

MULTI-MODAL RECONFIGURABLE ROBOTIC

PLATFORM WITH

3D-IMMERSIVE TELEPRESENCE SYSTEM

By

Mohammad Mehrabi

Bachelor of Engineering, Ryerson University, 2011

A thesis

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Applied Science

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2014

©Mohammad Mehrabi 2014

ii

Author's Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I authorize Ryerson University to lend this thesis to other institutions of individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this thesis by photocopy or by other means,

in total or in part, at the request of other institutions or individuals for the purpose of scholarly

research.

I understand that my thesis may be made electronically available to the public.

iii

MULTI-MODAL RECONFIGURABLE ROBOTIC

PLATFORM WITH

3D-IMMERSIVE TELEPRESENCE SYSTEM

Master of Applied Science 2014

Mohammad Mehrabi

Electrical and Computer Engineering

Ryerson University

Abstract

The concept of reconfigurability and its applications in robotics have become prominent in the past

few years as they provide versatility, adaptability and scalability to the systems. The reconfigurable

robots can perform tasks in outer space, under the sea and in hazardous environments by

rearranging their physical configurations to alter the system’s behavior and geometry. However, the

concept of reconfigurable robots is not just constrained by the mechanical reconfiguration of the

components, for the system should also demonstrate a modular reconfigurable behavior to newly

imposed conditions.

The objective of this work was to design and implement a multi-modal reconfigurable platform

based on the concept of “form follows function” to be integrated with 3D-Immersive telepresence

systems. The developed system was analyzed to verify the feasibility and functionality of the

proposed architecture, and suggestions were made for future improvements.

iv

Acknowledgement

The completion of this work would have never been possible without the consistent help and

support of my family, professors, friends and colleagues.

I would like to express my sincere gratitude to my supervisor, Dr. Lev Kirischian, for the

support, patient guidance, enthusiasm, and immense knowledge he has provided me throughout

my time as his student.

I would also like to thank my friends and colleagues in the lab: Victor Dumitriu, David Diaz and

Rares Raducu for their advice and sharing of their knowledge throughout my studies. Special

thanks go to Rares Raducu and Liviu Raducu for all the good memories and years of true

friendship.

I also would like to thank the Department of Electrical and Computer Engineering at Ryerson

University for providing me with the great facilities and equipment needed for my research, as

well as the review committee, Dr. Yuan, Dr. Geurkov and Dr. Raahemifar for their participation

and helpful feedback. My personal gratitude goes out to Dr. Kamran Raahemifar, for his

constructive guidance and suggestions during writing this paper.

Lastly and most importantly, I would express my deep sense of gratitude to my parents who

have always believed in me, stood by me like a pillar in times of need and who gave up their

own dreams to help me achieve mine.

ii

Dedication

This work is dedicated to my parents, brother and sisters, who have always loved and

supported me unconditionally.

iii

Contents
1. Thesis Introduction .. 1

1.1 Motivation ... 1

1.2 Objectives .. 3

1.3 Contributions ... 4

1.4 Thesis Organization ... 5

2. Related Works .. 6

2.1 Introduction ... 6

2.2 Telepresence System ... 7

2.3 Robotics and Reconfigurability .. 10

2.3.1 Physical Adaptation .. 11

2.3.2 Behavioral Adaptation .. 15

2.4 Summary .. 18

3. Architecture Development of Multi-Modal Reconfigurable Robotic Platform 19

3.1 Introduction ... 19

3.2 Concept and Theory Analysis .. 20

3.3 Modes of Operation Analysis .. 22

3.3.1 Idle Mode .. 24

3.3.2 Observation Mode .. 25

3.3.3 Front-View mode .. 27

3.3.4 Navigation Mode .. 28

3.4 System Architecture Organization ... 29

3.4.1 Idle Mode Architecture ... 31

3.4.2 Observation Mode Architecture ... 33

3.4.3 Front-View Mode Architecture ... 34

3.4.4 Navigation Mode Architecture ... 35

3.5 Summary .. 37

4. Implementation of the Multi-Modal Reconfigurable Robotic System .. 38

4.1 Introduction ... 38

4.2 System design Implementation ... 39

4.3 Modes of Operation .. 40

4.3.1 Idle mode .. 40

4.3.2 Observation Mode .. 47

iv

4.3.3 Front-View Mode .. 52

4.3.4 Navigation Mode .. 54

4.4 Complete System Implementation .. 71

4.5 Summary .. 72

5. Experimental Results Analysis and Discussion .. 73

5.1 Introduction ... 73

5.2 Experimental Setup ... 74

5.3 Timing Analysis .. 77

5.4 Power Consumption Analysis .. 81

5.5 Area and Resources Analysis ... 83

5.6 Discussion and Conclusion... 85

Appendices .. 88

A. MicroBlaze Component Internal Organization .. 88

B. System Component Symbols ... 90

Bibliography .. 93

v

List of Tables

Table 2. 1: Immersive Telepresence Requirements Comparison for Design Goals courtesy of [10] 8

Table 2. 2: SR Hardware Architecture Comparison .. 14

Table 3. 1: Resource Interactions among the Modes of Operation ... 29

Table 3. 2: Comparison of RF Technologies .. 31

Table 4. 1: Timing Analysis of the Accelerometer on FPGA .. 50

Table 4. 2: Timing Analysis of the Design on FPGA ... 63

Table 4. 3: Timing Analysis of the Design on a RISC Processor ... 65

Table 5. 1: Estimated Power Summary Courtesy of [58] .. 81

Table 5. 2: Power Consumption of the Control and Communication Part ... 81

Table 5. 3: Resource Organization of the System as Obtained via XPA .. 83

vi

List of Figures

Figure 2. 1: Operation Using the Proposed Telepresence System Courtesy of [2] 9

Figure 2. 2: Modular Robot Concept Proposed by [15] .. 11

Figure 3. 1: Robotic Platform’s Modes of Operation .. 23

Figure 3. 2: Description of the Idle Mode ... 24

Figure 3. 3: Initial Block-Diagram of Idle Mode .. 24

Figure 3. 4: Description of the Observation Mode ... 25

Figure 3. 5: Video-Acquisition and Pre-Processing Subsystem Block-Diagram Courtesy of [1]............ 26

Figure 3. 6: Initial Block-Diagram of Observation Mode ... 26

Figure 3. 7: Description of the Front-View Mode ... 27

Figure 3. 8: Initial Block-Diagram of Navigation Mode ... 28

Figure 3. 9: Idle Mode Block-Diagram ... 32

Figure 3. 10: Observation Mode Block-Diagram ... 33

Figure 3. 11: Front-View Mode Block-Diagram ... 34

Figure 3. 12: Navigation Mode Block-Diagram ... 35

Figure 3. 13: Description of the Navigator Module .. 36

Figure 4. 1: Telepresence System Architecture Courtesy of [1] ... 39

Figure 4. 2: Block-Diagram of a UART Receiving Subsystem Courtesy of [41] 41

Figure 4. 3: Clock-Diagram of a Complete UART Courtesy of [41] .. 42

Figure 4. 4: Block-Diagram of XPS UART Lite Courtesy of [42] ... 43

Figure 4. 5: MicroBlaze Internal Organization .. 45

Figure 4. 6: Idle Mode Component Symbol .. 46

Figure 4. 7: Linear Actuator Controller Circuit .. 48

Figure 4. 8: Accelerometer SPI protocol and Timing Diagram Courtesy of [44] 50

Figure 4. 9: Observation Mode Component Symbol ... 51

Figure 4. 10: Description of the Front-View Mode ... 52

Figure 4. 11: Front-View Mode Component Symbol .. 53

Figure 4. 12: Motor-driver Hardware Organization .. 54

Figure 4. 13: Odometer Hardware Organization .. 57

Figure 4. 14: Odometer Circuit Diagram ... 57

Figure 4. 15: Obstacle Sensors Hardware Organization ... 58

Figure 4. 16: Description of the Navigation Mode .. 59

Figure 4. 17: The SPI Protocol of DAC courtesy of [49] ... 62

Figure 4. 18: RISC Processor Instruction Execution Process ... 64

Figure 4. 19: MicroBlaze Execution Process ... 65

Figure 4. 20: Motor-driver Component Symbol .. 67

Figure 4. 21: Odometer Component Symbol .. 68

Figure 4. 22: Obstacle Sensors Component Symbol ... 69

Figure 4. 23: Navigation Mode Component Symbol ... 70

Figure 4. 24: Main System Component Symbol .. 71

file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436131
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436133
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436135
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436136
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436138
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436139
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436140
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436141
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436142
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436143
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436144
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436145
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436146
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436148
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436149
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436152
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436153
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436154
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436155
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436156
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436157
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436158
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436159
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436161
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436162
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436163
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436164
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436165
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436166
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436167

vii

Figure 5. 1: Robotic Platform inside View ... 74

Figure 5. 2: Idle-Navigation Mode Transition ... 78

Figure 5. 3: Navigation Turn for 12 Wheel Turns .. 79

Figure 5. 4: Various Directions in Navigation Mode ... 79

Figure 5. 5: Idle-Observation Mode Transition ... 80

Figure 5. 6: Logic Utilization of the System ... 84

Figure 5. 7: Basic Premise of Partial Reconfiguration courtesy of [62] ... 85

Figure A. 1: MicroBlaze Internal Component Organization .. 88

Figure A. 2: MicroBlaze-Dual BRAM Component Organization .. 89

Figure B. 1: Main Component Symbol for Multiplexing Approach ... 90

Figure B. 2: Navigation Mode Component Symbol ... 91

Figure B. 3: Front-View Mode Component Symbol .. 91

Figure B. 4: MicroBlaze Component Symbol for Idle Mode.. 92

Figure B. 5: Observation Mode Component Symbol .. 92

file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436168
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436169
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436170
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436171
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436172
file:///C:/Users/Moe/Desktop/Thesis_Mehrabi_Final.docx%23_Toc397436174

viii

List of Abbreviations

3D-Image Int. 3D Image Interpolation

3D-P 3D- Panoramic

ADC Analog-to-Digital Converter

Addr Address

ASICS Application Specific Integrated Circuits

BitGen Bitstream Generator

BRAM Block RAM

C. C. Clock Cycle

CEBOT Cellular Robotic System

CLK Clock

CMD Command
COFDM Coded Orthogonal Frequency Division Multiplexing

CPU Central Processing Unit

CS Chip Select

Cut_dir Current Direction

DAC Digital-to-Analog Converter

DCM Digital Clock Manager

FF Flip-Flops

FIFO First-In First-Out

FPGA Field Programmable Gate Array

FW Firmware

GPIO General Purpose Input/Output

HW Hardware

I/O Input/Output

I2C Inter-Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

JPEG Joint Photographic Experts Group

JTAG Joint Test Action Group

LED Light Emitting Diode

LeftCntr Left Counter

Lin_Act Linear Actuator

LMB Local Memory Bus

LUT Look-Up Table

M1-M6 Motor 1-Motor 6

MARS Multi-stream Adaptive Reconfigurable System

MCC Mobile Configuration Change

MISO Master-In-Slave-Out

ModRED Modular Self-Reconfigurable Robot for Exploration and Discovery

MOSI Master-Out-Slave-In

MOT CTRLR Motor Controller

M-TRAN Modular self-reconfigurable robots

MULT Multiplier

ix

MUX Multiplexer

NavigFlag Navigation Flag

NiCd Nickel Cadmium

NiMH Nickel-Metal Hybrid

PLB Processor Local Bus

PR Partial Reconfiguration

PROM Programmable Read-Only Memory

PWM Pulse Width Modulation

RF Radio Frequency

RightCntr Right Counter

RISC Reduced Instruction Set Computing

RST Reset

SCK SPI Clock

SDI Slave Device In

SDO Slave Device Out

SEN_A Sensor A

SMORES Self-assembling Modular Robot for Extreme Shape shifting

SoC System on Chip

SPI Serial Peripheral Interface

SR Self-Reconfigurable

SW Software

UART Universal Asynchronous Receiver/Transmitter

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

VAPP Video Acquisition and Pre-Processing

VHC Virtual Hardware Component

VHDL Very-high-Speed-integrated-circuit hardware description language

VSC Virtual Software Component

WBL Whole Body Locomotion

WheelRot Wheel Rotation

XPA XPower Analyzer

XPS Xilinx Platform Studio

YaMoR Yet another Modular Robot

1

1. Thesis Introduction

1.1 Motivation

Generally speaking, the evolution of the robotic systems can be categorized into three generations:

i) robots capable of performing repetitive tasks as used in production lines of factories, ii) robots

equipped with sensory devices capable of performing multiple tasks by switching from one

repetitive motion to another and iii) robots with some degree of intelligence to make decision and

adapt their configurations based on circumstances they encounter.

The adaptation to the environmental conditions and constraints not only requires physical

reconfiguration of the robotic system but also the behavioral conformation to the confronted

conditions. Therefore, the physical configuration involves changing the shape, topology and position

of the physical parts of any kind of robotic system. However, the main difference between the

physical reconfiguration of the traditional and reconfigurable robotic system is due to the multi-

modality or multi-functionality of the system. For instance, a traditional industrial robotic system

changes its topology while performing the same operation, such as assembling, manipulating, etc.,

but a reconfigurable robotic system changes the configuration of the components when switching

from one mode of operation to another. In other words, the reconfiguration of the physical form is

the means of adaptation to the new mode of operation along with the behavioral accommodation to

the new functionality of the system. In this way, we employ the concept of “form follows function”.

The emergence of reconfigurable logic blocks, such as Field Programmable Gate Arrays (FPGA) has

opened new horizons for the design and implementation of multi-modal reconfigurable robots that

are much more efficient in contrast to the expensive and inflexible traditional robotic applications

implemented by microcontrollers and ASICs. The dynamic partial reconfiguration feature of today’s

FPGAs leads to more cost-effective designs, as it allows effective adaptation of the multi-modal

robots to have their functions modified during run-time without entirely interrupting their normal

operations.

However, the most effective utilization of intelligent robotic systems still assumes the involvement

of an operator for strategic level control, while the robotic system provides the tactical level control

of current operation due to the existing intelligence gap between humans and machines. This allows

augmenting the intelligence of both humans and machines for the most effective performance in

areas where humans are physically incapable and robots are intellectually incapable of performing

the assigned tasks.

2

One of the important applications of this utilized intelligence augmentation is in telepresence

systems. In such systems, autonomous and semiautonomous robots perform tasks where the

physical presence and/or operation are too dangerous or impossible for human beings [1]. The visual

and control aspects of the contemporary telepresence systems that benefit from multi-modality and

multi-video-stream processing systems, such as [1, 2], has made it possible to remotely monitor and

control mobile systems working in harsh environments, such as space, nuclear power plants, mine

fields, the bottom of the sea, underground pipelines and many other educational and health care

related areas without endangering people’s lives.

Therefore, the main goal of this work is to design, implement and verify a mobile multi-functional

reconfigurable robotic platform based on the concept of “form follows function” that unlike the

traditional application-specific robotic systems, could be used as an instrument to be integrated with

existing telepresence systems.

3

1.2 Objectives

The main objective of this work is to develop a universal multi-functional mobile and run-time mode

adaptive robotic platform to integrate with systems, in which a mobile robotic subsystem is required

to eliminate the physical presence of humans in hazardous or inaccessible places. The following

stages were considered to achieve the above goal:

1. Research and analyze the existing available approaches in implementation of reconfigurable

robotic systems;

2. Propose an alternative approach based on the concept of hybrid reconfigurability of mobile

applications;

3. Develop the architecture for a reconfigurable mobile robotic platform to integrate with the

existing telepresence system;

4. Design and implement the reconfigurable mobile robotic platform to integrate with the existing

telepresence system;

5. Analyze the experimental results associated with the performance parameters;

6. Verify the proposed approach and identify potential limitations during the test and verification

process.

4

1.3 Contributions

The following contributions were made during the course of the work to meet the previously stated

objectives:

1. Extended literature research in the area of telepresence, telerobotics and reconfigurable robotic

system.

2. Developed the framework of the reconfigurable multi-modal system based on the required

specifications of the mobile application associated with the implemented telepresence system.

3. Designed the system’s hardware components and implemented the architecture of the system for

the first prototype based on the concepts of reconfigurability and multi-modality. The mobile robotic

system was presented at the annual conference SVAR-2013: Space Vision and Advanced Robotics

held at MDA Space Missions, Brampton, Ontario and won the first place for the best presentation

and demonstration.

4. Performed in-depth analysis on the experimental results and observation and alternative

approaches were suggested and discussed for future expansion and implementation of the system.

5

1.4 Thesis Organization

The remaining organization of this thesis is as follows:

 Chapter 2 is associated with the analysis of the current approaches and tools in the field to

address the necessity of redefining the concept of reconfigurability in robotics systems.

 Chapter 3 presents the proposed architecture of the reconfigurable multi-modal robotic

platform by providing an in-depth analysis of the system’s modes of operation according to the

anticipated operational tasks for an existing telepresence system. Based on the assigned modes

of operation, the required resources involved in each mode and their operational functions are

discussed. Furthermore, the architecture organization of the system is realized after addressing

the shared and common resources in each operational mode and determining the type of

implementation for the components associated with each mode of operation.

 Chapter 4 presents the process undertaken to select components of the system according to

the specifications of each mode of operation discussed in Chapter 3 and covers the detailed

implementation of the system, including the hardware, firmware and software development.

 Chapter 5 presents the observations and experimental results based on the described

experimental setup to test and verify the proposed system. Additionally, this chapter discusses

solutions for further improvement and expansion of the system.

