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Abstract 

This project presents the configurable microprocessor design based on the MIPS architecture. 

The level of configurability includes a choice of the pipe lined or unpipelined architecture, 

number of pipeline stages, data path bit-width, instruction subsetting, program and data 

memory size. The microprocessor design flow is supported by the set of standard and custom 

software tools. The wide spectrum of the microprocessor configurations provides an 

opportunity to optimize hardware for the specific application. The HDL design of the 

microprocessor is independent of the hardware platform. The portability of the design was 

verified on the competitive FPGA platforms and ASIC. The selected microprocessor 

configuration running the test application was successfully implemented and verified on the 

FPGA development board. The obtained implementation results were compared to the 

existing comm·erdal and research microprocessors and critical advantages of the presented 

design were outlined. 
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Chapter 1 

Introduction 

1.1 Motivation 

The contemporary microprocessor market offers a vast variety of chips for new designs. 

The right choice of a microprocessor to fit for a specific application is a challenging task 

nowadays. Utilization of a configurable processor can facilitate this problem. A hardware 

designer can choose the configuration of a microprocessor which precisely matches design 

requirements. The advantage of FPGA configurable computing has brought the idea of 

implementing a general-purpose microprocessor on an FPGA chip [1]. This concept along 

with the growing demands for customization of the processor and its peripherals inspires 

FPGA vendors to include microprocessors in FPGA architecture. Manufacturers offer this 

feature in a form of hard or soft core. More then 32% of hardware developers use embedded 

FPGA microprocessors in their designs [2]. Configurable hard microprocessors also follow 

this trend. Customizable microprocessors form Tensilica, ARC and Improv for ASIC 

implementation offer a broad range of microprocessor optional features. Designers can choose 

the instruction set architecture to suit the application requirements. The microprocessor data 

path and pipeline structure are also customizable in order to meet the design constrains. In the 

ladder of the microprocessor solutions the configurable microprocessors occupy a niche in the 

middle between implementation on the dedicated hardware and the software running on 

general-purpose microprocessors [3]. Most of commercially available solutions for 

configurable microprocessors are oriented on the particular technology. A designer has to 

choose the target technology up-front. It may be a choice of FPGA from different 

manufacturers or technology process. But since the design is implemented and verified on a 



chosen target platfonn it becomes very difficult to migrate the design to a different platfonn. 

The common situation is when a verified, proven design is to be upgraded due to additional 

new requirements or obsolescence of the target chip. Another challenge is the verification of 

an ASIC implemented microprocessor on FPGA platfonn. Design seamless transition from 

FPGA to ASIC is nonnally offered within technologies provided by the same manufacturer 

(e.g. Altera Stratix to HardCopy [4]). 

Beside of the problems related to a market-oriented engineering, the configurable 

processor architecture with a versatile set of configuration features offers the fine grain 

optimization of hardware resources required the specific application. The combination of the 

possible processor configurations creates the exploration space which provides the 

opportunity for the research on decision making in the selection of the specific configuration 

features. Moreover, the flexibility of the configurable and portable design provides an 

opportunity to obtain the architecture with features not available in general purpose processor 

architectures. 

The motivation of this project is to develop a configurable microprocessor architecture 

independent of the target technology. This architecture facilitates the optimization of the 

microprocessor architecture for a specific user application. The choice of the microprocessor 

architecture is provided by the set of user selectable features. 

The application set of the proposed microprocessor architecture may include the 

following: 

• The applications where operation with non-standard data bitwidth (256+) is 

required 

• The applications with limited number of the allocated hardware resources 

• The algorithm intensive low speed applications where implementation of Finite 

State Machine (FSM) is very complicated. 

• The prototyping applications where the portability of the design is critical 

The tenns processor and microprocessor are used in this project to identify the same 

object, since in modem technical literature the tenn microprocessor is frequently contracted to 

just a processor. 
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1.2 Objectives and Contributions 

The focus of this project is to develop, implement, and verify a portable configurable rusc 
processor architecture. The following goals are to be achieved in this project: 

1) To develop a processor architecture configurabJe for a user specification by selection 

of required features provided in the design. 

2) To implement configurabJe rusc processor using Verilog HDL [5] as independent 

module suitable for integration as a processor core in the processor-based digital 

systems. 

3) To develop GUI that facilitates the choice of features for the processor configuration. 

4) To select and implement a testbench for verification of generated processor 

configurations. 

5) To generate a set of the distinguished processor configurations. 

6) To verify the set of generated processor configurations. 

7) To verify the portability of the design by implementing the set of processor 

configurations on several FPGA and ASIC platforms. 

8) To implement one processor configuration in hardware using FPGA development 

board. 

9) To test and verify the demo application on the FPGA development board. 

The following contributions were made into the development of the Portable and 

Configurable rusc Processor Architecture project: 

1) The development of the specific tool for the conversion of the compiled software code 

into Verilog HDL. 

2) The conduction of the literature review on the configurable processor systems. 

3) The development of the specific design flow for the configuration and implementation 

of the proposed processor architecture 

4) The development of the Configuration Manager, the GUI-based tool for the 

facilitating the right choice of the configuration options of the proposed processor 

architecture 

5) The development and implementation of the Verilog description of portable and 

configurable processor design based on the MIPS processor architecture. 
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6) The development and implementation of the demonstration example implementing the 

proposed processor design as a part of the Fibonacci number computation and 

visualization system. 

7) The utilization of the proposed processor configuration framework as an educational 

platfonn for the processor organization teaching courses. 

1.3 Project Organization 

The rest section of the project is organized as follows: 

Chapter 2 provides a background on the processor architecture and reviews related 

research studies. 

Chapter 3 describes the design ofthe proposed configurable processor. The chapter shows 

implementation of configurable features for different processor architectures. The 

development of support software tools is also covered in this chapter. 

Chapter 4 describes synthesis and implementation of the processor core on different 

hardware platfonns i.e. FPGA and ASIC. Various combinations of configurable features and 

processor architectures implemented on different platfonns create an exploration space. The 

chapter shows the subset of variants in that space. The included demo design illustrates a 

practical utilization ofthe processor core. 

Chapter 5 describes the verification methods used to prove the functionality of the design 

on behavioral and hardware levels. The development of the testbenches and their properties 

are discussed and analyzed .. 

Chapter 6 analyzes results of the processor implementation on different platfonns. 

Implementation of the processor variants are compared and evaluated. 

Chapter 7 summarizes the conducted work and accomplishments ofthis project. 
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Chapter 2 

Background 

2.1 Introduction 

In this chapter the relevant background in the processor architecture is presented. The 

chapter focuses on the description of MIPS RISC processor which is adopted as a base 

architecture for this project. The following sections review the research development in the 

area related to the project theme. The state-of-art of research and commercial configurable 

processors is outlined and analyzed in order to determine a niche taken by the presented 

project in a domain of available solutions. 

2.2 Basic MIPS Processor Architecture 

J. L. Hennessy et al. designed MIPS (Microprocessor without Interlocking Pipe Stages) in 

1981. It was a result of their research of the processor architecture optimization for pipelining. 

The MIPS architecture proposed in [6] was used as a teaching example in their classical 

academic textbook [7] about the processor architecture design. Nowadays MIPS is widely 

used for the educational purposes [8]. 

Further development of MIPS architecture brought a row of the revisions of this 

architecture MIPS-I, MIPS-II, MIPS-III, MIPS-IV, MIPS32, MIPS64 [9]. The major market 

of the latest MIPS processor is embedded applications. They are implemented in numerous 

Cisco and Linksys routers, ADSL modems, Sony PlayStation 2, Sony Playstation Portable 

and many handheld computers[lO] [11]. 

The choice of the MIPS processor architecture as a template for the configurable 

processor design in this project is justified by following reasons. The MIPS pipeline structure 

and organization is very well studied and described [12][13]. The MIPS microprocessor 

becomes very popular for academic purposes. Many researchers implemented [14][15] and 

enhanced it [16][17]. Therefore, the modification of the existing simple MIPS to a 
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configurable architecture is easier than modification of a sparely specified commercial 

processor. As any processor with unique instruction set, MIPS requires a custom software 

compiler. In order to complete the set of development tools for the MIPS, several open

source compilers and simulators have been developed [18][19]. Utilization to the open source 

software tools facilitates the development of the configurable processor. 

The classic pipelined or unpipelined MIPS is a 32-bit RISe processor. The instruction set 

has 32-bit width for all instructions. Load/store MIPS Instruction Set Architecture (lSA) 

contains register file, which consists from 32 registers 32 bits long each. Two of them are 

assigned as special purposes registers. Register 0 is read-only and carries 0 values. It is used 

as a zero operand eliminating necessity to keep zero value in memory. Register 31 is used by 

special jump instructions to store return address. These instructions are used for calls and 

returns from subroutines. MIPS program counter has a width of 32 bit similar to the data path. 

The potential MIPS address space is up to 2 GB. 

MIPS instructions are divided into three types R-type, I-type and J-type. The instruction 

format is shown in Table 2.1. R-type defines instructions operating with registers only. The 

instruction contains addresses of two operand registers Rs and Rt, address of the destination 

register Rd for result storing and the code of the executed operation. The I-type instruction 

also contains Rs and Rd but instead of the second source register it carries the 16-bit constant 

value immediate. This constant is used as an operand in arithmetic operations and as an 

address offset in load/store operations. J-type instructions represent jumps which change the 

program counter with 26-bit address enclosed in the instruction. 

The instruction opcode has 6-bits width with possible opportunity of 64 basic operations. 

This instruction spare space allows adding of extended instructions such as FPU support. The 

simplified instruction set of MIPS processor is shown in Table 2.2. The basic set includes 

only two branch, four jump, and two memory instructions. Other instructions are arithmetical. 

The supported data types are 8-bit bytes, 16-bit half words, and 32-bit words for integer 

data. Bytes and half words are loaded into 32-bit in two ways: extra bits are filled with sign 

extension or with zeros. After the load transaction they are processed as 32-bit integer 

operands. 
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Table 2.1. MIPS instruction format 
Format Bits 

25 21 20 16 15 11 10 6 o 
Rs Rt Rd shamt 

1- Rs Rt immediate 
J- address 

Table 2.2. MIPS instruction set 
Instr. Description Format Opcodel Operation (Verilog-styJe coding) 

Func (hex) 
add Add R 0/20 R rd]=R[rs]+R[rtl 
addi Add Immediate I 8 R rt]=R[rs]+SignExtImm 
addiu Add Imm. I 9 R[ rt ]=R[rs ]+SignExtImm 

Unsigned 
addu Add Unsigned R 0/21 R rd}=R[rs]+R[rt] 
sub Subtract R 0/22 R rdl=R[rs]-R[rt] 
subu Subtract R 0/23 R[rd]=R[rs]-R[rt] 

Unsigned 
and And R 0/24 R rd]=R[rs]&R[rt] 
andi And Immediate I c R rtl=R[rsl&ZeroExtImm 
nor Nor R 

tn6 
R rd]= _(R[rs]IR[rtl) 

or Or R I R[rdl=R[rslIR[rtl 
ori Or Immediate I R rtl=R[rslIZeroExtImm 
xor Xor R R rd]=R[rsfR[rt] 
xori Xor Immediate I e R rtl=R[rsrZeroExtImm 
sIl Shift Left R 0/00 R[rd]=R[rt]«shamt 

Logical 
sri Shift Right R 0/02 R[rd]=R[rt]»shamt 

Logical 
sra Shift Right R 0/03 R[rd]=R[rt]»>shamt 

Arithmetic 
sllv Shift Left R 0/04 R[rd]=R[rt]«R[rs] 

Logical Var. 
srlv Shift Right R 0/06 >R[rs] 

Logical Var. 
srav Shift Right R 0/07 R[rt]»>R[rs] 

Arithmetic Var. 
sit Set Less Than R 0/2a Rrrsl<Rrrtl)?1:0 
slti Set Les ..,.,.- I a R[rs ]<SignExtImm)?1:0 

Imm. 
sltiu Set Less Than I b R[rt]=(R[rs]<SignExtlmm)?1:0 

Imm. Unsign. 
situ Set Less Than R 0/2b R[rd]=(R[rs]<R[rt])?1 :0 

Unsigned 
beq Branch On I 4 ifiRrrsl=Rrrtl) PC=PC+4+BranchAddr 
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Equal 
bne Branch On Not I 5 if(R[rs]!=R[rtD PC=PC+4+BranchAddr 

Equal 
:i Jump J 2 PC=JumpAddr 
i jal Jump And Link J 3 R[31]=PC+8; PC=JumpAddr 
ir Jump Register R 0/08 ~sl 
jalr Jump And Link R 0/09 =PC+8; PC=R[rs] 

Register 
lui Load Upper I f R[rt]={ imm, 16'bO} 

Imm. 
lw Load Word I 23 R[rt]=M[R[rs]+SignExtImm] 
sw Store Word I 2b MrRrrsl+SignExtlmml=Rrrtl 
SignExtImm = { 16 {immediate[15]} ,immediate} - extension of the immediate operand with 

the sign bit; 

ZeroExtImm ={16{lb'0},immediate } - extension of the immediate operand with "0" bit; 

BranchAddr = {14 {immediate[ I5]} ,immediate, 2 'bO } - extension of the immediate operand 

with the sign bit and multiplication by 4; 

JumpAddr = {PC[31:28], address, 2'bO } - concatenation of the immediate operand with four 

MSBs of program counter and mUltiplication by 4; 

The ISA architecture of MIPS defines the organization of the processor data path. The 

simplified 5·cyc1e implementation without pipeline is shown in Figure 2.1. The following 

actions are performed during each cycle: 

1. Instructionfetch cycle (IF): 
IR f- Mem[PC] 
NPC f- PC + 4 

2. Instruction decode/register fetch cycle (ID): 
A f- Regs[IR6 •• 10]i 
B f- Regs[IR11 •• 15]i 
Imm f- ((IR16) 16##IR16 .. 31 

3. Execution/effective address cycle (EX): 
ALUOutput f- A + Imm; 
or 
ALUOutput f- A func B; 
or 
ALUOutput f- A op Imm: 
or 
ALUOutput f- NPC + Imm: 
Cond f-(A op 0) 

4. Memory access/branch completion cycle (MEM): 
LMD f- Mem[ALUOutput] 
or 
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Mem[ALUOutput] ~ Bi 
if (cond) PC ~ ALUOutput 

5. Write-back cycle (WB): 
Regs[IR16 .. 20] ~ ALUOutputi 
Regs[IRll .. 15] ~ ALUOutputi 
Regs[IRll .. 15] ~ LMDi 

The design of MIPS is refined for pipelining. The multi-cycle version of the MIPS can be 

smoothly augmented with a pipeline. In a pipe lined architecture all instructions are executed 

in the same number of cycles. This organization allows one instruction per cycle throughput. 

The block diagram of the pipelined MIPS processor is shown in Figure 2.2. The standard 

MIPS processor incorporates 5-stages pipeline. A drawback of pipelining is hazards. The 

most common type of hazard is the data hazard. The data hazard is a situation when a fetched 

instruction reads the same operand as one of preceding instructions writes. If the preceding 

instruction still propagates through the pipeline, the fetched instruction may read a wrong 

value. This data hazard is called Read-After-Write (RAW). There are two ways to handle data 

hazard - stalling and forwarding. Stalling means an artificial insertion ofNOP instruction in 

the pipeline. The processor stalls the pipeline until a hazard is over. This technique results in 

wasting of processor clock cycles. Whereas, the forwarding does not have that disadvantage. 

Forwarding uses the pipeline property when the result of the instruction is available in one of 

pipeline stages but not written yet in a register. An additional hardware supports forwarding 

of the result to the stage to another stage where it is required. Another type of hazard, the 

control hazard is caused by branch instructions. The next fetched instruction after a branch 

may not be executed due to a result of branching. This would cause the pipeline to flash its 

contents and to stall. As a result the processor's speed slows down which is called the branch 

penalty. There are many methods to reduce the branch penalty. The simplest is a delay slot. It 

is efficient when delay penalty is one clock cycle. An execution algorithm of the processor 

with delay slot presumes that a next instruction after the branch is executed regardless of the 

branching result, whether the branch is taken or not. The compiler has to reorder the 

instructions and put in the delay slot an instruction which is to be executed despite a result of 

the branch instruction. 
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Figure 2.1. Block diagram of the multi-cycled MIPS processor. 
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Figure 2.2. Block diagram of the pipelined MIPS processor 
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2.3 Closely Related Work 

Two major approaches to automatic processor synthesis can be distinguished nowadays. 

One of them is template-based configurable processors. This methodology is mostly exploited 

by commercial products. The other one generates Application Specific Instruction set 

Processor (ASIP) based on Architecture Description Language (ADL) - a specific language 

developed for a processor architecture description. 

2.3.1 Architecture Description Languages 

Originally ADL was developed as a high level of abstraction description language for 

modeling processor's architectures. VHDL and Verilog languages do not completely suit for 

this purpose due to their orientation toward the hardware implementation. 

Several ADLs were created in attempt to find the best way for processor architectural 

exploration and evaluation. One of them is nML which has been developed at TV Berlin [20J. 

This language is intended for automatic generation of the software tools for an explored 

processor architecture. In order to obtain a complete processor design, the developer has to 

create the separate ADL model and HDL description of the processor. It has limited ability to 

handle invalid instructions and can not describe architectures with parallel instructions [21]. A 

lack of the hardware generation feature in nML has been recently amended in its enhanced 

version Sim-nML [22]. A synthesizable Verilog description can be obtained with Structural 

Sim-HS tool included in Sim-nML. Generation of the processor RTL description from Sim

nML specification has been successfully tested with specifications of the microcontroller 

Motorola 68HCll and microprocessor Intel 8085. Performance of the synthesized 

architecture has not been estimated. 

Similar to nML, ISDL architecture description language was developed by MIT LCS [23J. 

ISDL is instruction set specific language, specifically oriented toward Very Long Instruction 

Word (VLIW) processor architectures. However, multi-cycle and multi-word instructions are 

not fully supported by ISDL. GENSIM system software automatically generates Instruction 

Level Simulator (lSL) specific to the developed architecture. The ISL is capable to simulate 

cycle-accurate and bit-true execution of the program. The achieved speed-up of such 

simulation compared to the simulation of the VeriIog model is 34x [24]. Lately. HGEN tool 
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has been developed in order to automatically generate Verilog RTL model from ISDL 

description [25]. 

The language EXPRESSION [26] is capable to describe correctly multi-cycle and multi

word architectures. A characteristic feature of EXPRESSION is the partition of the design 

flow into two phases. Evaluation and exploration of the chosen architecture is performed in 

Exploration Phase. This phase is supported by Exploration Simulator and Exploration 

Compiler automatically generated by the software itself. The compiler and simulator allow 

rapid comparative estimation and simulation of candidate processor architectures. A chosen 

solution is finally adjusted in Refinement Phase. The software toolkit generates an optimized 

Instruction Level Parallelism (ILP) compiler and a cycle-accurate simulator from 

EXPRESSION description. Using these tools the developer may perform detailed processor 

evaluation and verification of memory hierarchy (e. g. cache, TLB). The link to RTL 

synthesis is provided by the HDLGen tool [27][28] which generates the VHDL model from 

the EXPRESSION description. In order to test results, the automatically synthesized DLX 

processor [29] has been compared to its hand-written version. Despite 20-40% worse results 

in terms of speed, power consumption, and area, it is shown that the design time is an order of 

magnitude less. The paper, however, do not compare the development efforts for the 

processors with reported degraded performance designed manually and automatically. 

One of the most prominent and widely used ADL is Language for Instruction-Set 

Architectures (LISA) [30]. Due to its C-like syntax, LISA is very attractive for architect 

designers who are beginners in utilization of ADL for ASIP development. The structure of 

LISA allows a designer to specify details sufficient for automatic generation of the software 

tools set containing compiler, assembler, linker, and simulator. These tools are used in the 

stage of exploration of the developed processor architecture. During this phase a designer can 

tune and verify designed processor by changing the ADL description. Repetition of 

compilation cycles does not introduce a considerable delay due to complete automation of the 

development environment [31 ][32]. LISA description contains enough architectural 

information for generating a synthesizable HDL model. 

The advantage of architectural exploration using LISA description inspired founders to 

develop the integrated LISA Processor Design Platform (LPDP) [33]. Efficiency ofthe LPDP 

has been evaluated on the example of ICORE processor. This ASIP processor is oriented 
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toward FFT realization, sampling-clock synchronization for interpolation and carrier 

frequency offset calculation. The handwritten version of ICORE has been compared with the 

automatically generated version. The generated ICORE shows the same clock speed, 1 % area 

overhead, and 15% more power consumption. Design efforts for LPDP ICORE are 

approximately one month and a week vs. three months for the original handwritten version. 

LPDP has apparent advantage of a fully developed and integrated system for ASIP design. 

The convenient user interface and support of different operational systems [34] distinguishes 

it from general research projects, where the integrated environment accelerates the 

exploration of various processor architectures. Performance of the LPDP generated processors 

can compete with commercial handwritten versions. However, the necessity of manual 

development of a processor data path diminishes the advantages of this system. 

The advantages of utilizing LISA ADL have been recognized by many researchers. LISA 

has been used as a base ADL for numerous research projects focused on ASIP development 

[35J[36][37]. High level of LISA development has stimulated its implementation in a 

commercial processor generation system. LISA 2.0 is used by CoWare company in CoWare 

Processor Designer [38]. This platform is dedicated for design and optimization of ASIP. 

LISA 2.0 architectural description was used to generate a full set of processor software tools 

and the RTL description in Verilog, VHDL, and SystemC. This commercial processor 

development system lately has been used in several ASIP research projects [39][40] for rapid 

processor architecture exploration. 

2.3.2 ConfigurabJe Processors 

The concept of flexible microprocessor architecture is exploited by many authors. Two 

major approaches can be distinguished: configurable and reconfigurable processors [41][42]. 

The term configurable presumes customization before manufacturing. Whereas, the 

reconfigurable processor implies configurability after manufacturing. Runtime dynamic 

changing of the configuration is a powerful feature of the reconfigurable architecture. This 

approach offers reuse of the same silicon design by mUltiple applications without additional 

manufacturing cost. Examples of the reconfigurable microprocessors are shown in [43][44]. 

These designs represent multiple computing units connected by a sophisticated reconfigurable 

network. Narrow reconfiguration ability is implemented in the computing units as well. Due 
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to implementation of the described processors using technology process, their flexibility is 

limited. 

Configurable processors became very popular last decade. They can be divided into soft 

and hard-processors. Hard processors are intended for Application-Specific Integrated Circuit 

(ASIC) implementation. Xtensa LX3 offered by Tensilica [45] is an example of commercial 

configurable processors. This is 32-bit RISC ISA processor that allows the designer to 

perform the configuration by choosing predefined options from the menus. The following 

main groups of features can be added and tuned for Xtensa LX3: 

• Execution Unit and ISA Options (multipliers, DSP engines, FPU, custom 

instructions, etc.) 

