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Abstract

Abstract: Energy Harvesting (EH) is an emerging communications paradigm to defeat the

limitation of network longevity by recharging the nodes by harvesting energy from the en-

vironment. The Energy Harvesting Network (EHN) requires a stable and efficient power

control scheme like other conventional communication systems. It is more complicated than

conventional communication networks, in that it should not only consider the quality of ser-

vice requirements of the network but also adapt to the randomness of the energy arrival. In

this thesis, several optimal offline and online resource allocation strategies for point-to-point

and two-hop EH communication networks over wireless fading channels are investigated.

As a first step, the RGWF (Recursive Geometric Water-filling) algorithm is introduced,

which provides an optimal offline transmission policy for a point-to-point EH communi-

cation system. Next, a network composed of a source, a relay, and a destination, where

the source is an EH node is considered. Joint time scheduling and power allocation prob-

lems are formulated to maximize the network throughput by considering conventional and
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bufferaided link adaptive relaying protocols. Based on the modified RGWF algorithm, the

joint power allocation and transmission time scheduling problem are decoupled, and efficient

offline schemes are proposed for a two-hop wireless network for delay-tolerant and delay

sensitive applications. In the second part, the aim is to obtain the optimal transmission

policy that maximizes the average total throughput of a point-to-point EH communication

system with low and high data arrival rate in an online manner. The solution is obtained

using dynamic programming by casting the proposed problem as a semi-Markov decision

process (SMDP). In a delay-tolerant approach with high data rate, a cross-layer adaptation

is considered, where the proposed policy chooses modulation constellation for EH networks

dynamically, depending on battery state, data buffer state in addition to channel state.

The proposed SMDP-based dynamic programming approach has proven to be dynamically

adaptive to the change of the channel and/or buffer states that optimally satisfy the BER

requirements at the physical layer, and the overflow requirements at the data-link layer.
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Chapter 1

Introduction

1.1 Background and Motivation

With increasing demand and explosive growth in wireless communications in recent years,

energy conservation has become more desirable to help reducing the world’s energy con-

sumption. According to the International Energy Agency [1], due to tremendous demand

for energy in all areas, by 2050, investments in energy preservation could decrease the waste

of energy by one-third. Green communication is the key solution to many problems related

to the wasted energy due to radio transmissions [2]. Green communication can be defined as

the practice of utilizing the energy that is harvsted from the environment wisely by select-

ing energy-efficient communications technologies. In fact, scavenging ambient energy and

utilizing the available energy wisely leads to maximize the overall network throughput [3,4].

Today’s number of communication devices, such as smartphones and wireless sensor net-

works will be doubled or tripled by 2050 [1]. Therefore, the last decade witnessed considerable

interest in investigating and proposing more efficient and economical ways to allocate power

resources. Besides saving energy, Green communication can solve the CO2 emission threat

that results from the increasing energy consumption in wireless networks. For this reason,

a number of countries, organizations and institutions have signed agreements to reduce en-
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CHAPTER 1. INTRODUCTION

ergy consumption by various percentages. By 2020, for instance, the European Union has

aimed to reduce greenhouse gas emmissions, the government of China has promised to reduce

pollution by 10 percent, and Vodafone Group has targeted to reduce its CO2 emissions by

2020 [5] [6].

Another advantage of utilizing green communication is maximizing the radio commu-

nication tasks’ lifetime because of its renewability feature. Operation of traditional com-

munication systems cannot surpass the battery size or control the constraints of the power

supply. In contrast, nodes with energy harvesting capability in wireless communication sys-

tems are able to harvest energy from the renewable sources of their surrounding environment,

convert it to electrical energy, and utilize the converted energy in carrying out their func-

tions.. Therefore, EH node technology is a promising technique to overcome the limitation

of network longevity as shown in [7–9].

Although all the features of EH wireless networks, such as prolonging network longevity

and saving the environment from CO2 emissions threats, some particular challenges should

be considered and a new design dimension should be established. The main challenging

of EH technology is the time-varying energy harvesting [10] and the limited amount of

energy available [11], which means that satisfactory communication performance is difficult

to guarantee. Thus, much effort has been spent on enhancing EH network performance in

the literature (e.g., [12–17]). It is revealed that in order to develop efficient transmission

policies for EH wireless networks, the random arrivals and the low rate of harvested energy

should be addressed by considering the EH profile that characterizes the EH capacity of the

EH nodes. It is concluded that even when the wireless fading channels remain unchanged,

the transmission power should adapt to the time-varying energy arrivals, which adds more

challenges to EH wireless networks. Moreover, cooperative relays are used in order to expand

the network size geographically, thereby increasing the communication transmission range.

Besides multi-hop transmission as it is used to expand the covering transmission area, it

also has been approved to maximize the overall throughput of the network [18,19]. Buffer-
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CHAPTER 1. INTRODUCTION

aided relaying is a fundamental concept at the physical layer for many wireless networks,

i.e. cellular and ad hoc, etc., and they have been well investigated over the last decade.

Intermediate nodes can relay the source information to the destination using minimum power.

As a result, energy efficiency is obtained and the high risk of potential interference is avoided.

Motivated by these features, deploying relays on EH communication systems is a significant

strategy and plays an important role in improving the EH network performance.

On the other hand, as a result of employing data buffering, queuing delay must be consid-

ered when developing resource allocation schemes [20–22]. It is known that modern wireless

systems must support various delay constraints including delay and non-delay tolerant con-

straints by providing delay QoS guarantees through efficient resource allocation schemes.

Real-time applications are an example of the non-delay tolerant approach, which is classified

under hard-deadline constraints, such as online games, real-time audio and video, and in-

telligent support systems etc. [23, 24]. In contrast, other applications including traditional

Internet services, such as file transfers, email exchanges, and web browsing, can tolerate some

delays but are limited to expect good (average) delay performance. Nevertheless, a mod-

ern energy-constrained wireless communication system are subject to time-varying channel

conditions and stochastic traffic loads, which makes it very hard for them to provide the

necessary QoS to support latency-sensitive applications. This is more challenging by the

introduction of wireless nodes powered by energy harvested from the environment, such

as solar, motion, thermal energy, light, or RF energy. Although energy harvesting nodes

can operate autonomously in remote areas without require to change batteries or access to

power lines, the stochastic nature of harvested energy sources poses new challenges in power

management, transmission power allocation, and transmission scheduling.

Motivated by the above discussions, this thesis studies novel resource allocation schemes

for practical point-to-point and two-hop EH communication systems, where a source does

all the optimization part and a receiver is a base station, which is operated by conventional

power, to support delay-tolerant and delay-sensitive applications with the objective of max-
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CHAPTER 1. INTRODUCTION

imizing network throughput and longevity while minimizing energy cost. In the considered

systems, to overcome the fading nature of wireless channels, the EH nodes use buffers to store

the data arrivals, optimally allocate resources, and adapt transmissions to the instantaneous

channel conditions and EH profile to enhance the throughput. It also considers the case when

the source is equipped with finite-size buffers with different QoS (i.e., delay, packet-dropping

rate, packet error rate, bit error rate, etc.) requirements, and cross-layer optimization is

investigated, where physical-layer parameters are combined with data-link/higher-layer pa-

rameters. These parameters are adapted to channel conditions, battery states, and buffer

occupancy to minimize delay, BER, overflow rate, etc., and to maximize throughput. Since

these objectives are difficult to manage, we consider a tradeoff between them and find the op-

timal policy by forming the problem as a semi-Markov decision process (SMDP) and solving

the problem with dynamic programming technique.

1.2 Energy Harvesting in Wireless Communication Sys-

tems

In traditional wireless communication system, transceiver nodes are connected to the power

grid or equipped with pre-charged batteries. However, or some applications, connecting the

transceiver nodes to the power grid is not possible, while replacing or recharging the batteries

is impractical. An alternative solution to tackle this issue is energy harvesting (EH), where

wireless EH nodes harvest energy from their surrounding environment, convert it to electrical

energy using a corresponding conversion mechanism. Then, the converted electrical energy

can be utilized for many purposes such as sensing, signal processing, and/or transmission.

Hence, network with EH capability provides a way of operating with an infinite lifetime.

On the other hands, power allocation for EH transceiver is subject to EH constraints,

where each transmitter is constrained to utilize at most the amount of currently available

stored energy at each interval even though the transmitter may harvest more energy in the
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CHAPTER 1. INTRODUCTION

Table 1.1: Examples of EH sources

EH source EH arrival Harvested power
Thermal energy (Human) Predictable 0.3 mW
Thermal energy (Industrial) Predictable 1 - 10 mW
Wind energy (turbine) Unpredictable 1 W
Wind energy (small-scale) Unpredictable 7,5 - 55 mW
Light energy (Outdoor) Predictable 10 mW/cm2

Light energy (Indoor) Predictable 10 µW/cm2

Vibration energy (human motion) Predictable 4 mW
Vibration energy (machines) Predictable 1 W
RF transmitter with 4W Unpredictable 189 µWat5m
Powercast transmitter with 3W Unpredictable 5.5 µWat15m

future. Therefore, the characteristics of the energy sources, which are represented as the

harvested amounts of energy and its arrival time, have a direct influence on the transmission

policy design to be either online or offline. For instance, a source of energy can be either

controllable or non-controllable; and non-controllable energy can be also divided predictable

(offline) or unpredictable (online) transmission strategy.

1.2.1 Characteristics of EH Sources

As mentioned earlier, The characteristics of the energy sources directly influences the trans-

mission policy design to be either online or offline. In the following lines, the characteristics

of the different energy sources and their performance are presented, which are summarized

in Table (1.1).

Thermal energy: An approach, such as Seebeck effect is utilzed to convert the thermal

energy into electrical energy [25]. Thermal energy can be harvested when the node is exposed

to temperature gradients. One end of the Thermoelectric generator should be placed on the

heat source and the other end on a colder source. An example of thermal energy harvesting

sources is human bodies ( [26], [27], [28]), room heater [29], CPU heatsinks [30] etc. As a

matter of fact, thermal energy is uncontrollable but predictable.

Wind energy: A wind turbine is a well-known source of energy that harvests energy

5



CHAPTER 1. INTRODUCTION

from air flows and supplys heavy duty applications, such as power grids, cellular base stations,

etc. For a large-scale wind EH system, the Windlab Junior turbine ( [31], [32]) can generate

power with 1 Watt at a speed of 2000 rpm. Inspired by largescale systems, smallscale wind

EH systems are developed. For example, a wind EH turbine is developed in [33], which

provides a output power between [7.5 - 55] mW .

Light energy: Light is the most common source of energy with their two well-known

types: solar radiation or artificial light [34]. There exist important implementations of solar

EH nodes in wireless communications [35, 36]. Practically, light energy is captured in a

solar panel and then converted into electrical energy by using the photovoltaic effect. The

output power of solar energy in outdoor and indoor surfaces are 10mW/cm2 and 10µW/cm2,

respectively [26].

Vibration and Motion energy: Vibrations are energy sources for EH nodes that

occur in daily human activity or industry. Electrical energy can be harvested from vibration

by many transducers, such as piezoelectric generators or electrostatic and electromagnetic

converters [37]. An extensive review of vibration energy harvest leveraging piezoelectric effect

is presented in [38]. Vibrations generated from road traffic [39], factory machines [40] and

human motions such as footsteps [41], [42] are explored as the source of energy. Researchers

in [11] measured the output power of daily human activities and they found that the average

harvested power that can be generated from human motion is 4mW . On the other hand,

vibration that is released from machines can produce energy up to 1W [43].

RF energy: The energy from RF electromagnetic waves has been approved to charge

EH nodes from the far-field electromagnetic radiation in the RF band. Usually, this band

ranges from 3 KHz to 300 GHz, where most of the energy harvesting research activities

are focused on TV [44], Cellular ( [45], [46]), and ISM ( [47], [48], [49]) bands. Authors

in [50] shows an example of Wireless Local Area Network (WLAN) powers EH nodes. It

shows that the amount of harvested energy that can be obtained from the RF waves relies

on RF wavelength (λ), transmitting power (p), and the distance between power source and
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CHAPTER 1. INTRODUCTION

the EH node (d). However, the main factor that controls the amount of harvested energy

is the distance. Authors in [51] showed that the Powercast transmitter with 3 W transmit

power in 915 MHZ band generates 189 µW at 5 m distance, whereas RF transmitter with 4

W transmit power in the 928 MHZ at 15m distance produces only 5.5 µW due to a greater

distance. On the other hand, RF-based wireless charging and information transfer at the

same time is possible and it is known as simultaneous wireless information and power transfer

(SWIPT) [52]. According to [53], two receiver architectures were considered in SWIPT

networks, such as time switching-based relaying (TSR) protocol and power splitting-based

relaying (PSR) protocol [54]. Particularly, an energy constrained node harvests energy from

the RF signal that is broadcasted by the transmitter and it utilizes the collected harvested

energy to forward the source information to the destination or another node. While the

energy constrained node determines the required time that has to be shared for the energy

harvesting circuit and the information processing circuit in TSR protocol, the time is evenly

shared between the source-to-relay information transmission and the relay-to-destination

information transmission, respectively, in PSR protocol. However, in PSR protocol, the

energy constrained node on the first half of the block time determines the required power

that has to be split into two separate circuits: EH and signal processing.

1.2.2 Storage Capacity

Characteristics of energy storage capacity play a significant role in implementing optimum

transmission policy for EHNs. For instance, a large storage capacity can reduce the random-

ness effect of energy arrivals. In order to generalize this characteristic, the storage capacity

types are sorted into two main modules; Harvest-Use-Save (HUS) module and Harvest-Use

(HU) module.

HUS module: In an HUS module, the EH node has the ability to either use or save

the converted electrical power based on network status. Outfitting an energy buffer with

large capacity enhances the EHNs performance by minimizing the energy outage. Numerous
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papers have discussed the transmission policy for various types of EHNs using an HSU

module [12, 16,17,55,56].

HU module: Mainly, transmission policy for EHN using an HU module is less compli-

cated compared to an HUS module because EH nodes in an HU module are only required

to immediately utilize the available harvested energy. Therefore, it is sufficient to design a

transmission policy for a current time interval with no consideration of the whole transmis-

sion time. Recently, many papers have investigated the transmission policy for various types

of EHNs using HU modules [57–59].

1.3 Literature Review

The lifetime of wireless networks can be prolonged via EH technology. Although supplying

the low-cost devices with fixed energy supplies, such as batteries, and replacing the batteries

when they are needed may achieve the goal of prolonging the wireless networks longevity,

replacing batteries for such devices is either impossible or expensive, i.e., hazardous envi-

ronments. Therefore, the EH technique is utilized to gather energy from the surrounding

environment in order to overcome the bottleneck of fixed energy supplies [60]. Hence, this

has grabbed wide interest in ambient energy-harvesting technologies.

EH techniques are divided into two types: conventional EH technique, which harvests

energy from external energy sources that are not part of communication networks, such as

those based on solar power, wind energy, etc. [60], and non-conventional EH technique, which

replenishes energy from ambient Radio Frequency (RF) signals ( [52], [61], [62]). A problem

of two-hop wireless EH and information processing communication system over AF relaying

network was considered in [63]. Focusing on TS and PS receiver architecture, optimal TS

factor (α) and PS factor (ρ) that minimize the outage probability for an arbitrary relay are

derived, respectively. Their analysis provides insights on how the system performance is

affected by key parameters such as noise variances, source to relay distance, transmission

8
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rate, and energy conversion efficiency. The same communication system has been revisited

in [64]. On the other hand, outage probability minimization problem based on relay selection

in EH relay systems are recently attracted research interests. Particularly, this problem has

been investigated for non-conventional EH network type [65]- [66]. Authors in [65] explore

relay selection schemes based on the available CSI and largest available stored energy with

the goal to minimize the outage probability for both causal and non-causal CSI cases. They

conclude that although EH efficiency is an important factor for the outage performance, the

tradeoff associated involving a number of relays in the system may outperform the limitation

of EH efficiency.

Throughput maximization based on relay selection problem in EH relay systems has been

investigated recently for non-conventional EH networks and conventional EH networks [62],

[66], respectively. In [62], Aurhors proposed two relay selection schemes aiming to obtain

the optimal tradeoff between energy transfer and ergodic capacity. In [66], offline and online

joint relay selection, and source-relay transmit power allocation schemes are proposed that

maximize the end to end system throughput over a finite number of transmission intervals.

The optimal relay selection depends on both the CSI and the amount of harvested energy

stored by the nodes.