6

2. Related Works

2.1 Introduction

Over the past few years, the concept of reconfigurability and its applications in computer

architecture and robotics have become prominent as they provide flexibility, adaptability and

scalability to systems that require rapid changes and adaptation due to the environmental, social,

economic and technological conditions.

Reconfigurable robots have been used in demining, undersea experiments and planetary exploration

missions, such as NASA’s Mars rover Curiosity [3], to reduce the risk and eliminate the physical

presence of humans from hazardous environments. However, absolute replacement of humans with

robots is not yet attainable due to the limited level of intelligence of existing robotic systems. Hence,

in most cases human supervision and decision making skills are required to strategically monitor and

control the robots.

The main barriers to designing and developing such systems to monitor and control robot operations

are latency, data volume and bandwidth. Therefore, it is necessary to create a universal

reconfigurable semi-autonomous robotic platform that can be integrated with existing telepresence

systems to perform different tactical tasks without human assistance.

In the following sections, we first discuss some of the existing telepresence systems to address the

necessity of employing automated tactical adaptation by mobile reconfigurable systems. Then, we

examine the concept of reconfigurability in robotic systems to differentiate the two aspects of

reconfigurations, namely, physical and behavioral adaptations by studying some of the related works

in this area.

7

2.2 Telepresence System

The concept of telepresence refers to a set of technologies that provide a person with a sense of

physical presence remote from his/her current location. The rapidly growing applications of

telepresence systems can be found in business, government, education and health care sectors,

where the need for transportation seeks to be eliminated due to economic and environmental

reasons [1].

The applications of the system are not only limited to teleconferencing; they can be extended by

introducing the concept of telerobotics to the system. In such a system human sensory elements of

vision, sound and manipulation are triggered by incorporating much more advanced video

conferencing equipment onto mobile robot devices that can be steered from remote locations [4].

These telepresence systems can be divided into the three categories below:

i) Systems controlled directly by the remote operator, such as telerobotics surgery, that enable

surgeons to operate on patients from remote locations using robotic instruments that mimic the

movements of a surgeon‘s hands and provide him with 3D imaging system to perform complex

operations [5].

In this type of system, the remote operator becomes the key factor in making decisions that are

context dependent in real time. Thus a reliable real-time communication between the remote

operator and the robot is required that supports both visual and audio streaming to provide the

operator with a realistic experience via haptic feedback and to assist him in making meaningful and

crucial decisions [6].

 ii) Surveillance systems for monitoring and control, such as industrial and commercial security

systems, where multiple vision units may be integrated in order to expand the surveyed area

equipped with alarm systems. Upon occurrence of an alarm condition, the remote operator can have

visual access to the remote environment in which the alarm was activated to take further necessary

actions [7]. However, these systems require heavy integration with sensing elements to provide best

results since constant human supervision is not possible. The mobile laptop robot by [8] is a very

simple commercial example of these systems, where a mobile adjustable frame can hold a variety of

small laptops to act as a surveillance system which uses the laptop’s webcam as the vision system

and allows users to control the carrier over the internet.

iii) Immersive telepresence system that creates an equivalent experience to a human presence in an

actual remote environment. For instance, [9] has developed a 4D real-time augmented virtual reality

8

(AVR) browser to provide an interactive, integrated, mixed virtual reality remote view of the area-of-

interest (AOI) to the operator. Therefore the operator has a remote presence in the real world and

can interact with personnel and sensor assets in the AOI in order to analyze and share the captured

information from multiple sources in real-time.

However, this immersive technology vastly relies on the data volume and bandwidth. For this

reason, [10] has categorized the requirements of the immersive telepresence system based on the

applications and design goals, as shown in Table 2.1.

Table 2. 1: Immersive Telepresence Requirements Comparison for Design Goals courtesy of [10]

Requirement Science Operational Public

Data samples High values Medium Low

Completeness Low priority Medium High

Fidelity of data High Varies Low

Non-verified data Low priority Varies High

Latency demands Required loop Virtually Ok Virtual

Interactivity Real Simulated Virtual

Real time bandwidth for
autonomy

High priority for complex interactions Varies Low

As can be seen in the table above, the level of system complexity depends on its application, as the

scientific applications associated with the science exploration, discovery and surface interaction such

as planetary rovers generally do not require complete and high-precision data sets. In contrast,

public engagement concerns do receive a large value benefit upon completion due to the existence

of an incentive to obtain a threshold of observations that will allow the derivation of an acceptable

product.

Furthermore, [11] has also addressed the traditional issues in the application of telepresence in

mining operations, such as latency, poor vision subsystems, compression schemes, communication

protocols, etc., and proposed the design of a mining robot tele-operation system that uses a

combination of several techniques, such as intelligent data-rate adaptive video compression,

computer vision, obstacle avoidance using range sensing, physics-based motion prediction, way-

point guidance and augmented virtuality-based rendering in order to permit realistic immersive

telepresence for the operator of the mining robot.

Similar to mining tele-operation, applications for planetary exploration missions have also been

developed using semi-autonomous robots, such as Robonaut, the first dexterous humanoid robot to

enhance and expand the ability of astronauts to safely and accurately construct and discover [12]

without suffering from the speed of light latency by operating from Earth.

9

However, the main downfalls with these existing immersive telepresence systems are that they do

not make use of electromechanical (moving) components, have low video quality performance,

including frame resolution and/or frame rate, and consume a relatively high amount of power in

case of CPU-based implementation [1]. The designed adaptive 3D-P telepresence system for mobile

applications by [2] as shown in Figure 2.1, resolved the issues associated with the quality and

transmission of the telepresence system.

Figure 2. 1: Operation Using the Proposed Telepresence System Courtesy of [2]

The focus of this work will be on the design and development of a multi-functional reconfigurable

robotic platform that can be integrated with existing telepresence systems to utilize the

electromechanical components of the system and enhance the tactical reliability and adaptability of

the system. In the following sections, the existing approaches in designing reconfigurable robotic

systems will be discussed.

10

2.3 Robotics and Reconfigurability

A simple robotic platform consists of mechanical parts (chassis, housing, wheels, etc.),

electromechanical parts (motors, buttons, switches, LEDs, etc.), and sensors (odometer, infra-red,

accelerometer, etc.). Many of the parts related to the physical configuration of the robots are solely

monolithic such that introducing a minor upgrade to the system requires scrapping the old design

and reconstructing the system based on the new requirements.

In contrast with the traditional fixed-structure robots, modular robotic systems capable of

reconfiguring their morphology by rearranging the connectivity of their parts have revolutionized the

design architecture of robotic systems [13]. In other words, the initial configuration of the robot is

designed for a specific task and, upon completion of the task, the modules in the structure can be

disconnected and reassembled to create a new configuration to support multiple modalities of

locomotion, configuration and perception [14]. This feature of modular robots is considered to be

the foundation of the reconfigurable robotic systems, including self-assembling, self-reconfiguring

and self-organizing systems that can perform tasks in space, under the sea and human-inaccessible

environments due to their adaptability and flexibility to serve as different instruments in various

environments.

It is worth mentioning that the concept of reconfigurability is not just bounded by the physical

reconfiguration of the systems; rather, behavioral aspects as well as utilization of hardware

components by reusing the components for various purposes need to be considered as well.

Therefore, the reconfigurable system for the physical world can be divided into the following:

i) Physical adaptation associated with the reconfiguration of the physical and mechanical

components of the system to ensure the tactical functionality of the system upon

confronting environmental interferences.

ii) Behavioral adaptation to utilize the physical components used in the design for a function

or application that can be further subdivided into :

a. Reconfiguration by changing only the procedure of the architecture.

b. Reconfiguration by changing the system structure, including components, links between

components and procedures.

11

2.3.1 Physical Adaptation

The physical adaptation of reconfigurable robotic systems is associated with the physical and

mechanical reconfiguration of the system by changing the orientation and assembly of the physical

components to expand robotic system capabilities beyond the traditional single-task robotic designs.

One of the first robotic infrastructures to employ this concept was proposed by [15] to be used for

planetary surface operations, as shown in Figure 2.2.

Figure 2. 2: Modular Robot Concept Proposed by [15]

The proposed design consisted of the following modules:

 Based module: the core of the robot that comes in different shapes based on the application

and that interconnects with various modules.

 Power modules: the power supply of the robotic platform.

 Actuation modules: the modules that produce rotational motion that come in various sizes

based on the required tasks to be done.

 Kinematic Modules: also known as links, which are used to alter the dimension of the robot

by changing the distance between its joints.

 End-Effecter Modules: they include manipulators to perform assembly and sample

collection.

However, the proposed design fails to establish an actual prototype design, and most results

presented occur only in simulation. Moreover, even though the reconfiguration of the infrastructure

enhances the functionality of the robot, the proposed approach seems to be simply introducing

multiple robotic designs for different operations, as the base module is the only one that remains

unchanged.

12

In contrast with the above approach, where human interaction was required to set up the physical

configuration of the robot based on the required tasks, a more advanced type of modular

reconfigurable robotic systems, also known as Self-Reconfigurable (SR) robots, can be employed that

are capable of adapting their physical configuration for environmental variations without any human

assistance.

A Self-Reconfigurable (SR) robot is a robust, multi-functional, scalable and self-repairable modular

based robotic system, capable of metamorphosing its shape and changing physical connections and

functions based on the conditions of the surroundings without any assistance from the outside

world [16]. Configurations with arbitrary shapes and forms can be achieved to perform useful

functions, such as navigation or handling objects, due to the existence of identical modules, which

have no specific functionality on their own.

The roots of creating SR robots were born back in the 1970s when robots with several modules were

invented. They were able to automatically switch between modules due to the required functions at

a specific time. This approach serves the concept of SR robot design as each module can be replaced

by another similar module, while the replaced module can also function as the initial module to help

the system reach its objectives. The first SR robot to employ the concept of modular

reconfigurability is the CEBOT (1988), which was composed of several modules, such as

transportation and rotational joints and telescopic arms that enabled CEBOT to perform multiple

tasks [17].

Furthermore, the modular design of SR robots offers multi-functionality, robustness, flexibility and

self-restoration. The self-restoration ability of the SR robots refers to both internal and external

environmental changes imposed on the system, such as mitigation of hardware faults associated

with manufacturing defects, module failures, radiation and electromagnetic interferences, etc., and

efficient and quick adaptation to unexpected changed circumstances.

Over the past two decades, many advanced and sophisticated SR robot designs in terms of hardware

architecture, planning and control algorithms, efficient simulation and system integration have been

developed. However, the general architecture of the SR robots can be classified into two major

groups [13]: Mobile Configuration Change (MCC) and Whole Body Locomotion (WBL) according to

the nature of mobility patterns and the reconfigurable properties of the robot, as shown in Figure

2.4. Each of these two classes is also branched out to sub-classes based on the geometric

arrangements of the hardware components of the robots.

13

The MCC configuration refers to modular robots, where the modules are self-contained and interact

independently with the environment. However, the WBL refers to the modular robots whose

morphology provides different types of locomotion, such as walking, crawling and rolling [18]. The

sub-categories associated with these two classes of modular robots are as follows:

 Lattice architecture, which consists of units that are arranged and connected in some regular

3D pattern, such as a cubic or hexagonal grid. The kinematic features of lattice robots can be

categorized by their crystallographic displacement patterns [19], which allow specific motion

patterns that result in simpler physical reconfiguration. However, many actuators and

connectors are required to transfer the motions among the modules.

 Chain/Tree architecture, which consists of units that are connected together in a string or

tree topology in such a way that they are able to reach any point in the space. However,

many units are required to construct a specific configuration that increases the complexity

and overhead of the systems.

 Hybrid architecture, which takes advantages of both chain/tree and lattice architectures by

maintaining the control and mechanism of lattice type and exploiting the versatility of

chain/tree architecture.

Figure 2. 3: Classification of the Reconfigurable Robots Courtesy of [13]

14

The advantages and disadvantages of the above architectures with respect to their level of

complexity, scalability and feasibility are listed in Table 2.2, according to [17, 20, 21].

Table 2. 2: SR Hardware Architecture Comparison

Architecture Advantages Disadvantage Examples

Chain/Tree versatile

Less symmetrical compared to

Lattice and requires a chain of

many units to perform a task

ModRED,

Polybot

Lattice

easy to self-reconfigure and

suitable for forming various

static configuration

Difficulty in generating motion.

Complex mechanical design due

to many connectors and actuators

ATRON,

M-Cubes

Hybrid
The cross-over between the

chain and lattice types

Anisotropic symmetry that makes

it hard to self-reconfigure

M-TRAN,

SMORES

However, there are currently no standard benchmarks for the performance parameter analysis of

the modular robotic systems since it is difficult to directly compare the mechanical hardware

architectures with one another. Therefore, most performance analyses such as [22], [23] and [24]

are subjective and do not clarify if the reported values are based on actual measurements or

engineering estimations.

Even though advanced mechanical design of today’s self-reconfigurable robots, such as SMORES [25]

and M-TRAN [26], which are capable of rearranging their modules in all three reconfiguration

architectures (as shown in the table above) demonstrate a giant leap for the field of reconfigurable

robotic systems, the majority of related works in this field rely mostly on the physical configuration

of the robot and use of redundant and complex hardware to implement a modular reconfigurable

design [27]. Therefore, in the following section, the behavioral aspect of reconfigurable robotic

system will be discussed.

15

2.3.2 Behavioral Adaptation

Behavioral adaptation is associated with the system’s accommodation to new functionality imposed

by environmental or application variations. As mentioned earlier, the behavioral adaptation of the

reconfigurable system can be achieved by either changing the procedure element or the entire

system structure, including the components, the links between the components and the procedure

of the system architecture.

The main difference between these two forms of adaptation is the level of involvement of resources

and the ability to recover in case of hard faults, such as radiation, manufacturing defects and EMI,

etc. For instance, a mobile robot navigating on an angular terrain uses its sensing elements to avoid

rolling-over; however, if the components associated with these sensing elements were defective,

then the system based on the first method could not pursue its objectives. On the other hand, the

second method would offer other forms of behavioral adaptation such as decreasing the speed or

lowering the height of the platform for stabilization.

Moreover, the first method of adaptation requires switching procedures to alter the behavior of the

system; this switch can be implemented using traditional high-performance sequential processors.

This procedure could be as simple as multiplexing among different functions or as complex as

loading configuration data via custom boot-loaders capable of loading the appropriate firmware

upon start up [28]. However, consider the system in [26], which uses four microcontrollers for each

module. The reliability, high power consumption and cost of some of these elaborate systems may

not be able to keep up be able to keep up with the performance parameter requirements of most

embedded systems including reconfigurable robotic systems.

On the other hand, the second method offers a completely versatile robotic system, in which, not

only the system can reconfigure its behaviors based on the required task, but it can also recover

from hard faults by partially functioning. For instance, the Spirit Mars rover became stuck in soft oil

on Mars, but it continued to work as a stationary science platform for a few more months [29]. This

method requires a high degree of complexity as not only the procedure part of the architecture is

required to be modified but also the components and their links need to be changed to realize a

versatile system capable of mitigating to hardware disturbances and adapting to unexpected

environmental changes. Therefore, these systems can be best implemented using reconfigurable

logic blocks.

The reconfigurable logics have been used in industry mainly for development and rapid prototyping

purposes. However, in robotics application wherein hardware and software could constantly change

16

due to different circumstances, designing a flexible, reconfigurable and adaptable system has many

advantages. The life cycle and performance of the robot would be enhanced, while power

consumption, total cost and risks would be reduced [30].

There have been some works in design and development of reconfigurable robotic systems using

reconfigurable logic blocks of FPGAs such as [31], [32], [33] and [34], which will each be addressed in

the following paragraphs.

The robot designed by [31] used custom cores described in HDL along with an embedded soft-core

processor with a traditional architecture to increase the versatility of a modular worm-like robot by

dynamic hardware modification and hardware/software co-design and remote hardware

reconfiguration. However, the focus of this work was to extend the previous work done by [35] by

reducing the number hardware components. It does not examine the potentials of using dynamic

hardware modification to define a set of modes of operation to reconfigure the system’s behavior as

well as its physical arrangement.

The dependability of the existing reconfigurable robots to their physical forms was addressed by [32]

and [33]. They offered a flexible framework for adaptive locomotion control by taking advantage of

dynamic partial reconfigurability of the FPGAs (see figure 2.4). However, the proposed system does

not support the physical aspect of reconfiguration since human assistance is required to connect the

modules.

Figure 2. 4: Different Configuration of YaMoR Courtesy of [33]

17

The dynamic reconfigurable robotic system developed by [34] employed the dynamic partial

reconfiguration feature of Xilinx Virtex-2FPGA to implement a dynamic run-time behavior

reconfiguration in their system which includes two mobile robots. The system performs a certain

task that can involve following a wall, avoiding obstacles, normal driving and leading/following

during the run-time by downloading the partial configuration bit stream of required behavior to

implement the corresponding interface circuit. Even though, the proposed system properly aimed

for the modularity concept [36], where the system’s behavior is constructed from multiple control

and communication modules to create different modes of operation, the main issue with [34] is the

incapability of the system to utilize its resources, as many components are idly present during

different modes of operation.

The proposed system by [37] took a similar approach and incorporated the hardware task scheduling

into the traditional scheduling process using conventional processors. The system partitioned a

complex software task into five independent subtasks, which are stored in a memory device. A

hardware task scheduler controlled the execution order of the subtasks by downloading different

partial configurations bitstream on to the FPGA. However, the proposed approach was examined

only through simulation due to the nonexistence of any benchmark packages for a reconfigurable

system.