• Interface Options (DMA, FIFO, GPIOs, interrupts, debug port, etc.) 

• Memory Subsystem Options (caches, memory management unit (MMU), parity, 

cache organization, etc.) 

The chosen configuration of the processor is automatically processed by Xtensa Processor 

Generator software. The complete solution is represented by the RTL description and EDA 

scripts. The example of the configurability of Xtensa processor is demonstrated in 

implementation of the multi- standard video decoder [46]. Two different processor 

configurations are used to create the stream processor and pixel processor. Each processor is 

enhanced with specific video instructions. The optimized ISA architecture of the processors 

allows video decoding in the software only. 

A similar set of configurable features is proposed by the ARC for the ARC 600 Core and 

ARC 700 Core processor families [47][48]. ARChitect Processor Configurator [49] extends 

the processor design with Single Instruction MUltiple Data (SIMD) instructions, integrated 

coprocessor instructions, compound instructions and many others. More than 20,000 

preconfigured options can be selected by the developer. 

The explicit benefit of these processor systems is that their template-base synthesis does 

not require an extensive knowledge ofthe processor architecture. A developer can obtain fully 

functional ASIP from a specification with very high level of abstraction. Rapid automatic 

synthesis allows fast evaluation of several solutions and optimization of the final ASIP. 

Flexibility of the template-based processor architecture is limited by the set of the predefined 

options which is not always suitable for research projects. 
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Along with commercial configurable products numerous research projects show 

interesting results in this field. Advantages of the implementation of Dolby Digital (AC-3) 

decoder with the hard configurable processor are shown in [50]. The paper convincingly 

proves that utilization of the configurable processor tuned for the specific audio application 

increases performance of the processor and reduces the required size of the die. 

Very fast growth of the FPGA performance and density accompanied with sophisticated 

development tools has made FPGA devices very attractive for the implementation of a 

processor architecture. Reprogrammable nature of FPGA determines the definition of the 

processor implemented in FPGA as a soft processor. Therefore, it is not a surprise that the 

most well-known configurable soft processors are offered by major FPGA vendors Xilinx and 

Altera. Xilinx promotes 32-bit RISC soft-processor Microblaze [51] with configurable 

peripherals. It has limited configurable abilities for the core structure. This soft processor is 

proposed as alternative to the hard-processor core PowerPC 440 [52] implemented in the 

Xilinx Vertex-5 FXT FPGA family. Table 2.3 shows the performance of the MicroBlaze 

processor for different FPGA families. 

Table 2.3: MicroBlaze Processor v7.2 Performance Levels 

Architecture Performance Maximum Clock Maximum Dhrystone 2.1 

Frequency Performance 

5-Stage 1.19 DMIPs/MHz 235 MHz in Virtex®-5 280 DMIPS 

Pipeline FXT 

3-Stage 0.95 DMIPslMHz 106 MHz in Spartan®-3A 100 DMIPS 

Pipeline DSP 

Along with high-end Microblaze processor Xilinx developed Picoblaze 8-bit Picoblaze 

soft processor [53] with no options for the configurability. Source code is open for evaluation 

and modification. The HDL model is offered on very low gate level description. Picoblaze 

can be implemented only on Xilinx FPGA platform. It became very popular due to its 

simplicity, free distribution, and availability of software tools. Popularity of Picoblaze 

inspired Bleyer [54] to develop Pacoblaze - a behavioral version of Picoblaze. This model 

incorporates maximum level of parameterization. The high level definition file represents a 

wizard for implementation of the possible versions of Pacoblaze. Low level definitions files 

comprise a hierarchical ladder, which an experienced user can employ for configuration of a 

15 

'..!!! 



NrS? -

" . , 

3' 

custom version of the Pacoblaze architecture. Using Verilog optional compilation the author 

has created the specific configuration language~ which supports a variety of custom 

configurations. 

Xilinx major competitor Altera offers Nios II - second generation of Altera~s soft 

processors [55]. It is 32-bit RISC general purpose processor with 32-bit width instruction set 

similar to MIPS. Altera offers Nios II in three different configurations: economy (e), standard 

(s) and fast (t). Table 2.4 outlines specific features of each configuration. All versions allow 

adding up to 256 custom instructions. The choice of the required configuration is supported 

by SOPC Builder software. The resulting configuration is generated in a form of FPGA 

programming file. 

Table 2.4. Nios II different version features. 

Processor Version Nios IIIe Nios IIIs Nios/f 

I DMIPSlMHz 0.16 0.75 1.17 

Performance MaxDMIPS 28 120 200 

Clock (MHz) 150 135 135 

Area LEs 600 1300 1800 

Pipeline unpiped 5 6 

Branch Prediction - static dynamic 

Multiplier - 3-cycle I-cycle 

ALU Divider - - optional 

Shifter serial 3-cycle I-cycle 

The idea of modification of the commercially successful soft processors lies in the basis of 

UT Nios soft processor [56]. It is an attempt to use a different approach of configurability of 

the Altera Nios II. In contrast to original Nios II, UT Nios has optional 16/32-bit data path 

width and reduced 16-bit instruction word width. Instruction set supports five custom 

instructions. The register file has a configurable size with 32 visible registers window. There 

is an option ofinteger multiplication. Benchmark evaluation shows insignificant 1 % average 

and 56% for particular applications speed-up. UT Nios requires 31 % more FPGA resources 

than Altera Nois II. 

Another attempt to use Altera Nios II architecture for the research project is UTMT II 

[57]. The design exploits the multithread processor architecture using different UTMT II 
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configurations with multiprocessor core structure. Despite the poorer performance then Altera 

Nios II, an advantage of the 45% area saving has been reported. 

Four stages pipeline is used in UWindsor Nios II (UWN2) [58], another Altera Nios II 

compatible soft processor. The parameterization of the UWN2 is limited to 10 options. The 

best achieved area saving is 47%, while the clock speed is 7% worse than Nios II. 

The success of commercial soft processors does not discourage numerous researchers to 

develop other configurable soft processor architectures. The example of a very well developed 

and tested configurable processor is LEON3 [59]. This 32-bit processor core is designed as 

synthesizable VHDL model compatible with SPRC V8 architecture. The open source design 

offers many configurable options for the optimization. The portability of the design is verified 

for Altera and Xilinx FPGA platforms on multiple development boards. The LEON3 is also 

suitable for ASIC implementation. The best achievable clock speed is 140 MHz for FPGA 

platform and 650 MHz for ASIC. The hardware design is supported by a set of software 

development tools including simulator, compiler, linker, NewIib embedded C-library, Eclipse 

based IDE, etc. 

The general purpose traditional processor architecture is focused on the execution of 

different applications of the same hardware. While most of embedded processors run only one 

specific application. The Application Specific Instruction-set Processor (ASIP) incorporates 

an idea of optimization of the processor architecture according to a running task. This 

approach significantly improves performance and speed of the processor. Due to a high cost 

of implementation of ASIP in ASIC devices, the usage of FPGA for ASIP becomes very 

attractive. The design of video-processor [60] demonstrates the implementation of ASIP in 

FPGA. The targeted Altera Nios Wf processor core is augmented with the custom hardware 

for block manipulation. The efficient data reuse achieves three order of magnitude 

acceleration compared to software implementation. 

Instruction Set Extensions (ISE) is another approach to optimization of ASIP architecture. 

The design of the E·ASIP (ETRI-Application Specific Instruction Processor) for the CAVLC 

of H.264/AVC decoder [61] uses this technique. In order to improve the processor 

performance for the specific function, the instruction set is extended with additional special 

purpose instructions. The number of basic instructions is reduced down to the minimum set 

required for the functionality. 
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Exploration of the different aspects of processor configurability is performed in the SIxD 

application-specific soft processor [62]. The processor incorporates several configurable 

options, such as length and width of the data space, custom branching and shifting 

instructions, ability to choose subset of instructions and the choice of SIMD mode. The design 

has been successfully tested with MPEG-7 Motion Activity Descriptors application. 

Aside from the traditional RISC ISA architecture stands CUSTARD (CUStomizable 

Threaded Architecture) - a customizable threaded FPGA soft processor [63]. The available 

configurable features include data path width, number of threads, threading type, custom 

instructions, custom memory blocks, forwarding, and register file parameterization. The 

design is supported by the custom C-compiler developed by the authors. Reported evaluation 

results show a significant 2.41 x average speed-up of the single-treaded CUSTARD with 

custom instructions compared to Xilinx Microblaze. The disadvantage of the considered 

processor is a twice larger area overhead. 

The versatility of configurable processors shows the necessity of the performance 

evaluation for different configurations. Such estimation has been fulfilled using Soft

processor Rapid Exploration Environment (SPREE) [64]. This system is able to generate RTL 

description of the soft processor from the high level architecture description. The SPREE base 

configurable core is similar to MIPS and Altera Nios II processors. The textual description of 

the processor data path and ISA are used as an input for SPREE. Multiple generated 

processors were benchmarked and compared with all three versions of Atera Nios II e/s/f. The 

best variants show the same or better performance than Nios II. For example, 80- MHz three

stage pipelined processor generated by SPREE is 9% smaller and 11 % faster than Nios IUs. 

The study examines the influence of different processor architectural features on the 

performance. The impact of the following options is investigated: shifter implementation, 

multiplication support, pipeline depth, pipeline organization, forwarding, application-specific 

architecture customization, and ISA subsetting. The optimized processors achieve 

improvement of the performance per area 24.5% on average. Saving of the power and area is 

obtained 25% on average. 
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2.4 Summary 

In this chapter, the main concept of RIse processor architecture is presented. The MIPS 

processor specification and architecture are described. The related configurable solutions in 

the form of soft and hard processors are studied and analyzed. The complementary software 

tools are outlined and examined for the reviewed processors. 

19 

~ 
;'! 
:a;' 
:r. ., 
~ 
e. 
!-
0:;' 

~ 
I! .... ... 
"-

i 
~ 

! 

;1 
'I 
.'1 
II 

:1 
I, 

:1 
rt 

I 
..!!!! 



' . .. 
~r .' (f 

" .. 
H 
t. , . .. , 

It 
!! .. .• 

Chapter 3 

Configurable Processor Proposed Design 

This chapter describes the structural components of a configurable processor design and 

high level design of the processor data path. It also illustrates the design of the processor's 

control unit. 

The data path design of the configurable MIPS processor is organized in the following 

sequence: 

• 5-stages pipelined architecture 

• 4-stage pipe lined architecture 

• Multi-cycle unpipelined architecture 

• One-cycle unpiplined architecture 

The methodology of the design of configurable processor architecture in this project 

differs from the classical approach described in [12]. The classical approach does not presume 

the configurability of the described processor architecture. The evolution from the simplified 

form to the more complex is chosen for the educational purpose in order to facilitate 

understanding. Instead of this approach, here the most complicated design is taken as an 

initial and gradually modified to reach the simplest. The most complicated design contains the 

majority of the components present in other architectures, therefore it is logical to use this 

design for the transformation into other architectures. 

The 5-stage architecture is the most advanced and complicated design with maximum 

hardware overhead. All other architectures are derivatives from the initial 5-stage pipelined 

architecture. The configuration options control transformation of the initial design toward 

other three architectures. The major structural components are shared in all data path 

architectures. Components pertained only to a specific architecture included as options 

controlled by the configuration engine. 

Since the control unit design highly depends on the data path realization, the control unit 

design has limited configurability. The control unit is unique for each of the four types of 
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architectures. The choice of the appropriate control unit is also supported by 

engine. 

3.1 Datapath Components 

3.1.1 ALU 

the configuration 

In order to support MIPS instruction set, ALU is designed to have t 

performing operations with two input operands A, B. Table 3.1 shows the 

he capability of 

correspondence 

between ALU operations and supported MIPS instructions. 

Table 3.1: Supported ALU operations 

ALU Operation MIPS Instructions 

Addition (result = A+B) add, addu, addi, addiu 

Subtraction (result = A-B) sub, subu 

Logical conjunction (result = A and B) and, andi 

Logical disjunction (result = A or B) or, od 

Logical disjunction with negation (result = A nor B) nor 

Logical exclusive or (result = A xor B) xor, xori 

Pass operand (result A) jr 

Load immediate to upper word (result = B« 16) lui 

Logical right shift sri, srlv 

Logical left shift sIl, sllv 

Arithmetic right shift sra, srav 

Compare result to 0 beq, bne 

Set less than sIt, slti, situ, sltui 

J Shift for 16-bits applies only for classic MIPS instruction set. In general, 

configurable in the design. 

The symbol for ALU is shown in Figure 3.1. The list of the ALU signals and 

are shown in Table 3.2. 
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opcode 

OPERAND A 

ALU 

OPERAND B 

RESULT 

Carry out 

Zero 

Figure 3.1: Processor ALU symbol 

T bI 32 ALU . a e . siena s 

Signals Dir Bitwidtll 

OPERAND A In Data path 

OPERAN~ Data path 

RESULT 

3 or ~ bits. Depend on 
opcode In 

the instruction set 

shamt In 
ConfigurabJe; 5 bits by 

default 

I Carry_out Out 1 bit 

Zero Out 1 bit 

Description 

First arithmetic/logic operand. 

Second arithmetic/logic operand 

Result of arithmetic/logic opration 

Code of the executed operation 

Shift amount. The number of bits to shift 

the operand B 

Carry out of the arithmetic operations 

Produces "1" when result is equal 0 

The ALU module has a configurable bit-width and subset of operations. Support for shift 

commands and "Set Less Than" commands is optional and may be excluded from the design 

to reduce hardware overhead. 

The ALU is an asynchronous device and consists of the combinational logic only. 

3.1.2 Register File 

The register file design consists of 32 registers with configurable bit-width. The register 

with address 0 does not have memory elements. It comprises hardwired O's. The register file 

symbol is shown in Figure 3.2. 
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REGISTERS 

Address rs Read 
rs 

Address rt 

----D elk 

- wren 

Write 
address Read 

Write rt 
data 

Figure 3.2: Register file symbol 

The register file module works simultaneously in write and read modes. It asynchronously 

produces data on two output ports from two registers which addresses are set on the 

corresponding address inputs. It also synchronously writes data from the Write data input port 

to the register which address is set on the Write address input. Writing is controlled by wr en 

signal. In order to support configurability, two writing modes are implemented: Read-First 

Mode and Write-First Mode. The Figure 3.3 and Figure 3.4 show the difference between these 

two modes. The writing mode defines the order of access in case of simultaneous read-write 

access to the same register. In Read-First Mode the data set on the write port immediately 

appears on the corresponding read output port and is written to the register later. In Write

First Mode data is written to the register on the first clock edge and only after that the data is 

set on the read output port. The writing mode is a configurable feature of the register file 

module. The timing diagrams demonstrating the difference of Read-First and Write-First 

modes are shown in Figure 3.5 and Figure 3.6. 

Read-First Write-First 

Register File Register File 

Wrne Data Read Data Write Data Read Data 

'F 
I Register I 

Figure 3.3: Regfile Read-First block diagram Figure 3.4: Regfile Write-First block diagram 
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elk 

wren 

Address r61rt 

ResQ r61rt 

Write Address 

Write Dala 

~------~----~~~~~~D~R~~~~--'J---7------~ 
~ ______ ~ ____ ~~X~wo~~~~~ ____ ~ ______ ~ 

Figure 3.5: RegfiJe Write-First mode timing diagram 

elk 

wren 

Address r61rt 

Read r61rt 

Write Address 

Write Data 

~------~------~~~~A+~DR~3~f------~----~ 
~ ______ ~ ______ ~~X~W~~~J~~~ ____ ~ ______ ~ 

Figure 3.6: RegfiJe Read-First mode timing diagram 

3.1.3 Instruction Memory 

The instruction memory module is designed as an asynchronous static memory. The size and 

bit-width are configurable features of this module. The instruction memory has read-only 

access. The symbol of the instruction memory is shown in Figure 3.7. The design of the 

module provides the opportunity to use it as the built-in instruction memory in the 

microcontroller type of applications. The module also can be used as a prototype of the Ll 

cache design in the advanced processor applications. 

INSTRUCTION 
MEMORY 

Address 

Read 
data 

Figure 3.7: Instruction memory symbol 
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3.1.4 Data Memory 

The data memory module has an asynchronous read access and synchronous write access. 

The writing access is enabled by Mem Write signal. The symbol of the data memory is shown 

in Figure 3.8. Due to MIPS load-store architecture, simultaneous read-write access to the 

same memory address in not possible. Table 3.3 shows the input/output signals of the data 

memory module. The timing diagram describing the read/write data memory access is shown 

in Figure 3.9. The size and bit-width are configurable features of this module. Similar to the 

instruction memory, the data memory module can used in microcontroller style applications 

and as a prototype of the L 1 cache design. 

DATA MEMORY 

Address 

MemWrite 

Write 
data 

Read 
data 

Figure 3.8: Data memory symbol 

T bl 33 D a e . . ata memory SI!na s 

Signals Dir Bitwidtll 

clk In 1 bit 

Address In Data path 

Write data In Data path 

MemWrite In Ibit 

Read data Out Data path 

Description 

Processor clock 

Memory address 

Data to be written in the memory 

"}" enables writing to the memory 

Data read from the memory 
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elk 

MemWrite 

Address 

Read data a 

Write Data 
~--_+-__ -+---..Ir--__ 4-! ---+---
~~ ____ -+ ______ ~-JX~W_D_A_TA~~ ______ -+ ____ __ 

Figure 3.9: Data memory read/write timing diagram 

3.1.5 Program Counter 

The program counter shown in Figure 3.10 is a register with a write enable (wr en) input. 

It holds the current instruction address. The bit-width of the program counter is configurable 

and depends on the size of the instruction memory. The program counter module does not 

have a built-in counting capability. An external adder is required for implementing the 

counting function. The functionality of the program counter is illustrated by the timing 

diagram shown in Figure 3.11. 

IN 
PC 

wren 

elk 

OUT 

Figure 3.10: Program counter symbol 

elk 

wren 

IN 

OUT 0 --:.------..;..; 

Figure 3.11: Program counter timing diagram 
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3.1.6 Sign Extension 

In order to support I·type of commands, MIPS architecture requires extension of the 16· 

bit immediate operand to the bit-width of the processor datapath. In most cases it means 

filling the extra bits with the sign bit of the immediate operand. For commands andl, ori, xori 

it requires filling the extra bits with as. 

The sign extension module has a configurable bit-width depending on the processor 

datapath bit-width. The extension mode is controlled by the input port signJxt. The module 

is asynchronous and contains only the combinational logic. 

OUT 

Figure 3.12: Sign Extension symbol 

3.2 Control Unit Design 

The control unit module contains all logic required for producing control signals for 

configurable architectures. The control unit design is different for all four architectures. Due 

to the significant variations of the processor architectures, a unified configurable design of the 

control unit is not feasible. Each control module comprises a unique design specific to the 

chosen processor architecture. The control unit is connected to the data path trough the unified 

interface. It consists of the same set of input and output signals. This set contains a maximum 

possible number of the control signals pertained to the most complicated processor 

configuration. Therefore instantiation of the specific control module in the chosen processor 

design is a call ofthe corresponding name of the module. 

Due to redundancy in the connection interface, not all interface signals are used in the 

control unit design. They are just not connected to internal parts of the control unit. This does 

not introduce a problem since they are ignored by the synthesis tool. 

27 

2C: 
~ 
211 ;a, 
i ... 
i: 
~ 

" 'I' 
! ... 
"t .. 
i 
l 
Q 

! 

:1 
'I 
'I 

~I 
I • 

:1 
rl 

i 
I 

I 
f 

I 
I 

, I 

I --



All control units support the same set of instructions. The way they are decoded and 

handled differs in control units for different architectures. The distinguishable feature of the 

control module for the pipelined architectures is an internal pipe lining of control signals. This 

internal pipe lining corresponds to the pipe lining of the data path. Detection and handling of 

all type of hazards native for a pipelined architecture occur in the control unit. 

3.3 Pipelined Architecture Design 

The design of the pipelined architecture fonows the concept described in [12]. It exploits 

the Instruction Level Parallelism (ILP) when an stages of the processor execute different 

instructions simultaneously. 

Configuration options for pipelined processor architecture in this project consider 1\vo 

architectures: five stages and four stages. The maximum number of stages can be identified as 

follows: 

• Instruction Fetch (IF) 

• 
• 
• 
• 

Instruction Decode(ID) 

Execute (EX) 

Memory Access (MEM) 

Write Back (WB) 

The designed architecture implements the following features of the pipe lined MIPS 

processor organization: 

• Branch delay slot 

• Data hazards handling 

• Control hazards handling 

• Forwarding 

In the pipe lined architecture one instruction is issued every clock cycle. Therefore in the 

ideal situation, the throughput of the processor is equal to the clock speed. However, hazards 

cause the throughput to be reduced. The implementation of the branch delay slot reduces the 

penalty for control hazards but requires explicit support in the compiler. The data hazards are 

handled by forwarding and pipeline stalling. Read After Write (RAW) is the only type of data 
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hazard possible in the proposed pipelined architecture. The Write After Read (WAR) and 

Write After Write (WA W) hazards are not possible in the designed processor. 

3.3.1 Five Stages Pipelined Processor 

The block diagram of the processor with five pipeline stages is shown in Figure 3.13. The 

IF stage contains program counter, instruction memory, instruction address adder and 

multiplexer which selects the source of the next instruction address. An issued instruction is 

decoded in ID stage and analyzed in the control unit. Selection of the address source of the 

next instruction is controlled by signals from the control unit. In case of a sequenced order of 

execution, the address is increased by a number of bytes in the instruction word. Though this 

number is a configurable option, on practice 4 bytes organization is chosen. It allows a 

standard instruction set and compiler to be used. In case of a taken branch or jump instruction, 

the next instruction address is calculated in ID stage. Since jr instruction uses a register for the 

jump address, it may introduce a data hazard. The forwarding from EX, MEM, and WB stages 

is used to reduce or avoid a stalling penalty for data hazards. The ID stage includes Register 

File, adder for the taken branch address calculation, sign extension module, and comparator 

for the branch decision. Implementation of a separate comparator rather than using the ALU 

on EX stage reduces the branch hazard penalty down to one cycle. That penalty is covered by 

the branch delay slot technique. A drawback of this approach is a hardware overhead required 

for the extra comparator and forwarding mUltiplexers. 

ID stage multiplexers support forwarding fr?m EX, MEM, and WB stages. The jump 

address is obtained by combining lower bits from instruction and PC higher bits. 

Instruction decoding is implemented by routing data and addresses contained in the 

instruction code to the corresponding recipients. The op-code and function code are decoded 

in the control unit. 

