
DESIGN AND IMPLEMENTATION OF
PORTABLE AND CONFIGURABLE RISC

PROCESSOR ARCHITECTURE

by

Volodymyr Sergeyev, B.Eng,

Odessa Polytechnic University, 1987

A project

presented to Ryerson University ,

in partial fulfillment of the

requirement for the degree of

Master of Engineering

in the Program of

Electrical and Computer Engineering

Toronto, Ontario, Canada, 2010

© Volodymyr Sergeyev 2010

PAOPERlYOF
RYERSON UNIVERSITY LIBRARY

Erhelp
New Stamp

Erhelp
New Stamp

Erhelp
New Stamp

Erhelp
New Stamp

Author's Declaration

I hereby declare that I am the sole author of this project.

I authorize Ryerson University to lend this project to other institutions or individuals for the

purpose of scholarly research.

I further authorize Ryerson University to reproduce this project by photocopying or by other

means, in total or in part at the request of other institutions or individuals for the purpose of

scholarly research.

.,
;i

Erhelp
New Stamp

Erhelp
New Stamp

Erhelp
Sticky Note
Marked set by Erhelp

Erhelp
New Stamp

IlL •• • I U •

Instructions on Borrowers

Ryerson University requires the signatures of all persons using or photocopying this project.

Please sign below, and give address and date.

Name Signature Address Date

iii

•

I

DESIGN AND IMPLEMENTATION OF PORTABLE AND
CONFIGURABLE RISC PROCESSOR ARCHITECTURE

Volodymyr Sergeyev

Master of Engineering

Department of Electrical and Computer Engineering

Ryerson University, Toronto, 2010

Abstract

This project presents the configurable microprocessor design based on the MIPS architecture.

The level of configurability includes a choice of the pipe lined or unpipelined architecture,

number of pipeline stages, data path bit-width, instruction subsetting, program and data

memory size. The microprocessor design flow is supported by the set of standard and custom

software tools. The wide spectrum of the microprocessor configurations provides an

opportunity to optimize hardware for the specific application. The HDL design of the

microprocessor is independent of the hardware platform. The portability of the design was

verified on the competitive FPGA platforms and ASIC. The selected microprocessor

configuration running the test application was successfully implemented and verified on the

FPGA development board. The obtained implementation results were compared to the

existing comm·erdal and research microprocessors and critical advantages of the presented

design were outlined.

v

Acknowledgments

It is a pleasure to thank those who made this project possible. I want to convey my deepest

gratitude to my supervisor Dr. Adnan Kabbani whose assistance, encouragement and

expertise significantly contributed to this work. Through the duration of project-writing

period, he provided inspiration, guidance, and good advice. Work under his supervision gave

me an invaluable experience.

I would like to thank the many people who have taught me during my graduate studies. I

am especially grateful to professors Reza Sedaghat, Fei Yuan, Gul Khan, Vadim Geurkov,

and Lev Kirischian. Their devotion, professional attitude, and teaching skills had a remarkable

influence on the completion of my studies.

I wish to thank the Department of Electrical and Computer Engineering for providing

research resources and technical facilities required for completion of this project. My special

thanks to Jason Naughton whose knowledge and technical expertise helped me efficiently use

the department resources.

Most of all lowe my thanks to my family for their patience, support, and understanding

during my graduate study. Especially, I am grateful to my wife Iryna whose encouragement

and endless love helped me finish this work.

vii

, ,

11

11
I,

"I . ;1

Contents

1 INTRODUCTION ... 1
1.1 Motivation ... 1
1.2 Objectives and Contributions .. 3
1.3 Project Organization .. 4

1 BACKGROUND .. 5
2.1 Introduction ... 5
2.2 Basic MIPS Processor Architecture .. 5
2.3 Closely Related Work .. 11

2.3.1 Architecture Description Languages ... 11
2.3.2 Configurable Processors .. 13

2.4 Summary .. 19

3 CONFIGURABLE PROCESSOR PROPOSED DESIGN .. 20
3.1 Datapath Components ... 21

3.1.1 ALU ... 21
3.1.2 Register File ... 22
3.1.3 Instruction Memory ... 24
3.1.4 Data Memory ... 25
3.1.5 Program Counter ... 26
3.1.6 Sign Extension ... 27

3.2 Control Unit Design : .. 27
3.3 Pipelihed Architecture Design ... 28

3.3.1 Five Stages Pipe lined Processor ... 29
3.3.2 Four Stages Pipelined Processor ... 31

3.4 Unpipelined Architecture Design .. 33
3.4.1 One-Cycle Processor ... 33
3.4.2 Multi-Cycle Processor ... 35

3.5 Configuration Control ... 37
3.6 Configurable Features ... 37

3.6.1 Data Path Width Parameterization .. 38
3.6.2 Instructions Set Parameterization .. 38
3.6.3 Data Memory Parameterization ... 39
3.6.4 Instruction Memory Parameterization ... 39
3.6.5 I/O Memory Parameterization ... 39
3.6.6 FPGA Optimization ... 40

ix

3.7 Input/Output Interface ... 42
3.8 Configuration GUI ... 43
3.9 Summary .. 45

4 IMPLEMENT A TION ... 46
4.1 Hardware Components and Development Tools .. .46
4.2 Design and Implementation Flow ... 47
4.3 FPGA Implementation ... 50

4.3.1 Project Files ... 50
4.3.2 Architecture ... 53
4.3.3 BRAM Optimization ... 54
4.3.4 Timing Constraints .. 54
4.3.5 Xilinx Platform Implementation .. 55
4.3.6 Altera Platform Implementation .. 57

4.4 ASIC Implementation .. 59
4.5 Demo Platform Design and Implementation ... 61

4.5.1 Hardware Platform Description ... 61
4.5.2 Processor Core Configuration ... 63
4.5.3 Demo Platform Interface Design ... 64
4.5.4 SofuvarelHardware Co-Design ... 64
4.5.5 Demo Design Implementation ... 65

4.6 Summary .. 66

5 DESIGN VERIFICATION ... 67
5.1 Testbench Design .. 68

5.1.1 Fibonacci Number Test Program ... 69
5.1.2 Verilog Testbench ... 70

5.2 Pipe lined Architecture Verification ... 72
5.3 Multi-Cycle Design Verification ... 75
5.4 One-Cycle Design Verification ... 76
5.5 Demo Platform Design Verification .. 76
5.6 Summary .. 77

6 RESULT ANALYSIS ... ; 78
6.1 Xilinx FPGA Implementation Evaluation ... 78
6.2 Altera FPGA Implementation Evaluation ... 80
6.3 ASIC Implementation Evaluation ... 83
6.4 Evaluation Against Existing Solutions .. 84
6.5 Summary .. 86

7 CONCLUSION AND FUTURE WORK ... 87
7.1 Conclusion ... 87
7.2 Future Work ... 88

A DEMO DESIGN PROGRAM CODE .. 90

B PROCESSOR CONFIGURA TION FILE ... 95
B.1 Base Configuration File Template ... 95

x

8.2 Automatically Generated Part of Configuration File 102

C II\-IPLEMENTATION REPORTS ... 104
C.l Xilinx Summary Reports ... 104
C.2 BRAM Utilization Reports .. 111

D TSMC 0.18 11M PROCESS IMPLEMENTATION .. 112

E DEMO DESIGN CONSTRAINTS AND REPORT .. 114

F FIBONACCI TEST PROGRAM ... 118

G CONFIGURABLE PROCESSOR VERIFICA TION .. 120
G.l Verification Reports .. 120
G.2 Simulation Waveforms .. 120

H IMAGES OF DEMO DESIGN EXAMPLE .. 125

I ALTERA FPGA II\-1PLEMENTION ... 130

BIBLIOGRAPHY .. 133

L
I " 'I

:1

(~i t,

" il

xi

List of Tables

Table 2.1. MIPS instruction fonnat .. 7
Table 2.2. MIPS instruction set ... 7
Table 2.3: MicroBlaze Processor v7.2 Perfonnance Levels .. 15
Table 2.4. Nios II different version features ... 16
Table 3.1: Supported ALU operations .. 21
Table 3.2: ALU signals ... 22
Table 3.3: Data memory signals ... 25
Table 3.4: Set of configuration features available for the processor core 38
Table 4.1: Implementation and development tools46
Table 4.2: MIPS_DLX project files description ... 51
Table 4.3: MIPS interface signals .. 53
Table 4.4: Clock period timing constraints (ns) ... 55
Table 4.5: Maximum clock speed (MHz) ofthe processor configurations implemented in
Xilinx FPGA ... 56
Table 4.6: Xilinx FPGA resources (LUTs) used for the implementation of the different
processor configurations ... 57
Table 4.7: Implementation results of 512-bit 5-stages pipelined processor configuration 57
Table 4.8: Maximum clock speed (MHz) of the processor implemented in Altera FPGA 58
Table 4.9: Altera FPGA resources (ALMs) used for the implementation of the different
processor configurations ... 59
Table 4.10: Maximum clock speed (MHz) of the processor configurations implemented using
0.18 J-lm technology process ... 60
Table 4.11: Total cell area (J-lm2

) occupied by the processor configurations implemented using
0.18 J-lm technology process ... 61
Table 4.12: Mapping of the Demo design signals in 110 memory address space 64
Table 5.1: Verification matrix for the processor configurations set ... 68
Table 5.2: Mapping oftestbench in 110 memory address space .. 71
Table 5.3: Data hazards handled by forwarding and stalling in the pipelined architectures 74
Table 5.4: FSM action description ... 75
Table 6.1: Configurable MIPS processor variants vs. Altera Nios II1s/e 85
Table 6.2: Configurable MIPS processor vs. Xilinx Microblaze and Leon3 86

xiii

List of Figures

Figure 2.1. Block diagram of the multi-cycled MIPS processor .. 1 0
Figure 2.2. Block diagram of the pipelined MIPS processor ... 10
Figure 3.1: Processor ALU symbol .. 22
Figure 3.2: Register file symbol ... 23
Figure 3.3: Regfile Read-First block diagram .. 23
Figure 3.4: Regfile Write-First block diagram ... 23
Figure 3.5: Regfile Write-First mode timing diagram .. 24
Figure 3.6: Regfile Read-First mode timing diagram .. 24
Figure 3.7: Instruction memory symbol ... 24
Figure 3.8: Data memory symbol ... 25
Figure 3.9: Data memory read/write timing diagram ... 26
Figure 3.10: Program counter symbol .. 26
Figure 3.11: Program counter timing diagram ... 26
Figure 3.12: Sign Extension symbol .. 27
Figure 3.13: Block diagram offive stages pipe lined processor ... 30
Figure 3.14: Block diagram of four stages pipelined processor ... 32
Figure 3.15: One-cycle processor architecture ... 34
Figure 3.16: Multi-cycle processor architecture ... 36
Figure 3.17: BRAM logic diagram ... 40
Figure 3.18: BRAM optimization for five stages architecture ... 41
Figure 3.19: Block diagram of the input/output interface organization42
Figure 3.20: Configuration GUI wizard screenshot ... 44
Figure 4.1: The configurable MIPS processor design flow48
Figure 4.2: Format of the pseudo code inserted in the instruction memory module by the
proposed custom conversion tool ... 48
Figure 4.3: MIPS_DLX project modules hierarchy .. 51
Figure 4.4: 32-bit MIPS processor module .. 53
Figure 4.5: Demo platform block diagram ... 62
Figure 4.6: Spartan-3E startup kit FPGA board ... 62
Figure 5.1: Block diagram ofthe Fibonacci number testbench .. 71
Figure 5.2: Forwarding WB-7EX and MEM-7 EX in the pipeHned architecture (ModelSim
waveform) ... 73
Figure 5.3: Stalling and forwarding MEM -7 ID in the pipelined architecture (ModelSim
waveform) ... 73
Figure 5.4: Waveform ofthe multi-cycle architecture simulation ... 75

xv

Figure 6.1: Evaluation chart of the architecture variants of 32-bit processor implemented in
Xilinx FPGA ... 79
Figure 6.2: Evaluation chart of the architecture variants of 32-bit processor implemented in
Altera FPGA ... 81
Figure 6.3: Evaluation chart of the architecture variants of 32-bit processor implemented
using 0.18 f.1m technology process ... 84
Figure G.l: Post-route simulation waveforms of the 32-bit configuration of multi-cycle
architecture ... 121
Figure G.2: Post-route simulation waveforms of the 32-bit configuration of one-cycle
architecture ... 122
Figure G.3: Post-route simulation waveforms of the 32-bit configuration of four-stage
architecture ... 123
Figure G.4: Post-route simulation waveforms of the 32-bit configuration of five-stage
architecture ... 124

xvi

List of Abbreviations

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction set Processor

ASP Application Specific Processor

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GUI Graphic User Interface

IDE Integrated Development Environment

ISE Integrated Software Environment

LE Logic Element

LUT Look-Up Table

M9K Memory 9-Kbit Block

MIPS Microprocessor without Interlocking Pipe Stages

MLAB Memory Logic Array Block

MMU Memory Management Unit

RA W Read After Write

RISC

ROM

TLB

UUT

Reduced Instruction Set Computer

Read Only Memory

Translation Look-aside Buffer

Unit Under Test

VHDL Very High Speed Integrated Circuit (VHSIC) Hardware Description Language

WAR Write After Read

W A W Write After Write

xvii

Chapter 1

Introduction

1.1 Motivation

The contemporary microprocessor market offers a vast variety of chips for new designs.

The right choice of a microprocessor to fit for a specific application is a challenging task

nowadays. Utilization of a configurable processor can facilitate this problem. A hardware

designer can choose the configuration of a microprocessor which precisely matches design

requirements. The advantage of FPGA configurable computing has brought the idea of

implementing a general-purpose microprocessor on an FPGA chip [1]. This concept along

with the growing demands for customization of the processor and its peripherals inspires

FPGA vendors to include microprocessors in FPGA architecture. Manufacturers offer this

feature in a form of hard or soft core. More then 32% of hardware developers use embedded

FPGA microprocessors in their designs [2]. Configurable hard microprocessors also follow

this trend. Customizable microprocessors form Tensilica, ARC and Improv for ASIC

implementation offer a broad range of microprocessor optional features. Designers can choose

the instruction set architecture to suit the application requirements. The microprocessor data

path and pipeline structure are also customizable in order to meet the design constrains. In the

ladder of the microprocessor solutions the configurable microprocessors occupy a niche in the

middle between implementation on the dedicated hardware and the software running on

general-purpose microprocessors [3]. Most of commercially available solutions for

configurable microprocessors are oriented on the particular technology. A designer has to

choose the target technology up-front. It may be a choice of FPGA from different

manufacturers or technology process. But since the design is implemented and verified on a

chosen target platfonn it becomes very difficult to migrate the design to a different platfonn.

The common situation is when a verified, proven design is to be upgraded due to additional

new requirements or obsolescence of the target chip. Another challenge is the verification of

an ASIC implemented microprocessor on FPGA platfonn. Design seamless transition from

FPGA to ASIC is nonnally offered within technologies provided by the same manufacturer

(e.g. Altera Stratix to HardCopy [4]).

Beside of the problems related to a market-oriented engineering, the configurable

processor architecture with a versatile set of configuration features offers the fine grain

optimization of hardware resources required the specific application. The combination of the

possible processor configurations creates the exploration space which provides the

opportunity for the research on decision making in the selection of the specific configuration

features. Moreover, the flexibility of the configurable and portable design provides an

opportunity to obtain the architecture with features not available in general purpose processor

architectures.

The motivation of this project is to develop a configurable microprocessor architecture

independent of the target technology. This architecture facilitates the optimization of the

microprocessor architecture for a specific user application. The choice of the microprocessor

architecture is provided by the set of user selectable features.

The application set of the proposed microprocessor architecture may include the

following:

• The applications where operation with non-standard data bitwidth (256+) is

required

• The applications with limited number of the allocated hardware resources

• The algorithm intensive low speed applications where implementation of Finite

State Machine (FSM) is very complicated.

• The prototyping applications where the portability of the design is critical

The tenns processor and microprocessor are used in this project to identify the same

object, since in modem technical literature the tenn microprocessor is frequently contracted to

just a processor.

2

1.2 Objectives and Contributions

The focus of this project is to develop, implement, and verify a portable configurable rusc
processor architecture. The following goals are to be achieved in this project:

1) To develop a processor architecture configurabJe for a user specification by selection

of required features provided in the design.

2) To implement configurabJe rusc processor using Verilog HDL [5] as independent

module suitable for integration as a processor core in the processor-based digital

systems.

3) To develop GUI that facilitates the choice of features for the processor configuration.

4) To select and implement a testbench for verification of generated processor

configurations.

5) To generate a set of the distinguished processor configurations.

6) To verify the set of generated processor configurations.

7) To verify the portability of the design by implementing the set of processor

configurations on several FPGA and ASIC platforms.

8) To implement one processor configuration in hardware using FPGA development

board.

9) To test and verify the demo application on the FPGA development board.

The following contributions were made into the development of the Portable and

Configurable rusc Processor Architecture project:

1) The development of the specific tool for the conversion of the compiled software code

into Verilog HDL.

2) The conduction of the literature review on the configurable processor systems.

3) The development of the specific design flow for the configuration and implementation

of the proposed processor architecture

4) The development of the Configuration Manager, the GUI-based tool for the

facilitating the right choice of the configuration options of the proposed processor

architecture

5) The development and implementation of the Verilog description of portable and

configurable processor design based on the MIPS processor architecture.

3

6) The development and implementation of the demonstration example implementing the

proposed processor design as a part of the Fibonacci number computation and

visualization system.

7) The utilization of the proposed processor configuration framework as an educational

platfonn for the processor organization teaching courses.

1.3 Project Organization

The rest section of the project is organized as follows:

Chapter 2 provides a background on the processor architecture and reviews related

research studies.

Chapter 3 describes the design ofthe proposed configurable processor. The chapter shows

implementation of configurable features for different processor architectures. The

development of support software tools is also covered in this chapter.

Chapter 4 describes synthesis and implementation of the processor core on different

hardware platfonns i.e. FPGA and ASIC. Various combinations of configurable features and

processor architectures implemented on different platfonns create an exploration space. The

chapter shows the subset of variants in that space. The included demo design illustrates a

practical utilization ofthe processor core.

Chapter 5 describes the verification methods used to prove the functionality of the design

on behavioral and hardware levels. The development of the testbenches and their properties

are discussed and analyzed ..

Chapter 6 analyzes results of the processor implementation on different platfonns.

Implementation of the processor variants are compared and evaluated.

Chapter 7 summarizes the conducted work and accomplishments ofthis project.

4

Chapter 2

Background

2.1 Introduction

In this chapter the relevant background in the processor architecture is presented. The

chapter focuses on the description of MIPS RISC processor which is adopted as a base

architecture for this project. The following sections review the research development in the

area related to the project theme. The state-of-art of research and commercial configurable

processors is outlined and analyzed in order to determine a niche taken by the presented

project in a domain of available solutions.

2.2 Basic MIPS Processor Architecture

J. L. Hennessy et al. designed MIPS (Microprocessor without Interlocking Pipe Stages) in

1981. It was a result of their research of the processor architecture optimization for pipelining.

The MIPS architecture proposed in [6] was used as a teaching example in their classical

academic textbook [7] about the processor architecture design. Nowadays MIPS is widely

used for the educational purposes [8].

Further development of MIPS architecture brought a row of the revisions of this

architecture MIPS-I, MIPS-II, MIPS-III, MIPS-IV, MIPS32, MIPS64 [9]. The major market

of the latest MIPS processor is embedded applications. They are implemented in numerous

Cisco and Linksys routers, ADSL modems, Sony PlayStation 2, Sony Playstation Portable

and many handheld computers[lO] [11].

The choice of the MIPS processor architecture as a template for the configurable

processor design in this project is justified by following reasons. The MIPS pipeline structure

and organization is very well studied and described [12][13]. The MIPS microprocessor

becomes very popular for academic purposes. Many researchers implemented [14][15] and

enhanced it [16][17]. Therefore, the modification of the existing simple MIPS to a

5

configurable architecture is easier than modification of a sparely specified commercial

processor. As any processor with unique instruction set, MIPS requires a custom software

compiler. In order to complete the set of development tools for the MIPS, several open

source compilers and simulators have been developed [18][19]. Utilization to the open source

software tools facilitates the development of the configurable processor.

The classic pipelined or unpipelined MIPS is a 32-bit RISe processor. The instruction set

has 32-bit width for all instructions. Load/store MIPS Instruction Set Architecture (lSA)

contains register file, which consists from 32 registers 32 bits long each. Two of them are

assigned as special purposes registers. Register 0 is read-only and carries 0 values. It is used

as a zero operand eliminating necessity to keep zero value in memory. Register 31 is used by

special jump instructions to store return address. These instructions are used for calls and

returns from subroutines. MIPS program counter has a width of 32 bit similar to the data path.

The potential MIPS address space is up to 2 GB.

MIPS instructions are divided into three types R-type, I-type and J-type. The instruction

format is shown in Table 2.1. R-type defines instructions operating with registers only. The

instruction contains addresses of two operand registers Rs and Rt, address of the destination

register Rd for result storing and the code of the executed operation. The I-type instruction

also contains Rs and Rd but instead of the second source register it carries the 16-bit constant

value immediate. This constant is used as an operand in arithmetic operations and as an

address offset in load/store operations. J-type instructions represent jumps which change the

program counter with 26-bit address enclosed in the instruction.

The instruction opcode has 6-bits width with possible opportunity of 64 basic operations.

This instruction spare space allows adding of extended instructions such as FPU support. The

simplified instruction set of MIPS processor is shown in Table 2.2. The basic set includes

only two branch, four jump, and two memory instructions. Other instructions are arithmetical.

The supported data types are 8-bit bytes, 16-bit half words, and 32-bit words for integer

data. Bytes and half words are loaded into 32-bit in two ways: extra bits are filled with sign

extension or with zeros. After the load transaction they are processed as 32-bit integer

operands.

6

Table 2.1. MIPS instruction format
Format Bits

25 21 20 16 15 11 10 6 o
Rs Rt Rd shamt

1- Rs Rt immediate
J- address

Table 2.2. MIPS instruction set
Instr. Description Format Opcodel Operation (Verilog-styJe coding)

Func (hex)
add Add R 0/20 R rd]=R[rs]+R[rtl
addi Add Immediate I 8 R rt]=R[rs]+SignExtImm
addiu Add Imm. I 9 R[rt]=R[rs]+SignExtImm

Unsigned
addu Add Unsigned R 0/21 R rd}=R[rs]+R[rt]
sub Subtract R 0/22 R rdl=R[rs]-R[rt]
subu Subtract R 0/23 R[rd]=R[rs]-R[rt]

Unsigned
and And R 0/24 R rd]=R[rs]&R[rt]
andi And Immediate I c R rtl=R[rsl&ZeroExtImm
nor Nor R

tn6
R rd]= _(R[rs]IR[rtl)

or Or R I R[rdl=R[rslIR[rtl
ori Or Immediate I R rtl=R[rslIZeroExtImm
xor Xor R R rd]=R[rsfR[rt]
xori Xor Immediate I e R rtl=R[rsrZeroExtImm
sIl Shift Left R 0/00 R[rd]=R[rt]«shamt

Logical
sri Shift Right R 0/02 R[rd]=R[rt]»shamt

Logical
sra Shift Right R 0/03 R[rd]=R[rt]»>shamt

Arithmetic
sllv Shift Left R 0/04 R[rd]=R[rt]«R[rs]

Logical Var.
srlv Shift Right R 0/06 >R[rs]

Logical Var.
srav Shift Right R 0/07 R[rt]»>R[rs]

Arithmetic Var.
sit Set Less Than R 0/2a Rrrsl<Rrrtl)?1:0
slti Set Les ..,.,.- I a R[rs]<SignExtImm)?1:0

Imm.
sltiu Set Less Than I b R[rt]=(R[rs]<SignExtlmm)?1:0

Imm. Unsign.
situ Set Less Than R 0/2b R[rd]=(R[rs]<R[rt])?1 :0

Unsigned
beq Branch On I 4 ifiRrrsl=Rrrtl) PC=PC+4+BranchAddr

7

Equal
bne Branch On Not I 5 if(R[rs]!=R[rtD PC=PC+4+BranchAddr

Equal
:i Jump J 2 PC=JumpAddr
i jal Jump And Link J 3 R[31]=PC+8; PC=JumpAddr
ir Jump Register R 0/08 ~sl
jalr Jump And Link R 0/09 =PC+8; PC=R[rs]

Register
lui Load Upper I f R[rt]={ imm, 16'bO}

Imm.
lw Load Word I 23 R[rt]=M[R[rs]+SignExtImm]
sw Store Word I 2b MrRrrsl+SignExtlmml=Rrrtl
SignExtImm = { 16 {immediate[15]} ,immediate} - extension of the immediate operand with

the sign bit;

ZeroExtImm ={16{lb'0},immediate } - extension of the immediate operand with "0" bit;

BranchAddr = {14 {immediate[I5]} ,immediate, 2 'bO } - extension of the immediate operand

with the sign bit and multiplication by 4;

JumpAddr = {PC[31:28], address, 2'bO } - concatenation of the immediate operand with four

MSBs of program counter and mUltiplication by 4;

The ISA architecture of MIPS defines the organization of the processor data path. The

simplified 5·cyc1e implementation without pipeline is shown in Figure 2.1. The following

actions are performed during each cycle:

1. Instructionfetch cycle (IF):
IR f- Mem[PC]
NPC f- PC + 4

2. Instruction decode/register fetch cycle (ID):
A f- Regs[IR6 •• 10]i
B f- Regs[IR11 •• 15]i
Imm f- ((IR16) 16##IR16 .. 31

3. Execution/effective address cycle (EX):
ALUOutput f- A + Imm;
or
ALUOutput f- A func B;
or
ALUOutput f- A op Imm:
or
ALUOutput f- NPC + Imm:
Cond f-(A op 0)

4. Memory access/branch completion cycle (MEM):
LMD f- Mem[ALUOutput]
or

8

Mem[ALUOutput] ~ Bi
if (cond) PC ~ ALUOutput

5. Write-back cycle (WB):
Regs[IR16 .. 20] ~ ALUOutputi
Regs[IRll .. 15] ~ ALUOutputi
Regs[IRll .. 15] ~ LMDi

The design of MIPS is refined for pipelining. The multi-cycle version of the MIPS can be

smoothly augmented with a pipeline. In a pipe lined architecture all instructions are executed

in the same number of cycles. This organization allows one instruction per cycle throughput.

The block diagram of the pipelined MIPS processor is shown in Figure 2.2. The standard

MIPS processor incorporates 5-stages pipeline. A drawback of pipelining is hazards. The

most common type of hazard is the data hazard. The data hazard is a situation when a fetched

instruction reads the same operand as one of preceding instructions writes. If the preceding

instruction still propagates through the pipeline, the fetched instruction may read a wrong

value. This data hazard is called Read-After-Write (RAW). There are two ways to handle data

hazard - stalling and forwarding. Stalling means an artificial insertion ofNOP instruction in

the pipeline. The processor stalls the pipeline until a hazard is over. This technique results in

wasting of processor clock cycles. Whereas, the forwarding does not have that disadvantage.

Forwarding uses the pipeline property when the result of the instruction is available in one of

pipeline stages but not written yet in a register. An additional hardware supports forwarding

of the result to the stage to another stage where it is required. Another type of hazard, the

control hazard is caused by branch instructions. The next fetched instruction after a branch

may not be executed due to a result of branching. This would cause the pipeline to flash its

contents and to stall. As a result the processor's speed slows down which is called the branch

penalty. There are many methods to reduce the branch penalty. The simplest is a delay slot. It

is efficient when delay penalty is one clock cycle. An execution algorithm of the processor

with delay slot presumes that a next instruction after the branch is executed regardless of the

branching result, whether the branch is taken or not. The compiler has to reorder the

instructions and put in the delay slot an instruction which is to be executed despite a result of

the branch instruction.

9

i

I
, I
A

4

Instruction
memory

Ins1rucIion decodel
register felch

ExeaJlel
address

calculation

Figure 2.1. Block diagram of the multi-cycled MIPS processor.

IDIEX

Figure 2.2. Block diagram of the pipelined MIPS processor

10

EXlMEM

Memory
aa::ess

Data
memory

MEMIWB

2.3 Closely Related Work

Two major approaches to automatic processor synthesis can be distinguished nowadays.

One of them is template-based configurable processors. This methodology is mostly exploited

by commercial products. The other one generates Application Specific Instruction set

Processor (ASIP) based on Architecture Description Language (ADL) - a specific language

developed for a processor architecture description.

2.3.1 Architecture Description Languages

Originally ADL was developed as a high level of abstraction description language for

modeling processor's architectures. VHDL and Verilog languages do not completely suit for

this purpose due to their orientation toward the hardware implementation.

Several ADLs were created in attempt to find the best way for processor architectural

exploration and evaluation. One of them is nML which has been developed at TV Berlin [20J.

