs while the platform is moving toward the requested location. 

Resources: The navigation mode consists of the following individual component, which are 

illustrated in Figure 3.8:  

 RF-Link 

The RF-Link module, discussed in Section 3.3.1 can be applied in the observation mode as well. 

 DC brushed motors 

6 DC-brushed motors are required to enable the heavy robotic platform to move on any terrains and 

carry the subsystems placed in the Head compartment. 

 Motor controller 

A motor controller is required to control the speed and direction of the motors. 

 Odometer 

An odometer is used to measure the distance travelled by counting the number of times it takes for 

one wheel of the robot to make a full wheel rotation. 

 Obstacle sensors 

Obstacle sensors are required to avoid colliding with any objects that may be in the way. The 

Obstacle sensors consist of optical devices placed around the Head compartment to protect it 

against hitting unwanted objects.  

 

 

 

 

Odometer RF-Link 
Navigation 

Mode 

Motors Motor controller Obstacle sensors 

Figure 3. 8: Initial Block-Diagram of Navigation Mode 
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3.4 System Architecture Organization 

The modes of operation analysis, discussed in the previous section made it possible to define a set of 

functional specification required for the general architecture development of the system. As can be 

seen in the previous sections, common resources exist in different modes of operations. However, 

the respective configurations and functions may vary depending on the active mode. For instance, 

even though the Tower is involved in both observation and navigation modes, switching to 

observation mode from the navigation mode require stopping the robotic platform and elevating the 

Tower to capture video data. Therefore, the main goal of this section is to determine the actual 

required resources, their functions and interactions in different modes of operation. Table 3.1 

demonstrates the status of resources in the four modes of operation. 

 Table 3. 1: Resource Interactions among the Modes of Operation 

 

As can be seen in Table 3.2, the RF-Link is present in every single mode. However, the motors, 

odometer and obstacle Sensors are active only in navigation mode. Moreover, the Video-Acquisition 

and Pre-Processing, VAPP, is only enabled when the system is in observation mode. The power 

saving is present only during the idle mode; last but not the least, the Head is active only during the 

front-view mode. 

Furthermore, based on the proposed mode of operation analysis in Figure 1, the level of Tower does 

not change during the front-view mode as the Tower is already in high position when transitioning 

from observation to front-view mode. Hence, resource optimization can be achieved on to dedicate 

appropriate resources to each mode based on the defined and default functions described in Section 

Mode/Resource Idle Observation Front-View Navigation 

Power-saving Enabled Disabled Disabled Disabled 

VAPP Disabled Enabled Disabled Disabled 

Tower Actuator Low High/Low High Low 

3D-Image Int. Disabled Disabled Enabled Disabled 

Head Actuator Low Low High/Low Low 

Motors & Controller Disabled Disabled Disabled Enabled 

Odometer Disabled Disabled Disabled Enabled 

Obstacle Sensors Disabled Disabled Disabled Enabled 

RF-Link Enabled Enabled Enabled Enabled 
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3.3. This analysis will be discussed shortly after defining the required processing unit to implement 

the described modes of operation. 

Due to what has been discussed in chapter 2 of this thesis, FPGAs provide higher performance and 

lower overall costs compared to conventional microprocessors. The ability of FPGA to provide soft 

and hard core processing options, such as PicoBlaze (obsolete), MicroBlaze and PowerPC, helps the 

system designer to exploit the advantages of using 32-bit microcontrollers as well as designing parts 

or an entire system in the form of Virtual Hardware Components.  

In the subsequent sections, the organization of each individual operational mode of the proposed 

system architecture is described. 

  



31 
 

3.4.1 Idle Mode Architecture 

Due to the required resources and tasks mentioned in Sections 3.3 and 3.4, the idle mode consists of 

two major components, namely, the power-saving and RF-link components. Power-saving exists to 

conserve energy, hence disabling inactive components of other modes of operation and eliminating 

or reducing unnecessary activities to help us to reach this goal. 

On the other side, an RF-transceiver is required to communicate with the control center, located at 

the master’s side. The implementation of the RF-Link interface will be determined based on what 

kind of transceiver is used.  

To achieve the goal of minimizing energy use, we need to define the subsystem’s constraints in 

order to choose the best Radio Frequency solution for the design. The most important system 

features include the range of operation, data rate, overall performance and development and actual 

costs. Therefore, some of the wireless standards authored by the Institute of Electrical and 

Electronics Engineers (IEEE), including IEEE 802.11, 802.15.1 and 802.15.4 that can be used in mobile 

applications are examined and summarized in Table 3.2. 

Table 3. 2: Comparison of RF Technologies 

Standard Bluetooth ZigBee WLAN/WiFi 

Freq. band 2.4 GHz 868/915 MHz, 2.4GHz 2.4 GHz,5 GHz 

Max signal rate 1 Mb/s 40kb/s,250 Kb/s 54 Mb/s 

Nominal range 10 - 100m (industrial) 10 – 100+ m 100 m 

Channel bandwidth 1 MHz 0.3/ 0.6MHz; 2MHz 22 MHz 

Modulation type GFSK BPSK(+ASK), O-QPSK COFDM, CCK,M-QAM 

No. of nodes 7 64000 32 

Security Low High High 

Complexity complex Simple Very complex 

Cost  Low Low High 

Power consumption Low Low High 

 

Since the amount of data to be transmitted from/to the control center to/from the mobile platform 

is limited to a few instructions, the minimum bandwidth does meet our requirements. Hence, based 

on the results shown in the table above, the ZigBee option makes a better candidate than Bluetooth 

and WLAN/WiFi for transmiting the commands between the master and slave sides. 
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The next step is to choose a processing platform to interface with the selected RF standard. 

Generally speaking, the amount of information transmitted to and from the system is limited, hence 

speed and parallelism does not play a crucial role in our system design. For this reason, a slower 

processor, such as instruction-based soft-core processor, can be used. Using interrupt-based RF-Link, 

which helps maintain the system without waiting for the arrival of further instructions, can help 

overall performance, design implementation and time required to develop the system all due to its 

simplicity. The overall component description of this mode is shown in Figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Idle Mode 

RF-Link 

Power-Saving 

RF transceiver 

Figure 3. 9: Idle Mode Block-Diagram 
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3.4.2 Observation Mode Architecture 

As mentioned earlier, the observation mode shares the RF-Link with the idle mode and uses the 

previously implemented VAPP subsystem by [1, 2] to capture, process and transmit 3D-SP images to 

the control center. However, the RF-Link can be omitted from the module to simplify and optimize 

the design. Therefore, the system gives control to the idle mode upon finishing the required tasks of 

observation mode. The use of accelerometer and the linear actuator help to accurately adjust the 

level and focus of observation. Hence the following hardware elements can be supposed for the 

architecture design of this mode. 

 Tower:  

 Accelerometer 

 Linear Actuator 

 VAPP: 

 4 Image sensors 

 Video Compressor/Decompressor 

 COFDM Transceiver 

Generally, controlling of linear actuators can be as simple as applying voltage to their inputs. Hence, 

performance and speed are not subjects of concern. However, linear actuators change directions by 

having the voltage in reverse polarity. Therefore, a hardware mechanism needs to be set in place to 

alter the polarity of the input voltage of the actuator.  

Furthermore, depending on the Accelerometer, various communication protocols can be 

implemented. However, the level of actuators needs to be adjusted while the actuator is running. 

Hence, implementing a parallel procedure would be a better option than using a sequential 

processor. The overall component description of this mode is shown in Figure 3.10. 

 

Observation Mode 

Video-Acquisition and Pre-
Processing 

Tower 

Accelerometer Linear 

Actuator 

Figure 3. 10: Observation Mode Block-Diagram 
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3.4.3  Front-View Mode Architecture 

Similar to the observation mode, the front-view mode can exclude the RF-Link since the control of 

the system makes the transition back to the idle mode, by which the system can communicate with 

the control center. Moreover, a linear actuator is used to set the Head compartment at defined 

angular positions to help the 3D-image interpolation unit capture a map of obstacles before entering 

the navigation mode, when no video data is transmitted to the control center due to the emergence 

of noise and vibrations during the movement. This feature helps the operator in the master’s side to 

guide the robot through the best possible route and have a clear vision of the scene without any 

interruption during the navigation mode. Based on what has been discussed, the following hardware 

elements can be presumed for the architecture design of this mode. 

 Head:  

 Linear Actuator 

 3D- Image Interpolation: 

 2 out of 4 Image sensors of VAPP 

 Disparity mapping analyzer 

 Video Compressor/Decompressor 

 COFDM Transceiver 

The architecture organization of this mode is very similar to the observation mode because RF-link is 

shared among both modes and can be omitted as the control of the system is makes the transition 

to the idle mode upon task completion. Moreover, the same analysis performed for the linear 

actuator of the Tower can be applied to the one associated with Head. Moreover, the focus of this 

thesis is on the control section of this project. Hence the 3D-image interpolation subsystem will not 

be discussed here. The overall component description of this mode is shown in Figure 3.11. 

 

 

Front-view Mode 

3D- Image Interpolation 

Head 

Linear Actuator 

Figure 3. 11: Front-View Mode Block-Diagram 
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3.4.4 Navigation Mode Architecture 

The navigation mode is responsible for driving the platform to the destination specified by the 

control center based on the map obtained via the Front-View mode. No video will be transmitted to 

the control center since a moving platform can generate a great deal of noise and vibration that will 

affect the quality of the images, performance of the system and lead to an unpleasant experience by 

the operator.  Hence, by sending the current location of the platform to the control center, the video 

processing subsystem [1], located at the master’s side can interpolate the frame based on the 

current speed and location of the robot and present a real-time video of the scene to the operator. 