The EX stage comprises ALU and multiplexers. Multiplexers are used to support the 

instruction set. They select ALU input data according to a processed instruction. They also 

support forwarding from MEM and WB stages. One of the mUltiplexers is dedicated for 

selection of the register address to be written in case of a register command. 
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Figure 3.13: Block diagram of five stages pipelined processor 
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The MEM stage consists of data memory and forwarding multiplexer. If the propagated 

trough this stage instruction is not load or store, the MEM stage just pass all data through 

without any changes. 

The WB stage graphically is represented only with multiplexer. This multiplexer selects 

pipelined data to write back either from the data memory or ALU. The choice depends on the 

processed instruction. Implicitly WB stage includes the writing portion of the register fiJe. 

The writing to the register fiJe occurs on this stage. 

The control unit is shared between all stages. It gets data and generates control signals for 

all data path components in order to support proper functionality of the processor. 

3.3.2 Four Stages Pipelined Processor 

The classic five-stage pipe lined processor has a disadvantage of having separated MEM 

stage. This stage is active only in case of load/store command and for other commands, data 

just pass though the pipeline. The design of the four-stage processor addresses that under

exploitation of hardware resources. This architecture combines EX and MEM stages in one 

EX stage. The block diagram of the described architecture is shown in Figure 3.14. 

In the conventional five-stage processor the address for load/store operations executed in 

the MEM stage is calculated in the ALU located in the EXE stage. Executing these two 

operations in the same stage in series would drastically reduce the throughput. In order to 

avoid this reduction, an additional adder is placed in the ID stage. This adder calculates the 

address of the memory access. 

Elimination of one stage excludes some scenarios of data and control hazards. The control 

unit has to handle lower number of forwarding and stalls. Therefore. the four-stage 

architecture has following advantages: 

• Improved latency 

• Reduced probability of data and control hazards 

• Reduced complexity of the control unit 

• Reduced hardware for the pipelining and forwarding 

The trade-offs for implementing four-stage architecture are: 

• Additional adder 

• Possible slower clock speed 
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The comparator and address adder in this architecture work in parallel. In general, an 

adder structure is more complex than comparator's. Therefore, the additional adder may cause 

a longer delay in the ID stage. The delay highly depends on an implementation platform. In 

case of FPGA, implementation may not necessarily lead to a longer delay in the ID stage. See 

Chapter 4 for implementation details. 

It is clear that the four-stage architecture can be derived from the five-stage one. The 

choice of a specific pipeline configuration is achieved by selecting particular compilation 

keys. The HDL descriptions of five-stage and four stage architectures are contained in the 

same module. The compilation keys control only the difference in the designs causing partial 

compilation of the code pertained to a specific architecture. The design of the control for four 

stages architecture is similar to five stages. Nevertheless due to structural differences, it is 

realized as a separate module. The choice of a control unit for the particular architecture is 

also controlled by compilation keys. 

3.4 Unpipelined Architecture Design 

The basic principle of the unpipelined MIPS architecture is described in [12]. Though 

inferior to a pipe lined architecture as per clock speed, the unpipelined architecture offers 

benefits of simplicity and lower hardware overhead. For the design with limited hardware 

resources the unpipelined architecture may be preferable. 

3.4.1 One-Cycle Processor 

The one-cycle processor architecture is the least efficient from speed point of view. But it 

requires least amount of hardware resources. The execution of any instruction takes only one 

clock cycle. Therefore, the execution of the longest instruction defines clock speed of the 

processor. For the architecture shown in Figure 3.15 the longest is a load type instruction. 

To transform the base five stages pipelined design to a one-cycle design, the following is 

performed: 

• All pipeline registers are replaced with dummy pass modules 

• All forwarding hardware is disabled 

• A specific for one-cycle architecture control unit is implemented 
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Figure 3.15: One-t:ycle processor architecture 
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In the architecture shown in Figure 3.15, only register file, program counter, and data 

memory are synchronous. The rest of the processor is asynchronous. The control unit in this 

architecture the control unit's design is very simple. This is because the handling of hazards, 

stalls, and forwarding is removed. Basically, only instruction decoding is left in the control 

unit module. 

3.4.2 Multi-Cycle Processor 

The multi-cycle architecture is a mid-way between the pipe lined and one cycle designs. It 

has more hardware overhead than one-cycle architecture, but benefits from the shorter 

average execution time of instruction. Similar to the pipe lined architecture, it is divided into 

five sections where the execution of each section occurs in one clock cycle. The execution 

time of each instruction depends on the type of the instruction. It varies from three clock 

cycles for branch type instructions to five cycles for load type. Each stage is separated by a 

register that holds the data produced by each stage. Since each instruction is issued after 

completion of a previous instruction, no forwarding components are required. They are 

disabled by appropriate compilation keys. Also some supplement pipelining provisions are 

removed. Removal of the next instruction address adder also contributes to a hardware 

reduction. ALU is used for the calculation of the next instruction address and for instruction 

operation because they occur in different processor cycles. In the same way, ALU is used to 

calculate the branch address, sparing another adder. The block diagram of the multi-cycle 

architecture is shown in Figure 3.16. 

The control unit significantly differs from all other architectures. Since the execution of an 

instruction requires several clock cycles, the design of the control unit utilizes Finite State 

Machine (FSM). 
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3.5 Configuration Control 

Selection of a processor architecture is controlled by a set of compilation keys. 

Configurability of the design exploits Verilog HDL capability of macro definitions and 

optional compilation. The configuration control is based on the following Verilog compiler 

directives: 

• 'define 

• 'ifdef, 'elsif, 'else, 'endif 

• 'ifndef 

The structure of all design modules contains a base part common to all processor 

architectures and optional parts pertained to the chosen configuration. All configuration 

control definitions are contained in one file processor _conftgjlat. v. In order to change the 

processor configuration, it is necessary to enable or disable definitions provided in the 

configuration file or change a defined number in the macro in case of a numerical 

configuration option (e.g. bit-width). Modification of the configuration file can be achieved in 

two ways: manually and by software. The manual modification requires basic skills and 

knowledge in processor architecture. In order to facilitate a choice of a processor 

configuration, the specific GUI based wizard is developed. Using the wizard requires only a 

basic specification of the processor configuration. 

The style of HDL design defines all possible flexibility in the configuration file. The 

current state of the design explores a limited subset of the possible options defined in the 

configuration file. Other options are left for the further development. 

3.6 Configurable Features 

The configurability of the proposed processor design is not limited to the choice of four 

architectures. Each processor architecture has a subset of configurable features. The subset of 

features is common for all architectures. The combination of features and processor 

architectures creates a significant exploration space of possible processor designs. The design 

configuration space is shown in Table 3.4. 
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Table 3.4: Set of configuration features available for the processor core 

Configurable Processor architectures 

features One-Cycle Multi-Cycle 4-stage 5-stage 

Pipeline Pipeline 

Data path bitwidth x I x x x 

Instruction set x x x x 

subsetting 

Data memory size x x x x 

Instruction memory x x x x 

size 

110 address space size x x IX x 

110 bitwidth x x Ix x 

FPGA optimization x x x x 

3.6.1 Data Path Width Parameterization 

The processor data-path bit-width is not limited. In theory, an arbitrary number can be 

chosen. For sake of practicality, the only bit-widths 16,32,64, 128, and 512 are explored. The 

original MIPS instruction set is designed for 32-bit processor. Therefore, the full utilization of 

wider data bus requires extension of the existing instruction set with additional commands. 

Nevertheless, the MIPS instruction set fully compatible with wide data path processors with 

full support ofR-type commands and limited support ofl-type commands. 

For all data path sizes the bit-width of an instruction remains 32-bit. This constrain insures 

the compatibility of the designed processor with MIPS instruction set and therefore utilization 

of MIPS software tools (e.g. compiler, linker, simulator). 

3.6.2 Instructions Set Parameterization 

The configurability of the instruction set is limited to the choice of enabling/disabling two 

sets of commands: Shift and Set Than Less. Selection of these sets includes a barrel shifter 

and comparator in the ALU module. In case of an application specific processor design, 

saving of hardware resources may be achieved when these instructions are not used. 
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Due to the open configurable architecture of the processor, any custom instruction can be 

added to the design. The support of a custom instruction may require a modification of the 

control unit and data path design. 

3.6.3 Data Memory Parameterization 

The following parameters of the data memory can be configured: 

• Memory size (address bit-width) 

• Organization - number of bytes in one memory word 

• Mapping window - limits in the processor address space allocated for the data 

memory 

The data bus width of the data memory is defined by the processor bit-width. 

3.6.4 Instruction Memory Parameterization 

Parameterization of the instruction memory supports the following options: 

• Memory size (address bit-width) 

• Organization - number of bytes in one memory word 

Mapping is not required for the instruction memory due to a separated access interface 

for this type of memory. 

3.6.5 110 Memory Parameterization 

The I/O memory interface features the following configuration options: 

• Memory size (address bit-width) represents the allocated for input/output address 

space size 

• Data bit-width 

• Mapping window defines Bmits for the processor address space allocated for the 

input/output 

Data bit-width is not Bmited but should be equal or less than processor bit-width. A choice 

violating this rule would cause a waste of hardware resources. 
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3.6.6 FPGA Optimization 

To reduce the consumed hardware resource of the target FPGA, BlockRAM (BRAM) can 

be utilized. In modem FPGAs built-in hardware [65J such as BRAM is made available to the 

designers to improve the design speed and minimize the consumed FPGA's area. 

By default, an FPGA compiler implements memory components in BRAM whenever it is 

possible. In order to facilitate BRAM implementation, the memory HDL behavioral 

description must contain a dedicated address register [66]. The typical BRAM organization 

with built-in address register is shown in Figure 3.17. 

i\ 

1 o Or- F-Address Register Memory 0 0 • ;-----
Register 1I DI Array Latches . r-- (common to 

r- > both ports) r- > 
Jl Write r 

Strobe 
r Read Jl 

Strobe 
r Latch Jl 

Enable 
WE 

1 I 

I EN 
I.. Control Engine 

Optionall 
Inverter I eLK 

DConfigurable Options 

Figure 3.17: BRAM logic diagram 

Implementation of the instruction memory with a separate address register requires 

duplication of the PC register. This register is implied as a part of BRAM by the synthesis 

tool. Therefore, this apparent increase in the number of structural components in HDL leads 

to a reduction in hardware overhead in final implementation. 

Utilization ofBRAM for the data memory requires duplication of the register allocated for 

the pipe lining of the data memory address. Modification of the five stages pipe lined 

architecture for BRAM optimization is shown in Figure 3.18. Dotted line shows hardware 

blocks implemented in BRAM. 
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3.7 Input/Output Interface 

Practical usage of the processor core requires a hardware provision for communication 

with external devices. The MIPS instruction set does not have specific input/output 

commands. The general approach in this case is to use a data memory address space for 

input/output interface mapping. Figure 3.19 shows the hardware implementation of the 

external memory sharing the address space with an internal memory of the processor core. 

1/0 MEMORY .. Address B 

{ I/) 

MemVllrile ---t;. Read z --+ PINS ii: data B 

---+- Write 
dataB 

EN .. MemEnA ... 
Read 

Address A data A 

MernVllrite ---I> 
Vllrile 

data A 

EN 

il 
M .. 

r-+ Addr - MemWrile U 
Decode l .. V -

DATA MEMORY 

nEN 
MernEn 

... Address 

Read 
dala 

Vllrile 
data 

Figure 3.19: Block diagram of the input/output interface organization 

I/O memory module shown in Figure 3.19 may encapsulate any input/output structure. It 

can be a set of input/output registers. multiple or single external memory blocks, or any 
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combination of them. The internal address decoder defines only two types of accesses - to 

internal data memory or external memory. In order to use the external memory address space" 

an additional hardware overhead is required, e. g. supplementary address decoder, registers, 

memory, etc. The example of connection of an external device to the designed processor core 

is described in the section 4.5.3 "Demo Platform Interface Design" of this project. 

The lIO memory interface is the only connection of the designed processor core to the 

external world. In case of a standalone implementation of the processor core, lIO memory 

interface is routed to pins of a chip of the chosen platform. This interface is used for 

connection of the testbench in this project. 

3.8 Configuration GUI 

Selection of the combination of architecture and features of the implemented processor 

core requires certain skills in a processor architecture design. Manual tuning of the 

configuration fi1e requires attention to a correlation of compilation keys. A wrong 

combination of the selected keys may leads to a non-functional processor design. In order to 

ensure selection of the correct set of compilation keys, GUI wizard software is developed. 

The appearance of the wizard software is shown in Figure 3.20. The wizard software is 

written using VB.NET language in Microsoft Visual Studio 2008 Integrated Development 

Environment (IDE). 

The GUI has two tabs: Configuration and Architecture. The Configuration tab contains 

comprehensible menu with available configuration options. Each drop list in the menu 

contains the commonly used numbers for practical processor configuration. If the choice is 

not in the list of suggested options" it can be entered manually in the textbox. The default 

values of the menu pertain to 32-bit five stages pipe lined processor with predefined 

parameters. Therefore. configuration of the default design does not need any processor 

architecture knowledge. 
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The Architecture tab shows the block diagram of the selected processor architecture. If 

user changes the chosen configuration the block diagram dynamically changes. The pictures 

of the block diagrams are shown in Figure 3.13, Figure 3.14, Figure 3.15, and Figure 3.16. 

That visualizes the selected architecture and helps to make the choice of other options. 

The generation of the resulting configuration file occurs when Generate Conjig File 

button is pressed. If the file already exists the dialog window appears for confirmation. 

3.9 Summary 

This chapter has described the details of the design of the MIPS based configurable 

processor. The described processor design has a choice of four different major processor 

architectures. In addition to architectural configurability, the multiple structural options are 

presented for each processor architecture. The specific software tool is developed to facilitate 

and coordinate the choice of mUltiple configuration options. In order to show capability of the 

designed processor core, the demo design is developed for the existing FPGA development 

board. The demo design includes the hardware and software parts. The hardware section 

comprises the selected processor core and interface peripherals. The software section contains 

demo program and LCD driver. 
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Chapter 4 

Implementation 

In this chapter the implementation of the proposed configurable processor on FPGA and 

ASIC platforms is explored. The design and implementation flow is described in details. 

Various processor variants are generated and synthesized using the custom-proposed 

configuration tool and standard FPGAIASIC development tools. The obtained implementation 

results characterize the maximum clock speed and hardware resources of each processor 

configuration. The detailed interpretation of the implementation data is provided in chapter 6. 

A practical implementation of the proposed processor core is shown on the example of the 

demo design implemented on FPGA development board. 

4.1 Hardware Components and Development Tools 

Assorted software and hardware tools were used in this project. The development tools 

used for implementation and verification of the design are shown in Table 4.1. The Xilinx 

development board "Spartan-3E FPGA Starter Kit Board" was used for hardware 

implementation of the demo design. 

Table 4.1: Implementation and development tools 

Name Usage Description 

Xilinx ISE 9.2.03i Development and Xilinx FPGA synthesis 

Altera Quartus II 9.0sp2 Development and Altera FPGA synthesis 
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Mentor Graphics ModelSim Behavioral and FPGA post-route simulation 

SE 6.2g 

Synopsys Design Analyzer ASIC synthesis 

MipsIT 1.3.0 Compilation and linking of MIPS software 

sreg2vlog 1.0 Custom format conversion (*.srec ~ Verilog *.v) 

MIPS Processor Configuration Custom processor configuration 

Manager 

MipsSim 1.5.1 MIPS software simulation 

Microsoft Visual Studio 2008 IDE for development ofsreg2vlog 1.0 and MIPS Processor 

Configuration Manager GUI 

4.2 Design and Implementation Flow 

The design-implementation flow of the proposed configurable processor involves the 

usage of different tools from different vendors. The major stages of the flow are shown in 

Figure 4.1. 

Architecture Block Diagram stage is dedicated for the design of the high level 

architecture described in Chapter 3. At this stage one of the four proposed architectures is to 

be selected and the set of configuration options is to be defined for the implementation. 

MIPS Test Program Software is the software development stage where the test or any 

other specific application is designed. In general, the executed software can be designed using 

arbitrary development tools supporting MIPS architecture. This project uses MipsIt IDE for 

development and MipsSim for simulation. The IDE supports both C/C++ and Assembler 

languages. The linker is capable to produce multiple output formats. None of them can be 

implemented directly into the instruction memory module. Therefore, the Motorola S-record 

format [67] is selected for the conversion at the next stage. 

MIPS Code to Verilog Conversion stage utilizes the custom conversion tool 

srec2vlog developed in this project. The tool converts Motorola S-record format to Verilog 

assignment operators for ROM as shown in Figure 4.2. 
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Architecture Block 
Diagram 

FPGA Syntesis 
and Post-Route 

Model Simulation 
Generation 

ASIC 
Netlist 

Gate Level 
Simulation 

MIPS Processor 
Configuration 

Manager 

Test Bench 

Figure 4.1: The configurable MIPS processor design flow 

assign [addressO] = dataO; 

assign [addressl] = datal; 

assign [addressN] = dataN; 

address - instruction memory address 

data - instruction memory data 

Figure 4.2: Format ofthe pseudo code inserted in the instruction memory module by the 

proposed custom conversion tool 
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Verilog HDL Design is the hardware development stage where the HOL description of 

the proposed processor was developed. After the completion of the processor development 

this stage is intended for the processor customization beyond the options presented in this 

project. Also at this stage the me generated by the converter is included in the instruction 

memory module using the 'include directive. The software program to be executed by the 

processor becomes encapsulated in the ROM (Read Only Memory) instruction memory. 

Processor Configuration stage is assigned for the selection of the required processor 

architecture and configuration. All four possible architectures are described in a form of 

Verilog HOL using optional compilation keys for selection of the particular architecture. The 

HOL programming style congregates all configuration changes in one configuration me 

processor _config. v. A specific configuration of the processor can be chosen manually by 

modifying the configuration me or with the help of MIPS Processor Configuration 

Manager. At the output of the stage the fully developed HDL description of the specific 

processor configuration is obtained. 

At the Behavioral Simulation stage the fully defined processor design is combined 

with the corresponding testbench me. The co-design of the processor sofuvare program and 

testbench supports functional verification of the processor hardware. The behavioral 

simulation is performed by ModelSim tool [68]. The verified processor design can be 

synthesized on either FPGA or ASIC. 

FPGA Synthesis and Post-Route Simulation Model Generation stage produces 

the bit-stream me for FPGA configuration and model for post-route simulation. 

ASIC Gate Level Netlist Generation stage creates the gate level netIist for the further 

fabrication on silicon and gate level simulation. 

At the Post-Route Simulation and Gate Level Simulation stages the synthesized 

modellnetlist is verified again using the same testbench module interacting with the same 

build-in' program in the instruction memory as the testbench and program applied on the 

behavioral simulation stage. 
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4.3 FPGA Implementation 

The implementation of the proposed configurable processor on the FPGA platfonn is 

perfonned targeting devices from two major vendors - Altera and Xilinx where various 

configurations of the processor are fit into different FPGA device families. In order to 

compare the implemented configurations, the chip that is capable of incorporating the largest 

number of possible configurations is chosen. 

The base design is developed and verified in Xilinx ISE environment. The Altera Quartus 

II is used as an alternative for portability verification of the base design. The implementation 

of the Xilinx-oriented features (i.e. FPGA optimization) of the design on the Altera platfonn 

leads to a significant difference in the processor area and clock speed. The obtained results 

may facilitate the selection of the optimal platfonn for the implementation of any application 

targeting ASIP with specific timing and area requirements. 

4.3.1 Project Files 

Figure 4.3 illustrates the hierarchical structure of the top module mips_dlx module for the 

five-stage pipelined processor configuration in Xilinx ISE project view window. Each design 

module is defined in separate file. The description of each project file is shown in Table 4.2. 

The structure of the design comprises two levels of hierarchy. The top level is represented by 

the module ritips _ dlx that contains the description of interconnects and instantiations of the 

data path modules. The second level of the hierarchy constitutes modules containing the HDL 

designs of the major data path components described in §3.1. The verification process 

introduces an additional level of the hierarchy. The testbench includes the mips_dlx module as 

a UUT (Unit Under Test). This three-level structure is used only for the purpose of 

verification, and it is not synthesizable. 
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Figure 4.3: MIPS_DLX project modules hierarchy. 

Table 4.2: MIPS_DLX project files description 

. File Name . Description;:; '.' , ' 
.... ,;' ", '. '~.::"', . , . 

, ,~. . :.' ' \. ! ". ~ '," ' " :-

mips_dlx.v Main project file. Defines all interconnects between 

processor components, declaration of the mips_dlx 

module. 

Processor_control. v Comprises the module ofthe control unit for the 5-stage 

pipelined processor configuration, declaration of 

mips_dlx module, and declaration of the controlyipe 

module. 

~ssorjmem.v Comprises the processor instruction memory module 
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interstage _data Jeg. v Comprises the parameterizable module of the pipeline 

inter-stage register, declaration of the 

interstage _data Jeg module. 

Processor Jegfile.v Comprises module of the processor register file, 

declaration ofthe reglUe module. 

Processor alu.v Comprises the processor ALU module, declaration of the 

alu behav module. 

Memory.v Comprises the processor data memory module, 

declaration ofthe data ram module. 

Control_ mcycIe. v Comprises the module of the control unit for the multi-

cycle unpipelined processor architecture, declaration of 

controCmcycle module. 

Control_ onecycIe. v Comprises the module of the control unit for the one-

cycle unpipelined processor architecture, declaration of 

the control_ onecycle module. 

Controtpipe_ 4st.v Comprises module of the control unit for 4-stage 

pipe lined processor architecture, declaration of the 

control yipe _ 4st module. 

Interstage .J)ass. v Comprises the module of the dummy pass inter-stage 

register, declaration of the interstageyass module. 

Processor _ config. v Comprises definitions and configuration control macros 

auto _ config.J)art. v The automatically generated part of the configuration 

file. Included in processor _config. v by 'include directive 

utils.v Comprises functions used in the design but not available 

in Verilog 

Ext Imm.v Comprises the function Extlmm of the immediate 

operand extension. 

mips_dlx_int_tb.v Comprises the verification testbench. Not synthesizable. 
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4.3.2 Architecture 

The graphical symbol of the proposed configurable processor is shO\\TI in Figure 4.4. The 

figure reflects the configurations with 32-bit I/O interface and 10-bit address of I/O memory 

space. The symbol represents all possible architectures and configurations and depends only 

on the configuration of I/O interface which affects the bit-width of the address and data lines. 