This language is intended for automatic generation of the software tools for an explored

processor architecture. In order to obtain a complete processor design, the developer has to

create the separate ADL model and HDL description of the processor. It has limited ability to

handle invalid instructions and can not describe architectures with parallel instructions [21]. A

lack of the hardware generation feature in nML has been recently amended in its enhanced

version Sim-nML [22]. A synthesizable Verilog description can be obtained with Structural

Sim-HS tool included in Sim-nML. Generation of the processor RTL description from Sim

nML specification has been successfully tested with specifications of the microcontroller

Motorola 68HCll and microprocessor Intel 8085. Performance of the synthesized

architecture has not been estimated.

Similar to nML, ISDL architecture description language was developed by MIT LCS [23J.

ISDL is instruction set specific language, specifically oriented toward Very Long Instruction

Word (VLIW) processor architectures. However, multi-cycle and multi-word instructions are

not fully supported by ISDL. GENSIM system software automatically generates Instruction

Level Simulator (lSL) specific to the developed architecture. The ISL is capable to simulate

cycle-accurate and bit-true execution of the program. The achieved speed-up of such

simulation compared to the simulation of the VeriIog model is 34x [24]. Lately. HGEN tool

11

i
i , '

I
-"'!If

has been developed in order to automatically generate Verilog RTL model from ISDL

description [25].

The language EXPRESSION [26] is capable to describe correctly multi-cycle and multi

word architectures. A characteristic feature of EXPRESSION is the partition of the design

flow into two phases. Evaluation and exploration of the chosen architecture is performed in

Exploration Phase. This phase is supported by Exploration Simulator and Exploration

Compiler automatically generated by the software itself. The compiler and simulator allow

rapid comparative estimation and simulation of candidate processor architectures. A chosen

solution is finally adjusted in Refinement Phase. The software toolkit generates an optimized

Instruction Level Parallelism (ILP) compiler and a cycle-accurate simulator from

EXPRESSION description. Using these tools the developer may perform detailed processor

evaluation and verification of memory hierarchy (e. g. cache, TLB). The link to RTL

synthesis is provided by the HDLGen tool [27][28] which generates the VHDL model from

the EXPRESSION description. In order to test results, the automatically synthesized DLX

processor [29] has been compared to its hand-written version. Despite 20-40% worse results

in terms of speed, power consumption, and area, it is shown that the design time is an order of

magnitude less. The paper, however, do not compare the development efforts for the

processors with reported degraded performance designed manually and automatically.

One of the most prominent and widely used ADL is Language for Instruction-Set

Architectures (LISA) [30]. Due to its C-like syntax, LISA is very attractive for architect

designers who are beginners in utilization of ADL for ASIP development. The structure of

LISA allows a designer to specify details sufficient for automatic generation of the software

tools set containing compiler, assembler, linker, and simulator. These tools are used in the

stage of exploration of the developed processor architecture. During this phase a designer can

tune and verify designed processor by changing the ADL description. Repetition of

compilation cycles does not introduce a considerable delay due to complete automation of the

development environment [31][32]. LISA description contains enough architectural

information for generating a synthesizable HDL model.

The advantage of architectural exploration using LISA description inspired founders to

develop the integrated LISA Processor Design Platform (LPDP) [33]. Efficiency ofthe LPDP

has been evaluated on the example of ICORE processor. This ASIP processor is oriented

12

toward FFT realization, sampling-clock synchronization for interpolation and carrier

frequency offset calculation. The handwritten version of ICORE has been compared with the

automatically generated version. The generated ICORE shows the same clock speed, 1 % area

overhead, and 15% more power consumption. Design efforts for LPDP ICORE are

approximately one month and a week vs. three months for the original handwritten version.

LPDP has apparent advantage of a fully developed and integrated system for ASIP design.

The convenient user interface and support of different operational systems [34] distinguishes

it from general research projects, where the integrated environment accelerates the

exploration of various processor architectures. Performance of the LPDP generated processors

can compete with commercial handwritten versions. However, the necessity of manual

development of a processor data path diminishes the advantages of this system.

The advantages of utilizing LISA ADL have been recognized by many researchers. LISA

has been used as a base ADL for numerous research projects focused on ASIP development

[35J[36][37]. High level of LISA development has stimulated its implementation in a

commercial processor generation system. LISA 2.0 is used by CoWare company in CoWare

Processor Designer [38]. This platform is dedicated for design and optimization of ASIP.

LISA 2.0 architectural description was used to generate a full set of processor software tools

and the RTL description in Verilog, VHDL, and SystemC. This commercial processor

development system lately has been used in several ASIP research projects [39][40] for rapid

processor architecture exploration.

2.3.2 ConfigurabJe Processors

The concept of flexible microprocessor architecture is exploited by many authors. Two

major approaches can be distinguished: configurable and reconfigurable processors [41][42].

The term configurable presumes customization before manufacturing. Whereas, the

reconfigurable processor implies configurability after manufacturing. Runtime dynamic

changing of the configuration is a powerful feature of the reconfigurable architecture. This

approach offers reuse of the same silicon design by mUltiple applications without additional

manufacturing cost. Examples of the reconfigurable microprocessors are shown in [43][44].

These designs represent multiple computing units connected by a sophisticated reconfigurable

network. Narrow reconfiguration ability is implemented in the computing units as well. Due

13

175 =rr

I
i ,
1
l
~ ,
1'~

to implementation of the described processors using technology process, their flexibility is

limited.

Configurable processors became very popular last decade. They can be divided into soft

and hard-processors. Hard processors are intended for Application-Specific Integrated Circuit

(ASIC) implementation. Xtensa LX3 offered by Tensilica [45] is an example of commercial

configurable processors. This is 32-bit RISC ISA processor that allows the designer to

perform the configuration by choosing predefined options from the menus. The following

main groups of features can be added and tuned for Xtensa LX3:

• Execution Unit and ISA Options (multipliers, DSP engines, FPU, custom

instructions, etc.)

• Interface Options (DMA, FIFO, GPIOs, interrupts, debug port, etc.)

• Memory Subsystem Options (caches, memory management unit (MMU), parity,

cache organization, etc.)

The chosen configuration of the processor is automatically processed by Xtensa Processor

Generator software. The complete solution is represented by the RTL description and EDA

scripts. The example of the configurability of Xtensa processor is demonstrated in

implementation of the multi- standard video decoder [46]. Two different processor

configurations are used to create the stream processor and pixel processor. Each processor is

enhanced with specific video instructions. The optimized ISA architecture of the processors

allows video decoding in the software only.

A similar set of configurable features is proposed by the ARC for the ARC 600 Core and

ARC 700 Core processor families [47][48]. ARChitect Processor Configurator [49] extends

the processor design with Single Instruction MUltiple Data (SIMD) instructions, integrated

coprocessor instructions, compound instructions and many others. More than 20,000

preconfigured options can be selected by the developer.

The explicit benefit of these processor systems is that their template-base synthesis does

not require an extensive knowledge ofthe processor architecture. A developer can obtain fully

functional ASIP from a specification with very high level of abstraction. Rapid automatic

synthesis allows fast evaluation of several solutions and optimization of the final ASIP.

Flexibility of the template-based processor architecture is limited by the set of the predefined

options which is not always suitable for research projects.

14

Along with commercial configurable products numerous research projects show

interesting results in this field. Advantages of the implementation of Dolby Digital (AC-3)

decoder with the hard configurable processor are shown in [50]. The paper convincingly

proves that utilization of the configurable processor tuned for the specific audio application

increases performance of the processor and reduces the required size of the die.

Very fast growth of the FPGA performance and density accompanied with sophisticated

development tools has made FPGA devices very attractive for the implementation of a

processor architecture. Reprogrammable nature of FPGA determines the definition of the

processor implemented in FPGA as a soft processor. Therefore, it is not a surprise that the

most well-known configurable soft processors are offered by major FPGA vendors Xilinx and

Altera. Xilinx promotes 32-bit RISC soft-processor Microblaze [51] with configurable

peripherals. It has limited configurable abilities for the core structure. This soft processor is

proposed as alternative to the hard-processor core PowerPC 440 [52] implemented in the

Xilinx Vertex-5 FXT FPGA family. Table 2.3 shows the performance of the MicroBlaze

processor for different FPGA families.

Table 2.3: MicroBlaze Processor v7.2 Performance Levels

Architecture Performance Maximum Clock Maximum Dhrystone 2.1

Frequency Performance

5-Stage 1.19 DMIPs/MHz 235 MHz in Virtex®-5 280 DMIPS

Pipeline FXT

3-Stage 0.95 DMIPslMHz 106 MHz in Spartan®-3A 100 DMIPS

Pipeline DSP

Along with high-end Microblaze processor Xilinx developed Picoblaze 8-bit Picoblaze

soft processor [53] with no options for the configurability. Source code is open for evaluation

and modification. The HDL model is offered on very low gate level description. Picoblaze

can be implemented only on Xilinx FPGA platform. It became very popular due to its

simplicity, free distribution, and availability of software tools. Popularity of Picoblaze

inspired Bleyer [54] to develop Pacoblaze - a behavioral version of Picoblaze. This model

incorporates maximum level of parameterization. The high level definition file represents a

wizard for implementation of the possible versions of Pacoblaze. Low level definitions files

comprise a hierarchical ladder, which an experienced user can employ for configuration of a

15

'..!!!

NrS? -

" . ,

3'

custom version of the Pacoblaze architecture. Using Verilog optional compilation the author

has created the specific configuration language~ which supports a variety of custom

configurations.

Xilinx major competitor Altera offers Nios II - second generation of Altera~s soft

processors [55]. It is 32-bit RISC general purpose processor with 32-bit width instruction set

similar to MIPS. Altera offers Nios II in three different configurations: economy (e), standard

(s) and fast (t). Table 2.4 outlines specific features of each configuration. All versions allow

adding up to 256 custom instructions. The choice of the required configuration is supported

by SOPC Builder software. The resulting configuration is generated in a form of FPGA

programming file.

Table 2.4. Nios II different version features.

Processor Version Nios IIIe Nios IIIs Nios/f

I DMIPSlMHz 0.16 0.75 1.17

Performance MaxDMIPS 28 120 200

Clock (MHz) 150 135 135

Area LEs 600 1300 1800

Pipeline unpiped 5 6

Branch Prediction - static dynamic

Multiplier - 3-cycle I-cycle

ALU Divider - - optional

Shifter serial 3-cycle I-cycle

The idea of modification of the commercially successful soft processors lies in the basis of

UT Nios soft processor [56]. It is an attempt to use a different approach of configurability of

the Altera Nios II. In contrast to original Nios II, UT Nios has optional 16/32-bit data path

width and reduced 16-bit instruction word width. Instruction set supports five custom

instructions. The register file has a configurable size with 32 visible registers window. There

is an option ofinteger multiplication. Benchmark evaluation shows insignificant 1 % average

and 56% for particular applications speed-up. UT Nios requires 31 % more FPGA resources

than Altera Nois II.

Another attempt to use Altera Nios II architecture for the research project is UTMT II

[57]. The design exploits the multithread processor architecture using different UTMT II

16

•

configurations with multiprocessor core structure. Despite the poorer performance then Altera

Nios II, an advantage of the 45% area saving has been reported.

Four stages pipeline is used in UWindsor Nios II (UWN2) [58], another Altera Nios II

compatible soft processor. The parameterization of the UWN2 is limited to 10 options. The

best achieved area saving is 47%, while the clock speed is 7% worse than Nios II.

The success of commercial soft processors does not discourage numerous researchers to

develop other configurable soft processor architectures. The example of a very well developed

and tested configurable processor is LEON3 [59]. This 32-bit processor core is designed as

synthesizable VHDL model compatible with SPRC V8 architecture. The open source design

offers many configurable options for the optimization. The portability of the design is verified

for Altera and Xilinx FPGA platforms on multiple development boards. The LEON3 is also

suitable for ASIC implementation. The best achievable clock speed is 140 MHz for FPGA

platform and 650 MHz for ASIC. The hardware design is supported by a set of software

development tools including simulator, compiler, linker, NewIib embedded C-library, Eclipse

based IDE, etc.

The general purpose traditional processor architecture is focused on the execution of

different applications of the same hardware. While most of embedded processors run only one

specific application. The Application Specific Instruction-set Processor (ASIP) incorporates

an idea of optimization of the processor architecture according to a running task. This

approach significantly improves performance and speed of the processor. Due to a high cost

of implementation of ASIP in ASIC devices, the usage of FPGA for ASIP becomes very

attractive. The design of video-processor [60] demonstrates the implementation of ASIP in

FPGA. The targeted Altera Nios Wf processor core is augmented with the custom hardware

for block manipulation. The efficient data reuse achieves three order of magnitude

acceleration compared to software implementation.

Instruction Set Extensions (ISE) is another approach to optimization of ASIP architecture.

The design of the E·ASIP (ETRI-Application Specific Instruction Processor) for the CAVLC

of H.264/AVC decoder [61] uses this technique. In order to improve the processor

performance for the specific function, the instruction set is extended with additional special

purpose instructions. The number of basic instructions is reduced down to the minimum set

required for the functionality.

17

:t:
~
:tl
:tl

~
e
!
t:

i
i!

I ..
j
I
I
I
I
•
j

1
1
i

I
1
I
I
1

1
I
!

t

q
I,
:1
:1

~I
" :1
II

,

, I

' 1
' I

Exploration of the different aspects of processor configurability is performed in the SIxD

application-specific soft processor [62]. The processor incorporates several configurable

options, such as length and width of the data space, custom branching and shifting

instructions, ability to choose subset of instructions and the choice of SIMD mode. The design

has been successfully tested with MPEG-7 Motion Activity Descriptors application.

Aside from the traditional RISC ISA architecture stands CUSTARD (CUStomizable

Threaded Architecture) - a customizable threaded FPGA soft processor [63]. The available

configurable features include data path width, number of threads, threading type, custom

instructions, custom memory blocks, forwarding, and register file parameterization. The

design is supported by the custom C-compiler developed by the authors. Reported evaluation

results show a significant 2.41 x average speed-up of the single-treaded CUSTARD with

custom instructions compared to Xilinx Microblaze. The disadvantage of the considered

processor is a twice larger area overhead.

The versatility of configurable processors shows the necessity of the performance

evaluation for different configurations. Such estimation has been fulfilled using Soft

processor Rapid Exploration Environment (SPREE) [64]. This system is able to generate RTL

description of the soft processor from the high level architecture description. The SPREE base

configurable core is similar to MIPS and Altera Nios II processors. The textual description of

the processor data path and ISA are used as an input for SPREE. Multiple generated

processors were benchmarked and compared with all three versions of Atera Nios II e/s/f. The

best variants show the same or better performance than Nios II. For example, 80- MHz three

stage pipelined processor generated by SPREE is 9% smaller and 11 % faster than Nios IUs.

The study examines the influence of different processor architectural features on the

performance. The impact of the following options is investigated: shifter implementation,

multiplication support, pipeline depth, pipeline organization, forwarding, application-specific

architecture customization, and ISA subsetting. The optimized processors achieve

improvement of the performance per area 24.5% on average. Saving of the power and area is

obtained 25% on average.

18

2.4 Summary

In this chapter, the main concept of RIse processor architecture is presented. The MIPS

processor specification and architecture are described. The related configurable solutions in

the form of soft and hard processors are studied and analyzed. The complementary software

tools are outlined and examined for the reviewed processors.

19

~
;'!
:a;'
:r. .,
~
e.
!-
0:;'

~
I!
"-

i
~

!

;1
'I
.'1
II

:1
I,

:1
rt

I
..!!!!

' . ..
~r .' (f

" ..
H
t. , . .. ,

It
!! .. .•

Chapter 3

Configurable Processor Proposed Design

This chapter describes the structural components of a configurable processor design and

high level design of the processor data path. It also illustrates the design of the processor's

control unit.

The data path design of the configurable MIPS processor is organized in the following

sequence:

• 5-stages pipelined architecture

• 4-stage pipe lined architecture

• Multi-cycle unpipelined architecture

• One-cycle unpiplined architecture

The methodology of the design of configurable processor architecture in this project

differs from the classical approach described in [12]. The classical approach does not presume

the configurability of the described processor architecture. The evolution from the simplified

form to the more complex is chosen for the educational purpose in order to facilitate

understanding. Instead of this approach, here the most complicated design is taken as an

initial and gradually modified to reach the simplest. The most complicated design contains the

majority of the components present in other architectures, therefore it is logical to use this

design for the transformation into other architectures.

The 5-stage architecture is the most advanced and complicated design with maximum

hardware overhead. All other architectures are derivatives from the initial 5-stage pipelined

architecture. The configuration options control transformation of the initial design toward

other three architectures. The major structural components are shared in all data path

architectures. Components pertained only to a specific architecture included as options

controlled by the configuration engine.

Since the control unit design highly depends on the data path realization, the control unit

design has limited configurability. The control unit is unique for each of the four types of

20

architectures. The choice of the appropriate control unit is also supported by

engine.

3.1 Datapath Components

3.1.1 ALU

the configuration

In order to support MIPS instruction set, ALU is designed to have t

performing operations with two input operands A, B. Table 3.1 shows the

he capability of

correspondence

between ALU operations and supported MIPS instructions.

Table 3.1: Supported ALU operations

ALU Operation MIPS Instructions

Addition (result = A+B) add, addu, addi, addiu

Subtraction (result = A-B) sub, subu

Logical conjunction (result = A and B) and, andi

Logical disjunction (result = A or B) or, od

Logical disjunction with negation (result = A nor B) nor

Logical exclusive or (result = A xor B) xor, xori

Pass operand (result A) jr

Load immediate to upper word (result = B« 16) lui

Logical right shift sri, srlv

Logical left shift sIl, sllv

Arithmetic right shift sra, srav

Compare result to 0 beq, bne

Set less than sIt, slti, situ, sltui

J Shift for 16-bits applies only for classic MIPS instruction set. In general,

configurable in the design.

The symbol for ALU is shown in Figure 3.1. The list of the ALU signals and

are shown in Table 3.2.

21

,lw, sw

this parameter is

their description

u."

,

~
"'!{

~ lr:
~ ...
i
~
2 • ...
"It

f ...
~
~ ..
,
, ,
!

i

,

~

opcode

OPERAND A

ALU

OPERAND B

RESULT

Carry out

Zero

Figure 3.1: Processor ALU symbol

T bI 32 ALU . a e . siena s

Signals Dir Bitwidtll

OPERAND A In Data path

OPERAN~ Data path

RESULT

3 or ~ bits. Depend on
opcode In

the instruction set

shamt In
ConfigurabJe; 5 bits by

default

I Carry_out Out 1 bit

Zero Out 1 bit

Description

First arithmetic/logic operand.

Second arithmetic/logic operand

Result of arithmetic/logic opration

Code of the executed operation

Shift amount. The number of bits to shift

the operand B

Carry out of the arithmetic operations

Produces "1" when result is equal 0

The ALU module has a configurable bit-width and subset of operations. Support for shift

commands and "Set Less Than" commands is optional and may be excluded from the design

to reduce hardware overhead.

The ALU is an asynchronous device and consists of the combinational logic only.

3.1.2 Register File

The register file design consists of 32 registers with configurable bit-width. The register

with address 0 does not have memory elements. It comprises hardwired O's. The register file

symbol is shown in Figure 3.2.

22

REGISTERS

Address rs Read
rs

Address rt

----D elk

- wren

Write
address Read

Write rt
data

Figure 3.2: Register file symbol

The register file module works simultaneously in write and read modes. It asynchronously

produces data on two output ports from two registers which addresses are set on the

corresponding address inputs. It also synchronously writes data from the Write data input port

to the register which address is set on the Write address input. Writing is controlled by wr en

signal. In order to support configurability, two writing modes are implemented: Read-First

Mode and Write-First Mode. The Figure 3.3 and Figure 3.4 show the difference between these

two modes. The writing mode defines the order of access in case of simultaneous read-write

access to the same register. In Read-First Mode the data set on the write port immediately

appears on the corresponding read output port and is written to the register later. In Write

First Mode data is written to the register on the first clock edge and only after that the data is

set on the read output port. The writing mode is a configurable feature of the register file

module. The timing diagrams demonstrating the difference of Read-First and Write-First

modes are shown in Figure 3.5 and Figure 3.6.

Read-First Write-First

Register File Register File

Wrne Data Read Data Write Data Read Data

'F
I Register I

Figure 3.3: Regfile Read-First block diagram Figure 3.4: Regfile Write-First block diagram

23

, !

:l!:.
;'!
:t!
J! ... :
~

;1 ...
!. :1
t::.

il ..,
:t
~ '. o., :1 II

i
:a:
b

=

I
.I!!'lI!!I!

elk

wren

Address r61rt

ResQ r61rt

Write Address

Write Dala

~------~----~~~~~~D~R~~~~--'J---7------~
~ ______ ~ ____ ~~X~wo~~~~~ ____ ~ ______ ~

Figure 3.5: RegfiJe Write-First mode timing diagram

elk

wren

Address r61rt

Read r61rt

Write Address

Write Data

~------~------~~~~A+~DR~3~f------~----~
~ ______ ~ ______ ~~X~W~~~J~~~ ____ ~ ______ ~

Figure 3.6: RegfiJe Read-First mode timing diagram

3.1.3 Instruction Memory

The instruction memory module is designed as an asynchronous static memory. The size and

bit-width are configurable features of this module. The instruction memory has read-only

access. The symbol of the instruction memory is shown in Figure 3.7. The design of the

module provides the opportunity to use it as the built-in instruction memory in the

microcontroller type of applications. The module also can be used as a prototype of the Ll

cache design in the advanced processor applications.

INSTRUCTION
MEMORY

Address

Read
data

Figure 3.7: Instruction memory symbol

24

tt

3.1.4 Data Memory

The data memory module has an asynchronous read access and synchronous write access.

The writing access is enabled by Mem Write signal. The symbol of the data memory is shown

in Figure 3.8. Due to MIPS load-store architecture, simultaneous read-write access to the

same memory address in not possible. Table 3.3 shows the input/output signals of the data

memory module. The timing diagram describing the read/write data memory access is shown

in Figure 3.9. The size and bit-width are configurable features of this module. Similar to the

instruction memory, the data memory module can used in microcontroller style applications

and as a prototype of the L 1 cache design.

DATA MEMORY

Address

MemWrite

Write
data

Read
data

Figure 3.8: Data memory symbol

T bl 33 D a e . . ata memory SI!na s

Signals Dir Bitwidtll

clk In 1 bit

Address In Data path

Write data In Data path

MemWrite In Ibit

Read data Out Data path

Description

Processor clock

Memory address

Data to be written in the memory

"}" enables writing to the memory

Data read from the memory

25

~
~ =!
~
~

;1 ...
i 'I il, 'I .,

~I :t
t: " ... :1 "t .. II

i
:a:
b

!

•

elk

MemWrite

Address

Read data a

Write Data
~--_+-__ -+---..Ir--__ 4-! ---+---
~~ ____ -+ ______ ~-JX~W_D_A_TA~~ ______ -+ ____ __

Figure 3.9: Data memory read/write timing diagram

3.1.5 Program Counter

The program counter shown in Figure 3.10 is a register with a write enable (wr en) input.

It holds the current instruction address. The bit-width of the program counter is configurable

and depends on the size of the instruction memory. The program counter module does not

have a built-in counting capability. An external adder is required for implementing the

counting function. The functionality of the program counter is illustrated by the timing

diagram shown in Figure 3.11.

IN
PC

wren

elk

OUT

Figure 3.10: Program counter symbol

elk

wren

IN

OUT 0 --:.------..;..;

Figure 3.11: Program counter timing diagram

26

3.1.6 Sign Extension

In order to support I·type of commands, MIPS architecture requires extension of the 16·

bit immediate operand to the bit-width of the processor datapath. In most cases it means

filling the extra bits with the sign bit of the immediate operand. For commands andl, ori, xori

it requires filling the extra bits with as.

The sign extension module has a configurable bit-width depending on the processor

datapath bit-width. The extension mode is controlled by the input port signJxt. The module

is asynchronous and contains only the combinational logic.

OUT

Figure 3.12: Sign Extension symbol

3.2 Control Unit Design

The control unit module contains all logic required for producing control signals for

configurable architectures. The control unit design is different for all four architectures. Due

to the significant variations of the processor architectures, a unified configurable design of the

control unit is not feasible. Each control module comprises a unique design specific to the

chosen processor architecture. The control unit is connected to the data path trough the unified

interface. It consists of the same set of input and output signals. This set contains a maximum

possible number of the control signals pertained to the most complicated processor

configuration. Therefore instantiation of the specific control module in the chosen processor

design is a call ofthe corresponding name of the module.

Due to redundancy in the connection interface, not all interface signals are used in the

control unit design. They are just not connected to internal parts of the control unit. This does

not introduce a problem since they are ignored by the synthesis tool.

27

2C:
~
211 ;a,
i ...
i:
~

" 'I'
! ...
"t ..
i
l
Q

!

:1
'I
'I

~I
I •

:1
rl

i
I

I
f

I
I

, I

I --

All control units support the same set of instructions. The way they are decoded and

handled differs in control units for different architectures. The distinguishable feature of the

control module for the pipelined architectures is an internal pipe lining of control signals. This

internal pipe lining corresponds to the pipe lining of the data path. Detection and handling of

all type of hazards native for a pipelined architecture occur in the control unit.

3.3 Pipelined Architecture Design

The design of the pipelined architecture fonows the concept described in [12]. It exploits

the Instruction Level Parallelism (ILP) when an stages of the processor execute different

instructions simultaneously.

Configuration options for pipelined processor architecture in this project consider 1\vo

architectures: five stages and four stages. The maximum number of stages can be identified as

follows:

• Instruction Fetch (IF)

•
•
•
•

Instruction Decode(ID)

Execute (EX)

Memory Access (MEM)

Write Back (WB)

The designed architecture implements the following features of the pipe lined MIPS

processor organization:

• Branch delay slot

• Data hazards handling

• Control hazards handling

• Forwarding

In the pipe lined architecture one instruction is issued every clock cycle. Therefore in the

ideal situation, the throughput of the processor is equal to the clock speed. However, hazards

cause the throughput to be reduced. The implementation of the branch delay slot reduces the

penalty for control hazards but requires explicit support in the compiler. The data hazards are

handled by forwarding and pipeline stalling. Read After Write (RAW) is the only type of data

28

hazard possible in the proposed pipelined architecture. The Write After Read (WAR) and

Write After Write (WA W) hazards are not possible in the designed processor.

3.3.1 Five Stages Pipelined Processor

The block diagram of the processor with five pipeline stages is shown in Figure 3.13. The

IF stage contains program counter, instruction memory, instruction address adder and

multiplexer which selects the source of the next instruction address. An issued instruction is

decoded in ID stage and analyzed in the control unit. Selection of the address source of the

next instruction is controlled by signals from the control unit. In case of a sequenced order of

execution, the address is increased by a number of bytes in the instruction word. Though this

number is a configurable option, on practice 4 bytes organization is chosen. It allows a

standard instruction set and compiler to be used. In case of a taken branch or jump instruction,

the next instruction address is calculated in ID stage. Since jr instruction uses a register for the

jump address, it may introduce a data hazard. The forwarding from EX, MEM, and WB stages

is used to reduce or avoid a stalling penalty for data hazards. The ID stage includes Register

File, adder for the taken branch address calculation, sign extension module, and comparator

for the branch decision. Implementation of a separate comparator rather than using the ALU

on EX stage reduces the branch hazard penalty down to one cycle. That penalty is covered by

the branch delay slot technique. A drawback of this approach is a hardware overhead required

for the extra comparator and forwarding mUltiplexers.

ID stage multiplexers support forwarding fr?m EX, MEM, and WB stages. The jump

address is obtained by combining lower bits from instruction and PC higher bits.

Instruction decoding is implemented by routing data and addresses contained in the

instruction code to the corresponding recipients. The op-code and function code are decoded

in the control unit.

The EX stage comprises ALU and multiplexers. Multiplexers are used to support the

instruction set. They select ALU input data according to a processed instruction. They also

support forwarding from MEM and WB stages. One of the mUltiplexers is dedicated for

selection of the register address to be written in case of a register command.

29

:<.:::
;"!
tC
~
it

;1 ...
i :1
~. "

t ~I ~ " ... :1
'" .. rl

l
It
<t).

k

{

.. ----.---~--.. - .. --------- ----------'---~-~"-"""-- "" ,~-"------"----"-----" --"-",,,",_.-.._-

hiVtlrjj'i i ii.¥;t'f\':~.; ii;';;::;:~~

I jr_arc Irw

,""p_" I ~ Bn M PC" ?.;! :" : I I ' WB I I I I I I I I I I

IF EX MEM ID

INSTRUCTION
MEMORY ._

Addrtlss
Read
data

u;I-----.-+--+I
S rs

addUt

addr rd

~
~I

I
fl,

~

WB_data_ore

I

NaxtPCsrc WB data are J - -
UNIVERSAL CONTROL UNIT

Figure 3.13: Block diagram of five stages pipelined processor

30

The MEM stage consists of data memory and forwarding multiplexer. If the propagated

trough this stage instruction is not load or store, the MEM stage just pass all data through

without any changes.