As mentioned in Section 3.4, the navigation mode consists of the following hardware elements: 

 Navigator:  

 Motors 

 Motor Controller 

 Odometer 

 Obstacle Sensors 

 The overall component description of this mode is grouped and shown in Figure 3.12. 

 

 

 

 

 

 

The motor controller is responsible for setting the speed and direction of the motors. Depending on 

the type of motor controller, which can be designed or purchased off-the-shelf, a specific 

communication interface is required. This interface could be as simple as toggling a few pins or as 

complicated as implementing a UART interface.  

Furthermore, the navigator component of the navigation mode also consists of an odometer unit 

placed across the shafts of the middle wheels and obstacle sensors which are placed around the 

Head of the platform, as the Head is located at the very front of the platform during the movement. 

The overall description of the navigator module is shown in Figure 3.13. 

Navigation Mode 

Navigator 

Odometer Obstacle Sensor 

Motors Motor controller 

Figure 3. 12: Navigation Mode Block-Diagram 
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Even though the functions described in Section 3.3.4 suggests that the Navigator may be 

implemented in a sequential form, parallelism offers more benefits, such as the ability to avoid and 

respond to obstacles and interferences in real time and to navigate with higher precision. Hence, 

hardware implementation of the navigator component will lead to higher performance, speed and 

less logic resources and area. In order to match the performance of the hardware implementation, 

the sequential processor needs to run at a faster clock rate, which is not possible in the case of 

embedded soft-core processor; in the case of using microcontroller, additional algorithms to 

increase the frequency leads to higher power consumption, which would require extra specialized 

cooling system to eliminate the excessive and potentially damaging heat from the device. 
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CTRLR 
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M Motor 

Figure 3. 13: Description of the Navigator Module 
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3.5 Summary 

In this chapter, we discussed the specification of a true reconfigurable robotic system and proposed 

the idea of “form follows function” to emphasize that a reconfigurable system is not only defined by 

reconfiguration of its physical/mechanical components. Rather, the physical configuration of the 

system may alter based on the operational task of the system to accommodate its new functionality. 

Therefore, we proposed a robotic platform to be integrated with the previous work done regarding 

the telepresence system to demonstrate our proposed concept. To realize such a system, a set of 

tasks were specified for the system, which were then divided into multiple modes of operation. The 

required resources and components for each mode of operation were discussed to arrive at the 

actual architecture organization of the design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

4. Implementation of the Multi-Modal 

Reconfigurable Robotic System 

4.1 Introduction 

The objective of this chapter is to discuss the specific aspects of implementation for the proposed 

reconfigurable robotic platform. The analysis and architectural organization of the system, 

presented in the previous chapter, makes it possible to select the most appropriate tools and 

components to create a functioning prototype, which can allow us to test and verify all the aspects 

of the system performance. The implementation of the proposed system is divided into these two 

major parts: 1) the electro-mechanical part and 2) control and communication part. 

The electro-mechanical part of the system consists of all the elements constructing the frame and 

physical base of the platform, which are beyond the scope of this paper. The control and 

communication part of the platform is the part involving the component selection, system 

architecture implementation as well as the test and verification of the design. Therefore, in this 

chapter we will look at the process of selecting components and associated hardware, firmware and 

software components for each mode of operation. 
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4.2 System design Implementation 

As mentioned in Section 3.2, the proposed robotic platform is to be integrated with a more 

complicated system known as 3D-P telepresence system that consists of two major subsystems: 

Video Acquisition and Pre-Processing Subsystem and Video-Processing Subsystem, which are 

interconnected via a communication channel consisting of data and control busses (see Figure 4.1).  

 

 

The Video-Processing Subsystem is located on the master side and performs the reception of the 

compressed video stream, distribution of video data to a storage memory, execution of various 

image processing algorithms and output of the results to the display system. The analysis of this 

subsystem is beyond the scope of this document. The focus of this thesis is on the slave side of the 

operation and the extension of previous work done in this area based on the system architecture 

discussed in the previous chapter. The implementation of the design is divided into the following 

components: 

 The hardware, HW, component of the design refers to any part of the system that consists of 

electronic circuits or as a set of electronically interconnected components located on a 

common area. 

 The firmware, FW, component of the system refers to any type of circuits described at logic 

level using HDL and represented in a form of configuration bit stream. 

 The software, SW, component of the system is referred to as any type of instruction based 

program described in High-level or Low-level programming language and executed on a 

sequential general-purpose processor, such as microprocessor of a microcontroller or 

soft/hard-core processor of an FPGA.  

In the following subsections, the organization of each individual operational mode of the proposed 

system architecture is described, and the logic behind implementing each part in HW, FW and SW is 

discussed. 

Video-Acquisition and 

Pre-Processing 

Subsystem 

Video-Processing 

Subsystem 
Communication Channel 

Figure 4. 1: Telepresence System Architecture Courtesy of [1] 
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4.3 Modes of Operation 

4.3.1  Idle mode 

As mentioned in Chapter 3.4.2, an RF-link is required to provide a wireless communication between 

the slave and master sides. In the earlier work, an RF transceiver interface component using serial 

differential link [1] was implemented to communicate between the two subsystems described in 

Section 3.4.  However, the main purpose of implementation of such an RF interface was to transmit 

the captured video data to the control center. Therefore, to prove the functionality of our proposed 

system and test the platform, another RF transceiver is required to transmit data to/from the robotic 

platform from/to the control center.  

4.3.1.1 Idle Mode Hardware Architecture 

An XBee module, which is the embedded solution to provide wireless connectivity using ZigBee, IEEE 

802.15.4 protocol, was selected as the backbone of the RF-Link module. From the wide variety of 

XBee modules, XBee-Pro 802.15.4 Extended Range module was selected with the following features 

[40]: 

 Power output: 63mW(+18dBm) 

 Indoor/Urban range : up to 90m 

 Outdoor: up to 1.6 Km RF Line-of-sight  

 Receiver sensitivity : -10dBm  

 RF Data rate: 250kbps 

 Interface data rate: up to 115.2 kbps 

 Operating frequency: 2.4 GHz 

 Supply voltage: 2.88-3.4 VDC  

 Current: 215mA (Transmit), 55mA(Receive) @ 3.3V 

 Antenna option: Chip antenna or wired whip antenna 

 Interface option: UART 

The features of the selected XBee module indicate that we need to implement the universal 

asynchronous receiver/transmitter, UART, serial interface to communicate with the XBee module. 

The required UART settings for the XBee module are as follows: 

 Baud rate (BR): 9600 bps 

 Data:  bits : 8 bits -  Parity: none - Stop bit: 1 bit 
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4.3.1.2 Idle Mode Firmware Component 

To develop and implement the functionalities of the UART to interface the processor with the XBee 

module, we have the option of implementing the design in the form of Virtual Hardware 

Components, VHC, or Virtual Software Components, VSC, on an FPGA’s soft-core processor. The 

following subsections describe the features of each implementation approach and the required FW 

associated with the RF-Link module. 

4.3.1.2.1 Implementation of UART in VHC 

To simplify the design, the UART protocol interface is divided in two subsystems, namely, Receiving 

and Transmitting subsystems. 

 Receiving Subsystem 

 Due to the asynchronous nature of UART, in which no clock information is sent from the transmitted 

signal, the oversampling procure is commonly used to estimate the middle points of transmitted bits 

and correct reception of the bits [41]. The conceptual block diagram of a UART receiving subsystem 

consists of three components, as shown in Figure 4.2: 

 

 

 UART receiver: the circuit to obtain data word via oversampling, in which a 3-state state 

machine is used to process the start bit, data bits buts and stop bit upon receiving a 

notification signal from the baud rate generator. 

 Interface circuit: the circuit to provide buffer between the UART receiver and the main 

system to prevent receiving a word data multiple times. 

 Baud rate generator: the circuit to generate sampling signal with a frequency of 16 times 

UART designated baud rate. Hence, the following equation is applied to estimate required 

clock cycle for a one-clock-cycle tick. 

 

Baud rate 
generator 
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Interface 
circuit 

clk 
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Rx_done_tick 
S_tick tick 

R_data 

Rd_uart 

Rx_empty 

Figure 4. 2: Block-Diagram of a UART Receiving Subsystem Courtesy of [41] 
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 Transmitting Subsystem 

The organization of transmitting subsystem is similar to the receiving one. It is essentially a special 

shift register that loads data in parallel and shifts in data bit by bit and then reassembles them. The 

transmitting subsystem consists of a UART transmitter, baud rate generator and interface circuit. 

The interface circuit is similar to the receiving subsystem with the exception that the UART 

transmitter clears a flag or reads a buffer, while the main system sets the flag or writes into the 

buffer to indicate whether any received data word is available [41]. The lock diagram of a complete 

UART system as proposed by [41] is illustrated in Figure 4.3. 