Another body of work investigates the structure of optimal transnsmision policies for

conventional EH technique in EH communication systems [12,16,17,56]. The transmission

completion time minimization problem for a point-to-point transmission with EH constraints

over Additive White Gaussian Noise (AWGN) channel has been studied in [16]. In addition,

minimizing transmission completion time as well as maximizing throughput for a single-hop

with EH constraints and over a fading channel have been investigated in [17] and [12]. Au-

thors in [56] revisit the problems in [12, 17] and a novel approach: a Recursive Geometric

Water-Filling (RGWF) algorithm, is proposed as an optimal transmission policy. Optimal

power allocation for outage probability minimization in point-to-point fading channels with

EH constraints has been studied in [67]. The system model was investigated for two cases:

9



CHAPTER 1. INTRODUCTION

non-causal and causal energy state information, where they have been solved using offline

and online power allocation algorithms, respectively. Although the system model was shown

to be a non-convex problem, the innovative algorithm has solved the problem globally by

exploiting some interesting properties of the outage probability function and one-dimension

searching was only required. While, the previous-mentioned works concern resource alloca-

tion for EH point-to-point communications, in practice, it is not always possible for a source

to communicate directly with the destination; for example, due to long distance or severe

shadowing. Hence, deploying multi-hop and cooperative relays are significant in improving

the coverage, throughput, and reliability of wireless networks. Transmission policy for a EH

single-relay two-hop networks have been studied in [68–72]. In [68], throughput maximiza-

tion problem for the two-hop communication system in the case of an EH source with two

energy arrivals being solved using a cumulative curve algorithm. The optimal transmission

policy with a non-EH source and an EH relay was developed in [69], while the optimal

power allocation problem for the case where both the source and the relay are EH nodes

with different delay constraints was solved in [70]. In addition, a power allocation strategy

that maximizes the system throughput over a finite number of transmission time slots for

EH two-hop networks under various delay constraints has been proposed in [71]. In [72], a

Directional Water-Filling (DWF) algorithm, which is used to obtain optimum power alloca-

tion for a single-hop transmission, was adopted to gain an optimal transmission policy for a

two-hop communication with EH constraints. GunduzDevillerstwohopEH

1.4 Contributions

The main contributions of this thesis are the designs of transmission strategies for practi-

cal point-to-point and two-hop conventional EH communication systems, and they can be

summarized as follows:

# Resource Allocation for Two-Hop Communication with Energy Harvesting

10
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Constraints Over Fading Channels:

• Time scheduling and power allocation problem is investigated for a two-hop commu-

nication system with an EH source and a non-EH relay with objective of maximizing

a short-term throughput with a given deadline.

• The low-complexity Recursive Geometric Water-Filling (RGWF) algorithm is modified

and extended into a two-hop network scenario so as to optimize the offline resource

allocation that maximizes the end-to-end system throughput for delay sensitive and

delay tolerant relaying networks.

• For delay sensitive and delay tolerant cases, several online suboptimal low-complexity

approaches are proposed that provide reasonable performance.

# Semi-Markov Decision Process (SMDP)-Based Resource Allocation for a

Point-to-Point Communication System with Energy Harvesting Constraints:

• This work concentrates on the online resource allocation problem for a point-to-point

EH communication system, and a novel framework based on SMDP approach is for-

mulated for the proposed system model with the objective of maximizing the network

throughput.

• A SMDP-based policy is proposed that dynamically adapts to the changing of the

channel status and the varying of arriving harvested energy and incoming data, and

efficiently distributes the harvested energy.

• The objective of the framework is to obtain the optimal decision of resource allocation

on the point-to-point EH communication system by maximizing the network through-

put and reducing the service rejection probability.

# SMDP-Based Online Cross-layer Adaptive Transmission Techniques for a

Point-to-Point Communication System over Fading Channels:

11
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• A cross-layer adaptation transmission policy for an online point-to-point communica-

tion system with EH constraints over a Rayleigh fading channel based on SMDP under

delay constraints is investigated.

• A novel framework based on the SMDP approach is formulated for the proposed system

model with the objective of maximizing network throughput by optimally allocating

the resource while maintaining minimum buffering delay and packet overflow.

• The proposed SMDP-based dynamic programming approach has been approved in

being dynamically adaptive to the change of the channel and/or buffers states that

optimally satisfy the BER requirements at the physical layer, and the overflow require-

ments at the data-link layer.

1.5 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2: Resource Allocation and General Tools in EH Wireless Net-

works. Presents the resource allocation problems categorized and discussed according to

the adopted approaches and network architecture. Then, basic elements, objectives and fun-

damental constraints of the EH wireless networks are well studied to provide the resource

allocation design structure. Next, general tools for the resource allocation are explored and

reviewed in the context of EH communication systems. Finally, a comprehensive overview

of these categories and optimization strategies is provided.

Chapter 3: Resource Allocation for Two-Hop Communication with Energy

Harvesting Constraints Over Fading Channels. Studies the traditional two-hop com-

munication system for delay limited (DL) and delay tolerant (DT) relaying networks over

fading channels, in which the source node transmits with power drawn from energy harvest-

ing (EH) sources and the relay transmits with conventional non-EH sources. The throughput

maximization problem for the proposed system model is addressed for DL and DT cases.
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It was found that the optimal power allocation algorithm for the single-hop communica-

tion system with EH constraints; namely, recursive geometric water-filling (RGWF), can

be utilized as a guideline for the design of the two-hop system. First RGWF algorithm is

introduced to show the advantages of the geometric approach in eliminating the complexity

of the Karush-Kuhn-Tucker (KKT) condition as well as providing a closed-form and exact

solutions to the proposed problem. Based on the RGWF algorithm, offline joint power allo-

cation and transmission time scheduling schemes for DL relaying network and DT relaying

network are proposed. as well as efficient online resource allocation schemes for both re-

lays. The performance of the proposed schemes is evaluated via simulation and the results

demonstrate that a network with delay tolerant ability provides better performance in terms

of throughput.

Chapter 4: SMDP-Based Resource Allocation for Wireless Networks with

Energy Harvesting Constraints. Considers a point-to-point communication system with

energy harvesting constraints over a fading channel. A resource allocation framework based

on a SMDP is proposed. The objective of the framework is to provide a solution for a

throughput maximization problem in EH networks by maximizing the total long-term ex-

pected reward of the EH system. The system reward is derived by considering both the

income and the cost of the EH wireless communications. Numerical results illustrated that

obtaining a transmission action policy based on the SMDP approach resulted in gaining

higher throughput and provided guidelines for resource management in green communica-

tion with EH transmitters.

Chapter 5: Cross-layer Adaptive Transmission Techniques for EH Systems

over Fading Channels. Investigates a cross-layer online adaptation transmission policy for

a point-to-point communication system with EH constraints over a Rayleigh fading channel

based on SMDP under delay constraints. Unlike most of the channel-dependent adaptation

policies in the literature, the proposed policy chooses modulation constellation for EH net-

works dynamically depending on battery state, data buffer state in addition to channel state.
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Because the channel-dependent policy is physical layer optimized, it does not guarantee the

upper-layer overflow requirement. Hence, a novel framework based on the SMDP approach is

formulated for the EH wireless communication system with the objective of maximizing net-

work throughput by optimally allocating the resource while maintaining minimum buffering

delay and packet overflow. The proposed SMDP-based dynamic programming approach has

been approved in dynamically adaptive the change of the channel and/or buffers states that

optimally satisfy the BER requirements at the physical layer, and the overflow requirements

at the data-link layer.

Chapter 6: Conclusion. Includes a summary of the research work, its outcomes, and

conclusion.
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Chapter 2

Resource Allocation Problems and

General Tools

2.1 Wireless System Model

In this thesis, we consider two main system model, namely a two-hop communication system

with an EH source and a non-EH relay in Chapter 3, and a time-slotted single-input single-

output (SISO) point-to-point communication system in which an energy harvesting source

transmits latency-sensitive data over a fading channel in Chapter 4 and Chapter 5. In both

system model, the source is the energy harvesting node, where it does all the optimization

part and the receiver is the base station, which is operated by a conventional power. We

assume the source has always packets to transmit in Chapter 3, whereas data is arrived

to the source with low arrival rate in Chapter 4 and high arrival rate in Chapter 5. The

major objective of this research is to investigate resource allocation schemes for practical

point-to-point and two-hop conventional EH communication systems in order to support

delay-tolerant and delay-sensitive applications with a more practical insight.
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2.2 Resource Allocation Approaches

In this thesis, two key approaches are utilized to solve the resource allocation problem for

EH systems; namely, offline schemes and online schemes [12, 17]. These approaches differ

based on the available knowledge at the transmitter of random parameters that influence

transmission, e.g., the channel SNR, the harvested energy, the number of incoming data

bits. Each of these approaches has its merits and demerits. Therefore, depending on the

problem’s requirements and given parameters, one of the approaches can be adopted.

1) Offline : The offline approach is mainly based on the existence of noncausal infor-

mation regarding the channel SNR, the harvested energy, the number of incoming data bits,

etc., known a priori. In other words, the transmitter node has full knowledge (i.e., from the

past, present, and future realizations) of these random parameters. It was shown that the

study of offline transmission strategies have several advantages due to the following reasons.

The optimal offline transmission strategy provides a bound on the achievable performance

by any online strategy. For example, an upper bound can be obtained when the design ob-

jective is the maximization of some utility function. In opposition, a lower bound is obtained

when the transmitter is designed to minimize a cost function. In addition, offline schemes

can provide design insights that can help us to design an efficient online scheme.

2) Online : In the online approach, there is only causal information about the amount

of harvested energy, the channel SNR, and the number of incoming data bits. The transmit-

ter node has partial side information on these random parameters (including only past and

present) and maybe some statistical information regarding its future behaviour. Therefore,

in this case, online resource allocation schemes must be employed, taking into account the

available information regarding the channel SNR, the harvested energy, and the incoming

data bits. In general, an optimal online resource allocation scheme is formulated by computa-

tionally intensive stochastic dynamic programming (DP) [73]. However, in order to alleviate

the computational cost of the optimal online scheme, suboptimal but lowcomplexity online

schemes can be proposed.
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2.3 Resource Allocation and Service Requirements

In general, a transmission policy formulation problem mostly consists of three main compo-

nents: objective function, a list of constraints, and a list of optimization variables, which

are based on the applied optimization tools. The formulation of transmission policy for

communication systems with EH constraints is more complicated compared to conventional

communication systems because more constraints are required. Designing the transmission

policy for non-EH networks is mainly based on the possibility of obtaining information of

changeable parameters that affect transmission, such as Channel State Information (CSI)

while designing the transmission policy for EH networks is based on the CSI as well as the

amount of energy that is harvested and stored at the node’s energy battery, which is random

in nature. When the transmitter node has full information of the random parameters (in-

cluding the past, present and future), the offline approach is considered whereas the online

approach is applied when the transmitter node has partial side information of the channel

condition and energy state (including only past and present).

On the other hand, throughput and delay are typically the most significant service re-

quirements in the context of a point-to-point link [74]. Network throughput is defined as

the total number of bits that are successfully transmitted through a channel in a certain

time, and it testifies to the performance of the wireless channel. Delay considerations, are

significant for the quickly increasing demands of real-time applications that require firm

restrictions on packet delays. It must be remembered that the main objective of EH technol-

ogy is to meet athe increasing energy demand of increasing numbers of wireless applications

and devices, while lowering the emission of greenhouse gases to help achieve environmental

sustainability. Moreover, supporting higher data rates under strict delay QoS requirements

such as real-time applications increases the energy consumption. Therefore, it is not surpris-

ing that most researchers recently have focused on maximizing network throughput, through

effective network control while taking into consideration the energy consumption and delay

performance.
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There are several elements or objectives that could be targeted by the RA problem. These

elements may be incorporated as the optimization principle objective or as a constraint that

should hold.

2.3.1 Objective Function

There are several figures of merit that can be investigated when designing transmission

strategies for EH communication systems. Some examples that have been considered in the

literature are:

(1.) Maximization of the network throughput [17,56,72,75].

(2.) Maximization of the energy efficiency [76].

(3.) Minimization of the total transmission time [17,56].

(4.) Maximization of the outage probability [67].

This dissertation focuses on the maximization of the network throughput as a figure of

merit, leaving the remaining ones as possible future research directions. In the dissertation,

similary to [77], consider power allocation for effective capacity maximization for a point-to-

point communication system over fading channel with B Hz. We assume ergodic stationary

identically and independent distributed (i.i.d.) block-fading channel with fading duration

T (second) equal to the transmission epoch; channel power gain is constant during each

epoch but independently from each others. Given Shannons formula, the corresponding

instantaneous transmission rate (capacity) in epoch i is given by:

R[pi] = log[1 + hi · pi] (2.1)

where hi and pi denote the instantaneous (normalized) channel gain, and transmit power,

respectively, in epoch i = 1, 2, · · · .
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2.3.2 Constraints

Given any objective function, the system performance is usually limited by the available

resources such as a finite amount of energy, bandwidth, transmission time, etc., or by some

specific design requirements such as a minimum Signal to Noise Ratio (SNR) at the receiver, a

maximum delay constraint, etc. In the following section, the common constraints that appear

when designing transmission strategies for EH communication systems are summarized.

• Energy Causality Constraint: Energy causality constraint is uniquely considered

in EH wireless communication. When the input power is subject to energy causality

constraint, it means that energy must be available at the node battery and the total

consumed energy cannot be more than the total available energy. In other words, the

total consumed energy by the node at a certain instant in time must be no greater

than the total energy that is harvested and stored in the battery at that time. An

energy causality constraint can be stated as follows

l∑
i=1

τi · pi ≤
l∑

i=1

EEH
i , ∀l, (2.2)

where τi and pi are the transmission duration and the non-negative transmission powers

of EH source, respectively, and
∑l

i=1 E
EH
i is the cumulative harvested energy.

• Data Causality Constraint: This set of constraints applies when the data is dynam-

ically received over time. Similar to the energy causality constraint above, the data

causality constraint means that data can be transmitted if and only if data has been

received and stored in the data buffer. Therefore, the total transmitted data by the

node at a certain time instant must be no greater than the total arrival data on the

data buffer at that time. Data causality can be expressed as:

l∑
i=1

τi · log(1 + hi · pi) ≤
l∑

i=1

Di, ∀l, (2.3)
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where
∑l

i=1Di is the cumulative arrived data at the data buffer and hi is instantaneous

(normalized) channel gain.

• Finite Energy Capacity Constraint: This constraint is for a finite battery case,

where the communication device is limited in size and, hence, energy capacity is limited

as well. Therefore, it is quite important for the proposed resource allocation to adapt

the arrival of the harvested energy to ensure no energy packet is lost due to battery

overflows. The adaptation mechanisms can be applied according to the EH-profile and

the size of energy capacity such that energy expenditure is always less than the stored

energy Eiat any instant in time. Hence, the stored available energy must not exceed

the size of energy storage capacity Emax. The finite energy buffer causality constraint

can be expressed as:

l∑
i=1

EEH
i −

l∑
i=1

τi · pi ≤ Emax, ∀l, (2.4)

where Emax is the size of the energy capacity.

• Finite Data Buffer Constraint: Similar to the finite battery capacity constraint,

the proposed transmission strategy must optimally adapt the data arrival rate and

buffer size in order to ensure that no data packet is dropped due to buffer overflows.

The finite data buffer causality constraint is described by:

l∑
i=1

DEH
i −

l∑
i=1

τi · log(1 + hi · pi) ≤ Dmax, ∀l, (2.5)

where Dmax is the size of the node data buffer.

• Half-Duplex Constraint: This constraint indicates that the wireless communica-

tion devices cannot receive and transmit at the same time. Therefore, during source

transmission, the relay or another node must be in silent mode and vice versa. Hence,
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transmission period must be shared between the nodes such that the optimum solution

is achieved. The half-duplex causality constraint is given by:

lsi + lri ≤ τi, ∀i, (2.6)

where l1,i and l2,i are the transmission durations for nodes (1) and (2), respectively,

that are sharing the total time duration τi of the ith epoch.

• QoS Constraint: QoS is a general term used for many user satisfaction related re-

quirements. When a system is bounded with a certain performance, QoS constraints

must ensure the system performance is within the limit, such as minimum SNR, max-

imum outage probability, maximum packet dropping rate, and maximum latency.

• Delay Constraint: Delay is an important metric in any wireless network especially

for real-time applications such as voice and multimedia. By definition, delay refers

to the amount of time that elapses until a packet is delivered to the destination from

the moment that the message arrives at the data queue. Delay has two components;

queueing delay: the amount of time a packet waits in a queue until it is executed, and

transmission delay: the amount of time that the packet’s bits take in the link. Both

delay types need to be analyzed in order to characterize the delay performance.

2.4 Optimization Framework and General Tools

In this section, we explore and review the optimization strategies for throughput maximiza-

tion problems in both conventional and EH communication systems. Depending on the

objectives, these strategies can be categorized under several performance optimization cri-

teria. In the following, a brief overview of these categories and optimization strategies is

provided, and the characteristics of each are highlighted.
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2.4.1 Single-hop Conventional Communication Systems

Radio resources, such as power and bandwidth, must be well utilized and this can be clas-

sified as a Radio Resource Management (RRM) problem. Recently, various tools have been

established for solving RRM problems. Water-Filling (WF) is a well-known information the-

ory technique and it is a useful tool for RRM problems in wireless communication systems.

Specifically, WF is widely utilized to determine power allocation strategies that maximize

point-to-point channel capacity for offline settings by assigning more power to the channel

with higher gains. As a result, the overall channel capacity is maximized.

Problem and Algorithm

In the following, the water-filling problem is introduced, which can be formulated as the

following problem: given P > 0, as the total power or volume of the water, find that

max{pi}Ki=1

∑K
i=1

Li

2
· log(1 + hipi)

subject to: 0 ≤ pi,∀i,∑K
i=1 pi = P

(2.7)

where K is the total number of channels. Let Li, hi and pi denote the time duration,

the instantaneous (normalized) channel gain and the transmission power of the ith channel,

respectively. Since the constraints are such that (i) the allocated power must be nonnegative,

and (ii) the sum of the power equals P , the problem (2.7) is called the water-filling (problem)

with sum power constraint. On the other hand, the described channel principle can be

extended to cover various communication systems’ issues, i.e., a multi-carrier channel [78],

a frequency-selective channel [79], a multiple input multiple output (MIMO) channel [80],

etc. By interpreting the observed properties of the optimal power allocation scheme as a

water-filling scheme, pi units of water are placed in a rectangular container with a bottom

width of Li

2
, (i=1,. . . , K). To unify the parameter notation, through a change of variables,

an equivalent target problem can be obtained as follows:
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max{pi}Ki=1

∑K
i=1 τi · log(1 + hipi)

subject to: 0 ≤ pi,∀i,∑K
i=1 pi = P

(2.8)

where τi ← Li

2
, hi ← hi

Li
and pi ← Lipi. Note that the symbol ← is the assignment operator.