The description of the input/output signals of the configurable processor is shown in Table 

4.3. 

elk io_mem_enable 

io _mem_write _enable 
reset 

io _mem_addr(9:0) 

io_mem_data_out(31:0) io_mem_dataJn(31:0) 

Figure 4.4: 32-bit MIPS processor module 

Table 43 MIPS' f: . . IDter ace sIgna s 
Signal Name --:' - Direction -- Description ' '}-' , . ',"' 

-' , 

:"" .. ~ , >C-., ',". ,"" . ,",,-, - ,- --. ,,~ 

elk In Main clock signal 

I reset In Global reset signal 

io_mem_data_out In Data signals ofI/O interface. Inputs for MIPS 

processor, outputs for I/O memory components. This 

signal is used for entering data into the processor 

I io_mem_enable Out Enable access to I/O memory interface 

io_mem_write_enable Out Write enable to I/O memory interface 

io_mem_addr Out Address signals of I/O memory 

io_mem_data_out Out Data signals of 110 interface. Outputs for MIPS 

processor, inputs for I/O memory components. This 

signal is used for processor data outputting. 
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4.3.3 BRAM Optimization 

The implementation of the processor with BRAM optimization is verified on the synthesis 

stage. In case of implementation of the instruction and data memories in BRAM the Xilinx 

synthesis tool reports about implementation of the instruction and data memory as aBRAM 

and absorption of the implied address register into BRAM. 

If the design is implemented without the FPGA optimization option the synthesis tool 

reports about implementation of instruction and data memory on LUTs due to the 

asynchronous read of memory. The excerpts from the synthesis reports for BRAM and LUTs 

implementations are shown in Appendix C.2 

The synthesis report also contains information about the number ofBRAM blocks used in 

the design. If FPGA optimization is not used, the synthesis tool does not report any BRAM 

utilization. See the summary reports in Appendix C.I. 

4.3.4 Timing Constraints 

The only constraint applied for the processor core is the clock speed. The maximum speed 

of the designed processor depends on the chosen configuration. In order to estimate the 

maximum speed, the clock constraint is changed according to the configuration. The 

interactive technique is used for the optimal constraint retrieving. The initial constraint is 

obtained from the synthesis report which defines the possible maximum speed without actual 

routing. The initial constraint is changed and tried until synthesis and routing fail. If the clock 

constraint is set with a big slack, the synthesis tool does not generate a design with maximum 

possible speed. If the clock constraint is too tight, the implementation fails on the mapping 

stage. The constraint for which the tool generates the best achievable clock period can have 

negative and positive slack. Timing constraints for different configurations are shown in 

Table 4.4. The one-cycle processor variant does not have the EXEIMEM register holding the 

memory address. Consequently, there is no register to be accommodated in BRAM. 

Therefore, the implementation of the one-cycle variant with BRAM optimization is not 

performed. 
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Table 4.4: Clock period timing constraints (ns) 

I Architecture 

Bit 5-stage 4-stage Multi-Cycle One-Cycle 
Instr. Set 

Width 
no no no no 

BRAM BlUM BRAM BRAM BRAM BRAM BRAM BRAM 

Full 25 18 25 15 25 N/A 
256 

14 14 21 20 16 15 23 N/A 

13 12 18 16 14 14 20 
128 

Reduced 11 11 14 14 14 14 I 18 N/A 

Full 11 10 16 16 11 11 18 N/A 
64 

Reduced 10 10 14 14 10 10 16 N/A 

Full 10 9 10 13 10 10 16 N/A 
32 

Reduced 9 12 11 10 9 9 14 N/A 

Full 10 10 11 12 9 9 16 N/A 
16 

8~0 Reduced 11 10 9 9 12 N/A 

4.3.5 Xilinx Platform Implementation 

For Xilinx FPGA platfonn implementation, Virtex-5 FPGA device is selected with 

following specifications: 

Device: XC5VLX50 

Package: FF324 

Speed grade: -1 

The essential FPGA [69] characteristics that affect the maximum clock speed and occupied 

area of the implemented processor are: 

• 550 MHz max clock 

• 7200 slices 

• 28800 LUTs 

Table 4.5 shows the best achievable clock speed for the set of the processor configurations 

implemented into Xilinx FPGA. 
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Table 4.5: Maximum clock speed (MHz) of the processor configurations implemented in Xilinx 

FPGA 

Architecture 

Bit 5-stage 4-stage Multi-Cycle One-Cycle 
lnstr. Set 

Width 
no no DO no 

BRAM BRAM BRAI\I BRAM BRAM BRAM BRAM BRAM 

Full 44 56 40 40 51 52 40 
N/A 

I 256 
Reduced 

71 72 46 50 63 60 43 
N/A 

Full 
83 84 56 55 71 69 I 50 

N/A 
128 

Reduced 
90 91 65 72 83 72 56 

N/A 

Full 
91 100 63 64 91 81 56 

N/A 
64 

Reduced 
101 100 72 72 100 94 63 

N/A 

Full 
100 111 73 77 100 86 63 

N/A 
32 

Reduced 
112 111 91 96 112 109 73 

N/A 

Full 100 100 86 83 107 102 64 
N/A 

16 
Reduced 

113 100 92 95 112 111 83 
N/A 

The utilization of the FPGA resources used for the implementation of various processor 

configurations is shown in Table 4.6. The sizes of instruction and data memories are chosen 

equal for all configurations as shown below: 

• Instruction memory size - 1024 words 

• Data memory size 1024 words 

The detailed implementation reports for the selected processor configurations are shown 

in Appendix C. 

In order to verifY the extremities, the 512-bit 5-stage pipe lined processor configuration 

with the full instruction set support has been implemented and verified. The implementation 

results are shown in Table 4.7. For this implementation the selection of the lager FPGA 

device is required. The chosen device is XC5VLX155 with 97280 LUTs available. 
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Table 4.6: Xilinx FPGA resources (LUTs) used for the implementation of the different processor 

configurations 

Architecture 

Bit 5-stage 4-stage Multi-Cycle One-Cycle 
Instr. Set 

Width 
no no no no 

BRAM BRAM BRAM BRAM BRAM BRAM BRAM BRAM 

Full 9927 8858 9761 8720 8850 7845 6 N/A 
256 

Reduced 5073 4004 4960 3894 3896 2831 3907 N/A 

Full 4757 4237 4657 4114 4196 3609 4271 N/A 
128 

Reduced 2732 2179 2570 2018 2008 1457 2015 N/A 

• Full 2541 2260 2348 2048 2081 1821 2099 N/A 
64 

Reduced 1444 1147 1359 1061 1062 767 1132 N/A 

Full 1369 1203 1242 1069 1106 935 1142 N/A 
32 

Reduced 811 70 601 I 589 422 648 N/A 

Full 734 64 4 569 570 466 599 N/A 
16 

Reduced I 507 403 469 364 361 257 419 

Table 4.7: Implementation results of512-bit 5-stages pipelined processor configuration 

Parameters noBRAM BRAM 

Area 20193 LUTs 18106 LUTs 

Max clock speed 32.8 MHz 42.4 MHz 

Clock constraint 45 ns 20 ns 

4.3.6 Altera Platform Implementation 

In order to compare the Altera and Xilinx implementations, the compatible Altera FPGA 

is chosen for the processor implementation. The Altera and Xilinx FPGAs are different by 

many aspects including a structure of the base elements. The match for Virtex-5 is Stratix III 

family fabricated with utilization of the same 65 nm silicon technology. The base element of 

Xilinx technology is LUT and for Altera it is the Adaptive Logic Module (ALM). A 

comparative ratio (Le. ratio of the LUT quantity to the quantity of ALMS required for the 
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implementation of the same design) of ALM vs. LUT is 1.8x by Altera sources [70] and 1.2x 

by Xilinx sources [71]. The compatibility of the families used in the project is based on -1.5x 

practical ratio. Therefore, the closest available Altera analog of Xilinx XC5VLX50 has the 

following parameters: 

Device: EP3SL70 

Package:F780 

Speed grade: 4L 

Capacity: 27000 ALMs 

Max internal clock speed: 600 MHz 

The set of processor configurations implemented in Altera FPGA is similar to the set of 

Xilinx implementations. Table 4.8 shows the maximum clock speed of the implementation in 

AItera FPGA. 

Table 4.8: Maximum clock speed (MHz) oftbe processor implemented in Altera FPGA 

Architecture 

Bit Instr. 5-stage 4-stage Multi-Cycle One-Cycle 

Width Set 
no no no no 

BRA!\I BRAM BRAl\1 BRAM BRAM BRAM BRAM BRAM 

Full 51.78 49.25 27.16 27.07 39.72 38.56 X N/A 
256 

Reduced 48.01 49.49 36.98 38.1 45.28 43.57 X N/A 

Full 72.11 68.95 46.74 46.19 63.69 58.09 X N/A 
128 

Reduced 74.83 73.37 54.95 56.75 64.21 63.38 47.44 N/A 

Full 85.14 85.32 62.28 60.38 77.63 66.22 49.63 N/A 
64 

Reduced 86.22 94.67 69.81 69.57 90.59 73.06 52.25 N/A 

Full 96.93 96.41 74.42 73.69 89.35 83.52 54.97 N/A 
32 

Reduced 100.02 98.01 81.18 76.51 98.82 94.66 60.31 N/A 

Full 102.03 104.64 83.17 81.0 107.38 93.39 61.4 N/A 
16 

Reduced 119.52 104.01 85.02 87.57 121.68 98.92 66.42 N/A 

The time analysis for the three top configurations ofthe one-cycle architecture is unavailable 

due to unsuccessful fitting of the design into the chosen FPGA device. The size of the design 
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exceeds the fitting capability (27000 ALMs) of the chip. Nevertheless, the synthesis tool 

produces the amount of the required hardware resources for the implementation of oversized 

configurations. Table 4.9 shows the FPGA hardware resources required for the 

implementation of the selected processor configurations. The numbers of ALMs shown in the 

shaded cells indicate the unsuccessful implementations. 

TabJe 4.9: Alten FPGA resources (ALMs) used for tbe implementation oftbe different 

processor configurations 
I Architecture 

Bit Instr. 5-stage 4-stage Multi-Cycle One-Cycle 

Width Set 
no no DO no 

BRAM. BRAM BRAM BRAM BRAM BRAI\I BRAI\I BRAM 

Full 6066 6066 6278 6351 5511 55 r N/A 
256 ' " 

Reduced 3127 3281 230 2307 40017 N/A 
" , 

Full 2993 2934 2903 2915 I 3195 2661 '31477 N/A 
128 " .. 

Reduced 1582 1572 1116 1114 1404 1415 23417 N/A 

Full 1435 I 1385 1665 1531 1453 1474 12014 N/A 
64 

Reduced 806 754 732 641 757 641 11298 N/A 

Full 739 745 702 647 672 654 6166 
32 

:ii Reduced 469 485 428 455 382 5809 N/A 

Full 396 425 219 461 383 4266 N/A 
16 

Reduced 290 302 275 -312 244 260 4138 N/A 

4.4 ASIC Implementation 

In order to verify portability of the proposed design, the selected processor configurations 

were compiled using TSMC 0.18 /lm technology process. The synthesis of the considered 

processor is performed by CMC recommendations for the Digital IC Design Flow [72] [73]. 

The synthesis tool Synopsys Design Analyzer was used to obtain the gate level netlist. The 

compilation is performed under the control of the script shown in Appendix D. The 

synthesized set has a reduced number of implemented configurations compared to FPGA 
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implementations. Table 4.10 contains the data about maximum clock speed of the selected 

processor configurations implemented using the technology process. The exhaustive 

implementation of all possible configurations requires unreasonable amount of time. 

Therefore, it is not practical to implement a complete configuration set. The proof of the 

design portability and acquisition of the data for a comparative analysis can be achieved with 

a lower number of implementations. 

Table 4.10: Maximum clock speed (MHz) of the processor configurations implemented using 

0.18,...m technology process 

Bit Architecture 
Instr. Set 

Width 5-stage 4-stage Multi-Cycle One-Cycle 

Full 165 100 134 87 
256 

Reduced N/A N/A N/A N/A 

Full N/A N/A N/A N/A 
128 

Reduced N/A ""'fA N/A N/A 

Full N/A N/A N/A N/A 
64 

Reduced N/A N/A N/A N/A 

Full 200 158 168 139 
32 

Reduced 200 161 176 116 

Full 200 186 182 148 
16 

Reduced 200 174 I 204 156 

The same 4 ns clock timing constraint was applied for all configurations. In all cases the 

constraint was violated with a different negative slack. The minimum achievable clock period 

is calculated as the sum of the applied constraint and reported slack. 

The important data retrieved from the compilation report includes the total cell area 

occupied by the implemented design. This data is shown in Table 4.11 for the implemented 

processor configurations. The area units are relative and specific for the Artisan tpz973gwc 

cell library used for the synthesis. For Artisan library the units are 11m2. 

The implementation of the design using the technology process was performed 

successfully without any modifications to the Verilog code used for the FPGA 

implementations. Therefore, the portability of the proposed design is fully verified. 
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Table 4.11: Total cell area (J-lm2
) occupied by the processor configurations implemented using 

0.18 J-lm technology process 

Bit Architecture 
Instr. Set 

Width 5-stage 4-stage I Multi-Cycle One-Cycle 

Full 8309477 8241904 39663 6732384 
256 

Reduced N/A N/A N/A N/A 

Full N/A N/A N/A N/A 
128 

Reduced N/A N/A N/A N/A 

Full N/A N/A N/A N/A 
64 

Reduced N/A N/A N/A N/A 

Full 1065715 ,,75418 1044842 947h51 
32 

Reduced 1032431 1046299 1022721 88 

Full .]40470 556243 526176 46002 
16 

Reduced 525973 539625 523056 45835 

4.5 Demo Platform Design and Implementation 

The purpose of the demo platform design is to show a practical utilization of the 

configurable processor core. Through the memory mapped 110 interface connected to the user 

interface the selected processor core obtains input data, processes the collected data, and 

shows the results on the display. 

4.5.1 Hardware Platform Description 

The hardware setup used to implement the processor design is Spartan-3E FPGA Starter 

Kit Board [74J. This development board incorporates Xilinx Spartan-3 FPGA chip 

XC3S500E and variety of peripherals. The block diagram of the implemented setup is shown 

in Figure 4.5. The Rotary Shaft Encoder is chosen as an input device for the demo design. A 

photo ofthe encoder is shown in Figure 4.6. 
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Figure 4.5: Demo platform block diagram 

110 MEM 

Figure 4.6: Spartan-3E startup kit FPGA board 

Depending on a direction, rotation increases or decreases a default number read by the 

processor core. The default number is 5. The input number is used to calculate Fibonacci 

number [75]. The input data indicates the position in the sequence of Fibonacci numbers. The 

calculated result is shown on the character LCD display in the following form: 
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Fib(!vJ=M, 

N - order of Fibonacci number 

.M - calculated Fibonacci number 

Rotation of the shaft causes a change of both Nand M numbers dynamically. The numbers 

are represented in hexadecimal radix. The number of characters allocated for N and N are two 

and four respectively. 

4.5.2 Processor Core Configuration 

The demo design utilizes the processor core with following configuration: 

• Five stages pipelined architecture 

• 32-bit data path 

• Shift commands support 

• Set Than Less commands support 

• Instruction memory size - 1024 words 

• Instruction memory count step - 1 word 

• Data memory size - 1024 words 

• Data memory count step - 4 bytes 

• Upper limit of data memory address space - h8fffffif 

• Lower limit of data memory address space - hI 0000000 

• I/O memory allocated size - 1024 words 

• 110 memory data bit-width - 32 bits 

• Upper limit ofIlO memory address space - h00400000 

• Lower limit ofIlO memory address space - hO 

• Program counter bit-width - 32 bits 

• Reset address - h80020000 

• Stack pointer initial data - h800bcOOO 

The limits of data memory, 110 memory, initialization values for program counter and stack 

pointer are chosen to be compatible with MIPS simulation model in the simulator Mipslt 

[76]. 
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4.5.3 Demo Platform Interface Design 

The signals from Rotary Shaft encoder are processed in the Decoder module. The module 

performs debouncing of input signals, detection of a shaft tum event and direction of a tum. 

The HDL design of the Decoder module is based on Xilinx reference design [77]. The 

direction and tum event change the initial number for Fibonacci calculation. The register that 

storing the number is connected to VO memory interface. The decoding in VO memory 

address space is supported by a dedicated decoder. 

In addition to Fibonacci number calculation, the processor core runs a custom driver for 

LCD screen. The driver software generates data and control signals according to the 

specification of LCD screen interface. LCD signals are written to registers mapped to the VO 

memory address space. The mapping of LCD signals and Fibonacci initial number are shown 

in Table 4.12. 

Table 4.12: Mapping of the Demo design signals in 110 memory address space 

Signal Name MIPS 110 Address Bit range Direction Description 

fib_in_number OxOOOOOO08 31:0 Input Order of Fibonacci 

number 

lcd _ output_data OxOOOOOO14 7:4 Output LCD data to be written 

lcd drive OxOOOOOO14 3 Output Enable signal for whole 

LCD interface 

lcdJs OxOOOOOO14 2 Output Command/Data select 

signal 

lcd _ rw _control OxOOOOOO14 1 Output Read/Write control signal 

lcd e OxOOOOOO14 0 Output Read/Write enable signal 

4.5.4 SoftwareIHardware Co-Design 

Timing and electrical specification of LCD interface requires an algorithm intensive 

control capability. That capability is supported in the software running by the processor core. 

The following functions are performed in the software: 

• LCD power-on initialization 

• LCD configuration 
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• Writing data to LCD 

Writing data to LCD in the loop sustains a dynamic refreshment of the visualized information 

on the screen when the shaft is rotated. All timing delays for the LCD interface are 

implemented in software loops. Pre-processing of the rotary shaft encoder signals is realized 

in hardware in a form of HDL code. The code also has a provision for the control of LEDs 

and reading of buttons available on the board. This provision is used for development and 

debugging of Demo softwarelhardware co-design. 

The driver software is written in C+t- language. The limitations of the implemented 

processor core are reflected in the programming technique. For instance, only unsigned 

integer variables are used in the code. The compiled code is examined in order to eliminate 

unsupported commands and variables. The configuration of the processor core is optimized to 

support the demo program. The optimization includes a choice of the supported command 

subset, size of instruction and data memory. The fulJ code of the demo design program is 

shown in Appendix A. 

4.5.5 Demo Design Implementation 

The choice of FPGA device for the demo design implementation is defined by the chip 

installed on the development board. The parameters of FPGA are shown below: 

Device: Xilinx Spartan-3 XC3S500E 

Package: FG320 

Speed grade: -5 

Capacity: 9312 LUTs 

The time constraint is determined by 50 MHz clock available on the development board and 

connected to the FPGA input. All other constraints are related to the pin assignments. The full 

set of the demo design constraints is shown in Appendix E. The synthesis of the demo design 

was successfully performed with the following results: 

Number of used LUTs: 4888 

Number of used I/O blocks: 30 

Minimum period: 19.971 ns (Maximum frequency: 50.073MHz) 

Device utilization: 52% 
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Since the FPGA optimization option is not used, the synthesis report does not have the 

information about BRAM utilization. The full implementation report is shown in Appendix E. 

4.6 Sumntary 

This chapter showed the successful implementation of the proposed configurable MIPS· 

like processor on the two competitive FPGA platforms and ASIC implementation using 

0.181lm TSMC technology process. The applied design flow and tools used on every design 

stage were described in details. The justification of the selected implementation platforms was 

based on the project requirements and FPGA devices compatibility. As a result of 

implementation using standard FPGNASIC toots, the data about hardware resources 

utilization and maximum possible clock speed was obtained for the selected configurations. 

The demo design was successfully implemented in the selected development platform 

meeting all design constraints. 
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Chapter 5 

Design Verification 

This chapter discusses the verification scheme of the proposed microprocessor 

architecture. The process is achieved in two stages. The scheme is conducted at two stages of 

the design flow. The first stage is at the HDL development level of the design where a 

testbench is built to veritY the design's HDL code. The second is at post- implementation 

level, where the implemented design on the target platform is tested. At the HDL level, the 

design's code is tuned until the correct behavior ofthe design is reached. The post

implementation verification depends on the target platform. For example, in case of FPGA, 

the main objective of this verification is the post-place & pout simulation model. However, in 

case of ASIC implementation, the objective is the gate level netlist. 

The design of a testbench must cover as much as possible functionality of the simulated 

processor. The large number of the verified processor configurations and implementation 

platforms appeals to the stringent requirements for the testbench. In order to be able to veritY 

numerous variants, the testbench output shall simply state whether the tested design failed or 

passed. The functional verification of the design is performed for the selected processor 

configurations. When all bugs are eliminated, the set of selected configurations is verified 

with post-route simulation. Table 5.1 shows the subset of the processor configurations which 

were simulated where the simulated configurations are referred to by x sign. The shown 

selection was driven by the following reasons: 

• BRAM optimization is independent of the instruction set and bit-width. It may be 

verified once per chosen architecture 
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• Different from the standard 32-bit processor configuration may be verified only at 

extremities. In the considered case, extremities are 16-bit and 256-bit 

• Reduced instruction set is independent of bit-width, It may be verified once per chosen 

architecture 

t' Ii th T hi 51 V 'fi f a e , : en Ica Jon rna rlx or fi t' e processor con Igura Jons se t 

Architecture 

4-stage Multi-Cycle One-Cycle Bit e 

• 

Instr. Set 
I 

Width 
no no no no 

BlUM BlUM BlUM BlUM BlUM BlUM BlUM BlUM. 

Full X X X X X X X 
I 256 

Reduced 

• 

Full 
I 128 

Reduced 

Full X X X X 
64 

Reduced 

Full X X X X X X X 
32 

Reduced X X X X 

Full X X X X 
16 

Reduced 

5.1 Testbench Design 

The testbench is created to verify the functionality of the developed processor. The 

recursive algorithm of calculation of the Fibonacci numbers is widely used as an evaluation 

example of the functionality of the MIPS processor [78J [79J, The Fibonacci calculation 

algorithm can be implemented into a compact program due to its recursive nature. Translated 

into machine codes it utilizes most of the proposed instruction set including the complicated 

instructions (e, g. function calls; branches, jumps etc,). Moreover, the translated program 

contains all RAW hazard scenarios possible in the proposed pipelined architecture. The 
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external data required for the computation is minimal. The described set of properties of the 

Fibonacci algorithm makes it very practical for validation of the proposed processor. 

5.1.1 Fibonacci Number Test Program 

The Fibonacci number sequence was introduced by the medieval mathematician Fibonacci 

(Leonardo Pisano) as a solution to the logical puzzle. Later it was found that the sequence 

reflects many processes in nature [75]. The Fibonacci numbers comprise the following 

sequence: 

1, 1,2,3,5,8, 13,21,34,55,89, 144,233,377,610,987, 1597,2584,4181,6765 ... 

The C-style description of the recursive function for the calculation of the Fibonacci 

numbers is shown below. 

int fib(int n) { 

if (n==O) {return Ii} 

if (n==I) {return I;} 

return (fib(n-I) + fib(n-2»i 

The assembler code obtained after translation is augmented manually for communication 

with the high level Verilog testbench. The assembler code of the test program is shown below. 