 

 

 

4.3.1.2.2 Implementation of UART in VSC  

The implementation of the UART interface in MicroBlaze seems easier using Xilinx Platform Studio, 

XPS. The XPS implements the hardware and software functionality of the UART Lite that performs 

parallel to serial conversion on characters received from CPU through Peripheral Local Bus, PLB, and 
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Figure 4. 3: Clock-Diagram of a Complete UART Courtesy of [41] 
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serial to parallel conversion on characters received from a serial peripheral [42]. The XPS UART Lite is 

capable of transmitting and receiving 8, 7, 6 or 5 bit characters, with 1 stop bit and odd, even or non-

parity. The detailed block diagram of the XPS Lite UART is shown in Figure 4.4, where the top level 

modules are: 

 PLB Interface Module: It provides bi-directional interface between the UART module and 

the PLB and implements the PLB protocol logic. 

 UART Lite Register Module:  It includes all memory mapped registers and interface to the 

PLB through the PLB interface module. It consists of an 8-bit status register, an 8-bit control 

register and a pair of 8-bit Transmit/Receive FIFOs. 

 UART Control Module: It consists of an RX module, a TX module, a parameterized baud rate 

generator (BRG) and a control unit. It incorporates the sate machine for a) initialization and 

b) start and stop bit control logic.  

 

Figure 4. 4: Block-Diagram of XPS UART Lite Courtesy of [42] 

 

Based on the analysis made above and due to the fact that the customized UART module, supplied 

by Xilinx can be considered as a gate-level description that utilizes Xilinx-specific components, the 

VSC option is a better choice in terms of overall efficiency, development time, cost and sufficient 

performance, as suggested in Chapter 3. 



44 
 

Furthermore, since the architectural organization of design consists of hardware and software 

components, as mentioned is Section 3.4, it is necessary to implement a storage device to retain the 

crucial information from each mode of operation, such as the distance to be travelled by the robotic 

platform. Therefore, an 8KB-dual block RAM memory was implemented to store the information to 

be shared among the modes of operation. Therefore, the component symbol of the soft-core 

processor part of the design consisting of the required memory blocks and their controllers, the 

UART, RS232, interface component, clock and reset components and a debug module are all 

depicted in Figure 4.5. The more detailed MicroBlaze structure is found in appendix A. 
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Based on what has been discussed, the component symbol of the idle mode consists of input and 

output ports for the RS232 interface, a clock and a reset input ports to feed the component with a 

clock rate of 50 MHz and half the activities of the component, and finally the required dual BRAM 

ports to interface the VSC and VHC of the design (see Figure 4.6). 

 

 

 

 

 

 

 

 

 

 

As shown in the figure above, Port B of the dual block Ram is inputted to the VHC part of the design, 

while the port A is accessible in the VSC part of the design. Therefore, data written via either port of 

the BRAM can be accessed and manipulated by the other port. 

 

4.3.1.3 idle Mode Software Component 

The software component of the idle mode is responsible for receiving and transmitting commands 

and acknowledgements to the control center via the RS232 interface with XBee module. The 

received instructions are placed in the shared memory via port A of the BRAM.  

 

 

 

Figure 4. 6: Idle Mode Component Symbol 
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4.3.2  Observation Mode 

The observation mode of the system consists of a VAPP module, a linear actuator and an 

accelerometer to meet the functional specifications. The VAPP subsystem has been implemented by 

[1] and will be used with no modifications. Therefore, the remaining hardware components to be 

examined are the linear actuator and the accelerometer placed in the Tower module. 

In the following subsections the hardware and firmware components of this mode are addressed, 

and the observation mode component symbol of the system to be implemented is described.  

4.3.2.1 Observation Mode Hardware Architecture 

In this section the required hardware components of this mode and the steps in selecting those 

components are discussed. 

4.3.2.1.1 Linear actuator 

The linear actuator acts as the robot’s manipulator and is strategically placed to level the camera 

module up and down. Some things need to be considered when selecting a linear actuator, such as 

the force required to move the load, the distance the load needs to be moved and the time required 

to move the load. Based on the mechanical hardware design of the robotic platform, the following 

specifications were considered: 

 Maximum weight of the camera module, including accessories : W= less than 50lb ≈ 23Kg 

 Maximum angle of inclination : θ = 75° 

 Maximum distance: 25 cm 

 Maximum speed: 0.02 m/   

 Peak Acceleration: 0.04 in/   

In order to lift the VAPP module, a 12” stroke linear actuator capable of lifting a full load of 40 lb; 

features below were selected from Firgelli Technologies [43]. 

 Maximum speed: 4.45 cm/sec at no load and 2.54 cm/sec with load 

 Stroke size : 12”  

 thrust/pull force: 44 lb  

 holding force: 100 lb  

 Require voltage : 12 VDC 

 Maximum current: 5 A 

 Power consumption: 60 Watts 
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To control the direction of the linear actuator, the voltage level needs to be set because positive 

voltage will cause an outward movement, while negative voltage will cause an inward movement. 

Therefore, an external hardware circuit is required to alter the polarity of the input voltage based on 

the required direction of movement. Relays which are electrically operated switches using 

electromagnets to control a circuit by a low-power signal, can be used to achieve the above goal. 

Therefore, a pair of relays from ZETTLER can be used along with a Darlington transistor array chip 

from Texas Instruments to form the circuit shown in Figure 4.8.  

 

Figure 4. 7: Linear Actuator Controller Circuit 

As can be seen in the above schematic, the linear actuator is initially connected to ground on both 

poles due to the default position of the relays. By setting the right pin, (Tower_UP or Tower_DN), 

the associated relay becomes active, and the appropriate voltage is fed to the actuator. It should be 

noted that only one relay should be set at each specific time to avoid applying +12v to both poles of 

the actuator.  

4.3.2.1.2 Accelerometer 

An accelerometer can be used to give accurate tilt angle measurement in three dimensions. Even 

though Gyroscopes seem to be a better solution, since they maintain their level of effectiveness by 

measuring the rate of rotation around a particular axis, the accelerometers can fulfill the 

requirement of the observation mode as the platform is in stationary state and therefore, the 

orientation of the robotic platform relative to any surface can be simply identified. 
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A triple axis accelerometer kit from Sparkfun Electronics, containing BMA180 of Bosch, was selected 

to meet the requirement of this mode that presents the following features [44]: 

 Three-axis accelerometer with integrated temperature sensor in the range of -40°C to +85°C 

 Ultra high performance g-sensor with 12-bit and 14-bit ADC operation 

 Digital Interfaces: 4-wire SPI, I2C, interrupt pin 

 Wide variety of measurement ranges (±1g, 1.5g, 2g, 3g, 4g, 8g and 16g) 

 Programmable integrated digital filters 

 Various modes of operations: Low-noise, Low-power, sleep mode, wake-up mode and self-

test 

4.3.2.2 Principals of Observation Mode Operation 

As discussed earlier, the accelerometer is placed in the Head to measure the elevation of the Head 

subcomponent by means of the Tower’s linear actuator. Upon entering the observation mode, 

system puts a Tower up at a specific height set by the operator in the control center. The VAPP 

module becomes active and starts capturing, processing and transmitting the video-data to the 

control center. The implementation of the VAPP module is beyond the scope of this thesis, as the 

focus is more on the control and communication of the robotic platform to extend the previous work 

by adding mobility to the system. The main processor for implementing the functions of this mode of 

operation is an FPGA device, which was addressed in Chapter 3. In the following section, the 

implementation of functions associated with each module of the observation mode will be 

discussed.   

4.3.2.3 Observation Mode Firmware Component 

The observation mode of the system is designed to interface the selected linear actuator and 

accelerometer with the processor. In the following sections the required firmware to interface with 

the hardware components are discussed and the component symbol of the observation mode will 

be illustrated. 

4.3.2.3.1 Linear Actuator  

As can be seen in the schematic shown in Figure 3, by simply toggling two general purpose output 

pins of an FPGA board, we could control the direction of the actuator. Therefore, implementation of 

the function of these pins is best done in VHC due to its design simplicity and its minimal 

requirements for area and resources to implement the circuitry. 
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4.3.2.3.2 Accelerometer 

The required communication protocol to control the accelerometer chip is Inter-Integrated Circuit, 

I2C, or Serial Peripheral Interface, SPI. Mode 3 of the 4-wire SPI protocol was opted to interface with 

the accelerometer due to its setup, as shown in Figure 4.8. 

 

Figure 4. 8: Accelerometer SPI protocol and Timing Diagram Courtesy of [44] 

 

Table 4.1 is used to demonstrate the required SPI protocol to read and write to the selected 

accelerometer chip in VHC. 

Table 4. 1: Timing Analysis of the Accelerometer on FPGA 

Time slots SDO SDI SCK CS C.C. time (ns) 

T0 

 

 
1 

1 1 20 

T1 

0 

5 100 

T2 R/W 0 5 100 

T3 
 

1 5 100 

T4 AD6 0 5 100 

T5-T13 AD5-AD2 1 45 900 

T14 AD1 0 5 100 

T15 
 

1 5 100 

T16 AD0 0 5 100 

T17 
 

1 5 100 

T18 DI7 0 5 100 

T19 DO7 
 

1 5 100 

T20 
 

DI6 0 5 100 

T21 DO6 
 

1 5 100 

T22-29 DO5-DO2 DI5-DI2 0 40 800 

T30 
 

DI1 0 5 100 

T31 DO1 
 

1 5 100 

T32 
 

DI0 

0 5 100 

T33 
DO0 1 

2 40 

T34 1 1 20 

Total 
    

164 3280 
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The total time to read/write one register of the accelerometer chip is 3280 ns or 164 clock cycles 

when the fed clock frequency to the component runs at 50MHz. 