In this section, two water-filling approaches are presented that solve the water-filling

(problem) with sum power constraint. One is the conventional water-filling (CWF) method;

another is the proposed geometric water-filling (GWF) method. The main principle of the

WF approaches is to determine the optimum water level that maximizes the overall network

throughput. Nevertheless, CWF and GWF algorithms are developed to solve this constrained

optimization problem using different optimization approaches.

Conventional Water-Filling (CWF)

CWF is a wide WF algorithm umbrella approach that solves a power allocation problem with

a sum power constraint under non-negative individual powers. Because of the non-linear

equation and the inequality equation as shown in the problem (2.8), the resulting proposed

system is non-linear. In the CWF algorithm, Karush-Kuhn-Tucker (KKT) conditions are

utilized to find the solution to the proposed problem. KKT conditions can be considered,

on the other hand, as a group of the optimal conditions. Below is the derived solution after

applying the KKT conditions, 
pi = (µ− 1

hi
)+, ∀i∑K

i=1pi = P,

µ ≥ 0.

(2.9)

where (z)+ = max{0, z}. µ is the water level chosen to satisfy the power sum constraint

with equality
∑K

i=1pi = P . Eqn. (2.9) relates to the solution to the CWF problem (2.8).
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Geometric Water-Filling (GWF)

The GWF approach can be seen as a functional block that solves the same CWF RRM

problem as in Eqn.(2.8). The GWF approach simplifies the CWF algorithm by eliminating

the complexity of solving the non-linear system using KKT conditions, and takes a geometric

approach that provides explicit solutions for and helpful insights into the problem and the

solution. In the conventional water-filling algorithm, the optimum water level must be

determined first, and then, the power allocation task is solved. In GWF, on the other hand,

the highest channel under water (i′), is obtained instead, which is an integer. The water

volume above the ith channel (P2(i)) can be determined based on the height of the ith fading

channel (di = 1
hiτi

) and the channel width (τi) as shown below,

P2(i) =

[
P −

K−1∑
k=l

(di − dk)τk

]+

, for i = l, . . . , K. (2.10)

The main purpose of determining P2(i) is to find the maximal channel index (i′) that makes

P2(i) positive. Hence, i′ can be obtained using the following formula

i′ = max{i|P2(i) > 0, 1 ≤ i ≤ K} (2.11)

Consequently, the allocated power of the ith channel (i = 1, 2, . . . , K) is determined as

follows:  pi = [
pi′
τi′

+ (di′ − di)] τi, l < i ≤ i′

pi = 0, i′ < i ≤ K
(2.12)

where the power level of the i′ channel is obtained as follows:

pi′ =
τi′∑i′

k=l τk
P2(i′) (2.13)

On the other hand, the GWF algorithm uses fewer computational resources compared
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to CWF. The worst-case computational complexity of the GWF approach has (8K + 3)

fundamental arithmetic, whereas the CWF approach has O(K2) fundamental arithmetic [81].

More detailed of GWF algorithm can be found in [81].

2.4.2 Single-hop EH Communication Systems: Offline Setting

EH communication is an advanced wireless communication technique that has attracted

enormous research attention. Authors in [56] presented the RGWF algorithm that solves

the optimum power allocation problem for a point-to-point data transmission with EH trans-

mitter over a fading channel based on the GWF approach. Shannon capacity is adopted to

achieve the maximum link capacity by determining the rate versus power relationship of the

channel, given by:

R[pi] = log[1 + hipi] (2.14)

where hi and pi are the instantaneous (normalized) channel gain and the transmission power

at the ith slot, respectively. The total transmitted bits for a given link in the ith time slot

with duration τi, is given by:

D(i, τ) =
∑
i

τi ·R(pi) (2.15)

Problem and Algorithm

In [56], throughput maximization problem for a single-hop system with EH constraints over

fading channels is investigated. The non-negative EH node transmission power is defined as

pi with non-negative transmission durations τi, for (i = 1, 2, . . . , K), respectively. Moreover,∑l
i=1E

EH
i is the cumulative harvested energy of the transmitter. When the input power is

subject to energy causality constraint, it means that the energy harvested can only be used

in the current time or in the future, but not in the past. In addition, the total consumed

energy cannot be more than the total available energy, and an energy causality constraint is

stated in Eqn.(2.2)
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In other words, by replacing the sum power constraint in Eqn.(2.8) with the EH causality

constraint, the target problem can be defined as a water-filling problem with EH constraints.

As a results, other approaches were utilized to solve this problem, and they are namely

called directional water-filling (DWF) [17] and recursive geometric water-filling (RGWF) [56],

which are extensions of CWF and GWF approaches, respectively. Hence, the throughput

maximization problem can be formulated as follows,

max{pi}Ki=1

∑K
i=1 τi · log(1 + hipi)

subject to:
∑l

i=1 τi · pi ≤
∑l

i=1 E
EH
i , ∀l,

0 ≤ pi, 0 ≤ τi, ∀i,

(2.16)

Consequently, the objective function of this problem will be based on the total amount of

data that the energy harvesting transmitter can forward to the destination over a given

number of transmission time slots K.

Directional Water-Filling (DWF)

DWF was initially proposed in [17], which solved the presented problem (2.16) by adding

EH constraints. Specifically, the authors in [17] consider the optimization of a point-to-point

data transmission with an energy harvesting transmitter over a wireless fading channel. In

the current work, the water-filling problem with EH constraints is introduced, which can be

formulated into the following problem: given EEH
i > 0, as the amount of energy arrival at

ith epoch. Hence, the above problem has been solved using the DWF algorithm. The main

feature of DWF is illustrated in Fig.(2.1), where hi is instantaneous (normalized) channel

gain, i.e., low fading level and high fading level, which represent the good channel state and

bad channel state, respectively. Mainly, DWF aims to equalize the power as much as possible

and it proceeds as follows: [81]

1. Fill each incoming energy until next energy arrival.

2. A water right-permeable material (the solid line that separates each three epochs)
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Figure 2.1: Fill the incoming energy until the next energy arrival

Figure 2.2: Equalizing the water level among the epochs

allows the available energy to be transferred to the right only, whereas energy transfer

in the left direction is not allowed. (Because of energy causality).

3. Equalize the water level w among intervals if the water level on the left-hand side is

higher than the right side while keeping in mind the level of harvested energy cannot

exceed Emax. This is clearly shown in figure (2.2) at intervals (4,5,6,7,8,9).

4. Eventually, the optimal power allocation is determined as the height of the water in

each interval, i.e., P ∗i = [wi − hi]+, where wi is the water level of the ith epoch.

Recursive Geometric Water-Filling (RGWF)

Problem (2.8) has been solved based on the GWF scheme, which eliminates the complexity

of employing the KKT multipliers. The RGWF algorithm, on the other hand, is a recursive

version of the geometric water-filling algorithm that is utlized to solve problem (2.16) by
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obtaining optimum transmission power and maximizing the throughput of a single-hop EH

communication system, while taking into account that channel conditions and harvested

energy vary in time. In RGWF, GWF can be represented as a functional block that is

recursively applied to sequentially solve the power allocation problem for energy harvesting

transmission over fading channels. The exact optimal allocated power can be determined to

provide insights into the given profile and the solution.

In the following, a description of the RGWF algorithm is presented.

1. Assuming K is an integer that represents the total number of slots in a given transmis-

sion time (T), the assigned arrival harvested energy can be represented as {1, K, {EEH
i }Ki=1}.

2. RGWF sequentially processes the (K) slots starting from the second time slot.

3. Assuming (L) is the index of current processing slot, the power levels are updates for

slot (L) and its previous (L− n) slots. Hence, a processing window is established.

4. GWF algorithm is applied to this window to obtain optimal power allocation for the

slots that are assigned to this window by solving [(2.10)-(2.13)]. The common water

level is then found.

5. The water level of the current process window is compared with the previous slot, and

then, if the non-decreasing water level condition is satisfied, the allocated powers for

the corresponding (L) slots are obtained. Consequently, a new processing window will

be created by moving to the next time slot. Otherwise, the current processing window

will be extended with one slot in the left side and the same steps above are applied.

In this way, the completed optimum power allocation {pi}Ki=1 for the ith time slot (i =

1, . . . , K) for a point-to-point EH communication system over fading channel are determined

within finite loops. That is to say, RGWF can be written as a formal expression:

{pi}Ki=1 = RGWF (1, K, {τi}Ki=1, {hi}Ki=1, {EEH
i }Ki=1). (2.17)

28



CHAPTER 2. RESOURCE ALLOCATION PROBLEMS AND GENERAL TOOLS

In the following, mapping is used as a first step to solve a two-hop communication system

over fading channel with EH constraints.

2.4.3 Single-hop EH Communication Systems: Online Setting

The previous section presented an algorithm that provides optimum power allocation for a

point-to-point EH communication system for the case where channel state information and

energy arrival information are known in a non-causal manner. The presented algorithm will

be utilized for maximizing the throughput of a two-hop wireless network with EH constraints.

Since the aforementioned information is known only causally, the aim is to find the optimal

transmission policy which maximizes the average total throughput of the network in an

online manner. The optimal solution can be obtained using dynamic programming. Finding

an optimal solution using dynamic programming is very complex because of the curse of

dimensionality. To overcome this issue, discrete dynamic programming is used to cast the

optimization problem as a semi-Markov decision process (SMDP). In the SMDP formulation,

the set of transmission power levels is discrete and finite in contrast to general dynamic

programming, where continuous power variations are allowed. Moreover, the channels are

quantized to a finite number of states. The quantizations of channel and power level result

in a state space of finite size and making the SMDP formulation mathematically tractable to

solve the throughput optimization problem in the online setting. Introduced below are some

of the basic concepts and terminology and discuss each ingredient of the SMDP problem.

Semi-Markov Decision Process (SMDP)

• Control Problem and Decision Epochs: In a stochastic control problem there

are set of states, where in each state, some actions are executed that influence the

environment; it may enter another state and action, repeatedly. In a stochastic system,

a decision maker or a controller is in charge of controlling the behaviour of a certain

stochastic system, which evolves over time. In MDP, this control is carried out by
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making decisions or taking actions at specific equal time instances. In other words,

time is always discretized at equal time steps, where it may make a transition to

another state. In this approach, decisions can be made only at fixed epochs t = 0, 1, ....

However, in many stochastic control problems the times between the decision epochs

are not constant but random. A possible tool for analysing such problems is the semi-

Markov decision model. In SMDP, these time steps do not have the same amount of

time and, hence, some time steps might be longer than others.

On the other hand, the permanence in a certain state occurs for a random amount of

the time, called the holding time (τ), following a given distribution. The holding time

(τ) represents the time to the next transition. In other words, it indicates the time

that the environment is going to spend in the current state before it transitions to a

new state. Each state is associated with one or more reward variables called reward

rates.

• States and Actions: Consider a dynamic system whose state is reviewed at random

epochs. At those epochs, a decision has to be made and costs are incurred as a

consequence of the decision made. The set of all such states is referred to as the state

space S. Given that the present state of the system is s ∈ S, the scheduler can select

an action a from a set of allowable actions As associated with this state. For each state

s ∈ S , a set A(s) of possible actions is available. It is assumed that the state space S

and the action sets A(s), s ∈ S are finite.

• Rewards and Transition Probabilities: Given that the controller takes an action

a ∈ As at the system state s ∈ S, the system will obtain a reward of r(s, a). In other

words, there will be an instant reward for every state and action pair. The function

r(s, a) is a real valued function defined by S × A.

The future system state is affected by the action that is taken at the current state.

Moreover, The system state in the next epoch is changed according to the transition

30



CHAPTER 2. RESOURCE ALLOCATION PROBLEMS AND GENERAL TOOLS

probability. The transition probability; p(s
′|s, a) can be defined as the probability that

the system will be in state s
′ ∈ S, given that the state of the system is s and the action

as is selected.

2.5 Chapter Summary

This chapter presents the resource allocation problems that are categorized and discussed

according to the adopted approaches and network architecture. Then, basic elements, ob-

jectives and fundamental constraints of the EH wireless networks are well studied to provide

the resource allocation design structure. Finally, general tools for the resource allocation are

explored and reviewed in the context of EH communication systems, and a comprehensive

overview of these categories and optimization strategies is provided.
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Chapter 3

Resource Allocation for Two-Hop

Communication with Energy

Harvesting Constraints Over Fading

Channels

3.1 Introduction

Transmission polices for EH communication systems to maximize throughput have been

well investigated recently. A throughput maximization problem for a single-hop with EH

constraints over a fading channel has been investigated in [17] and [12]. Authors in [56] revisit

the problem in [12,17] and a novel approach: a Recursive Geometric Water-Filling (RGWF)

algorithm, is proposed as an optimal transmission policy. However, as the harvested energy

Parts of Chapter 3 are presented at the IEEE International Conference on Wireless Communications
Signal Processing (WCSP) in Nanjing, China [82], and published in the Journal Issue on Information and
Communication Technology [83].
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is mainly arrives randomly in a small amount, in single-hop EH networks, how to guarantee

the satisfactory short-term performance is a challenging problem

Multi-hop transmission is used in order to expand the network size geographically using

relays, thereby increasing the communication transmission range. Hence, it may utilize as a

potential candidate to improve the short-term performance of EH communication networks.

Two-hop communication systems with EH constraints have been studied recently, but only

for some special cases. The authors in [69] propose an optimal transmission policy for the

two-hop system model in the case of multiple EH packets arriving at the relay. In [68], a

throughput maximization problem for the two-hop communication system in the case of an

EH source with two energy arrivals has been solved using a cumulative curve algorithm.

In [82], a Recursive Geometric Water-Filling (RGWF) algorithm, which is used to obtain

optimum power allocation for a single-hop transmission, was adopted to gain an efficient

transmission policy for a two-hop communication with EH Source (EH-S) and conventional

Non-EH Relay (NEH-R) over a fading channel for a delay-limited network.

In this chapter, an efficient transmission policy of two-hop communication with energy

harvesting constraints over fading channels for DS relaying network is investigated, as well

as a DT relaying network under deterministic offline and online settings. By comparing our

work with the existing results, the contributions of this work are summarized as follows:

• Novel solutions are presented to tackle a short-term throughput maximization problem

with a given deadline of the two-hop communication system over a fading channel.

• The low-complexity RGWF algorithm is modified and extended into a two-hop network

scenario so as to optimize the offline resource allocation that maximizes the end-to-end

system throughput for DS and DT relaying networks.

• For DS and DT cases, several online low-complexity approaches are proposed that

provide reasonable performance.

The remainder of this chapter is organized as follows. The system model and the adopted
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transmission policy are presented in Section 3.2. In Section 3.3, the throughput maximization

problem is formulated and the developed algorithms for the DS case are proposed. The

formulation of the throughput maximization problem and the proposed algorithms for the

DT case are discussed in Section 3.4, followed by simulation results and chapter summary

in Sections 3.5 and 3.6, respectively.

3.2 System Model

3.2.1 Model Description

In this section, the system model in [72] is adopted, which consists of a two-hop communi-

cation system with an EH-S and a half-duplex NEH-R over a fading channel, as shown in

Fig. 3.1. The direct transmission between source and destination is negligible because of

deep fading. For convenience, it is considered that the given total transmission time period

is from [0, T] including K epochs. Each epoch is represented as either new harvest energy

arriving or change in the channel fading gain, or both. The time difference between epochs’

instants (ti−1)th and (ti)th is called the ith epoch, which is defined as τi = ti − ti−1, for

i = 1, 2, ..., K. Moreover, Ei is the corresponding amount of harvested energy and 1
hi

is the

fading level in the ith interval, for i = 1, 2, ..., K. Without loss of generality, it is assumed

that t0 = 0 and tK = T . The terms epoch and interval are used interchangeably in this chap-

ter. We assume the channel between the source-relay link (hsi ) experiences fading whereas

(hri ) is the AWGN channel on the relay-destination link for the ith interval, (i = 1, 2, . . . , K).

In addition, the available energy is utilized only for transmission purposes. Thus, Shannon

capacity is adopted to achieve the maximum link capacity by determining the rate versus

power relationship of the channel.

In this chapter, resource allocation schemes for a two-hop wireless communication with

EH constraints over fading channels for delay-sensitive and delay-tolerant networks are pro-

posed. In the following subsection, the advantage of a RGWF-EH profile in maximizing the
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Figure 3.1: System model, K=7 epochs in [0,T] with (a) EH source, i.e., random energy arrivals
(Ein), has a time-variant channel, and (b) non-EH relay, i.e., relay powered by battery, experiences
an AWGN channel.

network throughput and the transmission policy for both delay networks’ types is discussed.