Iw $29, 4($0) Iw Ssp, 4($zero) //Ioad from I/O mem 
Iw $4, 8($0) Iw SaO, 8($zero) //Ioad from I/O mem 
addi $29, $29, -12 ; addi Ssp, Ssp, -12 
fib: 
sw $31, 8($29) 
sw $16, 4($29) 
addi $2, $0, 1 
beq $4, $0, 52 
addi $8, $0, 1 
beq $4, $8, 40 
nop 

; 
i 

addi $4, $4, -1 ; 
sw $4, 0 ($29) ; 
jal Ox00400008 [fib]; 
lw $4, 0 ($29) i 
addi $ 4 , $ 4 , -1 i 
add $16, $2, $0 
jal Ox00400008 [fib]; 
add $2, $2, $16 

sw $ra, 8($sp) 
sw $sO, 4($sp) 
addi $vO, $zero, 1 
beq SaO, $zero, fin 
addi $tO, $zero, 1 
beg SaO, $tO, fin 
nop (delay slot) 
addi SaO, SaO, -1 
sw SaO, O($sp) 
jal fib 
lw SaO, O($sp) 
addi SaO, SaO, -1 
add $sO, $vO, $zero 
jal fib 
add $vO, $vO, $sO 
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sw $2, 12 ($0) 
lw $16, 4 ($29) 
fin: 
lw $31, 8($29) 
addi $29, $29, 12 
sw $29, 16 (SO) 
jr $31 
nop 

sw $vO,12($zero)//store to I/O mem 
lw $sO, 4($sp) 

lw $ra, 8($sp) 
addi Ssp, Ssp, 12 
sw $sp,16($zero)//store to I/O mem 

; jr $ra 
; nop 

The additional instructions have been inserted at the beginning of the program to retrieve 

the initial stack value and the order of calculated Fibonacci number. The program performs 

calculation starting from the value in r4 and places the calculated result in r2. Moreover, the 

program frequently sends values of the stack and r4 to I/O interface. This method allows 

monitoring of the values by an external testbench. 

The translated machine codes are contained in a separated file which is stored in the 

instruction ROM. Appendix F shows two variants of the developed test program. The 

variation reflects the differences of the processor architectures. The applicability of the 

variants is shown below: 

• Delay slot with reordering - pipelined architecture 

• No delay slot - unpipelined architecture 

If reordering is not used for the pipe lined architecture. the additional nap instructions have 

to be placed instead ofreordeiing. This option can be chosen in the compiler. 

A recursive nature of the test program allows testing of all possible data and control 

hazards for the implemented instruction set. 

5.1.2 Verilog Testbench 

The organization of the testbench and test program allows them to be applicable at the 

behavioral and post-rout levels. The testbench does not interact directly with the internal 

processor registers. Though acceptable for the behavioural simulation, the direct access is not 

applicable on the post-route leve1. The testbench mips_d/x_tb.v comprises the instance of the 

tested processor configuration and memory accessible by the testbench. The memory is 

connected to the processor as I/O memory and mapped to the processor memory address 
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space. The mapping of the VO memory is shown in Table 5.2. The testbench also contains the 

pre-calculated array of Fibonacci numbers. 

Table 5.2: Mapping ortestbench in I/O memory address space 

I 110 Memory Address Direction ( processor scope) Description 

• 1 Input i Initial stack value 

2 Input Order of Fibonacci number 

3 Output Calculated Fibonacci number 

4 Output Current stack value 

The test program loads r4 with the order of the calculated Fibonacci number and r29 

(stack pointer) with the initial value. The program performs calculation continuously updating 

VO memory with current values of the stack and Fibonacci number. The simulation finishes 

when the stack pointer returns back to its initial value. The block diagram of the developed 

Fibonacci number testbench is shown in Figure 5.1. 

Test Bench 

Processor Core 1I0MEM 
UUT 

r2 
Test stop 

2 

r4 3 

4 

r29 (stack) 

Figure 5.1: Block diagram of the Fibonacci number testbench 

The testbench program compares the result contained in VO memory with the true pre

ca1culated Fibonacci number and reports whether the test is successfully completed. The 

examples of the successful and unsuccessful simulation reports are shown in Appendix G. 

The waveform of the simple case Fib(3) =3 is also shown in Appendix G. Due to the 

recursive nature of the algorithm, the calculation of Fibonacci numbers of the higher order 

requires substantially longer time. For instance, the calculation of Fib (16) = 1597 requires 

52447 machine cycles of the processor with one-cycle architecture. In order to reduce the 
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verification time, the Fibonacci number calculation case Fib (5) = 8 is chosen for testing of 

all implemented configurations. The higher order of calculation does not increase the 

confidence in verification results but only the execution time and size of the data placed in the 

stack. 

5.2 Pipelined Architecture Verification 

The five-stage architecture was simulated and the following message was obtained for all 

tested configurations of this architecture: 

# Fibonacci number test SUCCESSFULLY completed, Fib (5) 8 

# Test finished after 28£ machine cycles 

The same test is performed four-stage architecture and the following message was obtained: 

# Fibonacci number test SUCCESSFULLY completed, Fib ( 5) = 8 

# Test finished after 278 machine cycles 

The important part of the pipelined architecture testing is verification of the hazards 

handling. The following sequence of the instructions creates a data hazard: 

0: lw $29,4($0) IIWB stage 

1: lw $4, 8($0) I/MEM stage 

2: addi $29, $29, -12 IIEX stage 

r29 value used on the EX stage by instruction 2 is fetched from the regfile before it is written 

to the regfile by instruction O. Therefore r29 value must be forwarded from the WB stage to 

EX stage. The waveform in Figure 5.2 shows how the instruction addi (address 2) fetched in 

the IF stage from the instruction memory triggers the change of the forwarding multiplexer in 

the EX stage selecting ALU operands A and B from the WB stage (multiplexer address 2). 

Another case of hazards created by an instruction sequence: 

2 : 

3: 

4 : 

addi $29, $29, -12 

sw $31, 8 ($29) 

sw $16, 4($29) 
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Figure 5.2: Forwarding WB~EX and MEM~ EX in the pipe lined architecture (ModelSim waveform) 
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Figure 5.3: Stalling and forwarding MEM~ID in the pipelined architecture (ModelSim waveform) 
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The shown hazards are similar to the previously described hazard, where r29 value is used 

on the EX stage before it becomes available from the regfile. The first hazard is handled by 

forwarding from the MEM stage and the second hazard is handled by forwarding from WB 

stage. This forwarding is also shown in Figure 5.2. The instruction sw (address 3) triggers the 

forwarding of the ALU operand A from the MEM stage (multiplexer address 1). In the same 

way the next instruction sw causes the forwarding of the operand A from the WB stage 

(multiplexer address 2). 

Since not all hazards can be handled by forwarding, the verification of stalling is to be 

verified as well. The following instruction sequence creates the hazard to be handled by 

stalling and forwarding: 

7: addi $8, $0, 1 IIEX stage 

8: beq $4, $8, 40 IIID stage 

The instruction beq (address 8) uses r8 value on the ID stage when the previous 

instruction addi (address 7) that changed r8 did not yet write it in the regfile. Moreover, the 

result of addi instruction is not available yet from the EX stage. Therefore, the immediate 

forwarding cannot help. The stalling for one clock cycle and forwarding from the MEM stage 

allows handling that type of hazards. Figure 5.3 shows the detailed waveform of the described 

hazard handling in the simulation of the five-stage architecture with BRAM optimization. 

The shown examples of forwarding and stalling do not cover the whole set of RAW 

hazard handling that are implemented in the proposed processor design. The complete set of 

verified hazard scenarios handled in the pipelined configurations is as shown in Table 5.3 

T hi 53 D b a e . : ata d h dl d h f. azar s an e )y orwar mg an d Ir . h . r d h' sta mg In t e pipe me arc Itectures 
Pipeline Length Fibonacci Hazards Handled by Hazards Handled by 

Test Forwarding Stalling 

4 stages Fib(5)=8 2 2 

5 stages Fib(5)=8 4 5 

The Fibonacci number testbench contains all described hazard scenarios. The correct handling 

of these hazards was simulated and verified. The post-route simulation was successfully 

performed for the configurations shown in Table 5.1. The only type of hazard possible in the 

proposed pipelined architecture is the RA W hazard, therefore handling of WAR and WA W 

hazards is not required. 
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5.3 Multi-Cycle Design Verification 

Due to the significant difference in the control units between multi-cycle and pipeJined 

architectures, the verification of the control unit functionality for the multi-cycle architecture 

is crucial. The simpler control unit design contains no hazard handling to be verified, though 

FSM functionality is to be validated. Figure 5.4 shows the se1ected waveforms of the 32-bit 

multi-cycle processor running Fib(3) =3 program. The highlighted waveforms ofFSM states 

(i. e. state & nexlstate) represent a typical example ofFSM operation. 

zOOt0001 . 

. ~ ·~iOOO~:_~~t 
. ~ . 7 0 --- -- ~ ~--- -- -.-

Figure 5.4: Wneform ofthe multi-cycle architecture simulation 

The shown waveforms reflect the following instruction sequence: 

2: addi $29, $29, -12 III-type instruction 

3: sw $31, 8 ($29) IIMEM-type instruction 

There is the following correspondence between FSM states shown and actions performed 

by the control unit: 

State 

Action 

071767870717477 

FETCH7DECODE7EXECUTE_IMM_TYPE7WR_BACK7 

7FETCH7DECODE7EXECUTE.:...MEM_TYPE 7MEM_ACCESS 

T bl 54 FSM a e • : actIOn d . t' escrlp·.on 

FSMAction Description 

FETCH An instruction is fetched from the program memory and stored in 

the instruction register. The program counter is updated with the 

next instruction address. ALU increments the next instruction 

address 

DECODE The instruction is decoded. The operands are retrieved from the 

regfile and stored in IDIEX register. ALU calculates the next 

instruction address for a possible branch instruction. 

75 



•• c 

EXECUTE IMM TYPE ALU performs an arithmetic/logic operation with the immediate - -
operand 

EXECUTE_MEM_TYPE ALU performs adds a memory address offset calculating a memory 

access address 

MEM_ACCESS Memory load/store operation 

WR_BACK Writing the result of load operation or ALU calculation in the 

regfile 

Table 5.4 describes major processor actions performed under control of the FSM incorporated 

in the control unit. 

The post-route simulation the testbench Fib(5) =8 was performed for the multi-cyc1e 

architecture configurations shown in Table 5.1 and the following message was reported for all 

configurations: 

# Fibonacci number test SUCCESSFULLY completed, Fib (5) 8 

# Test finished after 964 machine LV'-'-'-~''''' 

5.4 One-Cycle Design Verification 

The simplest by data path and control organization one-cyc1e architecture was verified for 

the functionality of the processor design by successful completion of the testbench. The 

example of the post-route simulation waveforms of the one-cyc1e processor simulation is 

shown in Appendix G. The adduced waveforms validate the correct operation of this 

processor architecture. 

The post-route simulation the testbench Fib(5) =8 was performed for the one-cyc1e 

architecture configurations shown in Table 5.1 and the following message was reported for all 

configurations: 

# Fibonacci number test SUCCESSFULLY completed, Fi~ 5) 8 

# Test finished after 243 machine cycles 

5.5 Demo Platform Design Verification 

The verification of the demo platform design is more complicated than the verification of 

the processor core itself due to the increased design complexity. The demo design is verified 
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at behavioral and post-route stages by checking waveforms on the LCD interface lines by 

means of the software simulator. The timing diagram and data send through the interface 

complies with LCD screen interface specification. The correctness of the displayed 

information is checked by comparing waveforms of the data sent to the LCD screen with the 

expected values. 

The final validation is performed by loading the design bit-stream into the target FPGA on 

the development board and comparing the values displayed on the screen with pre-calculated 

Fibonacci values. The pictures of the development board running the demo design are shown 

in Appendix H. All numbers are displayed in the hexadecimal format. The change of the order 

of Fibonacci number is performed by turning of the rotary shaft. The maximum obtained 

correct number Fib(Ox17) =OxB520 is limited by the four character positions allocated for the 

resulting Fibonacci number. The Fibonacci numbers shown on the LCD screen coincide with 

the pre-calculated values. 

5.6 Summary 

This chapter outlined the verification process applied for validating the proposed 

configurable processor. The design of the testbench was described in details. Also, the results 

of the testbench execution were presented. The verification of the critical design features was 

outlined and shown in examples presented in this chapter. The practical implementation of the 

proposed processor was verified on the development board. The obtained testing results 

concurred with expected values. The proposed design was verified successfully. 
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Chapter 6 

Result Analysis 

This chapter analyzes the implementation and verification results obtained in the chapters 

4 & 5. The difference between implemented architectures, as it was outlined in chapters four 

and five, is based on the structural features of a particular design. In this chapter the stated 

assumptions are supported by the actual data. The comparative analysis of the considered 

processor configurations illustrates the advantages and disadvantages of the proposed 

architectures. The conducted analysis may facilitate the selection of the considered processor 

configuration for the specific application. 

6.1 Xilinx FPGA Implementation Evaluation 

The performance evaluation of the proposed processor is conducted for corresponding 

configurations of the different architectures. Figure 6.1 shows the maximum clock speed and 

occupied hardware resources of the architecture variants of the 32-bit processor implemented 

in Xilinx FPGA. The chart also compares implementations with full/reduced instruction sets 

and BRAMIno BRAM optimization options. The five-stage pipelined architecture shows the 

highest clock speed. The trade-off for this advantage is the largest number of the FPGA 

resources required for the implementation. The multi-cycle architecture offers very close 

clock speed with saving 19% of hardware resources. But simple comparison of the clock 

speed of the considered architectures would be misleading. However, the throughput can be 

used as a parameter that reflects more precisely the performance of the architecture. The five

stage architecture has throughput of one instruction-per-cycle while multi-cycle architecture 

has a variable throughput of 3-5 cycles per instruction. The Fibonacci testbench executed on 

78 



the fi ve-stage processor requ ires 3.4x times less clock cycles than executed on the multi-cycle 

processor regardless of the bit-width and chosen configuration. Therefore. the multi -cycle 

architecture is. in fact, the slowest of all con idered implementations. The benefit of multi

cycle architecture is the r duced util ization of the hardware resources. 
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Figure 6.]: ["aluation chart of the architecture variants of 32-bit processor implemented in 

Xilinx FPGA 

The comparative analysis of two pipelined architectures shows that the four-stage 

architecture consumes 9% less area at the expense of 26% reduction in the clock speed. 

Though the theoretical throughput is one-instruction-per-cycle for t>oth architectures. the 

reduced number of hazards handled by stalling causes 3% faster testbench execution 

measured in clock cycles for the four-stage architecture. Despite the fact that the execution of 

another testbench may result in better clock cycle performance. the combined speed 

performance of the four-stage architecture is worse than the five-stage architecture. 

The clock speed of the one-cycle architecture is lowe t ofal!. This result is xpected and 

can be explained by the longest asynchronous path of the one-cycle architecture. The 

difference of 37% between one-cycle and multi-cycle architectures in the clock speed is 
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considerably less than stated in [12]. This difference can be related to the dissimilarity in the 

control units where the control unit of the multi-cycle architecture introduces more deJay. The 

control unit of the multi-cycle architecture contributes to the resulting delay significantly 

more than the control unit of the one-cycle architecture. Having 3% hardware overhead, the 

one-cycle architecture offers an advantage of 4x times faster execution of the testbench 

measured in clock cycles. Hence, the one-cycle architecture of the proposed processor 

becomes very attractive for the applications where the resource saving is critical. 

The reduced instruction set implementation demonstrates improvement of the clock speed 

in the range from 12% to 24% and reduction of the hardware overhead 42-49% for all 

considered architectures. This effect is due to removal of the barrel shifter from the ALU. The 

barrel shifter significantly contributes to the resulting data path delay and consumption of the 

hardware resources. For an application without shift operations removing of this feature offers 

a considerable advantage. 

The implementation of the BRAM optimization option improves the clock speed for the 

pipelined architectures. The five-stage architecture gains 12% of the clock frequency and 

four-stage architecture gains 5%. In contrast to that gain, the multi-cycle architecture shows a 

reduction of the clock speed. The speed drops occurs because the major contributor to the 

deJay is the control unit not the data path. The BRAM optimization option affects the data 

path only leaving the control unit intact. The additional delay for multi-cycle architecture is 

caused by the memory control signals which have a longer delay for BRAM. 

The distinguishable feature of the BRAM optimization option is saving of general 

hardware resources (i. e. LUTs) by implementing parts of the design into specialized FPGA 

blocks (i.e. BRAM). This saving reaches 12-15% for all architectures with the full instruction 

set and 21-28% for architectures with the reduced instruction set. 

The results of the architecture comparative analysis conduced for 32-bit implementations 

can be extended for the implementations of other bit-widths. 

6.2 Altera FPGA Implementation Evaluation 

The implementation of the proposed processor variants on the competitive Altera FPGA 

platform demonstrates results different from the Xilinx implementation. These results are 

illustrated on Figure 6.2 showing the quantitative relation of the implementation variants of 
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the 32-bit processor. The FPGA resources for the one-cycle architecture ar omitted for better 

vi sibil ity of the graph because the hardwar recourses occupied by this type of architecture 

exceed the closest value by eight times. 
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Figure 6.2: Evaluation chart of the architecture variants of 32-bit processor implemented in 

Altera FPGA 

The comparative analysis of the clock speed between the architectures shows the results close 

to Xilinx implementation. The five-stage architecture is 23% faster than the four-stage 

architecture. The multi-cycle architecture demonstrates the similar to five-stage clock speed 

while showing the worse testbench execution time measured in clock cycles. The one-cycle 

architecture is 43% slower than the pipelined five-stage architecture. 

The distribution of the hardware resources between the architectures for the Altera 

implementation is similar to the Xilinx implementation in case of the pipelined and l11ulti

cycle architectures. The difference in resources between five and four stages pipelined 

architectures is 5%. Consequently. the multi-cycle architecture requires 9% less resources 

than the five-stage architecture. The major difference in implementations on the e two FPGA 

platforms is the hardware resources required by the one-cycle architecture. Implemented on 
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the AItera platfonn the one-cycle processor occupies 734% resources more than the five-stage 

architecture. This phenomenon can be explained by the difference in FPGA organization and 

compilation tools for Xilinx and Altera. 

Altera Quartus II compiler [80] recognizes inferred memory blocks in the proposed design 

even without BRAM optimization option. By default, the compiler is allowed to use hardware 

memory blocks for the inferred memory implementation. This feature causes only minor 

differences in the implementations with or without BRAM optimization. In fact, all 

architectures except the one-cycle are implemented with the utilization of hardware memory 

blocks. The one-cycle architecture does not contain inferred synchronous memory blocks. 

Therefore it is implemented purely in ALMs resulting in ajump of utilized FPGA resources. 

Due to high level behavioral description of the proposed processor, there is no direct 

control of the utilization of memory blocks on the Altera platfonn. The analysis of the 

synthesis report shows that the data memory and regfile are implemented in hardware 

memory blocks every time when the automatic recognition of memory blocks is enabled. The 

excerpts from the compilation reports are shown in Appendix I. In several processor 

configurations the BRAM optimization option causes the implementation of the instruction 

memory into a memory block. But this effect is inconsistent through the explored set of 

implementations resulting in variations of the utilized hardware resources. Another source of 

variation is the utilization of Memory Logic Array Blocks (MLAB) or Memory 9-Kbit blocks 

(M9K) [81] for the regfile implementation. The compiler uses either option justifying the 

choice by the optimization strategy. In order to have a full control of the design 

implementation, it is necessary to use specific to Altera FPGA hardware resources (i.e. 

memory blocks, megafunctions) in the HDL code of the design. This approach would negate 

the portability concept critical to the proposed design. The variation in the implementation 

results on the Altera platfonn is a trade-off for the design portability. 

The predictable and consistent reduction or the utilized hardware resources is achieved by 

implementation or the reduced ISA support. The removal of the barrel shifter and extra ALU 

operations benefits in 5% hardware saving for 32-bit one-cycle architecture and 30-42% for 

other architectures. The removed hardware is the constant number of ALMs for all 

architectures while the remaining occupied resources vary in different architectures. That 
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explains the significant difference in the ratio of occupied resources for the considered 

architectures. 

Based on the data shown in Table 4.8 and Table 4.9 it may be deduced that the conducted 

evaluation of the 32·bit processor variants implemented in the different processor 

architectures can be applied to the implementations with other bit-widths. Though quantitative 

values may significantly differ, the general trends are common for all bit-widths. 

6.3 ASIC Implementation Evaluation 

The results of the implementation of the proposed processor using 0.18 !lm technology 

process show the similar to FPGA implementation tendency. As shown in Figure 6.3 the 

clock speed ratio between two pipe lined architectures is 21 % in favor of the five-stage 

architecture. In the same way as the FPGA implementation, the multi-cycle architecture 

demonstrates higher clock speed than four-stage and one-cycle architectures. Nevertheless, 

the higher clock speed does not compensate the longer instruction execution time, due to the 

worse throughput of the multi-cycle architecture 

The one-cycle architecture offers the advantage of the smallest die area and the clock 

speed just 30% less then the fastest five-stage pipelined architecture. 

The distinguishable feature of the ASIC implementation is a minor variability of the 

occupied area for five-stage. four-stage and multi-cycle architectures. The difference does not 

exceed 3%. That effect can be explained by the strategy used for the design compilation. The 

compilation tool breaks the hierarchy of the design and optimizes it. The actual difference in 

hardware resources (i. e. registers. combinational logic, and memory) between these three 

architectures corresponds to the obtained values. The reduction of the die area for the one

cycle architecture is caused by absence of the inter-stage registers in this architecture. 

The most attractive choice for the speed oriented application using the technology process 

is the five-stage pipelined architecture. This architecture features the fastest execution speed 

and 9% more die area than the most resource efficient one-cycle architecture. 

In case of a tight die area constraint the best choice is the one-cycle architecture which 

occupies the smallest of all architectures area and offers the execution speed (testbench 

adjusted) 22% less than the fastest five-stage pipelined architecture. 
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Figure 6.3: Evaluation chart of the architecture \ 'ariants of 32-bit processor implemented using 

0.18 /lm technology process 

The implementation of the reduced instruction set does not significantly affect the 

occupied die area. The maximum area sav ing is 6%. That can be explained by the more 

efficient implementation of the barrel shifter using the technology process compared to FPGA 

platfonll. 