 Component Symbol 

The observation mode component consists of control and data lines for the SPI protocol interface 

with the accelerometer and two general purpose output ports to control the actuator controller 

circuit.  The top-level symbol of the observation mode component is shown in Figure 4.9. 

 

 

The component synthesizes and outputs the received clock, clk, to required clock rate by the 

accelerometer via “SCLK”.  The component receives data (memory address or byte) via “Data_in” 

and transmits the data to the BMA180, via SPI protocol. The obtained information from the 

accelerometer is received by the component through the “Data_out”. The “–Lin_Act” and “+Lin_Act“ 

ports each control a specific relay switch, which is used to set the polarity voltage input to the linear 

actuator. 
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Figure 4. 9:  Observation Mode Component Symbol 
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4.3.3  Front-View Mode 

Similar to the observation mode, the front-view mode uses the RF-link and an actuator to provide 3D 

images of N-angular position of the Head. The front view images are used by the 3D-image 

interpolation unit to subsequently help create a map of obstacles and their distance from the 

platform.  The RF-link subcomponents are shared among other modes of operation and are used as 

described in section 4.3.1. The Head subcomponent of the front-view mode contains the linear 

actuator that is used to move the Head up and down, as shown in Figure 4.10.  

 

 

 

 

 

 

 

4.3.3.1 Front-View Mode Hardware Architecture 

The linear actuator used in the observation mode is also applicable in this mode. Therefore, based 

on the factors such as the Head weight, required angle of movement and speed a 4” stroke linear 

actuator capable of lifting full load of 40 lb, from Firgelli Technologies, was selected to meet the 

requirement [43]: 

 Maximum speed: 4.45 cm/sec at no load and 2.54 cm/sec with load 

 Stroke size : 4”  

 thrust/pull force: 15lb  

 holding force: 45lb  

 Require voltage : 12v DC 

 Maximum current: 5A 

 Power consumption: 60 Watts 

The linear actuator controller circuit discussed in Section 4.3.2.1 is also used to control the new 

linear actuator.  

Figure 4. 10: Description of the Front-View Mode 
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4.3.3.2 Principals of Front-View Mode operation 

The front-view mode adjusts the Head subcomponent to the desired angle by means of a 

strategically placed linear actuator that connects the Tower and Head of the robotic platform. The 

3D map of the scene is captured and process by the 3D-Image interpolation module and the result is 

sent to the control center, where the operator can choose a suitable path prior to sending the robot 

to a new location. The 3D-image interpolation module is currently being developed; the current 

prototype will be used as a plug-in module for the front-view mode of the system. The processor to 

achieve the above goal, as addressed in Chapter 3 of this paper is an FPGA. In the following section 

the implementation of functions associated with each module of the front-view mode will be 

discussed.   

4.3.3.3 Front-View mode Firmware component 

The firmware component of the front-view mode is designed to enable/disable the 3D image 

interpolation module and to control the direction of the linear actuator by toggling two GPIO pins to 

engage the appropriate relays. 

 Component Symbol 

The top-level symbol of the front-view mode component is shown in Figure 4.11. 

 

 

As can be seen in the above figure, the “clk”, “reset” and “enable” input ports are fed to the 

component to drive them at the required clock rate and start and/or stop the operation of the 

mode. The output ports “-Lin_Act” and “+Lin_Act” control the direction of the actuator by setting 

the relays to the appropriate positions. Lastly, the “Module_enable” output port enables the 3D-

image interpolation module and the “Busy” input port indicates if the previous operation on the 

linear actuator is done. 
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Figure 4. 11: Front-View Mode Component Symbol 
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4.3.4 Navigation Mode 

The Navigator subcomponent of the Navigation mode consists of motors, motor controller, 

odometer and obstacle sensors to drive the robotic platform to the specified location without hitting 

potential obstacles, based on the 3D-map of the scene captured and processed in the front-view 

mode.  

In the following subsections the steps taken to select the hardware components of the navigator 

subcomponent as well as the firmware and software components associated with each module is 

discussed to arrive at the navigation mode component of the system. 

4.3.4.1 Navigation Mode Hardware Architecture 

For simplicity of design implementation, the motors, motor controller and the required power 

supply of the motors are grouped as a single module, called “motor-driver” and the odometer and 

obstacle sensors modules are treated as two individual modules. The hardware architecture and 

associated components of each module are discussed in the following subsections. 

4.3.4.1.1 Motor-driver  

The motor driver module is composed of six brushed DC motors to provide mobility, a motor 

controller to control the speed and direction of the motors and a battery pack to supply them with 

power, as shown in Figure 4.12.  

 

 

 

 

M1 

M2 

M3 

M4 

M5 

M6 

MOT 

CTRLR 

Battery 

Navigation Mode 

Figure 4. 12: Motor-driver Hardware Organization 
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As can be seen in the above figure the Motor-driver module consists of the following hardware 

elements and communication interface: 

 Elements: 

- Motors 

- Motor controller 

- Battery pack 

 Interface: 

- “Motor controller – Motors” interface 

- “Motor controller – battery” interface 

- “Navigation mode processor – motor controller” interface  

The interface of the motors to the motor controller and motor controller to the battery pack occurs 

via traditional wire connections. However, the interface between the motor controller and the 

processor will be discussed in the following sections. 

 Selection of elements  

Selection of elements for the motor-driver module requires several considerations, including power 

consumption, performance and actual and development cost. Therefore, in the following 

subsections, the required elements for the motor-driver module are addressed.  

 Motors 

The 6-wheel robotic platform required six brushed DC motors to enable the heavy robot platform to 

move on any terrains and carry the camera module and possible quadra-copter modules. Choosing 

the right motor type to meet the above criteria requires further analysis of many factors, such as 

overall platform weight, terrain, torque, output power, efficiency of the motor, etc.; therefore, the 

following motor type with features below was selected [45]: 

 Reduction Rate: 1:24 

 Rated Speed: 5900 rpm 

 No Load Speed: 7000 rpm 

 Rated output: 34.7 W 

 Motor Rated: < 2.3 A 

 No Load Current: < 0.650 A 

 Operating voltage: 24 v 

 Efficiency: 70% 
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 Motor Controller 

Choosing an interface to control the motors is the next step of the motor-driver hardware 

architecture of the system. This step could be done by designing a DC-Motor driver circuit or using 

an off-the-shelf motor controller.  Selection of a motor controller requires consideration of motor 

specifications, such as the motor’s nominal voltage, maximum current rating, control method and 

number of motors to control. 

Based on the factors mentioned above and the system compatibility and cost-performance, 

Sabertooth Dual 25A Regenerative Motor Driver with the following features [46] was chosen:  

 Dual motor drivers for two DC brushed motors with up to 25 A each 

 Suitable for high-powered robots up to 300 lb 

 Over-current and thermal protection circuit 

 Multiple motor control protocols: Analog, radio control, serial and packetized serial. 

 Various operating mode and application-specific mode 

To control the speed and direction of the motors, the motor controller can interface with the motors 

and a processor using various types of communication protocols, including UART, SPI, PWM, 

analogue voltage, etc.,  which will be addressed shortly. 

 Batteries 

The Sabertooth controller requires a 24v battery supply to power the 2 pairs of the motors.  

Therefore, the last element of the motor-driver module is to select a power source.  Since there are 

6 motors to be controlled, the following calculations were made: 

                           

              
     

  
        

Having six motors leads to 6.6 A of current consumption for the robot in active mode with minimal 

opposite force interferences. To run a system continuously over an hour we need a battery with over 

6 Ah. NiCd batteries offer the shortest charge time, lowest overall cost and highest lifetime [47]; 

however, due to its toxic behavior and demanding maintenance requirement, it is not a good 

candidate for our system. Hence, a 10Ah-24-volt rechargeable NIMH battery pack with low 

maintenance and cost efficient features was chosen. 
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M2 M5 

Navigation Mode 

 

4.3.4.1.2 Odometer  

The second module associated with the navigator subcomponent is the odometer or displacement 

measurement module, by which the distance is measured by counting how many times one wheel of 

the robotic platform has made a full turn.  The odometer module (see Figure 4.13) consists of the 

following elements: 

 Elements:  

- 2 Optical encoders 

 Interface: 

- “Navigation Mode processor - optical encoders” interface  

 

 

 

 

 

 

 Selection of elements  

To reach the above goal, which is counting the number of wheel rotations to find the travelled 

distance, an optical encoder circuit was designed by using TCRT5000L reflective optical sensor from 

Vishay [48]. The schematic of designed circuit is illustrated in Figure 4.14. 
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Figure 4. 13: Odometer Hardware Organization 

Figure 4. 14: Odometer Circuit Diagram 
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Navigation Mode 

 

Head 

4.3.4.1.3 Obstacle Sensors 

The third module associated with the Navigator subcomponent is the obstacle sensor system, by 

which the robotic platform avoids colliding with any objects that may be in the way. Similar to the 

odometer module, the obstacle sensors module (see Figure 4.15) consists of the following elements: 

 Elements: 

- 3 Optical encoders 

 Interface: 

- “Navigation Mode processor- optical encoders” interface  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 15: Obstacle Sensors Hardware Organization 
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4.3.4.2 Principals of Navigation mode operation  

Based on what has been discussed in the previous sections, the overall hardware organization of the 

navigation mode, including its major components, is presented in Figure 4.16. 