The WB stage graphically is represented only with multiplexer. This multiplexer selects

pipelined data to write back either from the data memory or ALU. The choice depends on the

processed instruction. Implicitly WB stage includes the writing portion of the register fiJe.

The writing to the register fiJe occurs on this stage.

The control unit is shared between all stages. It gets data and generates control signals for

all data path components in order to support proper functionality of the processor.

3.3.2 Four Stages Pipelined Processor

The classic five-stage pipe lined processor has a disadvantage of having separated MEM

stage. This stage is active only in case of load/store command and for other commands, data

just pass though the pipeline. The design of the four-stage processor addresses that under

exploitation of hardware resources. This architecture combines EX and MEM stages in one

EX stage. The block diagram of the described architecture is shown in Figure 3.14.

In the conventional five-stage processor the address for load/store operations executed in

the MEM stage is calculated in the ALU located in the EXE stage. Executing these two

operations in the same stage in series would drastically reduce the throughput. In order to

avoid this reduction, an additional adder is placed in the ID stage. This adder calculates the

address of the memory access.

Elimination of one stage excludes some scenarios of data and control hazards. The control

unit has to handle lower number of forwarding and stalls. Therefore. the four-stage

architecture has following advantages:

• Improved latency

• Reduced probability of data and control hazards

• Reduced complexity of the control unit

• Reduced hardware for the pipelining and forwarding

The trade-offs for implementing four-stage architecture are:

• Additional adder

• Possible slower clock speed

31

mv:\f;j, i iit.~'f\':~; r.i'.~:;;:i.~

IF jr_src_frw 10

Jump rs ~ : I data rs

I
I
I
I

immediate

I
I
I
I

EX

MemWrite

~
DATA

MEMORY

f-----------+l-I Address

WB

ExlwB

rt
I
I
I
I

~~b
~:~Hlf-

I
Branch 1

Jumo

~

NextPCsrc

NextPCsrc

t

~ddLr1

addr_rt

addr rd

I
e'
~,
cl
Ii

~
I

Mfen ,-sri-trw cmp_rstsrc_fwd CITIP_f1..ffC_fwd

UNIVERSAL CONTROL UNIT

Figure 3.14: Block diagram offour stages pipelined processor

32

~----1_~I:~

t::
<II
16
u

A_src

~

addr rt .1\

addrW~f
31-+\1'

WB_addCsrc

B_SfC vve_addr_src

t t

VVB_data_src

~

I I MemWrile

11
VVB_data_src

i
I

The comparator and address adder in this architecture work in parallel. In general, an

adder structure is more complex than comparator's. Therefore, the additional adder may cause

a longer delay in the ID stage. The delay highly depends on an implementation platform. In

case of FPGA, implementation may not necessarily lead to a longer delay in the ID stage. See

Chapter 4 for implementation details.

It is clear that the four-stage architecture can be derived from the five-stage one. The

choice of a specific pipeline configuration is achieved by selecting particular compilation

keys. The HDL descriptions of five-stage and four stage architectures are contained in the

same module. The compilation keys control only the difference in the designs causing partial

compilation of the code pertained to a specific architecture. The design of the control for four

stages architecture is similar to five stages. Nevertheless due to structural differences, it is

realized as a separate module. The choice of a control unit for the particular architecture is

also controlled by compilation keys.

3.4 Unpipelined Architecture Design

The basic principle of the unpipelined MIPS architecture is described in [12]. Though

inferior to a pipe lined architecture as per clock speed, the unpipelined architecture offers

benefits of simplicity and lower hardware overhead. For the design with limited hardware

resources the unpipelined architecture may be preferable.

3.4.1 One-Cycle Processor

The one-cycle processor architecture is the least efficient from speed point of view. But it

requires least amount of hardware resources. The execution of any instruction takes only one

clock cycle. Therefore, the execution of the longest instruction defines clock speed of the

processor. For the architecture shown in Figure 3.15 the longest is a load type instruction.

To transform the base five stages pipelined design to a one-cycle design, the following is

performed:

• All pipeline registers are replaced with dummy pass modules

• All forwarding hardware is disabled

• A specific for one-cycle architecture control unit is implemented

33

'It,.
'-...,
."
1: .. ' .' ~ ",
~ :1
~.

\
'I

• il ~
~ t, ... :1 , .. II

i: i

t
:::
J\;

-~~-~~.-.~.~~~-------------

Hi:,tlflj'i i Hf,ini:!.i:ii.~i.~;:i;i~

jumpJlI

Branch
JumD

PC+4

MemWtite

data rs !
M ~ ,. V MEMORY WS_data_sre

U PC Address ~ ~}EJl1
.2 Rood; .. ~IXJ~. k DATA

X Read·- ALU Address
date 4. Read I----i_--I>I

WrIte I B sre data _r J
.... --i-----IIO_-H ... I write

. data

L::::==~....J

II "'" I "" ~ 1 addr:d : lad:: Z~ I ~ I

I~ WS_sddr_8rc

NextPCsrc

t wrf MemWrlle

t
A_sre

t
B-ire ws_arr_src

UNIVERSAL CONTROL UNIT

Figure 3.15: One-t:ycle processor architecture

34

WS_dats_sre

t
I

In the architecture shown in Figure 3.15, only register file, program counter, and data

memory are synchronous. The rest of the processor is asynchronous. The control unit in this

architecture the control unit's design is very simple. This is because the handling of hazards,

stalls, and forwarding is removed. Basically, only instruction decoding is left in the control

unit module.

3.4.2 Multi-Cycle Processor

The multi-cycle architecture is a mid-way between the pipe lined and one cycle designs. It

has more hardware overhead than one-cycle architecture, but benefits from the shorter

average execution time of instruction. Similar to the pipe lined architecture, it is divided into

five sections where the execution of each section occurs in one clock cycle. The execution

time of each instruction depends on the type of the instruction. It varies from three clock

cycles for branch type instructions to five cycles for load type. Each stage is separated by a

register that holds the data produced by each stage. Since each instruction is issued after

completion of a previous instruction, no forwarding components are required. They are

disabled by appropriate compilation keys. Also some supplement pipelining provisions are

removed. Removal of the next instruction address adder also contributes to a hardware

reduction. ALU is used for the calculation of the next instruction address and for instruction

operation because they occur in different processor cycles. In the same way, ALU is used to

calculate the branch address, sparing another adder. The block diagram of the multi-cycle

architecture is shown in Figure 3.16.

The control unit significantly differs from all other architectures. Since the execution of an

instruction requires several clock cycles, the design of the control unit utilizes Finite State

Machine (FSM).

35

---------------------- ----~--- ~.--"----------"---------........--.. -"----.... ----~---~ -'--"---~~-"-'--

pC_WT_en

jump. rs

Branch
Jumo
PC+4

NSTRUCll0N
MEMORY

Add,s"

~:~: I--

NexlPCsrc pc WT en

t -r

~ump
addr

11'/10

PC+"

. . -"-' .. -:""' ~ .. ~~.-- ... H.nmnn ! H"tuA,t.itl r.iil\1u"hli

PC+4

MemWrite

IDIEX
REGISTERS dala rs 1

11 II :I~~;~ R:d - DATA ME~B
MEMORY WB_dala_src

LlLM
~

wrfn

~-'----r""""", Address

Read
~ ~
add, dalA_rt Write

Write Read rt data

data L ___ --'
immediate rt
addr , data_

add'_rt

add' rd

A_SI"C

i
UMVERSAL CONTROL UNIT

addr rt

1::

~~
31-+W J

WB_eddr_src I),

B_tSI"C WB_std,_arc
MemWrite

t
WB _ dela_ src

i

Figure 3.16: Multi-cycle processor architecture

36

l

E

3.5 Configuration Control

Selection of a processor architecture is controlled by a set of compilation keys.

Configurability of the design exploits Verilog HDL capability of macro definitions and

optional compilation. The configuration control is based on the following Verilog compiler

directives:

• 'define

• 'ifdef, 'elsif, 'else, 'endif

• 'ifndef

The structure of all design modules contains a base part common to all processor

architectures and optional parts pertained to the chosen configuration. All configuration

control definitions are contained in one file processor _conftgjlat. v. In order to change the

processor configuration, it is necessary to enable or disable definitions provided in the

configuration file or change a defined number in the macro in case of a numerical

configuration option (e.g. bit-width). Modification of the configuration file can be achieved in

two ways: manually and by software. The manual modification requires basic skills and

knowledge in processor architecture. In order to facilitate a choice of a processor

configuration, the specific GUI based wizard is developed. Using the wizard requires only a

basic specification of the processor configuration.

The style of HDL design defines all possible flexibility in the configuration file. The

current state of the design explores a limited subset of the possible options defined in the

configuration file. Other options are left for the further development.

3.6 Configurable Features

The configurability of the proposed processor design is not limited to the choice of four

architectures. Each processor architecture has a subset of configurable features. The subset of

features is common for all architectures. The combination of features and processor

architectures creates a significant exploration space of possible processor designs. The design

configuration space is shown in Table 3.4.

37

t:
"'-t'
Il·
~ .~ ...
-~
it

;1 ...
~. :1
;

'~I ~
• OJ ...
'"

:1 .. rt

t
"t
:)

it.

z

Table 3.4: Set of configuration features available for the processor core

Configurable Processor architectures

features One-Cycle Multi-Cycle 4-stage 5-stage

Pipeline Pipeline

Data path bitwidth x I x x x

Instruction set x x x x

subsetting

Data memory size x x x x

Instruction memory x x x x

size

110 address space size x x IX x

110 bitwidth x x Ix x

FPGA optimization x x x x

3.6.1 Data Path Width Parameterization

The processor data-path bit-width is not limited. In theory, an arbitrary number can be

chosen. For sake of practicality, the only bit-widths 16,32,64, 128, and 512 are explored. The

original MIPS instruction set is designed for 32-bit processor. Therefore, the full utilization of

wider data bus requires extension of the existing instruction set with additional commands.

Nevertheless, the MIPS instruction set fully compatible with wide data path processors with

full support ofR-type commands and limited support ofl-type commands.

For all data path sizes the bit-width of an instruction remains 32-bit. This constrain insures

the compatibility of the designed processor with MIPS instruction set and therefore utilization

of MIPS software tools (e.g. compiler, linker, simulator).

3.6.2 Instructions Set Parameterization

The configurability of the instruction set is limited to the choice of enabling/disabling two

sets of commands: Shift and Set Than Less. Selection of these sets includes a barrel shifter

and comparator in the ALU module. In case of an application specific processor design,

saving of hardware resources may be achieved when these instructions are not used.

38

Due to the open configurable architecture of the processor, any custom instruction can be

added to the design. The support of a custom instruction may require a modification of the

control unit and data path design.

3.6.3 Data Memory Parameterization

The following parameters of the data memory can be configured:

• Memory size (address bit-width)

• Organization - number of bytes in one memory word

• Mapping window - limits in the processor address space allocated for the data

memory

The data bus width of the data memory is defined by the processor bit-width.

3.6.4 Instruction Memory Parameterization

Parameterization of the instruction memory supports the following options:

• Memory size (address bit-width)

• Organization - number of bytes in one memory word

Mapping is not required for the instruction memory due to a separated access interface

for this type of memory.

3.6.5 110 Memory Parameterization

The I/O memory interface features the following configuration options:

• Memory size (address bit-width) represents the allocated for input/output address

space size

• Data bit-width

• Mapping window defines Bmits for the processor address space allocated for the

input/output

Data bit-width is not Bmited but should be equal or less than processor bit-width. A choice

violating this rule would cause a waste of hardware resources.

39

~.,.

"" ... :.-,.
t;' '
~
'" :1 ...
i. 'I

:1
~

~I t-• · " .., :1 ,
· f ~
~ i
t
l

i

3.6.6 FPGA Optimization

To reduce the consumed hardware resource of the target FPGA, BlockRAM (BRAM) can

be utilized. In modem FPGAs built-in hardware [65J such as BRAM is made available to the

designers to improve the design speed and minimize the consumed FPGA's area.

By default, an FPGA compiler implements memory components in BRAM whenever it is

possible. In order to facilitate BRAM implementation, the memory HDL behavioral

description must contain a dedicated address register [66]. The typical BRAM organization

with built-in address register is shown in Figure 3.17.

i\

1 o Or- F-Address Register Memory 0 0 • ;-----
Register 1I DI Array Latches . r-- (common to

r- > both ports) r- >
Jl Write r

Strobe
r Read Jl

Strobe
r Latch Jl

Enable
WE

1 I

I EN
I.. Control Engine

Optionall
Inverter I eLK

DConfigurable Options

Figure 3.17: BRAM logic diagram

Implementation of the instruction memory with a separate address register requires

duplication of the PC register. This register is implied as a part of BRAM by the synthesis

tool. Therefore, this apparent increase in the number of structural components in HDL leads

to a reduction in hardware overhead in final implementation.

Utilization ofBRAM for the data memory requires duplication of the register allocated for

the pipe lining of the data memory address. Modification of the five stages pipe lined

architecture for BRAM optimization is shown in Figure 3.18. Dotted line shows hardware

blocks implemented in BRAM.