6.4 Evaluation Against Existing Solutions 

The comparison of the proposed processor against the existing processors with similar 

architectures and implementation platforms is complicated by the differences in details of a 

particular design. The closest processor solutions were selected for the comparative 

evaluation. Table 6.1 outlines the major features of two configurations of the proposed 32-bit 

processor implemented on the A ltera Stratix-III FPGA platform vs. similar Altera Nios Ills 

(small) and Nios II le (economic) soft processors. 
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Table 6.1: Configurable MIPS processor variants vs. Altera Nios HIsle 

Feature 
Processor Core 

Con fig. MIPS Nios Ills CODfig. MIPS Nios IIle 

I Bit-width 32 bits 32 bits 32 bits 32 bits 

Fmax 96 MHz 165 MHz 89 MHz 200 MHz 

Area 739 ALMs 700 ALMs 672 ALMs 350 ALMs 

Pipeline 5 stages 5 stages No No 

Cycles/Instruction I 1 5 max 6 max 

Hardware Multiply No 3-cycle No No 

Shifter I-cycle barrel 3-cycle shift I-cycle barrel I cycle-per-bit 

The five-stage pipelined architecture yields to Nios Ills by the speed and occupied area 

due to the optimization of Nios II for the Altera FPGA architecture. Also the proposed 

configurable MIPS processor design uses more advanced barrel shifter which requires an 

additional area and contributes to the delay of the EXE stage. The same causes are responsible 

for the superiority of NIOS We over the multi-cycle architecture of the proposed processor 

implemented on the Altera platform. 

The close contemporary solutions implemented on the Xilinx Virtex-5 FPGA platform are 

represented by Xilinx Microblaze v7.0 [82] and Leon3 [83] soft processors. Table 6.2 

compares the critical specification details of these competitive processors with the proposed 

five-stage processor. 

Due to the optimization of the Microblaze organization and instruction set for the specific 

structure of Xilinx FPGA, the Micoblaze speed performance greatly exceeds the configurable 

MIPS. By the same reason, Microblaze occupies 28% less hardware resources. On the other 

hand, Leon3, a portable research solution not optimized for a specific FPGA also 

demonstrates the inferior speed performance compared to Microblaze. The reduced clock 

speed is a trade-off for portability common for Leon3 and proposed configurable MIPS 

processors. As a result, the Leon3 is just 25% faster than the configurable MIPS. This 

advantage is stipulated by the longer pipeline which, in general, requires hardware overhead 

for data path and control elements. 
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T hi 62 C ti a e . : on 19ura hi MIPS e processor vs. XT M' hI I IDX Icro aze an d L 3 eon 

Processor Core 
Feature 

Con fig. MIPS Microblaze Leon3 

Bit-width 32 bits 32 bits 32 bits 

Fmax 100 MHz 220 MHz 125 MHz 

Area 1369 LUTs 980 LUTs 3500 LUTs 

Pipeline 5 stages 5 stages 7 stages 

Cyc1es/Instruction 1 1 1 

Hardware Multiply No Optional Optional 

Shifter I-cycle barrel I-cycle barrel 3-cyc1e shift 

AlteraIXilinx AlteraIXilinxi ActellLattice 
Portability 

i FPGA, ASIC 
Xilinx FPGA only 

FPGA, ASIC 

Despite the fact that the proposed processor shows the performance worse than the 

commercial solutions. it has an advantage of an open design available for customization and 

tuning. It also offers the high portability which is not available for the considered commercial 

products. A distinguishable benefit of the proposed processor is the configurable data path bit

width. Such level of configurability is not offered by any processor selected for the 

comparative evaluation. 

6.5 Summary 

This chapter analyzed the results of implementation of the proposed processor on different 

hardware platforms. The detailed analysis was performed for the 32-bit processor 

configuration implemented using various options for the four considered architectures. The 

conducted analysis defined a correlation between a chosen processor configuration and 

technical parameters obtained after the implementation. The specific to a hardware platform 

implementation features were identified and explained using the obtained results. The selected 

processor configurations were compared with similar contemporary processor solutions. The 

advantages and disadvantages of the evaluated designs were described in details. 

86 



-- ---------------.. --... -~-.-.-. 

Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

In this project the configurable processor with MIPS compatible instruction set was 

developed. The configurability of the design offers a choice of four possible processor 

architectures: 

• Five-stage pipelined 

• Four-stages pipelined 

• Multi-cycle unpipelined 

• One-cycle unpipelined 

Within each architecture the configurabJe options include data path bit-width, organization 

and size of the data and instruction memories, instruction subsetting. 110 space size and bit

width. The configuration tool was developed in order to facilitate configuration of the 

processor for the chosen specification. The processor design flow was established starting 

from a specification stage and finishing with the processor implementation in hardware and 

running an application program. The design flow invokes tools from different vendors and 

augmented with the custom tool connecting design stages. Following the design flow the 

selected processor configurations were implemented on Xilinx and Altera FPGA platforms. 

The full portability of the design was verified using 0.18 11m TSMC technology process for 

implementation. In order to maximize verification coverage, the specific testbench was 

developed and used for the design validation. The simulation of the design was performed on 

the behavioral and post-route levels for the selected configurations. In order to increase 
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verification confidence, one selected processor configuration was implemented in the 

hardware development board. The additional VO hardware interfaces were developed 

connecting the selected processor core with LCD screen and inputting device. In addition to 

the testbench, the specific software driver was developed for communication with the 

development board va devices. As a result the demo design was successfully verified. 

The implementation of the proposed processor variants on the different hardware 

platforms created the exploration space. This space was analyzed in order to determine the 

dependencies between implemented configuration options and technical parameters of the 

resulted processor. Major trends and rules for utilization of the specific configuration options 

were derived. The wide spectrum of the possible processor configurations provides an 

opportunity to optimize the selection of a processor for the specific application. 

Comparison to the existing commercial and research solutions revealed advantages and 

disadvantages of the designed processor. The advantages include high portability, unique 

configuration options, and wide range of the processor variants. 

7.2 Future Work 

The processor design presented in this project explored only a limited number of the 

configuration options. The potential for the further improvement includes many advanced 

features inherent in modem processors. The list of the processor enhancements that can 

increase the performance of the presented processor includes but not limited by the following: 

• Multiplier 

• Divider 

• Multilevel instruction and data caches 

• Floating Point Unit (FPU) 

• Memory Management Unit (MMU) 

• Translation Look-aside Buffer (TLB) 

• Dynamic branch prediction 

• Superscalar architecture 

• Unaligned data memory access 
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The proposed processor pipeIined architecture considers only five and four stages variants. 

The future work may explore the architectures with shorter or longer pipelines and define 

benefits and trade-offs of these designs. 

The presented processor design is based on the existing MIPS instruction set which is 

oriented toward the standard 32-bit data path. Therefore, the expansion of the instruction set 

with specific commands capable of the efficient handling of wider data words would increase 

the performance of processor configurations with wide data paths. The standard MIPS 

software development tools cannot support all possible improvements. Hence the 

development of the advanced software tools is required in order to use efficiently all 

described processor enhancements. 

The developed Configuration Manager tool may include the additional feature providing 

the speed and hardware resources for the selected processor configuration. This feature would 

facilitate a choice of the processor configuration optimized for the specific application. 

Moreover, the configuration process may be completely automatic driven by the application 

parameters entered by a user. 

The portability of the presented design has been verified only on three different hardware 

platforms. The future work may extend the implementation hardware with other FPGA 

families such as Actel, Latice, Atmel, Achronix, etc. 

The performance of the proposed processor configurations may be estimated with better 

accuracy by execution of the standard benchmarks such as Dhrystone, SPEC, Whetstone, etc. 

Evolution of the presented configurable processor introduces an opportunity for 

development of a processor solution far beyond the explored in this project. 
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Appendix A 

Demo Design Program Code 

II 1/0 ports mapped to drnem addresses 
#define FIB_OUT «volatile int*) Ox00000010l 

---.... -~. -------------

#define LCD_aUT_PORT «volatile int*) Ox00000014) II 5 :LCD_OUT_PORT 
{led output data, led drive, led rs, led rw control, led e} 
#define FIB=IN_NUM - «volatile int*)-Ox00000008) -II 2 :Input for 
Fibonacci number calculation 
II Delays definitions 
#define DELAY40ns 0 
#define DELAY230ns 1 
#define DELAY15ms 75000 
#define DELAY4 Ims 20500 
#define DELAYIOOus 500 
#define DELAY40us 200 
#define DELAYlus 5 

int fib () i 
void Wait15ms (); 
void Wait4_1ms ()i 
void WaitlOOus (); 
void Wait40us (l; 
void Wait40ns (); 
void Wait230ns (li 
void Wai tlus (); 
void Write4bitsLCD (); 
void Write8bitsLCD {li 
void Displaylnit {)i 
void DisplayConfig (); 
void SetAddr(}; 
void WriteData(); 
void DrawFib(); 
void DrawEqu(}; 
void DrawFib_N(); 
void DrawHexNum{);II"Draw 4 hex digits number 
unsigned int Hex2LcdChar(); 

int start () { 
int N; 
Ilint result; 
II*FIB OUT = fib(N); 
*LCD OUT PORT = Oxfffffffe; 
DisplayInit()i 
DisplayConfig(); 
for (; ; ) II Display in loop 

{ 

II Display "Fib(" N "1-" fib(N) 
N - *FIB_IN_NUM; 
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SetAddr{O); 
DrawFib(l; 
DrawFib N(N); 
DrawEqu () i 
DrawHexNum{fib(N»); 

int fib(int nl { 
if (n==O) {return Ii} 

if (n==I) {return I;} 
return (fib(n-l) + fib(n-2»; 
} 

void Waitl5ms () 
{ 

unsigned int i; 
for (i = 0; i < DELAYI5ms; i++); 

void Wait4 Ims () 
{ 

unsigned int i; 
for (i 0; i < DELAY4_1ms; i++); 

void Waitl00us () 
{ 

unsigned int i: 
for (i = 0; i < DELAYI00us; i++); 

void Wait40us (l 
{ 

unsigned int i; 
for (i = 0; i < DELAY40us; i++l; 

void Wait40ns () 
{ 

unsigned int i; 
for (i = 0; i < DELAY40ns; i++); 

void Wait230ns () 
{ 

unsigned int i; 
for (i = 0; i < DELAY230ns; i++); 

void Waitlus {l 
{ 

unsigned int i; 
for (i = 0; i < DELAYlusi i++); 
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void Write4bitsLCD (unsigned int lcddata, unsigned int lcd_rs) 
{ 

unsigned int datasend Oxffffffff; 

datasend lcddata; 

datasend«l: datasend 
data send datasend I Ox1: Illcd_drive =1 

data send datasend«l: II lcd rs =1 

datasend data send I lcd rs: II 1 ->data I 0 -> command 
datasend datasend«2: II-led rw control = 0, led e = 0 
*LCD OUT PORT = datasend: II send-to port 

Wait40ns(): 

datasend = datasend I Ox1: Illcd_e 1 
*LCD OUT PORT = datasend: II send to port 

Wait230ns (); 

datasend = datasend & Oxfffffffe: Illcd_e 0 
*LCD_OUT_PORT = datasend: II send to port 

datasend datasend I OxOa: lied rw control 1 
*LCD OUT PORT = datasend: II send to port 

void Write8bitsLCD (unsigned int leddata, unsigned int lcd~rs) 
{ 

void 
{ 

unsigned int upper_nibble: 
upper nibble = lcddata»4: 
Write4bitsLCD (upper_nibble, lcd_rsJ: II write upper nibble 

Waitlus(): 

Write4bitsLCD (lcddata, lcd_rs); II write low nibble 

Wait40us{J: 

Displaylnit () 

*LCD OUT PORT Oxfffffffe; Iiset lcd e low 
Wait 15ms () : 

Write4bitsLCD (Ox03,O); 
Wait4 1ms(); -
Write4bitsLCD (Ox03,O): 
WaitlOOus(); 

Write4bitsLCD (Ox03,O); 
Wait40us(); 
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Write4bitsLCD (Ox02,O): 
Wait40us(); 

void DisplayConfig () 
{ 

WriteSbitsLCD (Ox2S,O); IIFunction Set 
WriteSbitsLCD (Ox06,O); IIEntry Mode Set 
WriteSbitsLCD (OxOe,O); IIDisplay On/Off 
Write8bitsLCD (OxOl,O); IIClear Display 
Wait4_lms(); 

void SetAddr(unsigned int addr) 

unsigned int addr_send = addr I OxSO; 

WriteSbitsLCD (addr_send,O); IISet DD RAM Address 

void WriteData(unsigned int data) 
{ 

Write8bitsLCD (data,l); IIWrite Data to CG RAM or DD RAM 

void DrawFib() II"Draw "Fib{" 
{ 

WriteData{Ox46); II draw F 
WriteData{Ox69)i II draw i 
WriteData{Ox62); II draw b 
WriteData(Ox28); II draw ( 

void DrawFib_N(unsigned int fib_num)II"Draw N 
{ 

unsigned int send_nibble; 

send nibble = fib num » 4; 
WriteData{ Hex2LcdChar(send_nibble) ); 

send nibble = fib num; 
WriteData{ Hex2LcdChar{send_nibble) )i 

void DrawEqu{) II"Draw ")=" 
{ 

WriteData(Ox29); II draw 
WriteData(Ox3d)i II draw 

II draw lower nibble 

void DrawHexNum(unsigned int hex_num)II"Draw 4 hex digits number 
{ 

unsigned int send_nibble: 

send nibble = hex num » 12; 
WriteData{ Hex2LcdChar{send_nibble) ); II draw 4th nibble 

send nibble = hex num » 8; 
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WriteData( Hex2LedChar(send_nibble) ); II draw 3rd nibble 

send nibble hex nUID » 4; 
WriteData( Hex2LedChar(send_nibble) ); II draw 2nd nibble 

send nibble = hex num ; 
WriteData( Hex2LCdChar(send_nibble) )i II draw lower nibble 

unsigned int Hex2LcdChar(unsigned int hex_nib)IIConvert hex nibble to LCD 
char 
{ 

unsigned int lcd_nibble; 

led nibble = hex nib & OxOOOOOOOf; 
if (lcd_nibble >9) 
{ 

led nibble (lcd_nibble & Ox07) -1; II 0111, convert to A-F 
led nibble 1= Ox40; 

else led nibble Ox30; 

return led nibble; 
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AppendixB 

Processor Configuration File 

B.1 Base Configuration File Template 

'ifdef _PROCESSOR_CONFIG_FLAT_V_ 
'else 
'define _PROCESSOR_CONFIG_FLAT_V_ 

11----------------------------------------------------------------------
IIProcessor architecture definitions 
11----------------------------------------------------------------------
'define MIPS PROCESSOR 
'define processor inst width 
II Instruction format -
'define inst opcode width 
'define inst-funct ;idth 
'define inst-shamt-width 

32 Iinot reconfigurable(reserved) 

6 
6 
5 

lIThe branch-bug handling in the PCSpim compiler 
'define PCSpim compiler 
'ifdef PCSpim-compiler 
'define Branch=jump PC_next<=PC+immediate; 
'else 
'define Branch_jump PC_next<-PC+'imem_step+immediate; 
'endif 
II debug provision 
'define BREAK ADDRO 
'define BREAK-ADDRl 
'define BREAK-ADDR2 
'define BREAK=ADDR3 

'hlc/4 
'h274/4 
'h390/4 
'h3lc/4 

I/'include "auto_configyart.v" 
11********************************************************************** 
II Automatically Generated Section of Configuration File 
11**************************************************** ****************** 

//********************************************************************** 
II Global processor definitons 
//********************************************************************** 
'define SHIFT_COMMANDS 
'define SET CO~.ANDS 
11---------=------------------------------------------------------------
'define processor_data_width 32 
II Instruction Memory definitions 
'define imem size 1024 
'define imem-step 1 
'define imem-addr width 10 
'define imem=shift 0 
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// Data Memory definitions 
'define dmem size 1024 
'define dmem-step 4 
'define dmem-addr width 10 
1/ Data Memory Mapping 
'define dmem_up_limit 'hBfffffff 
'define dmem down limit 'hlOOOOOOO 
II I/O Memory definitions 
'define io mem size 1024 
'define io-mem-width 32 
'define io-addr width 10 
1/ 1/0 memory mapping 
'define io mem down limit 'hO 
'define io-mem-up limit 'h400000 
II PC width --
'define PC width 32 
I/PC start-address 
'define reset addr 'hB0020000 
/1 SP start address 
'define SP_INIT 'h800bcOOO 

//=-~~~~--------~~~----------------------------IIEnd of global processor definitons 

//.~~~~~~~~~~~~~~~~~~~~~~~~~~77 
1/**************************************************** ****************** 
I/Register file definitons 
//********************************************************************** 
'define REGISTER FILE regfile /Iregfile module name 
'define regfile addr width 5 111< Register file address width 
'define regfile-size-(l«'regfile addr width) 11/< Register file size 
'define regfile-width 'processor data ;idth ///< Register file width 
'define link addr 31 I/Address of link register (return address - raj 
IIEnd of register file definitons 
11********************************************************************** 
I/-----------------Architecture Configuration---------------------------
/I*****************************************~********** ****************** 

//Pipeline Interstage Register definitons 

//----------------------------------------------------------------------
// interstage-9ass --> dummy reg pass 
1/ interstage data reg --> reg 

//-----------~----~-----------------------------------------------------
// Control Unit configuration 
//----------------------------------------------------------------------
'ifdef MIPS_MULTI CYCLE 

'define IF_ID_INST_REG interstage_data_reg 
'define ID_EX_IMM_REG interstage-9ass 
'define ID_EX_PC_REG interstage-9ass 
'define ID_EX_A_REG interstage_data_reg 
'define ID EX B REG interstage_data_reg 
'define IO=EX=SHAMT_REG interstage-Fass 
'define EX MEM RESUT REG interstage data reg 
'define EX=MEM=T_REG- interstageyass-
'define MEM_WB_DMEM_REG interstage_data_reg 
'define MEM_WB_ALU_REG interstage-Fass 
'define IF IO PC REG interstage-9ass 
'define ID=EX=RS=ADDR_REG interstage-9ass 
'define ID_EX_RT_ADDR_REG interstage-9ass 
'define ID_EX_RO_AOOR_REG interstage-Fass 
'define EX_MEM_RD_W_ADDR_REG interstage-Fass 
'define MEM_WB_RD_W_AODR_REG interstage-9ass 

//----------------------------------------------------------------------
'define NO FORWARDING 

//--------~-------------------------------------------------------------
'define NO DELAY SLOT 

//--------~-----=-------------------------------------------------------
'define CONTROL UNIT control mcycle//control unit module name 

//-------------=------------------------------------=-------------------
'elsif ONECYCLE 
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'define IF 10 INST REG interstage-pass 
'define IO-EX-IMM REG interstage-pass 
'define IO-EX-PC REG interstage-pass 
'define IO:EX:A_REG interstage-pass 
'define IO_EX_B_REG interstage-pass 
'define 10 EX S~~T REG interstage-pass 
'define EX-MEM RESUT REG interstage-pass 
'define EX:MEM:T_REG- interstage-pass 
'define MEM_WB_DMEM_REG interstage-pass 
'define MEM_WB_ALU_REG interstage-pass 
'define IF_IO_PC_REG interstage-pass 
'define ID_EX_RS_ADOR_REG interstage pass 
'define ID_EX_RT_ADOR_REG interstage-pass 
'define ID_EX_RO_ADDR_REG - interstage-pass 
'define EX_MEM_RO_W_ADDR_REG interstage_pass 
'define MEM_WB_RD_W_ADDR_REG interstage-pass 
11----------------------------------------------------------------------
'define NO FORWARDING 
11--------=-------------------------------------------------------------
'define NO DELAY SLOT 
11--------=-----=-------------------------------------------------------
'define CONTROL_UNIT control_onecyclellcontrol unit module name 
11----------------------------------------------------------------------
'elsif FOURSTAGES 

'define IF_ID_INST_REG interstage data reg 
'define ID_EX_IMM_REG interstage-data-reg 
'define ID_EX_PC_REG interstage data reg 
'define IO_EX_A_REG interstage-data-reg 
'define ID_EX_B_REG interstage data reg --
'define ID_EX_SHAMT_REG - Interstage data reg 
'define EX_MEM_RESUT_REG interstage-pass --
'define EX_MEM_T_REG interstage-pass 
'define MEM_WB_DMEM_REG interstage data reg 
'define MEM_WB_ALU_REG int-erstage data reg 
'define IF_IO_PC_REG interstage_data_reg -
'define ID EX RS ADOR REG interstage data reg 
'define ID:EX:RT:ADOR:REG interstage-data-reg 
'define ID_EX_RO_ADDR_REG - interstage data reg 
'define EX_MEM_RO_W_ADOR_REG interstage-pass --
'define MEM WB RO W ADOR REG interstage data reg 
11---------=--=--=-=----=------------------=----=-----------------------
'define FORWARDING 4 STAGES 
11----------------=-=---------------------------------------------------
'define CONTROL UNIT control-pipe 4st Ilcontrol unit module name 
11-------------=-----------------------------------------=--------------
'else II 5-stages pipeline 

'define IF_IO_INST_REG interstage data reg 
'define 10 EX IMM REG interstage-data-reg 
'define ID:EX:PC_REG int-erstage data reg 
'define ID EX A REG interstage:data:reg 
'define IO-EX-B-REG interstage data reg 
'define ID-EX-SHAMT REG - Interstage data reg 
'define EX:MEM_RESUT_REG interstage data reg --
'define EX MEM T REG interstage-data-reg 
'define MEM WB-DMEM REG interstage-data-reg 
'define MEM:WB:ALU_REG intersta-ge_data_reg 
'define IF 10 PC REG interstage_data_reg 
'define IO-EX-RS-ADDR REG interstage_data_reg 
'define IO-EX-RT-AODR-REG interstage data reg 
'define ID-EX-RD-ADDR-REG - interstage_data_reg 
'define EX:MEM_RD_W_ADDR_REG interstage data reg 
'define MEM WB RO W ADDR REG interstage:data:reg 
II---------=--=--=-~----=-----------------------------------------------
'define FORWARDING 5 STAGES 
11----------------=-=---------------------------------------------------
'define CONTROL UNIT control-pipe Ilcontrol unit module name 
/I-------------~--------------------------------------------------------
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'endif 
IIEnd of Configurable Architecture definitons 11 ________________________________________________________ __ 

//********************************************************************** 

IIALO definitons 
11**************************************************** ****************** 
'define ALO alu behav II alu module name 
'define alu_operand_width 'processor_data_width 111< ALO operand bit width 

IIALO opcodes 
'define alu add 'hO 
'define alu-subb 'hl 
'define alu-and 'h2 
'define alu-or 'h3 
'define alu-nor 'h4 
'define alu:=xor 'h5 
'define alu_up 'h6 
'define alu a 'h7 
'define alu:=opcode_width 3 1/1< ALO opcode bit width 

'ifdef SHIFT COMMANDS 
'define alu sll 'hB 
'define alu:=srl 'h9 
'define alu sra 'ha 
'define alu-sllv 'hb 
'define alu:=srlv 'he 
'define alu srav 'hd 
11 ......... :-........................ ................ . 
'define alu_opcode_width 4 111< ALO opcode bit width 
'endif 

'ifdef SET COMMANDS 
'define alii slt 'he 
'define alu-sltu 'hf 
'define alu:=opcode_width 4 111< ALO opcode bit width 
'endif 