3.2.2 RGWF-EH Profile

The RGWF algorithm has been shown to provide optimal power allocation for a single-hop

over a fading channel [56]; as illustrated in Fig.(3.2-a), where the plain areas represent the

fading gain and the shadowed areas represent the allocated power for the epochs. According

to Fig.(3.2-a), it is easy to notice that more power is allocated to the epoch with less fading

whereas less power is allocated to the high fading epoch, which leads to maximum through-

put. Now, by only plotting the allocated power, the RGWF-EH profile is obtained as shown

in Fig.(3.2-b). This profile can be used as a guideline for designing an efficient scheduling

scheme that maximizes the network throughput for a two-hop communication system. On

the other hand, a harvested energy arrival profile at the source node and a bit arrival profile

at the destination are strongly related to each other. Since the source can transmit no data

until energy is physically available, the EH profile at the source controls the number of the
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transmitted bits to the relay. Moreover, the bit arrival profile at the relay will be shaped

based on the number of bits that have already been transmitted by the source. In addition,

according to the energy causality constraints, the total power assigned up to the ith epoch

cannot be greater than the total harvested energy up to the same epoch. Consequently, EH

profile forms the domain of the harvested energy usage, and all the feasible transmission

polices will be narrowed to this domain.

Figure 3.2: (a) Optimum power allocation for a single-hop with EH constraint over a fading channel
using RGWF. (b) RGWF-EH profile.

3.2.3 Transmission policy

Earlier work [17] illustrates that the transmission rate/power of a node is constant between

two sequential arrivals of energy. This policy is also kept in the current analysis. Although

obtaining an optimal transmission policy for a single-hop transmission plays the core role of

designing a two-hop communication system, the objective function for the two-hop trans-

mission is dissimilar. Particularly, the objective function in single-hop transmission is to

maximize the throughput in (T), whereas the two-hop system has the same overview except
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the transmission must be through a relay node. This means that the transmission sched-

uled time must be divided between source-relay and relay-destination sessions. Therefore,

to obtain an efficient transmission policy for two-hop transmission, source and relay power

allocation as well as transmission scheduling need to be well planned in order to maximize

the network throughput.

In addition, the transmission policy for the EH two-hop communication system is inves-

tigated based on both DT and DS cases. In a delay tolerant network, the source node keeps

transmitting as long as it has a good channel condition, where it is defined as the channel

fading gain is higher than the average threshold over all epochs, and has sufficient energy to

transmit. The relay node, on the other hand, will start forwarding the received bits once the

source pauses its transmission due to deteriorated channel conditions. In contrast, an ex-

ample of non-delay tolerant networks is real-time applications that impose strict restrictions

on packet delays such that the relay has to forward received packets as soon as they arrive,

Whereas the data buffer at NEH-R is neglected in a delay-sensitive network, it is assumed

that the data buffer in a delay tolerance network has infinite capacity at the relay node, and

the EH-S has data all the time.

The following sections will show how to take advantage of the obtained RGWF-EH

profile to maximize network throughput. The ordinary RGWF algorithm is only valid for

a single-hop power allocation problem. In order to extend RGWF to two-hop transmission,

a modified version of RGWF is proposed. For the throughput maximization problem with

a source having an RGWF-EH profile, the transmission policy of a two-hop communication

has the following properties:

1. The transmission rate/power of a node is constant within the ith interval, for i =

1, 2, ..., K

ps(t) =

 psi t ∈ Lsi
0 t ∈ Lri

,
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pr(t) =

 pri t ∈ Lri
0 t ∈ Lsi

where Lsi (Lri ) is the set of the source (relay) transmission sets in the given time [0, T ].

2. Emptying both source energy and the relay data buffer at the end of the given trans-

mission time (T ).

Based on the above discussed properties, it is concluded that a joint source and relay

power allocation along with their scheduled time must be optimized such that a source

transmits first and then it is followed by the relay at its allocated scheduling time. On the

other hand, the total number of transmitted bits that are delivered from the source to the

relay must be the same as the number of transmitted bits from the relay to the destination

by a given time (T ).

3.3 Throughput Maximization Problem for the DS case

This section aims to maximize network throughput of a two-hop system with EH constraints

for the DS network under offline and online knowledge of energy state information (ESI) and

channel state information (CSI). EH-S and NEH-R are sharing the same epoch for the ith

interval (i = 1, 2, ..., K) such that the lsi + lri = τi constraint must be satisfied; where τi is the

length of epoch (i), whereas the total transmitted bits by both nodes must be equal for each

ith interval (i = 1, 2, ..., K). The non-negative transmission powers of EH-S and NEH-R are

defined as psi and pri with non-negative transmission durations lsi and lri , for i= 1, 2, ..., K,
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respectively. The throughput maximization problem can be formulated as follows:

max
∑K

i=1 l
r
i · log(1 + hrip

r
i )

subject to:
∑l

i=1 l
s
i · psl ≤

∑l
i=1E

EH
i , ∀l,

lri · log(1 + hrip
r
i ) ≤ lsi · log(1 + hsip

s
i ), ∀i,

lsi + lri = τi, ∀i,

0 ≤ psi , 0 ≤ lsi , 0 ≤ lri , ∀i,

(3.1)

where
∑i

j=1E
EH
j−1 is cumulative harvested energy at the source. Consequently, the objective

function of this problem will be based on the total amount of data that NEH-R can transmit

to the destination for the given total number of epochs K. The first condition is due to

the energy causality constraints at the source, whereas the third constraint represents the

half-duplex at the relay. Since small end-to-end delay is required, the equality of transmitted

bits by both nodes at each time instant is shown in the following formula hence, the problem

can be rewritten as following:

max
∑K

i=1 l
r
i · log(1 + hrip

r
i )

subject to:
∑l

i=1(τi − lri ) · psi ≤
∑l

i=1 E
EH
i , ∀l,

lri · log(1 + hrip
r
i ) = (τi − lri ) · log(1 + hsip

s
i ), ∀i,

0 ≤ psi , 0 ≤ lri , ∀i,

(3.2)

It is noted that the above property reduced the problem (3.2) into a convex optimization

problem and it can be optimally solved using any conventional convex optimization tech-

nique [84]. In the following, optimal and suboptimal methods that solve the throughput

maximization problem for a DS network will be discussed.

3.3.1 Optimal Resource Allocation

The most recent advanced method that provides the global optimal solution for both con-

vex and non-convex optimization problems is the Interior-Point OPTimizer (IPOPT) algo-
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rithm [85]. Interior-point method provides optimal solutions for Non-Linear Programming

(NLP) problems with enormous inequality constraints. The global convergence of the IPOPT

method, which involves the primal-dual interior point algorithm, is proposed by Fletcher and

Leyffer [86] utilizing a filter line search method. Specifically, the search direction is found

by applying Newtons method into modified Karush-Kuhn-Tucker (KKT) equations. On the

other hand, the filter term refers to a set of values that guarantee that the objective and

constraint functions never return. A trial point is acceptable only if it achieves considerable

progress towards the optimization goal and is not a member of the filter.

3.3.2 Sub-optimal Resource Allocation

In the transmission policy for the proposed problem without delay tolerance, there is a single

source-relay stage pair in each epoch. Particularly, source and relay stages for the ith RGWF

interval (i = 1, 2, ..., K) are defined as lsi = [ti−1, ti−1 + t′i), l
r
i = [ti−1 + t′i, ti) respectively,

where the time instants, ti−1, ti, and t′i, are the beginning, the ending of the ith epoch, and

the time when transmission is switched to the relay, respectively. The transmitting powers

of the ith RGWF interval (i = 1, 2, ..., K) for the EH-S and NEH-R are psi = PEH
i , pri = PR

M

respectively, where PEH
i is the allocated power that is obtained based on applying the RGWF

algorithm considering only the source-relay link, and PR
M is the relay power, which is given

and fixed. Consequently, by applying Eqn.(3.3), the initial scheduled time is obtained for

the ith interval (i = 1, 2, ..., K)

t′i =
τi · log(1 + PR

M)

log(1 + PR
M) + log(1 + hsr,iPEH

i )
. (3.3)

In the case of an ordinary RGWF, where only a single-hop is involved in the transmission,

the power is allocated to the whole ith interval, which includes source and relay transmission

period. In this system model, the relay shares the interval with the source and therefore,

the RGWF algorithm must be modified in order to guarantee that the power allocation

40



CHAPTER 3. RESOURCE ALLOCATION FOR TWO-HOP COMMUNICATION
WITH ENERGY HARVESTING CONSTRAINTS OVER FADING CHANNELS

algorithm is exactly applied to the length of source stage. Otherwise, the allocated power

on the relay stage, which is a result of applying RGWF to the whole epoch (τi), will be

considered as wasted power. To overcome the potential problem of assigning source power

to the relay transmission period, the source transmit power is re-allocated for the ith epoch

(i = 1, 2, ..., K) as follows:

P ∗i = PEH
i · τi

t′i
. (3.4)

The optimum time scheduling will be re-determined based on the optimum source transmit-

ting power (P ∗i ), and subsequently, on the initial scheduled time t′i. Hence, the optimum

scheduled time for the ith epoch (i = 1, 2, ..., K), is determined as follows:

t∗i =
τi · log(1 + PR

M)

log(1 + PR
M) + log(1 + hsr,iP ∗i )

, (3.5)

It can be seen that the solution given in (3.5) is unique and satisfies the two-hop transmission

policies that are discussed in the beginning of this section. The proposed scheme is refereed

to as the Relay In Partial Epoch (RIPE) algorithm based on RGWF.

3.3.3 Pre-defined Data Rates (PDDR) Based

This subsection discusses suboptimal performance considering the same problem set-up with

only causal knowledge of CSI and ESI. The pre-defined multi-rate wireless technology is

adapted in order to support the two-hop DS network with EH constraints. The rate adapta-

tion techniques involve scheduling algorithms based on instantaneous information of source

SNR (γsi ). It is assumed that the fixed relay SNR (γr) is the only parameter that must be

known in advance. Since the relay node is powered by a fixed energy source, relay SNR is

assumed to be higher than any instantaneous SNR of source node. Hence, resource allocation

is obtained based on (γsi ) only, where it is computed as follows:

γsi = hsi ·
2EEH

i

τi
. (3.6)
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The algorithm is proposed as follows. The maximum number of bits that the link can

afford (Bmax) is determined as follows:

Bmax(n) =
τi
2
· log(1 + (γr)). (3.7)

Then, (L) pre-defined multi-rate is computed by dividing (Bmax(n)) into ( 1
L

) scale factors

for (n=1, . . . , L) where (Bmax(1)) is the highest possible transmitted bits and (Bmax(L)) is

the lowest possible transmitted bits that the source can transmit in its scheduled time. On

the other hand, the corresponding relay scheduled time that the relay needs to re-transmit

(Bmax(n)) is determined as follows:

trmax(n) =
Bmax(n)

rate(γr)
, (3.8)

Finally, the source scheduled time for ith epoch (tsi ) =
Bmax(n)

rate(γsi )
is computed. If tsi ≤ (τi −

trmax(n)), then, Bmax(n) is the maximum number of bits that can be transmitted for epoch

(i). Otherwise, (n) increases by one until tsi ≤ (τi− trmax(n)) condition is satisfied. The above

steps are applied for the ith interval (i = 1, 2, ..., K). The following pseudo-code summarizes

our algorithm.

Algorithm 1 Pseudocode for PDDR

1: Input: γr;
2: Calculate Bmax(n) and trmax(n) using (3.7) and (3.8), respectively.

3: Let integer (L > 1), divide Bmax(n) and its corresponding trmax(n) into (L) pre-defined
thresholds.

4: for i = 1 to K do
5: Calculate tsi =

Bmax(n)

rate(γsi )
.

6: While tsi > (τ − trmax(n)) do
7: n← n+ 1
8: end while
9: output: Bmax(n) is the maximum number of transmitted bits for epoch (i).

10: end for
11: Output: {Bmax(i,n)}Ki=1.
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3.4 Throughput Maximization Problem for the DT Case

In this section, maximizing the number of bits delivered to the two-hop system with EH

constraints is considered using a deadline T for the DT network. A delay tolerance network

is desirable when the network has no constraint on the end-to-end delay. Unlike the delay-

sensitive network, the epoch is never being shared between nodes; however, it is either being

allocated to the EH-S or NEH-R for the ith interval (i = 1, 2, ..., K) such that the total

transmitted bits by both nodes must be identical by the end of the K time slots. The

throughput maximization problem for the delay tolerance network can be formulated as

follows:

max
∑K

i=1 δi · τi · log(1 + hrip
r
i )

subject to:
∑l

i=1(1− δi) · τi · psi ≤
∑l

i=1E
EH
i ,∀l,∑K−1

i=1 δi · τi · log(1 + hrip
r
i )

≤
∑K−1

i=1 (1− δi) · τi · log(1 + hsip
s
i ),∑K

i=K−1 δi · τi · log(1 + hrip
r
i )

=
∑K

i=K−1(1− δi) · τi · log(1 + hsip
s
i ),

δi · (1− δi) = 0,∀i,

psi ≥ 0, pri ≥ 0, τi ≥ 0, δi ∈ {0, 1}∀i,

(3.9)

where
∑i

j=1E
EH
s,j−1 is the cumulative harvested energy values for the source. According to

the second constraint, which shows the data causality, the amount of data transmitted by

EH-S is higher than or equal to the data transmitted by the relay at any instant in time.

Consequently, the objective function of this problem will be based on the total amount

of data that NEH-R can transmit to the destination for the given total number of epochs

K. The above problem is a convex Mixed Integer Non-Linear Program (MINLP) since the

integer variable δi is either (1) or (0); i.e., δi ∈ {0, 1} and many advanced algorithms recently

have been proposed to solve this type of problem efficiently. In this chapter, several schemes

are proposed that solve the proposed problem in offline and online settings.
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3.4.1 Optimal Resource Allocation

The IPOPT algorithm is the most recent advanced method that provides the global optimal

solution for NLP optimization problems, and the Advanced Process Optimizer (APOPT)

algorithm is approved to solve many large-scale optimization problems, such as NLP, MILP

and MINLP problems. APOPT is an open source software solver that provides global optimal

solutions for convex MINLP problems [87].

On the other hand, the problem in (3.9) can be simply solved using the exhaustive search

algorithm by giving δi, for the ith interval (i = 1, 2, ..., K). Hence, the only variables that

need to be optimized are (psi , p
r
i ) for all possible combinations of δi, for the ith interval

(i = 1, 2, ..., K), and only a δi’s combination that maximizes the overall throughput will be

chosen. Because of the complexity of the exhaustive search algorithm especially for large

numbers of time slots, the exhaustive search approach will not be applied in this paper.

3.4.2 Sub-Optimal Resource Allocation

To solve the problem (3.9) heuristically, the whole epoch will be either allocated to the source

node or the relay node based on (γsi ) for the ith interval (i = 1, 2, ..., K). First, the RGWF

approach will be applied to the source-relay link for the ith RGWF interval (i = 1, 2, ..., K).

Hence, the transmitting powers of the ith RGWF interval (i = 1, 2, ..., K) for the EH-S

and NEH-R are psi = PEH
i , pri = PR

M respectively. The threshold average capacity (θc̄) for

(K →∞) can be formulated as

θc̄ =

∑K
i=1 γ

s
i

K
=

∑K
i=1 h

s
ip
EH
i

K
(3.10)

The whole interval is assigned to the source set (Lsi ) if (γsi ≥ θc̄) or it is allocated to the

relay set (Lri ), otherwise. Moreover, the first interval is allocated to the source set, whereas

the last epoch is allocated to the relay. Eventually, the RGWF algorithm is utilized again

and it will be only applied to the intervals that are assigned to the source node (τ si ). To
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avoid a vital problem that results in pri 6= 0 even when the relay node does not have data

to send, the proposed algorithm solves that potential problem as it is shown in algorithm.

(2). The “for” loop (line 15 to 23) ensures that the bit arrival profile at the relay will be

shaped based on the number of bits that have been transmitted by the source and the relay

node only transmits if it has stored data in the buffer. The proposed algorithm is referred to

as Relay In Demand using Average Capacity (RID-AC). Algorithm 2 shows the pseudo-code

for this scheme.

Algorithm 2 Pseudocode for RID-AC

1: Input: {τi}K−1
i , {hi}K−1

i , {EEH
i }K−1

i ;
2: Let Lsi = φ, and Lri = φ (empty sets).
3: utilize (2.17) to compute {pEHi }K−1

i .
4: utilize (3.6) to compute {γsi }K−1

i .
5: utilize (3.10) to obtain (θc̄).
6: Lsi ← τ1, Lri ← τK
7: for i = 2 to K − 1 do
8: if γsi > θc̄ then,
9: Lsi ← τi

10: else
11: Lri ← τi
12: end if
13: end for
14: Input: {τ si }i∈Ls

i
, {hsi}i∈Ls

i
, {EEH

i }K−1
i ;

15: utilize (2.17) agian to compute new {pEHi }K−1
i .

16: Initialize relay buffer, B0 = 0:
17: for i = 1 to K do
18: if τi ∈ Lsi then,
19: Bi = Bi−1 + τ si · log(1 + hsip

s
i )

20: else
21: if log(1 + hrip

r
i ) > Bi then,

22: pri = sBi−1
hri

23: end if
24: Bi = Bi−1 − [τ ri · log(1 + hrip

r
i )]

25: end if
26: end for
27: Output: {Bmax(i,n)}Ki=1.
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3.4.3 Relay In Demand using Average Fading (RID-AF) Based

It is well-known that only causal information of channel status and harvested energy is

available for real scenarios of resource allocation in wireless communication. This is to say,

an efficient low-complexity scheme is proposed that solves (3.9) with knowledge of CSI only.