40

b------

NexlPCore

jr_orc_trw

Wrile

jl
~
j!!1

~
IDIEX

~~~! Read rill k] Ya'Q"" 1.1 
dala cmp_rt_SfC_lwd 

immediate 
addr r' 

6dd,-rt 

addr rd 

~I 

UNIVERSAL CONTROL UNIT 

Figure 3.18: BRAM optimization for five stages architecture 

41 

f.-"'·"''' • h J" """""~6!'f' :'~-·"t-: .. -:~n 

,."..---.-...:::.:.! ..... ~.;",;:.......:.~""- .. 

Read : 
dala I 

I 
I dala I 

----_ ..... I 

MemWrite 

MEMIWB 

WB_dala_ore 

WB_data_src 



• $ 

3.7 Input/Output Interface 

Practical usage of the processor core requires a hardware provision for communication 

with external devices. The MIPS instruction set does not have specific input/output 

commands. The general approach in this case is to use a data memory address space for 

input/output interface mapping. Figure 3.19 shows the hardware implementation of the 

external memory sharing the address space with an internal memory of the processor core. 

1/0 MEMORY .. Address B 

{ I/) 

MemVllrile ---t;. Read z --+ PINS ii: data B 

---+- Write 
dataB 

EN .. MemEnA ... 
Read 

Address A data A 

MernVllrite ---I> 
Vllrile 

data A 

EN 

il 
M .. 

r-+ Addr - MemWrile U 
Decode l .. V -

DATA MEMORY 

nEN 
MernEn 

... Address 

Read 
dala 

Vllrile 
data 

Figure 3.19: Block diagram of the input/output interface organization 

I/O memory module shown in Figure 3.19 may encapsulate any input/output structure. It 

can be a set of input/output registers. multiple or single external memory blocks, or any 

42 



combination of them. The internal address decoder defines only two types of accesses - to 

internal data memory or external memory. In order to use the external memory address space" 

an additional hardware overhead is required, e. g. supplementary address decoder, registers, 

memory, etc. The example of connection of an external device to the designed processor core 

is described in the section 4.5.3 "Demo Platform Interface Design" of this project. 

The lIO memory interface is the only connection of the designed processor core to the 

external world. In case of a standalone implementation of the processor core, lIO memory 

interface is routed to pins of a chip of the chosen platform. This interface is used for 

connection of the testbench in this project. 

3.8 Configuration GUI 

Selection of the combination of architecture and features of the implemented processor 

core requires certain skills in a processor architecture design. Manual tuning of the 

configuration fi1e requires attention to a correlation of compilation keys. A wrong 

combination of the selected keys may leads to a non-functional processor design. In order to 

ensure selection of the correct set of compilation keys, GUI wizard software is developed. 

The appearance of the wizard software is shown in Figure 3.20. The wizard software is 

written using VB.NET language in Microsoft Visual Studio 2008 Integrated Development 

Environment (IDE). 

The GUI has two tabs: Configuration and Architecture. The Configuration tab contains 

comprehensible menu with available configuration options. Each drop list in the menu 

contains the commonly used numbers for practical processor configuration. If the choice is 

not in the list of suggested options" it can be entered manually in the textbox. The default 

values of the menu pertain to 32-bit five stages pipe lined processor with predefined 

parameters. Therefore. configuration of the default design does not need any processor 

architecture knowledge. 

43 

1;,;. 
';.f 

I· 
f.;~ .. .-
1:'" . .. 

I 
.. ., 
:: 
; 

I t • 
:.. I 
~ I . I 

I 
t I 
t I 
I· 

~ 



.-~, _ ..... ~-~ ...... -"".". , ... _ ........ , .. ,.-

\\~\.f"tf~f; \ 'i\~~-~'f\'i. .. r\; ;·~~l~.~,~~~i~ 
l'ai;~'U'" •• " ...... U .... "W.I ...... a ... 

'1IQ.4&IiU-i;:.:;4{1.lamit.;; b1lrm3; ,&i.:; e ·*M'iSii:if§··ftMii' ~~~f,;*,J q'.A'YI1t C,:=¢.!i.·=:t:;:;!:~::;; .. '.n' ·.I~-~~~'~-~foT~1 i ,CootIg\.l<!llOn I Althilectu!e I , ","",-- iJI .. W","",", ___ '''',",,_''," #J ", - 2!J 

I: Althileet ... ' r-Memotytd~~~="-------' Iniliai.tatlOll 
I': r It OnoH:)lCleM1PSP!ocenot 

I

I (' M~IeMIPS"'_ 

I', r "'1t_~MIPSP, ..... "" 

II f' 5-tlaget~MIPSPr_ 

Ii' .. l~sll.. L~':.':'(heM1 1~1fujj----:!] 
'i" DelaPalhW'dh ~ 9b IIOM_ .,.,,----.., 
," l_U"iI('-, It-D '~ 

II. 

Programl:OUI1Ier 11>400000 ::::J Adi;hu (heM) 

Stacl<PoOt .. Ih7fHlHc :::oJ v .... (heM) 

l,..,w'IJul;JutM ..... V 

110 M""""ySize 11024 3J W",do 

110 "'''''''''1 B~""" jj23 Su 

0111.101 ..... 1 IhBOOJooll..:J 
UllP"'lirilheltl 

DuM_ rhlWW:lo..:J 
l_lirilheltl I' 

II InsIlucIicn "'''''''''II " ' .. r-1ns!rudion Sel Opliono "'''''----------~~--

II 

l
'l f ' InoIIudion"'_Size 11024:::J Worde ~ 

, P,ogram CoLrIter Wdh ,32 .!:J Db 

Ii lnolludion "'''''''''II r;--'":1 BJMtI\iI",d 
i SIructtr. I'.:.J 

I~: loatalo1~ 
i" i' ~u "'''''''''1 Size j1 024 ::::J W .. de r DRM! "'''''''''II Utizalion 

I, " Oelo "'''''''''II SIn£Iue r;---:-:, j: (S1.m.d S\iI \IItII 4) 14 .!:J BJMtl\ilord 
J. 
i":" 

1.1 I' 
II· 

OlllaM_W'dhit"""" 
10 Ou Path Wdh 

Figure 3.20: Configuration GUI wizard screenshot 

po Stilt c.:.m..n.:b SI4JIlOI\ 

po SotConwn.tnloS-, 

44 

Geno".o (#(111 Flo 



The Architecture tab shows the block diagram of the selected processor architecture. If 

user changes the chosen configuration the block diagram dynamically changes. The pictures 

of the block diagrams are shown in Figure 3.13, Figure 3.14, Figure 3.15, and Figure 3.16. 

That visualizes the selected architecture and helps to make the choice of other options. 

The generation of the resulting configuration file occurs when Generate Conjig File 

button is pressed. If the file already exists the dialog window appears for confirmation. 

3.9 Summary 

This chapter has described the details of the design of the MIPS based configurable 

processor. The described processor design has a choice of four different major processor 

architectures. In addition to architectural configurability, the multiple structural options are 

presented for each processor architecture. The specific software tool is developed to facilitate 

and coordinate the choice of mUltiple configuration options. In order to show capability of the 

designed processor core, the demo design is developed for the existing FPGA development 

board. The demo design includes the hardware and software parts. The hardware section 

comprises the selected processor core and interface peripherals. The software section contains 

demo program and LCD driver. 

45 

C.: 
'i~· 
p. 
,,' 
,~ ... 
," 

t i .. :I ;. 

f' 'I 

jl ~ 

, I, 

t :1 
'I 

• 
'. 



Chapter 4 

Implementation 

In this chapter the implementation of the proposed configurable processor on FPGA and 

ASIC platforms is explored. The design and implementation flow is described in details. 

Various processor variants are generated and synthesized using the custom-proposed 

configuration tool and standard FPGAIASIC development tools. The obtained implementation 

results characterize the maximum clock speed and hardware resources of each processor 

configuration. The detailed interpretation of the implementation data is provided in chapter 6. 

A practical implementation of the proposed processor core is shown on the example of the 

demo design implemented on FPGA development board. 

4.1 Hardware Components and Development Tools 

Assorted software and hardware tools were used in this project. The development tools 

used for implementation and verification of the design are shown in Table 4.1. The Xilinx 

development board "Spartan-3E FPGA Starter Kit Board" was used for hardware 

implementation of the demo design. 

Table 4.1: Implementation and development tools 

Name Usage Description 

Xilinx ISE 9.2.03i Development and Xilinx FPGA synthesis 

Altera Quartus II 9.0sp2 Development and Altera FPGA synthesis 

46 

> 



Mentor Graphics ModelSim Behavioral and FPGA post-route simulation 

SE 6.2g 

Synopsys Design Analyzer ASIC synthesis 

MipsIT 1.3.0 Compilation and linking of MIPS software 

sreg2vlog 1.0 Custom format conversion (*.srec ~ Verilog *.v) 

MIPS Processor Configuration Custom processor configuration 

Manager 

MipsSim 1.5.1 MIPS software simulation 

Microsoft Visual Studio 2008 IDE for development ofsreg2vlog 1.0 and MIPS Processor 

Configuration Manager GUI 

4.2 Design and Implementation Flow 

The design-implementation flow of the proposed configurable processor involves the 

usage of different tools from different vendors. The major stages of the flow are shown in 

Figure 4.1. 

Architecture Block Diagram stage is dedicated for the design of the high level 

architecture described in Chapter 3. At this stage one of the four proposed architectures is to 

be selected and the set of configuration options is to be defined for the implementation. 

MIPS Test Program Software is the software development stage where the test or any 

other specific application is designed. In general, the executed software can be designed using 

arbitrary development tools supporting MIPS architecture. This project uses MipsIt IDE for 

development and MipsSim for simulation. The IDE supports both C/C++ and Assembler 

languages. The linker is capable to produce multiple output formats. None of them can be 

implemented directly into the instruction memory module. Therefore, the Motorola S-record 

format [67] is selected for the conversion at the next stage. 

MIPS Code to Verilog Conversion stage utilizes the custom conversion tool 

srec2vlog developed in this project. The tool converts Motorola S-record format to Verilog 

assignment operators for ROM as shown in Figure 4.2. 

47 

ll', 

"" .,. 
' . .. ' ., .. .-r 

J ... .-:-. 'I 
'I 

~ :j 
~ 

1, 

t :1 
r\ 



7 

Architecture Block 
Diagram 

FPGA Syntesis 
and Post-Route 

Model Simulation 
Generation 

ASIC 
Netlist 

Gate Level 
Simulation 

MIPS Processor 
Configuration 

Manager 

Test Bench 

Figure 4.1: The configurable MIPS processor design flow 

assign [addressO] = dataO; 

assign [addressl] = datal; 

assign [addressN] = dataN; 

address - instruction memory address 

data - instruction memory data 

Figure 4.2: Format ofthe pseudo code inserted in the instruction memory module by the 

proposed custom conversion tool 

48 

2 



_ FE 

Verilog HDL Design is the hardware development stage where the HOL description of 

the proposed processor was developed. After the completion of the processor development 

this stage is intended for the processor customization beyond the options presented in this 

project. Also at this stage the me generated by the converter is included in the instruction 

memory module using the 'include directive. The software program to be executed by the 

processor becomes encapsulated in the ROM (Read Only Memory) instruction memory. 

Processor Configuration stage is assigned for the selection of the required processor 

architecture and configuration. All four possible architectures are described in a form of 

Verilog HOL using optional compilation keys for selection of the particular architecture. The 

HOL programming style congregates all configuration changes in one configuration me 

processor _config. v. A specific configuration of the processor can be chosen manually by 

modifying the configuration me or with the help of MIPS Processor Configuration 

Manager. At the output of the stage the fully developed HDL description of the specific 

processor configuration is obtained. 

At the Behavioral Simulation stage the fully defined processor design is combined 

with the corresponding testbench me. The co-design of the processor sofuvare program and 

testbench supports functional verification of the processor hardware. The behavioral 

simulation is performed by ModelSim tool [68]. The verified processor design can be 

synthesized on either FPGA or ASIC. 

FPGA Synthesis and Post-Route Simulation Model Generation stage produces 

the bit-stream me for FPGA configuration and model for post-route simulation. 

ASIC Gate Level Netlist Generation stage creates the gate level netIist for the further 

fabrication on silicon and gate level simulation. 

At the Post-Route Simulation and Gate Level Simulation stages the synthesized 

modellnetlist is verified again using the same testbench module interacting with the same 

build-in' program in the instruction memory as the testbench and program applied on the 

behavioral simulation stage. 

49 
PROPERTVOF 

RYERSON UNIVERSITY UBR.~Y 

... 
'",-
1;1'"' 

-<. 



m » 

4.3 FPGA Implementation 

The implementation of the proposed configurable processor on the FPGA platfonn is 

perfonned targeting devices from two major vendors - Altera and Xilinx where various 

configurations of the processor are fit into different FPGA device families. In order to 

compare the implemented configurations, the chip that is capable of incorporating the largest 

number of possible configurations is chosen. 

The base design is developed and verified in Xilinx ISE environment. The Altera Quartus 

II is used as an alternative for portability verification of the base design. The implementation 

of the Xilinx-oriented features (i.e. FPGA optimization) of the design on the Altera platfonn 

leads to a significant difference in the processor area and clock speed. The obtained results 

may facilitate the selection of the optimal platfonn for the implementation of any application 

targeting ASIP with specific timing and area requirements. 

4.3.1 Project Files 

Figure 4.3 illustrates the hierarchical structure of the top module mips_dlx module for the 

five-stage pipelined processor configuration in Xilinx ISE project view window. Each design 

module is defined in separate file. The description of each project file is shown in Table 4.2. 

The structure of the design comprises two levels of hierarchy. The top level is represented by 

the module ritips _ dlx that contains the description of interconnects and instantiations of the 

data path modules. The second level of the hierarchy constitutes modules containing the HDL 

designs of the major data path components described in §3.1. The verification process 

introduces an additional level of the hierarchy. The testbench includes the mips_dlx module as 

a UUT (Unit Under Test). This three-level structure is used only for the purpose of 

verification, and it is not synthesizable. 

50 



e· c xc5v1x155t·1ff1136 

~ 
!: 

D controUncvc!e (controLmcycIe.v) " , 
. controL onecycle (controL onecycle. v) 
H~j control"'pipe_ 4st [controLpipe_ 4st v) 

a-@mips_dlx_tb_v(mips_dlxjnUb.vl 
a-@uut·mips_dlx{mips_dl)!.v) 

!-@ processOI_control· cOI'luol_pipe (control_pipe. vI 
I--@ processorjmem' instmem [inst_mem.v) 
l-·@ifjdjnsueg.interstage_dat.:ueg(interstage_datcueg.v) 
1-··@processOI_,egfile. regfile (reglile.v) 
I-@ icLexjmm_reg . interstage_ data_reg [lnlerslage_ data_,eg. v) 
I-@id_ex...pc_reg. interstage_dala_reg [lnterstage_data_,eg.v} 
!-@id_ex_,,_,eg. interstage_data:reg (interstage_data_reg. vI 
I-·@id_ex_b_,eg. interstage_data_leg (interstage_data_,eg.v) 
I·-@id_ex_shamueg.interstage_data_reg [lnterstage_dati.ueg.v) 
1-@processOI_alu. alu_behav (processOI_alu. v) 
j·-@el!_mem_lesuueg. interstage_data_leg [anterstage_data_reg.v) 
I·-@ ex_mem_ Ueg • interstage_ data_leg (interstage_ data_reg. v) 
1"'@processOl_data_mem : data_ram (memO/.\'. v) 
I·-@mem_wb_dmem_reg.interstage_data_reg[lnlerstage_data_reg.v) 

. J.-@mem_wb_aIu_reg. intelstage_data_leg (interstage_dala_reg.vl 
1·-@iCid.....PC_reg. interstage_data_reg (interstage_data_reg. v) 
1·· .. 0 id_el!_rs_addr_reg· interstage_data_leg fanterstage_data_reg. vl 
i-"@id_el!_rt_addr_,eg.interstage_dat,veg(interst~ge_datcueg.v} 

! I .... 0 id_ eX_ld_ addr_l~g . interst~_ data_leg [Iflterstage_ data_reg. vI 

I 
j-·@ex_mem_,d_w_addr_,eg. interstage_data_,eg flnlerstage_data_,eQ. vl ;, 
l-@mem_wb_rd_w_addr_reg. interstage_dat<ueg (interstage_data_reg.v) it 

I . Q. . r I " t=-,""". ""~,,~~::l1JlflSt~e,,..na~; .. ~erst~e...,(:l~~L Inters!age_pas~.y . " .. ""W ·,.,.c" '_"7C."~l! 

Figure 4.3: MIPS_DLX project modules hierarchy. 

Table 4.2: MIPS_DLX project files description 

. File Name . Description;:; '.' , ' 
.... ,;' ", '. '~.::"', . , . 

, ,~. . :.' ' \. ! ". ~ '," ' " :-

mips_dlx.v Main project file. Defines all interconnects between 

processor components, declaration of the mips_dlx 

module. 

Processor_control. v Comprises the module ofthe control unit for the 5-stage 

pipelined processor configuration, declaration of 

mips_dlx module, and declaration of the controlyipe 

module. 

~ssorjmem.v Comprises the processor instruction memory module 

51 

::.: 
" 
.' ... 

£ ;1 
'I 

~I '. 



• r 
E .' 

interstage _data Jeg. v Comprises the parameterizable module of the pipeline 

inter-stage register, declaration of the 

interstage _data Jeg module. 

Processor Jegfile.v Comprises module of the processor register file, 

declaration ofthe reglUe module. 

Processor alu.v Comprises the processor ALU module, declaration of the 

alu behav module. 

Memory.v Comprises the processor data memory module, 

declaration ofthe data ram module. 

Control_ mcycIe. v Comprises the module of the control unit for the multi-

cycle unpipelined processor architecture, declaration of 

controCmcycle module. 

Control_ onecycIe. v Comprises the module of the control unit for the one-

cycle unpipelined processor architecture, declaration of 

the control_ onecycle module. 

Controtpipe_ 4st.v Comprises module of the control unit for 4-stage 

pipe lined processor architecture, declaration of the 

control yipe _ 4st module. 

Interstage .J)ass. v Comprises the module of the dummy pass inter-stage 

register, declaration of the interstageyass module. 

Processor _ config. v Comprises definitions and configuration control macros 

auto _ config.J)art. v The automatically generated part of the configuration 

file. Included in processor _config. v by 'include directive 

utils.v Comprises functions used in the design but not available 

in Verilog 

Ext Imm.v Comprises the function Extlmm of the immediate 

operand extension. 

mips_dlx_int_tb.v Comprises the verification testbench. Not synthesizable. 

52 



4.3.2 Architecture 

The graphical symbol of the proposed configurable processor is shO\\TI in Figure 4.4. The 

figure reflects the configurations with 32-bit I/O interface and 10-bit address of I/O memory 

space. The symbol represents all possible architectures and configurations and depends only 

on the configuration of I/O interface which affects the bit-width of the address and data lines. 

The description of the input/output signals of the configurable processor is shown in Table 

4.3. 

elk io_mem_enable 

io _mem_write _enable 
reset 

io _mem_addr(9:0) 

io_mem_data_out(31:0) io_mem_dataJn(31:0) 

Figure 4.4: 32-bit MIPS processor module 

Table 43 MIPS' f: . . IDter ace sIgna s 
Signal Name --:' - Direction -- Description ' '}-' , . ',"' 

-' , 

:"" .. ~ , >C-., ',". ,"" . ,",,-, - ,- --. ,,~ 

elk In Main clock signal 

I reset In Global reset signal 

io_mem_data_out In Data signals ofI/O interface. Inputs for MIPS 

processor, outputs for I/O memory components. This 

signal is used for entering data into the processor 

I io_mem_enable Out Enable access to I/O memory interface 

io_mem_write_enable Out Write enable to I/O memory interface 

io_mem_addr Out Address signals of I/O memory 

io_mem_data_out Out Data signals of 110 interface. Outputs for MIPS 

processor, inputs for I/O memory components. This 

signal is used for processor data outputting. 

53 



T6 I 

4.3.3 BRAM Optimization 

The implementation of the processor with BRAM optimization is verified on the synthesis 

stage. In case of implementation of the instruction and data memories in BRAM the Xilinx 

synthesis tool reports about implementation of the instruction and data memory as aBRAM 

and absorption of the implied address register into BRAM. 

If the design is implemented without the FPGA optimization option the synthesis tool 

reports about implementation of instruction and data memory on LUTs due to the 

asynchronous read of memory. The excerpts from the synthesis reports for BRAM and LUTs 

implementations are shown in Appendix C.2 

The synthesis report also contains information about the number ofBRAM blocks used in 

the design. If FPGA optimization is not used, the synthesis tool does not report any BRAM 

utilization. See the summary reports in Appendix C.I. 

4.3.4 Timing Constraints 

The only constraint applied for the processor core is the clock speed. The maximum speed 

of the designed processor depends on the chosen configuration. In order to estimate the 

maximum speed, the clock constraint is changed according to the configuration. The 

interactive technique is used for the optimal constraint retrieving. The initial constraint is 

obtained from the synthesis report which defines the possible maximum speed without actual 

routing. The initial constraint is changed and tried until synthesis and routing fail. If the clock 

constraint is set with a big slack, the synthesis tool does not generate a design with maximum 

possible speed. If the clock constraint is too tight, the implementation fails on the mapping 

stage. The constraint for which the tool generates the best achievable clock period can have 

negative and positive slack. Timing constraints for different configurations are shown in 

Table 4.4. The one-cycle processor variant does not have the EXEIMEM register holding the 

memory address. Consequently, there is no register to be accommodated in BRAM. 

Therefore, the implementation of the one-cycle variant with BRAM optimization is not 

performed. 

54 

7 .. 



Table 4.4: Clock period timing constraints (ns) 

I Architecture 

Bit 5-stage 4-stage Multi-Cycle One-Cycle 
Instr. Set 

Width 
no no no no 

BRAM BlUM BRAM BRAM BRAM BRAM BRAM BRAM 

Full 25 18 25 15 25 N/A 
256 

14 14 21 20 16 15 23 N/A 

13 12 18 16 14 14 20 
128 

Reduced 11 11 14 14 14 14 I 18 N/A 

Full 11 10 16 16 11 11 18 N/A 
64 

Reduced 10 10 14 14 10 10 16 N/A 

Full 10 9 10 13 10 10 16 N/A 
32 

Reduced 9 12 11 10 9 9 14 N/A 

Full 10 10 11 12 9 9 16 N/A 
16 

8~0 Reduced 11 10 9 9 12 N/A 

4.3.5 Xilinx Platform Implementation 

For Xilinx FPGA platfonn implementation, Virtex-5 FPGA device is selected with 

following specifications: 

Device: XC5VLX50 

Package: FF324 

Speed grade: -1 

The essential FPGA [69] characteristics that affect the maximum clock speed and occupied 

area of the implemented processor are: 

• 550 MHz max clock 

• 7200 slices 

• 28800 LUTs 

Table 4.5 shows the best achievable clock speed for the set of the processor configurations 

implemented into Xilinx FPGA. 

55 



=, 77 

Table 4.5: Maximum clock speed (MHz) of the processor configurations implemented in Xilinx 

FPGA 

Architecture 

Bit 5-stage 4-stage Multi-Cycle One-Cycle 
lnstr. Set 

Width 
no no DO no 

BRAM BRAM BRAI\I BRAM BRAM BRAM BRAM BRAM 

Full 44 56 40 40 51 52 40 
N/A 

I 256 
Reduced 

71 72 46 50 63 60 43 
N/A 

Full 
83 84 56 55 71 69 I 50 

N/A 
128 

Reduced 
90 91 65 72 83 72 56 

N/A 

Full 
91 100 63 64 91 81 56 

N/A 
64 

Reduced 
101 100 72 72 100 94 63 

N/A 

Full 
100 111 73 77 100 86 63 

N/A 
32 

Reduced 
112 111 91 96 112 109 73 

N/A 

Full 100 100 86 83 107 102 64 
N/A 

16 
Reduced 

113 100 92 95 112 111 83 
N/A 

The utilization of the FPGA resources used for the implementation of various processor 

configurations is shown in Table 4.6. The sizes of instruction and data memories are chosen 

equal for all configurations as shown below: 

• Instruction memory size - 1024 words 

• Data memory size 1024 words 

The detailed implementation reports for the selected processor configurations are shown 

in Appendix C. 

In order to verifY the extremities, the 512-bit 5-stage pipe lined processor configuration 

with the full instruction set support has been implemented and verified. The implementation 

results are shown in Table 4.7. For this implementation the selection of the lager FPGA 

device is required. The chosen device is XC5VLX155 with 97280 LUTs available. 

56 

!Em ze 



Table 4.6: Xilinx FPGA resources (LUTs) used for the implementation of the different processor 

configurations 

Architecture 

Bit 5-stage 4-stage Multi-Cycle One-Cycle 
Instr. Set 

Width 
no no no no 

BRAM BRAM BRAM BRAM BRAM BRAM BRAM BRAM 

Full 9927 8858 9761 8720 8850 7845 6 N/A 
256 

Reduced 5073 4004 4960 3894 3896 2831 3907 N/A 

Full 4757 4237 4657 4114 4196 3609 4271 N/A 
128 

Reduced 2732 2179 2570 2018 2008 1457 2015 N/A 

• Full 2541 2260 2348 2048 2081 1821 2099 N/A 
64 

Reduced 1444 1147 1359 1061 1062 767 1132 N/A 

Full 1369 1203 1242 1069 1106 935 1142 N/A 
32 

Reduced 811 70 601 I 589 422 648 N/A 

Full 734 64 4 569 570 466 599 N/A 
16 

Reduced I 507 403 469 364 361 257 419 

Table 4.7: Implementation results of512-bit 5-stages pipelined processor configuration 

Parameters noBRAM BRAM 

Area 20193 LUTs 18106 LUTs 

Max clock speed 32.8 MHz 42.4 MHz 

Clock constraint 45 ns 20 ns 

4.3.6 Altera Platform Implementation 

In order to compare the Altera and Xilinx implementations, the compatible Altera FPGA 

is chosen for the processor implementation. The Altera and Xilinx FPGAs are different by 

many aspects including a structure of the base elements. The match for Virtex-5 is Stratix III 

family fabricated with utilization of the same 65 nm silicon technology. The base element of 

Xilinx technology is LUT and for Altera it is the Adaptive Logic Module (ALM). A 

comparative ratio (Le. ratio of the LUT quantity to the quantity of ALMS required for the 

57 



pur c In,. 

implementation of the same design) of ALM vs. LUT is 1.8x by Altera sources [70] and 1.2x 

by Xilinx sources [71]. The compatibility of the families used in the project is based on -1.5x 

practical ratio. Therefore, the closest available Altera analog of Xilinx XC5VLX50 has the 

following parameters: 

Device: EP3SL70 

Package:F780 

Speed grade: 4L 

Capacity: 27000 ALMs 

Max internal clock speed: 600 MHz 

The set of processor configurations implemented in Altera FPGA is similar to the set of 

Xilinx implementations. Table 4.8 shows the maximum clock speed of the implementation in 

AItera FPGA. 

Table 4.8: Maximum clock speed (MHz) oftbe processor implemented in Altera FPGA 

Architecture 

Bit Instr. 5-stage 4-stage Multi-Cycle One-Cycle 

Width Set 
no no no no 

BRA!\I BRAM BRAl\1 BRAM BRAM BRAM BRAM BRAM 

Full 51.78 49.25 27.16 27.07 39.72 38.56 X N/A 
256 

Reduced 48.01 49.49 36.98 38.1 45.28 43.57 X N/A 

Full 72.11 68.95 46.74 46.19 63.69 58.09 X N/A 
128 

Reduced 74.83 73.37 54.95 56.75 64.21 63.38 47.44 N/A 

Full 85.14 85.32 62.28 60.38 77.63 66.22 49.63 N/A 
64 

Reduced 86.22 94.67 69.81 69.57 90.59 73.06 52.25 N/A 

Full 96.93 96.41 74.42 73.69 89.35 83.52 54.97 N/A 
32 

Reduced 100.02 98.01 81.18 76.51 98.82 94.66 60.31 N/A 

Full 102.03 104.64 83.17 81.0 107.38 93.39 61.4 N/A 
16 

Reduced 119.52 104.01 85.02 87.57 121.68 98.92 66.42 N/A 

The time analysis for the three top configurations ofthe one-cycle architecture is unavailable 

due to unsuccessful fitting of the design into the chosen FPGA device. The size of the design 

58 

i 

» 



exceeds the fitting capability (27000 ALMs) of the chip. Nevertheless, the synthesis tool 

produces the amount of the required hardware resources for the implementation of oversized 

configurations. Table 4.9 shows the FPGA hardware resources required for the 

implementation of the selected processor configurations. The numbers of ALMs shown in the 

shaded cells indicate the unsuccessful implementations. 

TabJe 4.9: Alten FPGA resources (ALMs) used for tbe implementation oftbe different 

processor configurations 
I Architecture 

Bit Instr. 5-stage 4-stage Multi-Cycle One-Cycle 

Width Set 
no no DO no 

BRAM. BRAM BRAM BRAM BRAM BRAI\I BRAI\I BRAM 

Full 6066 6066 6278 6351 5511 55 r N/A 
256 ' " 

Reduced 3127 3281 230 2307 40017 N/A 
" , 

Full 2993 2934 2903 2915 I 3195 2661 '31477 N/A 
128 " .. 

Reduced 1582 1572 1116 1114 1404 1415 23417 N/A 

Full 1435 I 1385 1665 1531 1453 1474 12014 N/A 
64 

Reduced 806 754 732 641 757 641 11298 N/A 

Full 739 745 702 647 672 654 6166 
32 

:ii Reduced 469 485 428 455 382 5809 N/A 

Full 396 425 219 461 383 4266 N/A 
16 

Reduced 290 302 275 -312 244 260 4138 N/A 

4.4 ASIC Implementation 

In order to verify portability of the proposed design, the selected processor configurations 

were compiled using TSMC 0.18 /lm technology process. The synthesis of the considered 

processor is performed by CMC recommendations for the Digital IC Design Flow [72] [73]. 

The synthesis tool Synopsys Design Analyzer was used to obtain the gate level netlist. The 

compilation is performed under the control of the script shown in Appendix D. The 

synthesized set has a reduced number of implemented configurations compared to FPGA 

59 



implementations. Table 4.10 contains the data about maximum clock speed of the selected 

processor configurations implemented using the technology process. The exhaustive 

implementation of all possible configurations requires unreasonable amount of time. 

Therefore, it is not practical to implement a complete configuration set. The proof of the 

design portability and acquisition of the data for a comparative analysis can be achieved with 

a lower number of implementations. 

Table 4.10: Maximum clock speed (MHz) of the processor configurations implemented using 

0.18,...m technology process 

Bit Architecture 
Instr. Set 

Width 5-stage 4-stage Multi-Cycle One-Cycle 

Full 165 100 134 87 
256 

Reduced N/A N/A N/A N/A 

Full N/A N/A N/A N/A 
128 

Reduced N/A ""'fA N/A N/A 