Based on what has been discussed so far, many works have been done in the area of reconfigurable

robotic systems. However, the main focus of these works is on the physical configuration of the

system, with a disregard for the behavioral aspects in most cases. On the other hand, the recent

works focusing on the behavioral aspects are often application-specific and fail to exploit the full

potentials of the behavioral adaptation aspect of a reconfigurable robotic system. Therefore, it is

essential that we redefine the concept of reconfigurable robotic system to design a multi-functional

universal robotic platform capable of functioning in various environments.

18

2.4 Summary

In summary, we addressed the necessity of using mobile reconfigurable robotic systems in a

telepresence system, whereby human beings can realistically and remotely operate mobile robots in

hazardous and inaccessible environments, from safe locations. We discussed the recent and existing

approaches in design and development of reconfigurable robotic systems and clarified the

conceptual difference between the physical and behavioral aspects of reconfigurable robotic

systems. We outlined the limitations of each approach to come up with a universal reconfigurable

robotic platform that can be integrated with existing systems, including telepresence systems.

19

3. Architecture Development of Multi-

Modal Reconfigurable Robotic Platform

3.1 Introduction

The main idea behind implementing reconfigurable robotic systems is the ability to adapt to

environmental conditions and constraints by altering the physical reconfiguration of the robotic

system and still maintain the functionality and behavioral conformation to the applied physical

changes. In other words, the configuration of the robotic system including its physical, computing

architecture control and communication configuration, etc. should correspond to the workload and

environmental conditions imposed upon the system.

Many works have explored the area of reconfigurable robotic systems in terms of changing the

physical configuration, as any type of robotic systems that can change its shape, topology and

position of its physical parts can be considered reconfigurable. However, the main difference

between the conventional robotic systems and an actual reconfigurable robotic system is the fact

that the functionality of the first system does not change as the topology of the system alters, such

as assembling equipment, moving or manipulating other objects, etc. On the other hand, a true

reconfigurable robotic system is a multi-modal system, in which the configurations (topological and

behavioral) are optimized for the modes of operation. In this case the physical reconfiguration

becomes a process for adaptation to the new mode of operation even as the behavioral

accommodation leads to the new functionality of the system.

Moreover, as it was discussed in Chapter 2, most of the works done in the area of reconfigurable

robotic systems targeted the physical aspect of reconfigurability, while the behavioral aspect and

utilization of resources are often disregarded. This chapter contains a detailed description of our

proposed system by analyzing the various modes of operation to determine the architecture of a

multi-modal autonomous mobile reconfigurable robotic system.

20

3.2 Concept and Theory Analysis

The concept of reconfigurability has become a popular subject in the realm of computer

architecture. Reconfigurability is referred to as the ability to change the hardware or parts of the

hardware either on a problem-by-problem basis or during the lifetime of an algorithm solving one

problem instance [38].

Reconfigurability has a tight relationship with the concept of survivability, which can be simply

defined as the ability to continue to exist by avoiding regression and external disturbances and thus

maintain overall stability. In engineering, survivability is the overall ability of a system and

subsystem’s process to continue functioning despite the occurrence of natural or man-made

disturbances, such as electromagnetic wave interferences, hardware malfunctions, etc.

A deeper look into nature and wildlife verifies the existence of reconfigurability, wherein the form or

the physical descriptions of animals determine their characteristics, habitats and activities of species.

Depending on the type of the species habitat, animals need to adjust themselves to change along

with the environment. The polar bear is a good example of adaptation of mammals in extremely cold

Arctic weather. The thick fur and layer of stored fat under the skin help the bears to trap air and

insulate their body in order to survive [39].

Furthermore, survivability dictates the configuration and lifestyle of the species as it tends to

achieve sustainable growth and avoid regression and degradation. The need to survive has been the

foundation of species’ evolution to guarantee their existence in a particular ecosystem. For example,

the difficulty in finding food resources during the winter forces certain mammals to conserve energy

by reducing their normal body processes to almost a stand-still (hibernation) in order to survive in

harsh weather conditions.

The same analysis can be applied when designing reconfigurable systems, where a reconfigurable

system can be redefined as a system that requires multi-functionality and the ability to change its

configuration including physical and behavioral aspects to mitigate the environmental harshness and

adapt to the surrounding variations. Having said this, the general organization of our proposed

reconfigurable robotic platform can be discussed.

The general organization of our proposed multi-modal robotic system is based on the concept of

“form follows function” and is expected to be used as a universal multi-functional robotic platform

for integration with existing systems, such as telepresence systems. The proposed concept simply

implies that the physical form and configuration of the system should comply with the task in

21

process. For instance, a mobile robotic subsystem of a telepresence system should be able to

perform multiple tasks such as navigation, recording and transmission of image data to the control

center. However, the number of physical components of the system can be reduced by utilizing the

hardware resources during the performance of each task. For instance, the tower holding the

camera modules of the robotic system can be placed down during navigation to enhance stability

and avoid roll-overs and therefore eliminate the need to have sensing elements, such as

accelerometers to constantly monitor and adjust the tower’s level. Additionally, the number of

camera modules can be reduced based on the application’s need to see far objects; the two front-

view cameras can be adequate to provide a telescopic view rather than using four cameras to

provide a panoramic view to a remote operator.

Based on what has been discussed so far, it is necessary to define the reconfigurable system by its

operations and to categorize its functions into a set of modes of operation that also incorporates

resources arrangement and optimization. In this case the physical adaptation aspect of the

reconfiguration becomes a process for adaptation to the new mode of operation with the behavioral

accommodation to the new functionality of the system. Therefore, the multi-functional

characteristics of our reconfigurable moving platform imply that unlike the uni-functional systems,

traditional ASICs, there should be a set of operation modes, which may vary the physical

configuration of the system and switch during various stages of task executions on the basis of

request or environmental conditions.

To put our proposed robotic platform to the test, we took advantage of the existing 3D-P

telepresence system, designed and developed earlier by this laboratory, and defined a set of

operational modes for the platform to determine the general system architectural organization.

22

3.3 Modes of Operation Analysis

In order to distinguish the primary modes of operation for the moving platform, the required tasks

of the system need to be defined. A typical scenario will be discussed to shed some light on the

behavior of the system and the actions of which it is capable:

 The system is out on the field and initially at rest. The system conserves energy by eliminating

and reducing unnecessary activities. However, the system is able to communicate with the

teleoperator, who is located at the master side.

 The system enters an observation stage upon receiving a request from the master side, in which

the vision system performs stereo-panoramic acquisition of the scene and then pre-processes

and transmits the captured data back to the master site for further actions. The hardware

organization of the system needs to be formed in such a way to enhance and maintain the

quality of the captured images and perform further adaptation mechanisms, such as changing

video frame resolution, frame rate, compression levels, disparity, noise reduction, etc.

 The transmitted data is received by the teleoperator, who now has a clear vision and perception

of what is happening on the slave side and can act accordingly by remotely controlling the

moving platform via the provided manipulators.

One of the most important and interesting features of the system comes into effect when the

system is required to relocate itself to another position due to a request by the master side. In this

case the system will not capture any more images due to noise, vibrations and other factors that can

affect the data and the operator’s vision and perceptual capabilities during the movement. However,

the system autonomously drives itself to the requested position by exploiting its navigation sub-

system that controls the speed, distance, balance and obstacle avoidance features.

It should be noted that, even though no image is captured and transmitted to the master side, the

teleoperator will not notice the interruption and continues to observe stereo-panoramic video,

which is modified and updated by the control unit at the master side, based on the video generated

earlier by the moving platform.

Upon arriving at the destination, the moving platform will notify the control center and then start to

transmit new stereo-panoramic video, which will be picked up and demonstrated to the

teleoperator for further decision making.

23

By knowing the possible tasks of the moving platform, the behavior of the FPGA- based control and

communication system for the mobile autonomous re-configurable robotic platform can be grouped

and implemented as shown in Figure 3.1, to accommodate various tasks requirements.

One of the advantages of using a multi-modal design is the scalability or the ability to expand the

system’s tasks by simply adding individual modes without interfering with other modes of operation.

A multi-modal system also enhances flexibility of the design in the sense that modes of operation

can be modified or even removed without sabotaging the overall performance of the system. For

instance, UAVs, Quadra-copters, equipped with cameras enhance the flexibility and scalability of the

system by increasing the range of motion, are able to fly and gather data from places otherwise

difficult or impossible for a heavy surface-drive platform to reach. These features along with

versatility, robustness and low cost become handy when the system is unable to perform its regular

tasks due to an external interference or disturbance from the surrounding environment. In this case

the system can carry on by operating in other modes.

In the following subsections, we will describe the required tasks, physical configuration and

resources of each mode to come up with the architectural organization of the system.

IDLE Mode Observation

Mode

Front view

Mode

Navigation

Mode

RF cmd: Mode 1

RF cmd: Mode 2

RF cmd: Mode 3

 RF cmd: Mode 0

Mode 1 Mode 2

Mode 3 Mode 4

Figure 3. 1: Robotic Platform’s Modes of Operation

24

3.3.1 Idle Mode

Function: In the idle mode, the robotic platform is in a stationary state and conserves energy by

shutting down all the unnecessary components. The RF link is engaged to receive further instructions

from the control center.

Physical configuration: The platform is stationary, the Head and Tower are in low position facing

the horizon, as shown in Figure 3.2.

Figure 3. 2: Description of the Idle Mode

Resources: To realize the system in this mode, the system requires the following subsystems as

shown in Figure 3.3:

 Power-saving

The power saving module is responsible for conserving energy by turning off all unnecessary devices

and placing them in disabled mode. Such components as the camera module, motors and

transceivers may be turned off to save power.

 RF-Link

The RF-Link module is responsible for sending and receiving commands from the master’s side and

direct the mode transitions based on the received command.

RF-Link Idle Mode Power Saving

Figure 3. 3: Initial Block-Diagram of Idle Mode

25

3.3.2 Observation Mode

Function: In the observation mode, the system captures, processes, compresses and transmits 3D-

Semi-Panoramic images of the scene by means of the 4 video sensors located at the top of the Head

compartment. An RF-Link is also used to obtain further instructions, such as Head angles and future

destinations.

Physical Configuration: The platform is in stationary state, the Head, which contains the video

sensors is facing the horizon, parallel to the body of the platform. The Tower, which connects to the

base of the platform to its “Head,” is in high position, as shown in Figure 3.4.

Figure 3. 4: Description of the Observation Mode

Resources: to realize the system in the Observation mode, the system requires the following

subsystems, which will be described below:

 RF-Link

The RF-Link module, discussed in Section 3.3.1 can be applied in the observation mode as well.

26

 Video-Acquisition and Pre-Processing Unit

The video-acquisition and pre-processing module is responsible for capturing 3D-Semi-Panoramic

images of the scene by means of 2 frontal and 2 peripheral video sensors located at the top of the

Head. The 3D-SP video packages are compressed by the JPEG2000 compressors and then

transmitted to the control center via Coded Orthogonal Frequency Division Multiplexing (COFDM)

Modulator based Satellite transmitter as discussed in [1]. This module has been implemented as

shown in Figure 3.5 by [1].

 Linear Actuators

To move the Head, which contains the video sensors, up or down, a linear actuator sets the level of

observation. Another linear actuator can be used to enhance the degree and focus of observation by

lifting the Head vertically.

 Accelerometer

The angle of observation can be precisely set by using an accelerometer placed in the Head

compartment mode since the platform is stationary and the orientation of the robotic platform

relative to any surface can be simply identified.

The overall required components of this mode can be categorized as illustrated in Figure 3.6:

Video

Compressor

Video Pre-processor

3D-SP

Camera
Transceiver

Transport stream

combiner

Video-Acquisition and
Pre-Processing

Accelerometer

Linear Actuators

RF-Link

Observation Mode

Figure 3. 5: Video-Acquisition and Pre-Processing Subsystem Block-Diagram Courtesy of [1]

Figure 3. 6: Initial Block-Diagram of Observation Mode

27

3.3.3 Front-View mode
Function: Two video-sensors are capturing 3D images at each of N-angular positions of the Head.

Disparity mapping analyzer is “ON” to create the map of obstacles and their allocation on frontal

distance of X-steps of “Body” movement. COFDM RF-transmitter is actively transferring the number

of compressed 3D images to the mission control centre, and an RF-Link is present to obtain further

instructions.

Physical configuration: The platform is in the stationary state similar to idle mode. However, the

Head is moving from the horizontal position to the vertical as shown in Figure 3.7.

Figure 3. 7: Description of the Front-View Mode

Resources: The Front-View mode requires the following resources:

 3D- Image Interpolation Unit

This subsystem is similar to the VAPP, in terms of capturing, compressing and transmitting the image

to the control center. However, only 2 frontal cameras are used to create a map of obstacles and

their distance from the platform. The generated map is then sent to the control center, which will

use it to predict the robotic platform during navigation, whenever no video data is being transmitted

to the control center.

 Linear Actuator

A linear actuator is also used to set the level of observation along the Y-axis to help provide a frontal

view in 3D.

 RF-Link

The RF-Link module, discussed in Section 3.3.1 can be applied in the observation mode as well.

28

3.3.4 Navigation Mode

Function: In the navigation mode, the system drives the robot’s motors, monitors displacement,

avoids hitting the obstacles and communicates with the control center for verification and receiving

further instructions.

Physical configuration: The Head is in low position, facing the horizon to avoid hitting obstacles.

The Tower is also in low position similar to the configuration of idle mode to enhance stability and

avoid roll-overs while the platform is moving toward the requested location.

Resources: The navigation mode consists of the following individual component, which are

illustrated in Figure 3.8:

 RF-Link

The RF-Link module, discussed in Section 3.3.1 can be applied in the observation mode as well.

 DC brushed motors

6 DC-brushed motors are required to enable the heavy robotic platform to move on any terrains and

carry the subsystems placed in the Head compartment.

 Motor controller

A motor controller is required to control the speed and direction of the motors.

 Odometer

An odometer is used to measure the distance travelled by counting the number of times it takes for

one wheel of the robot to make a full wheel rotation.

 Obstacle sensors

Obstacle sensors are required to avoid colliding with any objects that may be in the way. The

Obstacle sensors consist of optical devices placed around the Head compartment to protect it

against hitting unwanted objects.

Odometer RF-Link
Navigation

Mode

Motors Motor controller Obstacle sensors

Figure 3. 8: Initial Block-Diagram of Navigation Mode

29

3.4 System Architecture Organization

The modes of operation analysis, discussed in the previous section made it possible to define a set of

functional specification required for the general architecture development of the system. As can be

seen in the previous sections, common resources exist in different modes of operations. However,

the respective configurations and functions may vary depending on the active mode. For instance,

even though the Tower is involved in both observation and navigation modes, switching to

observation mode from the navigation mode require stopping the robotic platform and elevating the

Tower to capture video data. Therefore, the main goal of this section is to determine the actual

required resources, their functions and interactions in different modes of operation. Table 3.1

demonstrates the status of resources in the four modes of operation.

 Table 3. 1: Resource Interactions among the Modes of Operation

As can be seen in Table 3.2, the RF-Link is present in every single mode. However, the motors,

odometer and obstacle Sensors are active only in navigation mode. Moreover, the Video-Acquisition

and Pre-Processing, VAPP, is only enabled when the system is in observation mode. The power

saving is present only during the idle mode; last but not the least, the Head is active only during the

front-view mode.

Furthermore, based on the proposed mode of operation analysis in Figure 1, the level of Tower does

not change during the front-view mode as the Tower is already in high position when transitioning

from observation to front-view mode. Hence, resource optimization can be achieved on to dedicate

appropriate resources to each mode based on the defined and default functions described in Section

Mode/Resource Idle Observation Front-View Navigation

Power-saving Enabled Disabled Disabled Disabled

VAPP Disabled Enabled Disabled Disabled

Tower Actuator Low High/Low High Low

3D-Image Int. Disabled Disabled Enabled Disabled

Head Actuator Low Low High/Low Low

Motors & Controller Disabled Disabled Disabled Enabled

Odometer Disabled Disabled Disabled Enabled

Obstacle Sensors Disabled Disabled Disabled Enabled

RF-Link Enabled Enabled Enabled Enabled

30

3.3. This analysis will be discussed shortly after defining the required processing unit to implement

the described modes of operation.

Due to what has been discussed in chapter 2 of this thesis, FPGAs provide higher performance and

lower overall costs compared to conventional microprocessors. The ability of FPGA to provide soft

and hard core processing options, such as PicoBlaze (obsolete), MicroBlaze and PowerPC, helps the

system designer to exploit the advantages of using 32-bit microcontrollers as well as designing parts

or an entire system in the form of Virtual Hardware Components.

In the subsequent sections, the organization of each individual operational mode of the proposed

system architecture is described.

31

3.4.1 Idle Mode Architecture

Due to the required resources and tasks mentioned in Sections 3.3 and 3.4, the idle mode consists of

two major components, namely, the power-saving and RF-link components. Power-saving exists to

conserve energy, hence disabling inactive components of other modes of operation and eliminating

or reducing unnecessary activities to help us to reach this goal.

On the other side, an RF-transceiver is required to communicate with the control center, located at

the master’s side. The implementation of the RF-Link interface will be determined based on what

kind of transceiver is used.

To achieve the goal of minimizing energy use, we need to define the subsystem’s constraints in

order to choose the best Radio Frequency solution for the design. The most important system

features include the range of operation, data rate, overall performance and development and actual

costs. Therefore, some of the wireless standards authored by the Institute of Electrical and

Electronics Engineers (IEEE), including IEEE 802.11, 802.15.1 and 802.15.4 that can be used in mobile

applications are examined and summarized in Table 3.2.