'define alu_opcodes_number (l«'alu_opcode_width) /11< Number of ALO opcodes 

//1/11/1111111111111111 
/IEnd of ALO definitons 

11.77~~~~~~~~~~77~~~~~~~~~~~~~~~ 
11**************************************************** ****************** 
IIData memory definitons 
//********************************************************************** 
'define DATA MEMORY data ram /Idata memory module name 
'define dmem-width 'processor data width IIData memory bit width 
IIEnd of data memory definitons -
II 
II~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*~*7* 

IIInput/OUtput memory map definitons 
11**************************************************** ****************** 
'define io_mem_step 4 III/O memory step (how sw addresses it) 
IIEnd of data memory definitons 

//********************************************************************** 
/IInstruction register definitons 
1/**************************************************** ****************** 
'define INST REG inst reg I/instruction register module name 
'define inst-reg width 'processor inst width //Data memory bit width 
IIEnd of instruction register definitons 

11.~~~~~~~~~~~77~~~~~~~~~~~~~~77 1/**************************************************** ****************** 
IIInstruction memory definitons 
1/**************************************************** ****************** 
'define INST MEMORY inst mem //instruction memory module name 
'define imem-width 'processor inst width /IBit width of the instruction memory 
I/End of instruction memory definitons 
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//.77~77~~~-------------------------------------------
/I~*************************************************** ****************** 
/IControl module definitons 
11**************************************************** ****************** 
/I----------FSM 
'define FETCH 
'define DECODE 

states-------------------------------------------------

'define EXECUTE R TYPE 
'define EXECUTE-BRANCH 
'define EXECUTE-MEM TYPE 
'define EXECOTE-J TYPE 
'define EXECUTE-IMM TYPE 
'define MEM_ACCESS -
'define WR_BACK 

2 
3 
4 
5 
6 

7 

'define LAST STATE 9 

o 
I 

B 

11********************************************************************** 
/IControl commands definitions 
1/**************************************************** ****************** 
// Nex PC source controls 
/1---------------------------------------------------------------------
'define next_instruction 0 
'define imm jump I 
'define branch 2 
'define rs_jump 3 
II'define stall~c 4 
'define nextPCsrc_width 2 Illog2('rs_jump) ->width of nextPCsrc 
/1---------------------------------------------------------------------
II Write Back Register destination controls 
/1---------------------------------------------------------------------
'define ra_reg 0 
'define rt reg 1 
'define rd=reg 2 
'define wb_addr_src_width 2 Illog2('rd_reg) ->width of wb_addr_src 
/1---------------------------------------------------------------------
II ALO forwarding controls 
11---------------------------------------------------------------------
'define reg ex 0 1/ regile data from ID/EX stage 
'define fwd-mem I II forwarding from EX/MEM stage 
'define fwd=wb 2 II forwarding from MEM/wB stage 
'define alu src fwd width 2 Illog2('fwd wb) ->width of alu a src frw/alu b src frw 
/1---------=---=---=-------------------=-------------- ----=-=---=------ - - -
// ALO operand source controls 
//---------------------------------------------------------------------
II'define reg ex 0 /1 regile data from ID/EX stage 
1/ Operand A -
'define pc ex I II PC from ID/EX stage 
'define alu a src width I l/log2('pc_ex) ->width of alu_a_src 
/1 Operand B -
'define imm ex I // Immediate from ID/EX stage 
'define plus_step 2 II + imem step (support of jal command R[31]=PC+B;PC=JumpAddr) 
'define shift step 3 // multicycle verson bqe/bne support 
'define alu b-src width 2 l/log2('shift step) ->width of alu b src 
//---------=-=---=---------------------=--------------------=-=--------
II Write Back data source controls 
11---------------------------------------------------------------------
'define alu wb 0 II ALO data 
'define dmem_wb I II Data Mem data 
'define wb data src width I /llog2('dmem wb) ->width of wb data src 
/1--------=----=---=------------------------=-----------------=----=---
/1 Data MEM input data source controls 
//---------------------------------------------------------------------
'define dmem data 0 II DMEM regular data input 
'define dmem=fwd I II DMEM forwarded data input from WB stage 
'define dmem data erc width 1 l/log2('dmem fwd) ->width of dmem data src 
1/----------=----=---=----------------------=--------------------=----= 
I/Rs jump source controls 
11---------------------------------------------------------------------
'define j rs id 0 /1 rs data from ID stage 
'define fwd mem 1 /1 forwarding from MEM stage 
'define fwd-wb 2 II forwarding from WB stage 
'define jr_src_frw_width 2 Illog2('fwd_wb) ->width of jr_src_frw 
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11---------------------------------------------------------------------
II Comparator forwarding controls 
11---------------------------------------------------------------------
'define cmp_reg 0 II regile data from IDIEX stage 
'define cmp fwd 1 II forwarding from EX/MEM 
'define cmp=src_fwd_width 1 Illog2('cmp_fwd) ->width of cmp_rs_src_fwd/cmp_rt_src_fwd 

II--~~--~~~~~--~~~~~~~~--------~~~~~~~ 
11**************************************************** ****************** 
IIParse instruction definitons 
1/********************************************************************** 
IIProcessor opcode up limit 
'define opcode up 'processor inst width-l 
IIProcessor opcode down limit -
'define opcode_down 'processor_inst_width-'inst_opcode_width 
IIProcessor immediate up limit 
'define immediate up 'processor inst width -'inst opcode width-('regfile addr width*2)-1 
IIProcessor shift-amount up limit - - - - -
'define shamt_up 'processor_inst_width -'inst_opcode_width-C'regfile_addr_width*3)-l 
IIProcessor shift amount down limit 
'define shamt down 'shamt up - 'inst shamt width +1 
IIProcessor jump address up limit - -
'define jump addr up 'processor inst width -'inst opcode width-1 
IIProcessor sign extension width - --
'define sign ext width 'processor data width-('immediate up+1) 
IIProcessor sign-extension width - - -
'define zero_ext_width 'processor_data_width-('immediate_up) 
II Register Rs 
'define rs addr up 'inst reg width-'inst opcode width-l 
'define rs - addr -down 'rs addr up-' regfile addr width+1 
II Register Rt - - - --
'define rt addr up 'rs addr down - 1 
'define rt-addr-down 'rt addr up - 'regfile_addr_width + 1 
II Register Rd - --
'define rd addr up 'rt addr down-1 
'define rd-addr-down 'rd addr up-'regfile addr width+1 
IIEnd of parse Instruction definitons - -

II~------------------------------------------------------

//********************************************************************** 
IIMIPS instruction Set definitions 
//********************************************************************** 
fiR type instructon functions 
'define ADD 'h20 
'define ADDU 'h21 
'define SUB 'h22 
'define SUBU 'h23 
'define AND 'h24 
'define OR 'h25 
'define XOR 'h26 
'define NOR 'h2? 
'define SLT 'h2a 
'define SLTU 'h2b 
'define SLL 'hO 
'define SRL 'h2 
'define SRA 'h3 
'define SLLV 'h4 
'define SRLV 'h6 
'define SRAV 'h? 
'define JR 'he 
'define JARL 'h9 
'define MOVZ 'ha 
'define MOVN 'hb 
'define SYSCALL 'hc 
'define BREAK 'hd 
'define SYNC 'hf 
'define MFHI 'hlO 
'define MTHI 'hll 
'define MFLO 'h12 
'define MTLO 'h13 

100 

os 



~ 

'define MULT 'hI8 
'define MULU 'hI9 
'define DIV 'hla 
'define DIVU 'hIb 
'define TGE 'h30 
, define TGEU 'h31 
'define TLTT 'h32 
'define TLTU 'h33 
'define TEQ 'h34 
'define TNE 'h36 

1/ Instruction opcodes 
'define R TYPE 'hO 
'define J- 'h2 
'define JAL 'h3 
'define BEQ 'h4 
'define BNE 'h5 
'define BLEZ 'h6 
'define BGTZ 'h'7 
'define ADDI 'he 
'define ADDIO 'h9 
'define SLT1 'ha 
'define SLTIU 'hb 
'define ANDI 'hc 
'define OR1 'hd 
'define XORI 'he 
'define LUI 'hf 
'define LB 'h20 
'define La 'h21 
'define LWL 'h22 
'define LW 'h23 
'define LBU 'h24 
'define LHU 'h25 
'define LWR 'h26 
'define sa 'h28 
'define SH 'h29 
'define SWL 'h2a 
'define SW 'h2b 
'define SWR 'h2e 
'define CACHE 'h2f 
'define LL th30 
'define LWCI th31 
'define LWC2 'h32 
'define PREF 'h33 
'define LDCI 'h35 
'define LDC2 'h36 
'define SC 'h38 
'define swCI th39 
'define swC2 th3a 
'define SDCl 'h3d 
'define SDC2 'h3e 

11111111111111/11111111 
IIEnd of MIPS instruction Set definitions 

'ifdef DLX_PROCESSOR 

11**************************************************** ****************** 
IIDLX instruction Set definitions 
11**************************************************** ****************** 
//R type instructon functions 
'define ADD 'h20 
'define sua 'h22 
'define AND 'h24 
'define OR 'h25 
'define XOR 'h26 

'define SEQ 
'define SLT 
'define SLE 

'h28 
'h2a 
'h2c 
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'define SNE 

'define SLL 
'define SRL 
'define SM 

II Instruction 
'define R TYPE 
'define J
'define JAL 
'define BEQZ 
'define BNEZ 
'define ADDI 
'define SOBI 
'define ANDI 
'define ORI 
'define XORI 
'define LHI 
'define JR 
'define JARL 
'define SLLI 
'define SRLI 
'define SEQ I 
'define SMI 
'define SNEI 
'define SLTI 
'define SLEI 
'define LW 
'define SW 

'h29 

'h4 
'h6 
'h7 

opeodes 
'hO 
'h2 
'h3 
'h4 
'h5 
'hB 
'ha 
'he 
'hd 
'he 
'hf 
'hIZ 
'h13 
'h14 
'h16 
'hIB 
'h17 
'h19 
'hla 
'hIe 
'hZ3 
'hZb 

111111I1II1III111I11111 
fiEnd of DLX instruction Set definitions 
II 
'e-n~d~i~f-'/~/~D~L~X~-------------------------------------------------------

'endif II _PROCESSOR_CONFIG FLAT V 

B.2 Automatically Generated Part of Configuration File 

The example is shown for the 5-stages architecture with the full support of the instruction 

set and BRAM optimizaiton. 

//********************************************************************** 
// Automatically Generated Section of Configuration File 
//********************************************************************** 

//********************************************************************** 
// Global processor definitons 
//********************************************************************** 
'define SHIFT COMMANDS 
'define SET COMMANDS 
'define processor data width 256 
// Instruction Memory definitions 
'define imem_size 1024 
'define imem_step 1 
'define imem addr width 10 
'define imem-shift 0 
// Data Memory definitions 
'define dmem size 1024 
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'define drnem step 4 
'define drnem-addr width 10 
II Data Memory Mapping 
'define drnem up limit 'h80000000 
'define drnem-down limit 'hlOOOOOOO 
II Ilo Memory definitions 
'define io mem size 1024 
'define io-mem-width 32 
'define io-addr width 10 
II IIO memory mapping 
'define io mem down limit 'hO 
'define io-mem-up limit 'h400000 
II PC width - -
'define PC width 32 
IIPC start-address 
'define reset addr 'h400000 
II SP start address 
'define SP INIT 'h7ffffffc 
II Padding-of PC bitwidth natural('processor_data_width-'PC_width) 
'define PC_padding 224 
'define FPGA BRAM 
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Appendix C 

Implementation Reports 

C.l Xilinx Summary Reports 

Implementation report for the following processor configuration: 

• 4-stage architecture 

• 256-bit data path 

• BRAM optimization 

• Full instruction set support 
~ '>" 

. ~ ", -~ , . MIPS D~~ Project Status 
'Project File: mips dlx.ise Current State: 

:Module mips_dlx • Errors: , 
iName: 
iTarget xc5vlx50- • Warnings: 
Device: Iff324 , 

,Product ISE 9.2.04i • Updated: 
,Version: 

MIPS_DLX Parti!i~~~Suinmary 
;No partition information was found. 

... ~ Device Utilization Summa.lJ' 

,Slice Logic Utilization Used Available 

iNumber of Slice Registers 1,635 28,800 
Number used as Flip Flops 1,634 

Number used as Latch-thrus 1 

iNumber of Slice LUTs 8,720 28,800 

Number used as logic 8,203 28,800 

Number using 06 output 8,063 
,only 

Number using 05 and 06 140 

Number used as Memory 516 7,680 

Number used as Dual 
516 

,Port RAM 

I Number using 06 
,output only 

4 

104 

,.. 

-,,~ . 

Placed and Routed 

No Errors 

318 Warnings 

Tue Feb 2 19:18:582010 

"" .. _. _~.~,_ ' ... " .• ~' .... " ..... - .. I: 

i 

.~---.. -

Utilization Note{s) 

5% 

30% 

28% 
, 
i 

6% 



I. Number using 05 
ioutput only 

4 

106 
Number using 05 and 

508 
I 
I, Number used as exclusive 
Iroute-thru 

1 

iNumber of route-thrus 1 57,600 1% 

I Number using 05 and 06 1 11 
,Slice Logic Distribution 

INumber of occupied Slices 2,879 7,200 39% 

Number of LUT Flip Flop 
10,330 

pairs used 

I Number with an unused 
8,695 10,330 84% 

,Flip Flop 

I, Number with an unused 
,LUT 

1,610 10,330 15% 

I, Number of fully used LUT-
IFF pairs 

25 10,330 1% 

I! Number of unique control 

Isets 
9 

lID Utilization 

Number of bonded lOBs 78 220 35% 

jSpecific Feature Utilization i 

]Number of BlockRAMIFIFO 1 481 0 I 

I. Number using B10ckRAM 
pnly 

9 

iTotal primitives used 

I, Number of36k 
BlockRAM used 

7 

\, Number of 18k 3 
i BlockRAM used , 

ITotal Memory used (KB) 306 1,728 17% 

Number of 
:BUFGIBUFGCTRLS 

1 32 3% 

I Number used as BUFGs 1 

ITotal equivalent gate count 
,for design 

1,321,378 

IAdditional JT AG gate count 3,744 
[for lOBs 

_.. •• _. " " "'r." • -, 
" I , 

, 
t " Performall~~~~!l~Il1f!1a,ry~ 

~, ," ' '., """,,;, ,~--- ".-.~ .. .' • '"., "j.I.' ',' ." 

105 



I 
Final Timing 
iScore: 

0 Pinout Data: Pinout Report 

Routing All Signals 
Clock Data: Clock Report 

:Results: Completely Routed 

ITiming 
,Constraints: 

All Constraints Met 

t .. ""._ ' "~ - Detailed ~eports 

,Report Name Status Generated Errors Warnings lnfos 

iSynthesis 
Tue Feb 2 

140 
Current 18:39:14 0 71nfos 

IReport 2010 
Warnings 

l!ranslation 
Tue Feb 2 

Current 18:40:14 0 0 0 
IReport 2010 

IMap Report 
Tue Feb 2 

177 
Current 18:56:39 0 

Warnings 
61nfos 

2010 

lPlace and TueFeb 2 
I Current 19:17:29 0 1 Warning 1 Info 
IRoute Report 2010 

:Static Timing 
Tue Feb 2 

Current 19:18:57 0 0 21nfos 
I Report 2010 

,Bitgen Report 
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S .... fiilil'zmaii�ii��lilllillililllll ___ .. _______________________________ · ..... _-

Implementation report for the following processor configuration: 

• 5-stages architecture 

• 128-bit data path 

• No BRAM optimization 

• Full instruction set support 

"'. MI}>S _DJ.lX proje(!t Status .•. 
~ .". ~ " "'-"-"'" . -

,Project File: mips_dlx.ise !Current State: Placed and Routed 

iModule mips_dlx • Errors: 
iNa me: 

No Errors 

l:rarget xc5vlx50- • Warnings: 
,Device: 1 ff324 

218 Warnings 

;Product ISE 9.2.04i • Updated: 
Sun Jan 1723:41 :032010 

IVersion: 

. ~)\1WS_DLXParti~io!!.~u!D_ID!ry .. 
I 

t; , - " .... "r'~ ' •• -.-. ~ 

INo partition information was found. 
"-'. ". 

~. ,y 
Device Utilization Summ~ry .. ... I 

ISHee Logic Utilization Used Available Utilization Note(s) i 

iNumber of Slice Registers 1,006 28,800 3% • 

Number used as Flip Flops 1,005 

Number used as Latch-thrus 1 

;Number of Slice LUTs 4,757 28,800 16% 

Number used as logic 3,988 28,800 13% 

Number using 06 output 
3,887 

,only 

I Number using 05 and 06 101 

Number used as Memory 768 7,680 10% 

I Number used as Dual Port 
RAM 

256 
I 

106 
Number using 05 and 

256 
I 

I, Number used as Single 
,Port RAM 

512 

• Number using 06 
:output only 

512 

I, Number used as exclusive 
route-thru 

1 

;Number ofroute-thrus 1 57,600 1% 

Number using 05 and 06 1 I 

;Slice Logic Distribution 
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iNumber of occupied Slices 1,841 7,200 25% I 

Number ofLUT Flip Flop pairs 
5,739 I [used I 

1 Number with an unused Flip 
4,733 5,739 82% 

:Flop 

I Number with an unused LUT 982 5,739 17% 

I Number of fully used LUT-
FF pairs 

24 5,739 1% 

I, Number of unique control 
,sets 7 

I 
10 Utilization I 

IN umber of bonded JOBs 78 220 35% 

$pecific Feature Utilization 

INumberof 
,BUFGIBUFGCTRLs 

1 32 3% 

Number used as BUFGs 1 
ITotal equivalent gate count 
lor design 

169,476 

!Additional JT AG gate count for 
3,744 ,lOBs 

" 

....... ,..... -" ~ , J '" " \-.- " 
• J:>er!<?!!Dance Sum!Dary 

" .. "'" . -~- - - ,,-,j 

,Final Timing 
0 Pinout 

Pinout Re;Qort 
IScore: Data: 

IRouting Results: All Signals Com;Qletel,Y ICIOCk Clock Re;Qort Routed Data: I 
jTiming All Constraints Met 
;Constraints: ,-

",".. ,,"., ,,.,:., '. ,. 
" . Detailed Reports,. 

, ..... , '" '~" <,.",d ". ~ ~ " 

]Report Name Status Generated Errors Warnings InCos 

Synthesis Re;Qort Current Sun Jan 17 
0 

124 
7 Infos 15:01:282010 Warnings 

ITranslation Re;Qort Current 
Sun Jan 17 

0 1 Warning 0 23:32:072010 
I 

Current 
Sun Jan 17 

0 92 
6 Infos IMa;Q Re;Qort 23:39:342010 Warnings 

iPlace and Route Re;Qort Current 
Sun Jan 17 

0 1 Warning 1 Info 23:40:382010 
i Sun Jan 17 
IStatic Timing Re;Qort Current 0 0 2 Infos 23:41 :022010 

:Bitgen Report 
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Implementation report for the following processor configuration: 

• One-cycle architecture 

• 16-bit data path 

• No BRAM optimization 

• Reduced instruction set 
, 

MIPS DLX Project Status 
;Project File: mips dlx.ise !Current State: Placed and Routed 

:Module 
mips_dlx • Errors: 

;Name: No Errors 

I!ar~et xc5vlx50- • Warnings: 
pevlce: lff324 130 Warnings 

;Product ISE 9.2.04i • Updated: 
IVersion: Thu Feb 11 19:14:572010 

r ' .. ,' , MIPS DLX Partition Summary. 

iNo partition information was found. 

~_A' " " 

Device Utilization Summary .. 
~Slice Logic Utilization Used Available Utilization 

INumber of Slice Registers 10 28,800 1% 

Number used as Flip Flops 10 

;Number of Slice LUTs 419 28,800 1% 

Number used as logic 323 28,800 1% 

Number using 06 output 
323 

lonly 

I Number used as Memory 1 961 7,6801 

I Number used as Dual Port I 
RAM 

j 

I Number using 05 and 
32 

.06 

i Number used as Single 64 
Port RAM 

I Number using 06 
,output only 

64 

,Number of route-thrus 1 57,600 1% 

Number using 05 output 1 
;only 

;Slice Logic Distribution 

]Number of occupied Slices 135 7,200 1% 

Number ofLUT Flip Flop pairs 
~used 

419 
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PI 
... 

I. Number with an unused Flip 
,Flop 

409 419 97% 

I Number with an unused 
,LUT 

0 419 0% 

1 Number of fully used LUT-
iFF pairs 

10 419 2% 

I. Number of unique control 
sets 3 

:10 Utilization 
jNumber of bonded lOBs 62 220 28% 
ISpecific Feature Utilization 

INumberof 
iBUFGIBUFGCTRLs 

1 32 3% 

1 Number used as BUFGs 1 

[Total equivalent gate count 
,for design 

18,941 

lAdditional JT AG gate count 
lor lOBs 

2,976 

I ' 
,- -_. " .... Performan~e ~lImltlary , , 

jFinal Timing 0 Pinout Pinout Report 
jScore: Data: 

(ROUting Results: 
All Signals Completely Clock Clock Report 
Routed Data: 

ITiming 
,Constraints: 

All Constraints Met 

t ___ 
.. _,c .. ,,:',',',,''. .'""", . _ Det~!I~d. ~eports ,,,.". ' , - --." ,,- . ' '"j', ,," "",~ "'. 

,Report Name Status iGenerated Errors Warnings Infos 

:SynthesiS Report Current 
ThuFeb 11 

0 100 
3lnfos 19:09:192010 Warnings i 

ITranslation Report Current Thu Feb 11 
0 5 Warnings 0 19:13:032010 

I. 
Current 

ThuFeb 11 
0 24 

61nfos IMap Report 19:14:142010 Warnings 
I 

Current Thu Feb 11 
0 1 Warning 1 Info IPlace and Route Report 19:14:432010 

jStatic Timing Report Current 
Thu Feb 11 

0 0 21nfos ]9:14:572010 
,Bitgen Report 
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C.2 BRAM Utilization Reports 

Excerpt from the synthesis report in case of the successful BRAM utilization: 

INFO:Xst:2694 - Unit <inst mem> : The ROM <Mrom_data_out_asynch> will be 

implemented as a read-only BLOCK RAM, absorbing the register: <data out>. 