Full N/A N/A N/A N/A 
64 

Reduced N/A N/A N/A N/A 

Full 200 158 168 139 
32 

Reduced 200 161 176 116 

Full 200 186 182 148 
16 

Reduced 200 174 I 204 156 

The same 4 ns clock timing constraint was applied for all configurations. In all cases the 

constraint was violated with a different negative slack. The minimum achievable clock period 

is calculated as the sum of the applied constraint and reported slack. 

The important data retrieved from the compilation report includes the total cell area 

occupied by the implemented design. This data is shown in Table 4.11 for the implemented 

processor configurations. The area units are relative and specific for the Artisan tpz973gwc 

cell library used for the synthesis. For Artisan library the units are 11m2. 

The implementation of the design using the technology process was performed 

successfully without any modifications to the Verilog code used for the FPGA 

implementations. Therefore, the portability of the proposed design is fully verified. 

60 

-



p 

Table 4.11: Total cell area (J-lm2
) occupied by the processor configurations implemented using 

0.18 J-lm technology process 

Bit Architecture 
Instr. Set 

Width 5-stage 4-stage I Multi-Cycle One-Cycle 

Full 8309477 8241904 39663 6732384 
256 

Reduced N/A N/A N/A N/A 

Full N/A N/A N/A N/A 
128 

Reduced N/A N/A N/A N/A 

Full N/A N/A N/A N/A 
64 

Reduced N/A N/A N/A N/A 

Full 1065715 ,,75418 1044842 947h51 
32 

Reduced 1032431 1046299 1022721 88 

Full .]40470 556243 526176 46002 
16 

Reduced 525973 539625 523056 45835 

4.5 Demo Platform Design and Implementation 

The purpose of the demo platform design is to show a practical utilization of the 

configurable processor core. Through the memory mapped 110 interface connected to the user 

interface the selected processor core obtains input data, processes the collected data, and 

shows the results on the display. 

4.5.1 Hardware Platform Description 

The hardware setup used to implement the processor design is Spartan-3E FPGA Starter 

Kit Board [74J. This development board incorporates Xilinx Spartan-3 FPGA chip 

XC3S500E and variety of peripherals. The block diagram of the implemented setup is shown 

in Figure 4.5. The Rotary Shaft Encoder is chosen as an input device for the demo design. A 

photo ofthe encoder is shown in Figure 4.6. 

61 

--



• ,Ell 

l 
1 
! 
! 
I 
1 

I 
! 

C' 

r--

----", } -,/ 

T-I>- '---

FF Ar-

,I 0 

T-I>- y -
rI '---

1 
Figure 4.5: Demo platform block diagram 

110 MEM 

Figure 4.6: Spartan-3E startup kit FPGA board 

Depending on a direction, rotation increases or decreases a default number read by the 

processor core. The default number is 5. The input number is used to calculate Fibonacci 

number [75]. The input data indicates the position in the sequence of Fibonacci numbers. The 

calculated result is shown on the character LCD display in the following form: 

62 



Fib(!vJ=M, 

N - order of Fibonacci number 

.M - calculated Fibonacci number 

Rotation of the shaft causes a change of both Nand M numbers dynamically. The numbers 

are represented in hexadecimal radix. The number of characters allocated for N and N are two 

and four respectively. 

4.5.2 Processor Core Configuration 

The demo design utilizes the processor core with following configuration: 

• Five stages pipelined architecture 

• 32-bit data path 

• Shift commands support 

• Set Than Less commands support 

• Instruction memory size - 1024 words 

• Instruction memory count step - 1 word 

• Data memory size - 1024 words 

• Data memory count step - 4 bytes 

• Upper limit of data memory address space - h8fffffif 

• Lower limit of data memory address space - hI 0000000 

• I/O memory allocated size - 1024 words 

• 110 memory data bit-width - 32 bits 

• Upper limit ofIlO memory address space - h00400000 

• Lower limit ofIlO memory address space - hO 

• Program counter bit-width - 32 bits 

• Reset address - h80020000 

• Stack pointer initial data - h800bcOOO 

The limits of data memory, 110 memory, initialization values for program counter and stack 

pointer are chosen to be compatible with MIPS simulation model in the simulator Mipslt 

[76]. 

63 

;! 
'I 

I . 

I ' 
! 
i 



4.5.3 Demo Platform Interface Design 

The signals from Rotary Shaft encoder are processed in the Decoder module. The module 

performs debouncing of input signals, detection of a shaft tum event and direction of a tum. 

The HDL design of the Decoder module is based on Xilinx reference design [77]. The 

direction and tum event change the initial number for Fibonacci calculation. The register that 

storing the number is connected to VO memory interface. The decoding in VO memory 

address space is supported by a dedicated decoder. 

In addition to Fibonacci number calculation, the processor core runs a custom driver for 

LCD screen. The driver software generates data and control signals according to the 

specification of LCD screen interface. LCD signals are written to registers mapped to the VO 

memory address space. The mapping of LCD signals and Fibonacci initial number are shown 

in Table 4.12. 

Table 4.12: Mapping of the Demo design signals in 110 memory address space 

Signal Name MIPS 110 Address Bit range Direction Description 

fib_in_number OxOOOOOO08 31:0 Input Order of Fibonacci 

number 

lcd _ output_data OxOOOOOO14 7:4 Output LCD data to be written 

lcd drive OxOOOOOO14 3 Output Enable signal for whole 

LCD interface 

lcdJs OxOOOOOO14 2 Output Command/Data select 

signal 

lcd _ rw _control OxOOOOOO14 1 Output Read/Write control signal 

lcd e OxOOOOOO14 0 Output Read/Write enable signal 

4.5.4 SoftwareIHardware Co-Design 

Timing and electrical specification of LCD interface requires an algorithm intensive 

control capability. That capability is supported in the software running by the processor core. 

The following functions are performed in the software: 

• LCD power-on initialization 

• LCD configuration 

64 



• Writing data to LCD 

Writing data to LCD in the loop sustains a dynamic refreshment of the visualized information 

on the screen when the shaft is rotated. All timing delays for the LCD interface are 

implemented in software loops. Pre-processing of the rotary shaft encoder signals is realized 

in hardware in a form of HDL code. The code also has a provision for the control of LEDs 

and reading of buttons available on the board. This provision is used for development and 

debugging of Demo softwarelhardware co-design. 

The driver software is written in C+t- language. The limitations of the implemented 

processor core are reflected in the programming technique. For instance, only unsigned 

integer variables are used in the code. The compiled code is examined in order to eliminate 

unsupported commands and variables. The configuration of the processor core is optimized to 

support the demo program. The optimization includes a choice of the supported command 

subset, size of instruction and data memory. The fulJ code of the demo design program is 

shown in Appendix A. 

4.5.5 Demo Design Implementation 

The choice of FPGA device for the demo design implementation is defined by the chip 

installed on the development board. The parameters of FPGA are shown below: 

Device: Xilinx Spartan-3 XC3S500E 

Package: FG320 

Speed grade: -5 

Capacity: 9312 LUTs 

The time constraint is determined by 50 MHz clock available on the development board and 

connected to the FPGA input. All other constraints are related to the pin assignments. The full 

set of the demo design constraints is shown in Appendix E. The synthesis of the demo design 

was successfully performed with the following results: 

Number of used LUTs: 4888 

Number of used I/O blocks: 30 

Minimum period: 19.971 ns (Maximum frequency: 50.073MHz) 

Device utilization: 52% 

65 



cc:: 
~~ 
f ....... :/', 

~E 
:~!: 
.... -,.e: 

Since the FPGA optimization option is not used, the synthesis report does not have the 

information about BRAM utilization. The full implementation report is shown in Appendix E. 

4.6 Sumntary 

This chapter showed the successful implementation of the proposed configurable MIPS· 

like processor on the two competitive FPGA platforms and ASIC implementation using 

0.181lm TSMC technology process. The applied design flow and tools used on every design 

stage were described in details. The justification of the selected implementation platforms was 

based on the project requirements and FPGA devices compatibility. As a result of 

implementation using standard FPGNASIC toots, the data about hardware resources 

utilization and maximum possible clock speed was obtained for the selected configurations. 

The demo design was successfully implemented in the selected development platform 

meeting all design constraints. 

66 

-



Chapter 5 

Design Verification 

This chapter discusses the verification scheme of the proposed microprocessor 

architecture. The process is achieved in two stages. The scheme is conducted at two stages of 

the design flow. The first stage is at the HDL development level of the design where a 

testbench is built to veritY the design's HDL code. The second is at post- implementation 

level, where the implemented design on the target platform is tested. At the HDL level, the 

design's code is tuned until the correct behavior ofthe design is reached. The post

implementation verification depends on the target platform. For example, in case of FPGA, 

the main objective of this verification is the post-place & pout simulation model. However, in 

case of ASIC implementation, the objective is the gate level netlist. 

The design of a testbench must cover as much as possible functionality of the simulated 

processor. The large number of the verified processor configurations and implementation 

platforms appeals to the stringent requirements for the testbench. In order to be able to veritY 

numerous variants, the testbench output shall simply state whether the tested design failed or 

passed. The functional verification of the design is performed for the selected processor 

configurations. When all bugs are eliminated, the set of selected configurations is verified 

with post-route simulation. Table 5.1 shows the subset of the processor configurations which 

were simulated where the simulated configurations are referred to by x sign. The shown 

selection was driven by the following reasons: 

• BRAM optimization is independent of the instruction set and bit-width. It may be 

verified once per chosen architecture 

67 

.1 
I 

,:1 
:j 
'I 



i 
l 

I 
I 

I 
I 

• Different from the standard 32-bit processor configuration may be verified only at 

extremities. In the considered case, extremities are 16-bit and 256-bit 

• Reduced instruction set is independent of bit-width, It may be verified once per chosen 

architecture 

t' Ii th T hi 51 V 'fi f a e , : en Ica Jon rna rlx or fi t' e processor con Igura Jons se t 

Architecture 

4-stage Multi-Cycle One-Cycle Bit e 

• 

Instr. Set 
I 

Width 
no no no no 

BlUM BlUM BlUM BlUM BlUM BlUM BlUM BlUM. 

Full X X X X X X X 
I 256 

Reduced 

• 

Full 
I 128 

Reduced 

Full X X X X 
64 

Reduced 

Full X X X X X X X 
32 

Reduced X X X X 

Full X X X X 
16 

Reduced 

5.1 Testbench Design 

The testbench is created to verify the functionality of the developed processor. The 

recursive algorithm of calculation of the Fibonacci numbers is widely used as an evaluation 

example of the functionality of the MIPS processor [78J [79J, The Fibonacci calculation 

algorithm can be implemented into a compact program due to its recursive nature. Translated 

into machine codes it utilizes most of the proposed instruction set including the complicated 

instructions (e, g. function calls; branches, jumps etc,). Moreover, the translated program 

contains all RAW hazard scenarios possible in the proposed pipelined architecture. The 

68 



external data required for the computation is minimal. The described set of properties of the 

Fibonacci algorithm makes it very practical for validation of the proposed processor. 

5.1.1 Fibonacci Number Test Program 

The Fibonacci number sequence was introduced by the medieval mathematician Fibonacci 

(Leonardo Pisano) as a solution to the logical puzzle. Later it was found that the sequence 

reflects many processes in nature [75]. The Fibonacci numbers comprise the following 

sequence: 

1, 1,2,3,5,8, 13,21,34,55,89, 144,233,377,610,987, 1597,2584,4181,6765 ... 

The C-style description of the recursive function for the calculation of the Fibonacci 

numbers is shown below. 

int fib(int n) { 

if (n==O) {return Ii} 

if (n==I) {return I;} 

return (fib(n-I) + fib(n-2»i 

The assembler code obtained after translation is augmented manually for communication 

with the high level Verilog testbench. The assembler code of the test program is shown below. 

Iw $29, 4($0) Iw Ssp, 4($zero) //Ioad from I/O mem 
Iw $4, 8($0) Iw SaO, 8($zero) //Ioad from I/O mem 
addi $29, $29, -12 ; addi Ssp, Ssp, -12 
fib: 
sw $31, 8($29) 
sw $16, 4($29) 
addi $2, $0, 1 
beq $4, $0, 52 
addi $8, $0, 1 
beq $4, $8, 40 
nop 

; 
i 

addi $4, $4, -1 ; 
sw $4, 0 ($29) ; 
jal Ox00400008 [fib]; 
lw $4, 0 ($29) i 
addi $ 4 , $ 4 , -1 i 
add $16, $2, $0 
jal Ox00400008 [fib]; 
add $2, $2, $16 

sw $ra, 8($sp) 
sw $sO, 4($sp) 
addi $vO, $zero, 1 
beq SaO, $zero, fin 
addi $tO, $zero, 1 
beg SaO, $tO, fin 
nop (delay slot) 
addi SaO, SaO, -1 
sw SaO, O($sp) 
jal fib 
lw SaO, O($sp) 
addi SaO, SaO, -1 
add $sO, $vO, $zero 
jal fib 
add $vO, $vO, $sO 

69 

J 

:1 
I, 



sw $2, 12 ($0) 
lw $16, 4 ($29) 
fin: 
lw $31, 8($29) 
addi $29, $29, 12 
sw $29, 16 (SO) 
jr $31 
nop 

sw $vO,12($zero)//store to I/O mem 
lw $sO, 4($sp) 

lw $ra, 8($sp) 
addi Ssp, Ssp, 12 
sw $sp,16($zero)//store to I/O mem 

; jr $ra 
; nop 

The additional instructions have been inserted at the beginning of the program to retrieve 

the initial stack value and the order of calculated Fibonacci number. The program performs 

calculation starting from the value in r4 and places the calculated result in r2. Moreover, the 

program frequently sends values of the stack and r4 to I/O interface. This method allows 

monitoring of the values by an external testbench. 

The translated machine codes are contained in a separated file which is stored in the 

instruction ROM. Appendix F shows two variants of the developed test program. The 

variation reflects the differences of the processor architectures. The applicability of the 

variants is shown below: 

• Delay slot with reordering - pipelined architecture 

• No delay slot - unpipelined architecture 

If reordering is not used for the pipe lined architecture. the additional nap instructions have 

to be placed instead ofreordeiing. This option can be chosen in the compiler. 

A recursive nature of the test program allows testing of all possible data and control 

hazards for the implemented instruction set. 

5.1.2 Verilog Testbench 

The organization of the testbench and test program allows them to be applicable at the 

behavioral and post-rout levels. The testbench does not interact directly with the internal 

processor registers. Though acceptable for the behavioural simulation, the direct access is not 

applicable on the post-route leve1. The testbench mips_d/x_tb.v comprises the instance of the 

tested processor configuration and memory accessible by the testbench. The memory is 

connected to the processor as I/O memory and mapped to the processor memory address 

70 



space. The mapping of the VO memory is shown in Table 5.2. The testbench also contains the 

pre-calculated array of Fibonacci numbers. 

Table 5.2: Mapping ortestbench in I/O memory address space 

I 110 Memory Address Direction ( processor scope) Description 

• 1 Input i Initial stack value 

2 Input Order of Fibonacci number 

3 Output Calculated Fibonacci number 

4 Output Current stack value 

The test program loads r4 with the order of the calculated Fibonacci number and r29 

(stack pointer) with the initial value. The program performs calculation continuously updating 

VO memory with current values of the stack and Fibonacci number. The simulation finishes 

when the stack pointer returns back to its initial value. The block diagram of the developed 

Fibonacci number testbench is shown in Figure 5.1. 

Test Bench 

Processor Core 1I0MEM 
UUT 

r2 
Test stop 

2 

r4 3 

4 

r29 (stack) 

Figure 5.1: Block diagram of the Fibonacci number testbench 

The testbench program compares the result contained in VO memory with the true pre

ca1culated Fibonacci number and reports whether the test is successfully completed. The 

examples of the successful and unsuccessful simulation reports are shown in Appendix G. 

The waveform of the simple case Fib(3) =3 is also shown in Appendix G. Due to the 

recursive nature of the algorithm, the calculation of Fibonacci numbers of the higher order 

requires substantially longer time. For instance, the calculation of Fib (16) = 1597 requires 

52447 machine cycles of the processor with one-cycle architecture. In order to reduce the 

71 

J 
'I 

I , 



= 

verification time, the Fibonacci number calculation case Fib (5) = 8 is chosen for testing of 

all implemented configurations. The higher order of calculation does not increase the 

confidence in verification results but only the execution time and size of the data placed in the 

stack. 

5.2 Pipelined Architecture Verification 

The five-stage architecture was simulated and the following message was obtained for all 

tested configurations of this architecture: 

# Fibonacci number test SUCCESSFULLY completed, Fib (5) 8 

# Test finished after 28£ machine cycles 

The same test is performed four-stage architecture and the following message was obtained: 

# Fibonacci number test SUCCESSFULLY completed, Fib ( 5) = 8 

# Test finished after 278 machine cycles 

The important part of the pipelined architecture testing is verification of the hazards 

handling. The following sequence of the instructions creates a data hazard: 

0: lw $29,4($0) IIWB stage 

1: lw $4, 8($0) I/MEM stage 

2: addi $29, $29, -12 IIEX stage 

r29 value used on the EX stage by instruction 2 is fetched from the regfile before it is written 

to the regfile by instruction O. Therefore r29 value must be forwarded from the WB stage to 

EX stage. The waveform in Figure 5.2 shows how the instruction addi (address 2) fetched in 

the IF stage from the instruction memory triggers the change of the forwarding multiplexer in 

the EX stage selecting ALU operands A and B from the WB stage (multiplexer address 2). 

Another case of hazards created by an instruction sequence: 

2 : 

3: 

4 : 

addi $29, $29, -12 

sw $31, 8 ($29) 

sw $16, 4($29) 

72 

I lIst hazard 1/2nd hazard 

I/MEM stage /IWB stage 

IIEX stage //MEM stage 

//ID stage /IEX stage 



Instruction Mem --------------+-----1 
.. Imips_dbUb_v/uuVprocessoUmem/clk 0 r-l---, I L 

w+ Imips_dlx_tb_v/uuVpro:essorjmem/e.ddr 0 1 3 ~--- -'4 6 -"7 ---; 8 

Ii)+ Imips_dlx_tb_v/uuV ro:essorjmem/de.le._oul 0000000 B91,:: Be~40008 =-":,*3bd 1 OBOO~Od _20920001' _~_ ~OOBOOP 
Instruction Reg 

.. /mips_dlx_tb_v/uuViUcjnsUegfwrite_ene.ble J 
I.B+ Imips_dlx_tb_v/uut/iUdjnsUeg/de.te.jn 00000000 8 ... Be 4000B 

l±J+ /mips_dlx_tb_v/uuViUdjnsUeg/dBtB_out 0000000 :Scl j 004 
- Universal Control Unit 

W+ Imips_dlx_tb_v/uuVpro:essor_controVe.lu_6_srcj· .... d 0 0 

ij;;+ /mips_dlx_tb_v/uuVpro:essor_controValu_b_srcjwd 0 0 

W+ /mips_dlx_tb_v/uuVpro:essor_controVjr_src_frw 0 0 

W+ /mips_dlx_tb_v/uuV ro:essor_controVcmp_rs_slC_fwd SIO 

ii) + /mips_dlx_tb_v/uuVpro:essor_controVcmp_rCsrc_fwd StO 

RegFile 

Figure 5.2: Forwarding WB~EX and MEM~ EX in the pipe lined architecture (ModelSim waveform) 

OOBOOO 

120~20001 ' 

o 

Instruction Mem 

o .1 I .. l ~".~tJ'L'"'i,,~~ II ,-- I . J~-J .. /mips_dhUb_v/uuVprocessorjmemtclk 

l!l+ Imips_dlx_tb_v/uUVprocessorjmemiaddr 046 ____ ;,:,7 ___ ~~ __,9 __ ~_ ~I 10 ,'I 11 1_ 
W+ /mips dlx_tb_v/uUVprocessorjmemidata_out OOOOOOOC 1 OBOOOOd _____ '20 20001 OOBO p-r.. ;,1 OBE 000e. " WOOOOO ~ 20E 411ff -_ _ __ I 

Inslruction Reg _ St lIing 
+ /mips dlx tb v/uuViUdjnsUegfwnl,,_enable 1 I '" I W+ /mips_dlx tb v/uuVif id inst reg/dahjn OOOOOOO( 10BOOOOd- --20 20001 

_._ ... -
OOBOO 1- ,~ OOOa- 21111lo00 \ 

- -- ----
20E 411ff 

--
I 

l!.l+ /mips_dlx_lb v/uuViUdjnsUeg/dah_out OOOOOOO( afbOOb04 - ;lOBO OOd' 12] 20001 
-- --

OOBOO m-...- A10860000-
-~ 

,ooooe 000 ~ ;20 . 
--

Universal Control Unit 

\ \£1+ /mips_dlx_lb_v/uuVprocessor_controValu31 src fwd 0 11 _T2 ~.-~.- ---:0 1----- ------ ~--.- ------ -- -~---- -

l!.l+ /mips_dlx_lb_v/uuVprocessor_conlroValu b src fwd 0 0 2 '-0 

W+ /mips_dlx_lb_v/uuVprocessor_control/jr_src frw 0 1 ,0 
"-.. ~ _:0 

'--

W+ /mips_dlx_lb_v/uuVprocessor_controVcmp rs src_fwd SIO I 
tting 

I 
W+ /mips_dlx_lb_v/uuVprocessor_control/cmp. rt src fwd SIO 

1""1 rwar 
I 

RegFile .... .. ..... . . . 

Figure 5.3: Stalling and forwarding MEM~ID in the pipelined architecture (ModelSim waveform) 

73 

....... ~. • I ~. '. 

-------~--.-.---. _._-------_._-----------------------------



The shown hazards are similar to the previously described hazard, where r29 value is used 

on the EX stage before it becomes available from the regfile. The first hazard is handled by 

forwarding from the MEM stage and the second hazard is handled by forwarding from WB 

stage. This forwarding is also shown in Figure 5.2. The instruction sw (address 3) triggers the 

forwarding of the ALU operand A from the MEM stage (multiplexer address 1). In the same 

way the next instruction sw causes the forwarding of the operand A from the WB stage 

(multiplexer address 2). 

Since not all hazards can be handled by forwarding, the verification of stalling is to be 

verified as well. The following instruction sequence creates the hazard to be handled by 

stalling and forwarding: 

7: addi $8, $0, 1 IIEX stage 

8: beq $4, $8, 40 IIID stage 

The instruction beq (address 8) uses r8 value on the ID stage when the previous 

instruction addi (address 7) that changed r8 did not yet write it in the regfile. Moreover, the 

result of addi instruction is not available yet from the EX stage. Therefore, the immediate 

forwarding cannot help. The stalling for one clock cycle and forwarding from the MEM stage 

allows handling that type of hazards. Figure 5.3 shows the detailed waveform of the described 

hazard handling in the simulation of the five-stage architecture with BRAM optimization. 

The shown examples of forwarding and stalling do not cover the whole set of RAW 

hazard handling that are implemented in the proposed processor design. The complete set of 

verified hazard scenarios handled in the pipelined configurations is as shown in Table 5.3 

T hi 53 D b a e . : ata d h dl d h f. azar s an e )y orwar mg an d Ir . h . r d h' sta mg In t e pipe me arc Itectures 
Pipeline Length Fibonacci Hazards Handled by Hazards Handled by 

Test Forwarding Stalling 

4 stages Fib(5)=8 2 2 

5 stages Fib(5)=8 4 5 

The Fibonacci number testbench contains all described hazard scenarios. The correct handling 

of these hazards was simulated and verified. The post-route simulation was successfully 

performed for the configurations shown in Table 5.1. The only type of hazard possible in the 

proposed pipelined architecture is the RA W hazard, therefore handling of WAR and WA W 

hazards is not required. 

74 



5.3 Multi-Cycle Design Verification 

Due to the significant difference in the control units between multi-cycle and pipeJined 

architectures, the verification of the control unit functionality for the multi-cycle architecture 

is crucial. The simpler control unit design contains no hazard handling to be verified, though 

FSM functionality is to be validated. Figure 5.4 shows the se1ected waveforms of the 32-bit 

multi-cycle processor running Fib(3) =3 program. The highlighted waveforms ofFSM states 

(i. e. state & nexlstate) represent a typical example ofFSM operation. 

zOOt0001 . 

. ~ ·~iOOO~:_~~t 
. ~ . 7 0 --- -- ~ ~--- -- -.-

Figure 5.4: Wneform ofthe multi-cycle architecture simulation 

The shown waveforms reflect the following instruction sequence: 

2: addi $29, $29, -12 III-type instruction 

3: sw $31, 8 ($29) IIMEM-type instruction 

There is the following correspondence between FSM states shown and actions performed 

by the control unit: 

State 

Action 

071767870717477 

FETCH7DECODE7EXECUTE_IMM_TYPE7WR_BACK7 

7FETCH7DECODE7EXECUTE.:...MEM_TYPE 7MEM_ACCESS 

T bl 54 FSM a e • : actIOn d . t' escrlp·.on 

FSMAction Description 

FETCH An instruction is fetched from the program memory and stored in 

the instruction register. The program counter is updated with the 

next instruction address. ALU increments the next instruction 

address 

DECODE The instruction is decoded. The operands are retrieved from the 

regfile and stored in IDIEX register. ALU calculates the next 

instruction address for a possible branch instruction. 

75 



•• c 

EXECUTE IMM TYPE ALU performs an arithmetic/logic operation with the immediate - -
operand 

EXECUTE_MEM_TYPE ALU performs adds a memory address offset calculating a memory 

access address 

MEM_ACCESS Memory load/store operation 

WR_BACK Writing the result of load operation or ALU calculation in the 

regfile 

Table 5.4 describes major processor actions performed under control of the FSM incorporated 

in the control unit. 

The post-route simulation the testbench Fib(5) =8 was performed for the multi-cyc1e 

architecture configurations shown in Table 5.1 and the following message was reported for all 

configurations: 

# Fibonacci number test SUCCESSFULLY completed, Fib (5) 8 

# Test finished after 964 machine LV'-'-'-~''''' 

5.4 One-Cycle Design Verification 

The simplest by data path and control organization one-cyc1e architecture was verified for 

the functionality of the processor design by successful completion of the testbench. The 

example of the post-route simulation waveforms of the one-cyc1e processor simulation is 

shown in Appendix G. The adduced waveforms validate the correct operation of this 

processor architecture. 

The post-route simulation the testbench Fib(5) =8 was performed for the one-cyc1e 

architecture configurations shown in Table 5.1 and the following message was reported for all 

configurations: 

# Fibonacci number test SUCCESSFULLY completed, Fi~ 5) 8 

# Test finished after 243 machine cycles 

5.5 Demo Platform Design Verification 

The verification of the demo platform design is more complicated than the verification of 

the processor core itself due to the increased design complexity. The demo design is verified 

76 



at behavioral and post-route stages by checking waveforms on the LCD interface lines by 

means of the software simulator. The timing diagram and data send through the interface 

complies with LCD screen interface specification. The correctness of the displayed 

information is checked by comparing waveforms of the data sent to the LCD screen with the 

expected values. 

The final validation is performed by loading the design bit-stream into the target FPGA on 

the development board and comparing the values displayed on the screen with pre-calculated 

Fibonacci values. The pictures of the development board running the demo design are shown 

in Appendix H. All numbers are displayed in the hexadecimal format. The change of the order 

of Fibonacci number is performed by turning of the rotary shaft. The maximum obtained 

correct number Fib(Ox17) =OxB520 is limited by the four character positions allocated for the 

resulting Fibonacci number. The Fibonacci numbers shown on the LCD screen coincide with 

the pre-calculated values. 

5.6 Summary 

This chapter outlined the verification process applied for validating the proposed 

configurable processor. The design of the testbench was described in details. Also, the results 

of the testbench execution were presented. The verification of the critical design features was 

outlined and shown in examples presented in this chapter. The practical implementation of the 

proposed processor was verified on the development board. The obtained testing results 

concurred with expected values. The proposed design was verified successfully. 

77 

I 
; 
I 
\ 
! 



I 
I 

\ 

I 

I 

I 

Chapter 6 

Result Analysis 

This chapter analyzes the implementation and verification results obtained in the chapters 

4 & 5. The difference between implemented architectures, as it was outlined in chapters four 

and five, is based on the structural features of a particular design. In this chapter the stated 

assumptions are supported by the actual data. The comparative analysis of the considered 

processor configurations illustrates the advantages and disadvantages of the proposed 

architectures. The conducted analysis may facilitate the selection of the considered processor 

configuration for the specific application. 

6.1 Xilinx FPGA Implementation Evaluation 

The performance evaluation of the proposed processor is conducted for corresponding 

configurations of the different architectures. Figure 6.1 shows the maximum clock speed and 

occupied hardware resources of the architecture variants of the 32-bit processor implemented 

in Xilinx FPGA. The chart also compares implementations with full/reduced instruction sets 

and BRAMIno BRAM optimization options. The five-stage pipelined architecture shows the 

highest clock speed. The trade-off for this advantage is the largest number of the FPGA 

resources required for the implementation. The multi-cycle architecture offers very close 