Table 3. 2: Comparison of RF Technologies

Standard Bluetooth ZigBee WLAN/WiFi

Freq. band 2.4 GHz 868/915 MHz, 2.4GHz 2.4 GHz,5 GHz

Max signal rate 1 Mb/s 40kb/s,250 Kb/s 54 Mb/s

Nominal range 10 - 100m (industrial) 10 – 100+ m 100 m

Channel bandwidth 1 MHz 0.3/ 0.6MHz; 2MHz 22 MHz

Modulation type GFSK BPSK(+ASK), O-QPSK COFDM, CCK,M-QAM

No. of nodes 7 64000 32

Security Low High High

Complexity complex Simple Very complex

Cost Low Low High

Power consumption Low Low High

Since the amount of data to be transmitted from/to the control center to/from the mobile platform

is limited to a few instructions, the minimum bandwidth does meet our requirements. Hence, based

on the results shown in the table above, the ZigBee option makes a better candidate than Bluetooth

and WLAN/WiFi for transmiting the commands between the master and slave sides.

32

The next step is to choose a processing platform to interface with the selected RF standard.

Generally speaking, the amount of information transmitted to and from the system is limited, hence

speed and parallelism does not play a crucial role in our system design. For this reason, a slower

processor, such as instruction-based soft-core processor, can be used. Using interrupt-based RF-Link,

which helps maintain the system without waiting for the arrival of further instructions, can help

overall performance, design implementation and time required to develop the system all due to its

simplicity. The overall component description of this mode is shown in Figure 3.9.

Idle Mode

RF-Link

Power-Saving

RF transceiver

Figure 3. 9: Idle Mode Block-Diagram

33

3.4.2 Observation Mode Architecture

As mentioned earlier, the observation mode shares the RF-Link with the idle mode and uses the

previously implemented VAPP subsystem by [1, 2] to capture, process and transmit 3D-SP images to

the control center. However, the RF-Link can be omitted from the module to simplify and optimize

the design. Therefore, the system gives control to the idle mode upon finishing the required tasks of

observation mode. The use of accelerometer and the linear actuator help to accurately adjust the

level and focus of observation. Hence the following hardware elements can be supposed for the

architecture design of this mode.

 Tower:

 Accelerometer

 Linear Actuator

 VAPP:

 4 Image sensors

 Video Compressor/Decompressor

 COFDM Transceiver

Generally, controlling of linear actuators can be as simple as applying voltage to their inputs. Hence,

performance and speed are not subjects of concern. However, linear actuators change directions by

having the voltage in reverse polarity. Therefore, a hardware mechanism needs to be set in place to

alter the polarity of the input voltage of the actuator.

Furthermore, depending on the Accelerometer, various communication protocols can be

implemented. However, the level of actuators needs to be adjusted while the actuator is running.

Hence, implementing a parallel procedure would be a better option than using a sequential

processor. The overall component description of this mode is shown in Figure 3.10.

Observation Mode

Video-Acquisition and Pre-
Processing

Tower

Accelerometer Linear

Actuator

Figure 3. 10: Observation Mode Block-Diagram

34

3.4.3 Front-View Mode Architecture

Similar to the observation mode, the front-view mode can exclude the RF-Link since the control of

the system makes the transition back to the idle mode, by which the system can communicate with

the control center. Moreover, a linear actuator is used to set the Head compartment at defined

angular positions to help the 3D-image interpolation unit capture a map of obstacles before entering

the navigation mode, when no video data is transmitted to the control center due to the emergence

of noise and vibrations during the movement. This feature helps the operator in the master’s side to

guide the robot through the best possible route and have a clear vision of the scene without any

interruption during the navigation mode. Based on what has been discussed, the following hardware

elements can be presumed for the architecture design of this mode.

 Head:

 Linear Actuator

 3D- Image Interpolation:

 2 out of 4 Image sensors of VAPP

 Disparity mapping analyzer

 Video Compressor/Decompressor

 COFDM Transceiver

The architecture organization of this mode is very similar to the observation mode because RF-link is

shared among both modes and can be omitted as the control of the system is makes the transition

to the idle mode upon task completion. Moreover, the same analysis performed for the linear

actuator of the Tower can be applied to the one associated with Head. Moreover, the focus of this

thesis is on the control section of this project. Hence the 3D-image interpolation subsystem will not

be discussed here. The overall component description of this mode is shown in Figure 3.11.

Front-view Mode

3D- Image Interpolation

Head

Linear Actuator

Figure 3. 11: Front-View Mode Block-Diagram

35

3.4.4 Navigation Mode Architecture

The navigation mode is responsible for driving the platform to the destination specified by the

control center based on the map obtained via the Front-View mode. No video will be transmitted to

the control center since a moving platform can generate a great deal of noise and vibration that will

affect the quality of the images, performance of the system and lead to an unpleasant experience by

the operator. Hence, by sending the current location of the platform to the control center, the video

processing subsystem [1], located at the master’s side can interpolate the frame based on the

current speed and location of the robot and present a real-time video of the scene to the operator.

As mentioned in Section 3.4, the navigation mode consists of the following hardware elements:

 Navigator:

 Motors

 Motor Controller

 Odometer

 Obstacle Sensors

 The overall component description of this mode is grouped and shown in Figure 3.12.

The motor controller is responsible for setting the speed and direction of the motors. Depending on

the type of motor controller, which can be designed or purchased off-the-shelf, a specific

communication interface is required. This interface could be as simple as toggling a few pins or as

complicated as implementing a UART interface.

Furthermore, the navigator component of the navigation mode also consists of an odometer unit

placed across the shafts of the middle wheels and obstacle sensors which are placed around the

Head of the platform, as the Head is located at the very front of the platform during the movement.

The overall description of the navigator module is shown in Figure 3.13.

Navigation Mode

Navigator

Odometer Obstacle Sensor

Motors Motor controller

Figure 3. 12: Navigation Mode Block-Diagram

36

Even though the functions described in Section 3.3.4 suggests that the Navigator may be

implemented in a sequential form, parallelism offers more benefits, such as the ability to avoid and

respond to obstacles and interferences in real time and to navigate with higher precision. Hence,

hardware implementation of the navigator component will lead to higher performance, speed and

less logic resources and area. In order to match the performance of the hardware implementation,

the sequential processor needs to run at a faster clock rate, which is not possible in the case of

embedded soft-core processor; in the case of using microcontroller, additional algorithms to

increase the frequency leads to higher power consumption, which would require extra specialized

cooling system to eliminate the excessive and potentially damaging heat from the device.

M1

M2

M3

M4

M5

M6

MOT

CTRLR

Navigator Module
Optical encoder

M Motor

Figure 3. 13: Description of the Navigator Module

37

3.5 Summary

In this chapter, we discussed the specification of a true reconfigurable robotic system and proposed

the idea of “form follows function” to emphasize that a reconfigurable system is not only defined by

reconfiguration of its physical/mechanical components. Rather, the physical configuration of the

system may alter based on the operational task of the system to accommodate its new functionality.

Therefore, we proposed a robotic platform to be integrated with the previous work done regarding

the telepresence system to demonstrate our proposed concept. To realize such a system, a set of

tasks were specified for the system, which were then divided into multiple modes of operation. The

required resources and components for each mode of operation were discussed to arrive at the

actual architecture organization of the design.

38

4. Implementation of the Multi-Modal

Reconfigurable Robotic System

4.1 Introduction

The objective of this chapter is to discuss the specific aspects of implementation for the proposed

reconfigurable robotic platform. The analysis and architectural organization of the system,

presented in the previous chapter, makes it possible to select the most appropriate tools and

components to create a functioning prototype, which can allow us to test and verify all the aspects

of the system performance. The implementation of the proposed system is divided into these two

major parts: 1) the electro-mechanical part and 2) control and communication part.

The electro-mechanical part of the system consists of all the elements constructing the frame and

physical base of the platform, which are beyond the scope of this paper. The control and

communication part of the platform is the part involving the component selection, system

architecture implementation as well as the test and verification of the design. Therefore, in this

chapter we will look at the process of selecting components and associated hardware, firmware and

software components for each mode of operation.

39

4.2 System design Implementation

As mentioned in Section 3.2, the proposed robotic platform is to be integrated with a more

complicated system known as 3D-P telepresence system that consists of two major subsystems:

Video Acquisition and Pre-Processing Subsystem and Video-Processing Subsystem, which are

interconnected via a communication channel consisting of data and control busses (see Figure 4.1).

The Video-Processing Subsystem is located on the master side and performs the reception of the

compressed video stream, distribution of video data to a storage memory, execution of various

image processing algorithms and output of the results to the display system. The analysis of this

subsystem is beyond the scope of this document. The focus of this thesis is on the slave side of the

operation and the extension of previous work done in this area based on the system architecture

discussed in the previous chapter. The implementation of the design is divided into the following

components:

 The hardware, HW, component of the design refers to any part of the system that consists of

electronic circuits or as a set of electronically interconnected components located on a

common area.

 The firmware, FW, component of the system refers to any type of circuits described at logic

level using HDL and represented in a form of configuration bit stream.

 The software, SW, component of the system is referred to as any type of instruction based

program described in High-level or Low-level programming language and executed on a

sequential general-purpose processor, such as microprocessor of a microcontroller or

soft/hard-core processor of an FPGA.

In the following subsections, the organization of each individual operational mode of the proposed

system architecture is described, and the logic behind implementing each part in HW, FW and SW is

discussed.

Video-Acquisition and

Pre-Processing

Subsystem

Video-Processing

Subsystem
Communication Channel

Figure 4. 1: Telepresence System Architecture Courtesy of [1]

40

4.3 Modes of Operation

4.3.1 Idle mode

As mentioned in Chapter 3.4.2, an RF-link is required to provide a wireless communication between

the slave and master sides. In the earlier work, an RF transceiver interface component using serial

differential link [1] was implemented to communicate between the two subsystems described in

Section 3.4. However, the main purpose of implementation of such an RF interface was to transmit

the captured video data to the control center. Therefore, to prove the functionality of our proposed

system and test the platform, another RF transceiver is required to transmit data to/from the robotic

platform from/to the control center.

4.3.1.1 Idle Mode Hardware Architecture

An XBee module, which is the embedded solution to provide wireless connectivity using ZigBee, IEEE

802.15.4 protocol, was selected as the backbone of the RF-Link module. From the wide variety of

XBee modules, XBee-Pro 802.15.4 Extended Range module was selected with the following features

[40]:

 Power output: 63mW(+18dBm)

 Indoor/Urban range : up to 90m

 Outdoor: up to 1.6 Km RF Line-of-sight

 Receiver sensitivity : -10dBm

 RF Data rate: 250kbps

 Interface data rate: up to 115.2 kbps

 Operating frequency: 2.4 GHz

 Supply voltage: 2.88-3.4 VDC

 Current: 215mA (Transmit), 55mA(Receive) @ 3.3V

 Antenna option: Chip antenna or wired whip antenna

 Interface option: UART

The features of the selected XBee module indicate that we need to implement the universal

asynchronous receiver/transmitter, UART, serial interface to communicate with the XBee module.

The required UART settings for the XBee module are as follows:

 Baud rate (BR): 9600 bps

 Data: bits : 8 bits - Parity: none - Stop bit: 1 bit

41

4.3.1.2 Idle Mode Firmware Component

To develop and implement the functionalities of the UART to interface the processor with the XBee

module, we have the option of implementing the design in the form of Virtual Hardware

Components, VHC, or Virtual Software Components, VSC, on an FPGA’s soft-core processor. The

following subsections describe the features of each implementation approach and the required FW

associated with the RF-Link module.

4.3.1.2.1 Implementation of UART in VHC

To simplify the design, the UART protocol interface is divided in two subsystems, namely, Receiving

and Transmitting subsystems.

 Receiving Subsystem

 Due to the asynchronous nature of UART, in which no clock information is sent from the transmitted

signal, the oversampling procure is commonly used to estimate the middle points of transmitted bits

and correct reception of the bits [41]. The conceptual block diagram of a UART receiving subsystem

consists of three components, as shown in Figure 4.2:

 UART receiver: the circuit to obtain data word via oversampling, in which a 3-state state

machine is used to process the start bit, data bits buts and stop bit upon receiving a

notification signal from the baud rate generator.

 Interface circuit: the circuit to provide buffer between the UART receiver and the main

system to prevent receiving a word data multiple times.

 Baud rate generator: the circuit to generate sampling signal with a frequency of 16 times

UART designated baud rate. Hence, the following equation is applied to estimate required

clock cycle for a one-clock-cycle tick.

Baud rate
generator

Receiver

Interface
circuit

clk

rx

rx dout

Rx_done_tick
S_tick tick

R_data

Rd_uart

Rx_empty

Figure 4. 2: Block-Diagram of a UART Receiving Subsystem Courtesy of [41]

42

 Transmitting Subsystem

The organization of transmitting subsystem is similar to the receiving one. It is essentially a special

shift register that loads data in parallel and shifts in data bit by bit and then reassembles them. The

transmitting subsystem consists of a UART transmitter, baud rate generator and interface circuit.

The interface circuit is similar to the receiving subsystem with the exception that the UART

transmitter clears a flag or reads a buffer, while the main system sets the flag or writes into the

buffer to indicate whether any received data word is available [41]. The lock diagram of a complete

UART system as proposed by [41] is illustrated in Figure 4.3.

4.3.1.2.2 Implementation of UART in VSC

The implementation of the UART interface in MicroBlaze seems easier using Xilinx Platform Studio,

XPS. The XPS implements the hardware and software functionality of the UART Lite that performs

parallel to serial conversion on characters received from CPU through Peripheral Local Bus, PLB, and

Baud rate
generator

Receiver

FIFO

clk

rx

rx dout

Rx_done_tick
S_tick tick

R_data

Rd_uart

Rx_empty

W_data R_data

rd

full

wr

 empty

Transmitter

tx din

tx_done_tick

S_tick
Tx_start

FIFO

w_data

wr_uart

r_data w_data

wr

empty

rd

 full tx_full

tx

Figure 4. 3: Clock-Diagram of a Complete UART Courtesy of [41]

43

serial to parallel conversion on characters received from a serial peripheral [42]. The XPS UART Lite is

capable of transmitting and receiving 8, 7, 6 or 5 bit characters, with 1 stop bit and odd, even or non-

parity. The detailed block diagram of the XPS Lite UART is shown in Figure 4.4, where the top level

modules are:

 PLB Interface Module: It provides bi-directional interface between the UART module and

the PLB and implements the PLB protocol logic.

 UART Lite Register Module: It includes all memory mapped registers and interface to the

PLB through the PLB interface module. It consists of an 8-bit status register, an 8-bit control

register and a pair of 8-bit Transmit/Receive FIFOs.

 UART Control Module: It consists of an RX module, a TX module, a parameterized baud rate

generator (BRG) and a control unit. It incorporates the sate machine for a) initialization and

b) start and stop bit control logic.

Figure 4. 4: Block-Diagram of XPS UART Lite Courtesy of [42]

Based on the analysis made above and due to the fact that the customized UART module, supplied

by Xilinx can be considered as a gate-level description that utilizes Xilinx-specific components, the

VSC option is a better choice in terms of overall efficiency, development time, cost and sufficient

performance, as suggested in Chapter 3.

44

Furthermore, since the architectural organization of design consists of hardware and software

components, as mentioned is Section 3.4, it is necessary to implement a storage device to retain the

crucial information from each mode of operation, such as the distance to be travelled by the robotic

platform. Therefore, an 8KB-dual block RAM memory was implemented to store the information to

be shared among the modes of operation. Therefore, the component symbol of the soft-core

processor part of the design consisting of the required memory blocks and their controllers, the

UART, RS232, interface component, clock and reset components and a debug module are all

depicted in Figure 4.5. The more detailed MicroBlaze structure is found in appendix A.

45

Proc_sys_reset

MicroBlaze

50MHz

DLMB

IPLB

ILMB

DPLB

Clock_generator

CLKOUT RST

CLKIN FPGA_CLK_PIN

FPGA_RST_PIN

50MHz

MB_Reset

Debug_module

MDEBUG SPLB

IXCL

TRACE

DXCL

Interrupt

DEBUG

MB_RESET

dlmb

DLMB

ilmb

ILMB

Mb_plb
Bram_block

PORTA

PORTB

RS232_DCE

TX

RX SPLB

Lmb_bram

PORTA

PORTB
Ilmb_cntlr

SLMB
BRAM_PORT

dlmb_cntlr

SLMB
BRAM_PORT

Dual_bram_ctlr

SPLB
PORTA

FPGA_RS232_RX

FPGA_RS232_TX

DPLB

IPLB
SPLB

Bus_Reset

Ext_Reset_In

Debug_Reset

SLMB

SLMB

BRAM_CLK_B BRAM_CLK_B_PIN

Figure 4. 5: MicroBlaze Internal Organization

46

Idle Mode

clk

reset

enable

RS232_RX

RS232_TX

Bram_WEN_B

Bram_Addr_B

Bram_Dout_B

Bram_Rst_B

Bram_Clk_B

Bram_En_B

Bram_Din_B

BRAM

PORT B

UART

 Component Symbol

Based on what has been discussed, the component symbol of the idle mode consists of input and

output ports for the RS232 interface, a clock and a reset input ports to feed the component with a

clock rate of 50 MHz and half the activities of the component, and finally the required dual BRAM

ports to interface the VSC and VHC of the design (see Figure 4.6).

As shown in the figure above, Port B of the dual block Ram is inputted to the VHC part of the design,

while the port A is accessible in the VSC part of the design. Therefore, data written via either port of

the BRAM can be accessed and manipulated by the other port.