 

As was mentioned earlier, the six motors attached to the wheels of the robots are divided into two 

pairs and are controlled by a Sabertooth motor controller. The selected motor controller accepts 

various communication controls, including UART, Analog, SPI, PWM, etc, by setting the switches to 

the appropriate positions. However, to keep the design as simple as possible, the normal mode of 

the motor controller, Analog mode, is selected by setting the switch to 4, 5 and 6 [46]. The analog 

mode of the motor controller takes two analog inputs in the range of 0-5v and uses them to set the 

speed and direction of the motors. Signals below and above 2.5v are reserved for reverse and 

forward motion, respectively, while 2.5 will stop the motion. To provide the motor controller with 

the above Analog signals, a Digital-to-Analog Converter, DAC, circuit is required.  
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Figure 4. 16: Description of the Navigation Mode 
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Furthermore, the odometer module of the navigator subcomponent is responsible for measuring the 

distance travelled by the robot by counting the number of wheel rotations. The designed circuit 

exploits the process of triangulation, by which a beam of infrared light is emitted on a surface via the 

emitter and then the emitted light is reflected and received by the receiver sensor. The amount of 

reflected beam is used to measure the distance, surface type, obstacle avoidance, velocity, etc. In 

other words, for every pulse sent out by the encoder, as it is placed across the shaft of the motor 

while fully isolated from the ambient light, the wheel has travelled a certain angle. Hence, by 

knowing the wheel diameter and the encoder resolution, we could count the number of wheel 

rotations and eventually calculate the travelled distance.  

A bi-color tape, five black lines on a white surface, is placed across the shaft at a few centimeters of 

the encoder to meet the TCRT5000L chip requirement of maximum operating distance. The output is 

fed to the processor in order to count the black and white lines. Counting four black lines is 

equivalent to a full turn of the wheel or 50 cm on the surface. The designed circuit of this module 

requires a voltage source of 3.3v to activate, and it will output a certain voltage level based on the 

encoder position.  Hence, to translate the output of the circuit, which is in analog form, an Analog-

to-digital Converter, ADC, is required.  

Last but not the least, the obstacle sensor module also exploits the optical encoders used in 

odometer module. The optical circuit is designed in such a way as to transmit a digital output, while 

the range of detection can be adjusted by the provided potentiometer. Hence, a simple General 

Purpose Input (GPI) port can detect an obstacle within the adjusted range by simply reading the 

input voltage.  

To implement the requirements of the navigation mode, further hardware components are 

required. Based on what was discussed in Chapter 3, the implementation of the design on FPGA was 

found to be a better option compared to the traditional microprocessors, due to the existence of 

reconfigurable logic block. Therefore, choosing an FPGA device that can accommodate the design 

architecture and the required components of each mode of operation is the most optimal and 

logical choice. As a result, a simple Spartan 3E starter board from Xilinx with following features was 

chosen [49]: 
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 SPARTAN-3E Starter Kit Board’s key features and components 

 Xilinx devices on board 

  Spartan-3E FPGA (XC3S500E-4FG320C) 

 Up to 232 user-I/O pins 

 320-pin FBGA package 

 Over 10,000 logic cells 

  CoolRunner™-II CPLD (XC2C64A-5VQ44C) 

 Platform Flash (XCF04S-VO20C) 

 Clocks:  

 50 MHz crystal clock oscillator 

 Memory:  

 128 Mbit Parallel Flash, 

 16 Mbit SPI Flash 

  64 MByte DDR SDRAM 

 Connectors and Interfaces:  

 JTAG USB downloader 

 Two 9-pin RS-232 serial port 

 Four slide switches 

 Eight individual LED outputs  

 100-Pin expansion connection ports  

 Three 6-pin expansion connectors 

 Two-input, SPI-based Analog-to-Digital Converter (ADC) with 

programmable-gain pre-amplifier 

 Four-output, SPI-based Digital-to-Analog Converter (DAC) 
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4.3.4.3 Navigation Mode Firmware Component 

The navigation mode component of the system is designed to interface the three individual modules 

addressed above. In the following sections the required firmware component of each module to 

form the navigation mode component is described. 

4.3.4.3.1 Motor-driver  

The Spartan-3E board includes an SPI-compatible, four-channel, serial DAC, LTC2624 from Linear 

Technology with 12-bit unsigned resolution [50]. The SPI bus used for the DAC chip is a full-duplex, 

synchronous, character-oriented channel employing a simple four-wire interface [49]. The FPGA 

drives the required bus clock, SPI_SCK, and transmits serial data, SPI_MOSI, to the LTC 2624 DAC. 

The DAC chip responds back to the FPGA via the SPI_MISO. 

The LTC2624 DAC chip can run at the high frequency of 50 MHz [50] and can support both 24-bit and 

32-bit protocol that consists of a command, an address and data as shown in Figure 4.17. To control 

the two pairs of motors, we would need to use two channels of DAC. 

 

 

Figure 4. 17: The SPI Protocol of DAC courtesy of [49] 

 

Each DAC output level is analog equivalent of a 12-bit unsigned digital value, Data [11:0], written to 

the DAC chip via SPI interface. To setup the DAC output voltage the equation below shall be used: 

     
    [    ]
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Therefore, the next logical step is to implement the required SPI communication to interface with 

the controller and eventually control the speed and direction of the motors.  This interface may be 

implemented in the form of hardware logical blocks of the FPGA in VHDL or as a Virtual soft-core 

system.  

In case of implementing the SPI interface as logic blocks, the latency to output the DAC values on the 

two channels is 136 clock cycles. However, the consequent DAC value can be processed in 132 clock 

cycles, as illustrated in Table 4.2. 

Table 4. 2: Timing Analysis of the Design on FPGA 

Time slots State MISO MOSI SCK CS i C.C. Ch # 

T0 Init  0 0 1 
0 

4 

A 

T1 Begin  DataA(0) 0 

0 

1 

T2 Go   1 
1 

1 

T3 Begin  DataA(1) 0 1 

T4 Go   1 
2 

1 

T5 Begin  DataA(2) 0 1 

T6 Go   1 
3 

1 

T7 Begin  DataA(3) 0 1 

T8 Go   1 
4 

1 

T9 Begin  DataA(4) 0 1 

T10 Go   1 
5 

1 

T11 Begin  DataA(5) 0 1 

T12 Go   1 6 1 

T13  - T56 Begin/Go   0/1 7-28 44 

T57 Begin  DataA(28) 0 28 1 

T58 Go   1 
29 

1 

T59 Begin  DataA(29) 0 1 

T60    1 
30 

1 

T61   DataA(30) 0 1 

T62    1 
31 

1 

T63   DataA(31) 0 1 

T64 Go   1 

0 

1 

T65 Final   
0 1 

1 

T66 Done   1 

B 

T67 Begin  DataB(0) 0 

 
 
 

0 

1 

T68 Go   1 
1 

1 

T69 Begin  DataB(1) 0 1 

T72 –T128 Begin/Go  Datab(i) 0/1 2-30 58 

T129 Begin  DataB(30) 0 30 1 

T130 Go   1 
31 

1 

T131 Begin  DataB(31) 0 1 

T132 Go   1 
0 

1 

T133 Final   0 1 1 

Total Time = 136 c.c. 
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Performing the same the DAC operation on a 32-bit RISC processers based on the flowchart shown in 

Figure 4.18 leads to the results recorded in Table 4.3. 
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Figure 4. 18: RISC Processor Instruction Execution Process 
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Table 4. 3: Timing Analysis of the Design on a RISC Processor 

Time Slots Type MISO Cs MOSI SCK I C.C. Pipelined Ch # 

T0 Load/store  1 0 0 0 12 6 

A 

T1 Load/store 0    3 1 

T2 Load/store  DataA(0)   3 1 

T3 Load/store   1  3 1 

T4 Load/store   0  3 1 

T5 Add    1 3 1 

T6 –T155 Instruction   DataA(i) 1/0 1-31 450 151 

T156 Load/store   DataA(31)   3 1 

T157 Load/store   1  3 1 

T158 Load/store   0  3 1 

T159 Load/store    0 3 1 

T160 Branch  3 1 

T161 Load/store 1    3 1 

T162 Load/store 0    3 1 

B 

T163 Load/store  DataB(0)   3 1 

T164 Load/store   1  3 1 

T165 Load/store   0  3 1 

T166 Add    1 3 1 

T167-T316 Instruction   DataB(i) 1/0 4-30 450 151 

T317 Load/store   DataB(31)   3 1 

T318 Load/store   1  3 1 

T319 Load/store   0  3 1 

T320 Load/store    0 3 1 

T321 Branch  3 1 

T322 Load/store 1    3 3 

Total Time 978 332  

 

As can be seen from Table 4.3 in an ideal condition, in which no instruction or data hazards are 

introduced, the total number of required clock cycles to output a DAC value, also known as the 

latency, is 978.  However, due to the parallel pipelining of the embedded soft-core processors such 

as MicroBlaze, three instructions can be executed simultaneously, as shown in Figure 4.19. 