clock speed with saving 19% of hardware resources. But simple comparison of the clock 

speed of the considered architectures would be misleading. However, the throughput can be 

used as a parameter that reflects more precisely the performance of the architecture. The five

stage architecture has throughput of one instruction-per-cycle while multi-cycle architecture 

has a variable throughput of 3-5 cycles per instruction. The Fibonacci testbench executed on 

78 



the fi ve-stage processor requ ires 3.4x times less clock cycles than executed on the multi-cycle 

processor regardless of the bit-width and chosen configuration. Therefore. the multi -cycle 

architecture is. in fact, the slowest of all con idered implementations. The benefit of multi

cycle architecture is the r duced util ization of the hardware resources. 

1600 

1400 

1200 

1000 

en 
I- 800 ::> 
...J 

600 

400 

200 

0 

5-stages 4·stages Multi-Cycle 

Architecture 

One-Cycle 

120 00 

100,00 

8000 Hml Area, no BRAM, fu ll 

60.00 ~ 
~ 

Area, no BRAM, reduced 

Ci:iJArea. BRAM. fu ll 

c:=J Area, BRAM. reduced 

-.- Speed. no BRAM. fu ll 

Speed. no BRAM, reduced 

____ Speed, BRAM, full 

40,00 Speed, BRAM. reduced 

2000 

Figure 6.]: ["aluation chart of the architecture variants of 32-bit processor implemented in 

Xilinx FPGA 

The comparative analysis of two pipelined architectures shows that the four-stage 

architecture consumes 9% less area at the expense of 26% reduction in the clock speed. 

Though the theoretical throughput is one-instruction-per-cycle for t>oth architectures. the 

reduced number of hazards handled by stalling causes 3% faster testbench execution 

measured in clock cycles for the four-stage architecture. Despite the fact that the execution of 

another testbench may result in better clock cycle performance. the combined speed 

performance of the four-stage architecture is worse than the five-stage architecture. 

The clock speed of the one-cycle architecture is lowe t ofal!. This result is xpected and 

can be explained by the longest asynchronous path of the one-cycle architecture. The 

difference of 37% between one-cycle and multi-cycle architectures in the clock speed is 

79 



considerably less than stated in [12]. This difference can be related to the dissimilarity in the 

control units where the control unit of the multi-cycle architecture introduces more deJay. The 

control unit of the multi-cycle architecture contributes to the resulting delay significantly 

more than the control unit of the one-cycle architecture. Having 3% hardware overhead, the 

one-cycle architecture offers an advantage of 4x times faster execution of the testbench 

measured in clock cycles. Hence, the one-cycle architecture of the proposed processor 

becomes very attractive for the applications where the resource saving is critical. 

The reduced instruction set implementation demonstrates improvement of the clock speed 

in the range from 12% to 24% and reduction of the hardware overhead 42-49% for all 

considered architectures. This effect is due to removal of the barrel shifter from the ALU. The 

barrel shifter significantly contributes to the resulting data path delay and consumption of the 

hardware resources. For an application without shift operations removing of this feature offers 

a considerable advantage. 

The implementation of the BRAM optimization option improves the clock speed for the 

pipelined architectures. The five-stage architecture gains 12% of the clock frequency and 

four-stage architecture gains 5%. In contrast to that gain, the multi-cycle architecture shows a 

reduction of the clock speed. The speed drops occurs because the major contributor to the 

deJay is the control unit not the data path. The BRAM optimization option affects the data 

path only leaving the control unit intact. The additional delay for multi-cycle architecture is 

caused by the memory control signals which have a longer delay for BRAM. 

The distinguishable feature of the BRAM optimization option is saving of general 

hardware resources (i. e. LUTs) by implementing parts of the design into specialized FPGA 

blocks (i.e. BRAM). This saving reaches 12-15% for all architectures with the full instruction 

set and 21-28% for architectures with the reduced instruction set. 

The results of the architecture comparative analysis conduced for 32-bit implementations 

can be extended for the implementations of other bit-widths. 

6.2 Altera FPGA Implementation Evaluation 

The implementation of the proposed processor variants on the competitive Altera FPGA 

platform demonstrates results different from the Xilinx implementation. These results are 

illustrated on Figure 6.2 showing the quantitative relation of the implementation variants of 

80 

ps 



po 

the 32-bit processor. The FPGA resources for the one-cycle architecture ar omitted for better 

vi sibil ity of the graph because the hardwar recourses occupied by this type of architecture 

exceed the closest value by eight times. 

800 

700 

600 

500 

III 
:E 400 ...J 
<C 

300 

200 

100 

0 

5-stages 4-stages Multi-Cycle 

Architectu re 

One-Cycle 

120 

100 

80 EEl3 Area, no BRAM, full 

,EE!J Area, no BRAM, reduced 

crJJ Area, BRAM. fu ll 

c::=J Area, BRAM, reduced 

-.- Speed, no BRAM , fu ll 

~ Speed, no BRAM, reduced 
___ Speed, BRAM, full 

40 Speed, BRAM, reduced 

20 

Figure 6.2: Evaluation chart of the architecture variants of 32-bit processor implemented in 

Altera FPGA 

The comparative analysis of the clock speed between the architectures shows the results close 

to Xilinx implementation. The five-stage architecture is 23% faster than the four-stage 

architecture. The multi-cycle architecture demonstrates the similar to five-stage clock speed 

while showing the worse testbench execution time measured in clock cycles. The one-cycle 

architecture is 43% slower than the pipelined five-stage architecture. 

The distribution of the hardware resources between the architectures for the Altera 

implementation is similar to the Xilinx implementation in case of the pipelined and l11ulti

cycle architectures. The difference in resources between five and four stages pipelined 

architectures is 5%. Consequently. the multi-cycle architecture requires 9% less resources 

than the five-stage architecture. The major difference in implementations on the e two FPGA 

platforms is the hardware resources required by the one-cycle architecture. Implemented on 

81 



• 

I 
I 
I 

I 

-_ ...... _---_ ..... _-------------... -

the AItera platfonn the one-cycle processor occupies 734% resources more than the five-stage 

architecture. This phenomenon can be explained by the difference in FPGA organization and 

compilation tools for Xilinx and Altera. 

Altera Quartus II compiler [80] recognizes inferred memory blocks in the proposed design 

even without BRAM optimization option. By default, the compiler is allowed to use hardware 

memory blocks for the inferred memory implementation. This feature causes only minor 

differences in the implementations with or without BRAM optimization. In fact, all 

architectures except the one-cycle are implemented with the utilization of hardware memory 

blocks. The one-cycle architecture does not contain inferred synchronous memory blocks. 

Therefore it is implemented purely in ALMs resulting in ajump of utilized FPGA resources. 

Due to high level behavioral description of the proposed processor, there is no direct 

control of the utilization of memory blocks on the Altera platfonn. The analysis of the 

synthesis report shows that the data memory and regfile are implemented in hardware 

memory blocks every time when the automatic recognition of memory blocks is enabled. The 

excerpts from the compilation reports are shown in Appendix I. In several processor 

configurations the BRAM optimization option causes the implementation of the instruction 

memory into a memory block. But this effect is inconsistent through the explored set of 

implementations resulting in variations of the utilized hardware resources. Another source of 

variation is the utilization of Memory Logic Array Blocks (MLAB) or Memory 9-Kbit blocks 

(M9K) [81] for the regfile implementation. The compiler uses either option justifying the 

choice by the optimization strategy. In order to have a full control of the design 

implementation, it is necessary to use specific to Altera FPGA hardware resources (i.e. 

memory blocks, megafunctions) in the HDL code of the design. This approach would negate 

the portability concept critical to the proposed design. The variation in the implementation 

results on the Altera platfonn is a trade-off for the design portability. 

The predictable and consistent reduction or the utilized hardware resources is achieved by 

implementation or the reduced ISA support. The removal of the barrel shifter and extra ALU 

operations benefits in 5% hardware saving for 32-bit one-cycle architecture and 30-42% for 

other architectures. The removed hardware is the constant number of ALMs for all 

architectures while the remaining occupied resources vary in different architectures. That 

82 



pz 

explains the significant difference in the ratio of occupied resources for the considered 

architectures. 

Based on the data shown in Table 4.8 and Table 4.9 it may be deduced that the conducted 

evaluation of the 32·bit processor variants implemented in the different processor 

architectures can be applied to the implementations with other bit-widths. Though quantitative 

values may significantly differ, the general trends are common for all bit-widths. 

6.3 ASIC Implementation Evaluation 

The results of the implementation of the proposed processor using 0.18 !lm technology 

process show the similar to FPGA implementation tendency. As shown in Figure 6.3 the 

clock speed ratio between two pipe lined architectures is 21 % in favor of the five-stage 

architecture. In the same way as the FPGA implementation, the multi-cycle architecture 

demonstrates higher clock speed than four-stage and one-cycle architectures. Nevertheless, 

the higher clock speed does not compensate the longer instruction execution time, due to the 

worse throughput of the multi-cycle architecture 

The one-cycle architecture offers the advantage of the smallest die area and the clock 

speed just 30% less then the fastest five-stage pipelined architecture. 

The distinguishable feature of the ASIC implementation is a minor variability of the 

occupied area for five-stage. four-stage and multi-cycle architectures. The difference does not 

exceed 3%. That effect can be explained by the strategy used for the design compilation. The 

compilation tool breaks the hierarchy of the design and optimizes it. The actual difference in 

hardware resources (i. e. registers. combinational logic, and memory) between these three 

architectures corresponds to the obtained values. The reduction of the die area for the one

cycle architecture is caused by absence of the inter-stage registers in this architecture. 

The most attractive choice for the speed oriented application using the technology process 

is the five-stage pipelined architecture. This architecture features the fastest execution speed 

and 9% more die area than the most resource efficient one-cycle architecture. 

In case of a tight die area constraint the best choice is the one-cycle architecture which 

occupies the smallest of all architectures area and offers the execution speed (testbench 

adjusted) 22% less than the fastest five-stage pipelined architecture. 

83 

.1 

I , 

i 
I 
i 
I 
I 

I 
I 
I 
I 

I I :-----



1200000 250 

E!: 
1000000 !::: 

I ~ r-. ....... 
~, 

~ II! ~ 
': 

;.. f-.--: 

I "'" ~ 
,. 

~ 
t:: 

~ ~ 
~ i "- ,. 

:. 

E; 

200 

800000 

150 
EHttI Area, full 

'" E 500000 
oct 

~ c=::J Area, reduced 

== ---.- S peed, full 

--.- Speed, reduced 
100 

400000 

:. 

I ': I 
~ I ~ 

50 
200000 

o o 
5-stages 4-stages Multi-Cycle One-Cycle 

Arcnitecture 

Figure 6.3: Evaluation chart of the architecture \ 'ariants of 32-bit processor implemented using 

0.18 /lm technology process 

The implementation of the reduced instruction set does not significantly affect the 

occupied die area. The maximum area sav ing is 6%. That can be explained by the more 

efficient implementation of the barrel shifter using the technology process compared to FPGA 

platfonll. 

6.4 Evaluation Against Existing Solutions 

The comparison of the proposed processor against the existing processors with similar 

architectures and implementation platforms is complicated by the differences in details of a 

particular design. The closest processor solutions were selected for the comparative 

evaluation. Table 6.1 outlines the major features of two configurations of the proposed 32-bit 

processor implemented on the A ltera Stratix-III FPGA platform vs. similar Altera Nios Ills 

(small) and Nios II le (economic) soft processors. 

84 

po 



Table 6.1: Configurable MIPS processor variants vs. Altera Nios HIsle 

Feature 
Processor Core 

Con fig. MIPS Nios Ills CODfig. MIPS Nios IIle 

I Bit-width 32 bits 32 bits 32 bits 32 bits 

Fmax 96 MHz 165 MHz 89 MHz 200 MHz 

Area 739 ALMs 700 ALMs 672 ALMs 350 ALMs 

Pipeline 5 stages 5 stages No No 

Cycles/Instruction I 1 5 max 6 max 

Hardware Multiply No 3-cycle No No 

Shifter I-cycle barrel 3-cycle shift I-cycle barrel I cycle-per-bit 

The five-stage pipelined architecture yields to Nios Ills by the speed and occupied area 

due to the optimization of Nios II for the Altera FPGA architecture. Also the proposed 

configurable MIPS processor design uses more advanced barrel shifter which requires an 

additional area and contributes to the delay of the EXE stage. The same causes are responsible 

for the superiority of NIOS We over the multi-cycle architecture of the proposed processor 

implemented on the Altera platform. 

The close contemporary solutions implemented on the Xilinx Virtex-5 FPGA platform are 

represented by Xilinx Microblaze v7.0 [82] and Leon3 [83] soft processors. Table 6.2 

compares the critical specification details of these competitive processors with the proposed 

five-stage processor. 

Due to the optimization of the Microblaze organization and instruction set for the specific 

structure of Xilinx FPGA, the Micoblaze speed performance greatly exceeds the configurable 

MIPS. By the same reason, Microblaze occupies 28% less hardware resources. On the other 

hand, Leon3, a portable research solution not optimized for a specific FPGA also 

demonstrates the inferior speed performance compared to Microblaze. The reduced clock 

speed is a trade-off for portability common for Leon3 and proposed configurable MIPS 

processors. As a result, the Leon3 is just 25% faster than the configurable MIPS. This 

advantage is stipulated by the longer pipeline which, in general, requires hardware overhead 

for data path and control elements. 

85 

.1 

~I 
'I 
:1 
rl 
! 



i 

----------------------.-

T hi 62 C ti a e . : on 19ura hi MIPS e processor vs. XT M' hI I IDX Icro aze an d L 3 eon 

Processor Core 
Feature 

Con fig. MIPS Microblaze Leon3 

Bit-width 32 bits 32 bits 32 bits 

Fmax 100 MHz 220 MHz 125 MHz 

Area 1369 LUTs 980 LUTs 3500 LUTs 

Pipeline 5 stages 5 stages 7 stages 

Cyc1es/Instruction 1 1 1 

Hardware Multiply No Optional Optional 

Shifter I-cycle barrel I-cycle barrel 3-cyc1e shift 

AlteraIXilinx AlteraIXilinxi ActellLattice 
Portability 

i FPGA, ASIC 
Xilinx FPGA only 

FPGA, ASIC 

Despite the fact that the proposed processor shows the performance worse than the 

commercial solutions. it has an advantage of an open design available for customization and 

tuning. It also offers the high portability which is not available for the considered commercial 

products. A distinguishable benefit of the proposed processor is the configurable data path bit

width. Such level of configurability is not offered by any processor selected for the 

comparative evaluation. 

6.5 Summary 

This chapter analyzed the results of implementation of the proposed processor on different 

hardware platforms. The detailed analysis was performed for the 32-bit processor 

configuration implemented using various options for the four considered architectures. The 

conducted analysis defined a correlation between a chosen processor configuration and 

technical parameters obtained after the implementation. The specific to a hardware platform 

implementation features were identified and explained using the obtained results. The selected 

processor configurations were compared with similar contemporary processor solutions. The 

advantages and disadvantages of the evaluated designs were described in details. 

86 



-- ---------------.. --... -~-.-.-. 

Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

In this project the configurable processor with MIPS compatible instruction set was 

developed. The configurability of the design offers a choice of four possible processor 

architectures: 

• Five-stage pipelined 

• Four-stages pipelined 

• Multi-cycle unpipelined 

• One-cycle unpipelined 

Within each architecture the configurabJe options include data path bit-width, organization 

and size of the data and instruction memories, instruction subsetting. 110 space size and bit

width. The configuration tool was developed in order to facilitate configuration of the 

processor for the chosen specification. The processor design flow was established starting 

from a specification stage and finishing with the processor implementation in hardware and 

running an application program. The design flow invokes tools from different vendors and 

augmented with the custom tool connecting design stages. Following the design flow the 

selected processor configurations were implemented on Xilinx and Altera FPGA platforms. 

The full portability of the design was verified using 0.18 11m TSMC technology process for 

implementation. In order to maximize verification coverage, the specific testbench was 

developed and used for the design validation. The simulation of the design was performed on 

the behavioral and post-route levels for the selected configurations. In order to increase 

87 

J 

I 



verification confidence, one selected processor configuration was implemented in the 

hardware development board. The additional VO hardware interfaces were developed 

connecting the selected processor core with LCD screen and inputting device. In addition to 

the testbench, the specific software driver was developed for communication with the 

development board va devices. As a result the demo design was successfully verified. 

The implementation of the proposed processor variants on the different hardware 

platforms created the exploration space. This space was analyzed in order to determine the 

dependencies between implemented configuration options and technical parameters of the 

resulted processor. Major trends and rules for utilization of the specific configuration options 

were derived. The wide spectrum of the possible processor configurations provides an 

opportunity to optimize the selection of a processor for the specific application. 

Comparison to the existing commercial and research solutions revealed advantages and 

disadvantages of the designed processor. The advantages include high portability, unique 

configuration options, and wide range of the processor variants. 

7.2 Future Work 

The processor design presented in this project explored only a limited number of the 

configuration options. The potential for the further improvement includes many advanced 

features inherent in modem processors. The list of the processor enhancements that can 

increase the performance of the presented processor includes but not limited by the following: 

• Multiplier 

• Divider 

• Multilevel instruction and data caches 

• Floating Point Unit (FPU) 

• Memory Management Unit (MMU) 

• Translation Look-aside Buffer (TLB) 

• Dynamic branch prediction 

• Superscalar architecture 

• Unaligned data memory access 

88 



The proposed processor pipeIined architecture considers only five and four stages variants. 

The future work may explore the architectures with shorter or longer pipelines and define 

benefits and trade-offs of these designs. 

The presented processor design is based on the existing MIPS instruction set which is 

oriented toward the standard 32-bit data path. Therefore, the expansion of the instruction set 

with specific commands capable of the efficient handling of wider data words would increase 

the performance of processor configurations with wide data paths. The standard MIPS 

software development tools cannot support all possible improvements. Hence the 

development of the advanced software tools is required in order to use efficiently all 

described processor enhancements. 

The developed Configuration Manager tool may include the additional feature providing 

the speed and hardware resources for the selected processor configuration. This feature would 

facilitate a choice of the processor configuration optimized for the specific application. 

Moreover, the configuration process may be completely automatic driven by the application 

parameters entered by a user. 

The portability of the presented design has been verified only on three different hardware 

platforms. The future work may extend the implementation hardware with other FPGA 

families such as Actel, Latice, Atmel, Achronix, etc. 

The performance of the proposed processor configurations may be estimated with better 

accuracy by execution of the standard benchmarks such as Dhrystone, SPEC, Whetstone, etc. 

Evolution of the presented configurable processor introduces an opportunity for 

development of a processor solution far beyond the explored in this project. 

89 

,I 

~I 
'. 
:1 
rI 

t 
! 

I 
! 
! 
! 
i 
i 
, 



I 
I 

I 

I 

..... 

Appendix A 

Demo Design Program Code 

II 1/0 ports mapped to drnem addresses 
#define FIB_OUT «volatile int*) Ox00000010l 

---.... -~. -------------

#define LCD_aUT_PORT «volatile int*) Ox00000014) II 5 :LCD_OUT_PORT 
{led output data, led drive, led rs, led rw control, led e} 
#define FIB=IN_NUM - «volatile int*)-Ox00000008) -II 2 :Input for 
Fibonacci number calculation 
II Delays definitions 
#define DELAY40ns 0 
#define DELAY230ns 1 
#define DELAY15ms 75000 
#define DELAY4 Ims 20500 
#define DELAYIOOus 500 
#define DELAY40us 200 
#define DELAYlus 5 

int fib () i 
void Wait15ms (); 
void Wait4_1ms ()i 
void WaitlOOus (); 
void Wait40us (l; 
void Wait40ns (); 
void Wait230ns (li 
void Wai tlus (); 
void Write4bitsLCD (); 
void Write8bitsLCD {li 
void Displaylnit {)i 
void DisplayConfig (); 
void SetAddr(}; 
void WriteData(); 
void DrawFib(); 
void DrawEqu(}; 
void DrawFib_N(); 
void DrawHexNum{);II"Draw 4 hex digits number 
unsigned int Hex2LcdChar(); 

int start () { 
int N; 
Ilint result; 
II*FIB OUT = fib(N); 
*LCD OUT PORT = Oxfffffffe; 
DisplayInit()i 
DisplayConfig(); 
for (; ; ) II Display in loop 

{ 

II Display "Fib(" N "1-" fib(N) 
N - *FIB_IN_NUM; 

90 



SetAddr{O); 
DrawFib(l; 
DrawFib N(N); 
DrawEqu () i 
DrawHexNum{fib(N»); 

int fib(int nl { 
if (n==O) {return Ii} 

if (n==I) {return I;} 
return (fib(n-l) + fib(n-2»; 
} 

void Waitl5ms () 
{ 

unsigned int i; 
for (i = 0; i < DELAYI5ms; i++); 

void Wait4 Ims () 
{ 

unsigned int i; 
for (i 0; i < DELAY4_1ms; i++); 

void Waitl00us () 
{ 

unsigned int i: 
for (i = 0; i < DELAYI00us; i++); 

void Wait40us (l 
{ 

unsigned int i; 
for (i = 0; i < DELAY40us; i++l; 

void Wait40ns () 
{ 

unsigned int i; 
for (i = 0; i < DELAY40ns; i++); 

void Wait230ns () 
{ 

unsigned int i; 
for (i = 0; i < DELAY230ns; i++); 

void Waitlus {l 
{ 

unsigned int i; 
for (i = 0; i < DELAYlusi i++); 

91 

" 
~ ! 
r! 



void Write4bitsLCD (unsigned int lcddata, unsigned int lcd_rs) 
{ 

unsigned int datasend Oxffffffff; 

datasend lcddata; 

datasend«l: datasend 
data send datasend I Ox1: Illcd_drive =1 

data send datasend«l: II lcd rs =1 

datasend data send I lcd rs: II 1 ->data I 0 -> command 
datasend datasend«2: II-led rw control = 0, led e = 0 
*LCD OUT PORT = datasend: II send-to port 

Wait40ns(): 

datasend = datasend I Ox1: Illcd_e 1 
*LCD OUT PORT = datasend: II send to port 

Wait230ns (); 

datasend = datasend & Oxfffffffe: Illcd_e 0 
*LCD_OUT_PORT = datasend: II send to port 

datasend datasend I OxOa: lied rw control 1 
*LCD OUT PORT = datasend: II send to port 

void Write8bitsLCD (unsigned int leddata, unsigned int lcd~rs) 
{ 

void 
{ 

unsigned int upper_nibble: 
upper nibble = lcddata»4: 
Write4bitsLCD (upper_nibble, lcd_rsJ: II write upper nibble 

Waitlus(): 

Write4bitsLCD (lcddata, lcd_rs); II write low nibble 

Wait40us{J: 

Displaylnit () 

*LCD OUT PORT Oxfffffffe; Iiset lcd e low 
Wait 15ms () : 

Write4bitsLCD (Ox03,O); 
Wait4 1ms(); -
Write4bitsLCD (Ox03,O): 
WaitlOOus(); 

Write4bitsLCD (Ox03,O); 
Wait40us(); 

92 

5 E< 



Write4bitsLCD (Ox02,O): 
Wait40us(); 

void DisplayConfig () 
{ 

WriteSbitsLCD (Ox2S,O); IIFunction Set 
WriteSbitsLCD (Ox06,O); IIEntry Mode Set 
WriteSbitsLCD (OxOe,O); IIDisplay On/Off 
Write8bitsLCD (OxOl,O); IIClear Display 
Wait4_lms(); 

void SetAddr(unsigned int addr) 

unsigned int addr_send = addr I OxSO; 

WriteSbitsLCD (addr_send,O); IISet DD RAM Address 

void WriteData(unsigned int data) 
{ 

Write8bitsLCD (data,l); IIWrite Data to CG RAM or DD RAM 

void DrawFib() II"Draw "Fib{" 
{ 

WriteData{Ox46); II draw F 
WriteData{Ox69)i II draw i 
WriteData{Ox62); II draw b 
WriteData(Ox28); II draw ( 

void DrawFib_N(unsigned int fib_num)II"Draw N 
{ 

unsigned int send_nibble; 

send nibble = fib num » 4; 
WriteData{ Hex2LcdChar(send_nibble) ); 

send nibble = fib num; 
WriteData{ Hex2LcdChar{send_nibble) )i 

void DrawEqu{) II"Draw ")=" 
{ 

WriteData(Ox29); II draw 
WriteData(Ox3d)i II draw 

II draw lower nibble 

void DrawHexNum(unsigned int hex_num)II"Draw 4 hex digits number 
{ 

unsigned int send_nibble: 

send nibble = hex num » 12; 
WriteData{ Hex2LcdChar{send_nibble) ); II draw 4th nibble 

send nibble = hex num » 8; 

93 

, 

:1 

~I 
'0 
~I 
rI 

1 



WriteData( Hex2LedChar(send_nibble) ); II draw 3rd nibble 

send nibble hex nUID » 4; 
WriteData( Hex2LedChar(send_nibble) ); II draw 2nd nibble 

send nibble = hex num ; 
WriteData( Hex2LCdChar(send_nibble) )i II draw lower nibble 

unsigned int Hex2LcdChar(unsigned int hex_nib)IIConvert hex nibble to LCD 
char 
{ 

unsigned int lcd_nibble; 

led nibble = hex nib & OxOOOOOOOf; 
if (lcd_nibble >9) 
{ 

led nibble (lcd_nibble & Ox07) -1; II 0111, convert to A-F 
led nibble 1= Ox40; 

else led nibble Ox30; 

return led nibble; 

94 

-



AppendixB 

Processor Configuration File 

B.1 Base Configuration File Template 

'ifdef _PROCESSOR_CONFIG_FLAT_V_ 
'else 
'define _PROCESSOR_CONFIG_FLAT_V_ 

11----------------------------------------------------------------------
IIProcessor architecture definitions 
11----------------------------------------------------------------------
'define MIPS PROCESSOR 
'define processor inst width 
II Instruction format -
'define inst opcode width 
'define inst-funct ;idth 
'define inst-shamt-width 

32 Iinot reconfigurable(reserved) 

6 
6 
5 

lIThe branch-bug handling in the PCSpim compiler 
'define PCSpim compiler 
'ifdef PCSpim-compiler 
'define Branch=jump PC_next<=PC+immediate; 
'else 
'define Branch_jump PC_next<-PC+'imem_step+immediate; 
'endif 
II debug provision 
'define BREAK ADDRO 
'define BREAK-ADDRl 
'define BREAK-ADDR2 
'define BREAK=ADDR3 

'hlc/4 
'h274/4 
'h390/4 
'h3lc/4 

I/'include "auto_configyart.v" 
11********************************************************************** 
II Automatically Generated Section of Configuration File 
11**************************************************** ****************** 

//********************************************************************** 
II Global processor definitons 
//********************************************************************** 
'define SHIFT_COMMANDS 
'define SET CO~.ANDS 
11---------=------------------------------------------------------------
'define processor_data_width 32 
II Instruction Memory definitions 
'define imem size 1024 
'define imem-step 1 
'define imem-addr width 10 
'define imem=shift 0 

95 

,I 
'I 
'1 

: I 
" 
'I r( 
1 



// Data Memory definitions 
'define dmem size 1024 
'define dmem-step 4 
'define dmem-addr width 10 
1/ Data Memory Mapping 
'define dmem_up_limit 'hBfffffff 
'define dmem down limit 'hlOOOOOOO 
II I/O Memory definitions 
'define io mem size 1024 
'define io-mem-width 32 
'define io-addr width 10 
1/ 1/0 memory mapping 
'define io mem down limit 'hO 
'define io-mem-up limit 'h400000 
II PC width --
'define PC width 32 
I/PC start-address 
'define reset addr 'hB0020000 
/1 SP start address 
'define SP_INIT 'h800bcOOO 

//=-~~~~--------~~~----------------------------IIEnd of global processor definitons 

//.~~~~~~~~~~~~~~~~~~~~~~~~~~77 
1/**************************************************** ****************** 
I/Register file definitons 
//********************************************************************** 
'define REGISTER FILE regfile /Iregfile module name 
'define regfile addr width 5 111< Register file address width 
'define regfile-size-(l«'regfile addr width) 11/< Register file size 
'define regfile-width 'processor data ;idth ///< Register file width 
'define link addr 31 I/Address of link register (return address - raj 
IIEnd of register file definitons 
11********************************************************************** 
I/-----------------Architecture Configuration---------------------------