4.3.1.3 idle Mode Software Component

The software component of the idle mode is responsible for receiving and transmitting commands

and acknowledgements to the control center via the RS232 interface with XBee module. The

received instructions are placed in the shared memory via port A of the BRAM.

Figure 4. 6: Idle Mode Component Symbol

47

4.3.2 Observation Mode

The observation mode of the system consists of a VAPP module, a linear actuator and an

accelerometer to meet the functional specifications. The VAPP subsystem has been implemented by

[1] and will be used with no modifications. Therefore, the remaining hardware components to be

examined are the linear actuator and the accelerometer placed in the Tower module.

In the following subsections the hardware and firmware components of this mode are addressed,

and the observation mode component symbol of the system to be implemented is described.

4.3.2.1 Observation Mode Hardware Architecture

In this section the required hardware components of this mode and the steps in selecting those

components are discussed.

4.3.2.1.1 Linear actuator

The linear actuator acts as the robot’s manipulator and is strategically placed to level the camera

module up and down. Some things need to be considered when selecting a linear actuator, such as

the force required to move the load, the distance the load needs to be moved and the time required

to move the load. Based on the mechanical hardware design of the robotic platform, the following

specifications were considered:

 Maximum weight of the camera module, including accessories : W= less than 50lb ≈ 23Kg

 Maximum angle of inclination : θ = 75°

 Maximum distance: 25 cm

 Maximum speed: 0.02 m/

 Peak Acceleration: 0.04 in/

In order to lift the VAPP module, a 12” stroke linear actuator capable of lifting a full load of 40 lb;

features below were selected from Firgelli Technologies [43].

 Maximum speed: 4.45 cm/sec at no load and 2.54 cm/sec with load

 Stroke size : 12”

 thrust/pull force: 44 lb

 holding force: 100 lb

 Require voltage : 12 VDC

 Maximum current: 5 A

 Power consumption: 60 Watts

48

To control the direction of the linear actuator, the voltage level needs to be set because positive

voltage will cause an outward movement, while negative voltage will cause an inward movement.

Therefore, an external hardware circuit is required to alter the polarity of the input voltage based on

the required direction of movement. Relays which are electrically operated switches using

electromagnets to control a circuit by a low-power signal, can be used to achieve the above goal.

Therefore, a pair of relays from ZETTLER can be used along with a Darlington transistor array chip

from Texas Instruments to form the circuit shown in Figure 4.8.

Figure 4. 7: Linear Actuator Controller Circuit

As can be seen in the above schematic, the linear actuator is initially connected to ground on both

poles due to the default position of the relays. By setting the right pin, (Tower_UP or Tower_DN),

the associated relay becomes active, and the appropriate voltage is fed to the actuator. It should be

noted that only one relay should be set at each specific time to avoid applying +12v to both poles of

the actuator.

4.3.2.1.2 Accelerometer

An accelerometer can be used to give accurate tilt angle measurement in three dimensions. Even

though Gyroscopes seem to be a better solution, since they maintain their level of effectiveness by

measuring the rate of rotation around a particular axis, the accelerometers can fulfill the

requirement of the observation mode as the platform is in stationary state and therefore, the

orientation of the robotic platform relative to any surface can be simply identified.

ULN2004AN

1
2

3
4

5
6
7
8

9
1
1

1
2

1
3

1
4

1
5

1
6

1
0

+ 5v

TOWER_UP

TOWER_DN

+12v

Zettler-Az943

2

1

5

3

4

Zettler-Az943

2

1

5

3

4

 Linear
Actuator

-

+

D1

1N4001

D2
1N4001

Q1

2N3904

Q2

2N3904

R11

1k

R12

1k

49

A triple axis accelerometer kit from Sparkfun Electronics, containing BMA180 of Bosch, was selected

to meet the requirement of this mode that presents the following features [44]:

 Three-axis accelerometer with integrated temperature sensor in the range of -40°C to +85°C

 Ultra high performance g-sensor with 12-bit and 14-bit ADC operation

 Digital Interfaces: 4-wire SPI, I2C, interrupt pin

 Wide variety of measurement ranges (±1g, 1.5g, 2g, 3g, 4g, 8g and 16g)

 Programmable integrated digital filters

 Various modes of operations: Low-noise, Low-power, sleep mode, wake-up mode and self-

test

4.3.2.2 Principals of Observation Mode Operation

As discussed earlier, the accelerometer is placed in the Head to measure the elevation of the Head

subcomponent by means of the Tower’s linear actuator. Upon entering the observation mode,

system puts a Tower up at a specific height set by the operator in the control center. The VAPP

module becomes active and starts capturing, processing and transmitting the video-data to the

control center. The implementation of the VAPP module is beyond the scope of this thesis, as the

focus is more on the control and communication of the robotic platform to extend the previous work

by adding mobility to the system. The main processor for implementing the functions of this mode of

operation is an FPGA device, which was addressed in Chapter 3. In the following section, the

implementation of functions associated with each module of the observation mode will be

discussed.

4.3.2.3 Observation Mode Firmware Component

The observation mode of the system is designed to interface the selected linear actuator and

accelerometer with the processor. In the following sections the required firmware to interface with

the hardware components are discussed and the component symbol of the observation mode will

be illustrated.

4.3.2.3.1 Linear Actuator

As can be seen in the schematic shown in Figure 3, by simply toggling two general purpose output

pins of an FPGA board, we could control the direction of the actuator. Therefore, implementation of

the function of these pins is best done in VHC due to its design simplicity and its minimal

requirements for area and resources to implement the circuitry.

50

4.3.2.3.2 Accelerometer

The required communication protocol to control the accelerometer chip is Inter-Integrated Circuit,

I2C, or Serial Peripheral Interface, SPI. Mode 3 of the 4-wire SPI protocol was opted to interface with

the accelerometer due to its setup, as shown in Figure 4.8.

Figure 4. 8: Accelerometer SPI protocol and Timing Diagram Courtesy of [44]

Table 4.1 is used to demonstrate the required SPI protocol to read and write to the selected

accelerometer chip in VHC.

Table 4. 1: Timing Analysis of the Accelerometer on FPGA

Time slots SDO SDI SCK CS C.C. time (ns)

T0

1

1 1 20

T1

0

5 100

T2 R/W 0 5 100

T3

1 5 100

T4 AD6 0 5 100

T5-T13 AD5-AD2 1 45 900

T14 AD1 0 5 100

T15

1 5 100

T16 AD0 0 5 100

T17

1 5 100

T18 DI7 0 5 100

T19 DO7

1 5 100

T20

DI6 0 5 100

T21 DO6

1 5 100

T22-29 DO5-DO2 DI5-DI2 0 40 800

T30

DI1 0 5 100

T31 DO1

1 5 100

T32

DI0

0 5 100

T33
DO0 1

2 40

T34 1 1 20

Total

164 3280

51

The total time to read/write one register of the accelerometer chip is 3280 ns or 164 clock cycles

when the fed clock frequency to the component runs at 50MHz.

 Component Symbol

The observation mode component consists of control and data lines for the SPI protocol interface

with the accelerometer and two general purpose output ports to control the actuator controller

circuit. The top-level symbol of the observation mode component is shown in Figure 4.9.

The component synthesizes and outputs the received clock, clk, to required clock rate by the

accelerometer via “SCLK”. The component receives data (memory address or byte) via “Data_in”

and transmits the data to the BMA180, via SPI protocol. The obtained information from the

accelerometer is received by the component through the “Data_out”. The “–Lin_Act” and “+Lin_Act“

ports each control a specific relay switch, which is used to set the polarity voltage input to the linear

actuator.

Observation

clk

reset

busy

Data_In

enable

sclk

Cs

MISO

MOSI

SPI slave

(BMA180)

Data_Out

8

8
+Lin_Act

-Lin_Act
Linear

Actuator

Circuit

Figure 4. 9: Observation Mode Component Symbol

52

4.3.3 Front-View Mode

Similar to the observation mode, the front-view mode uses the RF-link and an actuator to provide 3D

images of N-angular position of the Head. The front view images are used by the 3D-image

interpolation unit to subsequently help create a map of obstacles and their distance from the

platform. The RF-link subcomponents are shared among other modes of operation and are used as

described in section 4.3.1. The Head subcomponent of the front-view mode contains the linear

actuator that is used to move the Head up and down, as shown in Figure 4.10.

4.3.3.1 Front-View Mode Hardware Architecture

The linear actuator used in the observation mode is also applicable in this mode. Therefore, based

on the factors such as the Head weight, required angle of movement and speed a 4” stroke linear

actuator capable of lifting full load of 40 lb, from Firgelli Technologies, was selected to meet the

requirement [43]:

 Maximum speed: 4.45 cm/sec at no load and 2.54 cm/sec with load

 Stroke size : 4”

 thrust/pull force: 15lb

 holding force: 45lb

 Require voltage : 12v DC

 Maximum current: 5A

 Power consumption: 60 Watts

The linear actuator controller circuit discussed in Section 4.3.2.1 is also used to control the new

linear actuator.

Figure 4. 10: Description of the Front-View Mode

53

4.3.3.2 Principals of Front-View Mode operation

The front-view mode adjusts the Head subcomponent to the desired angle by means of a

strategically placed linear actuator that connects the Tower and Head of the robotic platform. The

3D map of the scene is captured and process by the 3D-Image interpolation module and the result is

sent to the control center, where the operator can choose a suitable path prior to sending the robot

to a new location. The 3D-image interpolation module is currently being developed; the current

prototype will be used as a plug-in module for the front-view mode of the system. The processor to

achieve the above goal, as addressed in Chapter 3 of this paper is an FPGA. In the following section

the implementation of functions associated with each module of the front-view mode will be

discussed.

4.3.3.3 Front-View mode Firmware component

The firmware component of the front-view mode is designed to enable/disable the 3D image

interpolation module and to control the direction of the linear actuator by toggling two GPIO pins to

engage the appropriate relays.

 Component Symbol

The top-level symbol of the front-view mode component is shown in Figure 4.11.

As can be seen in the above figure, the “clk”, “reset” and “enable” input ports are fed to the

component to drive them at the required clock rate and start and/or stop the operation of the

mode. The output ports “-Lin_Act” and “+Lin_Act” control the direction of the actuator by setting

the relays to the appropriate positions. Lastly, the “Module_enable” output port enables the 3D-

image interpolation module and the “Busy” input port indicates if the previous operation on the

linear actuator is done.

Front-view

clk

reset

Module_enable 3D-image

interpolation

+Lin_Act

-Lin_Act
Linear

Actuator

Circuit

enable

 Busy

Figure 4. 11: Front-View Mode Component Symbol

54

4.3.4 Navigation Mode

The Navigator subcomponent of the Navigation mode consists of motors, motor controller,

odometer and obstacle sensors to drive the robotic platform to the specified location without hitting

potential obstacles, based on the 3D-map of the scene captured and processed in the front-view

mode.

In the following subsections the steps taken to select the hardware components of the navigator

subcomponent as well as the firmware and software components associated with each module is

discussed to arrive at the navigation mode component of the system.

4.3.4.1 Navigation Mode Hardware Architecture

For simplicity of design implementation, the motors, motor controller and the required power

supply of the motors are grouped as a single module, called “motor-driver” and the odometer and

obstacle sensors modules are treated as two individual modules. The hardware architecture and

associated components of each module are discussed in the following subsections.

4.3.4.1.1 Motor-driver

The motor driver module is composed of six brushed DC motors to provide mobility, a motor

controller to control the speed and direction of the motors and a battery pack to supply them with

power, as shown in Figure 4.12.

M1

M2

M3

M4

M5

M6

MOT

CTRLR

Battery

Navigation Mode

Figure 4. 12: Motor-driver Hardware Organization

55

As can be seen in the above figure the Motor-driver module consists of the following hardware

elements and communication interface:

 Elements:

- Motors

- Motor controller

- Battery pack

 Interface:

- “Motor controller – Motors” interface

- “Motor controller – battery” interface

- “Navigation mode processor – motor controller” interface

The interface of the motors to the motor controller and motor controller to the battery pack occurs

via traditional wire connections. However, the interface between the motor controller and the

processor will be discussed in the following sections.

 Selection of elements

Selection of elements for the motor-driver module requires several considerations, including power

consumption, performance and actual and development cost. Therefore, in the following

subsections, the required elements for the motor-driver module are addressed.

 Motors

The 6-wheel robotic platform required six brushed DC motors to enable the heavy robot platform to

move on any terrains and carry the camera module and possible quadra-copter modules. Choosing

the right motor type to meet the above criteria requires further analysis of many factors, such as

overall platform weight, terrain, torque, output power, efficiency of the motor, etc.; therefore, the

following motor type with features below was selected [45]:

 Reduction Rate: 1:24

 Rated Speed: 5900 rpm

 No Load Speed: 7000 rpm

 Rated output: 34.7 W

 Motor Rated: < 2.3 A

 No Load Current: < 0.650 A

 Operating voltage: 24 v

 Efficiency: 70%

56

 Motor Controller

Choosing an interface to control the motors is the next step of the motor-driver hardware

architecture of the system. This step could be done by designing a DC-Motor driver circuit or using

an off-the-shelf motor controller. Selection of a motor controller requires consideration of motor

specifications, such as the motor’s nominal voltage, maximum current rating, control method and

number of motors to control.

Based on the factors mentioned above and the system compatibility and cost-performance,

Sabertooth Dual 25A Regenerative Motor Driver with the following features [46] was chosen:

 Dual motor drivers for two DC brushed motors with up to 25 A each

 Suitable for high-powered robots up to 300 lb

 Over-current and thermal protection circuit

 Multiple motor control protocols: Analog, radio control, serial and packetized serial.

 Various operating mode and application-specific mode

To control the speed and direction of the motors, the motor controller can interface with the motors

and a processor using various types of communication protocols, including UART, SPI, PWM,

analogue voltage, etc., which will be addressed shortly.

 Batteries

The Sabertooth controller requires a 24v battery supply to power the 2 pairs of the motors.

Therefore, the last element of the motor-driver module is to select a power source. Since there are

6 motors to be controlled, the following calculations were made:

Having six motors leads to 6.6 A of current consumption for the robot in active mode with minimal

opposite force interferences. To run a system continuously over an hour we need a battery with over

6 Ah. NiCd batteries offer the shortest charge time, lowest overall cost and highest lifetime [47];

however, due to its toxic behavior and demanding maintenance requirement, it is not a good

candidate for our system. Hence, a 10Ah-24-volt rechargeable NIMH battery pack with low

maintenance and cost efficient features was chosen.

57

M2 M5

Navigation Mode

4.3.4.1.2 Odometer

The second module associated with the navigator subcomponent is the odometer or displacement

measurement module, by which the distance is measured by counting how many times one wheel of

the robotic platform has made a full turn. The odometer module (see Figure 4.13) consists of the

following elements:

 Elements:

- 2 Optical encoders

 Interface:

- “Navigation Mode processor - optical encoders” interface

 Selection of elements

To reach the above goal, which is counting the number of wheel rotations to find the travelled

distance, an optical encoder circuit was designed by using TCRT5000L reflective optical sensor from

Vishay [48]. The schematic of designed circuit is illustrated in Figure 4.14.

-

+
LM3933

2
1

8
4

R16

1k

C1

1n

R5

1k

0

R17

10k

C2

1n

E
m

it
te

r

D
e

te
c

to
r

v ishnay -TCND5000

43
2 1

0

VCC

Output

R13

10k R14

1k

R15

10k

Figure 4. 13: Odometer Hardware Organization

Figure 4. 14: Odometer Circuit Diagram

58

Navigation Mode

Head

4.3.4.1.3 Obstacle Sensors

The third module associated with the Navigator subcomponent is the obstacle sensor system, by

which the robotic platform avoids colliding with any objects that may be in the way. Similar to the

odometer module, the obstacle sensors module (see Figure 4.15) consists of the following elements:

 Elements:

- 3 Optical encoders

 Interface:

- “Navigation Mode processor- optical encoders” interface

Figure 4. 15: Obstacle Sensors Hardware Organization

59

4.3.4.2 Principals of Navigation mode operation

Based on what has been discussed in the previous sections, the overall hardware organization of the

navigation mode, including its major components, is presented in Figure 4.16.

As was mentioned earlier, the six motors attached to the wheels of the robots are divided into two

pairs and are controlled by a Sabertooth motor controller. The selected motor controller accepts

various communication controls, including UART, Analog, SPI, PWM, etc, by setting the switches to

the appropriate positions. However, to keep the design as simple as possible, the normal mode of

the motor controller, Analog mode, is selected by setting the switch to 4, 5 and 6 [46]. The analog

mode of the motor controller takes two analog inputs in the range of 0-5v and uses them to set the

speed and direction of the motors. Signals below and above 2.5v are reserved for reverse and

forward motion, respectively, while 2.5 will stop the motion. To provide the motor controller with

the above Analog signals, a Digital-to-Analog Converter, DAC, circuit is required.

M1

M2

M3

M4

M5

M6

MOT

CTRL

R

Battery

Navigation Mode

Optical encoder

M Motor

Figure 4. 16: Description of the Navigation Mode

60

Furthermore, the odometer module of the navigator subcomponent is responsible for measuring the

distance travelled by the robot by counting the number of wheel rotations. The designed circuit

exploits the process of triangulation, by which a beam of infrared light is emitted on a surface via the

emitter and then the emitted light is reflected and received by the receiver sensor. The amount of

reflected beam is used to measure the distance, surface type, obstacle avoidance, velocity, etc. In

other words, for every pulse sent out by the encoder, as it is placed across the shaft of the motor

while fully isolated from the ambient light, the wheel has travelled a certain angle. Hence, by

knowing the wheel diameter and the encoder resolution, we could count the number of wheel

rotations and eventually calculate the travelled distance.