Similar to the sub-optimal performance of offline transmission policy using average capacity

as a threshold, the whole epoch will be either allocated to source node or relay node. However,

since only CSI is known in advance, the epoch allocation is determined based on the channel

fading gain (hsi ) only as a threshold. Specifically, the epoch is allocated to source or relay

for the ith interval (i = 1, 2, ..., K) as

 Lsi ← τi if i = 1, or 1
hsi
≤ θā

Lri ← τi if i = K, or 1
hsi
> θā

(3.11)

where the threshold based on the average fading (θā) = κ ·
∑K

i=1
1
hi

K
, and (κ) is a scalar factor.

The epoch (τi) is considered to be dedicated to the source in two cases: first at the beginning

of transmission; second, when the channel fading gain is higher than the threshold. In the

second case, the ith epoch is dedicated to the relay transmission. Although the proposed

solution is heuristic, it has been shown in the numerical results that the proposed algorithms

in a delay-tolerant network achieved higher throughput compared to the proposed algorithms

in a delay-sensitive network as well as Algorithm 2 in [72] with the price of no-bounded

delay. The proposed algorithm is referred to as Relay In Demand using Average Fading

(RID-AF). The following flow chart demonstrates the RID-AF algorithm, as it is illustrated

in Fig.3.3.

3.5 Simulation Results

In this section, simulation results are provided to evaluate the performance of the proposed

offline and online resource allocation algorithms for both delay-tolerant and delay-sensitive
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Figure 3.3: Flow chart of RID-AF algorithm.
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networks. We consider a band-limited fading channel in the source-relay link and additive

white Gaussian noise channel in the relay-destination link, with bandwidth (BW )= 1MHz

and noise power spectral density N0 = 10−19W/Hz. The path loss and the transmission

block length are assumed to be 100dB and 100ms, respectively. Consequently, the rate

power function is determined as r = log(1 + h·P
10−3 ). The method uses i.i.d. Rayleigh fading

channels, where the gain h follows Rayleigh distribution with mean (m̄ = 5) and h = 1 for

AWGN channels. The Energy Harvesting rate PEH
i , on the other hand, follows a Poisson

distribution with arrival rate (λ = 1), which is multiplied in the unit of the average EH rate

for the source (EEH
o = [1, 2, . . . , 10]). The simulation was done using Matlab and it was run

for 10000 random EH realizations.

3.5.1 Performance of RGWF algorithm for a point-to-point com-

munication

Fig.3.4 shows the average throughput versus the source average EH rate with infinite energy

capacity over a Rayleigh fading channel. The RGWF scheme performance is compared with

a conventional non-EH source, where the same total amount of energy is available to allocate

at the start of the process; and the baseline performance, where the source node starts its

transmission as soon as the harvested energy arrives over a Rayleigh fading channel. It

is shown that with the increasing rate of the harvested energy, the throughput loss of the

RGWF over the non-EH network is more significant due to the fact that a higher amount

of harvested energy has to follow the causality constraint, and therefore, loss flexibility of

allocation. On the other hand, the proposed RGWF outperforms the baseline scheme in the

entire range of the energy arrival rate.
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Figure 3.4: Simulation results of the throughput versus the source EH rate for a single-hop over a
Rayleigh channel with m̄ = 5.

3.5.2 Resource Allocation Schemes for Delay-Sensitive Two-hop

Communication

In this subsection, we show the performance of the proposed resource allocation schemes for

delay-sensitive relaying in a two-hop wireless network with an EH source over a Rayleigh

fading channel, whereas the non-EH relay link experiences an AWGN environment. The

throughput performance of the proposed algorithms to the baseline algorithms are coompared

where fixed power allocation and time scheduling are applied to both nodes. For example,

each epoch is divided into two-equal time slots and they are assigned to the source and the

relay respectively. All proposed algorithms are also compared with the upper bound of the

short-term throughput for conventional non-EH nodes.

Fig.3.5 shows the impact of high channel SNR and low channel SNR versus the through-

put when the channel link faces Rayleigh fading. The figure shows the average throughput

for the resource allocation schemes proposed for a delay-sensitive network versus (EEH
o ) for

(K → ∞) and with a constant relay peak transmitting power PR
M = 10mW . It is notice-
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able that the average throughput increases as EEH
o increases for all considered schemes. As

expected, it can also be observed that the performance of the offline proposed resource allo-

cation scheme is superior to the online schemes for all (EEH
o ). The reason behind this is the

fact that the non-causal information of CSI and harvested energy is available before starting

the transmission in offline schemes whereas only causal information of CSI and harvested

energy is available for online case.

Fig.3.5 can be analyzed from two perspectives. First is the large throughput gap between

the proposed RGWF-based algorithm (RIPE) and the baseline policy; second, it reaches the

upper bound policy. In addition, when the network is delay-sensitive, it is clear that the

proposed RIPE algorithms based on data rates alternate exactly between the upper bound

and baseline performance, which indicates that the throughput performance is degraded

in terms of less complexity and less feedback overhead. In addition, the proposed online

RIPE scheme with 10-rates performs better than the proposed online RIPE scheme with

5-rates when source link faces the Rayleigh channel due to the fact that more data rates

are available as options, especially when the SNRs vary among the epochs. Moreover, it

is observed that the difference between the performance of PDDR-10 and PDDR-5 rates

increases with increasing EEH
o .

3.5.3 Resource Allocation Schemes for Delay Tolerant Two-hop

Communication

This subsection discusses the performance of the proposed resource allocation schemes for

delay tolerant relaying in a two-hop wireless network with EH source over a Rayleigh fading

channel, whereas the non-EH relay link has an AWGN channel. The throughput performance

of the proposed offline and online algorithms are compared to the baseline scheme where fixed

power allocation and slot allocation are applied to both nodes. For example, assuming the

total number of epochs are even, the odd epochs are assigned to the source and even epochs

are assigned to the relay. All the proposed algorithms are also compared with the upper
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Figure 3.5: Simulation results of the throughput versus the source EH rate for a non-delay tolerant
two-hop network under Rayleigh fading with m̄ = 5.

bound of the short-term throughput for a conventional non-EH two-hop network over a

Rayleigh fading channel.

Fig.3.6 shows the average throughput for the resource allocation schemes proposed for a

delay tolerant network versus the average EH rate for the source (EEH
o ) for (K → ∞) and

with a constant relay peak transmit power PR
M = 10mW over a Rayleigh fading channel.

It is quite clear that the throughput performance of the RID-AC algorithm has surpassed

the performance of the RID-AF algorithm with average fading. Moreover, it can be noticed

that the average throughput of the offline proposed RID-AC scheme increases sharply as

(EEH
o ) increases, whereas the average throughput of the online proposed RID-AF scheme

increases exponentially as (EEH
o ) increases. Fig.3.7 shows the average throughput versus κ

with different source average EH rate. It can be observed that the average throughput has

a direct relationship with the scale factor, and the network gains the maximum throughput

when κ = 2.
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Figure 3.6: Simulation results of the throughput versus the source EH rate for a delay tolerant
two-hop network over a Rayleigh channel with m̄ = 5.

Figure 3.7: Average throughput versus κ with (PEHo =[ 5, 8, 10] mW) under Rayleigh fading with
m̄ = 5.

3.6 Chapter Summary

This chapter investigates the resource allocation problem for a two-hop communication sys-

tem with energy harvesting constraints on the source in a fading channel environment. The
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simple and elegant RGWF approach that solves the power allocation problem for a single-hop

transmission is extended and modified to maximize the network throughput for a two-hop

communication system. The importance of this representation is that it provides more in-

sight into the problems and the solutions such that various wireless systems can be analysed.

This chapter shows the advantage of adapting the RGWF algorithm for the throughput max-

imization problem under a Rayleigh fading channel. Moreover, two schemes that maximize

the network performance from a throughput perspective are proposed for both delay toler-

ant and non-delay tolerant networks. Transmission scheduling time has been derived for the

source and the relay based on RGWF-EH profile to obtain an efficient transmission policy.

Numerical results illustrated that optimizing both transmission scheduling and power allo-

cation result in gaining higher throughput. Moreover, simulations show that the proposed

approach is simple, efficient and provides significant guidelines on network deployment and

resource management in a green radio network with EH sources.
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Chapter 4

SMDP-Based Resource Allocation for

Wireless Networks with Energy

Harvesting Constraints

4.1 Introduction

Wireless communication powered by Energy Harvesting (EH) is a promising approach to

prolong the lifetimes of wireless networks by eliminating the need for manual battery re-

placement while clean and renewable energy is approved. Moreover, it has become more

desirable to reduce the world’s energy consumption. However, the random nature of EH

technology, i.e., energy arrives at random times and in random amounts, results in chal-

lenges to providing satisfactory communication performance in EH networks. Hence, the

design of algorithms that handle the random and on-off energy arrivals is highly needed.

This section investigates the energy resource allocation problem for EH networks, and pro-

Parts of Chapter 4 are presented and published at the IEEE Vehicular Technology Conference (VTC)
in Toronto, Canada [88].
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poses a resource allocation framework based on a Semi-Markov Decision Process (SMDP).

The objective of the framework is to provide a solution for a throughput maximization prob-

lem in EH networks by maximizing the total long-term expected reward of the EH system.

The system reward is derived by considering both the income and the cost of the EH wireless

communications. The numerical results illustrate a significant expected reward performance

gain over a Greedy scheme. Moreover, simulations illustrate that the proposed approach is

efficient and provides important guidelines for network deployment and resource management

in a green radio network with EH technology.

The design of EH communication systems has attracted considerable research attention

recently. The throughput maximization problem for a single-hop network with EH con-

straints over a fading channel has been investigated in [12] and [56]. Authors in [82] revis-

ited [56], and an efficient transmission policy was proposed that maximizes the throughput

of a two-hop wireless network with EH constraints. In [89], the authors investigated the

resource allocation problem in ultra-dense small cell networks with energy harvesting base

stations. Failure probability minimization for wireless mesh networks with renewable energy

suppliers has been addressed in [90]. On the other hand, considering the random nature

of EH technology, the problem falls under a stochastic dynamic programming method [91].

Therefore, it is more realistic to utilize an optimization criterion that is dynamic in nature.

Several papers formulate the EH networks using the Markov Decision Process (MDP), which

is a mathematical framework that is utilized to analyze the system dynamics in an uncertain

environment. Nevertheless, the main drawback of MDP is that action taken is time-event

based. Due to the stochastic nature of the duration of successive decision-epochs in arriv-

ing energy and data, as well as the reliance on the costs of the decision-epochs duration,

Semi-Markov Decision Process (SMDP), which is an event-driven process, is more relevant

to wireless communication with EH technology.

In this Chapter, the focus is on the resource allocation problem for an online EH point-

to-point communication system, and a resource allocation framework with an SMDP-based
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approach is proposed. Because of a random energy arrival process, the node must have a pre-

plan to store enough energy to distribute the harvested energy to the incoming data requests

efficiently. The objective of the framework is to obtain the optimal decision for resource

allocation on the EH wireless communication by maximizing the network throughput and

reducing the service rejection probability. To the best of our knowledge, there is no existing

work reported in the open literature that formulates the resource allocation problem of EH

wireless networks as an infinite horizon SMDP-based problem. The main contributions of

this chapter are summarized as follows: 1) a novel framework based on an SMDP approach is

formulated for the EH wireless communication system with the objective of maximizing the

throughput of a point-to-point transmission; 2) an optimal SMDP-based policy is proposed

that is dynamically adaptive to the changing of the channel status and the varying of arriving

harvested energy and data requests for scheduling decisions of the energy allocation.

The remainder of this chapter is organized as follows. In Section 4.2, the system model

of EH technology is presented. The formulation of an SMDP-based approach for the energy

allocation model is proposed in Section 4.3. Section 4.4 shows the implementation of the

proposed policy in the proposed system model. Performance analysis is provided in Section

4.5, and chapter summary is given in Section 4.6.

4.2 System Model

4.2.1 Model Description

This work considers an EH technology for point-to-point wireless communication with a

single EH transmitter and a single non-EH receiver over a fading channel in Fig. 4.1. The

transmitter is equipped with an energy storage with finite capacity that can store at most

Kmax harvested energy units (EUs). Representation of relevant variables is adopted as

discrete times. The list of important notations is given in Table 4.1.

Let λc denote the average data arrival rate at the transmitter, where data is assumed
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Figure 4.1: System block diagram.

to arrive with low arrival rate follows a Poisson distribution. Thus the transmission time of

the services follows an exponential distribution with 1
µ

as the average transmission time with

one allocated EU. Therefore, ξ(n)
µ

is the transmission time with n allocated EUs. Moreover,

let λe denote the arrival rate of EH into the source’s energy buffer. We assume that EH

arrival follows a Poisson distribution. Since the transmitter has a finite energy capacity, it

must verify that the energy storage is neither too full nor empty to avoid buffer overflow

or performance degradation, respectively. For simplicity, on the other hand, a three-state

wireless channel model is considered that describes our point-to-point transmission in three

possible fading states: good state, moderate (mod) state, and bad state, has been adopted. In

particular, it is considered that the incoming packet that the source reports to the receiver

are arriving at three pre-defined channel states, i.e., good, mod, and bad. Assuming Ac
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Table 4.1: List of Notation

Symbols Description
Kmax Maximal amount of energy that the battery can accommodate

K Number of available EUs in the battery
λc Average data arrival rate at the transmitter
λe Average EH arrival rate at the transmitter’s battery
µc Departure rate of the transmission that occupies one EU when the channel at state (c)
ξ(n) Number of allocated EUs into a packet for transmission
Ac Event of arriving a packet when the channel at state (c)
G Event of arriving EU
Fn Event of completion a transmission that is assigned with n EUs
Ed Reward for transmitting a packet
θc Transmission time of the served service that occupies one EU at channel state (c)
β Price per unit time
α Continuous-time discounting factor

denotes the events of arriving a packet at the transmitter when the channel is at c state,

where c ∈ (g,m, b) denotes good, mod, and bad wireless channel states, respectively. Let

Prg, Prm, and Prb be defined as the probabilities of occurring events Ag, Am, and Ab,

respectively, where the sum of all the probabilities is one. Hence, the average arrival data

rate λ̄c =
∑
∀c Prcλc. Certainly, the average gain of the good channel state is higher than

that of the mod state and bad channel state. Thus, it permits transmission with less EUs

using the same transmission parameters. We assume that the channel gain is block-fading

so that channel gain remains the same for the whole duration of the decision-epoch, where

channel condition is known at the beginning of the decision-epoch.

4.2.2 Problem Formulation

The decision-making procedure of the resource allocation problem is described as follows.

When a new packet arrives, the controller determines whether to accept it or not according

to the current channel states, and energy availability. If the data is accepted for transmission,

the controller will assign the incoming packet with n EUs, n∈{1, 2, · · · , N}, N≤K, where N
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is the maximal number of EUs that the source can provide for packet transmission, and K is

the number of available EUs in the transmitter’s battery. The availability of the resources in

the battery is varied based on the arrival of EH and the allocation of EUs into the incoming

packet.

In this chapter, an online point-to-point EH communication system is formulated based

on the SMDP-based approach. The objective of the formulation is to compute an optimal

decision rule that maximizes the system benefits (long-term expected average system reward)

and guarantees QoS in terms of network reliability by optimally allocating the arrival energy.

The duration of a decision-epoch is a random variable and depends on the energy allocation

decision. The control action is taken at the beginning of a decision-epoch, where it is

continued up to the end of that interval. Each control action corresponds to a certain

transmission power level, which is equivalent to the number of allocated EUs. On the other

hand, once a transmission is accepted by the source node, then the completed rate to serve

the packet is determined by the number of EUs given for that transmission and the channel

states at the time when the packet arrives. The transmit time of a service is a reciprocal

function of the number of EUs that is allocated to the packet. Therefore, the growing amount

of EU allocation leads to completing the transmission faster.

4.3 SMDP Formulation Of EH Technology

As discussed earlier, the duration of the decision-epoch is not fixed since the time between

successive control choices varies, where the epoch length depends on the current state and the

choice of the action. The cost per decision-epoch relies on the time taken for the transitions

from one state to another. Hence, the proposed problem shapes an SMDP problem, which is

dynamic programming based. The Semi-Markov Decision Process problem can be modeled

based on the following elements: system states, set of actions, reward model, Sojourn time,

and transition probabilities, which are discussed below.
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4.3.1 System States

The system state of the resource allocation problem for EH technology s can be characterized

by the ongoing transmission with n EUs, the available resources in the transmitter’s battery,

and the current event. Therefore, the state set S can be represented as

S = {s|s = (sn, K, ẽ)} (4.1)

where sn denotes the bitmap of allocating a transmitting packet with n EUs and ẽ represents

events in the set, where ẽ ∈ {Ac, F1, F2, . . . , FN , G}. The arrival of a packet at (c) channel

states (Ac); where c ∈ {g,m, b}, the completion of current transmission assigned with n EUs

(Fn), and the arrival of one EH (G) are different events. In the beginning of each decision-

epoch, at most one state is selected among all possible states. The overall objective is to

optimize the online resource allocation that maximizes the end-to-end network throughput

over Time T for the proposed system model. Two points need to be emphasized. First,

there exists some time instant when there is no energy allocated, i.e., the incoming data is

dropped due to lack of available energy or a busy channel. Second, for the state selection

in each decision-epoch, the system should take into consideration not only the throughput

of this block but also the average throughput of the whole transmission period to obtain

a better overall performance. The source transmitting power can be computed according

to the fundamental fact that in the total transmission period, a balance between the total

harvested energy and the total consumed energy should be achieved from all the states.