/I*****************************************~********** ****************** 

//Pipeline Interstage Register definitons 

//----------------------------------------------------------------------
// interstage-9ass --> dummy reg pass 
1/ interstage data reg --> reg 

//-----------~----~-----------------------------------------------------
// Control Unit configuration 
//----------------------------------------------------------------------
'ifdef MIPS_MULTI CYCLE 

'define IF_ID_INST_REG interstage_data_reg 
'define ID_EX_IMM_REG interstage-9ass 
'define ID_EX_PC_REG interstage-9ass 
'define ID_EX_A_REG interstage_data_reg 
'define ID EX B REG interstage_data_reg 
'define IO=EX=SHAMT_REG interstage-Fass 
'define EX MEM RESUT REG interstage data reg 
'define EX=MEM=T_REG- interstageyass-
'define MEM_WB_DMEM_REG interstage_data_reg 
'define MEM_WB_ALU_REG interstage-Fass 
'define IF IO PC REG interstage-9ass 
'define ID=EX=RS=ADDR_REG interstage-9ass 
'define ID_EX_RT_ADDR_REG interstage-9ass 
'define ID_EX_RO_AOOR_REG interstage-Fass 
'define EX_MEM_RD_W_ADDR_REG interstage-Fass 
'define MEM_WB_RD_W_AODR_REG interstage-9ass 

//----------------------------------------------------------------------
'define NO FORWARDING 

//--------~-------------------------------------------------------------
'define NO DELAY SLOT 

//--------~-----=-------------------------------------------------------
'define CONTROL UNIT control mcycle//control unit module name 

//-------------=------------------------------------=-------------------
'elsif ONECYCLE 

96 



- a WE 

'define IF 10 INST REG interstage-pass 
'define IO-EX-IMM REG interstage-pass 
'define IO-EX-PC REG interstage-pass 
'define IO:EX:A_REG interstage-pass 
'define IO_EX_B_REG interstage-pass 
'define 10 EX S~~T REG interstage-pass 
'define EX-MEM RESUT REG interstage-pass 
'define EX:MEM:T_REG- interstage-pass 
'define MEM_WB_DMEM_REG interstage-pass 
'define MEM_WB_ALU_REG interstage-pass 
'define IF_IO_PC_REG interstage-pass 
'define ID_EX_RS_ADOR_REG interstage pass 
'define ID_EX_RT_ADOR_REG interstage-pass 
'define ID_EX_RO_ADDR_REG - interstage-pass 
'define EX_MEM_RO_W_ADDR_REG interstage_pass 
'define MEM_WB_RD_W_ADDR_REG interstage-pass 
11----------------------------------------------------------------------
'define NO FORWARDING 
11--------=-------------------------------------------------------------
'define NO DELAY SLOT 
11--------=-----=-------------------------------------------------------
'define CONTROL_UNIT control_onecyclellcontrol unit module name 
11----------------------------------------------------------------------
'elsif FOURSTAGES 

'define IF_ID_INST_REG interstage data reg 
'define ID_EX_IMM_REG interstage-data-reg 
'define ID_EX_PC_REG interstage data reg 
'define IO_EX_A_REG interstage-data-reg 
'define ID_EX_B_REG interstage data reg --
'define ID_EX_SHAMT_REG - Interstage data reg 
'define EX_MEM_RESUT_REG interstage-pass --
'define EX_MEM_T_REG interstage-pass 
'define MEM_WB_DMEM_REG interstage data reg 
'define MEM_WB_ALU_REG int-erstage data reg 
'define IF_IO_PC_REG interstage_data_reg -
'define ID EX RS ADOR REG interstage data reg 
'define ID:EX:RT:ADOR:REG interstage-data-reg 
'define ID_EX_RO_ADDR_REG - interstage data reg 
'define EX_MEM_RO_W_ADOR_REG interstage-pass --
'define MEM WB RO W ADOR REG interstage data reg 
11---------=--=--=-=----=------------------=----=-----------------------
'define FORWARDING 4 STAGES 
11----------------=-=---------------------------------------------------
'define CONTROL UNIT control-pipe 4st Ilcontrol unit module name 
11-------------=-----------------------------------------=--------------
'else II 5-stages pipeline 

'define IF_IO_INST_REG interstage data reg 
'define 10 EX IMM REG interstage-data-reg 
'define ID:EX:PC_REG int-erstage data reg 
'define ID EX A REG interstage:data:reg 
'define IO-EX-B-REG interstage data reg 
'define ID-EX-SHAMT REG - Interstage data reg 
'define EX:MEM_RESUT_REG interstage data reg --
'define EX MEM T REG interstage-data-reg 
'define MEM WB-DMEM REG interstage-data-reg 
'define MEM:WB:ALU_REG intersta-ge_data_reg 
'define IF 10 PC REG interstage_data_reg 
'define IO-EX-RS-ADDR REG interstage_data_reg 
'define IO-EX-RT-AODR-REG interstage data reg 
'define ID-EX-RD-ADDR-REG - interstage_data_reg 
'define EX:MEM_RD_W_ADDR_REG interstage data reg 
'define MEM WB RO W ADDR REG interstage:data:reg 
II---------=--=--=-~----=-----------------------------------------------
'define FORWARDING 5 STAGES 
11----------------=-=---------------------------------------------------
'define CONTROL UNIT control-pipe Ilcontrol unit module name 
/I-------------~--------------------------------------------------------

97 

,I 
':1' 
, 

'. 
:1 
r\ 

I 

I 
I 

I 
I 



'endif 
IIEnd of Configurable Architecture definitons 11 ________________________________________________________ __ 

//********************************************************************** 

IIALO definitons 
11**************************************************** ****************** 
'define ALO alu behav II alu module name 
'define alu_operand_width 'processor_data_width 111< ALO operand bit width 

IIALO opcodes 
'define alu add 'hO 
'define alu-subb 'hl 
'define alu-and 'h2 
'define alu-or 'h3 
'define alu-nor 'h4 
'define alu:=xor 'h5 
'define alu_up 'h6 
'define alu a 'h7 
'define alu:=opcode_width 3 1/1< ALO opcode bit width 

'ifdef SHIFT COMMANDS 
'define alu sll 'hB 
'define alu:=srl 'h9 
'define alu sra 'ha 
'define alu-sllv 'hb 
'define alu:=srlv 'he 
'define alu srav 'hd 
11 ......... :-........................ ................ . 
'define alu_opcode_width 4 111< ALO opcode bit width 
'endif 

'ifdef SET COMMANDS 
'define alii slt 'he 
'define alu-sltu 'hf 
'define alu:=opcode_width 4 111< ALO opcode bit width 
'endif 

'define alu_opcodes_number (l«'alu_opcode_width) /11< Number of ALO opcodes 

//1/11/1111111111111111 
/IEnd of ALO definitons 

11.77~~~~~~~~~~77~~~~~~~~~~~~~~~ 
11**************************************************** ****************** 
IIData memory definitons 
//********************************************************************** 
'define DATA MEMORY data ram /Idata memory module name 
'define dmem-width 'processor data width IIData memory bit width 
IIEnd of data memory definitons -
II 
II~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*7* 

IIInput/OUtput memory map definitons 
11**************************************************** ****************** 
'define io_mem_step 4 III/O memory step (how sw addresses it) 
IIEnd of data memory definitons 

//********************************************************************** 
/IInstruction register definitons 
1/**************************************************** ****************** 
'define INST REG inst reg I/instruction register module name 
'define inst-reg width 'processor inst width //Data memory bit width 
IIEnd of instruction register definitons 

11.~~~~~~~~~~~77~~~~~~~~~~~~~~77 1/**************************************************** ****************** 
IIInstruction memory definitons 
1/**************************************************** ****************** 
'define INST MEMORY inst mem //instruction memory module name 
'define imem-width 'processor inst width /IBit width of the instruction memory 
I/End of instruction memory definitons 

98 

.. 



//.77~77~~~-------------------------------------------
/I~*************************************************** ****************** 
/IControl module definitons 
11**************************************************** ****************** 
/I----------FSM 
'define FETCH 
'define DECODE 

states-------------------------------------------------

'define EXECUTE R TYPE 
'define EXECUTE-BRANCH 
'define EXECUTE-MEM TYPE 
'define EXECOTE-J TYPE 
'define EXECUTE-IMM TYPE 
'define MEM_ACCESS -
'define WR_BACK 

2 
3 
4 
5 
6 

7 

'define LAST STATE 9 

o 
I 

B 

11********************************************************************** 
/IControl commands definitions 
1/**************************************************** ****************** 
// Nex PC source controls 
/1---------------------------------------------------------------------
'define next_instruction 0 
'define imm jump I 
'define branch 2 
'define rs_jump 3 
II'define stall~c 4 
'define nextPCsrc_width 2 Illog2('rs_jump) ->width of nextPCsrc 
/1---------------------------------------------------------------------
II Write Back Register destination controls 
/1---------------------------------------------------------------------
'define ra_reg 0 
'define rt reg 1 
'define rd=reg 2 
'define wb_addr_src_width 2 Illog2('rd_reg) ->width of wb_addr_src 
/1---------------------------------------------------------------------
II ALO forwarding controls 
11---------------------------------------------------------------------
'define reg ex 0 1/ regile data from ID/EX stage 
'define fwd-mem I II forwarding from EX/MEM stage 
'define fwd=wb 2 II forwarding from MEM/wB stage 
'define alu src fwd width 2 Illog2('fwd wb) ->width of alu a src frw/alu b src frw 
/1---------=---=---=-------------------=-------------- ----=-=---=------ - - -
// ALO operand source controls 
//---------------------------------------------------------------------
II'define reg ex 0 /1 regile data from ID/EX stage 
1/ Operand A -
'define pc ex I II PC from ID/EX stage 
'define alu a src width I l/log2('pc_ex) ->width of alu_a_src 
/1 Operand B -
'define imm ex I // Immediate from ID/EX stage 
'define plus_step 2 II + imem step (support of jal command R[31]=PC+B;PC=JumpAddr) 
'define shift step 3 // multicycle verson bqe/bne support 
'define alu b-src width 2 l/log2('shift step) ->width of alu b src 
//---------=-=---=---------------------=--------------------=-=--------
II Write Back data source controls 
11---------------------------------------------------------------------
'define alu wb 0 II ALO data 
'define dmem_wb I II Data Mem data 
'define wb data src width I /llog2('dmem wb) ->width of wb data src 
/1--------=----=---=------------------------=-----------------=----=---
/1 Data MEM input data source controls 
//---------------------------------------------------------------------
'define dmem data 0 II DMEM regular data input 
'define dmem=fwd I II DMEM forwarded data input from WB stage 
'define dmem data erc width 1 l/log2('dmem fwd) ->width of dmem data src 
1/----------=----=---=----------------------=--------------------=----= 
I/Rs jump source controls 
11---------------------------------------------------------------------
'define j rs id 0 /1 rs data from ID stage 
'define fwd mem 1 /1 forwarding from MEM stage 
'define fwd-wb 2 II forwarding from WB stage 
'define jr_src_frw_width 2 Illog2('fwd_wb) ->width of jr_src_frw 

99 



11---------------------------------------------------------------------
II Comparator forwarding controls 
11---------------------------------------------------------------------
'define cmp_reg 0 II regile data from IDIEX stage 
'define cmp fwd 1 II forwarding from EX/MEM 
'define cmp=src_fwd_width 1 Illog2('cmp_fwd) ->width of cmp_rs_src_fwd/cmp_rt_src_fwd 

II--~~--~~~~~--~~~~~~~~--------~~~~~~~ 
11**************************************************** ****************** 
IIParse instruction definitons 
1/********************************************************************** 
IIProcessor opcode up limit 
'define opcode up 'processor inst width-l 
IIProcessor opcode down limit -
'define opcode_down 'processor_inst_width-'inst_opcode_width 
IIProcessor immediate up limit 
'define immediate up 'processor inst width -'inst opcode width-('regfile addr width*2)-1 
IIProcessor shift-amount up limit - - - - -
'define shamt_up 'processor_inst_width -'inst_opcode_width-C'regfile_addr_width*3)-l 
IIProcessor shift amount down limit 
'define shamt down 'shamt up - 'inst shamt width +1 
IIProcessor jump address up limit - -
'define jump addr up 'processor inst width -'inst opcode width-1 
IIProcessor sign extension width - --
'define sign ext width 'processor data width-('immediate up+1) 
IIProcessor sign-extension width - - -
'define zero_ext_width 'processor_data_width-('immediate_up) 
II Register Rs 
'define rs addr up 'inst reg width-'inst opcode width-l 
'define rs - addr -down 'rs addr up-' regfile addr width+1 
II Register Rt - - - --
'define rt addr up 'rs addr down - 1 
'define rt-addr-down 'rt addr up - 'regfile_addr_width + 1 
II Register Rd - --
'define rd addr up 'rt addr down-1 
'define rd-addr-down 'rd addr up-'regfile addr width+1 
IIEnd of parse Instruction definitons - -

II~------------------------------------------------------

//********************************************************************** 
IIMIPS instruction Set definitions 
//********************************************************************** 
fiR type instructon functions 
'define ADD 'h20 
'define ADDU 'h21 
'define SUB 'h22 
'define SUBU 'h23 
'define AND 'h24 
'define OR 'h25 
'define XOR 'h26 
'define NOR 'h2? 
'define SLT 'h2a 
'define SLTU 'h2b 
'define SLL 'hO 
'define SRL 'h2 
'define SRA 'h3 
'define SLLV 'h4 
'define SRLV 'h6 
'define SRAV 'h? 
'define JR 'he 
'define JARL 'h9 
'define MOVZ 'ha 
'define MOVN 'hb 
'define SYSCALL 'hc 
'define BREAK 'hd 
'define SYNC 'hf 
'define MFHI 'hlO 
'define MTHI 'hll 
'define MFLO 'h12 
'define MTLO 'h13 

100 

os 



~ 

'define MULT 'hI8 
'define MULU 'hI9 
'define DIV 'hla 
'define DIVU 'hIb 
'define TGE 'h30 
, define TGEU 'h31 
'define TLTT 'h32 
'define TLTU 'h33 
'define TEQ 'h34 
'define TNE 'h36 

1/ Instruction opcodes 
'define R TYPE 'hO 
'define J- 'h2 
'define JAL 'h3 
'define BEQ 'h4 
'define BNE 'h5 
'define BLEZ 'h6 
'define BGTZ 'h'7 
'define ADDI 'he 
'define ADDIO 'h9 
'define SLT1 'ha 
'define SLTIU 'hb 
'define ANDI 'hc 
'define OR1 'hd 
'define XORI 'he 
'define LUI 'hf 
'define LB 'h20 
'define La 'h21 
'define LWL 'h22 
'define LW 'h23 
'define LBU 'h24 
'define LHU 'h25 
'define LWR 'h26 
'define sa 'h28 
'define SH 'h29 
'define SWL 'h2a 
'define SW 'h2b 
'define SWR 'h2e 
'define CACHE 'h2f 
'define LL th30 
'define LWCI th31 
'define LWC2 'h32 
'define PREF 'h33 
'define LDCI 'h35 
'define LDC2 'h36 
'define SC 'h38 
'define swCI th39 
'define swC2 th3a 
'define SDCl 'h3d 
'define SDC2 'h3e 

11111111111111/11111111 
IIEnd of MIPS instruction Set definitions 

'ifdef DLX_PROCESSOR 

11**************************************************** ****************** 
IIDLX instruction Set definitions 
11**************************************************** ****************** 
//R type instructon functions 
'define ADD 'h20 
'define sua 'h22 
'define AND 'h24 
'define OR 'h25 
'define XOR 'h26 

'define SEQ 
'define SLT 
'define SLE 

'h28 
'h2a 
'h2c 

101 

I 
'I 
'1 

~I -, 



'define SNE 

'define SLL 
'define SRL 
'define SM 

II Instruction 
'define R TYPE 
'define J
'define JAL 
'define BEQZ 
'define BNEZ 
'define ADDI 
'define SOBI 
'define ANDI 
'define ORI 
'define XORI 
'define LHI 
'define JR 
'define JARL 
'define SLLI 
'define SRLI 
'define SEQ I 
'define SMI 
'define SNEI 
'define SLTI 
'define SLEI 
'define LW 
'define SW 

'h29 

'h4 
'h6 
'h7 

opeodes 
'hO 
'h2 
'h3 
'h4 
'h5 
'hB 
'ha 
'he 
'hd 
'he 
'hf 
'hIZ 
'h13 
'h14 
'h16 
'hIB 
'h17 
'h19 
'hla 
'hIe 
'hZ3 
'hZb 

111111I1II1III111I11111 
fiEnd of DLX instruction Set definitions 
II 
'e-n~d~i~f-'/~/~D~L~X~-------------------------------------------------------

'endif II _PROCESSOR_CONFIG FLAT V 

B.2 Automatically Generated Part of Configuration File 

The example is shown for the 5-stages architecture with the full support of the instruction 

set and BRAM optimizaiton. 

//********************************************************************** 
// Automatically Generated Section of Configuration File 
//********************************************************************** 

//********************************************************************** 
// Global processor definitons 
//********************************************************************** 
'define SHIFT COMMANDS 
'define SET COMMANDS 
'define processor data width 256 
// Instruction Memory definitions 
'define imem_size 1024 
'define imem_step 1 
'define imem addr width 10 
'define imem-shift 0 
// Data Memory definitions 
'define dmem size 1024 

102 

• 



'define drnem step 4 
'define drnem-addr width 10 
II Data Memory Mapping 
'define drnem up limit 'h80000000 
'define drnem-down limit 'hlOOOOOOO 
II Ilo Memory definitions 
'define io mem size 1024 
'define io-mem-width 32 
'define io-addr width 10 
II IIO memory mapping 
'define io mem down limit 'hO 
'define io-mem-up limit 'h400000 
II PC width - -
'define PC width 32 
IIPC start-address 
'define reset addr 'h400000 
II SP start address 
'define SP INIT 'h7ffffffc 
II Padding-of PC bitwidth natural('processor_data_width-'PC_width) 
'define PC_padding 224 
'define FPGA BRAM 

103 



I 
I 
I 

I 

Appendix C 

Implementation Reports 

C.l Xilinx Summary Reports 

Implementation report for the following processor configuration: 

• 4-stage architecture 

• 256-bit data path 

• BRAM optimization 

• Full instruction set support 
~ '>" 

. ~ ", -~ , . MIPS D~~ Project Status 
'Project File: mips dlx.ise Current State: 

:Module mips_dlx • Errors: , 
iName: 
iTarget xc5vlx50- • Warnings: 
Device: Iff324 , 

,Product ISE 9.2.04i • Updated: 
,Version: 

MIPS_DLX Parti!i~~~Suinmary 
;No partition information was found. 

... ~ Device Utilization Summa.lJ' 

,Slice Logic Utilization Used Available 

iNumber of Slice Registers 1,635 28,800 
Number used as Flip Flops 1,634 

Number used as Latch-thrus 1 

iNumber of Slice LUTs 8,720 28,800 

Number used as logic 8,203 28,800 

Number using 06 output 8,063 
,only 

Number using 05 and 06 140 

Number used as Memory 516 7,680 

Number used as Dual 
516 

,Port RAM 

I Number using 06 
,output only 

4 

104 

,.. 

-,,~ . 

Placed and Routed 

No Errors 

318 Warnings 

Tue Feb 2 19:18:582010 

"" .. _. _~.~,_ ' ... " .• ~' .... " ..... - .. I: 

i 

.~---.. -

Utilization Note{s) 

5% 

30% 

28% 
, 
i 

6% 



I. Number using 05 
ioutput only 

4 

106 
Number using 05 and 

508 
I 
I, Number used as exclusive 
Iroute-thru 

1 

iNumber of route-thrus 1 57,600 1% 

I Number using 05 and 06 1 11 
,Slice Logic Distribution 

INumber of occupied Slices 2,879 7,200 39% 

Number of LUT Flip Flop 
10,330 

pairs used 

I Number with an unused 
8,695 10,330 84% 

,Flip Flop 

I, Number with an unused 
,LUT 

1,610 10,330 15% 

I, Number of fully used LUT-
IFF pairs 

25 10,330 1% 

I! Number of unique control 

Isets 
9 

lID Utilization 

Number of bonded lOBs 78 220 35% 

jSpecific Feature Utilization i 

]Number of BlockRAMIFIFO 1 481 0 I 

I. Number using B10ckRAM 
pnly 

9 

iTotal primitives used 

I, Number of36k 
BlockRAM used 

7 

\, Number of 18k 3 
i BlockRAM used , 

ITotal Memory used (KB) 306 1,728 17% 

Number of 
:BUFGIBUFGCTRLS 

1 32 3% 

I Number used as BUFGs 1 

ITotal equivalent gate count 
,for design 

1,321,378 

IAdditional JT AG gate count 3,744 
[for lOBs 

_.. •• _. " " "'r." • -, 
" I , 

, 
t " Performall~~~~!l~Il1f!1a,ry~ 

~, ," ' '., """,,;, ,~--- ".-.~ .. .' • '"., "j.I.' ',' ." 

105 



I 
Final Timing 
iScore: 

0 Pinout Data: Pinout Report 

Routing All Signals 
Clock Data: Clock Report 

:Results: Completely Routed 

ITiming 
,Constraints: 

All Constraints Met 

t .. ""._ ' "~ - Detailed ~eports 

,Report Name Status Generated Errors Warnings lnfos 

iSynthesis 
Tue Feb 2 

140 
Current 18:39:14 0 71nfos 

IReport 2010 
Warnings 

l!ranslation 
Tue Feb 2 

Current 18:40:14 0 0 0 
IReport 2010 

IMap Report 
Tue Feb 2 

177 
Current 18:56:39 0 

Warnings 
61nfos 

2010 

lPlace and TueFeb 2 
I Current 19:17:29 0 1 Warning 1 Info 
IRoute Report 2010 

:Static Timing 
Tue Feb 2 

Current 19:18:57 0 0 21nfos 
I Report 2010 

,Bitgen Report 

106 



S .... fiilil'zmaii�ii��lilllillililllll ___ .. _______________________________ · ..... _-

Implementation report for the following processor configuration: 

• 5-stages architecture 

• 128-bit data path 

• No BRAM optimization 

• Full instruction set support 

"'. MI}>S _DJ.lX proje(!t Status .•. 
~ .". ~ " "'-"-"'" . -

,Project File: mips_dlx.ise !Current State: Placed and Routed 

iModule mips_dlx • Errors: 
iNa me: 

No Errors 

l:rarget xc5vlx50- • Warnings: 
,Device: 1 ff324 

218 Warnings 

;Product ISE 9.2.04i • Updated: 
Sun Jan 1723:41 :032010 

IVersion: 

. ~)\1WS_DLXParti~io!!.~u!D_ID!ry .. 
I 

t; , - " .... "r'~ ' •• -.-. ~ 

INo partition information was found. 
"-'. ". 

~. ,y 
Device Utilization Summ~ry .. ... I 

ISHee Logic Utilization Used Available Utilization Note(s) i 

iNumber of Slice Registers 1,006 28,800 3% • 

Number used as Flip Flops 1,005 

Number used as Latch-thrus 1 

;Number of Slice LUTs 4,757 28,800 16% 

Number used as logic 3,988 28,800 13% 

Number using 06 output 
3,887 

,only 

I Number using 05 and 06 101 

Number used as Memory 768 7,680 10% 

I Number used as Dual Port 
RAM 

256 
I 

106 
Number using 05 and 

256 
I 

I, Number used as Single 
,Port RAM 

512 

• Number using 06 
:output only 

512 

I, Number used as exclusive 
route-thru 

1 

;Number ofroute-thrus 1 57,600 1% 

Number using 05 and 06 1 I 

;Slice Logic Distribution 

107 



-

iNumber of occupied Slices 1,841 7,200 25% I 

Number ofLUT Flip Flop pairs 
5,739 I [used I 

1 Number with an unused Flip 
4,733 5,739 82% 

:Flop 

I Number with an unused LUT 982 5,739 17% 

I Number of fully used LUT-
FF pairs 

24 5,739 1% 

I, Number of unique control 
,sets 7 

I 
10 Utilization I 

IN umber of bonded JOBs 78 220 35% 

$pecific Feature Utilization 

INumberof 
,BUFGIBUFGCTRLs 

1 32 3% 

Number used as BUFGs 1 
ITotal equivalent gate count 
lor design 

169,476 

!Additional JT AG gate count for 
3,744 ,lOBs 

" 

....... ,..... -" ~ , J '" " \-.- " 
• J:>er!<?!!Dance Sum!Dary 

" .. "'" . -~- - - ,,-,j 

,Final Timing 
0 Pinout 

Pinout Re;Qort 
IScore: Data: 

IRouting Results: All Signals Com;Qletel,Y ICIOCk Clock Re;Qort Routed Data: I 
jTiming All Constraints Met 
;Constraints: ,-

",".. ,,"., ,,.,:., '. ,. 
" . Detailed Reports,. 

, ..... , '" '~" <,.",d ". ~ ~ " 

]Report Name Status Generated Errors Warnings InCos 

Synthesis Re;Qort Current Sun Jan 17 
0 

124 
7 Infos 15:01:282010 Warnings 

ITranslation Re;Qort Current 
Sun Jan 17 

0 1 Warning 0 23:32:072010 
I 

Current 
Sun Jan 17 

0 92 
6 Infos IMa;Q Re;Qort 23:39:342010 Warnings 

iPlace and Route Re;Qort Current 
Sun Jan 17 

0 1 Warning 1 Info 23:40:382010 
i Sun Jan 17 
IStatic Timing Re;Qort Current 0 0 2 Infos 23:41 :022010 

:Bitgen Report 

108 



Implementation report for the following processor configuration: 

• One-cycle architecture 

• 16-bit data path 

• No BRAM optimization 

• Reduced instruction set 
, 

MIPS DLX Project Status 
;Project File: mips dlx.ise !Current State: Placed and Routed 

:Module 
mips_dlx • Errors: 

;Name: No Errors 

I!ar~et xc5vlx50- • Warnings: 
pevlce: lff324 130 Warnings 

;Product ISE 9.2.04i • Updated: 
IVersion: Thu Feb 11 19:14:572010 

r ' .. ,' , MIPS DLX Partition Summary. 

iNo partition information was found. 

~_A' " " 

Device Utilization Summary .. 
~Slice Logic Utilization Used Available Utilization 

INumber of Slice Registers 10 28,800 1% 

Number used as Flip Flops 10 

;Number of Slice LUTs 419 28,800 1% 

Number used as logic 323 28,800 1% 

Number using 06 output 
323 

lonly 

I Number used as Memory 1 961 7,6801 

I Number used as Dual Port I 
RAM 

j 

I Number using 05 and 
32 

.06 

i Number used as Single 64 
Port RAM 

I Number using 06 
,output only 

64 

,Number of route-thrus 1 57,600 1% 

Number using 05 output 1 
;only 

;Slice Logic Distribution 

]Number of occupied Slices 135 7,200 1% 

Number ofLUT Flip Flop pairs 
~used 

419 

109 

I 

Note(s) 

I 

,I 
" 

I 

I , 



PI 
... 

I. Number with an unused Flip 
,Flop 

409 419 97% 

I Number with an unused 
,LUT 

0 419 0% 

1 Number of fully used LUT-
iFF pairs 

10 419 2% 

I. Number of unique control 
sets 3 

:10 Utilization 
jNumber of bonded lOBs 62 220 28% 
ISpecific Feature Utilization 

INumberof 
iBUFGIBUFGCTRLs 

1 32 3% 

1 Number used as BUFGs 1 

[Total equivalent gate count 
,for design 

18,941 

lAdditional JT AG gate count 
lor lOBs 

2,976 

I ' 
,- -_. " .... Performan~e ~lImltlary , , 

jFinal Timing 0 Pinout Pinout Report 
jScore: Data: 

(ROUting Results: 
All Signals Completely Clock Clock Report 
Routed Data: 

ITiming 
,Constraints: 

All Constraints Met 

t ___ 
.. _,c .. ,,:',',',,''. .'""", . _ Det~!I~d. ~eports ,,,.". ' , - --." ,,- . ' '"j', ,," "",~ "'. 

,Report Name Status iGenerated Errors Warnings Infos 

:SynthesiS Report Current 
ThuFeb 11 

0 100 
3lnfos 19:09:192010 Warnings i 

ITranslation Report Current Thu Feb 11 
0 5 Warnings 0 19:13:032010 

I. 
Current 

ThuFeb 11 
0 24 

61nfos IMap Report 19:14:142010 Warnings 
I 

Current Thu Feb 11 
0 1 Warning 1 Info IPlace and Route Report 19:14:432010 

jStatic Timing Report Current 
Thu Feb 11 

0 0 21nfos ]9:14:572010 
,Bitgen Report 

110 



C.2 BRAM Utilization Reports 

Excerpt from the synthesis report in case of the successful BRAM utilization: 

INFO:Xst:2694 - Unit <inst mem> : The ROM <Mrom_data_out_asynch> will be 

implemented as a read-only BLOCK RAM, absorbing the register: <data out>. 

INFO:Xst:2690 - Unit <data ram> : The RF~ <Mram ram> will be implemented as 

BLOCK RAM 

Excerpt from the synthesis report ifBRAM optimization is not used: 

HDL ADVISOR - Unit <data_ram> : The RAM <Mram_ram> will be implemented on 

LUTs either because you have described an asynchronous read or because of 

currently unsupported block RAM features. If you have described an 

asynchronous read, making it synchronous would allow you to take advantage 

of available block RAM resources, for optimized device usage and improved 

timings. Please refer to your documentation for coding guidelines. 

111 



.. 

AppendixD 

TSMC 0.18 11m Process Implementation 

Synopsys Design Analyzer script for compilation of the five-stage pipeUned architecture 

sh rm -Rf Work 
sh mkdir Work 

define_design_lib Work -path "./Work" 

analyze -format verilog -lib WORK {"control_pipe. v"} 
analyze -format verilog -lib WORK {"mips_dlx.v"} 
analyze -format verilog -lib WORK {"memory. v"} 
analyze -format verilog -lib WORK {"processor_alu.v"} 
analyze -format verilog -lib WORK {"interstage_pass.v"} 
analyze -format verilog -lib WORK {"interstage_data_reg.v"} 
analyze -format verilog -lib WORK {"regfile.v"} 
analyze -format verilog -lib WORK {"inst_mem.v"} 

elaborate mips_dlx -arch "verilog" -lib DEFAULT -update 

set load 
set-load 
set load 
set load 

20 "io mem write enable" 
20 "io-mem-enable" 
20 "io-mem-addr*" 
20 "io mem data in*" 

create_clock -name "clk" -period 4 -waveform "0" "2" } { 
set_dont_touch_network find( clock, "clk") 
set clock skew -propagated clk 
set_clock_skew -plus_uncertainty 0.1 "clk" 
set clock skew -minus uncertainty 0.1 "clk" 
set-fix multiple port-nets -all 
write -format db--hierarchy -output "mips_constrained. db" 
{ttmips_dlx.db:mips_dlx"} 

remove_design find(design n*,,) 
read -format db {"mips constrained.db"} 
current design "mips constrained.db:mips dlx" 
compile--ungroup_all- -
current design "mips constrained.db:mips dlx" 
write -format db -hierarchy -output ttmips compilel.db" 
{"mips_constrained.db:mips_dlx"} -

112 

"clk" } 



report_area 
report_constraints 
report timing -path full 
check_design 

max -max-paths 1 -nworst 1 

remove design find(design u*") 
read -format db {"mips compile1.db"} 
current design "mips compile1.db:mips dlx" 
compile--map_effort high -incremental=map 

write -format db -hierarchy -output "mips_compile2.db" 
{"mips_compilel.db:mips_dlx"} 
report area 
report=constraints 

report_timing full -delay max -max_paths 1 -nworst 1 

check design 
change names -hier -rule verilog 
write =format verilog -hierarchy -output "mips_gate.v" 
{ .db:mips_dlx"} 

113 



AppendixE 

Demo Design Constraints and Report 

NET "clk" TNM NET "clk"; 

TIMESPEC "TS_clk" PERIOD "clk" 20.0ns HIGH 50 %; 

NET "clk" USELOWSKEWLINES; 

# 

# soldered 50MHz Clock. 

# 

NET "elk" LOe "C9" I IOSTANDARD LVTTL; 

/I 

# 

/I Simple LEDs 

# Require only 3.5rnA. 

# 

NET "led<O>" LOC = "F12" IOSTANDARD LVTTL SLEW 

NET "led<l>" LOC "E12" IOSTANDARD = LVTTL SLEW 

NET "led<2>" LOe "Ell" IOSTANDARD = LVTTL SLEW 

NET "led<3>" LOC "Fll" IOSTANDARD = LVTTL SLEW 

NET "led<4>" Loe "ell" IOSTANDARD = LVTTL SLEW 

NET "led<5>" LOC "Dl1" IOSTANDARD LVTTL SLEW 

NET "led<6>" LOC nEg" IOSTANDARD LVTTL SLEW 

NET "led<7>" LOC "F9" IOSTANDARD = LVTTL SLEW = 
# 

# 

# LCD display 

# Very slow so can use lowest drive strength. 

# 

NET "lcd rs" LOe "LIS" IOSTANDARD = LVTTL SLEW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

NET "led rw" LOC "L17" IOSTANDARD = LVTTL SLEW = SLOW 

NET "led_e" LOC "M18" IOSTANDARD = LVTTL SLEW SLOW 

114 

.. 

DRIVE 4; 

DRIVE 4; 

DRIVE 4; 

DRIVE 4; 

DRIVE 4; 

DRIVE = 4; 

DRIVE 4; 

DRIVE 4; 

DRIVE 2; 

DRIVE 2; 

DRIVE 2; 



-

NET "lcd_d<4>" LOC "RIS" IOSTANDARD LVTTL SLEW SLOW DRIVE 2; 

NET "lcd_d<S>" LOC "RI6" IOSTAN DARD LVTTL SLEW SLOW DRIVE 2; 

NET "lcd d<6>" Loe "PI7" IOSTANDA.~D = LVTTL SLEW SLOW DRIVE 2; 

NET "led d<7>" LOC "MIS" IOSTANDARD = LVTTL SLEW SLOW DRIVE 2: 

it 

# Strata Flash (need to disable to use LCD display) 

it 

NET "strataflash oe" LOC "CIS" IOSTANDARD LVTTL SLEW SLOW DRIVE 

NET "strataflash ce" LOC "D16" IOSTANDARD LVTTL SLEW SLOW DRIVE 

NET "strataflash we" LOe "D17" IOSTANDARD LVTTL SLEW SLOW DRIVE 

# 

it 

it Simple switches 

it Pull UP resistors used to stop floating condition during switching. 

it 

NET 

NET 

NET 

NET 

it 

# 

"switch<O>" 

"switch<l>" 

"switch<2>" 

"switch<3>" 