A bi-color tape, five black lines on a white surface, is placed across the shaft at a few centimeters of

the encoder to meet the TCRT5000L chip requirement of maximum operating distance. The output is

fed to the processor in order to count the black and white lines. Counting four black lines is

equivalent to a full turn of the wheel or 50 cm on the surface. The designed circuit of this module

requires a voltage source of 3.3v to activate, and it will output a certain voltage level based on the

encoder position. Hence, to translate the output of the circuit, which is in analog form, an Analog-

to-digital Converter, ADC, is required.

Last but not the least, the obstacle sensor module also exploits the optical encoders used in

odometer module. The optical circuit is designed in such a way as to transmit a digital output, while

the range of detection can be adjusted by the provided potentiometer. Hence, a simple General

Purpose Input (GPI) port can detect an obstacle within the adjusted range by simply reading the

input voltage.

To implement the requirements of the navigation mode, further hardware components are

required. Based on what was discussed in Chapter 3, the implementation of the design on FPGA was

found to be a better option compared to the traditional microprocessors, due to the existence of

reconfigurable logic block. Therefore, choosing an FPGA device that can accommodate the design

architecture and the required components of each mode of operation is the most optimal and

logical choice. As a result, a simple Spartan 3E starter board from Xilinx with following features was

chosen [49]:

61

 SPARTAN-3E Starter Kit Board’s key features and components

 Xilinx devices on board

 Spartan-3E FPGA (XC3S500E-4FG320C)

 Up to 232 user-I/O pins

 320-pin FBGA package

 Over 10,000 logic cells

 CoolRunner™-II CPLD (XC2C64A-5VQ44C)

 Platform Flash (XCF04S-VO20C)

 Clocks:

 50 MHz crystal clock oscillator

 Memory:

 128 Mbit Parallel Flash,

 16 Mbit SPI Flash

 64 MByte DDR SDRAM

 Connectors and Interfaces:

 JTAG USB downloader

 Two 9-pin RS-232 serial port

 Four slide switches

 Eight individual LED outputs

 100-Pin expansion connection ports

 Three 6-pin expansion connectors

 Two-input, SPI-based Analog-to-Digital Converter (ADC) with

programmable-gain pre-amplifier

 Four-output, SPI-based Digital-to-Analog Converter (DAC)

62

4.3.4.3 Navigation Mode Firmware Component

The navigation mode component of the system is designed to interface the three individual modules

addressed above. In the following sections the required firmware component of each module to

form the navigation mode component is described.

4.3.4.3.1 Motor-driver

The Spartan-3E board includes an SPI-compatible, four-channel, serial DAC, LTC2624 from Linear

Technology with 12-bit unsigned resolution [50]. The SPI bus used for the DAC chip is a full-duplex,

synchronous, character-oriented channel employing a simple four-wire interface [49]. The FPGA

drives the required bus clock, SPI_SCK, and transmits serial data, SPI_MOSI, to the LTC 2624 DAC.

The DAC chip responds back to the FPGA via the SPI_MISO.

The LTC2624 DAC chip can run at the high frequency of 50 MHz [50] and can support both 24-bit and

32-bit protocol that consists of a command, an address and data as shown in Figure 4.17. To control

the two pairs of motors, we would need to use two channels of DAC.

Figure 4. 17: The SPI Protocol of DAC courtesy of [49]

Each DAC output level is analog equivalent of a 12-bit unsigned digital value, Data [11:0], written to

the DAC chip via SPI interface. To setup the DAC output voltage the equation below shall be used:

 []

63

Therefore, the next logical step is to implement the required SPI communication to interface with

the controller and eventually control the speed and direction of the motors. This interface may be

implemented in the form of hardware logical blocks of the FPGA in VHDL or as a Virtual soft-core

system.

In case of implementing the SPI interface as logic blocks, the latency to output the DAC values on the

two channels is 136 clock cycles. However, the consequent DAC value can be processed in 132 clock

cycles, as illustrated in Table 4.2.

Table 4. 2: Timing Analysis of the Design on FPGA

Time slots State MISO MOSI SCK CS i C.C. Ch #

T0 Init 0 0 1
0

4

A

T1 Begin DataA(0) 0

0

1

T2 Go 1
1

1

T3 Begin DataA(1) 0 1

T4 Go 1
2

1

T5 Begin DataA(2) 0 1

T6 Go 1
3

1

T7 Begin DataA(3) 0 1

T8 Go 1
4

1

T9 Begin DataA(4) 0 1

T10 Go 1
5

1

T11 Begin DataA(5) 0 1

T12 Go 1 6 1

T13 - T56 Begin/Go 0/1 7-28 44

T57 Begin DataA(28) 0 28 1

T58 Go 1
29

1

T59 Begin DataA(29) 0 1

T60 1
30

1

T61 DataA(30) 0 1

T62 1
31

1

T63 DataA(31) 0 1

T64 Go 1

0

1

T65 Final
0 1

1

T66 Done 1

B

T67 Begin DataB(0) 0

0

1

T68 Go 1
1

1

T69 Begin DataB(1) 0 1

T72 –T128 Begin/Go Datab(i) 0/1 2-30 58

T129 Begin DataB(30) 0 30 1

T130 Go 1
31

1

T131 Begin DataB(31) 0 1

T132 Go 1
0

1

T133 Final 0 1 1

Total Time = 136 c.c.

64

Performing the same the DAC operation on a 32-bit RISC processers based on the flowchart shown in

Figure 4.18 leads to the results recorded in Table 4.3.

Counter

= 32

Set SPI_MOSI =

data (counter)

Set SPI_CLK = 1

Counter += 1

NOP X 3

Set SPI_CS = 0
Set SPI_CLK = 0

Set SPI_CS = 1

Set SPI_CLK = 0

Counter = 0

Set SPI_CS = 1

Channel

= A

Channel = A

Channel = B

Start

Figure 4. 18: RISC Processor Instruction Execution Process

65

Table 4. 3: Timing Analysis of the Design on a RISC Processor

Time Slots Type MISO Cs MOSI SCK I C.C. Pipelined Ch #

T0 Load/store 1 0 0 0 12 6

A

T1 Load/store 0 3 1

T2 Load/store DataA(0) 3 1

T3 Load/store 1 3 1

T4 Load/store 0 3 1

T5 Add 1 3 1

T6 –T155 Instruction DataA(i) 1/0 1-31 450 151

T156 Load/store DataA(31) 3 1

T157 Load/store 1 3 1

T158 Load/store 0 3 1

T159 Load/store 0 3 1

T160 Branch 3 1

T161 Load/store 1 3 1

T162 Load/store 0 3 1

B

T163 Load/store DataB(0) 3 1

T164 Load/store 1 3 1

T165 Load/store 0 3 1

T166 Add 1 3 1

T167-T316 Instruction DataB(i) 1/0 4-30 450 151

T317 Load/store DataB(31) 3 1

T318 Load/store 1 3 1

T319 Load/store 0 3 1

T320 Load/store 0 3 1

T321 Branch 3 1

T322 Load/store 1 3 3

Total Time 978 332

As can be seen from Table 4.3 in an ideal condition, in which no instruction or data hazards are

introduced, the total number of required clock cycles to output a DAC value, also known as the

latency, is 978. However, due to the parallel pipelining of the embedded soft-core processors such

as MicroBlaze, three instructions can be executed simultaneously, as shown in Figure 4.19.

Therefore, the cycle time for the subsequent channel is 332 cc, which is almost 2.5 times greater

than VHC implementation design.

Fetch Decode Execute

cycle 1 cycle 2 cycle 3

Instruction 1

Fetch Decode Execute

Fetch Decode Execute

Instruction 2

Instruction 3

cycle 4 cycle 5

Figure 4. 19: MicroBlaze Execution Process

66

Hence, in case of implementing the module in VHC, the total execution time is:

 [()] [()]

Where L is the number of cycles required for obtaining the first result, n is the total number of the

required cycles (we assume 10 DAC values for simplicity of calculation), Ctime is a cycle time and

Tcycle is a clock period at 50MHz. Additionally, the total execution time required for processing of a

single DAC channel on MicroBlaze based design is:

 []

The performance speedup of the two solutions can be tested by:

In order to match the performance of the hardware implementation, the soft-core processor needs

to run at a faster clock rate of:

[()]

[]

This speed is not possible as MicroBlaze is running at its highest frequency of 50 MHz. Moreover, in

case of using microcontroller, additional algorithms for increasing the frequency lead to greater

power consumption, which would require extra specialized cooling system to eliminate the excessive

and potentially damaging heat from the device.

Based on the above analysis, even though implementation of the SPI interface in hardware and soft-

core processor does not significantly affect the overall design performance, design simplicity and the

area analysis shows that the implementation in the form of VHC is a better option, as suggested in

Chapter 3.

 Component Symbol

The component symbol of the motor-driver module of the navigation mode consists of the necessary

signal ports to provide the SPI interface signals such as: SPI clock (“SCK”), SPI chip select (“CS”), SPI

MISO (“MISO”), SPI MOSI (“MOS”I) with the DAC chip. The clock input port (“clk”) is used to drive the

components at 50 MHz, which will be synthesized and divided to generate the required clock rate by

the DAC chip. The reset input port (reset) is used to reset the operation of the module. The digital

67

Motor-Driver

clk

reset

busy

DAC_Enable

SPI slave

(DAC) DAC_CLR

SCK

DAC_CS

MISO

MOSI

Data_A

Data_B

12

12

data input ports (“Data_A” and “Data_B”) provide the required digital data to be converted to the

analog form to be fed to the motor controller. The “DAC_CLR” and “DAC_Enable” ports are used to

control the DAC chip, while the busy input port indicates if a DAC conversion is in process. The

motor-driver component is shown in Figure 4.20.

4.3.4.3.2 Odometer

The Spartan-3E board comes with a two-channel analog capture circuit, consisting of a

programmable scaling pre-amplifier, LTC6912-1, and ADC, LTC1407A-1, which can be controlled

serially by the FPGA [49]. The analog capture circuit converts the voltage on VINA or VINB and

converts it to a 14-bit digital representation, Data [13:0] as follows:

 []

Where the gain, which controls the allowable voltage range for each ADC channels, VINA, VINB, is

the setting loaded into the programmable pre-amplifier. Similar to the motor-driver module, the SPI

communication is required to interface signals between the FPGA and the amplifier and ADC. Hence

the following pins of the FPGA are used for the SPI. Therefore, following the same analysis

performed in motor-driver, it is clear that implementing the odometer module as a hardware

component would give better performance and area. On the other hand, the timing constraint of the

amplifier and ADC channel makes MicroBlaze processor a good candidate. Nevertheless, due to

implementation of the SPI controller in the motor-driver which can be shared by the odometer,

implementing the design in hardware would be a better choice.

Figure 4. 20: Motor-driver Component Symbol

68

 Component Symbol

The component symbol of the odometer module of the navigation mode consists of the necessary

signal ports to provide the SPI interface signals, such as: SPI clock (“SCK”), SPI chip select (“CS”), SPI

MISO (“MISO”), SPI MOSI (“MOSI”) with the ADC chip. The clock input port (“clk”) is used to drive the

components at 50 MHz, which will be synthesized and divided to generate the required sampling

rate of the ADC chip, which is 1.5 MHz. The reset input port (“reset”) is used to reset the operation

of the module [51]. The digital data output ports (“Data_1” and “Data_2”) present the captured

digital data. The “ADC_Enable” Input port is used to control the ADC chip, while the busy input port

indicates if a DAC conversion is in process. The motor-driver component is shown in the figure

below. Since, the SPI communication is shared among multiple components on the FPGA board, the

output and input ports such as: “AD_CONV”, “AMP_SHDN”, “ADMP_DOUT”, “SF_CF0”,

“FPGA_INIT_B”, “SPI_SS_B”, “AMP_CS”, “DAC_CS” need to be set up to control the ADC chip [49].

The odometer component is shown in Figure 4.21.

Odometer

clk
reset

busy

ADC_Enable

SPI slave

(ADC)

AD_CONV

AMP_DOUT

AMP_SHDN

SPI_SS_B

FPGA_INIT_B

SF_CF0

AMP_CS

SCK

DAC_CS

MISO

MOSI

Data_1

Data_2

14

14

Figure 4. 21: Odometer Component Symbol

69

Obstacle

sensors

clk

reset

enable

SEN_B

SEN_C

SEN_A

Front sensor

Right sensor

Left sensor

4.3.4.3.3 Obstacle Sensors

The last module in the navigator subcomponent of the navigation mode is the obstacle sensors

module. The optical encoder circuit addressed in section 4.3.4.1.2 can also be applied here. The

circuit is designed in such a way as to be able to output digital data when an object is placed in front

of the sensor. The range of detection can be adjusted by varying the provided potentiometer.

Therefore, a simple General Purpose Input port is able to detect possible objects.

 Component Symbol

The component symbol of the obstacle sensors module of the Navigation mode consists of three

general input ports to detect any high voltage caused by approaching an object. A clock, reset and

enable input ports to provide a sampling clock and to stop or start the module operation. The

component symbol of this module is shown in Figure 4.22.

The component symbol of the navigator mode is constructed based on the subcomponents

discussed in the previous sections as shown in Figure 4.23. The subsequent components

synchronously receive the clock signals on their input in accordance to their required clock rates.

The clock source of the navigation mode is also sourced from the main component that

accommodates the components of all the other modes of operation.

Figure 4. 22: Obstacle Sensors Component Symbol

70

As can be seen in the above figure, the “clk”, “reset” and “enable” input ports are to drive the

50MHz clock to the component and start/stop the navigation mode component. The SPI protocol

interface ports along with other shared input/output ports addressed in the previous section are to

be used with the DAC and ADC chips. The three input ports, “SEN_A”, “SEN_B” and “SEN_C” are the

object detectors placed around the Head of the robot. The direction of the motors (“Cur_dir”), the

distance each pair of wheels needs to travel (“RightMotors”, “LeftMotors”) to get to the destination

is also addressed in the above figure. The “NavigFlag” also presents the “enable” input port for the

navigator subcomponent, while the “WheelRot” indicates if any pair of the motors has finished the

required number of turns. Finally, the “LEDCNT” ports are used for testing and debugging purposes.

Navigation

clk

reset

RightMotors

 Enable

Left Motors

32

32

AD_CONV

AMP_DOUT

AMP_SHDN

SPI_SS_B

FPGA_INIT_B

SF_CF0

LEDCNT

SCK

DAC_CS

MISO

MOSI

4

Cur_dir
3

WheelRot
2

NavigFlag
2

SEN_B

SEN_A

SEN_C

Figure 4. 23: Navigation Mode Component Symbol

71

4.4 Complete System Implementation

Discussing the hardware, firmware and software components of each mode of operations made it

possible to address the need to have a primary component that can accommodate all the other

major components of the modes of operation. The new component needs to be able to act as a

dispatcher and direct the present operations to the respective mode. The main system component

symbol consists of 2-bit output port to enable one of the modes of operation in a multiplexing

scheme, as shown in Figure 4.24. The Required SPI interface ports to interfaces with the motor

controller, accelerometer and optical encoder are also present in the component symbol. The LED

ports and input port (“Debug_SW”) are used for testing and debugging purposes.

Main System

 Component

AD_CONV

AMP_DOUT

AMP_SHDN

SPI_SS_B

FPGA_INIT_B

SF_CF0

LED

SPI_SCK

SPI_CS

SPI_MOSI

4

Accel_ sclk

Accel_Cs

Accel_MOSI

Tower

Mode_Enable

2

2

UART_TX

clk

reset

 Enable

SPI_MISO

Accel_MISO

UART_RX

2
Debug_SW

2

Figure 4. 24: Main System Component Symbol

72

4.5 Summary

In this chapter, the implementation specifics of the proposed reconfigurable robotic platform was

discussed, and the process of selecting elements for each mode of operation based on the required

resources discussed in the previous chapter was presented. The implementation of the proposed

system was divided into two major parts: 1) the electro-mechanical part and 2) control and

communication part and the associated hardware. Firmware and software components of each

mode of operation were designed and developed to arrive at the complete system implementation

of the proposed robotic platform.

73

5. Experimental Results Analysis and

Discussion

5.1 Introduction

This chapter is dedicated to the analysis of the experimental results of the implemented design,

discussed in chapter 4. The main objective of the conducted experiments was to collect and analyze

the performance parameter data of the system, such as timing characteristics, power consumption,

occupied area, and used resources to investigate the behavior of the proposed design.

This chapter is concluded by introducing an alternative approach in the design implementation that

conforms to the concept of reconfigurability discussed in chapter 3, while extending the scalability of

the system despite the potential limitation of memory and resources of any FPGAs.

74

Linear Actuators

Controller

DC Motors

Controller

Spartan-3E Starter

Kit Board

Optical Encoder

Circuit

5.2 Experimental Setup

In order to prepare a test and verification environment, the proposed reconfigurable robotic system

was incorporated with the MARS, 3D-P camera and 4-Vision subsystems as designed and

implemented by [1] to collect data and investigate the performance and reliability of the system

within the actual telepresence system. However, only the control and communication aspects of the

robotic subsystem of the telepresence system are discussed in this paper. Figure 5.1 illustrates the

major hardware components of the system used during test and verification process.

Figure 5. 1: Robotic Platform inside View

75

 The operational hardware components shown in the figure above are isolated from the electro-

mechanical hardware components such as motors, which along with the batteries, are placed at the

bottom of the platform to reduce noise and potential interferences.