Therefore, the cycle time for the subsequent channel is 332 cc, which is almost 2.5 times greater 

than VHC implementation design.   
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Figure 4. 19: MicroBlaze Execution Process 
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Hence, in case of implementing the module in VHC, the total execution time is: 

          [  (   )       ]         [    (    )     ]            

Where L is the number of cycles required for obtaining the first result, n is the total number of the 

required cycles (we assume 10 DAC values for simplicity of calculation), Ctime is a cycle time and 

Tcycle is a clock period at 50MHz.  Additionally, the total execution time required for processing of a 

single DAC channel on MicroBlaze based design is: 

                     [         ]              

The performance speedup of the two solutions can be tested by: 

        
              

        
 
         

       
          

In order to match the performance of the hardware implementation, the soft-core processor needs 

to run at a faster clock rate of: 

            
 

         
[  (   )       ]

 
 

        
[     ]

         

This speed is not possible as MicroBlaze is running at its highest frequency of 50 MHz. Moreover, in 

case of using microcontroller, additional algorithms for increasing the frequency lead to greater 

power consumption, which would require extra specialized cooling system to eliminate the excessive 

and potentially damaging heat from the device. 

Based on the above analysis, even though implementation of the SPI interface in hardware and soft-

core processor does not significantly affect the overall design performance, design simplicity and the 

area analysis shows that the implementation in the form of VHC is a better option, as suggested in 

Chapter 3.  

 

 Component Symbol 

The component symbol of the motor-driver module of the navigation mode consists of the necessary 

signal ports to provide the SPI interface signals such as: SPI clock (“SCK”), SPI chip select (“CS”), SPI 

MISO (“MISO”), SPI MOSI (“MOS”I) with the DAC chip. The clock input port (“clk”) is used to drive the 

components at 50 MHz, which will be synthesized and divided to generate the required clock rate by 

the DAC chip. The reset input port (reset) is used to reset the operation of the module. The digital 
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data input ports (“Data_A” and “Data_B”) provide the required digital data to be converted to the 

analog form to be fed to the motor controller. The “DAC_CLR” and “DAC_Enable” ports are used to 

control the DAC chip, while the busy input port indicates if a DAC conversion is in process. The 

motor-driver component is shown in Figure 4.20. 

 

 

 

 

 

 

4.3.4.3.2 Odometer 

The Spartan-3E board comes with a two-channel analog capture circuit, consisting of a 

programmable scaling pre-amplifier, LTC6912-1, and ADC, LTC1407A-1, which can be controlled 

serially by the FPGA [49]. The analog capture circuit converts the voltage on VINA or VINB and 

converts it to a 14-bit digital representation, Data [13:0] as follows: 

    [    ]        
        

     
      

Where the gain, which controls the allowable voltage range for each ADC channels, VINA, VINB, is 

the setting loaded into the programmable pre-amplifier. Similar to the motor-driver module, the SPI 

communication is required to interface signals between the FPGA and the amplifier and ADC. Hence 

the following pins of the FPGA are used for the SPI. Therefore, following the same analysis 

performed in motor-driver, it is clear that implementing the odometer module as a hardware 

component would give better performance and area. On the other hand, the timing constraint of the 

amplifier and ADC channel makes MicroBlaze processor a good candidate. Nevertheless, due to 

implementation of the SPI controller in the motor-driver which can be shared by the odometer, 

implementing the design in hardware would be a better choice.  

 

 

Figure 4. 20: Motor-driver Component Symbol 



68 
 

 Component Symbol 

The component symbol of the odometer module of the navigation mode consists of the necessary 

signal ports to provide the SPI interface signals, such as: SPI clock (“SCK”), SPI chip select (“CS”), SPI 

MISO (“MISO”), SPI MOSI (“MOSI”) with the ADC chip. The clock input port (“clk”) is used to drive the 

components at 50 MHz, which will be synthesized and divided to generate the required sampling 

rate of the ADC chip, which is 1.5 MHz. The reset input port (“reset”) is used to reset the operation 

of the module [51]. The digital data output ports (“Data_1” and “Data_2”) present the captured 

digital data. The “ADC_Enable” Input port is used to control the ADC chip, while the busy input port 

indicates if a DAC conversion is in process. The motor-driver component is shown in the figure 

below. Since, the SPI communication is shared among multiple components on the FPGA board, the 

output and input ports such as: “AD_CONV”, “AMP_SHDN”, “ADMP_DOUT”, “SF_CF0”, 

“FPGA_INIT_B”, “SPI_SS_B”, “AMP_CS”, “DAC_CS” need to be set up to control the ADC chip [49]. 

The odometer component is shown in Figure 4.21. 
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Figure 4. 21: Odometer Component Symbol 
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4.3.4.3.3 Obstacle Sensors 

The last module in the navigator subcomponent of the navigation mode is the obstacle sensors 

module. The optical encoder circuit addressed in section 4.3.4.1.2 can also be applied here. The 

circuit is designed in such a way as to be able to output digital data when an object is placed in front 

of the sensor. The range of detection can be adjusted by varying the provided potentiometer. 

Therefore, a simple General Purpose Input port is able to detect possible objects.  

 

 Component Symbol 

The component symbol of the obstacle sensors module of the Navigation mode consists of three 

general input ports to detect any high voltage caused by approaching an object. A clock, reset and 

enable input ports to provide a sampling clock and to stop or start the module operation. The 

component symbol of this module is shown in Figure 4.22. 

 

 

 

 

 

The component symbol of the navigator mode is constructed based on the subcomponents 

discussed in the previous sections as shown in Figure 4.23. The subsequent components 

synchronously receive the clock signals on their input in accordance to their required clock rates.  

The clock source of the navigation mode is also sourced from the main component that 

accommodates the components of all the other modes of operation.   

Figure 4. 22: Obstacle Sensors Component Symbol 
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As can be seen in the above figure, the “clk”, “reset” and “enable” input ports are to drive the 

50MHz clock to the component and start/stop the navigation mode component. The SPI protocol 

interface ports along with other shared input/output ports addressed in the previous section are to 

be used with the DAC and ADC chips. The three input ports, “SEN_A”, “SEN_B” and “SEN_C” are the 

object detectors placed around the Head of the robot. The direction of the motors (“Cur_dir”), the 

distance each pair of wheels needs to travel (“RightMotors”, “LeftMotors”) to get to the destination 

is also addressed in the above figure. The “NavigFlag” also presents the “enable” input port for the 

navigator subcomponent, while the “WheelRot” indicates if any pair of the motors has finished the 

required number of turns. Finally, the “LEDCNT” ports are used for testing and debugging purposes. 
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Figure 4. 23: Navigation Mode Component Symbol 
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4.4 Complete System Implementation  

Discussing the hardware, firmware and software components of each mode of operations made it 

possible to address the need to have a primary component that can accommodate all the other 

major components of the modes of operation. The new component needs to be able to act as a 

dispatcher and direct the present operations to the respective mode. The main system component 

symbol consists of 2-bit output port to enable one of the modes of operation in a multiplexing 

scheme, as shown in Figure 4.24. The Required SPI interface ports to interfaces with the motor 

controller, accelerometer and optical encoder are also present in the component symbol. The LED 

ports and input port (“Debug_SW”) are used for testing and debugging purposes.  
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4.5 Summary 

In this chapter, the implementation specifics of the proposed reconfigurable robotic platform was 

discussed, and the process of selecting elements for each mode of operation based on the required 

resources discussed in the previous chapter was presented. The implementation of the proposed 

system was divided into two major parts: 1) the electro-mechanical part and 2) control and 

communication part and the associated hardware.  Firmware and software components of each 

mode of operation were designed and developed to arrive at the complete system implementation 

of the proposed robotic platform. 
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5. Experimental Results Analysis and 

Discussion 

5.1 Introduction  

This chapter is dedicated to the analysis of the experimental results of the implemented design, 

discussed in chapter 4. The main objective of the conducted experiments was to collect and analyze 

the performance parameter data of the system, such as timing characteristics, power consumption, 

occupied area, and used resources to investigate the behavior of the proposed design.  

This chapter is concluded by introducing an alternative approach in the design implementation that 

conforms to the concept of reconfigurability discussed in chapter 3, while extending the scalability of 

the system despite the potential limitation of memory and resources of any FPGAs. 
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5.2 Experimental Setup  

In order to prepare a test and verification environment,  the proposed reconfigurable robotic system 

was incorporated with the MARS, 3D-P camera and 4-Vision subsystems as designed and 

implemented by [1] to collect data and investigate the performance and reliability of the system 

within the actual telepresence system. However, only the control and communication aspects of the 

robotic subsystem of the telepresence system are discussed in this paper. Figure 5.1 illustrates the 

major hardware components of the system used during test and verification process.  

Figure 5. 1: Robotic Platform inside View 
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 The operational hardware components shown in the figure above are isolated from the electro-

mechanical hardware components such as motors, which along with the batteries, are placed at the 

bottom of the platform to reduce noise and potential interferences. 

The control and communication process of the system incorporates the following hardware 

component as described in Section 4.3-4.5. 

1. A Spartan-3E Starter Kit board that consists of Xilinx XC3S500E Spartan-3E FPGA [49]. This 

element is the main component of the system as it starts, maintains and manages its entire 

communication and control process. The board includes the required controller chip for ADC 

and DAC for the odometer and DC-Motor controller components; the RS232 and SPI 

interface for the XBee module and accelerometer components; general I/O port interfaces 

for the linear actuators and obstacle sensors interfaces. The board also exploits the USB 

interface based on FTDI’s FT2232HL USB controller to store, load and program the FPGA and 

on-board Flash PROMs that will be discussed shortly. The maximum clock frequency of the 

board is 50MHz, which is distributed within the system according to the required clock rate 

of involved components. 