4.3.2 Set of Actions

The decision process of the EH network determines its admission policy upon a packet arrival

into the network. When an event occurs, the EH transmitter decides which action a(s) must

be taken from the action set As based on the current state s, i.e.,
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As =

 −1, ẽ ∈ {F1, . . . , FN , G}

{0, 1, . . . , C}. ẽ = Ac
(4.2)

where a(s)=−1 represents either completing a transmission or harvesting new energy units.

In both cases, no action is required except the transmitter’s battery has to be updated.

On the other hand, a(s) = 0 represents an action of blocking an incoming data, where no

energy shall be allocated, and a(s) = n, n∈ {1, 2, . . . , N} represents an action of accepting

the incoming request with n EUs. We assume that the transmitter’s battery can receive

energy packets during data transmission. To obtain the optimum resource allocation policy,

a complete mapping from the states to the actions that maximizes the sum of all long-term

expected rewards for each state s must be found.

4.3.3 Reward Model

Given the system state and the corresponding action, the system reward R(s, a) can be

represented as

R(s, a) = Q(s, a)−G(s, a) (4.3)

where Q(s, a) and G(s, a) refer to the instant income and the expected system cost, respec-

tively, which are obtained by taking action a(s) at state s. The income Q(s, a) includes the

improvement in system’s satisfaction by admitting the transmitting; and the reduction in

satisfaction rate by dropping the packet; and the expense of the transmission occupying the

EUs. Therefore, the income can be shown as:
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Q(s, a)=



0, a(s)=−1,

ẽ∈{F1, . . ., FN, G}

−Ed, a(s) = 0, ẽ=Ac

Ed−ξ(n)·θc ·β, a(s) = n, ẽ=Ac,

n∈{1, 2, · · ·, C}

(4.4)

where Ed refers to the cost or income evaluated by the change of system’s satisfaction rate

of rejecting or accepting a packet for transmission, respectively. θc denotes the transmitted

time while the transmission is allocated one EU at channel state (c). β denotes the price per

unit time whose unit is the same as the unit of Ed. Hence, the income of the EH wireless

network can be written as:

The expected system cost G(s, a) is defined as follows:

G(s, a) = τ(s, a)C(s, a), (4.5)

where τ(s, a) is the expected time from the exiting state to the next state when an action

a(s) is selected, and C(s, a) is the service price of the expected time τ(s, a), which can be

defined as the number of occupied EUs, shown as,

C(s, a) = ξ(n). (4.6)

4.3.4 Sojourn Time

The average expected time τ(s, a) is the time duration from the current event to others after

selecting action a(s). The average rate of an occurred event γ(s, a), consequently, is the sum

of all elements processes’ rates from state s to other states after selecting action a(s). γ(s, a)
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and τ(s, a) can be computed as follows:

γ(s, a)=τ(s, a)−1 =

 λc+λe, ẽ ∈ {F,G} or ẽ ∈ {Ac}, a=0,

λc+λe+
µc
ξ(n)

. ẽ ∈ {Ac}, a=n
(4.7)

The expected instant reward r(s, a) during τ(s, a) is determined according to the dis-

counted reward model in [92], which is given by:

R(s, a) = Q(s, a)− C(s, a)Ea
s

[∫ τ

0

e−αtdt

]
= Q(s, a)− C(s, a)Ea

s

[
[1− e−ατ ]

α

]
= Q(s, a)− C(s, a)

α + γ(s, a)
, (4.8)

where α represents a continuous-time discounting factor.

4.3.5 Transition Probability

Next, the state transition probability P (s′|s, a) is defined as the probability that the system

will be in state s′ at the next decision epoch if an action a(s) is selected at state s. Three

cases are considered based on the event type ẽ ∈ {Ac, Fn, G} at current state s, where

Ac ∈ {Ag, Am, Ab}.

• For the given state s = (sn, K,Ac), the transition probability P (s′|s, a) to the next

state s′ can be obtained as

P (s′|s, a) =


Prcλc
γ(s,a)

, a=0, s′=(sn, K,Ac)

λe
γ(s,a)

, a=n, s′=(sn, K + 1− n,G)

µc
ξ(n)γ(s,a)

, a=n, s′=(sn, K−n, Fn),

(4.9)

where Prc ∈ {Prg, P rm, P rb}, and the summation of the three probabilities equals one.
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• For the given state s = (sn, K, Fn), the transition probability P (s′|s, a) to the next

state s′ can be obtained as

P (s′|s, a) =

Prcλc
γ(s,a)

, a=n, s′=(sn, K−n,Ac)
λe

γ(s,a)
, a=−1, s′=(sn, K+1, G).

(4.10)

• For the given state s = (sn, K,G), the transition probability P (s′|s, a) to the next state

s′ can be obtained as

P (s′|s, a) =


Prcλc
γ(s,a)

, a=n, s′=(sn, K−n,Al)
µc

ξ(n)γ(s,a)
, a=−1, s′=(sn, K, Fn)

λe
γ(s,a)

, a=−1, s′=(sn, K+1, G).

(4.11)

Then, the maximal long-term discounted reward can be gained according to the dis-

counted reward model defined in [93] and can be written in the Bellman equation form

v(s) = max
a∈As

[
R(s, a) + λ

∑
s′∈S

P (s′|s, a)v(s′)

]
, (4.12)

where λ = γ(s,a)
α+γ(s,a)

< 1 to ensure the convergence of the calculation. In addition, the state

transition probability after uniformization p̃(s′|s, a) can be expressed as

p̃(s′|s, a) =

 1− [1−P (s′|s,a)]γ(s,a)
L

, s′ = s

P (s′|s,a)γ(s,a)
L

, s′ 6= s.
(4.13)

where L = λc + λe + µc
ξ(n)

.
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4.4 Energy Allocation Scheme By SMDP

By finding a complete mapping from the states to the actions, the optimal resource allocation

policy can be obtained. Based on the above transition probabilities and the reward model in

(4.8), the maximum long-term discounted reward of the state s for our SMDP-EH approach

can be formulated as the discount reward model defined in a Bellman equation as shown in

(4.12). The expected real-time reward has to be unitized to uniform the continuous-time

Markov decision process. The normalized long-term expected reward ṽ(s) for the proposed

adaptive optimal energy allocation of a wireless EH network is stated as:

ṽ(s) = max
a∈A

[
R̃(s, a) + λ̃

∑
s′∈S

p̃(s′|s, a)ṽ(s′)

]
, (4.14)

where the unitized reward function R̃(s, a) and the unitized parameter λ̃ are determined as

following

R̃(s, a) = R(s, a)
α + γ(s, a)

α + L
(4.15)

λ̃ =
L

(L+ α)
(4.16)

The objective of determining ṽ(s) is to choose an action that maximizes the right hand

side expression. It is noted that the proposed model is the infinite SMDP with finite states,

which provides a stationary policy. Hence, the optimization problem given by (4.14) can

be computed by applying the policy iteration approach [91] as summarized in Algorithm 4.

The output (Popt) is the optimum decision policy of the system.

In the beginning, both ṽ(s) and Popt(s) are initiated to be zero for each state s. For each

state s, ṽ(s) and Popt(s) are repeatedly calculated until the value of ṽ(s) for every state s

equals the related ṽ′(s) in the previous iteration, which indicates that the convergence is

reached. The output Popt(s) for all states is the decision policy of the system, which results

in obtaining the maximum discounted reward.
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Algorithm 3 Pseudocode for SMDP-EH Algorithm

1: For each state s, set long term reward ṽ(s) = 0. And set iteration k = 0, and ε > 0.
2: Utilize (4.15) to compute the corresponding reward for each state s.

vk+1(s) = max
a∈A

[
R̃(s, a) + λ̃

∑
s′∈S

p̃(s′|s, a)ṽk(s′)

]
.

3: if |ṽk+1 − ṽk| < ε(1−λ̃)

2λ̃
, go to step 5.

4: else, go back to step 2, increase k by one.
5: Find correspondingly action policy for ṽk+1(s),

Popt(s) ∈ arg max
a∈A

[
R̃(s, a) + λ̃

∑
s′∈S

p̃(s′|s, a)ṽk+1(s′)

]
.

6: end if

4.5 Performance Evaluation

In this section, simulation results are provided to evaluate the performance of the proposed

SMDP adaptive energy allocation approach for an EH network. The proposed policy is com-

pared with with Greedy policy [94] under various settings. In Greedy policy, the admission

control always assigns the maximum number of resources that the system can afford to any

data that arrives at any channel states. Our simulation is developed using an event driven

method in MATLAB. The simulation runs for 100 sec, and it is repeated ten times to obtain

the same average value as the simulation results for the convergence. The maximum number

of allocated EUs to a packet is N = 3. Specifically, a packet can be provided with none,

one, two, or three EUs at most, which relies on the availability of resources and the overall

system reward. The default values of other parameters used in the system model, except as

otherwise noted, are as follows: three pre-defined channel states in the source-destination

link are considered. Although the transmitter has a single data arrival rate λc, the proba-

bilities that arriving data events occur when the channel is in a good, mod, or bad state are

defined as Prg=0.3, Prm=0.4, and Prb=0.3, respectively. The average departure rate of a

service depends on the channel states when data arrives and the number of allocated EUs.

The energy arrival rate is λe=1, the reward for transmitting a packet is Ed=2, the maximal

size of the energy capacity is Kmax=10, β=3, and the discount factor α is 0.15.
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Figure 4.2: Average probability of action under various λc.

Fig. 4.2 shows the average action probabilities of the EH network various data arrival

rates λc. It is noticeable that most requests are allocated to 3EUs when the data arrival rate

is relatively very low, whereas the policy trends to perform the action of assigning less EUs

when the data arrival rate starts increasing to adapt more transmission. In other words, the

system avoids experiencing a shortage of energy by assigning services with minimum EUs in

the case of high traffic.

To further verify the performance of our proposed SMDP-based resource allocation

scheme, the blocking probability, as well as the overall system reward, are compared with

Greedy policy over various data arrival rates, λc. In Fig. 4.3, the system reward of the EH

network under variable data arrival rates is shown. As expected, it can be observed that the

performance of our proposed scheme is superior to the Greedy scheme for all λc. Moreover,

it is clear that the gap of the overall reward between the proposed algorithm and the Greedy

algorithm is expanded with the increasing of the data arrival rates.
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Figure 4.3: Overall reward under various λc.

A similar trend is observed in Fig.4.4, which displays how the blocking probability grows

with increasing data arrival rates. While the blocking probability increases slowly due to

the high volume of data arriving for our proposed SMDP approach, the probability grows

progressively more in the Greedy scheme. The reason the proposed algorithm outperforms

the Greedy function is because of the inability of the Greedy policy to control the rejection

rate when the data arrival rate is high, or the stored energy is low, while our scheme always

maintains the blocking rate by optimally distributing the resource.

4.6 Chapter Summary

This chapter considers a point-to-point communication system with energy harvesting con-

straints over a fading channel, where a resource allocation framework based on a Semi-

Markov Decision Process (SMDP) is proposed. The objective of the framework is to provide
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Figure 4.4: Blocking probability under various λc.

a solution for a throughput maximization problem in EH networks by maximizing the total

long-term expected reward of the EH system. The system reward is derived by considering

both the income and the cost of the EH wireless communications. The numerical results

illustrate a significant expected reward performance gain over a Greedy scheme. Moreover,

simulations illustrate that the proposed approach is efficient and provides important guide-

lines for network deployment and resource management in a green radio network with EH

technology.
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Chapter 5

Cross-layer Adaptive Transmission

Techniques for EH Systems over

Fading Channels

5.1 Introduction

Energy harvesting (EH) technology is an important enabling technique for future wireless

communication to meet the demand for self-organizing networks. Adaptive modulation, on

the other hand, is crucial to meet the demand for high data rate transmission. Moreover,

providing energy harvesting capability to wireless devices enables the nodes to continually

acquire energy from renewable resources, which leads to prolonged lifetimes for wireless

networks. Although Energy harvesting technology brings new dimensions to the wireless

communication problem, the intermittency and randomness of arriving energy are still vast

concerns. Besides self-sustainability and virtually perpetual operation compared to network

lifetimes currently limited by conventional batteries, EH technology is expected to reduce

the use of conventional energy and accompanying carbon footprint to reduce the worlds en-

ergy consumption, especially by increasing the number of communication devices, which will
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double or triple by 2050 [1]. Hence, wireless communication powered by energy harvesting is

a promising approach to prolong the lifetimes of wireless networks. Traditional energy har-

vesting technology relies on natural energy sources (like solar, wind, vibration, etc.), which

have certain characteristics. EH technology has recently emerged as the key solution to many

problems related to the wasting of energy due to radio transmissions [2] and it is expected

to significantly improve network energy efficiency. Besides this, it maximizes the network

longevity by eliminating manual battery replacement while clean and renewable energy are

approved. As a matter of fact, scavenging ambient energy and utilizing the free, renewable

energy wisely will lead to opening a vast opportunity for green communication [3, 4]. De-

spite the advantages provided by EH technology, the random nature of EH constraints, i.e.,

energy arrives at random times and in random amounts, results in challenges to providing

satisfactory communication performance in EH networks. Hence, designing algorithms to

handle the random and on-off energy arrivals is highly desirable. Moreover, decision making

plays a crucial role in wireless networks with EH technology due to the randomness in the

stochastic energy arrival process. Because of the time-varying fading of wireless channels and

the randomness of arriving energy as well as data, the decision about the transmission rate

and power depends primarily on channel conditions, data buffer status, and energy capacity

status. Practical systems, data buffers and energy capacity are equipped with finite storage;

therefore, optimal channel-adaptive schemes may not be enough to optimize the system as a

whole, and buffers should be taken into consideration. Because of the randomness of arrival

data and energy, as well as the varying of channel gains, exact scheduling policies cannot be

determined using statical optimization techniques. Since the packet scheduling problem is

inherently dynamic in nature, the problem falls under the stochastic dynamic programming.

Therefore, it is more realistic to utilize an optimization criterion that is dynamic in nature.

Several papers formulate the EH networks using the Markov decision process (MDP), which

is a mathematical framework that analyzes the system dynamics in uncertain environments.

Nevertheless, the main drawback of the MDP approach is that decisions taken are time-based.
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On the other hand, due to the stochastic nature of the duration of successive decision-epochs

in arriving energy as well as data, and the reliance on the costs of the decision-epochs du-

ration, the semi-Markov decision process (SMDP), which is event-based, is more relevant to

wireless communication with EH technology. In this chapter, the cross-layer variable-rate

variable-power adaptive modulation scheme is investigated for an online point-to-point EH

communication systems based on channel state, data buffer state and battery state to max-

imize the network throughput while minimizing the dropped packets probability and data

buffer delay. Due to the random arrival of the harvested energy, the node must have a pre-

plan to store enough energy to efficiently distribute the arrival energy for data transmission.

Our previous work [88], proposed a resource allocation framework of a point-to-point wire-

less communication system with EH constraints based on SMDP approach that maximizes

the network throughput by considering channel adaptation only. Since the assignment of

constellation only depends on the channel gain, this scheme may give an upper bound of the

achievable physical layer performance by considering two assumptions: the buffer is infinite,

and has data all the time to transmit with any chosen constellation. For practical wireless

networks, adapting packet transmission with channel condition as well as by taking buffer

status into consideration is crucial. Overall, the goal of the adaptation is to stabilize the

system, by achieving maximum throughput while reducing dropping probabilities and mini-

mizing buffering delay. Moreover, because of the finiteness of the data buffer, the calculation

of delay and overflow is dynamic in nature, and therefore, a cross-layer adaptive data rate

scheme is proposed that selects power constellation dynamically depending on the channel

state as well as on the data buffer and the battery states. Both BER requirements at the

physical layer, and delay and overflow requirements at the data link layer are satisfied. To

the best of our knowledge, there is no existing work reported in the open literature that

formulates the resource allocation problem of EH wireless networks as an infinite horizon

SMDP-based problem under data buffer and overflow constraints.

The design of EH communication systems has generated much research activity with
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respect to modern wireless technology. The throughput maximization problem for a single-

hop with EH constraints over a fading channel has been investigated in [12] while authors

in [56] solved the same problem by proposing a low-complex and optimal transmission policy

called recursive geometric water-filling (RGWF). The cooperative transmissions, mainly for

the two-hop wireless communication systems with EH technology have been studied recently,

but only for some special cases. The authors in [69] proposed an optimal transmission policy

for the two-hop system model in multiple EH packets arriving at the relay. In [68], the

throughput maximization problem for the two-hop communication system in the case of

an EH source with two energy arrivals has been solved using cumulative curve algorithm.

In [82], RGWF algorithm was adopted to maximize throughput of the two-hop EH systems.

In [89], the authors investigated the resource allocation problem in ultra-dense small cell

networks with energy harvesting base stations. Failure probability minimization for wireless

mesh networks with renewable energy suppliers has been addressed in [90].