The control and communication process of the system incorporates the following hardware

component as described in Section 4.3-4.5.

1. A Spartan-3E Starter Kit board that consists of Xilinx XC3S500E Spartan-3E FPGA [49]. This

element is the main component of the system as it starts, maintains and manages its entire

communication and control process. The board includes the required controller chip for ADC

and DAC for the odometer and DC-Motor controller components; the RS232 and SPI

interface for the XBee module and accelerometer components; general I/O port interfaces

for the linear actuators and obstacle sensors interfaces. The board also exploits the USB

interface based on FTDI’s FT2232HL USB controller to store, load and program the FPGA and

on-board Flash PROMs that will be discussed shortly. The maximum clock frequency of the

board is 50MHz, which is distributed within the system according to the required clock rate

of involved components.

2. A DC-Motor controller to control the speed and direction of the six DC-brushed motors, as

described in Section 4.3 of the navigation mode of operation.

3. An XBee module to communicate with the control center through RF-link. The module is

located at the rear end of the robotic platform to avoid any potential interference by other

hardware components of the system.

4. Two designed optical encoder circuits across the motor shafts of the robot’s middle wheels

to measure the distance travelled by counting the number of wheel rotations.

5. Three optical sensors placed at the three outer corners of the Head as part of the obstacle

sensors component of the navigation mode, as described in Section 4.3.

6. An Accelerometer placed in the Head compartment to measure the level and angle of

elevation during the observation mode.

7. A Linear Actuators controller to manage the direction of the two linear actuators of the Head

and Tower compartments of the system.

76

By knowing the hardware components involved in the test and verification process, it is time to list

the system configuration/verification tools used during the experimental setup process. Therefore,

we took advantage of the following elements to pursue our analysis on the system’s performance

parameters.

Programmers:

- Xilinx Platform USB cable

- XBee USB interface board

Software:

- Xilinx ISE 14.2 [52]

- Xilinx Platform Studio 14.2 (XPS) [53]

- Xilinx Software Development Kit 14.2 (SDK) [54]

- Xilinx ChipScope Pro 14.2 [55]

- Comm. Port Navigation Application

Equipment:

- HP 54620C Logic Analyzer

- BK Precision Digital Multi Meter and Power supply

The “Xilinx Platform USB programmer” listed above was used along with the corresponding software

to configure and verify the implemented design on the Spartan-3E board. However, once the design

is final, the FPGA is configured via the on-board serial flash PROM. Therefore, the system does not

require configuration on the subsequent power ON/OFF cycles via the programmer.

The configuration of the selected FPGA device was performed using the programmer listed, attached

to the USB port of a PC running the iMPACT application. The verification of this hardware

component of the device was done through Xilinx ChipScope 14.2, and the software component was

tested and debugged via the Xilinx XPS and SDK.

The “Comm. Port Navigation Application” was developed to transmit commands to the robotic

platform via the RF-Link. The application is able to send multiple encoded commands and receive

acknowledgements from the system via XBee USB interface board, which connects the XBee module

with a USB port of a PC.

In the following sections the analysis of the system’s performance parameters including timing

characteristics, power consumption, occupied area and used resources are presented.

77

5.3 Timing Analysis

The first step before investigating the system’s timing characteristics is to determine the required

configuration time of the FPGA on power up or the estimated startup time of the system. The

startup time is directly related to the method of loading the design on the selected FPGA. The FPGA

can be configured from four available options provided by the Spartan-3E board including:

 Direct configuration of the FPGA with the design via JTAG, using the on-board USB interface.

 Programming the on-board 4Mbit Xilinx XCF04S serial Platform Flash PROM and configuring

the FPGA from the image stored in Platform Flash PROM using master serial mode [49].

 Programming the on-board 16Mbit ST Microelectronics SPI serial Flash PROM and

configuring the FPGA from the image stored in SPI serial Flash PROM using SPI mode [49].

 Programming the on-board 128Mbit Intel StrataFlash parallel NOR Flash PROM and

configuring the stored image using BPI Up or BPI Down configuration modes [49]. This

configuration option can be used for applications that require dynamic reconfiguration as

two configuration bit streams can be loaded on the Flash PROM.

Based on the options described above and the size of the implemented design, option one was

chosen as the most convenient choice for configuring the FPGA during the test and verification of

the design, and option 2 was opted to configure the FPGA with the final design. [56] suggests that

the required time to load the configuration bit stream, is a function of device family,

density, clock frequency and configuration data port width as shown in equation below:

 ()

 () ()

Therefore, with an approximate configuration bit stream file of 278KB, including the hardware and

software components of the design and a default 1.5MHz configuration clock, CCK, to be used during

loading from an external PROM, the required configuration time is:

 = 1.61 s

However, configuring the FPGA through the Xilinx XCF04S Platform Flash allows us to increase the

CCLK frequency up to 25 MHz and hence, reduce the configuration time as shown below [57]:

 = 96.4 ms

Therefore, the system can start up approximately 95% faster.

78

To analyze the actual timing characteristics of the design a set of experiments was performed on the

proposed system to determine the timing associated with each mode of operation and the required

time to switch from one mode to another using the existing multiplexing approach. The timing

characteristics were obtained and analyzed by using HP 54620C Logic Analyzer and ChipScope Logic

Analyzer from Xilinx Software Kit.

The first test was performed on the transition of the Idle-to-Navigation mode of operation and vice-

versa and the actual timing recorded by Xilinx ChipScope was measured as shown in Figure 5.2.

As mentioned before, the shared dual-BRAM is used by the component symbol to trigger and enable

the appropriate mode of operation. Therefore, as can be seen in Figure 5.2, the “Addr” indicates

which mode of operation is active at the moment. Furthermore, the transition from idle to

Navigation mode of operation represented as “mode” signal takes 6 clock cycles or 100ns as

“clk_25” signal represents half of the actual clock rate of the system as shown at point “B”. It should

be noted that, since the “direction” signal is set to “stop” the mode of operation will transfer back to

the idle mode, which takes 12 clock cycles as shown at point “A”. The required time can be mainly

related to the reading and/or writing form and/to shared storage memory.

Further analysis is also made on the amount of time a typical task takes in navigation mode of

operation. To achieve the above goal, an experiment was setup to investigate the required time to

move the robotic platform forward for 6.5 meters, the wheels which have a diameter of 18cm, need

to turn 12 times, assuming no-load and no-friction conditions. The results shown in Figures 5.3 and

5.4 were observed.

A B

Figure 5. 2: Idle-Navigation Mode Transition

79

 C C C C C

Figure 5. 4: Various Directions in Navigation Mode

Figure 5. 3: Navigation Turn for 12 Wheel Turns

80

The required time to switch from one direction to another in the navigation mode of operation is 40cc,

assuming no movement has been made, since three memory locations, “Addr”, in the BRAM need to be

read as shown in Figure 2.

As discussed in chapter 4, the encoder counts the number of black and white lines placed on the shaft

of the motors. Therefore, to have the wheels to turn 13 times, 48 lines need to be counted by the

encoder as shown in “RightCntr” and “LeftCntr” of Figure 3. The “ADC_val” and “ADC_val2” represent

the digital values obtained from the ADC operation of the encoders to determine the detected black

and white lines. It is clear that, the time spent during the navigation mode depends on many factors

including the type and condition of the terrain in which the robot is moving on, battery condition,

selected route by the operator, possible obstacles, etc.

A similar experiment was performed on the idle to observation mode transition of the system, and It

was observed that the time required to shift from the idle to the observation mode of operation, “B”, is

12 c.c. , and the time to switch from the observation to the idle mode, “A”, is 18 c.c. assuming as shown

in Figure 5.5.

A B
Figure 5. 5: Idle-Observation Mode Transition

81

5.4 Power Consumption Analysis

The power consumption analysis of the design was first estimated by means of Xilinx XPower Analyzer

(XPA) 14.2 [58]. Therefore, the parameters of the implemented design were passed to the software and

estimated power consumption of the design in static and dynamic was obtained and recorded in Table

5.1.

Table 5. 1: Estimated Power Summary Courtesy of [58]

Static (W) Dynamic (W) Total (W)

0.097 0.000 0.097

The static power results mainly from transistor leakage current in the device and the dynamic power is

associated with the design activity and switching events in the core or I/O of the device [58].

The next step in pursuing our analysis is to investigate the actual power consumption of the robotic

platform of the telepresence system. Therefore, a set of tests involving measurement of the power

consumption for each mode of operation was performed. It is worth mentioning that power supply for

the control and communication part of the system is isolated from the mechanical components, such as

motors, actuators and their controllers to reduce any noise or unwanted interferences that may occur.

Furthermore, the input voltage based on the selected FPGA board was set to 5.5 VDC; hence, the

current-I was measured for all modes of operation during their peak activity to calculate the total

power consumption, as recorded in Table 5.2.

Table 5. 2: Power Consumption of the Control and Communication Part

Mode Current (mA) Voltage (V) Power Consumption(watts)

Default 185

5.5

1.01

Main 250 1.37

Observation 235 1.29

Navigation 250 1.37

Front-View 220 1.21

Idle 210 1.15

82

As can be seen in the table above, the default power consumption of the board is 1.01 watts, which is

the consumption of the board when no configuration bit stream is loaded on the device and it is

relatively close to the estimated power consumption determined by the Xilinx XPA. The difference

between the estimated and measured power consumption value can be due to the power supply, the

incomplete user-defined constraints and specifications, providing power from the board to other

components and the heat generated by other components of the system, affecting the power

dissipation from FPGA to the environment.

Moreover, the power consumption of each mode of operation is relatively low but close to the total

power consumption of the main component since the implemented multiplexing algorithm allows only

a certain mode to be active at any specific time.

The above experiments help to determine appropriate power supply for the board. Therefore a 6VDC-

10Ah rechargeable battery (as discussed in Section 4.3), which is scaled down to 5.5 VDC through a DC-

DC converter, will allow a non-stop operation of the system for over 34 hours. Lastly, the low power

dissipation makes it possible to avoid using any fans or heat sinks in the design for cooling purposes.

83

5.5 Area and Resources Analysis

To investigate the occupied area and used resources in the implemented design, Xilinx Software Kit was

used. The design goal of the system was set to a balanced optimization of performance vs. run time

during the test. Verification state, the floor planning and I/O planning of the components made by the

Xilinx software kit was recorded and analyzed to determine the occupied area and used resources.

Table 5.3 demonstrates the estimated number of resources used in the major components of the

system.

Table 5. 3: Resource Organization of the System as Obtained via XPA

Resources Idle Observation Front-View Navigation

Multipliers (MULTs) 3 0 0 0

Lookup Tables (LUTs) 1789 127 2 390

Shift Register LUTs 130 0 0 0

Block Memory (BRAMs) 40 0 0 0

Distributed RAM 256 0 0 0

Clock Manager(DCMs) 1 0 0 0

Flip-Flops (FFs) 1233 133 2 219

Furthermore, the estimated resource utilization of the implemented system on the selected FPGA

device is recorded in Figure 5.6.

84

Figure 5. 6: Logic Utilization of the System

The total number of LUTs includes the LUTs used as logic, route-through, shift registers and for dual

port RAMs. The number of occupied slices only contains the related logical blocks [58]. The BSCANs

block is used to enable an extension of the JTAG interface to internal user defined scan chains and can

be used by ChipScope and MicroBlaze loader for testing and debugging purposes. The Global Clock

Buffer is the global clock multiplexer buffer of the FPGA to select between two input clocks [59]. The

Multiplier is a 36-bit output, 18x18-bit input signed multiplier to perform asynchronous and

synchronous multiplication operations [60]. The Clock Manager is a digital clock manager that provides

advanced clocking ability to the applications implemented on the selected FPGA by optionally

multiplying or dividing the incoming clock frequency to synthesize a new clock frequency [61].

The data recorded in the tables above indicate that the implemented system occupies less than half of

the FPGA device. Hence, more modes of operation may be added to the system to enhance the

functionality of the system, if required. Moreover, the data presented in Figure 5.6, suggests that the

MicroBlaze component, which is shared among other modes of operation, consumes the most

resources. However, some of the subcomponents used in MicroBlaze, such as the debugging module

and relatively large memory block, are used for testing and debugging purposes and can be omitted and

modified to reduce the number of resources and, therefore, the area used by the MicroBlaze.

It can also be concluded that even though the multiplexing approach seems to help us meet the

requirement of this project, expanding the project in future may be affected by the limited number of

resources within the selected device.

0% 20% 40% 60% 80% 100%

Registers

LUTs

Block Memory

Multiplier

Clock Manager

Global Clock Buffer

Input/output

BSCANs

Estimated

Available

85

5.6 Discussion and Conclusion

The reconfigurability concept of the system was discussed in Chapter 3; it was proved that in terms of

mechanical components of the design a single hardware component could perform various tasks in

different modes of operation. Even though the assigned functions were quite simple, the theory behind

the implemented design can be expanded to more complicated systems with numerous hardware

elements capable of mimicking various forms to perform different tasks. The flexibility and scalability of

the designed platform are the main features of the system that differentiates the robotic platform from

the traditional robotic systems, for it can be used as an instrument for new and existing systems, in

which the physical and behavioral components of the system may undergo minor or major changes.

Furthermore, the performance parameters of the proposed reconfigurable system discussed in the

previous sections verifies the feasibility of the design using the multiplexing approach. However, in this

section we will examine the optimization of the proposed design through using partial reconfiguration

based on the observed performance parameters in the previous sections.

Partial reconfiguration is defined as the process of updating/changing some portions of the hardware

circuitry while the other parts remain unchanged. Hence, even electronic hardware can be designed in

modular/block form by creating sub components, in which the functionality of its hardware can be

enhanced by altering the organization of these sub components [62, 63]. Figure 5.7 illustrated the

concept of partial reconfiguration in FPGAs.

As can be seen in Figure 5.7, the logic in the FPGA design is divided into static, grey part, and in the

block portion, reconfigurable logics. The functionality of reconfigurable block A can be modified by

downloading one of several partial bit files A1.bit- A4.bit without affecting what is stored in the static

FPGA

Reconfig.

Block “A”

A4.bit

A3.bit

A2.bit

A1.bit

Figure 5. 7: Basic Premise of Partial Reconfiguration courtesy of [62]

86

part. These partial data files may contain the required hardware organization of each mode of

operations and may be stored in an external memory storage device, such as a flash memory, EEPROM,

etc.

The timing analysis performed in Section 5.3 confirmed that around 100 ms is required to configure the

FPGA from the external flash memory. Moreover, based on the specified modes of operation and the

architectural organization of the system, the system shifts to idle mode after completion of each

operation. Hence, to examine the applicability of partial reconfiguration in our existing system in terms

of optimization and higher performance of the system, we can study the behaviour of systems in the

following cases:

Case 1: Idle-Observation Mode

Upon receiving a command to enter the observation mode from the control unit, the system

immediately enters the observation mode by setting the Tower up and turning on the camera module

to start capturing and transmitting video data. After the Tower is in high position, which takes almost

four seconds, the system can enter back the idle mode to receive further instructions. The existing

multiplexing approach takes only 12 c.c. (240 ns) as described in Section 5.3, which is far less and faster

than the 100 ms required time to reconfigure the FPGA with a new bitstream. In other words, loading

the dedicated circuitry associated with the new mode of operation to the specified area of the FPGA

will take longer that the existing approach. However, if the functions associated with some of the

operational modes change and result in occupying larger area and using more resources, the partial

reconfiguration option will be a better choice, since it allows various modes of operation to be placed in

the same blocks of FPGA. The same analysis is valid when entering the idle mode from the front-view

and navigation modes of operation.

Case 2: Observation-Front-view Mode

Entering the front-view mode from the observation mode requires very minimal physical

configurations, since the tower is already in the high position. Therefore, the system receives the

associated command while it is in the idle mode and can switch to the front-view mode after disabling

the observation mode. The hardware circuitry associated with the head movement of the platform does

not need to wait for the tower to go up due to its initial physical configuration which speeds up the

adaptation process. The system starts to prepare a 3D map of the scene to be used for the navigation

mode of operation which requires N-angular positions of the Head. The system enters the idle mode,

87

upon finishing the task. The existing multiplexing approach takes 12 c.c. for the specified mode

transitions, which is less than the required time to reconfigure the FPGA. Therefore, the applied

approach meets the timing requirements of this mode transition faster than its counterpart.

Case 3: Observation-Navigation Mode

To enter the navigation mode from the observation mode, the system needs to enter the idle mode and

then navigation mode. However, the system needs to physically adapt itself to the new mode of

operation. For instance, the Tower which is set high in the observation mode needs to be placed down,

before entering the navigation mode to meet the physical specification of this mode of operation.

The existing multiplexing scheme takes 12 c.c. to switch from the observation to the idle mode and

remains in this mode depending on how fast the navigation command becomes available. Upon

receiving the navigation command it enters the navigation mode after the transition to observation

mode and setting the Tower to down position. The whole process takes less than 100 c.c. (20 µs), if the

reception of the navigation command is almost immediate.

The estimated time to have the Tower fully down is around three seconds, which provides plenty of

time to reconfigure the FPGA with the bitstream of the new mode while the physical configuration is

still in the process of adaptation. In other words, if the partial reconfiguration was to be used, the

hardware circuitry associated with the idle mode of operation would be the static part of the FPGA and

the other operational modes would be downloaded on to the FPGA via module-based partial

reconfiguration to change the system’s behaviour by reallocating only the related hardware resources

without completely reconfiguring the entire FPGA. Similar analysis can be performed on the front-view

to navigation and observation to front-view operational modes transitions.