it Press buttons 

LOe "L13" 

LOC "L14" 

LaC "HIS" 

LOC "NI7" 

IOSTANDARD LVTTL 

IOSTANDARD = LVTTL 

IOSTANDARD LVTTL 

IOSTANDARD LVTTL 

PULLUP; 

PULLUP: 

PULLUP; 

PULLUPi 

it Must have pull DOWN resistors to provide Low when not pressed. 

if 

NET "btn_north" LOC "V4" IOSTANDARD LVTTL PULLDOWN; 

NET "btn east" LOC "H13" IOSTANDARD LVTTL PULLDOWN; 

NET "btn south" LOe "KI7" IOSTANDARD LVTTL PULLDOWN; 

NET "btn west" LOC "DIS" IOSTANDARD LVTTL PULLDOWN; 

it 

it Rotary encoder. 

it Rotation contacts require pull UP resistors to provide High level. 

2; 

2: 

2; 

# Press contact requires pull DOWN resistor to provide Low when not pressed .• 

# 

NET "rotary_a" 

NET "rotary_b" 

LOC 

LOC 

NET "rotaryyress" LOC 

if 

# 

# End of File 

it 

"KIS" 

"GIS" 

"VI6" 

IOSTANDARD LVTTL 

IOSTANDARD LVTTL 

IOSTANDARD LVTTL 

115 

PULLUP; 

PULLUP; 

PULLDOWN; 

.1 

I . 



- 7 • 
i I 

I : 

~ . " 
MIPS_DLX_DEMO Project Status 

Project File: mips dlx demo.ise Current State: Programming File Generated 

,Module 
demo _led_fib • Errors: 

No Errors 
:Name: 

Target xc3s500e-5fg320 • Warnings: 
148 Warnings 

,DeYice: 

Product ISE 9.2.04i • Updated: Thu Dec 31 20:46:33 2009 , 
IVersion: 

"" 

t < •••• ,-- ,', - MIPS DLX_DEMO Partition Summary 

iNo partition information was found. 

[ 
-"-,"" 

Device UtilizatIon Summ'ary 
.. ' '" 

" " " 

;Logic Utilization Used Available Utilization Note(s) 

!Number of Slice Flip Flops 1,399 9,312 15% 

INumber of 4 input LUTs 4,355 9,312 46% 

:Logic Distribution 

jNumber of occupied Slices 3,369 4,656 72% 

I Number of Slices containing 
3,369 3,369 100% 

only related logic 

I Number of Slices containing 
,unrelated logic 

0 3,369 0% 

iTotal Number of 4 iuput LUTs 4,888 9,312 52% 

iNumber used as logic 4,355 

;Number used as a route-thru 19 

Number used for 32xl RAMs 512 

Number used as Shift registers 2 

Number of bonded lOBs 30 , 232 12% 

I lOB Flip Flops 15 

,Number of GCLKs 1 24 4% 

!Total equivaleut gate count for 
de~gn ' 106,751 

I Additional JTAG gate count for 
,lOBs 

1,440 

t 
- . - . ~ 

",.!'~rforl!1~nc~, ~umIltary", _,_, 
.---~ 

., --'--~.'-~-~'->----.•. ~-, .".~ .. ~ .0$ .' " ' ., 

,Final 
Pinout ITiming 0 Pinout Report 

iScore: 
Data: 

Routing 
All Signals Completely Routed ICIOCk Clock Report I 

Results: Data: 

ITiming All Constraints Met 
Constraints: 

116 



r. 

! 
Report 

Status I 

Name 

Synthesis 
Current , 

,Report 

ITranslation Current Report 

iMapReport Current 

IPlace and 
Current IRoute 

,Report 

IStatic 
ITiming Current 
; Report 

IBitgen iCurrent 
,Report 

Detailed Reports 

Generated Errors 

Wed Dec 9 22:39:46 
0 2009 

Wed Dec 9 22:40:08 
0 2009 

Wed Dec 922:40:37 
0 2009 

Wed Dec 9 22:44:01 
2009 0 

Wed Dec 9 22:44:18 
2009 0 

Wed Dec 9 22:46:13 
0 2009 

117 

'Varnings Infos 

141 16 
IWarnings I Infos 

1 
0 Warning 

3 3 Infos 
Warnings 

3 
Warnings 0 

0 2 Infos 

0 0 

,i 
I 

.1 

.. I 

:j 
'. 



Appendix F 

Fibonacci Test Program 

The assembler and machine code of Fibonacci number calculation program is shown below. 

The values are presented in hexadecimal format. This code is a part of the instruction memory 

module. Each row contains Verilog assignment for ROM address and comments showing a 

corresponding assembler code. 

F.1 Program With Delay Slot And Reordering 

'ifdef _FIB_PROGRAM_V_ 
'else 
'define _FIB_PROGRAM_V_ 

assign ram[ 0]='h8cld0004;//lw $29, 4($0) 
assign ram[ 1]='h8c040008;//lw $4, 8($0) 
assign ram[ 2] 'h23bdfff4;//addi $29, $29, -12 
assign ram! 3)='hafbf0008;//sw $31, 8($29) 

;40 0000: lw Ssp, 4 ($zero) //load from I/O mem 
;40-0004: lw SaO, B($zero) //load from I/O mem 

40 0008: addi Ssp, Ssp, -12 <-- fib 
40-000c: sw $ra, 8($sp) 

assign ram[ 4]='hafb00004;//sw $16, 4($29) 
assign ram[ 6]='h20020001;//addi $2, $0, 1 
assign ram[ 5J-'hlOBOOOOd;//beq $4, $0, 52 
assign ram[ 7]='h20080001;//addi $8, $0, 1 
assign ram[ B]='hl088000a;//beq $4, $8, 40 
assign ram[ 9]='hOOOOOOOO;//nop 
assign ram[10]='h2084ffff;//addi $4, $4, -1 
assign ram[121='hafa40000;//sw $4, 0($29) ; 
assign ram[11]='hOcl00002;//jal Ox00400008 [fib]; 
assign ram[13)='h8fa40000;//lw $4, 0($29) 
assign ram[14]='h2084ffff;//addi $4, $4, -1 
assign ram[16]='h00408020;//add $16, $2, $0 ; 
assign ram[15]-'hOcl00002;//ja1 Ox0040000B [fib]; 
assign ram[17]='h00501020;//add $2, $2, $16 
assign ram[1B]='hac02000c;//sw $2, 12($0) 
assign ram[19]='h8fb00004;//1w $16, 4($29) 
assign ram[20]='h8fbf0008;//1w $31, 8($29) 
assign ram[21]='h23bdOOOc;//addi $29, $29, 12 
assign ram[22]='hacld0010;//sw $29, 16($0) 
assign ram[23]='h03e00008;//jr $31 
assign ram[24]='hOOOOOOOO;//nop 
assign ram[25]='hOOOOOOOc;//sysca11 

assign ram[26]='hOOOOOOOc;// 
assign ram[27]='hOOOOOOOO;//// 
assign ram[28]='hOOOOOOOO;//// 
assign ram[29]='hOOOOOOOO;//// 

Note. The reordering is shown in bold font. 

118 

40-0010: sw $sO, 4($sp) 
40-0018: addi $vO, $zero, 1 
40=0014: beq SaO, $zero, fin 
40 OOlc: addi $tO, $zero, 1 
40-0020: beq SaO, $tO, fin 
40-0024: nop (delay slot) 
40-0028: addi SaO, SaO, -i 
40-0030: sw SaO, O($sP) 
40-002c: jal fib 
40-0034: 1w SaO, O($sp) 
40-0038: addi $aO, SaO, -1 
40-0040: add $50, $vO, $zero 
40=003c: jal fib 
40 0044: add $vO, $vO, $50 
40-0048: sw $vO,12($zero)//store to I/O mem 
40-004c: lw $sO, 4($sp) <-- fin 
40-0050: lw $ra, 8($sp) 
40-0054: addi Ssp, Ssp, 12 
40-0058: sw $sp,16($zero)/lstore to I/O mem 
40-005c: jr $ra 
40-0060: nop 
40=0064: sysca11 

as 



= esm" , 

F.2 Program Without Delay Slot And Reordering 

'ifdef _FIB_PROGRAM_V_ 
'else 
'define _FIB_PROGRAM_V_ 

1w $29, 4($0) ; 40 0000: 1w Ssp, 4($zero) //1oad from I/O mem 
1w $4, 8($0) ; 40-0004: lw SaO, 8($zero) //load from I/O mem 
addi $29, $29, -12 - 40_0008: addi $sp, Ssp, -12 <-- fib 

assign ram[ 0]a'h8cld0004;1/ 
assign ram[ 1j3'h8c040008;1/ 
assign ram[ 2]='h23bdfff4;/1 
assign ram[ 3]='hafbfOOOB;// 
assign ram[ 4]='hafb00004:// 
assign ram[ 5j='h20020001;// 
assign ram[ 6]='h10BOOOOd;// 
assign ram[ 7]='h20080001;// 
assign ram[ 8j='h1088000a;// 
assign ram[ 9]='hOOOOOOOO;// 
assign ram[10]='h2084ffff;// 
assign ram[11j='hafa4000D;// 
assign ram!12]='hOcl00002;// 
assign ram[13]='h8fa40000;// 
assign ram[14]='h2084ffff;// 
assign ram[15]='h00408020;// 
assign ram[16]-'hOcl00002;// 
assign ram[17J='h00501020;// 
assign ram[lB]='hac02000c;// 
assign ram[19]='hBfb00004;/1 
assign ram[20]='h8fbf0008;11 
assign ram[2l]='h23bdOOOc;// 
assign ram[22J='hacldOOlOi// 
assign ram!23]='h03e00008;// 
assign ram[24]='hOOOOOOOO:11 
assign ram[25j='hOOOOOOOc:l/ 
assign ram[26j='hOOOOOOOc:l/ 
assign ram[27j='hOOOOOOOO;/II/ 
assign ram[28]='hOOOOOOOO;/I// 
assign ram[29]='hOOOOOOOO;II// 

sw $31, 8($29) 40 OOOc: sw $ra, 8($sp) 
sw $16, 4($29) 40-0010: SW $50, 4($sp) 
addi $2, $0, 1 40-0014: addi $vO, $zero, 1 
beq $4, $0, 52 40-0018: beq SaO, $zero, fin 
addi $8, $0, 1 40-001c: addi $tO, $zero, 1 
beq $4, $8, 40 40-0020: beq SaO, $tO, fin 
nop 40-0024: nop 
addi $4, $4, -1 40-0028: addi SaO, SaO, -1 
SW $4, 0($29) 40-002c: sw $aO, O($sp} 
jal Ox00400008 [fib]; 40-0030: ja1 fib 
lw $4, 0($29} 40-0034: lw $aO, O($sp) 
addi $4, $4, -1 40-0038: addi $aO, SaO, -1 
add $16, $2, $0 40-003c: add $sO, $vO, $zero 
jal Ox00400008 [fib); 40-0040: jal fib 
add $2, $2, $16 ; 40-0044: add $vO, $vO, $50 
sw $2, 12($0) ; 40 0048: sw $vO,12($zero)//store to I/O mem 
1w $16, 4($29) ; 40 004c: 1w $50, 4($sp) <-- fin 
1w $31, 8($29) ; 40-0050: 1w $ra, 8($sp) 
addi $29, $29, 12 ; 40-0054: addi Ssp, Ssp, 12 
sw $29, 16($0) ; 40 0058: 5W $sp,16($zero)//store to IIO mem 
jr $31 40_005c: jr $ra 
nop 
sysca11 

119 

,1 
'j 
'1 

I , 



Appendix G 

Configurable Processor Verification 

G.l Verification Reports 

Typical successful completion report: 

* Fibonacci number test SUCCESSFULLY completed, Fib 
* Test finished after 242 machine cycles 

Typical unsuccessful completion report with calculation errors: 

# Test completed with ERRORS: Expected Fib( 5)= 8, 
obtained Fib( 5)= x 
* Test finished after 242 machine cycles 

Typical unsuccessful completion report due to a timeout: 

# Test test finished UNSUCCESSFULLY due to the timeout 
# Test finished after 50001 machine cycles 

G.2 Simulation Waveforms 

120 

5) 8 



Figure G.t: Post-route simulation waveforms of the 32-bit configuration of multi-cycle architecture 

121 



sa e' , = _____ . ______ . _____ ,. _ .. __ . ____ ~ .. _._~._I 
-------"~~. 

U.f"..:~t1 ,fjC:I+IAiMfi Nflsii1Aii 

10 

ZUJ!lIO 

~ 0 ~ 29 P 2; I 29 

;0 I 5 10 5 0 5 l2H7~e"'lo ''''''r'' '" 4 
:2 0 8 0 ; 6 iU 31 ~t6 2 0 

'0 1 .-- 0 :5 , 
~ "t~21414". 11 1 0 0 

0 0 H I 31 b 3 ;16 :2 0 
[5 ,I 14 JJ4 r::ZI47~1"'13 I.. ~ ,14 

;5 :5 is ;ZH1~.JI3 
t 2H74 .. _ :_:2147~B ... _ 2 4HB .. , I 

:0 ""'''. ·,t,-, f " 4 
~'o ;1 :1 0 '-1 ;;;0 ;1 i}12 Ii 4 {I 10 

t5 'I :::I, 0 .4 ~ '21474.j <;13 i~ 21474._;-;2147~ .. 21 7483, .. }:1 l~ 
11 1 0 .'1 II 

Figure G.2: Post-route simulation waveforms of the 32-bit configuration of one-cycle architecture 

122 



Figure G.3: Post-route simulation waveforms of the 32-bit configuration of four-stage architecture 

123 

' ____ ... --.-._._-_._.---

o 
o 



--... ~-.-------"'-••• --,--,-.. -.-....... '-.. -.-.' .. --~--~-.--~--- 'i1 

nnr..:ftff l fi~;.pMNn f.ll1sHltM 

Figure G.4: Post-route simulation waveforms of the 32-bit configuration of five-stage architecture 

124 



AppendixH 

Images of Demo Design Example 

All numbers have a hexadecimal radix. 

125 

i 
I 

I 
, 

. . 



-- • 
I 

{ 

: ..... , 

126 



127 

,I 
'I 

,:1 
::1 . , 
• ! 
r I 

I 

I 
I 
; 



• • 

128 



i 

I 

~I 
, . 

129 



-, 
I 

i 

I . 
I 
i 

Appendix I 

Altera FPGA Implemention 

Excerpt from the Altera Ouartus II fitter report for the processor with following 

configuration: 

• 5-stages pipe lined 

• 12S-bit width 

• Full ISA support 

• BRAM optimization 

130 



." 

+-----~------------------------------------------------------------------------~------------------------------------------------
; fitter RAM Summary 
+----------------------------------------------------------------------------------------------------+------+------------------+ 
; Name ; Type ; Mode 
+----------------------------------------------------------------------------------------------------+------+------------------+ 

data ram:processor data memlaltsyncram:ram rtl 21altsyncram fljl:auto generatedlALTSYNCRAM AUTO Simple Dual Port 
inst=mem:processor=imemlaltsyncram:Mux31_rtl_3IaltsynCram_3~71:auto_generatedIALTSYNCRAM AUTO ROM 
regfile:processor regfilelaltsyncram:data register rtl Olaltsyncram ptil:auto generatedlALTSYNCRAM MLAB Simple Dual Port 
regfile:processor=regfilelaltsyncram:data=register=rtl=1Ialtsyncram~ti1:auto=generatedIALTSYNCRAM MLAB Simple Dual Port 

+----------------------------------------------------------------------------------------------------+------+------------------+ 

--------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 
Clock Mode ; Port A Depth; Port A Width; Port B Depth ; Port B Width ; Port A Input Registers ; Port A Output Registers ; 

--------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 
Dual Clocks 256 128 256 128 yes no 
Single Clock ; 1024 21 yes no 

32 128 32 128 yes no 
32 128 32 128 yes no 

--------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 

--------------~---------+-------------------------+-------+--------------------~--------+-----------------------------+-----------------------------+ 
Port B Input Registers ; Port B Output Registers ; Size ; Implementation Port A Depth ; Implementation Port A Width ; Implementation Port B Depth ; 

------------------------+-------------------------+-------+-----------------------------+-----------------------------+-----------------------------+ 
yes no 32768 256 128 256 

21504 1024 21 
yes no 4096 32 128 32 
yes no .: 4096 32 128 32 
---------~--------------+------~------------------+-------+-----------------------------+------------------~----------+-----------------------------+ 

-----------------------------+---------------------+------------+--------------+------------+----------------------------+ 
Implementation Port B Width ; Implementation Bits ; M9K blocks ; M144K blocks ; MLAB cells ; MIF 

-----------------------------+---------------------+------------+--------------+------------+----------------------------+ 
128 32768 4 0 0 None 

21504 3 0 0 mips cfg.mips dlxO.rtl.mif 
128 4096 0 0 256 None - -
128 4096 0 0 256 None 

-----------------------------+---------------------+------------+--------------+------------+----------------------------+ 

131 

.... 41 A 
.-~--. ~-----.-.--... --_ .. _- . __ ._--------------------- -



----,~- -.-,-----.---~-.-- -.-~~--~~~-~~--~--

.--~------~~ ... ~.----.--.-.. -----.---~.~ •..... -.~ .. --.. -.. ---.,,-.- ~-, 
unr.uifi A fji:!~J\iNn N.tlsiGiii 

Excerpt from the Altera Ouartus II fitter report for the processor with following configuration: 

• 5-stages pipe lined 

• 128-bit width 

• Full ISA support 

• No BRAM optimization 

+-------------------------------------------------------------------------------------------------------------------------------
I Fitter RAM Summary 
+-----------------------------------------------------------------------------------~---------------~+------+------------------+ 
I Name I Type I Mode 
+----------------------------------------------------------------------------------------------------+------+------------------+ 

data ram:processor data memlaltsyncram:ram rtl 21altsyncram fljl:auto generatedlALTSYNCRAM AUTO Simple Dual Port 
; regfIle:processor_regfilelaltsyncram:data_register_rtl~Olaltsyncram-ptil:auto~generatedIALTSYNCRAM I MLAB ; Simple Dual Port; 
; regfile:processor_regfilelaltsyncram:data_register~rtl~llaltsyncram-ptil:auto~generatedIALTSYNCRAM ; MLAB I Simple Dual Port; 
+----------------------------------------------------------------------------------------------------+------+------------------+ 

-------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 
Clock Mode ; Port A Depth ; Port A Width ; Port B Depth ; Port B Width ; Port A Input Registers ; Port A Output Registers ; 

-------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 
Dual Clocks 256 128 256 128 yes no 

; 32 ; 128 ; 32 ; 128 ; yes ; no 
; 32 ; 128 ; 32 ; 128 ; yes ; no 

-------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 

------------------------+-------------------------+-------+-----------------------------+-----------------------------+-----------------------------+ 
Port B Input Registers ; Port B Output Registers ; Size ; Implementation Port A Depth ; Implementation Port A Width ; Implementation Port B Depth ; 

------------------------+-------------------------+-------+--------~--------------------+--~--------------------------+-----------------------------+ 
yes no 32768 256 128 256 
yes ; no ; 4096 ; 32 ; 128 ; 32 
yes ; no ; 4096 ; 32 I 128 ; 32 

------------------------+-------------------------+-------+-----------------------------+-----------------------------+-----------------------------+ 

-----------------------------+---------------------+------------+--------------+------------+------+ 
Implementation Port B Width ; Implementation Bits ; M9K blocks ; M144K blocks ; MLAB cells ; MIF 

-----------------------------+---------------------+------------+--------------+------------+------+ 
128 32768 4 0 0 None 
128 ; 4096 ; 0 ; 0 ; 256 ; None ; 
128 ; 4096 ; 0 ; 0 ; 256 ; None ; 

-----------------------------+---------------------+------------+---------~----+------------+------+ 

132 



Bibliography 

[1] P. Yiannacouras, JG Steffan, J Rose, "Soft vector processors vs FPGA custom 

hardware: measuring and reducing the gap", in Proceeding of the ACMISIGDA 

international symposium on Field programmable gate arrays, Monterey, California, USA, 

pp. 277-277, 2009 

[2] I. Kuon, R. Tessier, 1. Rose, "FPGA Architecture: Survey and Challenges", Foundations 

and Trends® in Electronic Design Automation,Vol. 2, no. 2, pp. 135-253, Feb. 2008 

[3] J. Nurmi, "Processor Design: System-On-Chip Computing for ASICs and FPGAs", 

Springer, 2007 

[4] "HardCopy IV Device Handbook", Ahera, Jul. 2009 

[5] "IEEE Standard Hardware Description Language Based on the Veri log Hardware 

Description Language (1364-2001)", IEEE Inc., 3 Park Avenue, New York, NY 10016-

5997, USA, 2001 

[6] J. L. Hennessy, N. P. Jouppi, J. Gill, F. Baskett, A. Strong, T. R. Gross, C. Rowen, J. 

Leonard, "The MIPS machine", in Proceedin.gs of 24th IEEE Computer Society 

International Conforence, IEEE Com peon, San Francisco, Feb. 1982, pp. 2-7. 

[7] J. L. Hennessy, D. A. Patterson, "Computer Architecture: A Quantitative Approach", 4th 

edition, Morgan Kaufmann, 2007 

[8] N. Pinckney, T. Barr, M. Dayringer, M. McKnett, N. Jiang; C. Nygaard, D. Money 

Harris, J. Stanley, B. Phillips, "A MIPS R2000 implementation", in Proceedings of the 

45th annual Design Automation Conforence, Anaheim, California, pp. 102-107, 2008 

[9] "MIPS32® Architecture For Programmers Vol. I: Introduction to the MIPS32® 

Architecture", MIPS Technologies, Rev 2.60, June 25,2008 

[10] D. Sweetman, "See MIPS Run Linux", Morgan Kaufinann, 2nd ed., 2007 

133 

I 

.I 



- i 

[11] H. Tago, K. Hashimoto, N. Ikumi, M. Nagamatsu, M. Suzuoki, Y. Yamamoto, "CPU for 

PlayStation(R)2", in Proceedings of Design, Automation and Test in Europe, 2001. 

Conference and Exhibition 2001. p. 696, 13-16 March 2001 

[12] J. L. Hennessy, D. A. Patterson, "Computer Organization and Design: The 

Hardware/Software Interface", 4th edition, Morgan Kaufmann, 2008 

[13] W. Stallings, "Computer Organization and Architecture: Designing for Performance", 

8th edition, Pearson Education Inc, 2009 

[14] Y. Liu, Z. Chen, Y. Chen, "How to Optimize the Cryptographic Symmetric Primitives 

on Loongson-2E Microprocessor", in Proceedings of the 22nd International Conference 

on Advanced Information Networking and Applications - Workshops, pp. 608-614, 2008 

[15] W. Hu, J. Wang, X. Gao, Y. Chen. "Microarchitecture ofGodson-3 Multi-Core 

Processor", in Proceedings of the 20th Hot Chips, 2008. 

[16] N. Seki, Lei Zhao, J. Kei, D. Ikebuchi, Yu. Kojima, Hasegawa Yohei, H. Amano, T. 

Kashima, S. Takeda, T. Shirai, M. Nakata, K. Usami, T. Sunata, J Kanai, M. Namiki, M. 

Kondo, H. Nakamura, "A fine-grain dynamic sleep control scheme in MIPS R3000", 

IEEE International Conference on Computer Design, pp. 612 - 617, Oct. 2008 

[17] HG Kim, HC Oh, "A DSP-Enhanced 32-Bit Embedded Microprocessor", Journal of 

Embedded Computing, Springer, 2009 

[18] J. Larus, "SPIM S20: A MIPS R2000 Simulator", University of Wisconsin-Madison, 

Tech. Rep., 2004 

[19] R. Stallman and the GCC Developer Community, "Using the GNU Compiler Collection: 

For gee version 4.4.2", GNU Press a division of the Free Software Foundation, 2008 

[20] A. Fauth, J. Van Praet, and M. Freericks, "Describing instruction set processors using 

nML", in Proceedings European Design and Test Conference, Paris, France, pp. 503-

507, Mar. 1995 

[21] P. Mishra, N. Dutt , " Processor Description Languages", Morgan Kaufinann, 2008 

[22] S. Basu, R.Moona, "High level synthesis from Sim-nML processor models", in 

Proceedings of the 16th International Conference on VLSI Design, pp. 255 - 260, Jan. 

2003 

134 



[23] G. Hadjiyiannis, S. Hanono, S. Devadas, "ISDL: An Instruction Set Description 

Language for Retargetability", in Proceedings of the 34th Design Automation Conference, 

pp 299-302, June 1997 

[24] G. Hadjiyiannis, P. Russo, S. Devadas, "Automatic architecture evaluation for 

hardware/software codesign", in Proceedings a/the 6th IEEE International Conference on 

Electronics, Circuits and Systems, Vol. 1, pp. 47 - 53, Sept. 1999 

[25] G. Hadjiyiannis, P. Russo, S. Devadas, "A methodology for accurate performance 

evaluation in architecture exploration", in Proceedings of the 36th Design Automation 

Conference, pp. 927 - 932, June 1999 

[26] A. Halambi, "EXPRESSION: A language for architecture exploration through 

compiler/simulator retargetability", in Proceedings on the Design, Automation and Test in 

Europe,pp. 100-104,~ar. 1999 

[27] A. Kejariwal et al. "HDLGen: Architecture Description Language driven HDL 

Generation for Pipelined Processors", CECS TR 03-04, University of Cali fomi a, Irvine, 

2003. 

[2S] P. ~ishra, N. Dutt, "Specification-driven directed test generation for validation of 

pipelined processors", AC\.f Transactions on Design Automation of Electronic Systems, 

VoL 13, no. 3, July 200S, 

[29] J. L. Hennessy, D, A. Patterson, "Computer Architecture: A Quantitative Approach", 

~organ Kaufinann, 1997 

[30] S. Pees, A. Hoffmann, V. Zivojnovic, H. ~eyr, "LISA-machine description language for 

cycle-accurate models of programmable DSP architectures", in Proceedings ofthe36th 

Design Automation Conference, pp. 933 - 938, June 1999 

[31] O. Schliebusch, H. ~eyr, R. Leupers, "Optimized ASIP Synthesis from Architecture 

Description Language ~odels", Springer, 2007 

[32] ~. Hohenauer. R. Leupers , "C Compilers for ASIPs: Automatic Compiler Generation 

with LISA", Springer, 2009 

[33] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink, 

H. ~eyr, "A novel methodology for the design of application-specific instruction-set 

processors (ASIPs) using a machine description language", Computer-Aided Design of 

135 

I 

,I , 
"I 
"I 



•• 

i 
I 

I 
\ 

I 
i 

1 

! 

Integrated Circuits and Systems, IEEE Transactions, Vol. 20, no. 11, pp. 1338 - 1354, 

Nov. 2001 

[34] H. Scharwaechter, D. Kammler, A. Wieferink, M. Hohenauer, K. Karuri, J. Ceng, 

R. Leupers, G. Ascheid, H. Meyr, "ASIP Architecture Exploration for Efficient IPSec 

Encryption: A Case Study", in Proceedings of the Workshop on Software and Compilers 

for Embedded Systems, Vol. 6, no. 2, May 2007 

[35] A.R. Jafri, A. Baghdadi, M. Jezequel, "Rapid Prototyping of ASIP-based Flexible 

MMSE-IC Linear Equalizer", IEEEIIFIP International Symposium on Rapid System 

Prototyping, pp.130-133, 2009 

[36] A. Chattopadhyay, A. Sinha, D. Zhang, R. Leupers, G. Ascheid, H. Meyr, "Integrated 

Verification Approach during ADL-Driven Processor Design", Microelectronics Journal, 

no. 40, pp. 1111- 1123,2009 

[37] U. Meyer-Base, A. Vera, S. Rao, K. Lenk, M. Pattichis, "FPGA wavelet processor design 

using language for instruction-set architectures (LISA)", in Proceedings SPIE, Vol. 6576, 

Apr. 2007 

[38] "CoWare® Processor Designer, Programmable Accelerators for Platform-Driven ESL 

Design", CoWare, 2006 

[39] B. Sander, J. Schnerr, O. Bringmann, "ESL power analysis of embedded processors for 

temperature and reliability estimations", in Proceedings o/the 7th IEEEIACM 

international conference on Hardware/software codesign and system synthesis, Grenoble, 

France, pp. 239-248, 2009 

[40] S. Yang, Y. Qian, Z. Tie-Jun, S. Rui, H. Chao-Huan, "A new HW/SW co-design 

methodology to generate a system level platform based on LISA", in Proceedings of the 

6th International Conforence On ASIC, Vol. 1, pp. 163 - 167, Oct. 2005 

[41] A. Jain, "FPGA versus configurable processors: selecting the right device for your 

application", lET Seminar on the Latest Technologies and Tools in Electronics Design, 

Bangalore, India, p.3, Sept. 2008, 

[42] M. Pumaprajna, M. Porrmann, U. Rueckert, "Run-time reconfigurability in embedded 

multiprocessors", ACM SIGARCH Computer Architecture News, Vol. 37, no. 2, pp. 30-

37, May 2009 

136 

• 



[43] Y. Saito, T.Shirai, T. Nakamura, T. Nishimura, Y. Hasegawa, S. Tsutsumi, T. Kashima, 

M. Nakata, S. Takeda, K. Usami, "Leakage Power Reduction For Coarse Grained 

Dynamically Reconfigurable Processor Arrays With Fine Grained Power Gating 

Technique", Field-Programmable Technology, International Conference, pp. 329 - 332, 

Dec. 2008, 

(44] H.P. Huynh, T. Mitra, "Runtime Adaptive Extensible Embedded Processors-A 

Survey", in Proceedings of the 9th International Workshop on Embedded Computer 

Systems; Architectures, Modeling, and Simulation, Samos, Greece, pp.: 215 - 225,2009 

[45] T. Halfhill, "Tensilica Tweaks Xtensa: Xtensa LX3 and Xtensa 8 Cores Boost 

Performance, Cut Power", Microprocessor Report, Tensilica, 2009 

[46] T. Tohara, G. Ezer, "Multi-Standard Video Decoder Using Configurable Microprocessor 

Technology", Consumer Electronics, Digest of Technical Papers. International 

Conference, pp. 1 - 2, Jan. 2008 

[47] "ARC® 700 Core Family", ARC International, Online, 

http://www.arc.com/configurablecoresiarc700/. Retrieved on Jan. 2010 

[48] "ARC® 600 Configurable Core Family", Product brief, ARC International, 2007 

(49] "ARChitect Processor Configuratior", Product brief, ARC International, 2007 

[50] G. Brown, "Configurable Microprocessor Implementation of Low Bit Rate Audio 

Decoding", Audio Engineering Society, Convention Paper, Presented at the 113th 

Convention, Los Angeles, USA, Oct. 2005 

[51] "MicroBlaze Processor Reference Guide", Xilinx, UG081 (v 10.3), 2009 

[52] "Virtex-5 FPGA Embedded Processor Block with PowerPC 440 Processor", Product 

Specification, DS621, Xilinx, 2009 

[53] "PicoBlaze 8-bit Embedded Microcontroller User Guide, Spartan-6, Spartan-3, Virtex-6, 

and Virtex-5 FPGA Devices", UG129 (v 1.2), Xilinx, November 11,2009 

, [54] P. Bleyer, "Pacoblaze - a synthesizable behavioral verilog picoblaze clone," Online, 

January 2010, <http://bleyer.orglpacoblaze/> 

[55] "Nios II Processor Reference Handbook, ver 9.1 ", Altera Corporation, Nov. 2009 

137 



n ?....-

I 

I 
1 

I 
l~ 

[56] F. Plavec, B. Fort, Z.G. Vranesic, S.D. Brown, "Experiences with Soft-Core Processor 

Design", in Proceedings of the 19th IEEE International Parallel and Distributed 

Processing Symposium (IPDPS'05j - Workshop 3, Washington, DC, USA, pp.167b-167b, 

Apr. 2005 

[57] B. Fort, D. Capalija, Z. G. Vranesic, S. D. Brown, "A Multithreaded Soft Processor for 

SoPC Area Reduction", in Proceedings of the 14th Annual1EEE Symposium on Field

Programmable Custom Computing Machines (FCCM'06), pp. 131-142,2006 

[58] O. Rayahi, M. Khalid, "UWindsor Nios II: A soft-core processor for design space 

exploration", in Proceedings of IEEE International Conference on Electro/Information 

Technology, pp. 451-457, June 2009 

[59] J. Gaisler, S. Habinc, E. Catovic, "GRUB IP Library User's Manual", Gaisler Research, 

2009 

[60] M.-A. Daigneault, J.M.P Langlois, J.P. David, "Application Specific Instruction Set 

Processor Specialized for Block Motion Estimation", in Proceedings of IEEE 

International Conference on Computer Design, pp. 266-271, Oct. 2008 

[61] J. Lee, J. Lee, M. Jeong, N. Eum. S. Park, "A 100MHz ASIP (application specific 

instruction processor) for CA VLC ofH.264/A VC decoder", in Proceedings of IEEE 

International Symposium on Circuit and Systems, ISCAS 2008, Seattle, WA, pp. 3462-

3465, May 2008 

[62] N. Sonmez. A. Yurdakul, "SIxD:A Configurable Application-Specific SISD/SIMD 

Microprocessor Soft-Core", in Proceedings of International Symposium on System-on

Chip, Tampere, pp. 1-4, Nov. 2006 

[63] R. Dimond, O. Mencer, W. Luk, "Application-specific customisation of multi-threaded 

soft processors", lEE Proceedings Computers & Digital Techniques, Vol. 153, no. 3, 

pp.173 - 180, May 2006 

[64] P. Yiannacouras, J. G, Steffan, J. Rose, "Exploration and Customization of FPGA-Based 

Soft Processors", IEEE Transactions on Computer-Aided Design of Integrated Circuits 

and Systems, Vol. 26, no. 2, pp. 266-277, Feb. 2007 

[65] "BlockRAM (BRAM), Block(vl.OOa)", Product Specification DS444, Xilinx, Dec. 2009 

[66] "XST User Guide 9.2i", Xilinx, 2007 

138 

# 



[67] "ColdFire® Family Programmer's Reference Manual", Freescale Semiconductor, Rev. 3, 

Mar. 2005 

[68] "ModeISim® SE User's Manual: Software Version 6.2g", Mentor Graphics, 2007 

[69] "Virtex-5 Family Overview: Product Specification", DSI00 (v5.0), Xininx, Feb. 2009 

[70] "Stratix III FPGAs vs. Xilinx Virtex-5 Devices: Architecture and Performance 

Comparison", White paper, ver. 2.1, Altera Corporation, Oct. 2007 

[71] A. Percey, "Advantages of the Virtex-5 FPGA 6-Input LUT Architecture", White Paper, 

WP284 (vI.O), Xilinx, Dec. 2007 

[72] "Digital IC Design Flow: A Tutorial on RMC's Digital Design Flow (based on 

CMOSP18 Artisan), ver. 5.0", RMC Microelectronic Lab, Jan. 2008 

[73] "Digital IC Design Flow: Tutorial. Document ICI-134", CMC, July 2004 

[74] "Spartan-3E FPGA Starter Kit Board, User Guide", Xilinx, UG230 (vl.l) June 20, 2008 

[75] A. Posamentier, I. Lehmann "The (Fabulous) FIBONACCI Numbers", Prometheus 

Books,pp.305,2007 

[76] M. Brorsson, "Mipslt: A simulation and development environment using animation for 

computer architecture education", in Proceedings of the 2002 workshop on Computer 

architecture education, Anchorage, AK, pp. 65-72, May 2002. 

[77] K.Chapman, "Rotary Encoder Interface for Spartan-3E Starter Kit," Xilinx, Feb. 20, 

2006 

[78] A. Ziebinski, S. Swierc, "The VHDL Implementation of Reconfigurable MIPS 

Processor", Book Chapter, "Man-Machine Interactions", Springer BerJinlHeidelberg, 

2009 

[79] R. Kastner, "Computer Organization", ECE 15B - Spring 2006, Lecture 8, April 27, 

2006, http://W\\w .ece.ucsb.edU/-kastner/ece 15b/slidesllecture08.pdf 

[80] "Quartus II Handbook Version 9.1 Vol. 1: Design and Synthesis", Altera Corporation, 

November 2009 

[81] "Stratix III Device Handbook, Vol. 1: TriMatrix Embedded Memory Blocks in Stratix III 

Devices", Altera Corporation, May 2009 

[82] T. R. Halfhill, "MicroBlaze v7 Gets an MMU: Memory Manager Brings Full-Fledged 

Linux to Xilinx Processor Core", Xedl Journal, 2008 

139 

I 

:1 
'. 
\ 



----

[83] "SPARC V8 32-bit Processor LEON3 / LEON3-FT: CompanionCore Data Sheet, 

Version 1.0.3", Aeroflex Gaisler AB, December 2008 

/-/ 

140 