 

2. A DC-Motor controller to control the speed and direction of the six DC-brushed motors, as 

described in Section 4.3 of the navigation mode of operation. 

 

3. An XBee module to communicate with the control center through RF-link. The module is 

located at the rear end of the robotic platform to avoid any potential interference by other 

hardware components of the system. 

 

4. Two designed optical encoder circuits across the motor shafts of the robot’s middle wheels 

to measure the distance travelled by counting the number of wheel rotations. 

 

5. Three optical sensors placed at the three outer corners of the Head as part of the obstacle 

sensors component of the navigation mode, as described in Section 4.3. 

 

6. An Accelerometer placed in the Head compartment to measure the level and angle of 

elevation during the observation mode. 

 

7. A Linear Actuators controller to manage the direction of the two linear actuators of the Head 

and Tower compartments of the system.  
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By knowing the hardware components involved in the test and verification process, it is time to list 

the system configuration/verification tools used during the experimental setup process. Therefore, 

we took advantage of the following elements to pursue our analysis on the system’s performance 

parameters.  

Programmers: 

- Xilinx Platform USB cable  

- XBee USB interface board 

Software: 

- Xilinx ISE 14.2 [52] 

- Xilinx Platform Studio 14.2 (XPS) [53] 

- Xilinx Software Development Kit 14.2 (SDK) [54] 

- Xilinx ChipScope Pro 14.2 [55] 

- Comm. Port Navigation Application 

Equipment: 

- HP 54620C Logic Analyzer 

- BK Precision Digital Multi Meter and Power supply  

The “Xilinx Platform USB programmer” listed above was used along with the corresponding software 

to configure and verify the implemented design on the Spartan-3E board. However, once the design 

is final, the FPGA is configured via the on-board serial flash PROM. Therefore, the system does not 

require configuration on the subsequent power ON/OFF cycles via the programmer. 

The configuration of the selected FPGA device was performed using the programmer listed, attached 

to the USB port of a PC running the iMPACT application. The verification of this hardware 

component of the device was done through Xilinx ChipScope 14.2, and the software component was 

tested and debugged via the Xilinx XPS and SDK.  

The “Comm. Port Navigation Application” was developed to transmit commands to the robotic 

platform via the RF-Link.  The application is able to send multiple encoded commands and receive 

acknowledgements from the system via XBee USB interface board, which connects the XBee module 

with a USB port of a PC.  

In the following sections the analysis of the system’s performance parameters including timing 

characteristics, power consumption, occupied area and used resources are presented. 
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5.3 Timing Analysis 

The first step before investigating the system’s timing characteristics is to determine the required 

configuration time of the FPGA on power up or the estimated startup time of the system. The 

startup time is directly related to the method of loading the design on the selected FPGA. The FPGA 

can be configured from four available options provided by the Spartan-3E board including:  

 Direct configuration of the FPGA with the design via JTAG, using the on-board USB interface. 

 Programming the on-board 4Mbit Xilinx XCF04S serial Platform Flash PROM and configuring 

the FPGA from the image stored in Platform Flash PROM using master serial mode [49]. 

 Programming the on-board 16Mbit ST Microelectronics SPI serial Flash PROM and 

configuring the FPGA from the image stored in SPI serial Flash PROM using SPI mode [49]. 

 Programming the on-board 128Mbit Intel StrataFlash parallel NOR Flash PROM and 

configuring the stored image using BPI Up or BPI Down configuration modes [49]. This 

configuration option can be used for applications that require dynamic reconfiguration as 

two configuration bit streams can be loaded on the Flash PROM.  

Based on the options described above and the size of the implemented design, option one was 

chosen as the most convenient choice for configuring the FPGA during the test and verification of 

the design, and option 2 was opted to configure the FPGA with the final design. [56] suggests that 

the required time to load the configuration bit stream,          is a function of device family, 

density, clock frequency and configuration data port width as shown in equation below: 

         
                 (    )  

           (   )                           (    )
 

Therefore, with an approximate configuration bit stream file of 278KB, including the hardware and 

software components of the design and a default 1.5MHz configuration clock, CCK, to be used during 

loading from an external PROM, the required configuration time is: 

         
        

             
 = 1.61 s 

However, configuring the FPGA through the Xilinx XCF04S Platform Flash allows us to increase the 

CCLK frequency up to 25 MHz and hence, reduce the configuration time as shown below [57]: 

         
        

            
 = 96.4 ms 

Therefore, the system can start up approximately 95% faster. 
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To analyze the actual timing characteristics of the design a set of experiments was performed on the 

proposed system to determine the timing associated with each mode of operation and the required 

time to switch from one mode to another using the existing multiplexing approach. The timing 

characteristics were obtained and analyzed by using HP 54620C Logic Analyzer and ChipScope Logic 

Analyzer from Xilinx Software Kit.  

The first test was performed on the transition of the Idle-to-Navigation mode of operation and vice-

versa and the actual timing recorded by Xilinx ChipScope was measured as shown in Figure 5.2.  

 

 

 

 

 

 

 

 

 

As mentioned before, the shared dual-BRAM is used by the component symbol to trigger and enable 

the appropriate mode of operation. Therefore, as can be seen in Figure 5.2, the “Addr” indicates 

which mode of operation is active at the moment.  Furthermore, the transition from idle to 

Navigation mode of operation represented as “mode” signal takes 6 clock cycles or 100ns as 

“clk_25” signal represents half of the actual clock rate of the system as shown at point “B”. It should 

be noted that, since the “direction” signal is set to “stop” the mode of operation will transfer back to 

the idle mode, which takes 12 clock cycles as shown at point “A”. The required time can be mainly 

related to the reading and/or writing form and/to shared storage memory.  

Further analysis is also made on the amount of time a typical task takes in navigation mode of 

operation. To achieve the above goal, an experiment was setup to investigate the required time to 

move the robotic platform forward for 6.5 meters, the wheels which have a diameter of 18cm, need 

to turn 12 times, assuming no-load and no-friction conditions. The results shown in Figures 5.3 and 

5.4 were observed. 

A B 

Figure 5. 2: Idle-Navigation Mode Transition 
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 C C C C C 

Figure 5. 4: Various Directions in Navigation Mode 

Figure 5. 3: Navigation Turn for 12 Wheel Turns 
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The required time to switch from one direction to another in the navigation mode of operation is 40cc, 

assuming no movement has been made, since three memory locations, “Addr”, in the BRAM need to be 

read as shown in Figure 2.  

As discussed in chapter 4, the encoder counts the number of black and white lines placed on the shaft 

of the motors. Therefore, to have the wheels to turn 13 times, 48 lines need to be counted by the 

encoder as shown in “RightCntr” and “LeftCntr” of Figure 3. The “ADC_val” and “ADC_val2” represent 

the digital values obtained from the ADC operation of the encoders to determine the detected black 

and white lines. It is clear that, the time spent during the navigation mode depends on many factors 

including the type and condition of the terrain in which the robot is moving on, battery condition, 

selected route by the operator, possible obstacles, etc. 

A similar experiment was performed on the idle to observation mode transition of the system, and It 

was observed that the time required to shift from the idle to the observation mode of operation, “B”, is 

12 c.c. , and the time to switch from the observation to the idle mode, “A”, is 18 c.c. assuming as shown 

in Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 
Figure 5. 5: Idle-Observation Mode Transition 
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5.4 Power Consumption Analysis 

The power consumption analysis of the design was first estimated by means of Xilinx XPower Analyzer 

(XPA) 14.2 [58]. Therefore, the parameters of the implemented design were passed to the software and 

estimated power consumption of the design in static and dynamic was obtained and recorded in Table 

5.1. 

Table 5. 1: Estimated Power Summary Courtesy of [58] 

Static (W) Dynamic (W) Total (W) 

0.097 0.000 0.097 

 

The static power results mainly from transistor leakage current in the device and the dynamic power is  

associated with the design activity and switching events in the core or I/O of the device [58]. 

The next step in pursuing our analysis is to investigate the actual power consumption of the robotic 

platform of the telepresence system. Therefore, a set of tests involving measurement of the power 

consumption for each mode of operation was performed. It is worth mentioning that power supply for 

the control and communication part of the system is isolated from the mechanical components, such as 

motors, actuators and their controllers to reduce any noise or unwanted interferences that may occur. 

Furthermore, the input voltage based on the selected FPGA board was set to 5.5 VDC; hence, the 

current-I was measured for all modes of operation during their peak activity to calculate the total 

power consumption, as recorded in Table 5.2. 

Table 5. 2: Power Consumption of the Control and Communication Part 

Mode Current (mA) Voltage (V) Power Consumption(watts) 

Default 185 

5.5 

1.01 

Main 250 1.37 

Observation  235 1.29 

Navigation 250 1.37 

Front-View 220 1.21 

Idle 210 1.15 
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As can be seen in the table above, the default power consumption of the board is 1.01 watts, which is 

the consumption of the board when no configuration bit stream is loaded on the device and it is 

relatively close to the estimated power consumption determined by the Xilinx XPA.  The difference 

between the estimated and measured power consumption value can be due to the power supply, the 

incomplete user-defined constraints and specifications, providing power from the board to other 

components and the heat generated by other components of the system, affecting the power 

dissipation from FPGA to the environment. 

Moreover, the power consumption of each mode of operation is relatively low but close to the total 

power consumption of the main component since the implemented multiplexing algorithm allows only 

a certain mode to be active at any specific time. 