On the other hand, numerous system models have been formulated based on the SMDP

approach, such as mobile cloud computing networks, vehicular cloud computing networks,

wireless networks and cognitive vehicular networks. The authors in [95] showed how to

manage the cloud resources, i.e., virtual machines, across multiple cloud domains to support

continuous cloud service based on SMDP, where the work captures the dynamic arrivals and

departures of resource requests for decision making of their resource allocation. In [96], the

authors proposed a joint multi-resource allocation framework for the same system model

in [95] based on SMDP, where the objective of the framework is to obtain the optimal

decision of computing and wireless bandwidth resource allocation among multiple mobile

users by maximizing the overall rewards (i.e., low service rejection probability and short

service time). The authors in [97] proposed an optimal computation resource allocation

scheme to maximize the total long-term expected reward of the vehicular cloud computing

system based on SMDP. The system reward is derived by taking into account both income

and cost of the proposed system as well as the variability feature of the resources. In [88],
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a novel framework based on SMDP approach is formulated for a point-to-point wireless

communication with EH constraints. The objective of the framework is to dynamically

adapt to the random nature of the energy arrival and the change of the channel fading in

order to make optimum decisions in terms of packet transmission. From a cognitive vehicular

networks perspective, the authors in [98] captured the dynamic of vehicle users mobility and

the change in cognitive band availability, where the joint resource allocation problem is

formulated as SMDP.

The main contributions of this chapter are summarized as follows:

• investigate the capability of employing SMDP-based policy optimization for an adap-

tive EH wireless communication system with the objective of maximizing network

throughput and minimizing the dropping probability and data buffer delay.

• a novel framework based on the SMDP approach is formulated for EH wireless commu-

nication systems with the objective of maximizing network throughput by optimally

allocating the resource while maintaining minimal buffering delay and packet overflow;

• a SMDP-based dynamic programming technique is proposed to dynamically adapt

to the change of the channel and/or buffers’ states that optimally satisfy the BER

requirements at the physical layer, and the overflow requirements at the data-link

layer.

The remainder of this chapter is organized as follows. The system model and model

description are presented in Section 5.2. In Section 5.3, the SMDP Formulation of the

Cross-Layer Scheduling Problem for EH Technology is provided. Section 5.4 shows the

implementation of the proposed policy to our proposed system model. Performance analysis

is provided in Section 5.5, and concluding remarks are given in Section 5.6.
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5.2 System Model

5.2.1 Model Description

This work considers an EH technology for a point-to-point wireless communication system

over fading channels with a single EH transmitter and a single receiver. The transmitter

is equipped with finite energy capacitor Kmax and finite data buffer Dmax as shown in Fig.

5.1. It is assumed that the point-to-point transmission is represented as radio frames, where

a radio frame consists of multiple time-slots. The list of important notations of this chapter

is given in Table 5.1.

Figure 5.1: System block diagram.

Let λc denote the average data arrival rate at the transmitter, where data is assumed to

arrive with high arrival rate follows a Poisson distribution. Similarly, we assume that the

transmission time of the service follows an exponential distribution with 1
µc

as the average

transmission time with one EU when channel at c state. Therefore, ξ(n)
µ

is the transmission
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Table 5.1: List of Notation

Symbols Description
Kmax Maximal amount of energy that the battery can accommodate
Dmax Maximal number of packets that the buffer can accommodate

K Number of avaliable EUs in the battery
D Number of stored packets in the buffer
λc Average data arrival rate at the transmitter’s buffer
λe Average EH arrival rate at the transmitter’s battery
µc Departure rate of the transmission that occupies one EU when the channel at state (c)
ξ(n) Number of allocated EUs
Ns Number of transmitted symbols in a time-slot
Np Number of bits in Packet
w Number of packets taken from the buffer
R Adaptive modulation rate in bits/symbol
G Event of arriving new EU
F Event of arriving new packet
Cc Event of completion transmission and starting a new transmission at channel state (c)

Pe(γ) Instantaneous BER with received SNR (γ)
PT Transmission power
α Continuous-time discount factor

time with n allocated EUs. Moreover, let λe denote the average arrival rate of EH at the

transmitter’s battery. It is assumed that the EH arrival rate follows a Poisson distribution.

The processing units are packet and block at the higher layer and at the physical layer

respectively. A point-to-point transmission block consists of multiple symbols, and a packet

is made up of multiple information bits. Packets from the higher layer application are stored

in a finite sized buffer at the transmitter’s data buffer. Based on the information of channel

state, data buffer state and energy capacitor state, the scheduler chooses a particular action

u ∈ U , which is equivalent to the selected modulation constellation. The controller unit

takes a corresponding number of packets from the buffer and modulates it with the chosen

modulation scheme into symbols for transmission over a Rayleigh fading channel. At the

receiver, the symbols are demodulated into bit streams, bit streams are mapped into the

packets, and packets get stored in the receiver buffer. Finally, packets are pushed upwards
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to the higher layer from the receiver buffer. It is assumed that the discrete duration of each

time-slot corresponds to a frame of Ns channel uses (number of symbols transmitted in a

time-slot). Depending on the scheduler decision, a frame may have a different number of

packets in different time-slots. Let w denote the number of packets taken from the buffer for

transmission and R is the adaptive modulation rate in bits/symbol. The relation between

number of transmitted packets and modulation rate is given by,

w =

(
Ns

Np

)
R, (5.1)

where Np is the packet size in bits.

5.2.2 Channel Model

The wireless channel in the analyzed EH technology system is assumed to be ergodic flat

fading, obeying a Rayleigh distribution. The probability density function of power gain for

the Rayleigh fading channel is described by a exponential distribution [99],

f(γ) =
1

γ
exp(−γ

γ
), for γ ≥ 0, (5.2)

where γ = E{γ} is the average received channel power gain. We model the Rayleigh fading

channel with a first order Markov model, which is described with a set of channel states

C = {c1, c2, · · · , cC} and a matrix of transition probabilities among states P = [Prci,cj , 1 ≤

i, j ≤ C], where C is the number of finite non-overlapping channel states and Prci,cj is the

probability of transition from state ci to state cj, i.e., Prci,cj = Pr(cj|ci, 1 ≤ i, j ≤ C. Let

Γ = {γ0, γ1, · · · , γC} denote the corresponding set of received SNR thresholds in increasing

order, where γ0 = 0, γi < γi+1 and γC = ∞. Then the channel is said to be in state ci

if γi−1 ≤ γ ≤ γi. This work considers a C-state wireless channel model that describes the

point-to-point transmission in C-possible fading states: c∈{c1, c2, · · · , cC}.
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5.2.3 Battery Model

It is assumed that the transmitter is equipped with a finite energy capacitor that can hold at

maximum of Kmax EUs. Let K = {k0, k1, · · · , kK} denote the capacitor state space in terms

of EU occupancy, where kj corresponds to j ∈ {0, 1, · · · , K} EUs. The number of EUs in

the buffer is determined dynamically based on battery status, energy consumption, and new

harvested energy. The dynamics of the capacitor occupancy from the current state to next

state is given by,

kj = min{max(k0, ki −min{PT , ki}+ g), Kmax} (5.3)

where the transmitting power PT must be smaller or equal to the current available energy

ki, and g ∈ {0, 1, · · · , G} denotes the arrival of EUs at the transmitter’s battery.

5.2.4 Data Buffer Model

The transmitter utilizes its data buffer to store the arrival packets. Let D = {d0, d1, · · · , dD}

denote the data buffer state space in terms of buffer occupancy, where di corresponds to

i ∈ {0, 1, · · · , D} packets in the buffer. The number of packets in the buffer at each decision-

epoch is determined dynamically based on the current buffer state, transmitted packets, and

new incoming traffic. It can be expressed as follows,

dj = min{max(d0, di − w + f), Dmax} (5.4)

where f ∈ {0, 1, · · · , F} denotes the number of packets that arrive at the data buffer, and

w ∈ {0, 2, · · · ,W} denotes the packets that are taken from the buffer for transmission. It is

taken into account that the maximum number of packets that can be transmitted is limited

by the number of available packets in the data buffer.

With respect to an action at a particular state a(s), each action corresponds to a pair
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of energy allocation and transmission rates as discussed in the next section. It is assumed

that all packets arriving in any given time-slot cannot be transmitted immediately and can

only be transmitted in the next time-slot or later. There are two other considerations that

are made: (i) when the buffer has fewer packets than the number of packets that could

be transmitted di < w and (ii) when the buffer’s empty space is less than the number of

bits arriving, dD + w − di < f . In the first case, the controller can take no more than the

maximum number of bits in the buffer; therefore, the minimum buffer state could be d0. In

the second case, the transmitter can accommodate dD + w − di packets in the buffer and

additional arriving packets will be dropped. Hence, the maximum buffer state is dD.

5.3 SMDP Formulation of EH Cross-layer Adaptive

Transmission

As discussed earlier, the duration of the decision-epoch is not fixed since the time between

successive control choices varies, where the epoch duration depends on the current state

and the choice of the action. The cost per decision-epoch relies on the time taken for the

transitions from one state to another. Hence, the proposed problem constitutes a SMDP

problem, which is dynamic programming based.

5.3.1 Problem Description

Maximizing the supportable data rate while minimizing power, delay and/or overflow simul-

taneously is difficult to manage. The reason is that to minimize the buffer delay and/or

buffer overflow, high power is required for transmission with high order modulation and

vice versa. In this chapter, the objective is to design a cross-layer scheduler for an online

point-to-point EH wireless network that optimally allocates energy and transmission rates

while being adaptive to the change of both physical layer (i.e., channel state) and data link

layer (i.e., battery and data buffer states) such that the overflow and the queueing delay are
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optimized while the network throughput is guaranteed. The semi-Markov decision process

problem can be modelled based on the following tuple {S,As,W , Ts,P}, which corresponds

to the system states, set of actions, reward model, sojourn time, and transition probabilities,

as discussed below:

System States

The system state of the cross layer power allocation and adaptive modulation scheme for EH

technology s can be characterized by the ongoing transmission with n EUs and corresponding

adaptive rate, channel state, battery state, buffer state, and current event as represented

below

S = {s|s = (sn,w, K,D, ẽ)} (5.5)

where sn,w denotes a bitmap of the ongoing transmission that is allocated with n EUs

n ∈ {0, 1, · · · , N} and w packets that are taken from the data buffer w ∈ {0, 2, · · · ,W}.

In addition, ẽ represents the event in the event sets, where ẽ ∈ {G,F,Cc}. The arrival of

harvested energy (G), the arrival of data packets (F), and the completion of the ongoing

transmission and starting of a new transmission at channel gain (c) are different events.

At a particular event ẽ, the scheduler first determines the status of the buffers and the

channel, and then chooses an action dynamically to optimize average transmission power,

delay and overflow. The objective of the scheduler is to optimize the online resource allo-

cation that maximizes the network throughput under the constraints on the average buffer

delay and packet overflow for the proposed system model. Since the nature of the problem

is dynamic, it falls into the general category of stochastic dynamic programming problems.

The duration of a decision-epoch is a random variable and depends on the decision of the

scheduler. The control action is taken at the beginning of a decision-epoch, and it continues

up to the end of that interval. Similar to Chapter 4, a transmitter’s battery can harvest

energy during data transmission.
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Set of Actions

In an adaptive power allocation and modulation scheme, each action in the action set of

the adaptive transmission scheme has a two-to-one mapping between the energy allocation

and the transmission rate on one hand, and the number of transmitted packets on the other

hand.

At the start of a particular time-slot, the adaptive controller decides the action a at

state s to be taken depending on the data buffer state, energy capacity state as well

as channel state. Assume that there are a total of As actions available at state s and

As = {a0,0, a1,2, a1,4, · · · , an,w, } to be the set of all available actions, where the first index

n represents the number of allocated EUs and the second index w represents the number

of transmitted packets. Hence, when an event occurs, the controller chooses an action a(s)

from the action set As based on the current state s. The allocation decision must satisfy the

finite energy capacitor constraint as n ≤ N ≤ Kmax and the finite data buffer constraint as

w ≤ W ≤ Dmax, where n ∈ 0, 1, · · · , N and w ∈ 0, 1, · · · ,W , respectively.

Let Pe(γ) denote the instantaneous BER with received SNR γ. An approximate expres-

sion of BER for M-QAM is given in [100] and it can be expressed by,

Pe(γ) =
2

v
(1− 1√

M
)

d
√
M
2
e∑

i=1

erfc

(
(2i− 1)

√
3vγPT

2(M − 1)P̄

)
(5.6)

where v = log2(M) is the number of bits that modulates a 2v-QAM symbol and PT is

the normalized power allocation and corresponds one-to-one to the number of EUs that

are allocated. To obtain the optimum cross-layer adaptive transmission policy, a complete

mapping from the states to the actions that maximize the sum of all long-term expected

rewards for each state s must be found, taking into account the system constraints, i.e.,

buffer delay and packet overflow.
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Reward Model

The choice for an action in a particular state is selected by the associated costs. The

controller chooses the action that results in maximizing the reward (lowest cost). An action

in a particular state results in a determined cost for each objective to be gained. The

prime objective in this chapter is to maximize the network throughput for an online point-

to-point EH communication system while minimizing queueing delay and buffer overflow

costs so that they are within tolerable limits as well as satisfying the EH constraints. A

cost function R(s, a) constitutes the relationship between the state-action pair (s, a) and the

system reward. Given a system state and a corresponding action, the system reward (also

called associated cost) can be represented as

R(s, a) = Q(s, a)−G(s, a) (5.7)

where Q(s, a) refers to the instant income and cost that are obtained by taking an action

a(s) at state s. Each objective (both the main objective and constraint objective) with a

cost function is described as follows:

1) Adaptive Modulation Rate: EH power sources are different than conventional power

sources in terms of their renewable feature. Unlike conventional wireless networks,

which operate with battery of non-renewable and limited energy, wireless networks

with EH capability have renewable feature. However, although transmitting with min-

imum power is significant in wireless devices that usually operate with conventional

power sources, optimally controlling the transmitting power in EH technology, even by

utilizing more power under certain conditions (necessity and availability), is desirable.

Based on the system states, i.e., channel, battery, and data buffer, the scheduler de-

termines how many EUs should be allocated for data transmission, and consequently

the number of w packets that are taken from the data buffer for transmission. Hence,
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the adaptive modulation rate is equivalent to the immediate system reward and can

be expressed as:

QE(s, a) = w, s ∈ S, a ∈ A (5.8)

2) Buffer Overflow Cost: It can be noted that while the scheduler optimally controls the

transmission power and the adaptive rate, some incoming packets may be dropped due

to insufficient space in the data buffer. Therefore, packet overflow rate is an important

QoS requirement when the incoming traffic is bursty and the buffer is limited in size.

The buffer overflow rate cost depends on the current buffer occupancy, arrival packets

and the number of transmitted packets. When the buffer is full, the probability of

dropped packets is high. Suppose, the current buffer state is d and the controller takes

w packets from the buffer. Then, the buffer can accommodate (x = Dmax − d + w)

arriving packets. Now, if the arriving packets f are larger than x, (f − x) the packets

will be dropped. Therefore, the immediate overflow cost QO(s, a) by taking an action

a(s) at state s is given by the number of packets that are dropped from the buffer as

a result of insufficient storage and it can be expressed as

QO(s, a) = ϕ(f, (Dmax − d+ w)), s ∈ S, a ∈ A (5.9)

where ϕ(y, z) is a positive difference function, which returns the difference of y and z

when y > z, and it returns 0 when y ≤ z.

3) Queueing Delay Cost: Since many wireless network applications are delay sensitive,

delay is another important parameter that quantifies QoS requirements in modern

wireless networks. Based on the application of QoS requirements, the maximum tol-

erable queueing delay is determined. For example, real-time traffic has less tolerance

in latency compared to the best-effort traffic. The queueing delay cost QD(s, a) for

action a(s) at state s is the ratio of the corresponding number of packets in the buffer
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d in state s, and the average packet arrival rate (λc), as follows:

QD(s, a) =
d

λc
, s ∈ S, a ∈ A (5.10)

The expected system cost G(s, a), on the other hand, is defined as follows:

G(s, a) = C(s, a)τ(s, a), (5.11)

where τ(s, a) is the expected service time, which will be discussed below. C(s, a) is the cost

rate of the service time when an action a(s) is selected. C(s, a) can be determined by the

power allocation at state s, shown as

C(s, a) = PT , (5.12)

where the transmission power PT can be calculated using (5.6) with instantaneous re-

ceived SNR γ replaced by the average received SNR γ̄ from the following equation: γ̄ =

1
πc
j

∫ γj
γj−1

fΓ(γ)dγ, which is equalvelant to the number of allocated EUs; ξ(n).

Sojourn Time

The average expected time τ(s, a) is the time duration from the current event to others

after selecting action a(s). The average rate of events γ(s, a), consequently, is the sum of all

elements processes’ rates from state s to other states after selecting action a(s). γ(s, a) and

τ(s, a) can be computed as follows:

γ(s, a) = τ(s, a)−1 =

λc+λe, ẽ ∈ {F,G} or ẽ ∈ {Cc}, a = 0,

λc+λe+
µc
ξ(n)

, ẽ ∈ {Cc}, a = n.

(5.13)
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where R is the modulation rate that is adapted by occupying n EU at channel state c,

and a(s) = −1 represents either harvesting new EUs or receiving new packets in the data

buffer. In both cases, no action is required except that the transmitter’s battery and data

buffer are updated. When harvesting new EUs (ẽ ∈ {F}) or new packets are arriving at the

transmitter’s data buffer (ẽ ∈ {G}), no action is required and none of the ongoing services

are being processed. Once the channel state is changed (ẽ ∈ {Cc}), the scheduler determines

the system state and the decision action is taken.