Based on the above analysis, the existing multiplexing approach in the transition of specified

operational modes is suitable for the system, while partial reconfiguration of the system with the

defined modes offers no significant advantages for the current robotic platform. However, in terms of

area and resource utilization of the design, as described in Sections 5.5, partial reconfiguration makes a

good candidate for further improvements of the system since adding more functionality in the form of

modes of operation does not require the switch to a larger FPGA device.

88

Appendices

A. MicroBlaze Component Internal Organization

Figure A. 1: MicroBlaze Internal Component Organization

89

Figure A. 2: MicroBlaze-Dual BRAM Component Organization

90

B. System Component Symbols

The following figures demonstrate the actual component symbols of the system for each modes of

operation.

Figure B. 1: Main Component Symbol for Multiplexing Approach

91

Figure B. 2: Navigation Mode Component Symbol

Figure B. 3: Front-View Mode Component Symbol

92

Figure B. 4: MicroBlaze Component Symbol for Idle Mode

Figure B. 5: Observation Mode Component Symbol

93

Bibliography

[1] A. Saakov, “Reconfigurable platform for 3D-panoramic telepresence system for mobile applications”

in Theses and dissertations, Paper 758, 2011, pp. 6-48.

[2] A. Saakov, D. Marcantonio, V. Dumitriu , and L. Kirischian, “Embedded Reconfigurable System for 3D-

Panoramic Telepresence Application with Natural User Interface”, Presentation at workshop SVAR-

2010: Space Vision and Advanced Robotics, MDA Space Missions, Brampton, Canada, 2010.

[3] J. Denhart, T. Gemmer, L. Edwin, S. Ferguson, and A. Mazzoleni, "Assessing Reconfigurable Design

for a Chaotic Objective in a Mars Exploration Rover." in 14th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference, 2012, pp. 1-4.

[4] A. Kristoffersson, S. Coradeschi, and A. Loutfi, "A review of mobile robotic telepresence." Advances

in Human-Computer Interaction, 2013, pp. 1-2.

[5] G.H Ballantyne,. "Robotic surgery, telerobotic surgery, telepresence, and telementoring." Surgical

Endoscopy and Other Interventional Techniques 16, no. 10, 2002, pp. 1389-1402.

[6] J. Kim, N. Prabakar, and C. Tope, "Efficient concurrent operations of telepresence avatars."

in Robotics (ISR), 2013 44th International Symposium on, IEEE, 2013, pp. 1-5.

[7] P. Peixoto, J. Gonçalves, H. Antunes, J. Batista, and H. Araujo, "A surveillance system integrating

visual telepresence." in Pattern Recognition, 2000. Proceedings. 15th International Conference on, vol.

4, IEEE, 2000, pp. 98-101.

[8] Oculus, “Oculus Surveillance and Telepresence Robot”, Oculus [Online], March 2013, Available:

http://www.xaxxon.com/

[9] R. E Balfour, and B.P. Donnelly, "The what, why and how of achieving urban telepresence."

In Systems, Applications and Technology Conference (LISAT), 2013 IEEE Long Island, IEEE, 2013, pp. 1-6.

 [10] R. Terrile, and J. Noraky, "Immersive telepresence as an alternative for human exploration."

in Aerospace Conference, 2012 IEEE, IEEE, 2012, pp. 1-11.

94

[11] K.M. Varadarajan, and M. Vincze, "Augmented virtuality based immersive telepresence for control

of mining robots." in Computational Intelligence and Intelligent Informatics (ISCIII), 2011 5th

International Symposium, IEEE, 2011, pp. 133-138.

[12] M.A. Diftler, J. S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridgwater, A.M. Sanders, R. Scott R.S.

Askew et al, "Robonaut 2-the first humanoid robot in space." in Robotics and Automation (ICRA), 2011

IEEE International Conference on, 2011, pp. 2178-2183.

 [13] P. Moubarak, and P. Ben-Tzvi, "Modular and reconfigurable mobile robotics.” in Robotics and

Autonomous Systems 60, no. 12, 2012, pp. 1648-1663.

[14] K. Gilpin, and D. Rus, "Modular robot systems.", in Robotics & Automation Magazine, IEEE 17, no. 3

2010, pp. 38-55.

[15] S. Farritor, and J. Zhang, “A reconfigurable Robotic Infrastructure to Support Planetary Surface

Operations.”, Department of Mechanical Engineering, University of Nebraska, Lincoln, USA, 2001.

[16] S. Murata, and H. Kurokawa, "Self-reconfigurable robots." in Robotics & Automation Magazine,

IEEE 14, no. 1, 2007, pp. 71-78.

[17] M. Yim, P. White, M. Park, and J. Sastra, "Modular self-reconfigurable robots." in Encyclopedia of

complexity and systems science, Springer New York, 2009, pp. 5618-5631.

[18] S. Jin, D. Kim, X. Dai Pham, and J. Wook Jeon, "FPGA-based image processing system for remote

robot control." in Robotics and Biomimetic, 2008. ROBIO 2008. IEEE International Conference on, 2009,

pp. 120-124.

[19] N. Brener, F.B. Amar, and P. Bidaud, "Characterization of Lattice Modular Robots by Discrete

Displacement Groups", in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Tapei, Taiwan,

2010, p. 1.

[20] P. Dasgupta, et al, "Mechanical design and computational aspects for locomotion and

reconfiguration of the ModRED modular robot." in Proceedings of the 2013 international conference on

Autonomous agents and multi-agent systems, International Foundation for Autonomous Agents and

Multiagent Systems, 2013, pp. 1359-1360.

95

[21] Y. Fei, and C. Wang, "Self-Repairing Algorithm of Lattice-Type Self-Reconfigurable Modular

Robots." in Journal of Intelligent & Robotic Systems, 2013, pp. 1-11.

[22] S. Murata, E. Yoshida, K. Tomita, H. Kurokawa, A. Kamimura, and S. Kokaji, “Hardware design of

modular robotic system,” in Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent

Robots and Systems, 2000, pp. 2210–2217.

[23] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins, and G. Chirikjian, “Modular

self-reconfigurable robot systems [Grand Challenges of Robotics],” IEEE Robot. Autom. Mag., vol. 14,

no. 1, 2007, pp. 43-52.

[24] M.D.M. Kutzer, M.S. Moses, C.Y. Brown, D.H. Scheidt, G.S. Chirikjian, and M. Armand, "Design of a

new independently-mobile reconfigurable modular robot.", in Robotics and Automation (ICRA), 2010

IEEE International Conference on, IEEE, 2010, pp. 2758-2764

[25] J. Davey, N.Kwok, and M. Yim, "Emulating self-reconfigurable robots-design of the SMORES

system." in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, 2012, pp.

4464-4469.

[26] M-TRAN, “M-TRAN Modular Transformer”, [Online], November 2010, Available:

https://unit.aist.go.jp/is/frrg/dsysd/mtran3/

[27] K. Stoy, and H.Kurokawa, "Current topics in classic self-reconfigurable robot research."

in Proceedings of the IROS Workshop on Reconfigurable Modular Robotics: Challenges of Mechatronic

and Bio-Chemo-Hybrid Systems, 2011, pp. 1-4.

[28] O. Anton, B. Gelineau, and J. Sauget, “Firmware and bootlader”, [Online], March 2012, Available:

http://rose.eu.org/2012/wp-content/uploads/2012/03/Firmwares-and-bootloaders.pdf

[29] N. Wolchover, “Nasa Gives Up On Stuck Mars Rover Spirit”, [Online], May 2011, Available:

http://www.space.com/11773-nasa-mars-rover-spirit-mission-ends.html

[30] P. Leong, H. Wai, and K. Hung Tsoi, "Field Programmable Gate Array technology for robotics

applications." in Robotics and Biomimetic (ROBIO), 2005 IEEE International Conference on, 2005, pp.

295-298.

96

[31] J. González-Gómez, E. Aguayo, and E. Boemo, "Locomotion of a Modular Worm-like Robot using a

FPGA-based embedded MicroBlaze Soft-processor.", in Climbing and Walking Robots, Springer Berlin

Heidelberg, 2005, pp. 869-878.

[32] A. Upegui, R. Moeckel, E. Dittrich, A. Ijspeert, and E. Sanchez, "An FPGA dynamically reconfigurable

framework for modular robotics." in Workshop Proceedings of the 18th International Conference on

Architecture of Computing Systems 2005 (ARCS" 05), no. BIOROB-CONF-2005-001, VDE Verlag, Berlin,

2005.

[33] R. Möckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and A. Ijspeert, "YaMoR and Bluemove—an

autonomous modular robot with Bluetooth interfaces for exploring adaptive locomotion." in Climbing

and Walking Robots, Springer Berlin Heidelberg, 2006, pp. 685-692.

[34] V. Tadigotla, L. Sliger, and S. Commuri, "FPGA implementation of dynamic run-time behavior

reconfiguration in robots." in Computer Aided Control System Design, 2006 IEEE International

Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control, 2006, pp.

1220-1225.

[35] M. Yim, D. Duff, and K.D. Roufas, "PolyBot: a modular reconfigurable robot," in Robotics and

Automation, 2000, Proceedings. ICRA'00. IEEE International Conference on, vol. 1, EEE, 2000, pp. 514-

520.

[36] A. Kongmunvattana, and P. Chongstivatana, "A FPGA-based behavioral control system for a mobile

robot.", in Circuits and Systems, 1998. IEEE APCCAS 1998. The 1998 IEEE Asia-Pacific Conference on,

IEEE, 1998, 759-762.

[37] T. Kwok, and Y. Kwok, "Hardware Task Scheduling for an FPGA-Based Mobile Robot in Wireless

Sensor Networks.” in Handbook on Mobile and Ubiquitous Computing: Status and Perspective, 2012, p.

441.

[38] O. Berthold, “Self-reconfiguring System-on-Chip using Linux on a Virtex-5 FPGA”, in Master’s thesis,

Humboldt-University of Berlin, Berlin, Germany, 2012, pp. 2-24.

[39] V. Adnitt, “Wildlife in Winter- Adaptation for Survival”, in Young People’s Trust for the Environment,

2010, [Online], Available: http://www.ypte.org.uk/environmental/wildlife-in-winter-adaptations-for-

survival/112

97

[40] Digi International Inc., “XBee/XBee-PRO RF Modules”, Product Manual for 802.15.4 Protocol,

September 2009, [Online], Available: https://www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-

Datasheet.pdf

[41] P. P.Chu, FPGA Prototyping by VHDL Examples: Xilinx Spartan-3, John Wiley & Sons, 2008. [E-book],

Available: Google Books.

[42] Xilinx, “XPS UART Lite (v1.01a)”, Xilinx [Online], December 2009, Available:

http://www.xilinx.com/support/documentation/ip_documentation/xps_uartlite.pdf

[43] Firgelli, Application note, [Online], Available: http://www.firgelliauto.com

[44] Bosch, “BMA180 Digital, triaxial acceleration sensor”, BMA180 datasheet, December 2010,

[Online], Available: http://dlnmh9ip6v2uc.cloudfront.net/datasheets/Sensors/Accelerometers/BST-

BMA180-DS000-07_2.pdf

[45] Smart Motor Devices, Application note, [Online], Available: http://www.stepmotor.biz/

[46] Dimension Engineering, “Sabertooth 2x25 V2 User’s Guide”, April 2012, [Online], Available:

http://www.dimensionengineering.com/datasheets/Sabertooth2x25v2.pdf

[47] Battery University, “Comparison Table of Secondary Batteries”, 2011, [Online], Available:

http://batteryuniversity.com/learn/article/secondary_batteries

[48] Vishay, “Reflective Optical Sensor with PIN Photodiode Output”, TCND5000 datasheet, July 2009

[Online], Available: http://www.vishay.com/docs/83795/tcnd5000.pdf

[49] Xilinx, “Spartan-3E Starter Kit Board User Guide (v1.2)”, Xilinx User Guide, [Online], January 2012,

Available: http://www.xilinx.com/products/boards-and-kits/HW-SPAR3E-SK-US-G.htm

[50] Linear Technology, “Quad 16-bit Rail-to-Rail DACs in 16-Lead SSOP”, LTC2624 datasheet, [online],

Available: http://cds.linear.com/docs/en/datasheet/6912fa.pdf

[51] Linear Technology, “Dual Programmable Gain Amplifiers with Serial Digital Interface”, LTC6912

datasheet, [online], Available: http://cds.linear.com/docs/en/datasheet/6912fa.pdf

[52] Xilinx, “ISE In-Depth Tutorial”, Xilinx User Guide, April 2012, [online], Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ise_tutorial_ug695.pdf

98

[53] Xilinx, “EDK Concepts, Tools, and Techniques: A Hands-On Guide to Effective Embedded System

Design”, Xilinx User Guide, July 2012, [online], Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/edk_ctt.pdf

[54] Xilinx, “Xilinx Software Development Kit Help Contents”, Xilinx User Guide, [Online], Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_2/SDK_Doc/index.html

[55] Xilinx, “ISE tutorial: Using Xilinx ChipScope Pro ILA Core with Project Navigator to Debug FPGA

Applications”, Xilinx User Guide, March 2013, [online], Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/ChipScope_pro_sw_cores_ug0

29.pdf

[56] E. Crabill, “Powering and Configuring Spartan-3 Generation FPGAs in Compliant PCI Applications”,

Xilinx User Guide, June 2007, [online], Available:

http://www.xilinx.com/support/documentation/application_notes/xapp457.pdf

[57] A. Khu, F. Shokouhi, J. Hussein, A. Patel, “Using Xilinx XCF02S/XCF04S JTAG PROMs for Data Storage

Applications”, Xilinx User Guide, January 2011, [online], Available:

http://www.xilinx.com/support/documentation/application_notes/xapp544.pdf

[58] Xilinx, “Xilinx Power Estimator User Guide”, Xilinx User Guide, June 2013, [online], Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/ug440.pdf

[59] Xilinx, “Spartan-3 Generation FPGA User Guide: Extended Spartan-3A, Spartan-3E, and Spartan-3

FPGA Families”, Xilinx User Guide, June 2011, [Online], Available:

http://www.xilinx.com/support/documentation/user_guides/ug331.pdf

[60] Xilinx, “Using Embedded Multipliers in Spartan-3E FPGAs”, Xilinx User Guide, May 2003, [online],

Available: http://www.xilinx.com/support/documentation/application_notes/xapp467.pdf

[61] Xilinx, “Using Digital Clock Managers (DCMs) in Spartan-3E FPGAs”, Xilinx User Guide, January 2006,

[online], Available: http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf

[62] Xilinx, “Partial Reconfiguration User Guide”, Xilinx User Guide, May 2010, [online], Available:

http://www.xilinx.com/support/documentation/sw_manuals/xilinx12_1/ug702.pdf

http://www.xilinx.com/support/documentation/application_notes/xapp457.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp544.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_2/ug440.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp467.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp462.pdf

	1. Thesis Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Thesis Organization

	2. Related Works
	2.1 Introduction
	2.2 Telepresence System
	2.3 Robotics and Reconfigurability
	2.3.1 Physical Adaptation
	2.3.2 Behavioral Adaptation

	2.4 Summary

	3. Architecture Development of Multi-Modal Reconfigurable Robotic Platform
	3.1 Introduction
	3.2 Concept and Theory Analysis
	3.3 Modes of Operation Analysis
	3.3.1 Idle Mode
	3.3.2 Observation Mode
	3.3.3 Front-View mode
	3.3.4 Navigation Mode

	3.4 System Architecture Organization
	3.4.1 Idle Mode Architecture
	3.4.2 Observation Mode Architecture
	3.4.3 Front-View Mode Architecture
	3.4.4 Navigation Mode Architecture

	3.5 Summary

	4. Implementation of the Multi-Modal Reconfigurable Robotic System
	4.1 Introduction
	4.2 System design Implementation
	4.3 Modes of Operation
	4.3.1 Idle mode
	4.3.1.1 Idle Mode Hardware Architecture
	4.3.1.2 Idle Mode Firmware Component
	4.3.1.2.1 Implementation of UART in VHC
	4.3.1.2.2 Implementation of UART in VSC

	4.3.1.3 idle Mode Software Component

	4.3.2 Observation Mode
	4.3.2.1 Observation Mode Hardware Architecture
	4.3.2.1.1 Linear actuator
	4.3.2.1.2 Accelerometer

	4.3.2.2 Principals of Observation Mode Operation
	4.3.2.3 Observation Mode Firmware Component
	4.3.2.3.1 Linear Actuator
	4.3.2.3.2 Accelerometer

	4.3.3 Front-View Mode
	4.3.3.1 Front-View Mode Hardware Architecture
	4.3.3.2 Principals of Front-View Mode operation
	4.3.3.3 Front-View mode Firmware component

	4.3.4 Navigation Mode
	4.3.4.1 Navigation Mode Hardware Architecture
	4.3.4.1.1 Motor-driver
	4.3.4.1.2 Odometer
	4.3.4.1.3 Obstacle Sensors

	4.3.4.2 Principals of Navigation mode operation
	4.3.4.3 Navigation Mode Firmware Component
	4.3.4.3.1 Motor-driver
	4.3.4.3.2 Odometer
	4.3.4.3.3 Obstacle Sensors

	4.4 Complete System Implementation
	4.5 Summary

	5. Experimental Results Analysis and Discussion
	5.1 Introduction
	5.2 Experimental Setup
	5.3 Timing Analysis
	5.4 Power Consumption Analysis
	5.5 Area and Resources Analysis
	5.6 Discussion and Conclusion

	Appendices
	A. MicroBlaze Component Internal Organization
	B. System Component Symbols

	Bibliography