The above experiments help to determine appropriate power supply for the board. Therefore a 6VDC- 

10Ah rechargeable battery (as discussed in Section 4.3), which is scaled down to 5.5 VDC through a DC-

DC converter, will allow a non-stop operation of the system for over 34 hours. Lastly, the low power 

dissipation makes it possible to avoid using any fans or heat sinks in the design for cooling purposes. 
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5.5 Area and Resources Analysis 

To investigate the occupied area and used resources in the implemented design, Xilinx Software Kit was 

used. The design goal of the system was set to a balanced optimization of performance vs. run time 

during the test.  Verification state, the floor planning and I/O planning of the components made by the 

Xilinx software kit was recorded and analyzed to determine the occupied area and used resources. 

Table 5.3 demonstrates the estimated number of resources used in the major components of the 

system. 

Table 5. 3: Resource Organization of the System as Obtained via XPA 

Resources Idle Observation Front-View Navigation 

Multipliers (MULTs) 3 0 0 0 

Lookup Tables (LUTs) 1789 127 2 390 

Shift Register LUTs 130 0 0 0 

Block Memory (BRAMs) 40 0 0 0 

Distributed RAM 256 0 0 0 

Clock Manager(DCMs) 1 0 0 0 

Flip-Flops (FFs) 1233 133 2 219 

 

Furthermore, the estimated resource utilization of the implemented system on the selected FPGA 

device is recorded in Figure 5.6. 
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Figure 5. 6: Logic Utilization of the System 

 

The total number of LUTs includes the LUTs used as logic, route-through, shift registers and for dual 

port RAMs. The number of occupied slices only contains the related logical blocks [58]. The BSCANs 

block is used to enable an extension of the JTAG interface to internal user defined scan chains and can 

be used by ChipScope and MicroBlaze loader for testing and debugging purposes. The Global Clock 

Buffer is the global clock multiplexer buffer of the FPGA to select between two input clocks [59]. The 

Multiplier is a 36-bit output, 18x18-bit input signed multiplier to perform asynchronous and 

synchronous multiplication operations [60]. The Clock Manager is a digital clock manager that provides 

advanced clocking ability to the applications implemented on the selected FPGA by optionally 

multiplying or dividing the incoming clock frequency to synthesize a new clock frequency [61].  

The data recorded in the tables above indicate that the implemented system occupies less than half of 

the FPGA device. Hence, more modes of operation may be added to the system to enhance the 

functionality of the system, if required. Moreover, the data presented in Figure 5.6, suggests that the 

MicroBlaze component, which is shared among other modes of operation, consumes the most 

resources. However, some of the subcomponents used in MicroBlaze, such as the debugging module 

and relatively large memory block, are used for testing and debugging purposes and can be omitted and 

modified to reduce the number of resources and, therefore, the area used by the MicroBlaze.  

It can also be concluded that even though the multiplexing approach seems to help us meet the 

requirement of this project, expanding the project in future may be affected by the limited number of 

resources within the selected device.   
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5.6 Discussion and Conclusion 

The reconfigurability concept of the system was discussed in Chapter 3; it was proved that in terms of 

mechanical components of the design a single hardware component could perform various tasks in 

different modes of operation. Even though the assigned functions were quite simple, the theory behind 

the implemented design can be expanded to more complicated systems with numerous hardware 

elements capable of mimicking various forms to perform different tasks. The flexibility and scalability of 

the designed platform are the main features of the system that differentiates the robotic platform from 

the traditional robotic systems, for it can be used as an instrument for new and existing systems, in 

which the physical and behavioral components of the system may undergo minor or major changes. 

Furthermore, the performance parameters of the proposed reconfigurable system discussed in the 

previous sections verifies the feasibility of the design using the multiplexing approach.  However, in this 

section we will examine the optimization of the proposed design through using partial reconfiguration 

based on the observed performance parameters in the previous sections. 

Partial reconfiguration is defined as the process of updating/changing some portions of the hardware 

circuitry while the other parts remain unchanged. Hence, even electronic hardware can be designed in 

modular/block form by creating sub components, in which the functionality of its hardware can be 

enhanced by altering the organization of these sub components [62, 63]. Figure 5.7 illustrated the 

concept of partial reconfiguration in FPGAs.  

 

 

  

 

 

 

As can be seen in Figure 5.7, the logic in the FPGA design is divided into static, grey part, and in the 

block portion, reconfigurable logics. The functionality of reconfigurable block A can be modified by 

downloading one of several partial bit files A1.bit- A4.bit without affecting what is stored in the static 

FPGA 

Reconfig. 

Block “A” 

A4.bit 

A3.bit 

A2.bit 

A1.bit 

Figure 5. 7: Basic Premise of Partial Reconfiguration courtesy of [62] 
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part. These partial data files may contain the required hardware organization of each mode of 

operations and may be stored in an external memory storage device, such as a flash memory, EEPROM, 

etc. 

The timing analysis performed in Section 5.3 confirmed that around 100 ms is required to configure the 

FPGA from the external flash memory. Moreover, based on the specified modes of operation and the 

architectural organization of the system, the system shifts to idle mode after completion of each 

operation. Hence, to examine the applicability of partial reconfiguration in our existing system in terms 

of optimization and higher performance of the system, we can study the behaviour of systems in the 

following cases: 

Case 1: Idle-Observation Mode   

Upon receiving a command to enter the observation mode from the control unit, the system 

immediately enters the observation mode by setting the Tower up and turning on the camera module 

to start capturing and transmitting video data.  After the Tower is in high position, which takes almost 

four seconds, the system can enter back the idle mode to receive further instructions. The existing 

multiplexing approach takes only 12 c.c. (240 ns) as described in Section 5.3, which is far less and faster 

than the 100 ms required time to reconfigure the FPGA with a new bitstream. In other words, loading 

the dedicated circuitry associated with the new mode of operation to the specified area of the FPGA 

will take longer that the existing approach. However, if the functions associated with some of the 

operational modes change and result in occupying larger area and using more resources, the partial 

reconfiguration option will be a better choice, since it allows various modes of operation to be placed in 

the same blocks of FPGA. The same analysis is valid when entering the idle mode from the front-view 

and navigation modes of operation.  

Case 2: Observation-Front-view Mode 

Entering the front-view mode from the observation mode requires very minimal physical 

configurations, since the tower is already in the high position. Therefore, the system receives the 

associated command while it is in the idle mode and can switch to the front-view mode after disabling 

the observation mode. The hardware circuitry associated with the head movement of the platform does 

not need to wait for the tower to go up due to its initial physical configuration which speeds up the 

adaptation process. The system starts to prepare a 3D map of the scene to be used for the navigation 

mode of operation which requires N-angular positions of the Head. The system enters the idle mode, 
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upon finishing the task. The existing multiplexing approach takes 12 c.c. for the specified mode 

transitions, which is less than the required time to reconfigure the FPGA. Therefore, the applied 

approach meets the timing requirements of this mode transition faster than its counterpart. 

Case 3: Observation-Navigation Mode 

To enter the navigation mode from the observation mode, the system needs to enter the idle mode and 

then navigation mode. However, the system needs to physically adapt itself to the new mode of 

operation. For instance, the Tower which is set high in the observation mode needs to be placed down, 

before entering the navigation mode to meet the physical specification of this mode of operation.  

The existing multiplexing scheme takes 12 c.c. to switch from the observation to the idle mode and 

remains in this mode depending on how fast the navigation command becomes available.  Upon 

receiving the navigation command it enters the navigation mode after the transition to observation 

mode and setting the Tower to down position. The whole process takes less than 100 c.c. (20 µs), if the 

reception of the navigation command is almost immediate.  

The estimated time to have the Tower fully down is around three seconds, which provides plenty of 

time to reconfigure the FPGA with the bitstream of the new mode while the physical configuration is 

still in the process of adaptation. In other words, if the partial reconfiguration was to be used, the 

hardware circuitry associated with the idle mode of operation would be the static part of the FPGA and 

the other operational modes would be downloaded on to the FPGA via module-based partial 

reconfiguration to change the system’s behaviour by reallocating only the related hardware resources 

without completely reconfiguring the entire FPGA. Similar analysis can be performed on the front-view 

to navigation and observation to front-view operational modes transitions. 

Based on the above analysis, the existing multiplexing approach in the transition of specified 

operational modes is suitable for the system, while partial reconfiguration of the system with the 

defined modes offers no significant advantages for the current robotic platform. However, in terms of 

area and resource utilization of the design, as described in Sections 5.5, partial reconfiguration makes a 

good candidate for further improvements of the system since adding more functionality in the form of 

modes of operation does not require the switch to a larger FPGA device. 
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Appendices 

A.  MicroBlaze Component Internal Organization 

 

 

Figure A. 1: MicroBlaze Internal Component Organization 
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Figure A. 2: MicroBlaze-Dual BRAM Component Organization 
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B. System Component Symbols 

The following figures demonstrate the actual component symbols of the system for each modes of 

operation.  

 

 

Figure B. 1: Main Component Symbol for Multiplexing Approach 
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Figure B. 2: Navigation Mode Component Symbol 

 

 

Figure B. 3: Front-View Mode Component Symbol 
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Figure B. 4: MicroBlaze Component Symbol for Idle Mode 

 

 

 

Figure B. 5: Observation Mode Component Symbol 
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