INFO:Xst:2690 - Unit <data ram> : The RF~ <Mram ram> will be implemented as 

BLOCK RAM 

Excerpt from the synthesis report ifBRAM optimization is not used: 

HDL ADVISOR - Unit <data_ram> : The RAM <Mram_ram> will be implemented on 

LUTs either because you have described an asynchronous read or because of 

currently unsupported block RAM features. If you have described an 

asynchronous read, making it synchronous would allow you to take advantage 

of available block RAM resources, for optimized device usage and improved 

timings. Please refer to your documentation for coding guidelines. 
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AppendixD 

TSMC 0.18 11m Process Implementation 

Synopsys Design Analyzer script for compilation of the five-stage pipeUned architecture 

sh rm -Rf Work 
sh mkdir Work 

define_design_lib Work -path "./Work" 

analyze -format verilog -lib WORK {"control_pipe. v"} 
analyze -format verilog -lib WORK {"mips_dlx.v"} 
analyze -format verilog -lib WORK {"memory. v"} 
analyze -format verilog -lib WORK {"processor_alu.v"} 
analyze -format verilog -lib WORK {"interstage_pass.v"} 
analyze -format verilog -lib WORK {"interstage_data_reg.v"} 
analyze -format verilog -lib WORK {"regfile.v"} 
analyze -format verilog -lib WORK {"inst_mem.v"} 

elaborate mips_dlx -arch "verilog" -lib DEFAULT -update 

set load 
set-load 
set load 
set load 

20 "io mem write enable" 
20 "io-mem-enable" 
20 "io-mem-addr*" 
20 "io mem data in*" 

create_clock -name "clk" -period 4 -waveform "0" "2" } { 
set_dont_touch_network find( clock, "clk") 
set clock skew -propagated clk 
set_clock_skew -plus_uncertainty 0.1 "clk" 
set clock skew -minus uncertainty 0.1 "clk" 
set-fix multiple port-nets -all 
write -format db--hierarchy -output "mips_constrained. db" 
{ttmips_dlx.db:mips_dlx"} 

remove_design find(design n*,,) 
read -format db {"mips constrained.db"} 
current design "mips constrained.db:mips dlx" 
compile--ungroup_all- -
current design "mips constrained.db:mips dlx" 
write -format db -hierarchy -output ttmips compilel.db" 
{"mips_constrained.db:mips_dlx"} -
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report_area 
report_constraints 
report timing -path full 
check_design 

max -max-paths 1 -nworst 1 

remove design find(design u*") 
read -format db {"mips compile1.db"} 
current design "mips compile1.db:mips dlx" 
compile--map_effort high -incremental=map 

write -format db -hierarchy -output "mips_compile2.db" 
{"mips_compilel.db:mips_dlx"} 
report area 
report=constraints 

report_timing full -delay max -max_paths 1 -nworst 1 

check design 
change names -hier -rule verilog 
write =format verilog -hierarchy -output "mips_gate.v" 
{ .db:mips_dlx"} 
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AppendixE 

Demo Design Constraints and Report 

NET "clk" TNM NET "clk"; 

TIMESPEC "TS_clk" PERIOD "clk" 20.0ns HIGH 50 %; 

NET "clk" USELOWSKEWLINES; 

# 

# soldered 50MHz Clock. 

# 

NET "elk" LOe "C9" I IOSTANDARD LVTTL; 

/I 

# 

/I Simple LEDs 

# Require only 3.5rnA. 

# 

NET "led<O>" LOC = "F12" IOSTANDARD LVTTL SLEW 

NET "led<l>" LOC "E12" IOSTANDARD = LVTTL SLEW 

NET "led<2>" LOe "Ell" IOSTANDARD = LVTTL SLEW 

NET "led<3>" LOC "Fll" IOSTANDARD = LVTTL SLEW 

NET "led<4>" Loe "ell" IOSTANDARD = LVTTL SLEW 

NET "led<5>" LOC "Dl1" IOSTANDARD LVTTL SLEW 

NET "led<6>" LOC nEg" IOSTANDARD LVTTL SLEW 

NET "led<7>" LOC "F9" IOSTANDARD = LVTTL SLEW = 
# 

# 

# LCD display 

# Very slow so can use lowest drive strength. 

# 

NET "lcd rs" LOe "LIS" IOSTANDARD = LVTTL SLEW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

SLOW 

NET "led rw" LOC "L17" IOSTANDARD = LVTTL SLEW = SLOW 

NET "led_e" LOC "M18" IOSTANDARD = LVTTL SLEW SLOW 
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DRIVE 4; 

DRIVE 4; 

DRIVE 4; 

DRIVE 4; 

DRIVE 4; 

DRIVE = 4; 

DRIVE 4; 

DRIVE 4; 

DRIVE 2; 

DRIVE 2; 

DRIVE 2; 



-

NET "lcd_d<4>" LOC "RIS" IOSTANDARD LVTTL SLEW SLOW DRIVE 2; 

NET "lcd_d<S>" LOC "RI6" IOSTAN DARD LVTTL SLEW SLOW DRIVE 2; 

NET "lcd d<6>" Loe "PI7" IOSTANDA.~D = LVTTL SLEW SLOW DRIVE 2; 

NET "led d<7>" LOC "MIS" IOSTANDARD = LVTTL SLEW SLOW DRIVE 2: 

it 

# Strata Flash (need to disable to use LCD display) 

it 

NET "strataflash oe" LOC "CIS" IOSTANDARD LVTTL SLEW SLOW DRIVE 

NET "strataflash ce" LOC "D16" IOSTANDARD LVTTL SLEW SLOW DRIVE 

NET "strataflash we" LOe "D17" IOSTANDARD LVTTL SLEW SLOW DRIVE 

# 

it 

it Simple switches 

it Pull UP resistors used to stop floating condition during switching. 

it 

NET 

NET 

NET 

NET 

it 

# 

"switch<O>" 

"switch<l>" 

"switch<2>" 

"switch<3>" 

it Press buttons 

LOe "L13" 

LOC "L14" 

LaC "HIS" 

LOC "NI7" 

IOSTANDARD LVTTL 

IOSTANDARD = LVTTL 

IOSTANDARD LVTTL 

IOSTANDARD LVTTL 

PULLUP; 

PULLUP: 

PULLUP; 

PULLUPi 

it Must have pull DOWN resistors to provide Low when not pressed. 

if 

NET "btn_north" LOC "V4" IOSTANDARD LVTTL PULLDOWN; 

NET "btn east" LOC "H13" IOSTANDARD LVTTL PULLDOWN; 

NET "btn south" LOe "KI7" IOSTANDARD LVTTL PULLDOWN; 

NET "btn west" LOC "DIS" IOSTANDARD LVTTL PULLDOWN; 

it 

it Rotary encoder. 

it Rotation contacts require pull UP resistors to provide High level. 

2; 

2: 

2; 

# Press contact requires pull DOWN resistor to provide Low when not pressed .• 

# 

NET "rotary_a" 

NET "rotary_b" 

LOC 

LOC 

NET "rotaryyress" LOC 

if 

# 

# End of File 

it 

"KIS" 

"GIS" 

"VI6" 

IOSTANDARD LVTTL 

IOSTANDARD LVTTL 

IOSTANDARD LVTTL 
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PULLDOWN; 

.1 

I . 



- 7 • 
i I 

I : 

~ . " 
MIPS_DLX_DEMO Project Status 

Project File: mips dlx demo.ise Current State: Programming File Generated 

,Module 
demo _led_fib • Errors: 

No Errors 
:Name: 

Target xc3s500e-5fg320 • Warnings: 
148 Warnings 

,DeYice: 

Product ISE 9.2.04i • Updated: Thu Dec 31 20:46:33 2009 , 
IVersion: 

"" 

t < •••• ,-- ,', - MIPS DLX_DEMO Partition Summary 

iNo partition information was found. 

[ 
-"-,"" 

Device UtilizatIon Summ'ary 
.. ' '" 

" " " 

;Logic Utilization Used Available Utilization Note(s) 

!Number of Slice Flip Flops 1,399 9,312 15% 

INumber of 4 input LUTs 4,355 9,312 46% 

:Logic Distribution 

jNumber of occupied Slices 3,369 4,656 72% 

I Number of Slices containing 
3,369 3,369 100% 

only related logic 

I Number of Slices containing 
,unrelated logic 

0 3,369 0% 

iTotal Number of 4 iuput LUTs 4,888 9,312 52% 

iNumber used as logic 4,355 

;Number used as a route-thru 19 

Number used for 32xl RAMs 512 

Number used as Shift registers 2 

Number of bonded lOBs 30 , 232 12% 

I lOB Flip Flops 15 

,Number of GCLKs 1 24 4% 

!Total equivaleut gate count for 
de~gn ' 106,751 

I Additional JTAG gate count for 
,lOBs 

1,440 

t 
- . - . ~ 

",.!'~rforl!1~nc~, ~umIltary", _,_, 
.---~ 

., --'--~.'-~-~'->----.•. ~-, .".~ .. ~ .0$ .' " ' ., 

,Final 
Pinout ITiming 0 Pinout Report 

iScore: 
Data: 

Routing 
All Signals Completely Routed ICIOCk Clock Report I 

Results: Data: 

ITiming All Constraints Met 
Constraints: 
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r. 

! 
Report 

Status I 

Name 

Synthesis 
Current , 

,Report 

ITranslation Current Report 

iMapReport Current 

IPlace and 
Current IRoute 

,Report 

IStatic 
ITiming Current 
; Report 

IBitgen iCurrent 
,Report 

Detailed Reports 

Generated Errors 

Wed Dec 9 22:39:46 
0 2009 

Wed Dec 9 22:40:08 
0 2009 

Wed Dec 922:40:37 
0 2009 

Wed Dec 9 22:44:01 
2009 0 

Wed Dec 9 22:44:18 
2009 0 

Wed Dec 9 22:46:13 
0 2009 
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'Varnings Infos 

141 16 
IWarnings I Infos 

1 
0 Warning 

3 3 Infos 
Warnings 

3 
Warnings 0 

0 2 Infos 

0 0 

,i 
I 

.1 

.. I 

:j 
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Appendix F 

Fibonacci Test Program 

The assembler and machine code of Fibonacci number calculation program is shown below. 

The values are presented in hexadecimal format. This code is a part of the instruction memory 

module. Each row contains Verilog assignment for ROM address and comments showing a 

corresponding assembler code. 

F.1 Program With Delay Slot And Reordering 

'ifdef _FIB_PROGRAM_V_ 
'else 
'define _FIB_PROGRAM_V_ 

assign ram[ 0]='h8cld0004;//lw $29, 4($0) 
assign ram[ 1]='h8c040008;//lw $4, 8($0) 
assign ram[ 2] 'h23bdfff4;//addi $29, $29, -12 
assign ram! 3)='hafbf0008;//sw $31, 8($29) 

;40 0000: lw Ssp, 4 ($zero) //load from I/O mem 
;40-0004: lw SaO, B($zero) //load from I/O mem 

40 0008: addi Ssp, Ssp, -12 <-- fib 
40-000c: sw $ra, 8($sp) 

assign ram[ 4]='hafb00004;//sw $16, 4($29) 
assign ram[ 6]='h20020001;//addi $2, $0, 1 
assign ram[ 5J-'hlOBOOOOd;//beq $4, $0, 52 
assign ram[ 7]='h20080001;//addi $8, $0, 1 
assign ram[ B]='hl088000a;//beq $4, $8, 40 
assign ram[ 9]='hOOOOOOOO;//nop 
assign ram[10]='h2084ffff;//addi $4, $4, -1 
assign ram[121='hafa40000;//sw $4, 0($29) ; 
assign ram[11]='hOcl00002;//jal Ox00400008 [fib]; 
assign ram[13)='h8fa40000;//lw $4, 0($29) 
assign ram[14]='h2084ffff;//addi $4, $4, -1 
assign ram[16]='h00408020;//add $16, $2, $0 ; 
assign ram[15]-'hOcl00002;//ja1 Ox0040000B [fib]; 
assign ram[17]='h00501020;//add $2, $2, $16 
assign ram[1B]='hac02000c;//sw $2, 12($0) 
assign ram[19]='h8fb00004;//1w $16, 4($29) 
assign ram[20]='h8fbf0008;//1w $31, 8($29) 
assign ram[21]='h23bdOOOc;//addi $29, $29, 12 
assign ram[22]='hacld0010;//sw $29, 16($0) 
assign ram[23]='h03e00008;//jr $31 
assign ram[24]='hOOOOOOOO;//nop 
assign ram[25]='hOOOOOOOc;//sysca11 

assign ram[26]='hOOOOOOOc;// 
assign ram[27]='hOOOOOOOO;//// 
assign ram[28]='hOOOOOOOO;//// 
assign ram[29]='hOOOOOOOO;//// 

Note. The reordering is shown in bold font. 
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40-0010: sw $sO, 4($sp) 
40-0018: addi $vO, $zero, 1 
40=0014: beq SaO, $zero, fin 
40 OOlc: addi $tO, $zero, 1 
40-0020: beq SaO, $tO, fin 
40-0024: nop (delay slot) 
40-0028: addi SaO, SaO, -i 
40-0030: sw SaO, O($sP) 
40-002c: jal fib 
40-0034: 1w SaO, O($sp) 
40-0038: addi $aO, SaO, -1 
40-0040: add $50, $vO, $zero 
40=003c: jal fib 
40 0044: add $vO, $vO, $50 
40-0048: sw $vO,12($zero)//store to I/O mem 
40-004c: lw $sO, 4($sp) <-- fin 
40-0050: lw $ra, 8($sp) 
40-0054: addi Ssp, Ssp, 12 
40-0058: sw $sp,16($zero)/lstore to I/O mem 
40-005c: jr $ra 
40-0060: nop 
40=0064: sysca11 

as 



= esm" , 

F.2 Program Without Delay Slot And Reordering 

'ifdef _FIB_PROGRAM_V_ 
'else 
'define _FIB_PROGRAM_V_ 

1w $29, 4($0) ; 40 0000: 1w Ssp, 4($zero) //1oad from I/O mem 
1w $4, 8($0) ; 40-0004: lw SaO, 8($zero) //load from I/O mem 
addi $29, $29, -12 - 40_0008: addi $sp, Ssp, -12 <-- fib 

assign ram[ 0]a'h8cld0004;1/ 
assign ram[ 1j3'h8c040008;1/ 
assign ram[ 2]='h23bdfff4;/1 
assign ram[ 3]='hafbfOOOB;// 
assign ram[ 4]='hafb00004:// 
assign ram[ 5j='h20020001;// 
assign ram[ 6]='h10BOOOOd;// 
assign ram[ 7]='h20080001;// 
assign ram[ 8j='h1088000a;// 
assign ram[ 9]='hOOOOOOOO;// 
assign ram[10]='h2084ffff;// 
assign ram[11j='hafa4000D;// 
assign ram!12]='hOcl00002;// 
assign ram[13]='h8fa40000;// 
assign ram[14]='h2084ffff;// 
assign ram[15]='h00408020;// 
assign ram[16]-'hOcl00002;// 
assign ram[17J='h00501020;// 
assign ram[lB]='hac02000c;// 
assign ram[19]='hBfb00004;/1 
assign ram[20]='h8fbf0008;11 
assign ram[2l]='h23bdOOOc;// 
assign ram[22J='hacldOOlOi// 
assign ram!23]='h03e00008;// 
assign ram[24]='hOOOOOOOO:11 
assign ram[25j='hOOOOOOOc:l/ 
assign ram[26j='hOOOOOOOc:l/ 
assign ram[27j='hOOOOOOOO;/II/ 
assign ram[28]='hOOOOOOOO;/I// 
assign ram[29]='hOOOOOOOO;II// 

sw $31, 8($29) 40 OOOc: sw $ra, 8($sp) 
sw $16, 4($29) 40-0010: SW $50, 4($sp) 
addi $2, $0, 1 40-0014: addi $vO, $zero, 1 
beq $4, $0, 52 40-0018: beq SaO, $zero, fin 
addi $8, $0, 1 40-001c: addi $tO, $zero, 1 
beq $4, $8, 40 40-0020: beq SaO, $tO, fin 
nop 40-0024: nop 
addi $4, $4, -1 40-0028: addi SaO, SaO, -1 
SW $4, 0($29) 40-002c: sw $aO, O($sp} 
jal Ox00400008 [fib]; 40-0030: ja1 fib 
lw $4, 0($29} 40-0034: lw $aO, O($sp) 
addi $4, $4, -1 40-0038: addi $aO, SaO, -1 
add $16, $2, $0 40-003c: add $sO, $vO, $zero 
jal Ox00400008 [fib); 40-0040: jal fib 
add $2, $2, $16 ; 40-0044: add $vO, $vO, $50 
sw $2, 12($0) ; 40 0048: sw $vO,12($zero)//store to I/O mem 
1w $16, 4($29) ; 40 004c: 1w $50, 4($sp) <-- fin 
1w $31, 8($29) ; 40-0050: 1w $ra, 8($sp) 
addi $29, $29, 12 ; 40-0054: addi Ssp, Ssp, 12 
sw $29, 16($0) ; 40 0058: 5W $sp,16($zero)//store to IIO mem 
jr $31 40_005c: jr $ra 
nop 
sysca11 
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Appendix G 

Configurable Processor Verification 

G.l Verification Reports 

Typical successful completion report: 

* Fibonacci number test SUCCESSFULLY completed, Fib 
* Test finished after 242 machine cycles 

Typical unsuccessful completion report with calculation errors: 

# Test completed with ERRORS: Expected Fib( 5)= 8, 
obtained Fib( 5)= x 
* Test finished after 242 machine cycles 

Typical unsuccessful completion report due to a timeout: 

# Test test finished UNSUCCESSFULLY due to the timeout 
# Test finished after 50001 machine cycles 

G.2 Simulation Waveforms 
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Figure G.t: Post-route simulation waveforms of the 32-bit configuration of multi-cycle architecture 
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Figure G.2: Post-route simulation waveforms of the 32-bit configuration of one-cycle architecture 
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Figure G.3: Post-route simulation waveforms of the 32-bit configuration of four-stage architecture 
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Figure G.4: Post-route simulation waveforms of the 32-bit configuration of five-stage architecture 
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AppendixH 

Images of Demo Design Example 

All numbers have a hexadecimal radix. 
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Appendix I 

Altera FPGA Implemention 

Excerpt from the Altera Ouartus II fitter report for the processor with following 

configuration: 

• 5-stages pipe lined 

• 12S-bit width 

• Full ISA support 

• BRAM optimization 
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+-----~------------------------------------------------------------------------~------------------------------------------------
; fitter RAM Summary 
+----------------------------------------------------------------------------------------------------+------+------------------+ 
; Name ; Type ; Mode 
+----------------------------------------------------------------------------------------------------+------+------------------+ 

data ram:processor data memlaltsyncram:ram rtl 21altsyncram fljl:auto generatedlALTSYNCRAM AUTO Simple Dual Port 
inst=mem:processor=imemlaltsyncram:Mux31_rtl_3IaltsynCram_3~71:auto_generatedIALTSYNCRAM AUTO ROM 
regfile:processor regfilelaltsyncram:data register rtl Olaltsyncram ptil:auto generatedlALTSYNCRAM MLAB Simple Dual Port 
regfile:processor=regfilelaltsyncram:data=register=rtl=1Ialtsyncram~ti1:auto=generatedIALTSYNCRAM MLAB Simple Dual Port 

+----------------------------------------------------------------------------------------------------+------+------------------+ 

--------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 
Clock Mode ; Port A Depth; Port A Width; Port B Depth ; Port B Width ; Port A Input Registers ; Port A Output Registers ; 

--------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 
Dual Clocks 256 128 256 128 yes no 
Single Clock ; 1024 21 yes no 

32 128 32 128 yes no 
32 128 32 128 yes no 

--------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 

--------------~---------+-------------------------+-------+--------------------~--------+-----------------------------+-----------------------------+ 
Port B Input Registers ; Port B Output Registers ; Size ; Implementation Port A Depth ; Implementation Port A Width ; Implementation Port B Depth ; 

------------------------+-------------------------+-------+-----------------------------+-----------------------------+-----------------------------+ 
yes no 32768 256 128 256 

21504 1024 21 
yes no 4096 32 128 32 
yes no .: 4096 32 128 32 
---------~--------------+------~------------------+-------+-----------------------------+------------------~----------+-----------------------------+ 

-----------------------------+---------------------+------------+--------------+------------+----------------------------+ 
Implementation Port B Width ; Implementation Bits ; M9K blocks ; M144K blocks ; MLAB cells ; MIF 

-----------------------------+---------------------+------------+--------------+------------+----------------------------+ 
128 32768 4 0 0 None 

21504 3 0 0 mips cfg.mips dlxO.rtl.mif 
128 4096 0 0 256 None - -
128 4096 0 0 256 None 

-----------------------------+---------------------+------------+--------------+------------+----------------------------+ 
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Excerpt from the Altera Ouartus II fitter report for the processor with following configuration: 

• 5-stages pipe lined 

• 128-bit width 

• Full ISA support 

• No BRAM optimization 

+-------------------------------------------------------------------------------------------------------------------------------
I Fitter RAM Summary 
+-----------------------------------------------------------------------------------~---------------~+------+------------------+ 
I Name I Type I Mode 
+----------------------------------------------------------------------------------------------------+------+------------------+ 

data ram:processor data memlaltsyncram:ram rtl 21altsyncram fljl:auto generatedlALTSYNCRAM AUTO Simple Dual Port 
; regfIle:processor_regfilelaltsyncram:data_register_rtl~Olaltsyncram-ptil:auto~generatedIALTSYNCRAM I MLAB ; Simple Dual Port; 
; regfile:processor_regfilelaltsyncram:data_register~rtl~llaltsyncram-ptil:auto~generatedIALTSYNCRAM ; MLAB I Simple Dual Port; 
+----------------------------------------------------------------------------------------------------+------+------------------+ 

-------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 
Clock Mode ; Port A Depth ; Port A Width ; Port B Depth ; Port B Width ; Port A Input Registers ; Port A Output Registers ; 

-------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 
Dual Clocks 256 128 256 128 yes no 

; 32 ; 128 ; 32 ; 128 ; yes ; no 
; 32 ; 128 ; 32 ; 128 ; yes ; no 

-------------+--------------+--------------+--------------+--------------+------------------------+-------------------------+ 

------------------------+-------------------------+-------+-----------------------------+-----------------------------+-----------------------------+ 
Port B Input Registers ; Port B Output Registers ; Size ; Implementation Port A Depth ; Implementation Port A Width ; Implementation Port B Depth ; 

------------------------+-------------------------+-------+--------~--------------------+--~--------------------------+-----------------------------+ 
yes no 32768 256 128 256 
yes ; no ; 4096 ; 32 ; 128 ; 32 
yes ; no ; 4096 ; 32 I 128 ; 32 

------------------------+-------------------------+-------+-----------------------------+-----------------------------+-----------------------------+ 

-----------------------------+---------------------+------------+--------------+------------+------+ 
Implementation Port B Width ; Implementation Bits ; M9K blocks ; M144K blocks ; MLAB cells ; MIF 

-----------------------------+---------------------+------------+--------------+------------+------+ 
128 32768 4 0 0 None 
128 ; 4096 ; 0 ; 0 ; 256 ; None ; 
128 ; 4096 ; 0 ; 0 ; 256 ; None ; 

-----------------------------+---------------------+------------+---------~----+------------+------+ 
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