Transition Probability

Next, the state transition probability from state s to state s′ when an action a(s) is selected

is derived, which is denoted as P (s′|s, a), under different events ẽ ∈ {G,F,Cc}.

• For the given state s = (sn,w, K,D,Cc), the transition probability P (s′|s, a) to the next

state s′ can be obtained as

P (s′|s, a) =


µc

ξ(n)γ(s,a)
, a = n, s′ = (sn,w, K − n,D − w,Cc)

λe
γ(s,a)

, a=n, s′=(sn,w, K − n+ 1, D − w,G)

λc
γ(s,a)

, a=n, s′=(sn,w, K − n,D − w + 1, F )

(5.14)

where the modulation rate R ∈ {0, 2, 4, 6}.

• For the given state s = (sn,w, K,D,G), the transition probability P (s′|s, a) to the next

state s′ can be obtained as

P (s′|s, a) =


µc

ξ(n)γ(s,a)
, a = n, s′ = (sn,w, K − n+ 1, D − w,Cc)

λe
γ(s,a)

, a=−1, s′=(sn,w, K + 1, D,G)

λc
γ(s,a)

, a=−1, s′=(sn,w, K,D + 1, F )

(5.15)

.
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• For the given state s = (sn,w, K,D, F ), the transition probability P (s′|s, a) to the next

state s′ can be obtained as

P (s′|s, a) =


µc

ξ(n)γ(s,a)
, a = n, s′ = (sn,w, K − n,D − w,Cc)

λe
γ(s,a)

, a=−1, s′=(sn,w, K + 1, D,G)

λc
γ(s,a)

, a=−1, s′=(sn,w, K,D + 1, F )

(5.16)

.

5.3.2 Problem Formulation and Policy

The objective is to make decisions at the beginning of the epoch so as to maximize the

supportable data rate under average packet overflow and average delay constraints. The

problem can be mathematically formulated as follows:

max QE

s.t. QD ≤ Bd,

QO ≤ Po,

(5.17)

where Bd and Po are the allowable average delay threshold and average packet overflow rate,

respectively. The actual value of Bd is application dependent and known to the transmitter

for the target application. On the other hand, a smaller (larger) Po represents a strict (loose)

buffer overflow constraint.

Two adaptation policies are considered to investigate the cross-layer performance as

follows:

1. Channel-Dependent Static Policy: The adaptive modulation rate is chosen based on

channel state only but it maintains a fixed specified BER. However, this adaptation has

a major drawback because it does not consider the finiteness of the data buffer or delay

threshold, and consequently cannot guarantee any overflow or delay requirements. On
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the other hand, this policy is deterministic and the transition pattern of states only

vary when there is a change in a channel state. Specifically, in this adaptation scheme,

the channel will be divided into a finite C = A number of states and the controller

selects action ai ∈ A when the gain of channel state ci places it in the range [γi−1, γi).

2. Joint Battery, Buffer and Channel Dependent Dynamic Policy: The proposed adap-

tation policy is based on SMDP, and it takes into account the energy capacitor, data

buffer occupancy and channel state to tackle overflow and delay in a purposeful di-

rection. The controller considers changes rrelated to data buffer, battery, and channel

to apply the proper action at each system state. This policy provides optimum power

allocation and guarantees both packet overflow and buffering delay requirements.

5.4 Solution Techniques

We discuss the determination of the extended instant reward, which is based on the

rule that determines the action for each specific state. The expected instant reward

R(s, a) during τ(s, a) is determined according to the discounted reward model in [93],

as below:

R(s, a) = Q(s, a)− C(s, a)Ea
s

[∫ τ

0

e−αtdt

]
= Q(s, a)− C(s, a)Ea

s

[
[1− e−ατ ]

α

]
= Q(s, a)− C(s, a)

α + γ(s, a)
, (5.18)

where Q(s, a) = [QE(s, a) − QO(s, a) − QD(s, a)] and α represents a continuous-time

discounting factor. The policy for the channel-dependent adaptation scheme is static

and unique since it is only dependent on the current measured channel state. However,

this channel-dependent policy causes unavoidable queueing delay and packet overflow
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because the controller does not have any control over them. For the cross-layer adapta-

tion scheme, the policy takes the battery occupancy and traffic behaviour into account

to tackle delay and overflow in an object-oriented way. For example, the transmitter

needs different transmission powers in different channel states since channel gains are

different. However, the transmitter might also use a higher power level to keep the

delay within limits, and to avoid packet overflow when the buffer is nearly full and/or

when the average arrival rate is higher and vice versa. That is, it is assumed that the

models for system state transition probabilities and cost functions for all the actions

are known. Therefore, the transmitter can compute the optimal policy via dynamic

programming algorithm using SMDP formulation. The formulation and its solution

technique are discussed below:

5.4.1 Cross-Layer and Policy Evaluation

When the state transition probabilities for the system are known, the problem can

be formulated as an SMDP problem and find the optimal policy using dynamic pro-

gramming algorithm. In SMDP formulation, the models for system states, actions,

transition probabilities and costs of the system are given. The problem formulated in

Eq. (5.17) is solved using an unconstrained weighted sum of the three objectives QE,

QO and QD, where they are maximized via dynamic programming algorithm (i.e., pol-

icy iteration algorithm). Specifically, our objective is to find the optimum decision so

that the average weighted of all the costs [Q(s, a) = QE(s, a)−β1QO(s, a)−β2QD(s, a)]

is maximized. β1 and β2 are weighting factors that indicate the importance of a partic-

ular cost over others. Hence, each combination of the weighting factors determines a

unique optimal policy for the adaptation problem because of the unique cost function.

By finding a complete mapping from the states to the actions, the optimal resource

allocation policy can be obtained. Based on the above transition probabilities and the

reward model in Eq. (5.18), the maximum long-term discounted reward of the state s
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for our approach can be formulated as the discount reward model defined in a Bellman

equation as follows:

v(s) = max
a∈A

[
R(s, a) + λ

∑
s′∈S

p(s′|s, a)v(s′)

]
, (5.19)

where λ = γ(s,a)
α+γ(s,a)

< 1 to ensure the convergence of the calculation. In addition, the

state transition probability after uniformization p̃(s′|s, a) can be expressed as

p̃(s′|s, a) =

1− [1−p(s′|s,a)]γ(s,a)
L

, s′ = s

p(s′|s,a)γ(s,a)
L

, s′ 6= s,

(5.20)

where L = λc + λe + µc
ξ(n)

.

The expected real-time reward must be unitized in order to make uniform the continuous-

time Markov decision process. The normalized long-term expected reward ṽ(s) for the

proposed adaptive optimal data rate for the cross-layer EH network is stated as follows

ṽ(s) = max
a∈A

[
R̃(s, a) + λ̃

∑
s′∈S

p̃(s′|s, a)ṽ(s′)

]
, (5.21)

where the unitized reward function R̃(s, a) and the unitized parameter λ̃ are determined

as follows

R̃(s, a) = R(s, a)
α + γ(s, a)

α + L
(5.22)

λ̃ =
L

(L+ α)
(5.23)

The objective of determining ṽ(s) is to choose an action that maximizes the right hand

side expression. Then, the optimal action (policy) can be obtained by solving (Popt)
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at each state s, which can be calculated as

Popt(s) = arg max
a∈A

[
R̃(s, a) + λ̃

∑
s′∈S

p̃(s′|s, a)ṽ(s′)

]
, (5.24)

The optimal policy can be obtained by applying an iteration approach [91] as summa-

rized in Algorithm 4. In the beginning, both ṽ(s) and Popt(s) are initiated to be zero

Algorithm 4 Pseudocode for SMDP-EH Algorithm

1: For each state s, set long term reward ṽ(s) = 0. And set iteration k = 0, and ε > 0.
2: Utilize Eq.(5.22) to compute the corresponding reward for each state s.

vk+1(s) = max
a∈A

[
R̃(s, a) + λ̃

∑
s′∈S

p̃(s′|s, a)ṽk(s′)

]
.

3: if |ṽk+1 − ṽk| < ε(1−λ̃)

2λ̃
, go to step 5.

4: else, go back to step 2, increase k by one.
5: Find correspondingly action policy for ṽk+1(s),

Popt(s) ∈ arg max
a∈A

[
R̃(s, a) + λ̃

∑
s′∈S

p̃(s′|s, a)ṽk+1(s′)

]
.

6: end if

for each state s. For each state s, ṽ(s) and Popt(s) are repeatedly calculated until the

value of ṽ(s) for every state s equals the one of related ṽ′(s) in the previous iteration,

which indicates that the convergence is reached. The output Popt(s) for all states is

the decision policy of the system, which results in obtaining the maximum discounted

reward.

5.5 Performance Evaluation

This section shows the performance of two adaptation policies. The parameter val-

ues are set as follows: it is assumed energy harvesting rate and packet arrival rate

are following a Poisson distribution with an average rate (λe = 2) and (λc = 3), re-

spectively. In addition, it is assumed that the finite energy capacitor Kmax=20, finite
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data buffer Dmax = 20, Ns/Np = 1, and the number of channel states and actions are

C = 4 and U = 4, respectively. We assume i.i.d. Rayleigh fading channels, where

the gain h follows a Rayleigh distribution with mean (m̄ = 1) and average transmis-

sion power (P̄ = 1mW ) and corresponding normalized average received SNR (γ̄ = 1),

average channel BER (P̄e = 10−4) and the modulation constellation set w=[0,2,4,6]

bits/symbol.
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Figure 5.2: Effect of average buffer delay on the throughput among different schemes.

Fig.5.2 shows the maximum supportable throughput-maximum buffer trade-off curve

for the cross-layer dynamic and single layer static policies. It is noticeable that the

throughput increases with an increase in the average buffer delay for both policies.

However, the throughput increasing rate is high for smaller values of data buffer size,

while the throughput increasing rate slows down when buffer size increases. Fig.5.2

also shows that the proposed scheme outperforms the static policy and performance

gap between them increases with increasing the average buffer delay requirement. The

reason behind that the single layer static policy does not keep track of the battery

and buffer states when taking an action and yields in less performance by consuming

more energy that the battery contains while our proposed policy keeps track of both the
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battery and data buffer states, and takes optimal decision actions in each state. Hence,

it can be concluded that despite the higher complexity of the proposed scheme, it is

still worthwhile to implement the cross-layer dynamic scheme because of the enormous

improvement in the performance between the two schemes, especially when Bd ≥ 3.
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Figure 5.3: Effect of average packet arrival rate on the throughput and the overflow proba-
bility rate among different schemes.

We compare the throughput and the blocking probability of the physical-layer static
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adaptation policy with the cross-layer dynamic adaptation policy when the average

buffer delay (Bd = 3) in Fig. 5.3. It illustrates that the average throughput of the

cross-layer dynamic scheme outperforms the channel-dependent static policy for all

packet arrival rates. It is clear that the performance of the channel-dependent static

policy degrades by increasing data arrival rates. Fig.5.3 also displays how the blocking

probability grows with the increase of the packet arrival rates in channel-dependent

static policy while the blocking rate is low in cross-layer dynamic policy even with the

increase in the data arrival rate. The reason is that the scheduler in channel-dependent

policy applies different modulation constellations based on channel state only without

tracking the capacitor and buffer states. Therefore, the policy has no guarantee with

respect to the overflow requirement, consequently throughput. In cross-layer policy,

on the other hand, BER as well as packet overflow requirements are guaranteed for

increased data arrival rates.
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Figure 5.4: Effect of average harvested energy on the throughput for the proposed scheme
among various average buffer delays.

The effect of the average harvested energy on the throughput for the proposed scheme

for different values of maximum allowable average delay Bd = 1.12, 1.5, 2.5, 4.5 packets
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is shown in Fig.5.4. The throughput increases with an increase of average harvested

energy for a given Bd. Although the higher available energy supports the network to

transmit more data, the increasing rate is comparatively less when there is a strict delay

constraint. For instance, in the case of Bd = 1.12, i.e., when a system can tolerate fewer

delays, the throughput can be increased by 0.14 b/s/Hz if the average harvested energy

is increased from 1 J/s to 5 J/s. In contrast, with the same incremental harvested

energy, the throughput is improved by 0.48 b/s/Hz in the case of Bd = 2.5, i.e., when

a system can tolerate comparatively more delay.

5.6 Chapter Summary

In this Chapter, an SMDP framework has been utilized to determine the optimal

policy of a cross-layer design for an online point-to-point EH communication system

based on channel-dependent static adaptation and cross-layer dynamic adaptation. In

cross-layer adaptation, throughput is maximized by tracking battery, data buffer, and

channel states to optimally control the transmission power and rate over the trans-

mission time intervals. Numerical results illustrated that cross-layer adaptation policy

outperforms channel-dependent policy by guaranteeing overflow rate, and hence, net-

work throughput in a green radio network with EH sources. Our proposed cross-layer

scheme has been shown to be implementable compared to the benchmark scheme, and

it still achieves almost the same throughput as the benchmark scheme.
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6.1 Conclusion

In this thesis, we investigated the design of optimal transmission policies for energy

harvesting communication systems. Resource allocation was considered for point-to-

point and two-hop relay networks with an energy harvesting source. The main results

of each chapter are summarized as follows:

In Chapter 3, An efficient transmission policy by maximizing the network throughput

has been investigated for the energy harvesting two-hop delay-tolerant and non-delay-

tolerant relay networks in an offline setting. It was assumed that the information on

energy harvesting as well as channel fading status was available prior to the beginning of

the transmission. Specifically, the simple and elegant RGWF approach that solves the

power allocation problem was extended numerically into a simulation representation.

The importance of this representation is that it provides more insight into the problems

and the solutions such that various wireless systems can be analysed. The advantage

of adapting the RGWF algorithm for the throughput maximization problem under a

Rayleigh fading channel is demonstrated. For a two-hop communication system, two
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schemes were proposed that maximize the network performance from a throughput

perspective for both delay tolerant and non-delay tolerant networks. The transmission

scheduling time has been derived for the source and the relay based on the RGWF-

EH profile to obtain an efficient transmission policy. Numerical results illustrated

that optimizing both transmission scheduling and power allocation result in higher

throughput. Moreover, simulations show that the proposed approach is simple, efficient

and provides significant guidelines on network deployment and resource management

in a green radio network with EH sources.

Chapter 4 investigated the resource allocation problem for a point-to-point communica-

tion system with energy harvesting constraints over a fading channel. A more practical

online setting was considered, where the energy arrival information and the channel

state information is known causally. To overcome the high complexity and curse of

dimensionality of the dynamic programming, which is the conventional approach for

solving stochastic control problems, discrete dynamic programming was utilized by

casting the optimization problem as a semi-Markov decision process (SMDP). In the

SMDP formulation, the set of transmission power levels is discrete and finite. More-

over, the channels are quantized to a finite number of states. The quantizations of

channel and power level result in a finitely-sized state space, and makes the SMDP

formulation mathematically tractable to solve the throughput optimization problem in

the online setting. Consequently, an optimal SMDP-based policy was proposed that

is dynamically adaptive to the changing of the channel status and the varying of ar-

riving harvested energy and data requests to making scheduling decisions regarding

the energy allocation. It was shown that adapting the SMDP-based formulation re-

sults in maximizing the network throughput, reducing the service rejection probability

and provides guidelines for resource management in green communication with EH

transmitters.

In chapter 5, a cross-layer optimal adaptation transmission policy for a point-to-point
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communication system with EH constraints over a Rayleigh fading channel based on

SMDP was investigated. Specifically, we studied the capability of employing the

SMDP-based policy optimization for an adaptive cross-layer EH wireless communi-

cation system with the objective of maximizing network throughput while minimizing

the dropping probability and data buffer delay. In cross-layer adaptation, throughput

should be maximized by tracking battery, data buffer, and channel states to optimally

control the transmission power and rate over the transmission time intervals. Hence, a

novel framework based on the SMDP approach was formulated for the proposed system

model with the objective of maximizing network throughput by optimally allocating

the resource while maintaining minimum buffering delay and packet overflow. The

proposed SMDP-based dynamic programming approach has proven to be dynamically

adaptive to the change of the channel and/or buffers states that optimally satisfy the

BER requirements at the physical layer, and the overflow requirements at the data-link

layer.
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APPENDIX 1. ACRONYMS

AWGN Additive White Gaussian Noise
CSI Channel State Information
CWF Conventional Water-Filling
DP Dynamic Programming
DS Delay Sensitive
DT Delay Tolerant
DWF Directional Water-Filling
EH Energy Harvesting
EHN Energy Harvesting Network
ESI energy state information
GR Green Radio
GWF Geometric Water-Filling
HU Harvest-Use
HUS Harvest-Use-Save
KKT Karush-Kuhn-Tucker
MDP Markov Decision Process
MIMO Multiple Input, Multiple Output
PDDR Pre-defined Data Rates
PSR Power splitting-based relaying
QoS Quality of Service
RF Radio Frequency
RGWF Recursive Geometric Water-Filling
RID-AC Relay In Demand using Average Capacity
RID-AF Relay In Demand using Average Fading
RIPE Relay In Partial Epoch
RRM Radio Resource Management
SMDP Semi-Markov Decision Process
SNR Signal-to-Noise Ratio
SWIPT Simultaneous Wireless Information and Power Transfer
TSR Time Switching-Based Relaying
WF Water-Filling
WLAN Wireless Local Area Network
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